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2 The Goldbach conjectures

In a letter to Euler dated 1742, the Prussian mathematician Christian Goldbach stated

the following conjecture:

if N is an integer greater than 2, then N = p1 + p2 + p3 where pi, i = 1, 2, 3 are primes.

In his reply letter, Euler wrote another conjecture:

if N is a positive even integer, then N = p1 + p2 where pi, i = 1, 2 are primes.

It is important to note that in Euler and Goldbach's time the number 1 was considered a

prime and today these two conjectures are known to be equivalent (see [35]). In the modern

version of the conjectures (i.e. not considering 1 as a prime number) the statement is:

if N is a positive odd integer greater than 5, then N = p1 + p2 + p3 where pi, i = 1, 2, 3 are

primes (TGC)

and

if N is a positive even integer greater than 2, then N = p1 + p2 where pi, i = 1, 2 are

primes. (GC)

It is well know that the two conjectures are not equivalent, but

(GC)⇒ (TGC).

Despite the very simple statement, the Goldbach conjectures are very hard to prove.

Indeed GC is still an open problem and the TGC was completely proved only in 2013. For

a more detailed survey see [35].

2.1 Results related to the Goldbach conjectures

The �rst partial result for the TGC was obtained by Hardy and Littlewood. In 1923 they

proved, under the generalized Riemann hypothesis (GRH for brevity), that TGC holds for

every su�ciently large odd integer (see [12] for details). In 1937 Vinogradov (see [40] for

details) proved TGC unconditionally (i.e. without GRH) for every su�ciently large odd

integer. In 2012 and 2013 Harald Helfgott published on ArXiv some papers (see [17], [18],

[19] and [20], the latter in collaboration with D. Platt) which complete the proof of TGC

for all odd integers larger than 5. The papers are still in preprint, but they are accepted

by the mathematical community.

In 1923 Hardy and Littlewood (see [13]) attacked the GC studying the size of the excep-

tional set for the Goldbach's problem, that is

E (N) = |{n < N : n 6= p1 + p2, p1, p2 ∈ P}|

where P is the set of the primes. They proved, assuming GRH, that almost all even
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numbers are sums of two primes, i.e.

E (N) = o (N)

as N →∞. In particular they proved that

E (N)� N1/2+ε

for every ε > 0 and su�ciently large N . In 1937 Vinogradov (see [39]) was able to remove

the dependence of GRH and proved the TGC for su�ciently large odd integers. In 1975

Montgomery and Vaughan (see [33]) proved unconditionally that there exists a positive

and computable δ > 0 such that

E (N)� N1−δ.

Pintz in 2006 (see [35]) announced that he proved the theorem with δ = 1/3 but the proof

has not been published yet. Assuming GRH Goldston [11] proved that

E (N)� N1/2 log4 (N)

and then he improved it to

E (N)� N1/2 log3 (N) .

The exceptional set has been analyzed also in the so called short interval context, that is,

an interval of the type [N,N +H] when N →∞ and H = o (N). The best unconditional

results have been obtained in 1993 by Perelli and Pintz [34] where they proved that

almost all even numbers in the interval
[
N,N +N7/36+ε

]
are sum of two primes, where

0 < ε < 2/3. Assuming GRH and assuming that H log−10 (N)→∞, Kaczorowski, Perelli

and Pintz [22] proved in 1993 that all even numbers in any interval [N,N +H] with at

most O
(
H1/2 log5 (N)

)
exceptions are sum of two primes.

2.2 Structure of the thesis

Chapter 3 is of preliminary character and it collects some well-known results used in this

work.

In Chapter 4 we will introduce our �rst theorem which is about the Cesàro mean of the

numbers that can be written as sum of a prime and two squares of integer (that we call

�Linnik numbers� for brevity). We will prove that the technique has a limitation and so

we can not expect to get results that look real conjecturally. We now present a short

introduction to our work; it will help us to a better comprehension of the proof.

We want to study the mean of some counting function with order k Cesàro weight, that

8



is, ∑
n≤N

f (n)
(N − n)k

Γ (k + 1)
.

So in Chapter 4 we will consider f (n) = rQ (n) as the weighted counting function of the

representation of n as a sum of a prime and two squares of integers. We will prove that

there are other two functions S̃ (z) (see (7)) and ω2 (z) (see (8)) such that

S̃ (z)ω2
2 (z) =

∑
n≥1

rQ (n) e−nz. (1)

The presence of this two functions is linked to the fact that we are working with primes

ans quares of integers. We will consider the integral

1

2πi

∫
(a)

eNzz−k−1S̃ (z)ω2
2 (z) dz

where
∫
(a)

means
∫ a+i∞
a−i∞ and using (1) and the fundamental identity

1

2πi

∫
(a)

v−sevdv =
1

Γ (s)
, Re (s) > 0, a > 0

we will prove, after a convergence control, that

∑
n≤N

rQ (n)
(N − n)k

Γ (k + 1)
=

1

2πi

∫
(a)

eNzz−k−1S̃ (z)ω2
2 (z) dz. (2)

We can see now that we moved from an arithmetic problem to a problem that can be dealt

with analytic tools. We would like to have lower bounds for k as small as possible since

for k = 0 the Cesàro weight is equal to 1.

We will prove that S̃ (z) has a asymptotic formula, then we will substitute that formula in

the RHS of (2) and we will obtain three integrals and an error term. In each integral we

will study the absolute convergence that depends on k. After that we will exchange the

integrals with the series in the integrand and, using some identities involving the Gamma

function and the Bessel functions, we will able to �nd an asymptotic for the LHS of (2).

As we said, the convergence depends on how large is k. We would like to get k ≥ 0 but

unfortunately using this technique it is not possible. In fact we will also prove that for

this problem the bound k > 3/2 is optimal.

In Chapter 5 we will show our second theorem which is about the Cesàro mean of the

numbers that can be written as sum of a prime and two squares of primes. The approach

is the same of the earlier part.

In Chapter 6 we will describe the circle method of Hardy, Littlewood and Ramanujan and

9



we will see the classical applications to the Goldbach ternary problem. It is the �starting

point� of our work, since our main results are based on a variant of this technique.
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3 Preliminaries

3.1 Prime Number Theorem (PNT)

Given the prime counting function

π (x) =
∑
p≤x

1

then exists some C > 0 such that

π (x) = li (x) +O
(
x exp

(
−C
√

log (x)
))

where

li (x) = lim
ε→0+

(∫ 1−ε

0

dt

log (t)
+

∫ x

1+ε

dt

log (t)

)
, x > 1

is the logarithmic integral function. Sometimes it is de�ned as

Li (x) =

∫ x

2

dt

log (t)
= li (x)− li (2)

and this is called the �European� de�nition. It is easy to prove that

li (x) ∼ x

log (x)

as x→∞ so

π (x) ∼ x

log (x)

as x→∞. For a proof see [1], chap. 13.

3.2 Poisson summation formula

We recall a very important summation technique due to Poisson. We need �rst of the

following

De�nition. Let f ∈ C∞ (R). Then f is a Schwartz function if ∀c ∈ R, ∀n ∈ N0 we

have ∣∣f (n) (x)
∣∣ = o (|x|c) .

as |x| → ∞.
Now we can prove the following
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Theorem (Poisson summation formula). Let be f a Schwartz function and let

f̂ (z) =

∫ ∞
−∞

f (x) e−2πizxdx

be its Fourier transform. Then ∑
n∈Z

f (n) =
∑
n∈Z

f̂ (n) .

For a proof see for example [45]. Actually it is possible to prove the theorem for more

general functions, such as functions of bounded variation supported over a �nite interval.

3.3 Riemann Hypothesis (RH)

Let

ζ (s) =
∑
n≥1

1

ns
=
∏
p

(
1− 1

ps

)−1
, ∀s ∈ C such that Re (s) > 1

be the Riemann zeta function. It has an analytic continuation on C \ {1} and at s = 1

it has a simple pole. The points s = −2n, n ∈ N0 are simple zeros of ζ (s) and they are

called trivial zeros. It is known that every other zero (called nontrivial zero) of ζ (s) is

a complex number such that 0 < Re (s) < 1. The Riemann hypothesis states that every

nontrivial zero has real part equal to 1/2. For more details see [38].

3.4 Generalized Riemann Hypothesis (GRH)

We recall that a primitive Dirichlet character χ to the modulus q is an arithmetic, periodic

with period q and completely multiplicative function. For more details see Davenport's

book [7], chapters 1,4 and 5. Let

L (s, χ) =
∑
n≥1

χ (n)

ns
=
∏
p

(
1− χ (p)

ps

)−1
, ∀s ∈ C such that Re (s) > 1

be a Dirichlet L function, q ≥ 3. If χ 6= χ0, where χ0 is the principal character, then

L (s, χ) has an analytic continuation on C. The points s = −2n, n ∈ N are simple zeros

of L (s, χ) if χ (−1) = 1 and in s = −2n + 1 with n ∈ N0 if χ (−1) = −1. They are

called trivial zeros. It is known that every other zero (called nontrivial zero) of L (s, χ) is

a complex number such that 0 < Re (s) < 1. The Generalized Riemann hypothesis states

that every nontrivial zero of L (s, χ), where χ is a primitive character, has real part equal

to 1/2. For more details see [7], chapters 4,5,9 and 14.
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3.5 Laplace transform

Let f (x) be a function locally integrable on [0,∞). Then the Laplace transform of f is

L (f) (s) :=

∫ ∞
0

f (x) e−sxdx = F (s)

and the inversion formula is given by

L−1 (F ) (x) =
1

2πi

∫ c+i∞

c−i∞
F (s) esxds.

3.6 The Mellin transform and the Mellin-Barnes integrals

The Mellin transform of a function f (x) is given by

M (f) (s) :=

∫ ∞
0

f (x)xs−1dx = F (s)

and the inversion formula is given by

M−1 (F ) (x) =
1

2πi

∫ c+i∞

c−i∞
F (s)x−sds, c > 0.

The Mellin transform is closely connected to the Laplace transform, since

M (f) (s) = L
(
f
(
e−x
))

(s) .

Now let us consider the Gamma function

Γ (s) =

∫ ∞
0

e−xxs−1dx, Re (s) > 0

which is the Mellin transform of e−x. Then if we apply the inversion formula we get

e−x =
1

2πi

∫ c+i∞

c−i∞
Γ (s)x−sds, Re (x) > 0, c > 0. (3)

Formula (3) (which is also known as Cahen�Mellin integral) will be useful later. This

identity is a particular case of the Mellin-Barnes integrals:

De�nition. The integrals of the form

f (z) =
1

2πi

∫ c+i∞

c−i∞

∏N
n=1 Γ (an + Ans)

∏L
l=1 Γ (cl − Cls)∏M

m=1 Γ (bm +Bms)
∏H

h=1 Γ (dh −Dhs)
zsds

where c ∈ R and aj, bj, cj, dj ∈ C are such that no poles of the integrand are on the

13



complex line (c− i∞, c+ i∞) and Aj, Bj, Cj and Dj are positive are known as Mellin-

Barnes integrals.

Actually it is possible to give a more generally de�nition; see [3] for details.

3.7 Perron's formula

Let a (n) be an arithmetic function and let

f (s) =
∑
n≥1

a (n)

ns

be the corrisponding Dirichlet series. Assume that the series is convergent if Re (s) > σ.

Then ∑′

n≤x

a (n) =
1

2πi

∫ c+i∞

c−i∞
f (s)

xs

s
ds

for c > 0, c > σ. The symbol
∑′

n≤x indicates that the last term of the sum must be

multiplied by 1/2 when x is an integer. The Perron's formula describes the inverse Mellin

transform applied to a Dirichlet series.
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4 A Cesàro average of the �Linnik numbers�

In this part we will prove a result in the same spirit of the recent work of Languasco

and Zaccagnini on additive problems with prime summands. In [24] and [25] they study

the Cesàro weighted explicit formula for the Goldbach numbers (the integers that can be

written as sum of two primes) and for the Hardy-Littlewood numbers (the integers that

can be written as sum of a prime and a square). In a similar manner, we will study a

Cesàro weighted explicit formula for the integers that can be written as sum of a prime

and two squares (that we call �Linnik numbers�). We will obtain an asymptotic formula

with a main term and more terms depending explicitly on the zeros of the Riemann zeta

function.

The study of these numbers is classical. For example Hardy and Littlewood in [12] studied

the number of solutions of the equation

n = p+ a2 + b2

and Linnik in [31] derived an asymptotic formula for the number of representations of

these numbers. Similar averages of arithmetical functions are common in literature, see,

e.g., Chandrasekharan - Narasimhan [6] and Berndt [2] who built on earlier classical work.

4.1 Bessel functions of the �rst kind and Laplace transform

For our work we will need the Bessel functions Jv (u) of complex order v and real argument

u. For their de�nition and main properties we refer to Watson [43], but we recall that they

were introduced by Daniel Bernoulli and they are the canonical solution of the di�erential

equation

u2
d2J

du2
+ u

dJ

du
+
(
u2 − v2

)
J = 0

for any complex number v. These solutions can be written as

Jv (u) =
(u

2

)v∑
m≥0

(−1)m u2m

4mm!Γ (v +m+ 1)

and they are analytic functions of u ∈ C, except for a branch point at u = 0 when v is

not an integer. The principal branch of Jv (u) corresponds to the principal value of (u/2)v

and is analytic in the u-plane cut along the interval (−∞, 0]. The Bessel functions with

integer order are also known as cylinder functions or the cylindrical harmonics because

they appear in the solution to Laplace's equation in cylindrical coordinates. Spherical
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Bessel functions with half-integer order are obtained when the Helmholtz equation

∇2f + k2f = 0,

where ∇2 is the Laplacian and k is the wave vector, is solved in spherical coordinates. In

particular, equation (8) on page 177 of [43] gives the Sonine representation

Jν (u) =
(u/2)ν

2πi

∫
(a)

ess−ν−1e−u
2/(4s)ds (4)

which is the basis of our future work. As noted by Languasco and Zaccagnini in [25] the

estimates of such Bessel functions are harder to perform than the ones already present in

the Number Theory literature (as far as we know, Bessel functions of complex order arise in

a similar problem for the �rst time in [25]) since the real argument and the complex order

are both unbounded while, in the previous papers, either the real order or the complex

argument is bounded. As we said in the previous sections, the method we will use in this

additive problem is based on a formula due to Laplace [27], namely

1

2πi

∫
(a)

v−sevdv =
1

Γ (s)
(5)

with Re (s) > 0 and a > 0 (see, e.g., formula 5.4 (1) on page 238 of [9]). As in [25],

we combine this approach with line integrals with the classical methods dealing with

in�nite sum over primes and integers. Similarly as [25] the problem naturally involves the

modular relation for the complex Jacobi theta 3 function (see (10)); the presence of the

Bessel functions in our statement strictly depends on such modularity relation.

4.2 Preliminary de�nitions and Lemmas

Let z = a+ iy, a > 0, and

θ3 (z) =
∑
m∈Z

e−m
2z (6)

S̃ (z) =
∑
m≥1

Λ (m) e−mz (7)

ω2 (z) =
∑
m≥1

e−m
2z (8)

and we can see that

θ3 (z) = 1 + 2ω2 (z) . (9)
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Furthermore we have the functional equation (see, for example, the proposition VI.4.3 of

Freitag-Busam [10] page 340)

θ3 (z) =
(π
z

)1/2
θ3

(
π2

z

)
(10)

which follows from the Poisson summation formula described above. We will show brie�y

the proof. We have

∫ ∞
−∞

e−x
2z−2πixmdx =z−1/2

∫ ∞
−∞

e−u
2−2πium/

√
zdx

=z−1/2e−π
2m2/z

∫ ∞
−∞

e−(u+πim/
√
z)

2

du

=z−1/2e−π
2m2/z

∫ ∞
−∞

e−v
2

dv

=z−1/2e−π
2m2/z2

∫ ∞
0

e−v
2

dv

=
(π
z

)1/2
e−π

2m2/z

hence ∑
m∈Z

e−m
2z =

∑
m∈Z

∫ ∞
−∞

e−x
2z−2πixmdx =

(π
z

)1/2∑
m∈Z

e−π
2m2/z

as wanted. So we have

ω2
2 (z) =

(
1

2

(π
z

)1/2
− 1

2

)2

+
π

z
ω2
2

(
π2

z

)
+

((π
z

)1/2
− 1

)((π
z

)1/2
ω2

(
π2

z

))
. (11)

A trivial but important estimation is

|ω2 (z)| ≤ ω2 (a) ≤
∫ ∞
0

e−at
2

dt =

√
π

2
√
a
� a−1/2. (12)

Let us introduce the following

Lemma 2. Let z = a+ iy, a > 0 and y ∈ R. Then

S̃ (z) =
1

z
−
∑
ρ

z−ρΓ (ρ) + E (a, y) (13)
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where ρ = β + iγ runs over the non-trivial zeros of ζ (s) and

E (a, y)� |z|1/2
1, |y| ≤ a

1 + log2 (|y| /a) , |y| > a.
(14)

(For a proof see Lemma 1 of [24]. The bound for E (a, y) has been corrected in [23]).

It is interesting to observe that the starting pointo of the proof of Lemma 2 is the identity

S̃ (z) =
1

2πi

∫
(α)

ζ ′

ζ
(w) Γ (w) z−wdw, α > 1 (15)

since
ζ ′

ζ
(s) =

∑
n≥1

Λ (n)

ns
, Re (s) > 1.

So if we apply the Perron's formula or we apply (3), observing that we can exchange the

series with the integral since the series converge absolutely, we can prove (15).

In particular, taking z = 1
N

+ iy we have∣∣∣∣∣∑
ρ

z−ρΓ (ρ)

∣∣∣∣∣ =

∣∣∣∣1z − S̃ (z) + E

(
1

N
, y

)∣∣∣∣� N +
1

|z|
+

∣∣∣∣E ( 1

N
, y

)∣∣∣∣
�

N, |y| ≤ 1/N

N + |z|1/2 log2 (2N |y|) , |y| > 1/N.
(16)

Now we have to recall that the Prime Number Theorem (PNT) is equivalent, via Lemma

2, to the statement

S̃ (a) ∼ a−1, when a→ 0+ (17)

(see Lemma 9 of [12]). For our purposes it is important to introduce the Stirling approxi-

mation

|Γ (x+ iy)| ∼
√

2πe−π|y|/2 |y|x−1/2 (18)

(see for example �4.42 of [37]) uniformly for x ∈ [x1, x2], x1 and x2 �xed, and the identity

∣∣z−w∣∣ = |z|−Re(w) exp (Im (w) arctan (y/a)) . (19)

We now quote Lemmas 2 and 3 from [24]:

Lemma 3. Let β + iγ run over the non-trivial zeros of the Riemann zeta function and

18



let α > 1 be a parameter. The series

∑
ρ, γ>0

γβ−1/2
∫ ∞
1

exp (−γ arctan (1/u))
dy

uα+β

converges provided that α > 3/2. For α ≤ 3/2 the series does not converge. The result

remains true if we insert in the integral a factor logc (u), for any �xed c ≥ 0.

Lemma 4. Let β + iγ run over the non-trivial zeros of the Riemann zeta function, let

z = a+ iy, a ∈ (0, 1), y ∈ R and α > 1. We have

∑
ρ

|γ|β−1/2
∫
Y1∪Y2

exp
(
γ arctan

(y
a

)
− π

2
|γ|
) dy

|z|α+β
�α a

−α

where Y1 = {y ∈ R : γy ≤ 0} and Y2 = {y ∈ [−a, a] : yγ > 0}. The result remains true

if we insert in the integral a factor logc (|y| /a), for any �xed c ≥ 0.

We now establish an important Lemma. We will use it to prove that there is a limitation

in our technique. Essentially the lower bound of k is linked to the number of squares in

the problem. We have

Lemma 5. Let β + iγ run over the non-trivial zeros of the Riemann zeta-function, let

N, d be positive integers and k > 0 be a real number. Then the series

∑
l∈(0,∞)d

∑
γ>0

γ−k−3/2
∫ γ

0

e−N‖l‖
2
v2/γ2e−vvk+βdv,

where ∑
l∈(0,∞)d

=
∑
l1≥1

∑
l2≥1

· · ·
∑
ld≥1

,

converges if k > d− 1/2 and this result is optimal.

Proof. From (9) we have that

ωd2 (z) =
1

2d

d∑
m=0

(
d

m

)
(−1)d−m θm3 (z)

then
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I =
∑

l∈(0,∞)d

∑
γ>0

γ−k−3/2
∫ γ

0

e−N‖l‖
2
v2/γ2e−vvk+βdv

=
∑
γ>0

γ−k−3/2
∫ γ

0

ωd2

(
Nv2

γ2

)
e−vvk+βdv

=
1

2d

d∑
m=0

(
d

m

)
(−1)d−m

∑
γ>0

γ−k−3/2
∫ γ

0

θm3

(
Nv2

γ2

)
e−vvk+βdv.

Now, using the functional equation (10) we have that

I =
1

2d

d∑
m=0

(
d

m

)
(−1)d−m

πm/2

Nm/2

∑
γ>0

γm−k−3/2
∫ γ

0

θm3

(
π2γ2

Nv2

)
e−vvk+β−mdv

=
1

2d

d∑
m=0

(
d

m

)
(−1)d−m

πm/2

Nm/2

∑
γ>0

γm−k−3/2Iγ,m,

say. Now we claim that

θ3

(
π2γ2

Nv2

)
� 1

since θ3 (z) is a continuous function in the interval
[
π2

N
,∞
)
(i.e. the range of 1/v2) and

lim
z→∞

θ3 (z) = 1.

So we have

Iγ,m �
∑
γ>0

γm−k−3/2
∫ γ

0

e−vvk+β−mdv

and now assuming k + β −m+ 1 > 0 we have∫ γ

0

e−vvk+β−mdv � 1,

hence

Iγ,m �k
∑
γ>0

γm−k−3/2

and the last series converges if k > m− 1/2. Since m = 0, . . . , d for a global convergence

we must have k > d− 1/2 and this result is optimal.�

Let us introduce another lemma

Lemma 6. Let ρ = β + iγ run over the non-trivial zeros of the Riemann zeta function,
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let z = 1
N

+ iy, N > 1 be natural number, y ∈ R and α > 3/2. We have

∑
ρ

|Γ (ρ)|
∫
(1/N)

∣∣eNz∣∣ ∣∣z−ρ∣∣ |z|−α |dz| �α N
α.

Proof. Put a = 1
N
. Using the identity (19) and (18) we get that the left hand side in the

statement above is

∑
ρ

|γ|β−1/2
∫
R

exp
(
γ arctan

(y
a

)
− π

2
|γ|
) dy

|z|α+β
, (20)

and so by Lemma 4 (20) is �α a
−α in Y1 ∪ Y2. For the other part we can see that

∑
ρ

γβ−1/2
∫ ∞
a

exp

(
−γ arctan

(
a

y

))
dy

|z|α+β

= a−α−β+1
∑
ρ

γβ−1/2
∫ ∞
1

exp

(
−γ arctan

(
1

u

))
dy

uα+β

since

|z|−1 �

a−1 |y| ≤ a,

|y|−1 |y| ≥ a,
(21)

and so by Lemma 3 we have the convergence if α > 3/2. �

4.3 Settings

Using (6), (7) and (8) it is not hard to see that

S̃ (z)ω2
2 (z) =

∑
m1≥1

∑
m2≥1

∑
m3≥1

Λ (m1) e
−(m1+m2

2+m
2
3)z =

∑
n≥1

rQ (n) e−nz

where

rQ (n) =
∑

m1+m2
2+m

2
3=n

Λ (n)

so let z = a+ iy, a > 0 and let us consider

1

2πi

∫
(a)

eNzz−k−1S̃ (z)ω2
2 (z) dz =

1

2πi

∫
(a)

eNzz−k−1
∑
n≥1

rQ (n) e−nzdz.
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Now we prove that we can exchange the integral with the series. From (12) and the Prime

Number Theorem in the form quoted above we have∑
n≥1

∣∣rQ (n) e−nz
∣∣ = S̃ (a)ω2

2 (a)� a−2

hence

∫
(a)

∣∣eNzz−k−1∣∣ ∣∣∣S̃ (z)ω2
2 (z)

∣∣∣ |dz| �a−2eNa(∫ a

−a
a−k−1dy + 2

∫ ∞
a

y−k−1dy

)
�ka

−2−keNa

assuming k > 0. So �nally we have

∑
n≤N

rQ (n)
(N − n)k

Γ (k + 1)
=

1

2πi

∫
(a)

eNzz−k−1S̃ (z)ω2
2 (z) dz. (22)

Now, using (13), we can write (22) as

∑
n≤N

rQ (n)
(N − n)k

Γ (k + 1)
=

1

2πi

∫
(a)

eNzz−k−1

(
1

z
−
∑
ρ

z−ρΓ (ρ)

)
ω2
2 (z) dz+

+O

(∫
(a)

∣∣eNz∣∣ |z|−k−1 ∣∣ω2
2 (z)

∣∣ |E (a, y)| |dz|
)

(23)

and the error term can be estimated, using Lemma 2, (12) and (21) as

a−1eNa
(∫ a

−a
a−k−1dy +

∫ ∞
a

y−k−1/2
(
1 + log2 (y/a)

)
dy

)
�k e

Naa−k−1

assuming k > 1/2. Hereafter we will consider a = 1/N . We have

∑
n≤N

rQ (n)
(N − n)k

Γ (k + 1)
=

1

2πi

∫
(1/N)

eNzz−k−1

(
1

z
−
∑
ρ

z−ρΓ (ρ)

)
ω2
2 (z) dz +O

(
Nk+1

)
and now, using the functional equation (11), we get
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∑
n≤N

rQ (n)
(N − n)k

Γ (k + 1)
=

1

8πi

∫
(1/N)

eNzz−k−1

(
1

z
−
∑
ρ

z−ρΓ (ρ)

)((π
z

)1/2
− 1

)2

dz

+
1

2πi

∫
(1/N)

eNzz−k−1

(
1

z
−
∑
ρ

z−ρΓ (ρ)

)
π

z
ω2
2

(
π2

z

)
dz

+
1

2πi

∫
(1/N)

eNzz−k−1

(
1

z
−
∑
ρ

z−ρΓ (ρ)

)(
π

z
ω2

(
π2

z

))
dz

− 1

2πi

∫
(1/N)

eNzz−k−1

(
1

z
−
∑
ρ

z−ρΓ (ρ)

)((π
z

)1/2
ω2

(
π2

z

))
dz

+O
(
Nk+1

)
=I1 + I2 + I3 +O

(
Nk+1

)
,

say.

4.4 Evaluation of I1

From I1 we will �nd the main terms M1 (N, k) and M2 (N, k) of our asymptotic formula.

We have

I1 =
1

8πi

∫
(1/N)

eNzz−k−2
((π

z

)1/2
− 1

)2

dz

− 1

8πi

∫
(1/N)

eNzz−k−1
∑
ρ

z−ρΓ (ρ)

((π
z

)1/2
− 1

)2

dz

=I1,1 − I1,2,

say. From I1,1 we have

I1,1 =
π

8πi

∫
(1/N)

eNzz−k−3dz +
1

8πi

∫
(1/N)

eNzz−k−2dz − π1/2

4πi

∫
(1/N)

eNzz−k−5/2dz

so, if we put Nz = s, ds = Ndz and use (5) we have immediately

I1,1 =
π

4

Nk+2

2πi

∫
(1)

ess−k−3ds+
Nk+1

4

1

2πi

∫
(1)

ess−k−2ds− π

2

Nk+3/2

2πi

∫
(1)

ess−k−5/2ds

=M1 (N, k) .
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From I1,2 we have

I1,2 =
π

8πi

∫
(1/N)

eNzz−k−2
∑
ρ

z−ρΓ (ρ) dz

+
1

8πi

∫
(1/N)

eNzz−k−1
∑
ρ

z−ρΓ (ρ) dz

−π
1/2

4πi

∫
(1/N)

eNzz−k−3/2
∑
ρ

z−ρΓ (ρ) dz

=I1 + I2 − I3,

say. We have to study

∑
ρ

|Γ (ρ)|
∫
(1/N)

∣∣eNz∣∣ ∣∣z−k−2∣∣ ∣∣z−ρ∣∣ |dz|
∑
ρ

|Γ (ρ)|
∫
(1/N)

∣∣eNz∣∣ ∣∣z−k−1∣∣ ∣∣z−ρ∣∣ |dz|
∑
ρ

|Γ (ρ)|
∫
(1/N)

∣∣eNz∣∣ ∣∣z−k−3/2∣∣ ∣∣z−ρ∣∣ |dz|
and we observe that by Lemma 6 we have the absolute convergence of these integrals if,

respectively, we have k > −1/2, k > 1/2 and k > 0. Hence for k > 1/2 we have

I1 =
π

4

∑
ρ

Γ (ρ)
1

2πi

∫
(1/N)

eNzz−k−2−ρdz =
π

4

∑
ρ

Γ (ρ)

Γ (k + 2 + ρ)
Nk+1+ρ

I2 =
1

4

∑
ρ

Γ (ρ)
1

2πi

∫
(1/N)

eNzz−k−1−ρdz =
1

4

∑
ρ

Γ (ρ)

Γ (k + 1 + ρ)
Nk+ρ

I3 =
π1/2

2

∑
ρ

Γ (ρ)
1

2πi

∫
(1/N)

eNzz−k−3/2−ρdz =
π1/2

2

∑
ρ

Γ (ρ)

Γ (k + 3/2 + ρ)
Nk+1/2+ρ.

4.5 Evaluation of I2

We have
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I2 =
π

2πi

∫
(1/N)

eNzz−k−3ω2
2

(
π2

z

)
dz

− π

2πi

∫
(1/N)

eNzz−k−2
∑
ρ

z−ρΓ (ρ)ω2
2

(
π2

z

)
dz

=I2,1 − I2,2,

say.

4.5.1 Evaluation of I2,1

We have that

I2,1 =
π

2πi

∫
(1/N)

eNzz−k−3ω2
2

(
π2

z

)
dz

=
π

2πi

∫
(1/N)

eNzz−k−3

(∑
l1≥1

e−l
2
1π

2/z

)(∑
l2≥1

e−l
2
2π

2/z

)
dz

so let us prove that we can exchange the integral with the series. Let us consider

A1 =
∑
l1≥1

∫
(1/N)

∣∣eNz∣∣ |z|−k−3 e−l21π2
Re(1/z)

∣∣∣∣ω2

(
π2

z

)∣∣∣∣ |dz| .
From

Re (1/z) =
N

1 +N2y2
�

N |y| ≤ 1/N

1/ (Ny2) |y| > 1/N
(24)

we have

A1 �
∑
l1≥1

∫ 1/N

0

e−l
2
1N

|z|k+3
ω2 (N) dy +N1/2

∑
l1≥1

∫ ∞
1/N

ye−l
2
1/(Ny2)

|z|k+3
dy = U1 + U2,

say. Hence, recalling (12) and (21),

U1 �ω2
2 (N)Nk+3

∫ 1/N

0

1dy

�Nk+1

and from (21) (with a = 1/N) we get
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U2 �N1/2
∑
l1≥1

∫ ∞
1/N

e−l
2
1/(Ny2)

yk+2
dy

�Nk/2+1
∑
l1≥1

1

lk+1
1

∫ l21N

0

uk/2−1/2e−udu

≤Γ

(
k + 1

2

)
Nk/2+1

∑
l1≥1

1

lk+1
1

�kN
k/2+1

assuming k > 0. Now we have to study the convergence of

A2 =
∑
l1≥1

∑
l2≥1

∫
(1/N)

∣∣eNz∣∣ |z|−k−3 e−l21π2
Re(1/z)e−l

2
2π

2
Re(1/z) |dz|

and again from (21) we have

A2 �
∑
l1≥1

∑
l2≥1

∫ 1/N

0

e−(l21+l22)N

|z|k+3
dy +

∑
l1≥1

∑
l2≥1

∫ ∞
1/N

e−(l21+l22)/(Ny2)

|z|k+3
dy

= V1 + V2,

say. For V1 we have

V1 �Nk+3ω2
2 (N)

∫ 1/N

0

1dy

�Nk+1

and for V2, assuming k > 1 and taking u =
l21+l

2
2

Ny2
, we have

V2 �
∑
l1≥1

∑
l2≥1

∫ ∞
1/N

e−(l21+l22)/(Ny2)

yk+3
dy

�Nk/2+1/2
∑
l1≥1

∑
l2≥1

1

(l21 + l22)
k/2+1/2

∫ ∞
0

uk/2e−udu

�kN
k/2+1/2,

recalling that ∑
l1≥1

∑
l2≥1

1

(l21 + l22)
α <∞
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holds if α > 1. A simple way to prove it is using the AM-GM inequality

∑
l1≥1

∑
l2≥1

1

(l21 + l22)
α ≤ 2α

∑
l1≥1

1

lα1

∑
l2≥1

1

lα2
.

If α = 1 the series diverges. We will prove this fact later.

Then �nally we have

I2,1 =
π

2πi

∑
l1≥1

∑
l2≥1

∫
(1/N)

eNzz−k−3e−(l21+l22)π2/zdz

=Nk+2π
∑
l1≥1

∑
l2≥1

1

2πi

∫
(1)

ess−k−3e−(l21+l22)π2N/sds

from which, recalling the de�nition of the Bessel functions (4) we have, taking u =

2π (l21 + l22)
1/2
N1/2 and assuming k > 1,

J2,1 =
Nk/2+1

πk+1

∑
l1≥1

∑
l2≥1

Jk+2

(
2π (l21 + l22)

1/2
N1/2

)
(l21 + l22)

k/2+1
.

4.5.2 Evaluation of I2,2

We have to calculate

I2,2 =
π

2πi

∫
(1/N)

eNzz−k−2
∑
ρ

z−ρΓ (ρ)

(∑
l1≥1

e−l
2
1π

2/z

)(∑
l2≥1

e−l
2
2π

2/z

)
dz

and again we have to prove that is possible to exchange the integral with the series. So

let us consider

A3 =
∑
l1≥1

∫
(1/N)

∣∣eNz∣∣ ∣∣z−k−2∣∣ ∣∣∣∣∣∑
ρ

z−ρΓ (ρ)

∣∣∣∣∣ e−l21π2
Re(1/z)

∣∣∣∣ω2

(
π2

z

)∣∣∣∣ |dz| .
Now using (16) and (12) we have

A3 �N1/2
∑
l1≥1

∫ 1/N

0

e−l
2
1N

|z|k+2
dy +N3/2

∑
l1≥1

∫ ∞
1/N

ye−l
2
1/(Ny2)

|z|k+2
dy

+N1/2
∑
l1≥1

∫ ∞
1/N

y log2 (2Ny)
e−l

2
1/(Ny2)

|z|k+3/2
dy

=W1 +W2 +W3,
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say. For W1 and W2 we can easily see that

W1 �Nk+5/2ω2 (N)

∫ 1/N

0

1dy

�Nk+1

and taking u = l21/ (Ny2)

W2 �N3/2
∑
l1≥1

∫ ∞
1/N

e−l
2
1/(Ny2)

yk+1
dy

�Nk/2+3/2
∑
l1≥1

1

lk1

∫ l21N

0

e−uuk/2−1du

�kN
k/2+3/2

assuming k > 1.We have now to checkW3. Taking again u = l21/ (Ny2) we have, assuming

k > 3/2,

W3 �Nk/2−1/4
∑
l1≥1

1

l
k−1/2
1

∫ l21N

0

log2

(
4Nl21
u

)
e−uuk/2−5/4du

�Nk/2−1/4
∑
l1≥1

log2 (4Nl21)

l
k−1/2
1

∫ ∞
0

e−uuk/2−5/4du

−Nk/2−1/4
∑
l1≥1

log
(

2
√
Nl1

)
l
k−1/2
1

∫ ∞
0

log (u) e−uuk/2−5/4du

+Nk/2−1/4
∑
l1≥1

1

l
k−1/2
1

∫ ∞
0

log2 (u) e−uuk/2−5/4du

�Nk/2−1/4
∑
l1≥1

1

l
k−1/2
1

�kN
k/2−1/4.

Let us consider

A4 =
∑
l1≥1

∑
l2≥2

∫
(1/N)

∣∣eNz∣∣ ∣∣z−k−2∣∣ ∣∣∣∣∣∑
ρ

z−ρΓ (ρ)

∣∣∣∣∣ e−l21π2
Re(1/z)e−l

2
2π

2
Re(1/z) |dz|
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and again for the estimation of
∣∣∣∑ρ z

−ρΓ (ρ)
∣∣∣ we have, using (16),

A4 �N
∑
l1≥1

∑
l2≥2

∫ 1/N

0

e−(l21+l22)N

|z|k+2
dy +

∑
l1≥1

∑
l2≥2

∫ ∞
1/N

e−(l21+l22)/(Ny2)

|z|k+2
dy

+
∑
l1≥1

∑
l2≥1

∫ ∞
1/N

log2 (2Ny)
e−(l21+l22)/(Ny2)

|z|k+3/2
dy

=R1 +R2 +R3,

say. So we have immediately

R1 �Nk+3ω2 (N)

∫ 1/N

0

1dy

�Nk+1

and if we take u = (l21 + l22) / (Ny2) we have

R2 �
∑
l1≥1

∑
l2≥1

∫ ∞
1/N

e−(l21+l22)/(Ny2)

yk+2
dy

�Nk/2+1/2
∑
l1≥1

∑
l2≥1

1

(l21 + l22)
k/2+1/2

∫ ∞
0

uk/2−1/2e−udy

�kN
k/2+1/2

for k > 1. So it remains to evaluate R3. Again we take u = (l21 + l22) / (Ny2) and we have

R3 �
∑
l1≥1

∑
l2≥1

log2 (4N (l21 + l22))

(l21 + l22)
k/2+1/4

∫ ∞
0

e−uuk/2−3/4du

−
∑
l1≥1

∑
l2≥1

log
(

2
√
N (l21 + l22)

)
(l21 + l22)

k/2+1/4

∫ ∞
0

log (u) e−uuk/2−3/4du

+Nk/2+1/4
∑
l1≥1

∑
l2≥1

1

(l21 + l22)
k/2+1/4

∫ ∞
0

log2 (u) e−uuk/2−3/4du

and the convergence follows if k > 3/2. Note that the estimation of R3 is optimal. For

proving it, take c = (l21 + l22) /N , assume k ≤ 3/2 and y > 1. We have

S =
∑
l1≥1

∑
l2≥1

∫ ∞
1/N

log2 (2Ny)
e−c/y

2

yk+3/2
dy ≥

∑
l1≥1

∑
l2≥1

∫ ∞
1

log2 (2Ny)
e−c/y

2

yk+3/2
dy.
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Now, since y ≥ 1 we have log2 (2Ny) ≥ log2 (2N) and since k ≤ 3/2 we have

S ≥ log2 (2N)
∑
l1≥1

∑
l2≥1

∫ ∞
1

e−c/y
2

yk+3/2
dy

≥ log2 (2N)
∑
l1≥1

∑
l2≥1

∫ ∞
1

e−c/y
2

y3
dy

= log2 (2N)
∑
l1≥1

∑
l2≥1

1

2c

(
1− e−c

)
≥
N log2 (2N)

(
1− e−2/N

)
2

∑
l1≥1

∑
l2≥1

1

l21 + l22

and the last double series is divergent, since

∑
l1≥1

∑
l2≥1

1

l21 + l22
≥
∑
l1≥1

∑
l2≤l1

1

l21 + l22

≥
∑
l1≥1

∑
l2≤l1

1

2l21
≥ 1

2

∑
l1≥1

1

l1
.

Now we have to estimate

A5 =
∑
l1≥1

∑
l2≥1

∑
ρ

|Γ (ρ)|
∫
(1/N)

∣∣eNz∣∣ ∣∣z−k−2∣∣ ∣∣z−ρ∣∣ e−Re(1/z)(l21+l22) |dz| .
Using (18) and (19) we have

A5 �
∑
l1≥1

∑
l2≥1

∑
ρ,γ>0

γβ−1/2
∫
(1/N)

|z|−k−2 |z|−β exp
(
γ
(

arctan (Ny)− π

2

))
e−Re(1/z)(l

2
1+l

2
2) |dz| .

Let Qk = supβ
{

Γ
(
k
2

+ β
2

+ 1
2

)}
and assume y < 0 (we will A−n the condition y < 0, with

A+
n the contidion y > 0) Using the obvious bound γ arctan (Ny)− γ π

2
≤ −γ π

2
and taking
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u =
l21+l

2
2

Ny2
we get

A−5 � Nk+2
∑
l1≥1

e−l
2
1N
∑
l2≥1

e−l
2
2N
∑
ρ,γ>0

Nβγβ−1/2e−γπ/2
∫ 0

−1/N
1dy

+
∑
l1≥1

∑
l2≥1

∑
ρ,γ>0

γβ−1/2e−γπ/2
∫ −1/N
−∞

|y|−k−2−β e−(l21+l22)/(Ny2)dy

�Nk+1
∑
l1≥1

e−l
2
1N
∑
l2≥1

e−l
2
2N
∑
ρ,γ>0

Nβe−πγ/2γβ−1/2

+
∑
l1≥1

∑
l2≥1

∑
ρ,γ>0

γβ−1/2e−γπ/2
N (k+1+β)/2

(l21 + l22)
(k+1+β)/2

∫ ∞
0

u(k+β−1)/2e−udu

�Nk+1
∑
l1≥1

e−l
2
1N
∑
l2≥1

e−l
2
2N
∑
ρ,γ>0

Nβe−πγ/2γβ−1/2

+N (k+1)/2Qk

∑
l1≥1

∑
l2≥1

1

(l21 + l22)
(k+1)/2

∑
ρ,γ>0

Nβ/2 e
−πγ/2γβ−1/2

(l21 + l22)
β/2

�kN
k (25)

for k > 1, where (25) follows from the density estimate

γm ∼
2πm

log (m)

where γm is the imaginary part of the m-th non trivial zero of the Riemann Zeta function.

If y > 0 we have

A+
5 �

∑
l1≥1

∑
l2≥1

∑
ρ:γ>0

γβ−1/2
∫ 1/N

0

|z|−k−2−β exp
(
γ
(

arctan (Ny)− π

2

))
e−(l21+l22)Re(1/z)dy

+
∑
l1≥1

∑
l2≥1

∑
ρ:γ>0

γβ−1/2
∫ ∞
1/N

exp
(
γ
(

arctan (Ny)− π

2

)) e−(l21+l22)/(Ny2)

yk+2+β
dy.

Obivously if |y| < 1/N we have arctan (Ny)− π
2
≤ −π

4
hence

∑
l1≥1

∑
l2≥1

∑
ρ:γ>0

γβ−1/2
∫ 1/N

0

|z|−k−2−β exp
(
γ
(

arctan (Ny)− π

2

))
e−(l21+l22)Re(1/z)dy

� Nk+2
∑
l1≥1

e−l
2
1N
∑
l2≥1

e−l
2
2N
∑
ρ:γ>0

Nβe−πγ/4γβ−1/2
∫ 1/N

0

1dy

� Nk+1
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and from arctan (x) + arctan (1/x) = π/2 follows that

A+
5 �Nk+1 +

∑
l1≥1

∑
l2≥1

∑
ρ:γ>0

γβ−1/2
∫ ∞
1/N

exp

(
−γ arctan

(
1

Ny

))
e−(l21+l22)/(Ny2)

yk+2+β
dy

�Nk+1 +
∑
l1≥1

∑
l2≥1

∑
ρ:γ>0

γβ−1/2
∫ ∞
1/N

exp

(
− γ

Ny
− l21 + l22

Ny2

)
y−k−2−βdy

and if we put γ
Ny

= v we get

A+
5 �Nk+1 +

∑
l1≥1

∑
l2≥1

∑
ρ:γ>0

γβ−1/2
∫ γ

0

e−ve−(Nv2(l21+l22)/γ2)
( γ

Nv

)−k−2−β γ

Nv2
dv

�Nk+1 +
∑
l1≥1

∑
l2≥1

∑
ρ:γ>0

γ−k−3/2
∫ ∞
0

e−ve−(Nv2(l21+l22)/γ2)vk+βdv. (26)

Now we can observe that we are in the situation of Lemma 5 with d = 2 and so we can

conclude immediately that we have the convergence for k > 3/2 and this result is optimal.

We studied the convergence, so we �nally have, using again the identity (4), that

I2,2 = π−kNk/2+1/2
∑
ρ

Γ (ρ)

πρ
Nρ/2

∑
l1≥1

∑
l2≥1

Jk+1+ρ

(
2π (l21 + l22)

1/2
N1/2

)
(l21 + l22)

(k+1+ρ)/2
.

4.6 Evaluation of I3

We have

I3 =
1

2πi

∫
(1/N)

eNzz−k−1

(
1

z
−
∑
ρ

z−ρΓ (ρ)

)(
π

z
ω2

(
π2

z

))
dz

− 1

2πi

∫
(1/N)

eNzz−k−1

(
1

z
−
∑
ρ

z−ρΓ (ρ)

)((π
z

)1/2
ω2

(
π2

z

))
dz

=
1

2i

∫
(1/N)

eNzz−k−3ω2

(
π2

z

)
dz − 1

2i

∫
(1/N)

eNzz−k−2
∑
ρ

z−ρΓ (ρ)ω2

(
π2

z

)
dz

− 1

2π1/2i

∫
(1/N)

eNzz−k−5/2ω2

(
π2

z

)
+

1

2π1/2i

∫
(1/N)

eNzz−k−3/2
∑
ρ

z−ρΓ (ρ)ω2

(
π2

z

)
dz

=I3,1 − I3,2 − I3,3 + I3,4.
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4.6.1 Evaluation of I3,1

We have

I3,1 =
1

2i

∫
(1/N)

eNzz−k−3ω2

(
π2

z

)
dz =

1

2i

∫
(1/N)

eNzz−k−3
∑
m≥1

e−m
2π2/zdz

hence we have to establish the convergence of

A6 =
∑
m≥1

∫
(1/N)

∣∣eNz∣∣ |z|−k−3 e−m2
Re(1/z)dz.

Using (12), (21) and (24) we have

A6 �Nk+3/2 +
∑
m≥1

∫ ∞
0

y−k−3e−m
2/(Ny2)dy

=Nk+3/2 +Nk/2+1
∑
m≥1

1

mk+2

∫ ∞
0

uk/2e−udu

�kN
k+3/2

for k > −1. So we obtain, recalling (4), that

J3,1 =
Nk/2+1

πk+1

∑
m≥1

Jk+2

(
2mπN1/2

)
mk+2

.

4.6.2 Evaluation of I3,3

We have

I3,3 =
1

2π1/2i

∫
(1/N)

eNzz−k−5/2
∑
m≥1

e−m
2π2/zdz

so we have to establish the convergence of

∑
m≥1

∫
(1/N)

∣∣eNz∣∣ |z|−k−5/2 e−m2
Re(1/z)dz �Nk+5/2

∑
m≥1

e−m
2N

∫ 1/N

0

1dy

+
∑
m≥1

∫ ∞
1/N

y−k−5/2e−m
2/(Ny2)dy

�Nk+5/2 +Nk/2+3/4
∑
m≥1

1

mk+3/2

∫ ∞
0

uk+1e−udu

�kN
k+5/2

hence we have the convergence for k > −1/2. So
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I3,3 =
Nk/2+3/4

πk+1

∑
m≥1

Jk+3/2

(
2mπN1/2

)
mk+3/2

.

4.6.3 Evaluation of I3,2

We have to establish the convergence of

A7 =
∑
m≥1

∫
(1/N)

∣∣eNz∣∣ ∣∣z−k−2∣∣ ∣∣∣∣∣∑
ρ

z−ρΓ (ρ)

∣∣∣∣∣ ∣∣∣e−m2/z
∣∣∣ |dz|

so using (12), (21), (24) and (16) we get

A7 �Nk+1/2 +N
∑
m≥1

∫ ∞
1/N

y−k−2e−m
2/(Ny2)dy

+ log2 (2N)
∑
m≥1

∫ ∞
1/N

y−k−3/2e−m
2/(Ny2)dy

+2 log (2N)
∑
m≥1

∫ ∞
1/N

log (y) y−k−3/2e−m
2/(Ny2)dy

+
∑
m≥1

∫ ∞
1/N

log2 (y) y−k−3/2e−m
2/(Ny2)dy.

Now if we put m2/ (Ny2) = u we have

N
∑
m≥1

∫ ∞
1/N

y−k−2e−m
2/(Ny2)dy �Nk/2+3/2Γ

(
k + 1

2

)∑
m≥1

m−k−1

which converges if k > 0. With the same substitution we get

log2 (2N)
∑
m≥1

∫ ∞
1/N

y−k−3/2e−m
2/(Ny2)dy � log2 (2N)Nk/2+1/4Γ

(
k

2
+

1

4

)∑
m≥1

m−k−1/2

and so the convergence for k > 1/2. For the estimation of the last integral in the bound

of A7 we observe that if we take ε > 0 we have

∑
m≥1

∫ ∞
1/N

logα (y) y−k−3/2e−m
2/(Ny2)dy �

∑
m≥1

∫ ∞
1/N

y−k−3/2+εe−m
2/(Ny2)dy, α ≥ 0
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so

A7 � Nk/2+1/4−ε/2Γ

(
k

2
+

1

4
− ε

2

)∑
m≥1

m−k−1/2+ε

and for the arbitrariness of ε we have the convergence for k > 1/2. We have now to study

A8 =
∑
m≥1

∑
ρ

|Γ (ρ)|
∫
(1/N)

∣∣eNz∣∣ ∣∣z−k−2∣∣ ∣∣z−ρ∣∣ ∣∣∣e−m2π2/z
∣∣∣ |dz| .

By symmetry we may assume that γ > 0. If y ≤ 0 we have γ arctan (y/a) − π
2
γ ≤ −π

2
γ

and so using (18) and (19) we get

A−8 �
∑
m≥1

∑
γ>0

γβ−1/2e−πγ/2
∫ 0

−1/N
|z|−k−2−β e−m2

Re(1/z)dy

+
∑
m≥1

∑
γ>0

γβ−1/2e−πγ/2
∫ −1/N
−∞

e−m
2/(Ny2)

|y|k+2+β
dy

�Nk+2
∑
m≥1

e−m
2N
∑
γ>0

γβ−1/2e−πγ/2Nβ

∫ 0

−1/N
1dy

+N (k+1)/2
∑
m≥1

1

mk+1

∑
γ>0

Nβ/2γβ−1/2e−πγ/2

mβ

∫ ∞
0

u(k−1+β)/2e−udu

�Nk+2 +Nk/2+1/2Qk

∑
m≥1

1

mk+1

∑
γ>0

Nβ/2γβ−1/2e−πγ/2

mβ

�kN
k+2

provided that k > 0 and Qk = supβ
{

Γ
(
k
2

+ 1
2

+ β
2

)}
. Let y > 0. We have

A+
8 �

∑
m≥1

∑
γ>0

γβ−1/2 exp
(
−π

4
γ
)∫ 1/N

0

Nk+2+βe−m
2Ndy

+
∑
m≥1

∑
γ>0

γβ−1/2
∫ ∞
1/N

exp
(
γ arctan (Ny)− π

2
γ
) e−m2/(Ny2)

yk+2+β
dy

=L1 + L2,

say. From (12) and (21) we have

L1 � Nk+1
∑
m≥1

e−m
2N
∑
γ>0

Nβγβ−1/2 exp
(
−π

4
γ
)
�k N

k+3/2
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and recalling the identity arctan (x) + arctan
(
1
x

)
= π

2
and taking v = m/

(
N1/2y

)
we have

L2 �
∑
m≥1

∑
γ>0

γβ−1/2
∫ ∞
1/N

exp

(
− γ

Ny
− m2

Ny2

)
dy

yk+2+β

=N (k+1)/2
∑
m≥1

1

mk+1

∑
γ>0

Nβ/2

mβ
γβ−1/2

∫ m
√
N

0

exp
(
− γv

N1/2m
− v2

)
vk+βdv

and now since e−v
2
vk = Ok (1) if k > 0 we have, taking s = γv/

(
N1/2m

)
,

�Nk/2+1
∑
m≥1

1

mk

∑
γ>0

Nβγ−3/2
∫ ∞
0

exp (−s) sβds

�kN
k/2+2

for k > 1. Now we can exchange the series with the integral and so we have

I3,2 =π−kN (k+1)/2
∑
ρ

π−ρNρ/2Γ (ρ)
∑
m≥1

Jk+1+ρ

(
2mπ
√
N
)

mk+1+ρ
.

4.6.4 Evaluation of I3,4

We have to establish the convergence of

I3,4 =
1

2π1/2i

∫
(1/N)

eNzz−k−3/2
∑
ρ

z−ρΓ (ρ)ω2

(
π2

z

)
dz

and so we have the similar situation of I3,2.

So we have to study

A9 =
∑
m≥1

∫
(1/N)

∣∣eNz∣∣ ∣∣z−k−3/2∣∣ ∣∣∣∣∣∑
ρ

z−ρΓ (ρ)

∣∣∣∣∣ ∣∣∣e−m2/z
∣∣∣ |dz|

so using (12), (21), (24) and (16) we get
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A9 �Nk+5/2
∑
m≥1

e−m
2N

∫ 1/N

0

1dy

+N
∑
m≥1

∫ ∞
1/N

y−k−3/2e−m
2/(Ny2)dy

+ log2 (2N)
∑
m≥1

∫ ∞
1/N

y−k−1e−m
2/(Ny2)dy

+2 log (2N)
∑
m≥1

∫ ∞
1/N

log (y) y−k−1e−m
2/(Ny2)dy

+
∑
m≥1

∫ ∞
1/N

log2 (y) y−k−1e−m
2/(Ny2)dy

so taking u = m/ (Ny2) we get

∑
m≥1

∫ ∞
1/N

y−k−3/2e−m
2/(Ny2)dy �Nk/2+1/4

∑
m≥1

1

mk+1/2

∫ ∞
0

uk/2−3/4e−udu

�kN
k/2+1/4

and

∑
m≥1

∫ ∞
1/N

y−k−1e−m
2/(Ny2)dy �Nk/2

∑
m≥1

1

mk

∫ ∞
0

uk/2−1e−udu

�kN
k/2

and again the presence of logα (y) does not alter the evalutation since for every �xed ε > 0

holds ∫ ∞
1/N

logα (y) y−k−1e−m
2/(Ny2) �

∫ ∞
1/N

y−k−1+εe−m
2/(Ny2), α ≥ 0,

then we have the convergence if k > 1.

Now we have to study

A10 =
∑
m≥1

∑
ρ

|Γ (ρ)|
∫
(1/N)

∣∣eNz∣∣ ∣∣z−k−3/2∣∣ ∣∣z−ρ∣∣ ∣∣∣e−m2/z
∣∣∣ |dz| .

By symmetry we may assume that γ > 0. If y ≤ 0 we have γ arctan (y/a) − π
2
γ ≤ −π

2
γ

and so using (18) and (19) we get
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A−10 �
∑
m≥1

∑
γ>0

γβ−1/2e−πγ/2
∫ 0

−1/N
|z|−k−3/2−β e−m2

Re(1/z)dy

+
∑
m≥1

∑
γ>0

γβ−1/2e−πγ/2
∫ −1/N
−∞

e−m
2/(Ny2)

|y|k+3/2+β
dy

�Nk+3/2
∑
m≥1

e−m
2N
∑
γ>0

γβ−1/2e−πγ/2Nβ

∫ 0

−1/N
1dy

+Nk/2+1/4
∑
m≥1

1

mk+1/2

∑
γ>0

Nβ/2γβ−1/2e−πγ/2

mβ

∫ ∞
0

u(k+β)/2−3/4e−udu

�Nk+3/2 +Nk/2+1/4Gk

∑
m≥1

1

mk+1/2

∑
γ>0

Nβ/2γβ−1/2e−πγ/2

mβ

�kN
k+3/2

provided that k > 1/2 and Gk = supβ
{

Γ
(
k
2

+ 1
4

+ β
2

)}
. Let y > 0. We have

A+
10 �

∑
m≥1

∑
γ>0

γβ−1/2 exp
(
−π

4
γ
)∫ 1/N

0

Nk+3/2+βe−m
2Ndy

+
∑
m≥1

∑
γ>0

γβ−1/2
∫ ∞
1/N

exp
(
γ arctan (Ny)− π

2
γ
) e−m2/(Ny2)

yk+3/2+β
dy

=F1 + F2,

say. From (12) and (21) we have

F1 � Nk+1/2
∑
m≥1

e−m
2N
∑
γ>0

Nβγβ−1/2 exp
(
−π

4
γ
)
�k N

k+1

and recalling the identity arctan (x) + arctan
(
1
x

)
= π

2
and taking v = m/

(
N1/2y

)
we have

F2 �
∑
m≥1

∑
γ>0

γβ−1/2
∫ ∞
1/N

exp

(
− γ

Ny
− m2

Ny2

)
dy

yk+3/2+β

=Nk/2+1/4
∑
m≥1

1

mk+1/2

∑
γ>0

Nβ/2

mβ
γβ−1/2

∫ m
√
N

0

exp
(
− γv

N1/2m
− v2

)
vk−1/2+βdv

and now since e−v
2
vk−1/2 = Ok (1) if k > 1/2 we have, taking s = γv/

(
N1/2m

)
,
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F2 �Nk/2+3/4
∑
m≥1

1

mk−1/2

∑
γ>0

Nβγ−3/2
∫ ∞
0

exp (−s) sβds

�kN
k/2+3/4

and so the convergence if k > 3/2. Now we can exchange the series with the integral and

obtain

I3,4 =π−kNk/2+1/4
∑
ρ

π−ρNρΓ (ρ)
∑
m≥1

Jk+1/2+ρ

(
2mπ
√
N
)

mk+1/2+ρ
.

Summing up, we have proved the following

Theorem 1. Let N be a su�cient large integer. We have

∑
n≤N

rQ (n)
(N − n)k

Γ (k + 1)
= M1 (N, k) +M2 (N, k) +M3 (N, k) +M4 (N, k) +O

(
Nk+1

)
for k > 3/2, where ρ runs over the non-trivial zeros of the Riemann zeta function ζ (s),

Jv (u) is the Bessel function of complex order v and real argument u and
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M1 (N, k) =
πNk+2

4Γ (k + 3)
+

Nk+1

4Γ (k + 2)
− π1/2Nk+3/2

2Γ (k + 5/2)
(27)

M2 (N, k) =− π

4

∑
ρ

Γ (ρ)

Γ (k + 2 + ρ)
Nk+1+ρ − 1

4

∑
ρ

Γ (ρ)

Γ (k + 1 + ρ)
Nk+ρ

+
π1/2

2

∑
ρ

Γ (ρ)

Γ (k + 3/2 + ρ)
Nk+1/2+ρ (28)

M3 (N, k) =
Nk/2+1

πk+1

∑
l1≥1

∑
l2≥1

Jk+2

(
2π (l21 + l22)

1/2
N1/2

)
(l21 + l22)

k/2+1

−π−kNk/2+1/2
∑
ρ

Γ (ρ)

πρ
Nρ/2

∑
l1≥1

∑
l2≥1

Jk+1+ρ

(
2π (l21 + l22)

1/2
N1/2

)
(l21 + l22)

(k+1+ρ)/2
(29)

M4 (N, k) =
Nk/2+1

πk+1

∑
m≥1

Jk+2

(
2mπN1/2

)
mk+2

− Nk/2+3/4

πk+1

∑
m≥1

Jk+3/2

(
2mπN1/2

)
mk+3/2

−π−kN (k+1)/2
∑
ρ

π−ρNρ/2Γ (ρ)
∑
m≥1

Jk+1+ρ

(
2mπ
√
N
)

mk+1+ρ

+π−kNk/2+1/4
∑
ρ

π−ρNρ/2Γ (ρ)
∑
m≥1

Jk+1/2+ρ

(
2mπ
√
N
)

mk+1/2+ρ
. (30)

Furthermore the bound k > 3/2 is optimal using this technique.

40



5 On the Cesàro average of the numbers that can be

written as a sum of a prime and two squares of primes

In this part we will study another Cesàro average for the numbers that can be written

as sum of a prime and two squares of primes. We will obtain an asymptotic formula

with a main term and more terms depending explicitly on the zeros of the Riemann zeta

function. The problem of representing an integer as sum of a prime and two prime squares

is classical. Let

A = {n ∈ N : n ≡ 1 mod 2; n 6≡ 2 mod 3} ;

it is conjectured that every su�ciently large natural number n ∈ A is a sum of a prime

and two prime squares. Many authors studied the cardinality E (N) of the set of integers

n ≤ N , n ∈ A that are not representable as a sum of prime and two square of primes. We

recall Hua [21], Schwarz [36], Leung-Liu [28], Wang [41], Wang-Meng [42], Li [29], Harman-

Kumchev [16] and Zhao [44]. Languasco and Zaccagnini [26] proved that, assuming the

RH, in every interval [N,N +H] contains a number that can be written as a sum of a

prime and two squares of primes, where H ≥ C log4 (N) and C > 0 is a constant.

Let us de�ne z = a+ iy, a > 0 and y ∈ R and let us consider the functions

S̃1 (z) = S̃ (z)

S̃2 (z) =
∑
m≥1

Λ (m) e−m
2z (31)

and

rSP (n) =
∑

m1+m2
2+m

2
3=n

Λ (m1) Λ (m2) Λ (m3) .

For our purpose we need a generalization of the Lemma 2. So we introduce

Lemma 7. Let z = a+ iy, a > 0, y ∈ R and l ∈ N0. Then

S̃l (z) =
Γ (1/l)

lz1/l
− 1

l

∑
ρ

z−ρ/lΓ
(ρ
l

)
+ El (a, y) (32)

where ρ = β + iγ runs over the non-trivial zeros of ζ (s) and

El (a, y)�l E (a, y) . (33)
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Proof. It is well know that (see for example formula 5 of [26]) that, for l ∈ N0,

S̃l (z) =
∑
m≥1

Λ (m) e−m
lz

=
Γ (1/l)

lz1/l
− 1

l

∑
ρ

z−ρ/lΓ
(ρ
l

)
− ζ ′

ζ
(0)− 1

2πi

∫
(−1/2)

ζ ′

ζ
(lw) Γ (w) z−wdw (34)

so, taking w = −1
2

+ it, following the proof of the Lemma 2 and observing that∣∣∣∣ζ ′ζ (lw)

∣∣∣∣�l log (|t|+ 2)

we can conclude that we may estimate the integral in (34) exactly as in [24], so the claim

follows. �

From Lemma 7 it is quite simple to note that

S̃2 (a) ∼
√
π

2a1/2
, when a→ 0+. (35)

We now introduce another

Lemma 8. Let ρ = β + iγ run over the non-trivial zeros of the Riemann zeta function,

let z = 1
N

+ iy, N > 1 be natural number, y ∈ R, l ∈ N0 and α > 3/2. We have

∑
ρ

∣∣∣Γ(ρ
l

)∣∣∣ ∫
(1/N)

∣∣eNz∣∣ ∣∣z−ρ/l∣∣ |z|−α |dz| �α N
α.

Proof. Put a = 1
N
. Using the identity (19), (18) and (21) we get that the left hand side in

the statement above is

∑
ρ

|γ|β/l−1/2
∫
R

exp

(
γ

l
arctan

(y
a

)
− π

2

|γ|
l

)
dy

|z|α+β/l
. (36)

The case l = 1 has already been discussed in Lemma 6. For l > 1, observing Lemmas

2 and 3 of [24] and Lemma 6, we can conclude that the presence of l does not alter the

proofs, so using the same argumentation of the Lemma 6 that we have the convergence

for α > 3/2. �
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5.1 Setting

From (7) and (31) it is not hard to see that

S̃1 (z) S̃2
2 (z) =

∑
m1≥1

∑
m2≥1

∑
m3≥1

Λ (m1) Λ (m2) Λ (m3) e
−(m1+m2

2+m
2
3)z =

∑
n≥1

rSP (n) e−nz

so let z = a+ iy and a > 0 and let us consider

1

2πi

∫
(a)

eNzz−k−1S̃1 (z) S̃2
2 (z) dz =

1

2πi

∫
(a)

eNzz−k−1
∑
n≥1

rSP (n) e−nzdz.

Now we prove that we can exchange the integral with the series. From (17) and (35) we

have ∑
n≥1

∣∣rSP (n) e−nz
∣∣ = S̃1 (a) S̃2

2 (a)� a−2;

hence ∫
(a)

∣∣eNzz−k−1∣∣ ∣∣∣S̃1 (z) S̃2
2 (z)

∣∣∣ |dz| �a−2eNa(∫ a

−a
a−k−1dy + 2

∫ ∞
a

y−k−1dy

)
�ka

−2−keNa

assuming k > 0, so we have that

∑
n≤N

rSP (n)
(N − n)k

Γ (k + 1)
=

1

2πi

∫
(a)

eNzz−k−1S̃1 (z) S̃2
2 (z) dz. (37)

Now from (13), (32), (17) and (35) and observing that, for l ≥ 1,

Γ (1/l)

lz1/l
− 1

l

∑
ρ

z−ρ/lΓ
(ρ
l

)
= S̃l (z)− El (a, y)� a−1/l + |El (a, y)|

we have

S̃1 (z) S̃2
2 (z) =

(
1

z
−
∑
ρ

z−ρΓ (ρ) + E1 (a, y)

)( √
π

2z1/2
− 1

2

∑
ρ

z−ρ/2Γ
(ρ

2

)
+ E2 (a, y)

)2

=

(
1

z
−
∑
ρ

z−ρΓ (ρ)

)( √
π

2z1/2
− 1

2

∑
ρ

z−ρ/2Γ
(ρ

2

))2

+O
(
|E1 (a, y)| a−1 + |E1 (a, y)| |E2 (a, y)|2 + |E1 (a, y)| |E2 (a, y)| a−1/2 (38)

+ |E2 (a, y)|2 a−1 + a−3/2 |E2 (a, y)|
)
. (39)
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Not let us consider integers l,m, r, s ≥ 1. From (14) and (33) we have that∫
(a)

∣∣eNzz−k−1∣∣ |El (a, y)|r |Em (a, y)|s |dz|

�l,m,r,s e
Na

(
a−k−1+

r+s
2

∫ a

0

dy +

∫ ∞
a

y−k−1+
r+s
2 log2r+2s

(y
a

)
dy

)
�l,m,r,s e

Naa−k+
r+s
2

assuming k > r+s
2
. So taking a = 1/N from (38) and (39) we can observe that∫

(1/N)

∣∣eNzz−k−1∣∣ |E2 (1/N, y)|2 |E1 (1/N, y)| |dz| �k N
k−3/2,

N1/2

∫
(1/N)

∣∣eNzz−k−1∣∣ |E2 (1/N, y)| |E1 (1/N, y)| |dz| � Nk−1/2,

N

∫
(1/N)

∣∣eNzz−k−1∣∣ |E2 (1/N, y)|2 |dz| � Nk

N3/2

∫
(1/N)

∣∣eNzz−k−1∣∣ |E2 (1/N, y)| |dz| � Nk+1

and

N

∫
(1/N)

∣∣eNzz−k−1∣∣ |E1 (1/N, y)| |dz| � Nk+1/2;
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hence

∑
n≤N

rSP (n)
(N − n)k

Γ (k + 1)
=

1

2πi

∫
(1/N)

eNzz−k−1

(
1

z
−
∑
ρ

z−ρΓ (ρ)

)

·

( √
π

2z1/2
− 1

2

∑
ρ

z−ρ/2Γ
(ρ

2

))2

dz +Ok

(
Nk+1

)
=

1

8i

∫
(1/N)

eNzz−k−3dz +
1

8i

∫
(1/N)

eNzz−k−2
∑
ρ

z−ρΓ (ρ) dz

− 1

4
√
πi

∫
(1/N)

eNzz−k−5/2
∑
ρ

z−ρ/2Γ
(ρ

2

)
dz

+
1

4
√
πi

∫
(1/N)

eNzz−k−3/2
∑
ρ1

z−ρ1Γ (ρ1)
∑
ρ2

z−ρ2/2Γ
(ρ2

2

)
dz

+
1

8πi

∫
(1/N)

eNzz−k−2
∑
ρ1

z−ρ1/2Γ
(ρ1

2

)∑
ρ2

z−ρ2/2Γ
(ρ2

2

)
dz

− 1

8πi

∫
(1/N)

eNzz−k−1
∑
ρ1

z−ρ1Γ (ρ1)
∑
ρ2

z−ρ2/2Γ
(ρ2

2

)
·
∑
ρ3

z−ρ3/2Γ
(ρ3

2

)
dz +Ok

(
Nk+1

)
=I1 + I2 + I3 + I4 + I5 + I6 +Ok

(
Nk+1

)
,

say.

5.2 Evaluation of I1

From I1 we will �nd the main term. If we put Nz = s we get

I1 =
1

8i

∫
(1/N)

eNzz−k−3dz =
Nk+2

8i

∫
(1)

ess−k−3ds =
Nk+2π

4Γ (k + 3)

using (5).

5.3 Evaluation of I2

We have

I2 =
1

8i

∫
(1/N)

eNzz−k−2
∑
ρ

z−ρΓ (ρ) dz

so we have to study

A2 =

∣∣∣∣∣∑
ρ

Γ (ρ)

∣∣∣∣∣
∫
(1/N)

∣∣eNz∣∣ ∣∣z−k−2∣∣ ∣∣z−ρ∣∣ |dz|
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and from Lemma 8 we have the convergence for k > −1/2. So we can switch the integral

and the series and get

I2 =
1

8i

∑
ρ

Γ (ρ)

∫
(1/N)

eNzz−k−2−ρdz =
Nk+1π

4

∑
ρ

Nρ Γ (ρ)

Γ (k + 2 + ρ)
.

5.4 Evaluation of I3

We have to estimate

I3 = − 1

4
√
πi

∫
(1/N)

eNzz−k−5/2
∑
ρ

z−ρ/2Γ
(ρ

2

)
dz

and, as before, we have to study

A3 =

∣∣∣∣∣∑
ρ

Γ
(ρ

2

)∣∣∣∣∣
∫
(1/N)

∣∣eNz∣∣ ∣∣z−k−5/2∣∣ ∣∣z−ρ/2∣∣ |dz|
and using again Lemma 8 we have the convergence for k > −1. So we have

I3 = − 1

4
√
πi

∑
ρ

Γ
(ρ

2

)∫
(1/N)

eNzz−k−5/2−ρ/2dz = −N
k+3/2

√
π

2

∑
ρ

Nρ/2 Γ (ρ/2)

Γ (k + 5/2 + ρ/2)
.

5.5 Evaluation of I4

We have to evaluate

I4 =
1

4
√
πi

∫
(1/N)

eNzz−k−3/2
∑
ρ1

z−ρ1Γ (ρ1)
∑
ρ2

z−ρ2/2Γ
(ρ2

2

)
dz

so we consider

A4,1 :=
∑
ρ1

|Γ (ρ1)|
∫
(1/N)

∣∣eNz∣∣ ∣∣z−k−3/2∣∣ ∣∣z−ρ1∣∣ ∣∣∣∣∣∑
ρ2

z−ρ2/2Γ
(ρ2

2

)∣∣∣∣∣ |dz| .
Assume that Am,n :=

∫
(1/N)

. . . |dz| =
∫ 1/N+i∞
1/N−i∞ . . . |dz| . Hereafter we will indicate with the

symbol A+
m,n the integral

∫ 1/N+i∞
0

. . . |dz|and with A−m,n the integral
∫ 0

1/N−i∞ . . . |dz| . From
(32) we can see that∣∣∣∣∣∑

ρ2

z−ρ2/2Γ
(ρ2

2

)∣∣∣∣∣ =

∣∣∣∣S̃2 (z)−
√
π

2z1/2
− E2 (1/N, y)

∣∣∣∣� N1/2 +
1

|z|1/2
+ |E2 (1/N, y)|
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�

N, |y| ≤ 1/N

N + |z|1/2 log2 (2N |y|) , |y| > 1/N.

Let us consider y ≤ 0 and, recalling the notation ρj = βj + iγj and assuming γ1 > 0 for

symmetry, we have to study

A−4,1 �N
∑

ρ1: γ1>0

γ
β1−1/2
1

∫ 0

−1/N

exp
(
γ1 arctan (Ny)− π

2
γ1
)

|z|k+3/2+β1
|dz|

+N
∑

ρ1: γ1>0

γ
β1−1/2
1

∫ −1/N
−∞

exp
(
γ1 arctan (Ny)− π

2
γ1
)

|y|k+3/2+β1
dy

+
∑

ρ1: γ1>0

γ
β1−1/2
1

∫ −1/N
−∞

exp
(
γ1 arctan (Ny)− π

2
γ1
)

log2 (2N |y|)
|y|k+1+β1

dy.

Now since y ≤ 0 we have

arctan (Ny)− π

2
≤ −π

2

so from (21) we have

A−4,1 � Nk+3/2
∑

ρ1: γ1>0

Nβγ
β1−1/2
1 e−πγ1/2

+N
∑

ρ1: γ1>0

γ
β1−1/2
1 e−πγ1/2

∫ ∞
1/N

1

yk+3/2+β1
dy

+
∑

ρ1: γ1>0

γ
β1−1/2
1 e−πγ1/2

∫ ∞
1/N

log2 (2Ny)

yk+1+β1
dy

and setting ε > 0 we observe that log2 (2Ny)� yε as y →∞so

A−4,1 �k N
k+5/2

assuming that k > 0.

Now let us consider y > 0. We have to study

A+
4,1 � N

∑
ρ1: γ1>0

γ
β1−1/2
1

∫ 1/N

0

exp
(
γ1 arctan (Ny)− π

2
γ1
)

|z|k+3/2+β1
|dz|

+
∑

ρ1: γ1>0

γ
β1−1/2
1

∫ ∞
1/N

exp
(
γ1 arctan (Ny)− π

2
γ1

) N + y1/2 log2 (2Ny)

yk+3/2+β1
dy = A1 +A2
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say, and we have that

A1 �N
∑

ρ1: γ1>0

γ
β1−1/2
1 e−πγ1/4

∫ 1/N

0

1

|z|k+3/2+β1
dy

�kN
k+5/2

and for A2, taking Ny = u and using the usual trigonometric identity we have

A2 � Nk+5/2
∑

ρ1: γ1>0

γ
β1−1/2
1

∫ ∞
1

exp (−γ1 arctan (1/u))

uk+3/2+β1
du

+Nk+1
∑

ρ1: γ1>0

γ
β1−1/2
1

∫ ∞
1

exp (−γ1 arctan (1/u)) log2 (2u)

uk+1/2+β1
du

�k N
k+5/2

from Lemma 3, assuming k > 1/2.

Now let us consider

A4,2 =
∑
ρ1

|Γ (ρ1)|
∑
ρ2

∣∣∣Γ(ρ2
2

)∣∣∣ ∫
(1/N)

∣∣eNz∣∣ ∣∣z−k−3/2∣∣ ∣∣z−ρ1∣∣ ∣∣z−ρ2/2∣∣ |dz| .
We can consider only the cases γ1, γ2 > 0 or γ1 > 0, γ2 < 0, by symmetry. Hereafter we

will use the symbol Âm,n when we consider Am,n with the assumption γ1, γ2 > 0 and the

symbol Ǎm,n when we consider Am,n with the assumption γ1 > 0, γ2 < 0.

Since

arctan (Ny)− π

2
≤ −π

2
(40)

we have, for y ≤ 0,

Â−4,2 �
∑

ρ1: γ1>0

γ
β1−1/2
1 exp

(
−π

2
γ1

) ∑
ρ2: γ2>0

γ
β2/2−1/2
2 exp

(
−π

4
γ2

)(∫ 0

−∞

dy

|z|k+3/2+β1+β2/2

)

�k N
k+2

∑
ρ1: γ1>0

γ
β1−1/2
1 exp

(
−π

2
γ1

) ∑
ρ2: γ2>0

γ
β2/2−1/2
2 exp

(
−π

4
γ2

)
�k N

k+2.

Now let us consider y > 0. We have

Â+
4,2 �

∑
ρ1: γ1>0

γ
β1−1/2
1

∑
ρ2: γ2>0

γ
β2/2−1/2
2

∫ 1/N

0

exp
((
γ1 + γ2

2

) (
arctan (Ny)− π

2

))
|z|k+3/2+β1+β2/2

dy
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+
∑

ρ1: γ1>0

γ
β1−1/2
1

∑
ρ2: γ2>0

γ
β2/2−1/2
2

∫ ∞
1/N

exp
((
γ1 + γ2

2

) (
arctan (Ny)− π

2

))
yk+3/2+β1+β2/2

dy

= A3 +A4,

say. If y ∈ (0, 1/N ] we obviously have arctan (Ny)− π
2
≤ −π

4
and so

A3 �k

∑
ρ1: γ1>0

γ
β1−1/2
1 exp

(
−π

4
γ1

) ∑
ρ2: γ2>0

γ
β2/2−1/2
2 exp

(
−π

8
γ2

)∫ 1/N

0

Nk+3/2+β1+β2/2dy

�kN
k+2

For A4 we can observe that, taking arctan (1/u) = v,

A4 �Nk+1/2
∑

ρ1: γ1>0

Nβ1γ
β1−1/2
1

∑
ρ2: γ2>0

Nβ2/2γ
β2/2−1/2
2

∫ ∞
1

exp
(
−
(
γ1 + γ2

2

)
arctan

(
1
u

))
uk+3/2+β1+β2/2

du

=Nk+1/2
∑

ρ1: γ1>0

Nβ1γ
β1−1/2
1

∑
ρ2: γ2>0

Nβ2/2γ
β2/2−1/2
2

∫ π/4

0

exp
(
−
(
γ1 + γ2

2

)
v
)

(sin (v))k−1/2+β1+β2/2

(cos (v))k+3/2+β1+β2/2
dv

�Nk+1/2
∑

ρ1: γ1>0

Nβ1γ
β1−1/2
1

∑
ρ2: γ2>0

Nβ2/2γ
β2/2−1/2
2

∫ π/4

0

exp
(
−
(
γ1 +

γ2
2

)
v
)
vk−1/2+β1+β2/2dv

=Nk+1/2
∑

ρ1: γ1>0

Nβ1γ
β1−1/2
1

∑
ρ2: γ2>0

Nβ2/2γ
β2/2−1/2
2(

γ1 + γ2
2

)1/2+k+β1+β2/2 ∫ π(γ1+ γ2
2 )/4

0

exp (−w)wk−1/2+β1+β2/2dw

�kNk+1/2
∑

ρ1: γ1>0

∑
ρ2: γ2>0

Nβ1+β2/2
γ
β1−1/2
1 γ

β2/2−1/2
2(

γ1 + γ2
2

)k+1/2+β1+β2/2

and observing that

γβ11 γ
β2/2
2

2
≤
(
γ1 +

γ2
2

)β1+β2/2
we get

A4 �kN
k+1/2

∑
ρ1: γ1>0

∑
ρ2: γ2>0

Nβ1+β2/2
1

γ
1/2
1 γ

1/2
2

(
γ1 + γ2

2

)k+1/2

�kN
k+1/2

∑
ρ1: γ1>0

1

γk+1
1

∑
ρ2: 0<γ2≤γ1

1

γ
1/2
2

�kN
k+1/2

∑
ρ1: γ1>0

log (γ1)

γ
k+1/2
1

and so we proved the convergence if k > 1/2 using well-known density estimates.
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Let us consider the case γ1 > 0, γ2 < 0 and let y ≤ 0. Using again (40) we have to study

Ǎ−4,2 �
∑

ρ1: γ1>0

γ
β1−1/2
1 exp

(
−π

2
γ1

) ∑
ρ2: γ2<0

|γ2|β2/2−1/2
∫ 0

−∞

exp
(
γ2 arctan(Ny)

2
− π|γ2|

4

)
|z|k+3/2+β1+β2/2

|dz|

and using Lemma 3, Lemma 4 and the identity arctan (x) + arctan (1/x) = −π/2, x < 0

we have

Ǎ−4,2 �kN
k+3

∑
ρ1: γ1>0

γ
β1−1/2
1 exp

(
−π

2
γ1

) ∑
ρ2: γ2<0

|γ2|β2/2−1/2 exp
(
−π

8
|γ2|
)

+
∑

ρ1: γ1>0

γ
β1−1/2
1 exp

(
−π

2
γ1

) ∑
ρ2: γ2<0

|γ2|β2/2−1/2

·
∫ −1/N
−∞

exp
(
− |γ2|

2

(
arctan (Ny) + π

2

))
|y|k+3/2+β1+β2/2

dy

�kN
k+3 +Nk+2

∑
ρ1: γ1>0

γ
β1−1/2
1 exp

(
−π

2
γ1

) ∑
ρ2: γ2<0

|γ2|β2/2−1/2

·
∫ ∞
1

exp
(
− |γ2|

2
arctan

(
1
u

))
uk+3/2+β1+β2/2

du

�kN
k+3

for k > −1/2.

If y > 0 we have essentially the same situation exchanging the role of γ1 and γ2. We have

Ǎ+
4,2 �

∑
ρ1: γ1>0

γ
β1−1/2
1

∑
ρ2: γ2<0

|γ2|β2/2−1/2 exp
(
−π

4
|γ2|
)∫ ∞

0

exp
(
γ1 arctan (Ny)− π

2
γ1
)

|z|k+3/2+β1+β2/2
|dz|

�kN
k+3

∑
ρ1: γ1>0

γ
β1−1/2
1 exp

(
−π

4
γ1

) ∑
ρ2: γ2<0

|γ2|β2/2−1/2 exp
(
−π

4
|γ2|
)

+
∑

ρ1: γ1>0

γ
β1−1/2
1

∑
ρ2: γ2<0

|γ2|β2/2−1/2 exp
(
−π

4
|γ2|
)∫ ∞

1/N

exp
(
γ1 arctan (Ny)− π

2
γ1
)

yk+3/2+β1+β2/2
dy

�kN
k+3 +Nk+2

∑
ρ1: γ1>0

γ
β1−1/2
1

∑
ρ2: γ2<0

|γ2|β2/2−1/2 exp
(
−π

4
|γ2|
)∫ ∞

1

exp
(
−γ1 arctan

(
1
u

))
uk+3/2+β1+β2/2

du

�kN
k+3.

So we can switch the integral with the series and get

I4 =
1

4
√
πi

∑
ρ1

Γ (ρ1)
∑
ρ2

Γ
(ρ2

2

)∫
(1/N)

eNzz−k−3/2−ρ1−ρ2/2dz
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=
Nk+1/2

√
π

2

∑
ρ1

∑
ρ2

Nρ1+ρ2/2
Γ (ρ1) Γ

(
ρ2
2

)
Γ (k + 3/2 + ρ1 + ρ2/2)

.

5.6 Evaluation of I5

We have to evaluate

I5 =
1

8πi

∫
(1/N)

eNzz−k−2
∑
ρ1

z−ρ1/2Γ
(ρ1

2

)∑
ρ2

z−ρ2/2Γ
(ρ2

2

)
dz.

We de�ne

A5,1 :=
∑
ρ1

∣∣∣Γ(ρ1
2

)∣∣∣ ∫
(1/N)

∣∣eNz∣∣ ∣∣z−k−2∣∣ ∣∣z−ρ1/2∣∣ ∣∣∣∣∣∑
ρ2

z−ρ2/2Γ
(ρ2

2

)∣∣∣∣∣ |dz| .
By symmetry we can consider only the case γ1 > 0. So taking y ≤ 0 and using the same

argument used in I4 we get

A−5,1 �N
∑

ρ1: γ1>0

γ
β1/2−1/2
1 e−πγ1/4

∫ 0

−1/N
|z|−k−2−β1/2 |dz|

+N
∑

ρ1: γ1>0

γ
β1/2−1/2
1

∫ −1/N
−∞

exp
(
γ1
2

(
arctan (Ny)− π

2

))
|y|k+2+β1/2

dy

+
∑

ρ1: γ1>0

γ
β1/2−1/2
1

∫ −1/N
−∞

exp
(
γ1
2

(
arctan (Ny)− π

2

))
log2 (2N |y|)

|y|k+3/2+β1/2
dy

�kN
k+5/2 +N

∑
ρ1: γ1>0

γ
β1/2−1/2
1 e−πγ1/4

∫ ∞
1/N

1

yk+2+β1/2

+
∑

ρ1: γ1>0

γ
β1/2−1/2
1 e−πγ1/4

∫ ∞
1/N

log2 (2Ny)

yk+3/2+β1/2

�Nk+5/2.

assuming k > −1/2.
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Now let us consider y > 0.We have

A+
5,1 �N

∑
ρ1: γ1>0

γ
β1/2−1/2
1 e−πγ1/8

∫ 1/N

0

|z|−k−2−β1/2 |dz|

+N
∑

ρ1: γ1>0

γ
β1/2−1/2
1

∫ ∞
1/N

exp
(
γ1
2

(
arctan (Ny)− π

2

))
yk+2+β1/2

dy

+
∑

ρ1: γ1>0

γ
β1/2−1/2
1

∫ ∞
1/N

exp
(
γ1
2

(
arctan (Ny)− π

2

))
log2 (2Ny)

yk+3/2+β1/2
dy

�kN
k+5/2 +Nk+2

∑
ρ1: γ1>0

Nβ1/2γ
β1/2−1/2
1

∫ ∞
1

exp
(
−γ1

2
arctan

(
1
u

))
uk+2+β1/2

du

+Nk+1/2
∑

ρ1: γ1>0

Nβ1/2γ
β1/2−1/2
1

∫ ∞
1

exp
(
−γ1

2
arctan

(
1
u

))
log2 (2u)

uk+3/2+β1/2
du

�kN
k+5/2

assuming k > 0, from Lemma 3.

Now we consider

A5,2 :=
∑
ρ1

∣∣∣Γ(ρ1
2

)∣∣∣∑
ρ2

∣∣∣Γ(ρ2
2

)∣∣∣ ∫
(1/N)

∣∣eNz∣∣ ∣∣z−k−2∣∣ ∣∣z−ρ1/2∣∣ ∣∣z−ρ2/2∣∣ |dz| .
We may consider only the cases γ1, γ2 > 0 or γ1 > 0, γ2 < 0, by symmetry. Using the

same argument used in I4 we get

Â−5,2 �
∑

ρ1: γ1>0

γ
β1/2−1/2
1 exp

(
−πγ1

4

) ∑
ρ2: γ2>0

γ
β1/2−1/2
2 exp

(
−πγ1

4

)∫ 0

−∞
|z|−k−2−β1/2−β2/2 |dz|

�k N
k+3

for k > −1. Taking y > 0 we get

Â+
5,2 �

∑
ρ1: γ1>0

γ
β1/2−1/2
1 exp

(
−πγ1

8

) ∑
ρ2: γ2>0

γ
β1/2−1/2
2 exp

(
−πγ1

8

)∫ 1/N

0

|z|−k−2−β1/2−β2/2 |dz|

+
∑

ρ1: γ1>0

γ
β1/2−1/2
1

∑
ρ2: γ2>0

γ
β1/2−1/2
2

∫ ∞
1/N

exp
(
γ1+γ2

2

(
arctan (Ny)− π

2

))
yk+2+β1/2+β2/2

dy

�kN
k+2 +Nk+1

∑
ρ1: γ1>0

Nβ1/2γ
β1/2−1/2
1

∑
ρ2: γ2>0

Nβ2/2γ
β1/2−1/2
2

∫ ∞
1

exp
(
−γ1+γ2

2
arctan

(
1
u

))
uk+2+β1/2+β2/2

du

�kNk+2 +Nk+1
∑

ρ1: γ1>0

Nβ1/2γ
β1/2−1/2
1

∑
ρ2: γ2>0

Nβ2/2γ
β1/2−1/2
2(

γ1+γ2
2

)k+1+β1/2+β2/2
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where the last line follows from the same argument used in Â+
4,2. So since

(γ1
2

)β1/2 (γ2
2

)β2/2
≤
(
γ1 + γ2

2

)β1/2+β2/2
we get

Â+
5,2 � Nk+2 +Nk+1

∑
ρ1: γ1>0

Nβ1/2γ
−1/2
1

∑
ρ2: γ2>0

Nβ2/2γ
−1/2
2(

γ1+γ2
2

)k+1

and from the AM-GM inequality we get

Â+
5,2 �k N

k+2 +Nk+1
∑

ρ1: γ1>0

Nβ1/2

γ
k/2+1
1

∑
ρ2: γ2>0

Nβ2/2

γ
k/2+1
2

and so the convergence if k > 0.

Now we have to consider the case γ1 > 0 and γ2 < 0. We have

Ǎ−5,2 �
∑

ρ1: γ1>0

γ
β1/2−1/2
1 exp

(
−π

4
γ1

) ∑
ρ2: γ2<0

|γ2|β2/2−1/2
∫ 0

−∞

exp
(
γ2 arctan(Ny)

2
− π|γ2|

4

)
|z|k+2+β1/2+β2/2

|dz|

and using Lemma 3, Lemma 4 and the identity arctan (x) + arctan (1/x) = −π/2, x < 0

we have

Ǎ−5,2 �kN
k+2

∑
ρ1: γ1>0

γ
β1/2−1/2
1 exp

(
−π

8
γ1

) ∑
ρ2: γ2<0

|γ2|β2/2−1/2 exp
(
−π

8
|γ2|
)

+
∑

ρ1: γ1>0

γ
β1/2−1/2
1 exp

(
−π

4
γ1

) ∑
ρ2: γ2<0

|γ2|β2/2−1/2
∫ −1/N
−∞

exp
(
− |γ2|

2

(
arctan (Ny) + π

2

))
|y|k+2+β1/2+β2/2

dy

�kN
k+2 +Nk+1

∑
ρ1: γ1>0

Nβ1/2γ
β1/2−1/2
1 exp

(
−π

4
γ1

) ∑
ρ2: γ2<0

Nβ2/2 |γ2|β2/2−1/2
∫ ∞
1

exp
(
− |γ2|

2
arctan

(
1
u

))
uk+2+β1/2+β2/2

du

�kN
k+2

for k > 1/2, from Lemma 3.
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Now let us consider y > 0. We get

Ǎ+
5,2 �

∑
ρ1: γ1>0

γ
β1/2−1/2
1

∑
ρ2: γ2<0

|γ2|β2/2−1/2 exp
(
−π

4
|γ2|
)∫ ∞

0

exp
(
γ1
2

(
arctan (Ny)− π

2

))
|z|k+2+β1/2+β2/2

|dz|

�kN
k+2

∑
ρ1: γ1>0

γ
β1/2−1/2
1 exp

(
−π

8
γ1

) ∑
ρ2: γ2<0

|γ2|β2/2−1/2 exp
(
−π

4
|γ2|
)

+
∑

ρ1: γ1>0

γ
β1/2−1/2
1

∑
ρ2: γ2<0

|γ2|β2/2−1/2 exp
(
−π

4
|γ2|
)∫ ∞

1/N

exp
(
γ1
2

(
arctan (Ny)− π

2

))
yk+2+β1/2+β2/2

dy

�kN
k+2 +Nk+2

∑
ρ1: γ1>0

γ
β1/2−1/2
1

∑
ρ2: γ2<0

|γ2|β2/2−1/2 exp
(
−π

4
|γ2|
)∫ ∞

1

exp
(
−γ1

2
arctan

(
1
u

))
uk+2+β1/2+β2/2

du

�kN
k+2

from Lemma 3, for k > 1/2.

We proved the convergence so we obtain

I5 =
1

8πi

∑
ρ1

Γ
(ρ1

2

)∑
ρ2

Γ
(ρ2

2

)∫
(1/N)

eNzz−k−2−ρ1/2−ρ2/2dz

=
Nk+1

4

∑
ρ1

∑
ρ2

Nρ1/2+ρ2/2
Γ
(
ρ1
2

)
Γ
(
ρ2
2

)
Γ (k + 2 + ρ1/2 + ρ2/2)

.

5.7 Evaluation of I6

We have to evaluate

I6 =
1

8πi

∫
(1/N)

eNzz−k−1
∑
ρ1

z−ρ1Γ (ρ1)
∑
ρ2

z−ρ2/2Γ
(ρ2

2

)∑
ρ3

z−ρ3/2Γ
(ρ3

2

)
dz

so let us consider

A6,1 =
∑
ρ1

|Γ (ρ1)|
∫
(1/N)

∣∣eNz∣∣ ∣∣z−k−1∣∣ ∣∣z−ρ1∣∣ ∣∣∣∣∣∑
ρ2

z−ρ2/2Γ
(ρ2

2

)∣∣∣∣∣
∣∣∣∣∣∑
ρ3

z−ρ3/2Γ
(ρ3

2

)∣∣∣∣∣ |dz| ,
and we assume, by symmetry, that γ1 > 0. Let y ≤ 0. From (40) we have that
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A−6,1 �Nk+3
∑

ρ1: γ1>0

Nβ1γ
β1−1/2
1 exp

(
−π

2
γ1

)∫ 0

−1/N
exp (γ1 arctan (N |y|)) dy

+
∑

ρ1: γ1>0

γ
β1−1/2
1 exp

(
−π

2
γ1

)
·
∫ −1/N
−∞

|z|−k−1−β1 exp (γ1 arctan (N |y|))
(
N + |z|1/2 log2 (2N |y|)

)2
dy

�Nk+3 +N2
∑

ρ1: γ1>0

γ
β1−1/2
1 exp

(
−π

2
γ1

)∫ −1/N
−∞

|y|−k−1−β1 dy

+2N
∑

ρ1: γ1>0

γ
β1−1/2
1 exp

(
−π

2
γ1

)∫ −1/N
−∞

|y|−k−1/2−β1 log2 (2N |y|) dy

+
∑

ρ1: γ1>0

γ
β1−1/2
1 exp

(
−π

2
γ1

)∫ −1/N
−∞

|y|−k−β1 log4 (2N |y|) dy

�kN
k+3

for k > 1.

Let y > 0. We have

A+
6,1 �N2

∑
ρ1: γ1>0

γ
β1−1/2
1

∫ 1/N

0

exp
(
γ1 arctan (Ny)− π

2
γ1

) |dz|
|z|k+1+β1

+
∑

ρ1: γ1>0

γ
β1−1/2
1

∫ ∞
1/N

exp
(
γ1 arctan (Ny)− π

2
γ1
) (
N + |z|1/2 log2 (2N |y|)

)2
|z|k+1+β1

dy.

From Lemma 4 we have

∑
ρ1: γ1>0

γ
β1−1/2
1

∫ 1/N

0

exp
(
γ1 arctan (Ny)− π

2
γ1

) |dz|
|z|k+1+β1

�k N
k+1

for k > 0 so
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A+
6,1 �Nk+3 +

∑
ρ1: γ1>0

γ
β1−1/2
1

∫ ∞
1/N

exp
(
γ1 arctan (Ny)− π

2
γ1
) (
N + |z|1/2 log2 (2N |y|)

)2
|z|k+1+β1

dy

�Nk+3 +N2
∑

ρ1: γ1>0

γ
β1−1/2
1

∫ ∞
1/N

exp
(
γ1 arctan (Ny)− π

2
γ1

)
y−k−1−β1dy

+2N
∑

ρ1: γ1>0

γ
β1−1/2
1

∫ ∞
1/N

exp
(
γ1 arctan (Ny)− π

2
γ1

) log2 (2Ny)

yk+1/2+β1
dy

+
∑

ρ1: γ1>0

γ
β1−1/2
1

∫ ∞
1/N

exp
(
γ1 arctan (Ny)− π

2
γ1

) log4 (2Ny)

yk+β1
d

and using the well known identity arctan (x) − π
2

= − arctan
(
1
x

)
, x > 0 and placing

Ny = u we get

A+
6,1 �Nk+3 +Nk+2

∑
ρ1: γ1>0

Nβ1γ
β1−1/2
1

∫ ∞
1

exp

(
−γ1 arctan

(
1

u

))
u−k−1−β1dy

+2Nk+1/2
∑

ρ1: γ1>0

Nβ1γ
β1−1/2
1

∫ ∞
1

exp

(
−γ1 arctan

(
1

u

))
log2 (2u)

uk+1/2+β1
dy

+Nk−1
∑

ρ1: γ1>0

Nβ1γ
β1−1/2
1

∫ ∞
1

exp

(
−γ1 arctan

(
1

u

))
log4 (2u)

uk+β1
dy

�kN
k+3

from Lemma 3, assuming k > 3/2.

Now we have to study

A6,2 =
∑
ρ1

|Γ (ρ1)|
∑
ρ2

∣∣∣Γ(ρ2
2

)∣∣∣ ∫
(1/N)

∣∣eNz∣∣ ∣∣z−k−1∣∣ ∣∣z−ρ1∣∣ ∣∣z−ρ2/2∣∣ ∣∣∣∣∣∑
ρ3

z−ρ3/2Γ
(ρ3

2

)∣∣∣∣∣ |dz|
and, by symmetry, we can consider the cases γ1, γ2 > 0 or γ1 > 0, γ2 < 0. Let γ1, γ2 > 0

and y ≤ 0. From (40) we have
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Â−6,2 �N
∑

ρ1: γ1>0

γ
β1−1/2
1 exp

(
−π

2
γ1

) ∑
ρ2: γ2>0

γ
β2/2−1/2
2 exp

(
−π

4
γ2

)∫ 0

−1/N

|dz|
|z|k+1+β1+β2/2

+γ
β1−1/2
1 exp

(
−π

2
γ1

) ∑
ρ2: γ2>0

γ
β2/2−1/2
2 exp

(
−π

4
γ2

)∫ −1/N
−∞

N + |y|1/2 log2 (2N |y|)
|y|k+1+β1+β2/2

dy

�Nk+3 +
∑

ρ1: γ1>0

γ
β1−1/2
1 exp

(
−π

2
γ1

) ∑
ρ2: γ2>0

γ
β2/2−1/2
2 exp

(
−π

4
γ2

)∫ −1/N
−∞

1

|y|k+1+β1+β2/2
dy

+
∑

ρ1: γ1>0

γ
β1−1/2
1 exp

(
−π

2
γ1

) ∑
ρ2: γ2>0

γ
β2/2−1/2
2 exp

(
−π

4
γ2

)∫ −1/N
−∞

log2 (2N |y|)
|y|k+1/2+β1+β2/2

dy

�kN
k+3

for k > 1/2.

Let y > 0. We have, using again (16) and (18), that

Â+
6,2 �N

∑
ρ1: γ1>0

γ
β1−1/2
1

∑
ρ2: γ2>0

γ
β2/2−1/2
2

∫ 1/N

0

exp
((
γ1 + γ2

2

) (
arctan (Ny)− π

2

))
|z|k+1+β1+β2/2

|dz|

+
∑

ρ1: γ1>0

γ
β1−1/2
1

∑
ρ2: γ2>0

γ
β2/2−1/2
2

·
∫ ∞
1/N

exp
((
γ1 +

γ2
2

)(
arctan (Ny)− π

2

)) (N + y1/2 log2 (2Ny)
)

yk+1+β1+β2/2
dy

�N
∑

ρ1: γ1>0

γ
β1−1/2
1 exp

(
−γ1

4

) ∑
ρ2: γ2>0

γ
β2/2−1/2
2 exp

(
−γ2

8

)∫ 1/N

0

Nk+1+β1+β2/2dy

+
∑

ρ1: γ1>0

γ
β1−1/2
1

∑
ρ2: γ2>0

γ
β2/2−1/2
2

·
∫ ∞
1/N

exp
((
γ1 +

γ2
2

)(
arctan (Ny)− π

2

)) (N + y1/2 log2 (2Ny)
)

yk+1+β1+β2/2
d

�Nk+3 +N
∑

ρ1: γ1>0

γ
β1−1/2
1

∑
ρ2: γ2>0

γ
β2/2−1/2
2

∫ ∞
1/N

exp
((
γ1 + γ2

2

) (
arctan (Ny)− π

2

))
yk+1+β1+β2/2

dy

+
∑

ρ1: γ1>0

γ
β1−1/2
1

∑
ρ2: γ2>0

γ
β2/2−1/2
2

∫ ∞
1/N

exp
((
γ1 + γ2

2

) (
arctan (Ny)− π

2

))
log2 (2Ny)

yk+1/2+β1+β2/2
dy

and again from arctan (x)− π
2

= − arctan
(
1
x

)
and placing Ny = u we get

Â+
6,2 � Nk+3

∑
ρ1: γ1>0

γ
β1−1/2
1

∑
ρ2: γ2>0

γ
β2/2−1/2
2

∫ ∞
1

exp
(
−
(
γ1 + γ2

2

)
arctan

(
1
u

))
uk+1+β1+β2/2

du
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+Nk+3/2
∑

ρ1: γ1>0

γ
β1−1/2
1

∑
ρ2: γ2>0

γ
β2/2−1/2
2

∫ ∞
1

exp
(
−
(
γ1 + γ2

2

)
arctan

(
1
u

))
log2 (2u)

uk+1/2+β1+β2/2
du

and from the proof of Lemma 3 we have

Â+
6,2 �k N

k+3
∑

ρ1: γ1>0

γ
β1−1/2
1

∑
ρ2: γ2>0

γ
β2/2−1/2
2

(
γ1 +

γ2
2

)−k+1/2−β1−β2/2

and observing that

γβ11

(γ2
2

)β2/2
≤
(
γ1 +

γ2
2

)β1 (
γ1 +

γ2
2

)β2/2
=
(
γ1 +

γ2
2

)β1/2+β2/2
we get

Â+
6,2 �k N

k+3
∑

ρ1: γ1>0

∑
ρ2: γ2>0

1

γ
1/2
1 γ

1/2
2 (γ1 + γ2)

k−1/2

�k N
k+3

∑
ρ1: γ1>0

1

γk1

∑
ρ2: 0<γ2≤γ1

1

γ
1/2
2

�k N
k+3

∑
ρ1: γ1>0

log (γ1)

γ
k−1/2
1

and so the convergence if k > 3/2.

Let us assume that γ1 > 0, γ2 < 0 and y ≤ 0. From (40), (18) and (16) we have

Ǎ−6,2 �
∑

ρ1: γ1>0

γ
β1−1/2
1 exp

(
−π

2
γ1

) ∑
ρ2: γ2<0

|γ2|β2/2−1/2
∫ 0

−1/N

exp
(
− |γ2|

2

(
arctan (Ny) + π

2

))
|dz|

|z|k+1+β1+β2/2

+N
∑

ρ1: γ1>0

γ
β1−1/2
1 exp

(
−π

2
γ1

) ∑
ρ2: γ2<0

|γ2|β2/2−1/2
∫ −1/N
−∞

exp
(
− |γ2|

2

(
arctan (Ny) + π

2

))
|dz|

|z|k+1+β1+β2/2

+
∑

ρ1: γ1>0

γ
β1−1/2
1 exp

(
−π

2
γ1

) ∑
ρ2: γ2<0

|γ2|β2/2−1/2

·
∫ −1/N
−∞

exp
(
− |γ2|

2

(
arctan (Ny) + π

2

))
log2 (2N |y|) |dz|

|z|k+1/2+β1+β2/2

�Nk+3/2
∑

ρ1: γ1>0

γ
β1−1/2
1 exp

(
−π

2
γ1

) ∑
ρ2: γ2<0

|γ2|β2/2−1/2 exp
(
−π

8
|γ2|
)

+Nk+5/2
∑

ρ1: γ1>0

γ
β1−1/2
1 exp

(
−π

2
γ1

)∑
ρ2

|γ2|β2/2−1/2
∫ ∞
1

exp
(
− |γ2|

2
arctan

(
1
u

))
uk+1+β1+β2/2

du

+
∑

ρ1: γ1>0

γ
β1−1/2
1 exp

(
−π

2
γ1

) ∑
ρ2: γ2<0

|γ2|β2/2−1/2
∫ ∞
1

exp
(
− |γ2|

2
arctan

(
1
u

))
log2 (2u)

uk+1/2+β1+β2/2
du
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where u = Ny. So by Lemma 3 we have, for k > 1, that

Ǎ−6,2 �k N
k+5/2

If y > 0 we have essentially the same calculations exchanging the role of γ1 and γ2. We

have

Ǎ+
6,2 �

∑
ρ1: γ1>0

γ
β1−1/2
1

∑
ρ2: γ2<0

|γ2|β2/2−1/2 exp
(
−π

4
|γ2|
)∫ 1/N

0

exp
(
γ1
(
arctan (Ny)− π

2

))
|dz|

|z|k+1+β1+β2/2

+N
∑

ρ1: γ1>0

γ
β1−1/2
1

∑
ρ2: γ2<0

|γ2|β2/2−1/2 exp
(
−π

4
|γ2|
)∫ ∞

1/N

exp
(
γ1
(
arctan (Ny)− π

2

))
dy

yk+1+β1+β2/2

+
∑

ρ1: γ1>0

γ
β1−1/2
1

∑
ρ2: γ2<0

|γ2|β2/2−1/2 exp
(
−π

4
|γ2|
)∫ ∞

1/N

exp
(
γ1
(
arctan (Ny)− π

2

))
log2 (2Ny) dy

yk+1+β1+β2/2

�Nk+3/2
∑

ρ1: γ1>0

γ
β1−1/2
1 exp

(
−π

4
γ1

) ∑
ρ2: γ2<0

|γ2|β2/2−1/2 exp
(
−π

4
|γ2|
)

+Nk+5/2
∑

ρ1: γ1>0

γ
β1−1/2
1

∑
ρ2: γ2<0

|γ2|β2/2−1/2 exp
(
−π

4
|γ2|
)∫ ∞

1

exp
(
−γ1 arctan

(
1
u

))
uk+1+β1+β2/2

du

+Nk+2
∑

ρ1: γ1>0

γ
β1−1/2
1

∑
ρ2: γ2<0

|γ2|β2/2−1/2 exp
(
−π

4
|γ2|
)∫ ∞

1

exp
(
−γ1 arctan

(
1
u

))
log2 (2u)

uk+1/2+β1+β2/2
du

�kN
k+5/2

from Lemma 3 for k > 1.

Now we have to consider

A6,3 =
∑
ρ1

|Γ (ρ1)|
∑
ρ2

∣∣∣Γ(ρ2
2

)∣∣∣∑
ρ3

∣∣∣Γ(ρ3
2

)∣∣∣ ∫
(1/N)

∣∣eNz∣∣ ∣∣z−k−1∣∣ ∣∣z−ρ1∣∣ ∣∣z−ρ2/2∣∣ ∣∣z−ρ3/2∣∣ |dz| .
It is su�cient to consider the cases γi > 0, i = 1, 2, 3, γ1, γ2 > 0 and γ3 < 0 and lastly

γ1 > 0, γ2, γ3 < 0. We will use the symbol Ā6,3 when we consider A6,3 with the assumption

γi > 0, i = 1, 2, 3, the symbol Å6,3 when we consider A6,3 with the assumption γ1, γ2 > 0

and γ3 < 0 and A6,3 when we consider A6,3 with the assumption γ1 > 0, γ2, γ3 < 0. From

(40) we have
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Ā−6,3 �
∑

ρ1: γ1>0

γ
β1−1/2
1 exp

(
−π

2
γ1

) ∑
ρ2: γ2>0

γ
β2/2−1/2
2 exp

(
−π

4
γ2

) ∑
ρ3: γ3>0

γ
β3/2−1/2
3 exp

(
−π

4
γ3

)
·
∫ 0

−1/N
Nk+1+β1+β2/2+β3/2dy

+
∑

ρ1: γ1>0

γ
β1−1/2
1 exp

(
−π

2
γ1

) ∑
ρ2: γ2>0

γ
β2/2−1/2
2 exp

(
−π

4
γ2

) ∑
ρ3: γ3>0

γ
β3/2−1/2
3 exp

(
−π

4
γ3

)
·
∫ −1/N
−∞

|y|−k−1−β1−β2/2−β3/2 dy

�kN
k+2 +

∑
ρ1: γ1>0

γ
β1−1/2
1 exp

(
−π

2
γ1

) ∑
ρ2: γ2>0

γ
β2/2−1/2
2 exp

(
−π

4
γ2

) ∑
ρ3: γ3>0

γ
β3/2−1/2
3 exp

(
−π

4
γ3

)
·
∫ ∞
1/N

y−k−1−β1−β2/2−β3/2dy

�kN
k+2

for k > 1.

Let y > 0. From (18) and (19) we have

Ā+
6,3 �

∑
ρ1: γ1>0

γ
β1−1/2
1

∑
ρ2: γ2>0

γ
β2/2−1/2
2

∑
ρ3: γ3>0

γ
β3/2−1/2
3

·
∫ 1/N

0

exp
((
γ1 +

γ2
2

+
γ3
2

)(
arctan (Ny)− π

2

))
Nk+1+β1+β2/2+β3/2dy

+
∑

ρ1: γ1>0

γ
β1−1/2
1

∑
ρ2: γ2>0

γ
β2/2−1/2
2

∑
ρ3: γ3>0

γ
β3/2−1/2
3

·
∫ ∞
1/N

exp
((
γ1 + γ2

2
+ γ3

2

) (
arctan (Ny)− π

2

))
yk+1+β1+β2/2+β3/2

dy

�Nk+2
∑

ρ1: γ1>0

γ
β1−1/2
1 exp

(
−πγ1

4

) ∑
ρ2: γ2>0

γ
β2/2−1/2
2 exp

(
−πγ2

8

)
·
∑

ρ3: γ3>0

γ
β3/2−1/2
3 exp

(
−πγ2

8

)
+Nk+2

∑
ρ1: γ1>0

γ
β1−1/2
1

∑
ρ2: γ2>0

γ
β2/2−1/2
2

·
∑

ρ3: γ3>0

γ
β3/2−1/2
3

∫ ∞
1

exp
(
−
(
γ1 + γ2

2
+ γ3

2

)
arctan

(
1
u

))
uk+1+β1+β2/2+β3/2

du

and from the proof of the Lemma 3 we get
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Ā+
6,3 �Nk+2 +Nk+2

∑
ρ1: γ1>0

γ
β1−1/2
1

∑
ρ2: γ2>0

γ
β2/2−1/2
2

·
∑

ρ3: γ3>0

γ
β3/2−1/2
3

(
γ1 +

γ2
2

+
γ3
2

)−k−β1−β2/2−β3/2
and observing that

γβ11 γ
β2/2
2 γ

β3/2
3

2
≤
(
γ1 +

γ2
2

+
γ3
2

)β1+β2/2+β3/2
we get

Ā+
6,3 �k N

k+2 +Nk+2
∑

ρ1: γ1>0

∑
ρ2: γ2>0

∑
ρ3: γ3>0

1

γ
1/2
1 γ

1/2
2 γ

1/2
3

(
γ1 + γ2

2
+ γ3

2

)k
and from AM-GM inequality we get

Ā+
6,3 �Nk+2 +Nk+2

∑
ρ1: γ1>0

1

γ
k/3+1/2
1

∑
ρ2: γ2>0

1

γ
k/3+1/2
2

∑
ρ3: γ3>0

1

γ
k/3+1/2
3

�kN
k+2

for k > 3/2.

Let γ1, γ2 > 0, γ3 < 0 and y ≤ 0. From (40) we have

Å−6,3 �
∑

ρ1: γ1>0

γ
β1−1/2
1 exp

(
−π

2
γ1

) ∑
ρ2: γ2>0

γ
β2/2−1/2
2 exp

(
−π

4
γ2

) ∑
ρ3: γ3<0

|γ3|β3/2−1/2

·
∫ 0

−1/N

exp
(
− |γ3|

2

(
arctan (Ny) + π

2

))
|z|k+1+β1+β2/2+β3/2

|dz|

+
∑

ρ1: γ1>0

γ
β1−1/2
1 exp

(
−π

2
γ1

) ∑
ρ2: γ2>0

γ
β2/2−1/2
2 exp

(
−π

4
γ2

) ∑
ρ3: γ3<0

|γ3|β3/2−1/2

·
∫ −1/N
−∞

exp
(
− |γ3|

2

(
arctan (Ny) + π

2

))
|z|k+1+β1+β2/2+β3/2

|dz|

�kN
k+2 +Nk+2

∑
ρ1: γ1>0

γ
β1−1/2
1 exp

(
−π

2
γ1

) ∑
ρ2: γ2>0

γ
β2/2−1/2
2 exp

(
−π

4
γ2

) ∑
ρ3: γ3<0

|γ3|β3/2−1/2

·
∫ ∞
1

exp
(
− |γ3|

2
arctan

(
1
u

))
uk+1+β1+β2/2+β3/2

du
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and from the proof of Lemma 3 we get

Å−6,3 �kN
k+2 +

∑
ρ1: γ1>0

γ
β1−1/2
1 exp

(
−π

2
γ1

) ∑
ρ2: γ2>0

γ
β2/2−1/2
2 exp

(
−π

4
γ2

) ∑
ρ3: γ3<0

|γ3|−k−1/2−β1−β2/2

�kN
k+2

for k > 1/2.

If y > 0 we have essentially the same calculations exchanging the role of γ2,γ1 and γ3. We

get

Å+
6,3 �

∑
ρ1: γ1>0

γ
β1−1/2
1

∑
ρ2: γ2>0

γ
β2/2−1/2
2

∑
ρ3: γ3<0

|γ3|β3/2−1/2 exp
(
−π

4
|γ3|
)

·
∫ 1/N

0

exp
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γ2+2γ1

2
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arctan (Ny)− π

2
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|z|k+1+β1+β2/2+β3/2

|dz|

+
∑

ρ1: γ1>0

γ
β1−1/2
1

∑
ρ2: γ2>0

γ
β2/2−1/2
2

∑
ρ3: γ3<0

|γ3|β3/2−1/2 exp
(
−π

4
|γ3|
)

·
∫ ∞
1/N

exp
(
γ2+2γ1

2

(
arctan (Ny)− π

2

))
|z|k+1+β1+β2/2+β3/2

|dz|

�kN
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∑
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β1−1/2
1

∑
ρ2: γ2>0
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β2/2−1/2
2

∑
ρ3: γ3<0

|γ3|β3/2−1/2 exp
(
−π

4
|γ3|
)

·
∫ ∞
1

exp
(
−γ2+2γ1

2
arctan

(
1
u

))
uk+1+β1+β2/2+β3/2

du

�kN
k+2 +

∑
ρ1: γ1>0

γ
β1−1/2
1

∑
ρ2: γ2>0

γ
β2/2−1/2
2

·
∑

ρ3: γ3<0

|γ3|−k−1/2−β1−β2/2 exp
(
−π

4
|γ3|
)(γ2 + 2γ1

2

)−k−β1−β2/2−β3/2
again from the proof of Lemma 3 and now using again the AM-GM inequality and using

the the bounds 0 < βi < 1, i = 1, 2, 3 we get

Å+
6,3 �kN

k+2

+
∑

ρ1: γ1>0

∑
ρ2: γ2>0

∑
ρ3: γ3<0

γ
−k−1/2
1 γ

−k−1/2
2 |γ3|−k−1/2 exp

(
−π

4
|γ3|
)

�kN
k+2.

Let γ2, γ2 < 0 , γ1 > 0 and y < 0. We have
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A−6,3 �
∑
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β1−1/2
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2
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) ∑
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·
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2
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2
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∑
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) ∑
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∑

ρ1: γ1>0

γ
β1−1/2
1 exp

(
−π

2
γ1

) ∑
ρ2: γ2<0

|γ2|β2/2−1/2
∑

ρ3: γ3<0

|γ3|β3/2−1/2

·
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exp
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2
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1
u

))
uk+1+β1+β2/2+β3/2

du

�kN
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∑
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∑
ρ3: γ3<0

|γ2|β2/2−1/2 |γ3|β3/2−1/2 (|γ2|+ |γ3|)−k−β2/2−β3/2
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∑
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|γ2|−k−1/2
∑
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|γ3|−k−1/2

�kN
k+2

using Lemma 3, for k > 1/2.

Let y > 0. Observing that

−
(
|γ2|+ |γ3|

2

)(
arctan (Ny) +

π

2

)
≤ −

(
|γ2|+ |γ3|

2

)
π

2

we have
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∑
ρ1: γ1>0
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) ∑
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) ∑
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·
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+
∑

ρ1: γ1>0

γ
β1−1/2
1

∑
ρ2: γ2<0

|γ2|β2/2−1/2 exp
(
−π

8
|γ2|
) ∑
ρ3: γ3<0

|γ3|β3/2−1/2 exp
(
−π

8
|γ3|
)

·
∫ ∞
1/N

exp
(
γ1
(
arctan (Ny)− π

2

))
|z|k+1+β1+β2/2+β3/2

dy

�kN
k+2 +Nk+2

∑
ρ1: γ1>0

γ
β1−1/2
1

∫ ∞
1/N

exp
(
−γ1 arctan

(
1
u

))
|z|k+1+β1

du

�kN
k+2

from Lemma 3 for k > 1/2.

Now we can exchange the integral with the series and get

I6 =
1

8πi

∑
ρ1

Γ (ρ1)
∑
ρ2

Γ
(ρ2

2

)∑
ρ3

Γ
(ρ3

2

)∫
(1/N)

eNzz−k−1−ρ1−ρ2/2−ρ3/2dz

=
Nk

4

∑
ρ1

∑
ρ2

∑
ρ3

Nρ1+ρ2/2+ρ3/2Γ (ρ1) Γ
(
ρ2
2

)
Γ
(
ρ3
2

)
Γ (k + ρ1 + ρ2/2 + ρ3/2)

.

We have proved the following

Theorem 2. Let N be a su�cient large integer. We have

∑
n≤N

rSP (n)
(N − n)k

Γ (k + 1)
= M1 (N, k) +M2 (N, k) +M3 (N, k) +M4 (N, k) +O

(
Nk+1

)

64



where

M1 (N, k) =
Nk+2π

4Γ (k + 3)
(41)

M2 (N, k) =
Nk+1π

4

∑
ρ

Nρ Γ (ρ)

Γ (k + 2 + ρ)
− Nk+3/2

√
π

2

∑
ρ

Nρ/2 Γ (ρ/2)

Γ (k + 5/2 + ρ/2)
(42)

M3 (N, k) =
Nk+1/2

√
π

2

∑
ρ1

∑
ρ2

Nρ1+ρ2/2
Γ (ρ1) Γ

(
ρ2
2

)
Γ (k + 3/2 + ρ1 + ρ2/2)

+
Nk+1

4

∑
ρ1

∑
ρ2

Nρ1/2+ρ2/2
Γ
(
ρ1
2

)
Γ
(
ρ2
2

)
Γ (k + 2 + ρ1/2 + ρ2/2)

(43)

M4 (N, k) =
Nk

4

∑
ρ1

∑
ρ2

∑
ρ3

Nρ1+ρ2/2+ρ3/2Γ (ρ1) Γ
(
ρ2
2

)
Γ
(
ρ3
2

)
Γ (k + ρ1 + ρ2/2 + ρ3/2)

, (44)

for k > 3/2, where ρ runs over the non-trivial zeros of the Riemann zeta function ζ (s).

If RH holds M4 (N, k) can be incorporated in the error term.
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6 The Circle method

The circle method was introduced in a paper of Hardy and Ramanjuan [14] and it is used to

study additive problems. The method allows to turn an arithmetic problem in a problem

that can be approached with real and complex analytic tools. To better explain how the

method works, we illustrate the proof of the ternary Goldbach problem for su�ciently

large numbers by Vinogradov [40]. We will use the Davenport [7] approach. Let be N > 5

and odd number and let us consider

R3 (N) =
∑

n1+n2+n3=N

Λ (n1) Λ (n2) Λ (n3) , (45)

where

Λ (n) =

log (p) , n = pk for some integer k ≥ 1

0, otherwise

is the Von Mangoltd function. (45) is a weighed counting of the representations of N

as sum of three primes powers. So we are not analyzing the original problem but this

function is, for technical reason, more tractable and the error from to the original function

to (45) is under control. Let us now consider the function

S (α) =
∑
m≤N

Λ (m) e (mα)

where e (n) = e2πin.

Due to the orthogonality of the complex exponential function, i.e.

∫ 1

0

e (nx) e (−mx) dx =

1, m = n

0, otherwise

we have the fundamental relation

R3 (N) =

∫ 1

0

S3 (α) e (−Nα) dα

which is also the N -th Fourier coe�cient of the function S3 (α). It is possible to observe

that |S (α)| has some �peaks� when α is near a rational number a/q with a �small� denom-

inator (we will de�ne rigorously these words). So the idea is to dissect the interval [0, 1]

in two parts that will call M and m.

So we split the interval [0, 1] using the so call Farey dissection
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De�nition (Farey fractions of order P ). Let P ≥ 1. The set of the Farey fractions is

F (P ) =

{
a

q
: q ≤ P, 1 ≤ a ≤ q, (a, q) = 1

}
.

Let us take P = logB (N), where B will be chosen later, Q = P/N and we consider now

the following intervals

M (a, q) =

[
a

q
− 1

Q
,
a

q
+

1

Q

]
where a/q ∈ F (P ). Note that the these intervals are not overlapping since if we take

a1/q1, a2/q2 ∈ F (P ) , a1/q1 6= a2/q2 we have∣∣∣∣a1q1 − a2
q2

∣∣∣∣ =

∣∣∣∣a1q2 − a2q1q1q2

∣∣∣∣ ≥ 1

q1q2
≥ 1

P 2
>

2

Q
(46)

since logB (N) < N/2 for a su�ciently large N . We de�ne the major arc as

M =
P⋃
q=1

q⋃∗

a=1

M (a, q)

where ∗ indicates the condition (a, q) = 1. It is not di�cult to see that M ⊂
[

1
Q
, 1 + 1

Q

]
so we de�ne the minor arc as m =

[
1
Q
, 1 + 1

Q

]
\M.

Since

∫ 1

0

S3 (α) e (−Nα) dα =

∫ 1+1/Q

1/Q

S3 (α) e (−Nα) dα

=

∫
m

S3 (α) e (−Nα) dα +

∫
M

S3 (α) e (−Nα) dα

because S (α) and e (α) have period 1, we will split the domain of integration in two parts:

the major arc and the minor arc.

6.1 Major arc

From (46), we have that

∫
M

S3 (α) e (−Nα) dα =
∑
q≤P

q∑∗

a=1

∫
M(a,q)

S3 (α) e (−Nα) dα (47)
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where again ∗ indicates the condition (a, q) = 1. Let us consider α ∈ M (a, q), so α =

a/q + β, |β| ≤ 1. From Davenport [7], pages 146-147, we have that

S (α) =
µ (q)

φ (q)
T (β) +O

(
N exp

(
−c
√

log (N)
))

where µ (q) is the Möbius function, φ (q) is the Euler totient function, T (β) =
∑

n≤N e (nβ)

and c > 0 is a positive constant. Hence∫
M(a,q)

S3 (α) e (−Nα) dα =
µ (q)

φ3 (q)
e

(
−aN

q

)∫ 1/Q

−1/Q
T 3 (β) e (−Nβ) dβ (48)

+O

(
N3

Q
exp

(
−c
√

log (N)
))

and so from (47)∫
M

S3 (α) e (−Nα) dα =
∑
q≤P

µ (q)

φ3 (q)
cq (N)

∫ 1/Q

−1/Q
T 3 (β) e (−Nβ) dβ

+O
(
N2 exp

(
−c1

√
log (N)

))
where cq (N) =

∑q∗

a=1 e
(
−aN

q

)
is the Ramanujan sum (for a reference see [32], page 110)

and c1 > 0 is a constant.

Now we observe that

T (α) =
∑
n≤N

e (nα) =


1−e((N+1)α)

1−e(α) = e
(
Nα
2

) sin(π(N+1)α)
sin(πα)

, α /∈ Z

N + 1, α ∈ Z

so obviously

T (β)� min
(
N, |β|−1

)
;

hence we can immediately conclude that∫ 1−1/Q

1/Q

∣∣T 3 (β)
∣∣ dβ � Q2
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so ∫ 1/Q

−1/Q
T 3 (β) e (−Nβ) dβ =

∫ 1

0

T 3 (β) e (−Nβ) dβ

−
∫ 1−1/Q

1/Q

T 3 (β) e (−Nβ) dβ

=

∫ 1

0

T 3 (β) e (−Nβ) dβ

+O
(
Q2
)
.

Since we have extended the domain of integration to the whole interval (0, 1) we can see

that ∫ 1

0

T 3 (β) e (−Nβ) dβ =
∑

m1+m2+m3=n
mi≥0, i=1,2,3

1 =
(N − 1) (N − 2)

2
=
N2

2
+O (N)

and since

Q =
N

logB (N)

we have that ∫ 1/Q

−1/Q
T 3 (β) e (−Nβ) dβ =

N2

2
+O

(
N2

log2B (N)

)
.

To complete the estimation of (48) we have to study the following sum

∑
q≤P

µ (q)

φ3 (q)
cq (N) =

∑
q≥1

µ (q)

φ3 (q)
cq (N)−

∑
q>P

µ (q)

φ3 (q)
cq (N) ;

now since it is possible to prove that

cq (N) =

q∑∗

a=1

e

(
aN

q

)
= µ

(
q

(q,N)

)
φ (q)

φ (q/ (q,N))
,

we can easily conclude that

|cq (N)| ≤ φ (q)

so ∑
q>P

µ (q)

φ3 (q)
cq (N)�

∑
q>P

1

φ2 (q)
� log1−B (N)

(for the last inequality see [15], theorem 327). By the Euler product formula (see [1], chap.
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11) we can conclude that

∑
q≥1

µ (q)

φ3 (q)
cq (N) =

∏
p|N

(
1− 1

(p− 1)2

)∏
p-N

(
1 +

1

(p− 1)3

)
= S3 (N)

where S3 (N) is the singular series for the ternary Goldbach problem. It is interesting to

note that S3 (2n) = 0, which is consistent to the fact that we can not �nd an even number

which is sum of three odd primes. So �nally we have∫
M

S3 (α) e (−Nα) dα =
(
S3 (N) +O

(
log1−B (N)

))(N2

2
+O

(
N2

log2B (N)

))
+O

(
N2 exp

(
−c
√

log (N)
))

=S3 (N)
N2

2
+O

(
N2 log1−B (N)

)
.

6.2 Minor Arc

We have to prove that the order of magnitude of the contribute of the minor arc is smaller

that the order of major arc. We have that∣∣∣∣∫
m

S3 (α) e (−Nα) dα

∣∣∣∣ ≤ max
α∈m
|S (α)|

∫ 1

0

|S (α)|2 dα;

from the Parseval's identity and the PNT we have∫ 1

0

|S (α)|2 dα =
∑
m≤N

Λ2 (m)� N log (N)

and from Vinogradov's lemma (see [40]) we have

S (α)�
(
N
√
q

+N4/5 +
√
Nq

)
log4 (N)� N log4−B/2 (N)

hence ∫
m

S3 (α) e (−Nα) dα� N2 log5−B/2 (N)

so setting B = 2 (A+ 5) we �nally get

Theorem (Vinogradov). Let N be a su�ciently large integer. Then, for any �xed

A > 0, we have

R3 (N) = S3 (N)
N2

2
+O

(
N2 log−A (N)

)
.
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