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Introduction and motivations

About duality

Duality is a key property in the realm of interacting particle systems and more generally in the

context of Markov processes. It is the aim of this thesis to explore the mathematical structure

of systems with a dual process. In particular, the focus will be algebraic properties that provide

(via the concept of symmetry) the explanation of a dual process. Why should one be interested

in duality? Besides its own interesting mathematical structure, which will be indeed explained

and investigated in this thesis, duality provides substantial information that can be inferred

via a dual evolution. The class of processes that have a dual are amenable to several exact

computations that find their origin in the simplification due to duality. We remark that duality

is a rare property: only a few classes of processes are known to share this property.

The scheme would be to use stochastic duality and self-duality to analyze a complicated

system in terms of a simpler one; duality can be used in several ways to simplify the analysis

of the process under study. A partial list of examples of simplification includes:

1. From continuous to discrete. One can relate - via duality - Markov processes with a

continuous state space to Markov processes with a discrete state space. We shall see an

example of this simplification when we will discuss, for instance, the duality between the

Brownian energy process (an interacting diffusion with state space RN+ , with n ∈ N) and

the symmetric inclusion process (an interacting particle system with state space NN ).

2. Absorbing boundaries. One can put in a duality relation systems with given boundary

conditions to simpler dual systems with absorbing boundary conditions. The classical

examples (indeed one of the first example of duality known in the literature) is provided

by a Brownian motion on the positive real line reflected in zero that is dual to a Brownian

motion on R+ with absorbing boundary condition in zero. We will review this duality, as

well as the analogous for random walkers, in Chapter 1.5. Another example, not discussed

in this dissertation, is provided by the duality between the Brownian energy process

with Ornstein-Uhlenbeck reservoirs and its dual, the symmetric inclusion process with

absorbing reservoirs. Remark that while the stationary measure of the Brownian energy

process with reservoirs is complicated and characterized by long-range correlations, the

3



4 Introduction

stationary measure of the inclusion process with absorbing boundaries is much simpler,

with a fraction of the particles absorbed in one reservoir and the remaining fraction

absorbed in the other reservoir.

3. From many to few. Self-duality is a special case of duality, where the dual process is an

independent copy of the original process. Even in this case the simplification coming from

duality is substantial. For instance the n-point (with n ∈ N) correlation functions can be

described via only n dual particles. Thus the problem of computing correlations for an

arbitrarily large (possible infinite) system is mapped to a problem for a finite system.

4. Backward/forward evolution. Often a duality relation is found between two processes,

one of which evolves forward in time, the other evolving backward in time. The classical

examples are several of the dualities found in mathematical population genetics models,

i.e. the duality with a coalescence process for a sample of a multi-type population. We

will review in Chapter 1.5 the duality between the Wright-Fisher diffusion and the block

counting process of Kingman’s coalescence.

Organization and contribution of this thesis

I shall describe hereafter the content and main results of my thesis. I developed a theory for

stochastic duality using orthogonal polynomials as duality functions. The results apply to a

large class of Markov processes with a common algebraic structure. As we shall see, it is this

mathematical structure that is at the root of the orthogonal dualities.

The thesis is organized as follows. In Chapter 1 we give an introduction to duality theory,

which is the main object of this work. Applications and advantages of having a dual process

are recalled, as well as a bibliography on the subject. We then briefly review the theory of

Markov semigroups and their generators which we will use later on. We go on with the notions

of stochastic duality and duality functions. Here we shall present the first original result of this

thesis, i.e. how to generate novel duality functions from known duality functions. We end the

Chapter with some classical examples well known in the literature.

Chapter 2 is devoted to the description of the interacting particle systems for which we will

prove duality. We present three continuous time jump processes (inclusion process, exclusion

process, independent walkers), two interacting diffusions (Brownian momentum process, Brow-

nian energy process) and a generalized Kipnis-Marchioro-Presutti model which arises from an

instantaneous thermalization limit of the Brownian energy process. These classes of models

have applications in different settings, e.g. non-equilibrium statistical mechanics, mathematical

population genetics, wealth distribution in economics.

In Chapter 3 lies the second original results of this thesis: we show how dualities and

self-duality relations can be achieved using orthogonal polynomials as duality and self-duality

functions. We will use classical orthogonal polynomials. The orthogonality relation is with
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respect to the scalar product defined by the stationary measure of the processes. All the proofs

follow the same idea: we write the action of the generators of the processes via explicit relations

found using the hypergeometric properties of these polynomials. In particular, we are able to

show three self-duality relations and three duality relations. The gain in having orthogonal

polynomials is that they form an orthogonal base for a dense subspace of the Hilbert space for

which they are orthogonal. Then one can approximate any function of the Hilbert space. We

use Appendix A for a review of continuous and discrete hypergeometric polynomials and to

show some results needed in Chapter 3.

The next goal is then to classify the orthogonal polynomial dualities into a general algebraic

scheme recalled in Chapter 5. Before doing that, we use Chapter 4 for a condensed review of

Lie algebras: it will be the Lie algebra representation theory that will help us in our aim.

We will use that each generator of the process is naturally associated to a Lie algebra. In

Chapter 5 we recall the algebraic scheme that allows to fit dualities and self-dualities into an

algebraic approach. In this scheme duality arises as a change of representation and self-duality

is derived from symmetries of the process generator. We review how this abstract scheme

has been implemented to find dualities and self-duality relations with triangular self-duality

functions or monomial duality functions.

Chapter 6 is then used to fit the new results of Chapter 3 into the algebraic scheme. This

is also a recently developed result where further connections between stochastic duality and

Lie algebra representation are established. In particular, we provide two theorems which are

then used to retrieve orthogonal dualitities and self-dualities as a change of representation of

the underlying Lie algebra. Besides the relations already presented in Chapter 3, this new

approach allows to find a self-duality relation for a diffusion process via Bessel functions. We

then explicitly find the symmetries that lead to Orthogonal self-duality in the same fashion of

Chapter 5.

Last, we use Chapter 7 to introduce two asymmetric versions of the exclusion and inclusion

process. For these two models classical duality functions are available and using the theory

of Chapter 1 we show how to construct biorthogonal self-duality functions. However, we still

lack a complete knowledge of (eventual) orthogonal dualities, possibly q−polynomials. Study-

ing asymmetric processes is relevant in the context of non-equilibrium statistical mechanics,

however, the extension of a duality relation from a symmetric to an asymmetric process is far

from trivial.





Chapter 1

Stochastic duality

1.1 The importance of duality

Duality theory is a powerful tool to deal with Markov processes by which information on a given

process can be extracted from another process, its dual. The link between the two processes is

provided by a set of so-called duality functions, i.e. a set of observables that are functions of

both processes and whose expectations, with respect to the two randomness, can be placed in

a precise relation (provided in Definition 1.3 below).

It is worth to stress the relevance of a duality relation. Duality theory has been used in

several contexts, we now give an overview of its implementations. Originally introduced for

interacting particle systems in [63] and further developed in [50], the literature on stochastic

duality covers nowadays a host of applications. A list of examples of systems that have been

analyzed using duality includes: boundary driven and/or bulk driven models of transport

[9, 37, 55, 64], heat conduction and derivation of Fourier law [31, 41], diffusive particle systems

and their hydrodynamic limit [26,50], asymmetric interacting particle systems scaling to KPZ

equation [5, 10, 13, 22, 24, 35, 57, 58], six vertex models [12, 23], multispecies particle models

[6,7,46–48], correlation inequalities [33] and mathematical population genetics [4,15,53,66]. In

all such different contexts it is used, in a way or another, the core simplifications described in

the Introduction.

Besides applications, it is interesting to understand the mathematical structure behind

duality. This goes back to classical works by Schütz and collaborators [60, 61], where the

connection between stochastic duality and symmetries of quantum spin chains was pointed

out. More recently, the works [16,17,32,46,48] further investigate this framework and provide

an algebraic approach to Markov processes with duality starting from a Lie algebra in the

symmetric case, and its quantum deformation in the asymmetric one.

The algebraic perspective starts from the hypothesis that the Markov generator is an el-

ement of the universal enveloping algebra of a Lie algebra. Then the derivation of a duality

relation is based on two structural ideas:

7



8 Chapter 1 Stochastic duality

i) duality can be seen as a change of representation of a Lie algebra: more precisely one

moves between two equivalent representations and the intertwiner of those representations

yields the duality function.

ii) self-duality is related to reversibility of the process and the existence of an algebra element

that commutes with the generator of the process.

Therefore one has a constructive technique, in which duality functions arise from representation

theory. Remarkably, this scheme can also be extended to quantum deformed algebras [16,17].

Recently, an independent approach has established a connection between stochastic duality

and the theory of special functions. In particular the works [8,11,28,56] prove that for a large

class of processes self-duality functions are provided by orthogonal polynomials and Bessel

functions. In this dissertation, we will extensively investigate this route and fit these new

duality and self-duality functions into the algebraic approach described above.

1.2 Preliminaries on semigroups of Markov processes

In this section we provide the minimal background on the theory of Markov processes that is

necessary to define stochastic duality in the next section. For this part we follow [65].

We will assume in this section that the state space Ω is finite. This permits to introduce

the concepts of Markov semigroups and Markov generators without the need to specify all

the necessary domain/regularity properties of these operators. Our aim is rather to introduce

them in the simplest possible setting to elucidate their probabilistic interpretation. We refer

to [50] for the general theory of Markov processes where the assumption on a finite state space

is removed.

The essence is that there is a natural correspondence between the two objects that will be

defined now (semigroups and generators) that can be used to characterize a Markov process.

Let Ω be a finite set and F (Ω) be the set of all functions f : Ω→ R.

Definition 1.1 (Markov semigroup). A family {St}t≥0 of linear operators on F (Ω) is called

Markov semigroup if the following conditions are satisfied:

1. S0 = I, the identity operator on F (Ω).

2. t→ Stf is right continuous for every f ∈ F (Ω).

3. St+s = StSs, for all s, t ≥ 0 and all f ∈ F (Ω).

4. St1 = 1, for all t ≥ 0.

5. Stf ≥ 0 for all non-negative f ∈ F (Ω).

As explained in [50], the importance of Markov semigroups consists in their correspondence

with Markov processes. This correspondence is exhibited in the following theorem.
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Theorem 1.1 (Correspondence between semigroups and Markov processes). Suppose {St}t≥0

is a Markov semigroup on F (Ω), then there exists a unique Markov process {Xt}t≥0 taking

value in Ω such that

Stf(x) := Exf(Xt)

for all f ∈ F (Ω), x ∈ Ω and t ≥ 0. Ex denotes the expectation of the process started in X0 = x.

One can show that, for each Markov semigroups {St}t≥0, such a Markov process exists and

is unique in distribution, given its initial distribution P (X0 ∈ ·).
Markov processes can also be characterized by their generators and the following theorem

shows how to get the generator from the semigroup

Definition 1.2 (Markov generator). A linear operator L on F (Ω) with domain D(L) ⊆ F (Ω)

is a Markov generator for the semigroup {St}t≥0 if

Lf = lim
t→0+

Stf − f
t

(1.1)

where the generator domain D(L) is the set of function on Ω for which the previous limit exists.

The above limit can formally be written as

Lf =
d

dt
Stf
∣∣
t=0

,

and using Theorem 1.1 the above becomes

Lf =
d

dt
Ex(f(Xt))

∣∣
t=0

. (1.2)

The following theorem shows how to get the semigroup from the generator in the finite dimen-

sional context.

Theorem 1.2 (Correspondence between semigroup and generators). Let Ω be a finite set. Let

L be a Markov generator on F (Ω) and (St)t≥0 a Markov semigroup on F (Ω), then these two

object are related in the following way

Stf := etLf , (1.3)

where the exponential is defined as

etLf =

( ∞∑
n=0

tn

n!
Ln

)
f .

which makes sense only if L is a bounded operator.
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Remark 1.1. The relation (1.3) has to be interpreted as a formal relation when Ω is not a

finite set. In particualr it is well defined only when L is a bounded operator. We refer to [50]

for the case of a measurable metric space Ω.

The theorem providing the link between Markov generators and Markov semigroups in the

general context where the state space F (Ω) is the Banach space of continuous function on Ω

with the sup norm ‖ f ‖= sup
x∈Ω
| f(x) | is known in functional analysis as the Hille-Yosida

theorem (see [50], Chapter 1).

For the sake of completeness we recall the backward and forward Kolmogorov equations. If

f ∈ D(L), then Stf ∈ D(L) and

d

dt
Stf = LStf (backward) (1.4)

d

dt
Stf = StLf (forward) (1.5)

1.3 Definitions of duality

Definition 1.3 (Duality of processes). Let X = (Xt)t≥0 and Y = (Yt)t≥0 be two continuous

time Markov processes with state spaces Ω and Ωdual , respectively. We say that Y is dual to

X with duality function D : Ω× Ωdual 7−→ R if

Ex[D(Xt, y)] = Ey[D(x, Yt)] , (1.6)

for all (x, y) ∈ Ω × Ωdual and t ≥ 0. In (1.6) Ex (respectively Ey) is the expectation w.r.t.

the law of the X process initialized at x (respectively the Y process initialized at y). If X and

Y are two independent copies of the same process, we say that Y is self-dual with self-duality

function D.

Note that self-duality can always be thought as a special case of duality where the dual

process is an independent copy of the first one. The simplification of self-duality typically

arises from the fact that in the copy process only a finite number of particles or variables is

considered.

Recalling Theorem 1.1 one sees that a duality relation between two Markov processes is

equivalent to a duality relation between their Markov semigroups, i.e.(
StD(·, y)

)
(x) =

(
Sdualt D(x, ·)

)
(y) , for t ≥ 0 (1.7)

where St denotes the semigroup of the original process X and Sdualt the semigroup of the dual

process Y .

Duality can be defined at the level of Markov generator in the following sense.
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Definition 1.4 (Duality of generators). Let L and Ldual be generators of the two Markov

processes X = (Xt)t≥0 and Y = (Yt)t≥0, respectively. We say that Ldual is dual to L with

duality function D : Ω× Ωdual −→ R if

[LD(·, y)](x) = [LdualD(x, ·)](y) (1.8)

where we assume that both sides are well defined, i.e. D(·, y) ∈ D(L) for all y ∈ Ωdual and

D(x, ·) ∈ D(Ldual) for all x ∈ Ω. In the case L = Ldual we shall say that the process is self-dual

and the self-duality relation becomes

[LD(·, y)](x) = [LD(x, ·)](y) . (1.9)

In equation (1.8) (resp. (1.9)) it is understood that L on the lhs acts on D as a function

of the first variable x, while Ldual (resp. L) on the rhs acts on D as a function of the second

variable y. Definition 1.4 is easier to work with, so we will usually work under the assumption

that the notion of duality (resp. self-duality) is the one in equation (1.8) (resp. (1.9)).

Remark 1.2 (Countable state space). If the original process (Xt)t≥0 and the dual process

(Yt)t≥0 are Markov processes with countable state space Ω and Ωdual resp., then the duality

relation is equivalent to∑
x′∈Ω

L(x, x′)D(x′, y) =
∑
y′∈Ω

Ldual(y, y′)D(x, y′) =
∑
y′∈Ω

(Ldual)T (y′, y)D(x, y′) (1.10)

where LT denotes the transposition of the generator L. In matrix notation (1.10) becomes

LD = D(Ldual)T (1.11)

Once more, if Ldual = L we obtain the corresponding identities for self-duality. In this context,

the generator L is given by a matrix known as rate matrix such that

L(x, y) ≥ 0 and
∑
y

L(x, y) = 0 .

For x 6= y, we say that the process jumps from x to y with rate L(x, y).

Remark 1.3 (Constant quantity). If D(x, y) is a duality function between two processes and

the function c : Ω × Ωdual −→ R is constant under the dynamics of the two processes then

c(x, y)D(x, y) is also a duality function. We will always consider duality functions modulo the

quantity c(x, y). For instance, the interacting particle systems studied in Chapter 2 conserves

the total number of particles and thus c is an arbitrary function of such conserved quantity.

When the state space Ω is infinite, the state on a site may diverge in a finite time (explosion).

In other words, it may happen that some generators, although stochastic, do not allow to define

a continuous time Markov process. As already remarked in the previous section, sufficient
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conditions for the existence of a Markov process with formal generator L are provided by the

Hille-Yoshida theorem, see for instance [1, 40,50,65].

Obviously, the problem of existence is not present when the system is conservative and it

is initialized with a finite number of particles. In this thesis we will not discuss the problem

of existence for the interacting particle systems we will consider; however, we observe that,

since in the dual process we always restrict to a finite number of dual particles then the duality

relation in Definition 1.3 rigorously defines expectations on the left-hand side of equation (1.6)

via the right-hand side.

Under suitable hypothesis the two notions of duality in Definition 1.3 and Definition 1.4

given above are equivalent, as explained in the following proposition (see also [15] and [38]).

Proposition 1.1 (Equivalence of duality definitions). Duality of processes always implies dual-

ity of their generators, the converse is true iff the processes’ semigroups (St)t≥0 and (Sdualt )t≥0,

respectively, are such that StD(x, ·) ∈ D(Ldual) and Sdualt D(·, y) ∈ D(L).

Proof. Let’s first suppose the processes (Xt)t≥0 and (Yt)t≥0 are dual to each other. Then

equation (1.7) implies generators duality in equation (1.8).

The other implication follows from the uniqueness of the semigroup. Let L generates the

semigroup St, then ft(x, y) = (StD(·, y)) (x) is the unique solution of the backward equation

in (1.4), i.e.
d

dt
ft(x, y) = (Lft(·, y)) (x) (1.12)

with initial condition f0(x, y) = D(x, y) and for all D(·, y) ∈ D(L) . L is dual to Ldual through

D by hypothesis, therefore it is implied that also gt(x, y) =
(
Sdualt D(x, ·)

)
(y) solves equation

(1.12) with the same initial value g0(x, y) = D(x, y). Indeed, since Sdualt has generator Ldual,

it follows from the Kolmogorov forward equation that

d

dt
gt(x, y) =

d

dt

(
Sdualt D(x, ·)

)
(y) = Sdualt

(
LdualD(x, ·)

)
(y) =

Sdualt (LD(·, y)) (x) = L
(
Sdualt D(x, ·)

)
(y) = Lgt(x, y)

where in the second last equation we used Fubini’s theorem. Since equation (1.12) has an

unique solution, it follows that gt(x, y) = ft(x, y), i.e.
(
Sdualt D(x, ·)

)
(y) = (StD(·, y)) (x)

We will always work under the assumption that the notion of duality in Definition 1.3 is

equivalent to that given in Definition 1.4. In particular, it is easier and more convenient to

work with equation (1.8).

It is one of our aims to show duality and self-duality as a consequence of a change of

representation of a Lie algebra, so it will be convenient to extend the definition of duality for

operators as well.
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Definition 1.5 (Duality of operators). Let A and B be two generic operators of domain D(A)

and D(B) respectively, we say that A is dual to B if

[AD(·, y)](x) = [BD(x, ·)](y) , (1.13)

where D = D(x, y) is the duality function and D(·, y) ∈ D(A), D(x, ·) ∈ D(B), respectively. If

B = A we will say that f is a self-duality function for the operator A.

Sometimes if D satisfies (1.13) with A and B different we will refer to it as an intertwining

function between the two operators A and B. Moreover, it will be sometimes convenient to

adopt the following notation

AxD(x, y) := [AD(·, y)](x)

to write that operator A acts on the first variable of D. The following basic example shows a

duality relation between two operators, in this context the duality function plays the role of an

intertwining between the two operators.

Example 1.1. Consider the two operators acting on a differentiable function g : R → R as

follows

(Ag) (x) = xg(x) (Bg) (y) =
∂

∂y
g(y) .

Then f(x, y) = exy is a duality function between operator A and B since

(Af(·, y)) (x) = xexy = (Bf(x, ·)) (y) . (1.14)

1.4 Duality and Self-duality functions via scalar product

This section is devoted to the first original results regarding (self-)duality functions of Markov

processes. We will show that – in the setting of reversible processes – once a (self-)duality

relation in the sense of Definition 1.4 is available then it is possible to generate new (self-

)duality functions starting from those available from the initial relation. We restrict here to

the setting of Markov processes with countable state space. We will need the notion of scalar

product on some measure space L2(Ω, µ), i.e.

〈f, g〉µ =
∑
x∈Ω

f(x)g(x)µ(x) .

We start with self-duality. Suppose that L is the generator of a Markov process with reversible

measure µ, then L is a self-adjoint operator on L2(Ω, µ) (see also Section 2.1.1 and 2.1.2), i.e.

L = L∗, where L∗ denotes the adjoint of L. Assume now that d1 and d2 are two self-duality

function (not necessary two different ones) for L so that

Ldi(·, y)(x) = Ldi(x, ·)(y) for i = 1, 2 and (x, y) ∈ Ω× Ω . (1.15)

Next proposition shows that the scalar product of d1 and d2 is, by construction, a self-duality

function.
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Proposition 1.2 (New self-duality functions). If µ is a reversible measure for a generator L

and if equation (1.15) holds, the function D : Ω× Ω→ R given by

D(x, y) = 〈d1(x, ·), d2(y, ·)〉µ (1.16)

is a self-duality function for the generator L.

Proof. It will be convenient here to adopt the shorter notation already introduced in Section

1.3, for (LD(·, y))(x) we write LxD(x, y). Using this compact notation we first show a one-line

proof of the proposition and we then give full details. The result follows from self-duality and

self-adjointness, i.e.

LxD(x, y) = 〈Lxd1(x, ·), d2(y, ·)〉µ =
∑
z

Lzd1(x, z)d2(y, z)µ(x) =
∑
z

d1(x, z)Lzd2(y, z)µ(z)

= 〈d1(x, ·), Lyd2(y, ·)〉µ = LyD(x, y) .

More explicitly, if D(x, y) =
∑

z d1(x, z)d2(y, z)µ(z) then,

(LD(·, y)) (x) =
∑
x′

L(x, x′)D(x′, y) =
∑
x′

∑
z

L(x, x′)d1(x′, z)d2(y, z)µ(z) ,

since d1 is a self-duality function for L,∑
x′

∑
z

L(x, x′)d1(x′, z)d2(y, z)µ(z) =
∑
z′

∑
z

L(z, z′)d1(x, z′)d2(y, z)µ(z) .

Since L is self-adjoint w.r.t. measure µ∑
z′

∑
z

L(z, z′)d1(x, z)d2(y, z′)µ(z) =
∑
y′

∑
z

L(y, y′)d1(x, z)d2(y′, z)µ(z) ,

which, using that d2 is a self-duality function becomes∑
y′

L(y, y′)
∑
z

d1(x, z)d2(y′, z)µ(z) =
∑
y′

L(y, y′)D(x, y′) = (LD(x, ·)) (y) .

In the context of duality, one would need d1 to be a duality function between L and Ldual

and d2 to be a self-duality function of Ldual, i.e.

Ld1(·, y)(x) = Lduald1(x, ·)(y) for (x, y) ∈ Ω× Ωdual (1.17)

and

Lduald2(·, y)(x) = Lduald2(x, ·)(y) for (x, y) ∈ Ωdual × Ωdual . (1.18)

Moreover, if Ldual has reversible measure µ on L2(Ωdual, µ) then it is self-adjoint on L2(Ωdual, µ)

and the following proposition holds.
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Proposition 1.3 (New duality functions). If µ is a reversible measure for a generator Ldual

and if equations (1.17) and (1.18) hold, the function D : Ω× Ωdual → R given by

D(x, y) = 〈d1(x, ·), d2(y, ·)〉µ (1.19)

is a duality function for L and Ldual.

Proof. The proof follows step by step the one of Proposition 1.2.

LxD(x, y) = 〈Lxd1(x, ·), d2(y, ·)〉µ =
∑
z

Ldualz d1(x, z)d2(y, z)µ(z) =∑
z

d1(x, z)Ldualz d2(y, z)µ(z) = 〈d1(x, ·), Ldualy d2(y, ·)〉µ = Ldualy D(x, y) ,

where we use duality of L and Ldual in the second equality, then the self-adjointness of Ldual

and finally the self-duality of Ldual.

We now go back to the context of self-duality. The following proposition expands the result

of Proposition 1.2. It turns out that when two self-duality functions, d and D, are in a relation

via a scalar product with a third function F , then, assuming d to be a basis for L2(Ω, µ), F

must also be a self-duality function.

Proposition 1.4 (Basis and self-duality). Assume that {n 7→ d(x, n) | x ∈ Ω} is a basis of

self-duality functions for L2(Ω, µ) where µ is a reversible measure for the generator L. Let

F = F (z, n) be a function on Ω× Ω and define D by

D(x, n) := 〈d(·, x), F (·, n)〉µ .

If D is self-duality function, so is F .

Proof. Using the short notation we have that

LxD(x, n) = 〈Lxd(·, x), F (·, n)〉µ =
∑
z∈Ω

d(z, x)LzF (z, n)µ(z)

where we used that d is self-duality and that L is self-adjoint with respect to µ. On the other

hand, since D is self-duality the above quantity must be equal to

LnD(x, n) = 〈d(·, x), LnF (·, n)〉µ =
∑
z∈Ω

d(z, x)LnF (z, n)µ(z) .

From the identity LxD(x, n) = LnD(x, n), we have∑
z∈Ω

d(z, x) [LzF (z, n)− LnF (z, n)]µ(z) = 0

and since d is a basis for L2(Ω, µ), necessarily LzF (z, n) − LnF (z, n) = 0, i.e. F is also a

self-duality function for L.
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How does the orthogonal property play a role? Of course not all self-duality functions built

with this scalar product method turn out to be orthogonal. However, there is a sort of stability

with respect to orthogonality property in the scalar product construction. More precisely, if

we start with two different biorthogonal self-duality functions the scalar product construction

yields novel biorthogonal self-duality functions that may happen to be equal and therefore

orthogonal.

To state the next proposition, we will need the following result: if µ is a reversible measure

for a Markov process with generator L, then
δx,y
µ(x) is a self-duality function (this is rigorously

shown in Lemma 5.1).

Proposition 1.5 (Biorthogonal self-duality functions). Define D and D̃ by

D(x, n) = 〈d(x, ·), d̃(·, n)〉µ D̃(x, n) = 〈d̃(x, ·), d(·, n)〉µ.

where both {d(x,m) : m ∈ N} and
{
d̃(x,m) : m ∈ N

}
are basis for L2(Ω, µ) for µ. Suppose d

is self-duality function for a Markov process with reversible measure µ, such that

〈d(·, n), d̃(·,m)〉µ =
δn,m
µ(n)

.

Then D and D̃ are biorthogonal self-duality functions, i.e.

〈D(·,m), D̃(·, n)〉µ =
δm,n
µ(m)

.

In particular, if D = D̃ we have the orthogonality relations for D.

Proof. From Proposition 1.4, since d and
δn,m
µ(n)

are self-duality functions, we have that d̃ is

also a self-duality function. From Proposition 1.2 we have that both D and D̃ are self-duality

functions since scalar product of self-dualities. Assuming now we can interchange the order of

summation:

〈D(·,m), D̃(·, n)〉µ =
∑
x

D(x,m)D̃(x, n)µ(x)

=
∑
x

(∑
y

d(x, y)d̃(y,m)µ(y)

)(∑
z

d̃(x, z)d(z, n)µ(z)

)
µ(x)

=
∑
y,z

d̃(y,m)d(z, n)µ(y)µ(z)
∑
x

d(x, y)d̃(x, z)µ(x)

=
∑
y,z

µ(y)µ(z)d̃(y,m)d(z, n)
δy,z
µ(y)

=
∑
y

d̃(y,m)d(y, n)µ(y) =
δm,n
µ(m)

.
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We will see later on (Chapters 6 and 7) how to use this constructive approach to find

orthogonal (self-)duality functions. Indeed, the fact that these new functions turn out to be

orthogonal is not an immediate consequence of these propositions. It is something that has to

be checked separately.

A last remark before closing this section. The scalar product method described in the

propositions above could be useful to characterize the set of duality functions. This question

was first asked in [53] where it was defined the concept of duality space, i.e. the subspace of

all measurable functions on the configuration product space of two Markov processes for which

the duality relation holds. In [53] the dimension of this space is computed for some simple

systems and, as far as we know, a general answer is not available in the general case.

1.5 Simple examples of duality

We start by showing some examples and applications of duality. The first three examples will

regard one of the oldest relation of duality, the well known Siegmund duality [62], which has

the following duality function

D(x, y) = 1x≤y .

This function turns out to be a duality function between reflected and absorbed random walk

as well as reflected and absorbed Brownian motions. We first consider a continuous time

random walk on the integers, here the stochastic duality relation can easily be proved in matrix

notation. As an application, we will then use duality to characterize the stationary measure of

the dual process. We then consider the analogous example on a discrete time setting, where

the transition rate matrix is replaced by the transition matrix, which describes the probability

of the transitions of the Markov chain. The same considerations about the stationary measure

of the dual process can be done here. We then show Siegmund duality for Brownian motion,

which was first observed by Lévy in 1948 [49].

Example 1.2 (Continuous time random walk). This example of duality can easily be checked

via the duality relation in matrix notation in the sense of equation (1.11) Let X = (Xt)t≥0 be

the random walk with state space in N0 = {0, 1, . . .} initialized as X0 = x that hops to the

right with rate p and to the left with rate q := 1 − p. The site 0 is an absorption barrier, in

the sense that once in zero the random walker stays there forever. This example of duality can

easily be checked via the duality relation in matrix notation in the sense of equation (1.11).

The generator of X can be written in the form of the following stochastic matrix

Labs =


0 0 0 0 · · ·
q −1 p 0 · · ·
0 q −1 p · · ·
0 0 q −1 · · ·

. . .

 . (1.20)
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Its dual is still a random walk Y = (Yt)t≥0 initialized in Y0 = y, with the same state space and

reversed jump rates, i.e. it jumps to the right with rate q and to the left with rate p. Site 0 is

a reflecting barrier, in the sense that, once in zero, the random walk is reflected with rate q to

the site on the right. The rate matrix of Y is

Lrefl =


−q q 0 0 · · ·
p −1 q 0 · · ·
0 p −1 q · · ·
0 0 p −1 · · ·

. . .

 (1.21)

Remark 1.4. The birth (resp. death) rates of the original process become the death (resp.

birth) rates of the dual process, in term of element of matrices this is

Labs(n, n+ 1) =Lrefl(n+ 1, n) = p for n ≥ 1

Labs(n+ 1, n) =Lrefl(n, n+ 1) = q for n ≥ 0 .

The Siegmund duality function D(x, y) = 1x≤y can be written in matrix notation as an

upper triangular matrix D with all the non-zero elements equal to 1.

D =


1 1 1 · · ·
0 1 1 · · ·
0 0 1 · · ·

. . .

 (1.22)

Indeed, a simple calculation shows that a duality between stochastic matrices Labs and Lrefl

with duality matrix in equation (1.22) holds as in (1.11), i.e.

LabsD = D
(
Lrefl

)T
since both sides are equal to 

0 0 0 0 · · ·
q −p 0 0 · · ·
0 q −p 0 · · ·
0 0 q −p · · ·

. . .

 (1.23)

We now show a simple application of duality. Given that X and Y are dual with Siegmund

duality function in equation (1.22), then the duality relation in Definition 1.3 becomes

Px(Xt ≤ y) = Py(Yt ≥ x) . (1.24)
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Suppose we want to characterize the stationary distribution of Y , i.e. we look for Py(Y∞ <

x) = limt→∞ Py(Yt < x). Assuming that p > q and using duality one finds

Py(Y∞ ≥ x) = Px(X∞ ≤ y) =

(
q

p

)x
. (1.25)

The second identity can easily be found working with the absorbed random walker X. In the

limit t → ∞, X is either absorbed in zero or it goes to infinity, so the event {X∞ ≤ y} is the

same as {X∞ = 0} whose probability can be calculated conditioning on the first step. Indeed,

let ux := P(X∞ = 0 | X0 = x), then conditioning on the first step gives the difference equation

ux = ux+1p+ ux−1q ,

which is solved by ux = A1 + A2

(
q
p

)x
. To find the constant we use the boundary conditions:

the probability of being absorbed in zero, starting from zero is 1, i.e. u0 = 1, which says that

A1 + A2 = 1. On the other hand in order to u∞ = 0 we get that, for p > q it has to be

verified that A1 = 0, while for p < q it has to be that A2 = 0. And so it is now justified that

Px(X∞ ≤ y) =

(
q

p

)x
.

This one line computation in equation (1.25) shows that the stationary distribution of a

reflected random walk Y is a geometric distribution, Y∞ ∼ Geo
(
p−q
p

)
.

Example 1.3 (Discrete time random walk). This example, which can be found in details

in [53], shows that the considerations above are also true for two discrete time random walks,

one with absorbing barrier and the other with a reflecting barrier. Using the fact that the two

transition matrices, P abs and P refl, can be found from the rate matrices Labs and Lrefl adding

the identity matrix Id, then one can easily verify the notion of duality in matrix notation as a

consequence of the matrix duality of the previous example. To be more explicit, the transition

matrix of the absorbed random walk is

P abs = Labs + Id =


1 0 0 0 · · ·
q 0 p 0 · · ·
0 q 0 p · · ·
0 0 q 0 · · ·

. . .

 , (1.26)

while the transition matrix of the reflected random walk is

P refl = Lrefl + Id =


p q 0 0 · · ·
p 0 q 0 · · ·
0 p 0 q · · ·
0 0 p 0 · · ·

. . .

 . (1.27)



20 Chapter 1 Stochastic duality

Indeed, one can easily check that

P absD = D(P refl)T ,

where D is the Siegmund duality matrix in (1.22). In the same way as in the previous example

one can easily characterized the stationary distribution of the reflected random walk via duality.

In [53] it is shown the case for two barriers, with finite state spaces Ω = Ωdual = [0, 1, . . . , N ]

where site N is an absorbing barrier for the reflected random walk X while it is a reflecting

barrier for the absorbed random walk Y .

Example 1.4 (Absorbed/Reflected Brownian motion). The last Siegmund duality example we

show has appeared in many different contexts such as queuing theory [3, 51], birth and death

processes [39], interacting particle systems [21] and time reversal, by exchanging the entrance

and exit laws for Markov processes [25]. It provides a duality relation between Brownian motion

reflected at 0 and Brownian motion absorbed at 0 via the Siegmund duality function. In this

setting Ω = Ωdual = [0,∞) and D(x, y) = 1x≤y. (Xt)t≥0 is a Brownian motion started in x > 0

and reflected at 0 while (Yt)t≥0 is a Brownian motion started in y > 0 and absorbed in 0, i.e.

Xt = |x+Bt| and Yt =

{
y + B̃t if t < τ0

0 if t ≥ τ0

where Bt and B̃t are two independent standard Brownian motions and τ0 = inf {t ≥ 0 : Yt = 0}
denotes the first time Yt hits zero. With duality function D(x, y) = 1x≤y equation (1.6) becomes

Px(Xt ≤ y) = Py(Yt ≥ x) . (1.28)

The duality relation (1.28) can be proved as follows. Consider first the left-hand side:

Px(Xt ≤ y) = P(|x+Bt| ≤ y) = P(Bt ≤ y − x)− P(Bt ≤ −y − x) .

On the other hand, for the absorbed Brownian motion one has

Py(Yt ≥ x) = P(B̃t ≥ x− y,min
s≤t

B̃s ≥ −y) =

P(B̃t ≥ x− y)− P(B̃t ≥ x− y,min
s≤t

B̃s ≤ −y) =

P(B̃t ≥ x− y)− P(B̃t ≥ x− y | min
s≤t

B̃s ≤ −y)P(min
s≤t

B̃s ≤ −y) =

P(B̃t ≥ x− y)− P(B̃t ≤ −x− y | min
s≤t

B̃s ≤ −y)P(min
s≤t

B̃s ≤ −y) =

P(B̃t ≥ x− y)− P(B̃t ≤ −x− y,min
s≤t

B̃s ≤ −y) =

P(B̃t ≥ x− y)− P(B̃t ≤ −x− y)
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where the third equality follows from the fact that {mins≤t B̃s ≤ −y} is equivalent to {t > τ0}
and by the reflection principle of Brownian motion, the probability that B̃t is above x − y

when t ≥ τ0 is just likely as to be below x + y. By symmetry of the normal distribution

P(Bt ≥ x− y) = P(B̃t ≤ y − x) and so equality in (1.28) is achieved.

Another classical duality function is the so called moment duality,

D(x, y) = xy .

If x ∈ [0, 1] and y ∈ N using the duality relation in equation (1.6) it is possible to recover all

the moments of Xt.

Example 1.5 (Wright-Fisher diffusion and Kingman coalescent). Consider the Wright-Fisher

diffusion process X = (Xt)t≥0 on Ω = [0, 1] with generator

(
LWF f

)
(x) =

x(x− 1)

2

d2

dx2
f(x) . (1.29)

X can be interpreted as the proportion of allele A in an infinite population of two alleles, ( type

A and a) that evolves under a “genetic drift ”. Sites 0 and 1 are absorbing states, meaning

that only one type will survive. It can be found starting from a Wright-Fisher process after

considering an appropriate diffusive time-space rescaling. Its dual is a block counting process

of Kingman coalescent type Y = (Yt)t≥0, which is a pure death process on N where transitions

from y to y − 1 occur with coalescent rate
(
y
2

)
, i.e. the probability of choosing two individuals

out of y. The generator of the dual process is thus

(
LKf

)
(y) =

y(y − 1)

2
[f(y − 1)− f(y)] . (1.30)

Note that by definition of Y , limt→∞ Yt = 1. It is easy to verify the generator duality in equation

(1.8), i.e.
(
LWFD(·, n)

)
(x) =

(
LKD(x, ·)

)
(n) for the moment duality function D(x, n) = xn.

Duality here can be used to calculate the probability that allele A survives or heterozygosity,

which is the probability that, choosing at random two individuals at time t ≥ 0, they are of

different type. Duality between the two processes reads

Ex(Xy
t ) = Ey(xYt) . (1.31)

Then, setting y = 1 the expected value of the Wright-Fisher is

Ex(Xt) = E1(xYt) = x

where the first equality is due to duality while the second one, follows from the fact that the

process Y is initialized in 1. By taking the limit of infinite time, we find

Px(X∞ = 1) = lim
t→∞

Ex(Xt) = x
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showing that the probability that type a goes extinct equals the initial fraction of type A in

the population. For y = 2, the second moment of X is

Ex(X2
t ) = E2(xYt) = x2P2(Yt = 2) + xP2(Yt = 1) = x2e−t + x(1− e−t) .

where the last equality follows from the fact that the transition from 2 to 1 take an exponential

time of parameter 1, (see also [27], for rigorous proof).

With these results we can easily compute the expectation of Xt(1 − Xt), which is the

heterozygosity of the biallelic Wright-Fisher model.

Ex (Xt(1−Xt)) = x− (x2e−t + x(1− e−t)) = (1− x)xe−t .

As expected in the limit t → ∞ heterozygosity converges to zero, i.e. all individuals will be

either of type A or type a.

We will come back to this example in Chapter 5 and we will show how this duality can be

understood as a change of representation of a Lie algebra.

Example 1.6. As last example we also recall that in the literature it exists the notion of

Laplace duality, where the duality function takes the form D(x, y) = eλxy for some λ ∈ R and

Ω = Ωdual ⊂ R. We will discuss this example in detail in Section 5.3 where we use the change

of representation technique to show that the Brownian motion initialized in x is dual to the

multiplication with ety
2/2 and then to evaluate the generating function of the Brownian motion

without any calculations.



Chapter 2

Models of interest

2.1 Preliminaries

The processes that we consider include interacting particle systems (exclusion process, inclusion

process and independent random walkers process) where the quantity of interest is discrete,

i.e. the number of particles, as well as interacting diffusions (Brownian momentum process,

Brownian energy process) where continuous quantities (having the meaning of velocities or

energy) are studied. We also consider redistribution models that are obtained from the previous

one via a thermalization limit (e.g. Kipnis-Marchioro-Presutti processes). Each process is

described via its generator, so for the sake of completeness we briefly recall the standard

form of the generator of a jump process (with discontinuous trajectories and exponential time

between jumps) and the generator of a diffusion (with continuous trajectories). Recall that

a stationary distribution (also called invariant law) for a process is a probability distribution

that remains unchanged as time progresses.

Definition 2.1 (Stationary mesure). Let (Xt)t≥0 be a Markov process on the space Ω. A

stationary measure for (Xt)t≥0 is a probability measure µ on Ω such that if X0 has distribution

µ, then for all t ≥ 0, Xt has distribution µ.

2.1.1 Generator of jump processes

The generator of a Markov jump process X = (Xt)t≥0 with a countable state space Ω has the

form

(Lf) (x) =
∑
y∈Ω

c(x, y) [f(y)− f(x)]

where c(x, y) ≥ 0 is the transition rate from configuration x to configuration y. Equivalently

we can write

(Lf) (x) =
∑
y∈Ω

L(x, y)f(y)

23



24 Chapter 2 Models of interest

where L(x, y) is a matrix such that

L(x, y) = c(x, y) ≥ 0 (2.1)

L(x, x) = −
∑
y 6=x

L(x, y) ≤ 0 . (2.2)

as a consequence
∑

y L(x, y) = 0. In the context of Chapter 1.2, let µ be a probability measure

on Ω and St the semigroup associated to L as in Theorems 1.1 and 1.2, then µt := µSt is the

law of the process at time t which satisfies the forward equation in (1.5), i.e.

d

dt
µt = µtL

which can also be written as
d

dt
St = StL .

In this context a stationary measure, in the sense of Definition 2.1, can be defined as follows.

Definition 2.2 (Stationary measure). A probability measure µ is a stationary measure if

µ = µSt for t ≥ 0 (2.3)

or equivalentely, if

µL = 0 . (2.4)

Definition 2.3 (Reversible measure). A probability measure µ is reversible if the detailed

balance equations

µ(x)L(x, y) = µ(y)L(y, x) for x 6= y ∈ Ω (2.5)

are satisfied. In other words, the generator L is self-adjoint in L2(Ω, µ).

Remark 2.1 (Reversibility implies invariance). It is easy to show that a reversible measure is

always invariant. Indeed using equations in (2.1),∑
x∈Ω

µ(x)L(x, y) =
∑
x 6=y

µ(x)L(x, y) + µ(y)L(y, y)

=
∑
x 6=y

µ(x)L(x, y) + µ(y)

−∑
x 6=y

L(y, x)


=
∑
x 6=y

µ(x)L(x, y)− µ(y)L(y, x)

= 0 .
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2.1.2 Generators of Markov diffusions

The generator of a diffusion process X = (Xt)t ≥ 0 with state space Ω = RN takes the form of

a differential operator of the second order

(Lf) (x) =

N∑
i,j=1

a(xi, xj)
∂2

∂xi∂xj
f(x) +

N∑
i=1

b(xi)
∂

∂xi
f(x) (2.6)

where the function f is twice differentiable, a is a symmetric matrix on RN , called diffusion

matrix and b is a vector on RN called the drift field. The diffusion matrix must be positive

definite, i.e. for all x ∈ RN , ∑
i,j

aij(x)ξiξj > 0 for all ξ ∈ RN .

We further assume that the law of the process (Xt)t≥0 is absolutely continuous w.r.t the

Lebesgue measure and we call pt(x, y) the probability density for the transition from x to

y in a time t.

Example 2.1. The canonical example of a (one-dimensional) diffusion is the Brownian motion

{Wt}t≥0, whose generator is

LBMP f(x) =
1

2

d2f

dx2
(x) .

It has transition density function

p(t, x, y) =
1√
2πt

e−
(x−y)2

2t ,

which allows to evaluated the probability that the Brownian motion started at x belongs to

the set A ⊆ R:

Px(Wt ∈ A) =

∫
A

1√
2πt

e−
(x−y)2

2t dy .

Remark 2.2. There is a deep connection between the process with generator L in equation

(2.6) and stochastic differential equations (SDE): the process (Xt)t≥0 is the solution of the

following SDE

dXt = b(Xt)dt+ a(Xt)dWt .

Consider Definition 2.1 of a stationary measure. In this context it reads

d

dt

∫
Ω
Ex[f(Xt)]µ(dx) = 0 for all f .

Evaluating the time derivative at t = 0, in virtue of equation (1.2) we have∫
Ω
Lf(x)µ(dx) = 0 for all f . (2.7)
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Equivalently, from the absolute continuity of µ one has µ(dx) = p(x)dx, then µ is stationary if

L∗p = 0 (2.8)

where L∗ denotes the adjoint of L in L2(Ω, dx). The analogue of the detailed balance equation

in (2.5) for a one-dimensional diffusion is

µ(x)pt(x, y) = µ(y)pt(y, x) for all x, y ∈ Ω and t ≥ 0 .

Now multiplying by arbitrary functions f(x) and g(y) in the domain of the diffusion generator

we obtain∫
µ(x)f(x)

(∫
p(t, x, y)g(y)dy

)
dx =

∫
µ(y)g(y)

(∫
p(t, y, x)f(x)dx

)
dy

observing that the inner integrals are

Ex[g(Xt)] and Ey[f(Xt)]

and differentiating with respect to t at t = 0 to obtain∫
f(x) (Lg(x))µ(x)dx =

∫
(Lf(y)) g(y)µ(y)dy . (2.9)

Definition 2.4 (Reversible stationary distribution). If equation (2.9) is satisfied for all func-

tions f and g, then µ is called a reversible stationary distribution and we say that the diffusion

with generator L is reversible with respect to µ.

An equivalent way would be to say that L is self-adjoint with respect to µ, i.e.

〈f, Lg〉 = 〈Lf, g〉µ .

2.2 The Symmetric Exclusion Process, SEP(j)

The Symmetric Exclusion Processes (SEP) are a family of interacting particles processes on

a generic graph, labeled by the parameter j ∈ N/2. On the undirected and connected graph

G = (V,E) with |V | = N sites (vertices) and edge set E, each site can have at most 2j

particles, and jumps only occur when an edge exists between two sites. Jumps occur (in both

edge directions) at rate proportional to the number of particles in the departure site times the

number of holes in the arrival site. Usually in the literature the name Exclusion Process is

referred to the case with parameter j = 1/2 (the case with hard core exclusion, i.e. each site

can host at most one particle), whereas the generic case j ∈ N/2 is named Partial Exclusion

Process [60]; we shall not make in this thesis such a distinction, we will just use the name

Exclusion process in a broad sense. The state space of the process is thus Ω = {0, 1, . . . , 2j}N .
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A particle configuration is denoted by x = (xi)i∈V where xi ∈ {0, . . . , 2j} is interpreted as the

number of particles at sites i. The process generator reads

LSEP (j)f(x) =
∑

1≤i<l≤N
(i,l)∈E

xi(2j − xl)
[
f(xi,l)− f(x)

]
+ (2j − xi)xl

[
f(xl,i)− f(x)

]
(2.10)

where f : {0, 1, . . . , 2j}N → R is a function in the domain of the generator and xi,l denotes the

particle configuration obtained from the configuration x by moving one particle from site i to

site l:

xi,lk =


xk if k 6= {i, l}
xi − 1 if k = i

xl + 1 if k = l

.

The following picture shows the dynamics of the SEP(j) on an N sites chain. By definition the

Figure 2.1: SEP dynamic

Exclusion process dynamics conserves the total number of particles.

Lemma 2.1 (Binomials are reversible measure of SEP). The reversible stationary measures

µSEPp are given by homogeneous product measures with marginals Binomial distributions with

parameters 2j > 0 and p ∈ (0, 1). In essential,

µSEPp (x) =
∏
k∈V

ρSEPp (xk) ,

where the marginal is

ρSEPp (x) =

(
2j

x

)
px(1− p)2j−x , x ∈ {0, 1, . . . , 2j} . (2.11)

Proof. We need to show that µSEPp satisfies the detailed balance equations in (2.5). Suppose,

for example, a particle jumps from site i to site l with (i, l) ∈ E and the rest of the configuration

doesn’t change, then the detailed balance for 1 ≤ xi ≤ 2j and 0 ≤ xl ≤ 2j − 1 reads

xi(2j − xl)ρ(xi)ρ(x2) = (xl + 1)(2j − xi + 1)ρ(xi − 1)ρ(xl + 1) .
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Separating xi and xl, we get

xiρ(xi)

(2j − xi + 1)ρ(xi − 1)
=

(xl + 1)ρ(xl + 1)

(2j − xl)ρ(xl)
.

These set of equations is solved by

(x+ 1)ρ(x+ 1)

(2j − x)ρ(x)
= c , c > 0

so we have the recursion relation

ρ(x+ 1) = c
2j − x
x+ 1

ρ(x) . (2.12)

Iteration of Equation (2.12) leads to

ρ(x) = cx
2j!

x!(2j − x)!
ρ(0)

which we impose to be a probability measure, i.e. with total mass 1

2j∑
x=0

ρ(x) = 1

and so we find the normalization ρ(0) = 1
(1+c)2j

. By changing the parametrization of c in such

a way that

c =
p

1− p
one gets the usual binomial distribution of parameter 2j and 0 < p < 1 in (2.11).

2.3 The Symmetric Inclusion Process, SIP(k)

The Symmetric Inclusion Processes (SIP) are a family of Markov jump processes (labeled by a

parameter k > 0) which can be defined in the same setting of before, a generic graphG = (V,E).

In this case the state space is unbounded so that each site can host an arbitrary number of

particles, i.e. Ω = N|V |. Jumps occur at rate proportional to the number of particles in the

departure and the arrival sites, as the generator describes:

LSIP (k)f(x) =
∑

1≤i<l≤N
(i,l)∈E

xi(2k + xl)
[
f(xi,l)− f(x)

]
+ xl(2k + xi)

[
f(xl,i)− f(x)

]
. (2.13)

From the expression of the generator it is immediate to see that the dynamics conserves the

total number of particles. Moreover, because of the space homogeneity, the stationary reversible

measure is given in product form, as the next lemma shows.
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Lemma 2.2 (Negative binomials are reversible measures of SIP). The reversible invariant

measures µSIPp are given by the homogeneous product measures with marginals given by identical

Negative Binomial distributions with parameters 2k > 0 and 0 < p < 1. In formula,

µSIPp (x) =
∏
k∈V

ρSIPp (xk) ,

where

ρSIPp (x) =
Γ(2k + x)

Γ(2k)x!
px(1− p)2k , x ∈ {0, 1, . . .} . (2.14)

Proof. We need to show that µSIPp satisfies the detailed balance equations in (2.5). Again

suppose there is a jump from site i to site l with (i, l) ∈ E and the rest of the configuration

doesn’t change, then the detailed balance equations reads

xi(2k + xl)ρ(xi)ρ(xl) = (xl + 1)(2k + xl − 1)ρ(xi − 1)ρ(xl + 1) .

Separating xi and xl, we get

xiρ(xi)

(2k + xi − 1)ρ(xi − 1)
=

(xl + 1)ρ(xl + 1)

(2k + xl)ρ(xl)

that is solved by

ρ(x+ 1) = c
2k + x

x+ 1
ρ(x) for c > 0 . (2.15)

Iteration of equation (2.15) leads to

ρ(x) = cx
Γ(2k + x)

Γ(x)x!
ρ(0)

which we impose to be a probability measure. The series
∑∞

x=0 ρ(x) converges for |c| < 1 and

in particular, requiring
∞∑
x=0

ρ(x) = 1

we find the constant ρ(0) = (1 − c)2k. Calling c = p with 0 < p < 1 we find the negative

binomial distribution of parameter 2k and p of equation (2.14).

2.4 The Independent Random Walk, IRW

The Independent Random Walkers (IRW) is one of the simplest, yet non-trivial particle sys-

tems studied in the literature. It consists of independent particles that perform a symmetric

continuous time random walk at rate 1 on the undirected connected graph G = (V,E) with

state space Ω = N|V |. The generator is given by

LIRW f(x) =
∑

1≤i<l≤N
(i,l)∈E

xi

[
f(xi,l)− f(x)

]
+ xl

[
f(xl,i)− f(x)

]
. (2.16)
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From the expression of the generator it is immediate to see that the total number of particles is

conserved. Detailed balance is satisfied by a product measure with marginals given by Poisson

distributions.

Lemma 2.3 (Poisson are reversible measures for IRW). The reversible invariant measures

µIRW are given by the homogeneous product measures with marginals given by identical Poisson

distributions with parameter λ > 0, i.e.

µIRW (x) =
∏
k∈V

ρIRW (xk)

where

ρIRW (x) =
e−λλx

x!
, x ∈ N0 . (2.17)

Proof. We need to show that µIRW satisfies the detailed balance equations in (2.5). Again

suppose there is a jump from site i to site l with (i, l) ∈ E, then the detailed balance for xi ≥ 1

and 0 ≤ xl reads

xiρ(xi)ρ(xl) = (xl + 1)ρ(xi − 1)ρ(xl + 1) .

Separating xi and xl, we get

xiρ(xi)

ρ(xi − 1)
=

(xl + 1)ρ(xl + 1)

ρ(xl)

we have that

ρ(x+ 1) = c
ρ(x)

x+ 1
for c > 0 . (2.18)

Iteration of equation (2.18) leads to

ρ(x) = cx
ρ(x)

x!

which we impose to be a probability measure, so that the total mass function is 1

∞∑
x=0

ρ(x) = 1

and so, by convergence of the above series, we find the constant ρ(0) = e−c. Letting c = λ, we

find the Poisson distribution of parameter λ > 0.

2.5 The Brownian Momentum Proces, BMP

The Brownian Momentum Process (BMP) is a Markov diffusion process introduced in [30].

On the undirected connected graph G = (V,E) with N vertices and edge set E, the generator

reads

LBMP f(x) =
∑

1≤i<l≤N
(i,l)∈E

(
xi
∂f

∂xl
(x)− xl

∂f

∂xi
(x)

)2

(2.19)
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where f : RN → R is a function in the domain of the generator. A configuration is denoted

by x = (xi)i∈V where xi ∈ R has to be interpreted as a particle momentum (or velocity if the

mass is set to one). A peculiarity of this process regards its conservation law: if the process

is started from the configuration x then ||x||22 =
∑N

i=1 x
2
i is constant during the evolution, i.e.

the total kinetic energy is conserved.

Lemma 2.4 (Normal distribution is reversible for BMP). The stationary reversible measures of

the BMP process are given by a family of product measures with marginals given by independent

centered Gaussian random variables with variance σ2 > 0.

Proof. Consider the definition of stationary distribution for a diffusion in equation (2.8). As-

suming that the stationary distribution is factorized and absolutely continuous, i.e. µ(dx, dy) =

p(x)p(y)dxdy and using the expression of the generator, which is self-adjoint in L2(RN , dx), then

we are looking for functions that solves (see equation (2.8))

(x∂y − y∂x)2p(x)p(y) = 0

and since the right hand side must be equal to zero, we neglect the square on the left hand side

and we find that

p′(x)

xp(x)
=
p′(y)

yp(y)
.

This is solved by
p′(x)

xp(x)
= c ,

integrating both sides ∫ y

0

p′(x)

p(x)
dx =

∫ y

0
cxdx

log
p(y)

p(0)
= c

y2

2

p(y) = p(0)ec
y2

2 .

Imposing that p is a probability density, i.e. total area must be 1 then we find p(0) =
1√

2πσ2

and c = − 1

σ2
.

The BMP invariant measure is product of Gaussian distributions of mean 0 and free vari-

ance, which can always be fixed without loss of generality. Indeed, from now on we assume

σ2 = 1. To show that µ(dx, dy) =
1

2π
e−

x2+y2

2 dxdy is also a reversible distribution we would

have to check equation (2.9). The easiest way to do this is to show that the BMP generator
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is self-adjoint with respect to L2(RN , µ(dx, dy)). LBMP is a combination of multiplication and

derivative and so we start by finding their adjoint, clearly∫
f(x, y)(xg(x, y))

1

2π
e−

x2+y2

2 dxdy =

∫
(xf(x, y))g(x, y)

1

2π
e−

x2+y2

2 dxdy ,

meaning that x is self-adjoint, x∗ = x. For the derivative, using integration by parts∫
f(x, y) (∂xg(x, y))

1

2π
e−

x2+y2

2 dxdy = −
∫
∂x

(
f(x, y)e−

x2

2

)
g(x, y)

e−
y2

2

2π
dxdy =

−
∫

(∂xf(x, y)) g(x, y)
1

2π
e−

x2+y2

2 dxdy +

∫
f(x, y)xg(x, y)

1

2π
e−

x2+y2

2 dxdy ,

meaning that ∂∗x = −∂x + x. We can now find the adjoint of LBMP , i.e.(
LBMP

)∗
= (x∂y − y∂x)∗ (x∂y − y∂x)∗

=
(
∂∗yx

∗ − ∂∗xy∗
) (
∂∗yx

∗ − ∂∗xy∗
)

= ((−∂y + y)x− (−∂x + x)y) ((−∂y + y)x− (−∂x + x)y)

= (−x∂y + y∂x) (−x∂y + y∂x) = LBMP .

Showing that the BMP generator is self-adjoint in L2(RN , µ) means that the BMP process is

reversible with respect to µ.

2.6 The Brownian Energy Process, BEP(k)

We now introduce a process, known as Brownian Energy Process with parameter k, BEP(k)

in short notation, whose generator is

LBEP (k)f(z) =
∑

1≤i<l≤N
(i,l)∈E

[
zizl

(
∂

∂zi
f(z)− ∂

∂zl
f(z)

)2

− 2k(zi − zl)
(
∂

∂zi
f(z)− ∂

∂zl
f(z)

)]
,

(2.20)

where f : RN → R is in the domain of the generator and z = (zi)i∈V denotes a configuration

of the process with zi ∈ R+ interpreted as a particle energy. The generator in (2.20) describes

the evolution of a system in which the agents exchange their (kinetic) energies. It is easy to

verify that the total energy of the system
∑

i∈V xi is conserved by the dynamic.

Lemma 2.5 (Gamma distributions are reversible for BEP(k)). The stationary measures of

the BEP(k) process are given by a product of independent Gamma distributions with shape

parameter 2k and scale parameter θ, i.e. with Lebesgue probability mass function

ρBEP (z) =
z2k−1e−

z
θ

Γ(2k)θk
. (2.21)
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Without loss of generality we can set θ = 1.

Proof. Since reversibility implies invariance we only check that factorized Gamma distributions

ρBEP (zi)ρ
BEP (zl) =

z2k−1
i e−zi

Γ(2k)

z2k−1
l e−zl

Γ(2k)

are reversible measures. As before, we check that LBEP (k) =
(
LBEP (k)

)∗
where ∗ denotes the

adjoint with respect to L2(RN+ , ρBEP ). Clearly the multiblication by zi is self-adjoint, (zi)
∗ = zi

while for the derivative, integration by parts leads to∫
f(zi, zl) (∂zig(zi, zl))

z2k−1
i e−zi

Γ(2k)

z2k−1
l e−zl

Γ(2k)
dzidzl =

−
∫
g(zi, zl)

(
∂zi

z2k−1
i e−zi

Γ(2k)
f(zi, zl)

)
z2k−1
l e−zl

Γ(2k)
dzidzl =

∫ [
−∂zif(zi, zl) + f(zi, zl)−

2k − 1

x
f(zi, zl)

]
g(zi, zl)

z2k−1
i e−zi

Γ(2k)

z2k−1
l e−zl

Γ(2k)
dzidzl

from which we infer that (∂zi)
∗ = −∂zi + 1 − 2k−1

x . A long and straightforward computation

shows that
(
LBEP (k)

)∗
= LBEP (k).

Remark 2.3. In [32] it was shown that the BEP(k) can be obtained from the BMP process

once 4k ∈ N vertical copies of the graph G are introduced. Under these circumstances denoting

by zi,α the momentum of the ith particle at the αth level, the kinetic energy per (vertical) site

is

zi =

4k∑
α=1

x2
i,α . (2.22)

If we use the above change of variable in the generator of such BMP process on the ladder

graph with 4k layers, the generator of the BEP(k) is revealed. In particular, setting

zi = x2
i (2.23)

which implies

∂zi =
1

2xi
∂xi (2.24)

∂2
zi = − 1

4x2
i

∂xi +
1

4x2
i

∂2
xi (2.25)

one finds the BMP generator LBMP in (2.19) from the BEP generator LBEP (k) in (2.20) with

k = 1/4.
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2.7 The Kipnis-Marchioro-Presutti Process, KMP(k)

Before defining the process of this Section, we will introduce the concept of instantaneous

thermalization limit of a process. An instantaneous thermalization regards a bond selected

at random, where the quantity of interest (either the energy or the number of particles) is

redistributed between the two sites according to the stationary measure of the original process

at equilibrium on that bond, conditioning on the total amount of that quantity. More explicitly,

we have that if L is the generator of the original process, then we defined the thermalized

generator Lth as

(Lthf)(x) = lim
t→∞

(
etL − 1

)
f(x) = lim

t→∞
Exf(Xt)− f(x) . (2.26)

We now explain how a family of Kipnis-Marchioro-Presutti processes rises from a family of

Brownian energy processes. The classical Kipnis-Marchioro-Presutti process (KMP) was first

introduced by Kipnis, Marchioro and Presutti [41] in 1982 as a model of heat conduction that

was solved by using a dual process. It is a stochastic model where a continuous non-negative

variable (interpreted as energy) is uniformly redistributed among two sites on a lattice. A gen-

eral version with parameter k, that we shall call KMP(k) was defined in [14], by considering a

redistribution rule where a fraction p of the total energy is assigned to one particle and the re-

maining fraction (1−p) to the other particle, with p a Beta(2k, 2k) distributed random variable.

Thus the case k = 1/2 corresponds to the original KMP model, with uniform redistribution

between two sites.

In the KMP(k) model, the redistribution of xi+xl, on a bond (i, l) is done according to the

stationary measure conditioned to the conservation of the total energy of the bond. If the two

independent random variables Xi and Xl are distributed as Gamma with parameters 2k and θ,

then the density function of one of them, say Xi, given that their sum is constant, Xi+Xl = E

is

fXi|E(xi|E) =
fXi(xi)fXl(E − xi)∫
R fXi(v)fXl(E − v)dv

=
x2k−1
i (E − xi)2k−1∫

R v
2k−1(E − v)2k−1dv

,

or equivalently, the random variable p =
Xi

Xi +Xl
is distributed as a Beta of parameters

(2k,2k). In [14] it was shown that KMP(k) is in turn related to the Brownian Energy Process

with parameter k, as it can be obtained from the BEP(k) via an instantaneous thermalization

limit as in equation (2.26). On the usual undirected and connected graph G = (V,E) with

|V | = N sites and edge set E , the generator of the KMP(k) process is

LKMP (k)f(x) = (2.27)∑
1≤i<l≤N

(i,l)∈E

∫ 1

0
[f (x1, . . . , xi−1, p(xi + xl), xi+1, . . . , xl−1, (1− p)(xi + xl), . . . , xN )− f (x)] ν2k(p)dp

(2.28)
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where ν2k(p) is the density function of the Beta distribution with parameters (2k, 2k), i.e.

ν2k(p) =
p2k−1(1− p)2k−1Γ(4k)

Γ(2k)Γ(2k)
, p ∈ (0, 1) . (2.29)

Remark 2.4. As a consequence of the instantaneous thermalization, the KMP(k) process

inherited from the BEP(k) process the same stationary and reversible measure. Moreover, as

we will show in the next Chapter, duality and self-duality relations are conserved under this

limit.

It will be useful to have the following conclusive remark regarding the shape of our generators.

Remark 2.5. All the above processes have state space Ω = Ω1 × · · · × ΩN , while the corre-

sponding generators have the form

L =
∑
i<j

Li,j

where Li,j is an operator on F (Ωi × Ωj). This observation is crucial for our purpose, because

it allows us to work with operators acting on functions of two variables, then the result can be

extended to N variables.





Chapter 3

Orthogonal Dualities

3.1 Summary of the results

In this Chapter we prove three self-duality results between particles jump processes and two

duality results between a diffusion and a jump process from which we will infer one last du-

ality relation for processes of Kipnis-Marchioro-Presutti type. In particular, we try as ansatz

for the duality and self-duality functions the hypergeometric polynomials (of continuous and

discrete variables) which are orthogonal with respect to the reversible stationary measures of

the processes introduced in the previous Chapter. It turns out that to have duality one has to

make a (well defined) choice of the norm of these orthogonal polynomials, see also Remark 5.1.

The main idea is to show that the relation of (self-)duality between two generators in

Definition 1.4 is verified using properties of the orthogonal polynomials such as their recurrence

relations, the differential or difference equations as well as a raising operator equality. Once

these relations are available then it is just a matter of (long!) computation to show that the

(self-)duality relations holds.

The orthogonal dualities have been also proved in [56] with a totally different method relying

on generating functions.

The orthogonal polynomials we use are some of those with hypergeometric structure. More

precisely we consider classical orthogonal polynomials, both discrete and continuous, with the

exception of discrete Hahn polynomials and continuous Jacobi polynomials. We will follow the

definitions of orthogonal polynomials given in [42], see also Appendix A for a basic and non

comprehensive theory on discrete and continuous polynomials as well as the definition of hyper-

geometric functions. The added value of linking duality functions to orthogonal polynomials

lies on the fact that they constitute an orthogonal basis of the associated Hilbert space. Often

in applications [13,17,37] some quantity of interest are expressed in terms of duality functions,

for instance the current in interacting particle systems. This is then used in the study of the

asymptotic properties and relevant scaling limits, see [?]. For these reasons it seems reasonable

that having an orthogonal basis of polynomials should be useful in those analysis.

37
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Similar results have been found in [56] with a generating function approach.

3.2 Self-duality results

We consider first self-duality relations for three discrete interacting particle systems. As already

mentioned, in this case the dual process is an independent copy of the original one. Even if the

original process and its dual are the same, a massive simplification occurs, namely the k-point

correlation function of the original process can be expressed by duality in terms of only k dual

particles. Thus a problem for many particles, possibly infinitely many in the infinite volume,

may be studied via a finite number of dual walkers.

3.2.1 Self-duality for SEP(j)

The Symmetric Exclusion Process of parameter j introduced in Section 2.2 has marginal re-

versible measure the Binomial distribution, i.e.

ρSEP (x) =

(
2j

x

)
px(1− p)2j−x , x ∈ {0, 1, . . . , 2j} . (3.1)

The polynomials orthogonal with respect to the Binomial distribution are the Krawtchouk

polynomials Kn(x) with parameter 2j [45]. In other words, they satisfy the orthogonality

relation
2j∑
x=0

Kn(x)Km(x)ρSEP (x) = δn,md
2
n (3.2)

with norm in `2({0, 1, . . . , 2j}, ρSEP ) given by

d2
n =

(2j − n)!n!

(2j)!

(
1− p
p

)n
. (3.3)

Their hypergeometric representation is

Kn(x) = 2F1

(
−n,−x
−2j

∣∣∣∣ 1

p

)
(3.4)

for n = 0, 1, . . . , 2j. Krawtchouk polynomials are polynomial solutions of the finite difference

equation (A.18)

x[Kn(x+ 1)− 2Kn(x) +Kn(x− 1)] +
2jp− x
1− p

[Kn(x+ 1)−Kn(x)] +
n

1− p
Kn(x) = 0 . (3.5)

As a consequence of the orthogonality they satisfy the three term recurrence relation (A.26)

xKn(x) = −p(2j − n)Kn+1(x) + (n+ 2jp− 2np)Kn(x)− (1− p)nKn−1(x) . (3.6)
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Furthermore, the raising operator in (A.31) provides the relation

xKn(x− 1) +
p

1− p
(n+ x− 2j)Kn(x) = −(2j − n)

p

1− p
Kn+1(x) . (3.7)

Next theorem shows how the Krawtchouk polynomials are self-duality functions for the

symmetric exclusion process, the proof of the theorem relies on the structural properties of the

Krawtchouk polynomials.

Theorem 3.1. The SEP(j) with generator (2.10) is a self-dual Markov process with self-duality

function

Dn(x) =
∏
i∈V

Kni(xi) (3.8)

where Kn(x) denotes the Krawtchouk polynomial of degree n defined above.

Proof. We need to verify the self-duality relation in equation (1.9). Since the generator of the

process is a sum of terms acting on two variables only, we shall verify the self-duality relation

for two sites, say 1 and 2. We start by writing the action of the SEP(j) generator working on

the duality function for these two sites:

LSEP (j)Dn1(x1)Dn2(x2) = x1(2j − x2) [Dn1(x1 − 1)Dn2(x2 + 1)−Dn1(x1)Dn2(x2)]

+ (2j − x1)x2 [Dn1(x1 + 1)Dn2(x2 − 1)−Dn1(x1)Dn2(x2)]

(3.9)

rewriting this by factorizing site 1 and 2, i.e.

LSEP (j)Dn1(x1)Dn2(x2) = x1Dn1(x1 − 1)(2j − x2)Dn2(x2 + 1)− x1Dn1(x1)(2j − x2)Dn2(x2)

+ (2j − x1)Dn1(x1 + 1)x2Dn2(x2 − 1)− (2j − x1)Dn1(x1)x2Dn2(x2)

(3.10)

we see that we need an expression for the following terms:

xDn(x) , xDn(x− 1) , (2j − x)Dn(x+ 1) . (3.11)

To get those we first write the difference equation (3.5), the recurrence relation (3.6) and the

raising operator equation (3.7) in terms of Dn(x). Then the first term in (3.11) is simply

obtained from the recurrence relation, whereas the second and third terms are provided by

simple algebraic manipulations of the normalized raising operator equation and the normalized

difference equation respectively. We get

xDn(x) = −p(2j − n)Dn+1(x) + (n+ 2pj − 2pn)Dn(x)− n(1− p)Dn−1(x) (3.12)

xDn(x− 1) = −p(2j − n)Dn+1(x) + p(2j − 2n)Dn(x) + npDn−1(x) (3.13)

(2j − x)Dn(x+ 1) = p(2j − n)Dn+1(x) + (1− p)(2j − 2n)Dn(x)− n

p
(1− p)2Dn−1(x) .

(3.14)
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These expressions can now be inserted into (3.10), which then reads:

LSEP (j)Dn1(x1)Dn2(x2)

= [p(n1 − 2j)Dn1+1(x1) + p(2j − 2n1)Dn1(x1) + pn1Dn1−1(x1)]×[
p(2j − n2)Dn2+1(x2) + (1− p)(2j − 2n2)Dn2(x2)− n2

p
(1− p)2Dn2−1(x2)

]
+ [p(2j − n1)Dn1+1(x1)− (n1 + 2jp− 2pn1)Dn1(x1) + (1− p)n1Dn1−1(x1)]×
[p(2j − n2)Dn2+1(x2)− (n2 + 2pj − 2pn2)Dn2(x2) + n2(1− p)Dn2−1(x2) + 2jDn2(x2)]

+ [p(n2 − 2j)Dn2+1(x2) + p(2j − 2n2)Dn2(x2) + pn2Dn2−1(x2)]×[
p(2j − n1)Dn1+1(x1) + (1− p)(2j − 2n1)Dn1(x1)− n1

p
(1− p)2Dn1−1(x1)

]
+ [p(2j − n2)Dn2+1(x2)− (n2 + 2pj − 2pn2)Dn2(x2) + (1− p)n2Dn2−1(x2)]×
[p(2j − n1)Dn1+1(x1)− (n1 + 2pj − 2pn1)Dn1(x1) + n1(1− p)Dn1−1(x1) + 2jDn1(x1)] .

Working out the algebra, substantial simplifications are revealed in the above expression. A

long but straightforward computation shows that only products of polynomials with degree

n1 + n2 survive. In particular, after simplifications, one is left with

LSEP (j)Dn1(x1)Dn2(x2) = n1(2j − n2) [Dn1−1(x1)Dn2+1(x2)−Dn1(x1)Dn2(x2)]

+ (2j − n1)n2 [Dn1+1(x1)Dn2−1(x2)−Dn1(x1)Dn2(x2)]

and the theorem is proved.

3.2.2 Self-duality for SIP(k)

We introduced in Section 2.3 the symmetric inclusion process with parameter k and with re-

versible measures given by product of identical Negative Binomial distributions with parameters

2k > 0 and 0 < p < 1, i.e.

ρSIP (x) =

(
2k + x− 1

x

)
px(1− p)2k , x ∈ {0, 1, . . .} . (3.15)

The polynomials that are orthogonal with respect to the Negative Binomial distribution are

the Meixner polynomials Mn(x) with parameter 2k, first introduced in [52]. They satisfy the

orthogonal relation
∞∑
x=0

Mn(x)Mm(x)ρSIP (x) = δm,nd
2
n (3.16)

with norm in `2(N0, ρ
SIP ) given by

d2
n =

n!Γ(2k)

pnΓ(2k + n)
(3.17)
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where Γ(x) is the Gamma function. As hypergeoemtric function Mn(x) is

Mn(x) = 2F1

(
−ni,−xi

2k

∣∣∣∣ 1− 1

p

)
. (3.18)

Meixner polynomials are solutions of the difference equation (A.18)

x [Mn(x+ 1)− 2Mn(x) +Mn(x− 1)] + (2kp− x+ xp) [Mn(x+ 1)−Mn(x)] (3.19)

+ n(1− p)Mn(x) = 0 . (3.20)

As consequence of the orthogonality they satisfy the recurrence relation (A.26)

(p− 1)xMn(x) = p(2k + n)Mn+1(x)− (n+ pn+ 2kp)Mn(x) + nMn−1(x) . (3.21)

Furthermore the raising operator in equation (A.31) provides the identity

[p(n+ 2k + x)]Mn(x)− xMn(x− 1) = p(2k + n)Mn+1(x) . (3.22)

In analogy with the result for the Exclusion process it is possible to find a duality function

for the Symmetric Inclusion Process in terms of the Meixner polynomials.

Theorem 3.2. The SIP(k) is a self-dual Markov process with self-duality function

Dn(x) =
∏
i∈V

Mni(xi) (3.23)

where Mn(x) is the Meixner polynomial of degree n.

Proof. As was done for the Exclusion Process we verify the self-duality relation in equation

(1.9) for two sites, say 1 and 2. The action of the SIP (k) generator working on the self-duality

function for two sites is given by

LSIP (k)Dn1(x1)Dn2(x2) = x1(2k + x2) [Dn1(x1 − 1)Dn2(x2 + 1)−Dn1(x1)Dn2(x2)]

+ (2k + x1)x2 [Dn1(x1 + 1)Dn2(x2 − 1)−Dn1(x1)Dn2(x2)] .

(3.24)

We rewrite this by factorizing site 1 and 2, i.e.

LSIP (k)Dn1(x1)Dn2(x2) = x1Dn1(x1 − 1)(2k + x2)Dn2(x2 + 1)− x1Dn1(x1)(2k + x2)Dn2(x2)

+ (2k + x1)Dn1(x1 + 1)x2Dn2(x2 − 1)− (2k + x1)Dn1(x1)x2Dn2(x2)

(3.25)

so that we now need an expression for the following terms:

xDn(x) , xDn(x− 1) , (2k + x)Dn(x+ 1) . (3.26)
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To get those, we first write the difference equation (3.19), the recurrence relation (3.21) and

the raising operator equation (3.22) in terms of Dn(x). Then the first term in (3.26) is simply

obtained from the recurrence relation, whereas the second and third terms are provided by

simple algebraic manipulations of the normalized raising operator equation and the normalized

difference equation. We have,

xDn(x) =
p

p− 1
(2k + n)Dn+1(x)− n+ p(n+ 2k)

p− 1
Dn(x) +

n

p− 1
Dn−1(x)

(3.27)

xDn(x− 1) =
p

p− 1
(2k + n)Dn+1(x)− p

p− 1
(2k + 2n)Dn(x) +

p

p− 1
nDn−1(x)

(3.28)

(2k + x)Dn(x+ 1) =
p

p− 1
(2k + n)Dn+1(x)− 1

p− 1
(2k + 2n)Dn(x) +

1

p− 1
nDn−1(x) .

(3.29)

These relations allow us to expand the SIP(k) generator in equation (3.25) as

LSIPDn1(x1)Dn2(x2)

=

[
p(2k + n1)

p− 1
Dn1+1(x1)− p(2k + 2n1)

p− 1
Dn1(x1) +

pn1

p− 1
Dn1−1(x1)

]
×[

p(2k + n2)

p− 1
Dn2+1(x2)− 2k + 2n2

p− 1
Dn2(x2) +

n2

p− 1
Dn2−1(x2)

]
−
[
p(2k + n1)

p− 1
Dn1+1(x1)− n1 + p(n1 + 2k)

p− 1
Dn1(x1) +

n1

p− 1
Dn1−1(x1)

]
×[

p(2k + n2)

p− 1
Dn2+1(x2)− n2 + p(n2 + 2k)

p− 1
Dn2(x2) +

n2

p− 1
Dn2−1(x2) + 2kDn2(x2)

]
+

[
p(2k + n2)

p− 1
Dn2+1(x2)− p(2k + 2n2)

p− 1
Dn2(x2) +

pn2

p− 1
Dn2−1(x2)

]
×[

p(2k + n1)

p− 1
Dn1+1(x1)− 2k + 2n1

p− 1
Dn1(x1) +

n1

p− 1
Dn1−1(x1)

]
−
[
p(2k + n2)

p− 1
Dn2+1(x2)− n2 + p(n2 + 2k)

p− 1
Dn2(x2) +

n2

p− 1
Dn2−1(x2)

]
×[

p(2k + n1)

p− 1
Dn1+1(x1)− n1 + p(n1 + 2k)

p− 1
Dn1(x1) +

n1

p− 1
Dn1−1(x1) + 2kDn1(x1)

]
.

At this point it is sufficient to notice that the coefficients of products of polynomials with

degree different than n1 + n2 are all zero, so that we are left with

LSIP (k)Dn1(x1)Dn2(x2) = n1(2k + n2) [Dn1−1(x1)Dn2+1(x2)−Dn1(x1)Dn2(x2)]

+ (2k + n1)n2 [Dn1+1(x1)Dn2−1(x2)−Dn1(x1)Dn2(x2)]

and the theorem is proved.
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3.2.3 Self-duality for IRW

Recall the description of the process in Section 2.4, where the reversible measure has Poisson

marginals

ρIRW (x) =
e−λλx

x!
, x ∈ N0 . (3.30)

The polynomials orthogonal with respect to the Poisson distribution are the Charlier polyno-

mials Cn(x) [18] with parameter λ. In other words, Charlier polynomials satisfy the following

orthogonal relation
∞∑
x=0

Cn(x)Cm(x)ρIRW (x) = δm,nd
2
n (3.31)

where the norm in `2(N0, ρ
IRW ) is

d2
n = n!λ−n . (3.32)

They are solutions of the second order difference equation (A.18)

x [Cn(x+ 1)− 2Cn(x) + Cn(x− 1)] + (λ− x) [Cn(x+ 1)− Cn(x)] + nCn(x) = 0 . (3.33)

As a consequence of the orthogonality, they satisfy the three term recurrence relation (A.26)

xCn(x) = −λCn+1(x) + (n+ λ)Cn(x)− nCn−1(x) . (3.34)

Furthermore, the raising operator has the form

λCn(x)− xCn(x− 1) = λCn+1(x) . (3.35)

As the following theorem shows, the self-duality relation is given by the Charlier polynomials

themselves.

Theorem 3.3. The IRW is a self-dual Markov process with self-duality function

Dn(x) =
∏
i∈V

Cni(xi) (3.36)

where Cn(x) is the Charlier polynomial of degree n.

Remark 3.1. Reading the Charlier polynomial as an hypergeometric function, the duality

function then becomes

Dn(x) =

N∏
i=1

2F0

(
−ni,−xi
−

∣∣∣∣− 1

λ

)
. (3.37)

Proof. It is clear from (3.36) that the difference equations, the recurrence relations and the

raising operator for Dn(x) are respectively (3.33), (3.34) and (3.35), that we rewrite as:

Dn(x+ 1) = Dn(x)− n

λ
Dn−1(x) (3.38)

xDn(x) = −λDn+1(x) + (n+ λ)Dn(x)− nDn−1(x) (3.39)

xDn(x− 1) = λDn(x)− λDn+1(x). (3.40)
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As done before, we use the two particles IRW generator in (2.16) and the three equations above

to check that the self-duality relation holds. We have

LIRWDn1(x1)Dn2(x2) = x1Dn1(x1 − 1)Dn2(x2 + 1)− x1Dn1(x1)Dn2(x2)

+Dn1(x1 + 1)x2Dn2(x2 − 1)−Dn1(x1)x2Dn2(x2)

= [λDn1(x1)− λDn1+1(x1)]
[
Dn2(x2)− n2

λ
Dn2−1(x2)

]
− [−λDn1+1(x1) + (n1 + λ)Dn1(x1)− n1Dn1−1(x1)] [Dn2(x2)]

+
[
Dn1(x1)− n1

λ
Dn1+1(x2)

]
[λDn2(x2)− λDn2+1(x2)]

− [Dn1(x1)] [−λDn2+1(x2) + (n2 + λ)Dn2(x2)− n2Dn2−1(x2)] .

After computing the products and suitable simplifications we get

LIRWDn1(x1)Dn2(x2) = n1[Dn1−1(x1)Dn2+1(x2)−Dn1(x1)Dn2(x2)]

+n2[Dn1+1(x1)Dn2−1(x2)−Dn1(x1)Dn2(x2)] .

3.3 Duality results

We end the Chapter by showing two examples of duality: the initial process is an interacting

diffusion, while the dual one is a jump process, which, in particular, turns out to be the SIP

process introduced in Chapter 2.3. We also show an example of duality for a redistribution

model of Kipnis-Marchioro-Presutti type.

3.3.1 Duality for the BMP

In Section 2.5 we have seen that the marginal reversible measure of the BMP process is

ρBMP (x) =
e−x

2

√
π
, (3.41)

where, without loss of generality, we fix σ = 1
2 . The polynomials orthogonal with respect to

ρBMP are the Hermite polynomials [54], i.e.∫ +∞

−∞
Hn(x)Hm(x)ρBMP (x)dx = δm,nd

2
n (3.42)

with norm in L2(R, ρBMP ) given by

d2
n = 2nn! . (3.43)
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In terms of hypergeometric function, they are written as

Hn(x) = (2x)n2F0

(
−n/2,−(n− 1)/2

−

∣∣∣∣− 1

x2

)
. (3.44)

Hermite polynomials are solutions of the second order differential equation (A.2)

H
′′
n(x)− 2xH

′
n(x) + 2nHn(x) = 0 . (3.45)

As consequence of the orthogonality they satisfy the three term recurrence relation (A.11)

Hn+1(x)− 2xHn(x) + 2nHn−1(x) = 0 . (3.46)

Furthermore, the raising operator is given by

2xHn(x)−H ′n(x) = Hn+1(x). (3.47)

The following theorem has a similar version in [8] and it states the duality result between

the Brownian momentum process and the Symmetric inclusion process of parameter k = 1/4

involving the Hermite polynomials. Indeed, the duality function is not a product of Hermite

polynomials themselves, but it is provided with a suitable normalization of the Hermite poly-

nomials of even degree.

Theorem 3.4. The BMP process is dual to the SIP(1
4) process through duality function

Dn(x) =
∏
i∈V

1

(2ni − 1)!!
H2ni(xi) (3.48)

where H2n(x) is the Hermite polynomial of degree 2n.

Proof. Although the proof in [8] can be easily adapted to our case, we show here an alternative

proof that follows our general strategy of using the structural properties of Hermite polynomials.

It is sufficient, as before, to show the duality relation in equation (1.6) for sites 1 and 2. The

action of the BMP generator on duality function reads

LBMPDn1(x1)Dn2(x2) = (x1∂x2 − x2∂x1)2Dn1(x1)Dn2(x2) (3.49)

= x2
1Dn1(x1)D′′n2

(x2) +D′′n1
(x1)x2

2Dn2(x2)− x1D
′
n1

(x1)Dn2(x2)

−Dn1(x1)x2D
′
n2

(x2)− 2x1D
′
n1

(x1)x2D
′
n2

(x2)

where we use ∂xi = ∂
∂xi

. We now need the recurrence relation and the raising operator appro-

priately rewritten in term of the duality function in order to get suitable expression for

x2Dn(x), D′′n(x), xD′n(x). (3.50)

This can be done using

Dn(x) =
1

(2n− 1)!!
H2n(x) (3.51)
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so that

x2Dn(x) =
1

4
(2n+ 1)Dn+1(x) +

(
2n+

1

2

)
Dn(x) + 2nDn−1(x) (3.52)

D
′′
n(x) = 8nDn−1(x) (3.53)

xD
′
n(x) = 2nDn(x) + 4nDn−1(x) (3.54)

where (3.52) is obtained from iterating twice the recurrence relation in (3.46), for equation

(3.54) we combined (3.46) and (3.47) and then (3.53) is found from the differential equation

(3.45) using (3.54). Proceeding with the substitution into the generator we find

LBMPDn1(x1)Dn2(x2)

=

(
1

4
(2n1 + 1)Dn1+1(x1) +

(
2n1 +

1

2

)
Dn1(x1) + 2n1Dn1−1(x1)

)
8n2Dn2−1(x2)

+ 8n1Dn1−1(x1)

(
1

4
(2n2 + 1)Dn2+1(x2) +

(
2n2 +

1

2

)
Dn2(x2) + 2n2Dn2−1(x2)

)
− (2n1Dn1(x1) + 4n1Dn1−1(x1))Dn2(x2)−Dn1(x1) (2n1Dn2(x2) + 4n2Dn2−1(x2))

− 2 (2n1Dn1(x1) + 4n1Dn1−1(x1)) (2n2Dn2(x2) + 4n2Dn2−1(x2)) .

Finally, after appropriate simplification of the terms whose degree is different from n1 +n2, we

get

LBMPDn1(x1)Dn2(x2) = (2n1 + 1)2n2 [Dn1+1(x1)Dn2−1(x2)−Dn1(x1)Dn2(x2)]

+ 2n1(2n2 + 1) [Dn1−1(x1)Dn2+1(x2)−D2n1(x1)Dn2(x2)]

= LSIPDn1(x1)Dn2(x2)

which proves the theorem.

3.3.2 Duality for BEP(k)

The Brownian energy process, introduced in Section 2.6, has as reversible measure products of

Gamma distributions, whose density is

ρBEP (x) =
x2k−1e−x

Γ(2k)
. (3.55)

The generalized Laguerre polynomials L
(2k−1)
n (x) [54] are orthogonal with respect to ρBEP , i.e.

they satisfy the orthogonal relation∫ +∞

0
L(2k−1)
n (x)L(2k−1)

m (x)ρBEP (x)dx = δm,nd
2
n (3.56)

with norm in L2(R+, ρBEP ) given by

d2
n =

Γ(n+ 2k)

n!Γ(2k)
. (3.57)
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They can be defined via their hypergeometric representation as

L(2k−1)
n (x) =

Γ(2k + n)

n!Γ(2k)
1F1

(
−n
2k

∣∣∣∣x) . (3.58)

Generalized Laguerre polynomials are solutions of (A.2)

x
d2

dx2
L(2k−1)
n (x) + (2k − x)

d

dx
L(2k−1)
n (x) + nL(2k−1)

n (x) = 0 (3.59)

and they satisfy the recurrence relation (A.11)

xL(2k−1)
n (x) = −(n+ 1)L

(2k−1)
n+1 (x) + (2n+ 2k)L(2k−1)

n (x)− (n+ 2k − 1)L
(2k−1)
n−1 (x) . (3.60)

Furthermore, the raising operator in equation (A.16) is given by

(2k − x+ n)L(2k−1)
n (x) + x

d

dx
L(2k−1)
n (x) = (n+ 1)L

(2k−1)
n+1 (x) . (3.61)

The duality relation for the Brownian energy process with parameter k is stated below.

Theorem 3.5. The BEP(k) process and the SIP(k) process are dual via

Dn(x) =
∏
i∈V

ni! Γ(2k)

Γ(2k + ni)
L(2k−1)
ni (xi) =

∏
i∈V

1F1

(
−ni
2k

∣∣∣∣xi) (3.62)

where L
(2k−1)
n (x) is the generalized Laguerre polynomial of degree n.

Remark 3.2. The factor Γ(2k) in equation (3.62) is not crucial to assess a duality relation,

however, it allows to write the duality function as the hypergeometric function 1F1.

Proof. As in the previous cases we notice that the proof can be shown for sites 1 and 2 only,

in which case the generator of the BEP acts on

LBEP (k)Dn1(x1)Dn2(x2) =
[
x1x2 (∂x1 − ∂x2)2 − 2k(x1 − x1)(∂x1 − ∂x2)

]
Dn1(x1)Dn2(x2)

=(x1∂
2
x1 + 2k∂x1)Dn1(x1)x2Dn2(x2) + x1Dn1(x1)(x2∂

2
x2 + 2k∂x2)Dn2(x2)

−x1∂x1Dn1(x1)(x2∂x2 + 2k)Dn2(x2)− (x1∂x1 + 2k)Dn1(x1)x2∂x2Dn2(x2) .

We seek an expression for

x∂2
xDn + 2k∂xDn, xDn, x∂xDn (3.63)

that can easily be obtained rewriting (3.59), (3.60) and (3.61) for the duality function, using

Dn(x) =
n! Γ(2k)

Γ(2k + n)
L(2k−1)
n (x) (3.64)
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so that, after simple manipulation

xD
′′
n(x) + (2k − x)D

′
n(x) + nDn(x) = 0 (3.65)

xDn(x) = −(n+ 2k)Dn+1(x) + (2n+ 2k)Dn(x)− nDn−1(x) (3.66)

xD
′
n(x) = nDn(x)− nDn−1(x) . (3.67)

Note that plugging (3.67) into the difference equation (3.65), we get

xD
′′
n(x) + 2kD

′
n(x) = −nDn−1(x) .

Let’s now use these information to write explicitly the BEP(k) generator.

LBEP (k)Dn1(x1)Dn2(x2) =

+ [−n1Dn1−1(x1)] [−(2k + n2)Dn2+1(x2) + (2n2 + 2k)Dn2(x2)− n2Dn2−1(x2)]

+ [−(2k + n1)Dn1+1(x1) + (2n1 + 2k)Dn1(x1)− n1Dn1−1(x1)] [−n2Dn2−1(x2)]

− [n1Dn1(x1)− n1Dn1−1(x1)] [(n2 + 2k)Dn2(x2)− n2Dn2−1(x2)]

− [(n1 + 2k)Dn1(x1)− n1Dn1−1(x1)] [n2Dn2(x2)− n2Dn2−1(x2)] .

Expanding products in the above expression we find

LBEP (k)Dn1(x1)Dn2(x2)

= n1Dn1−1(x1)(n2 + 2k)Dn2+1(x2) + (n1 + 2k)Dn1+1(x1)n2Dn2−1(x2)

+ n1Dn1(x1)(n2 + 2k)Dn2(x2) + (n1 + 2k)Dn1+1(x1)n2Dn2−1(x2)

+Dn1−1(x1)Dn2(x2) [−n1(2n2 + 2k) + n1(n2 + 2k) + n1n2]

+Dn1(x1)Dn2−1(x2) [−(2n1 + 2k)n1 + (n1 + 2k)n2 + n1n2]

+Dn1−1(x1)Dn2−1(x2) [n1n2 + n1n2 − n1n2 − n1n2] .

Noticing that the coefficients of the last three lines are zeros, we finally get

LBEP (k)Dn1(x1)Dn2(x2) = n1(n2 + 2k) [Dn1−1(x1)Dn2+1(x2)−Dn1(x1)Dn2−1(x2)] (3.68)

+ (n1 + 2k)n2 [Dn1+1(x1)Dn2−2(x2)−Dn1(x1)Dn2(x2)]

= LSIP (k)Dn1(x1)Dn2(x2)

where LSIP (k) works on the dual variables (n1, n2).
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3.3.3 Duality for the KMP(k)

The generalized Kipnis Marchioro Presutti procces introduced in Section 2.7 has a dual process

with generator (see [14])

Ldual-KMP (k)f(n) = (3.69)∑
1≤i<l≤N

(i,l)∈E

ni+ni+1∑
r=0

[f (n1, . . . , ni−1, r, ni+1, . . . , nl−1, ni + nl − r, . . . , nN )− f (n)]µ2k(r | ni + ni+1)

where µ2k(r|C) is the mass density function of the Beta Binomial distribution with parameters

(C, 2k, 2k), i.e.

µ2k(r | C) =

(
2k+r−1

r

)(
2k+C−r−1

C−r
)(

4k+C−1
C

) , r ∈ {0, 1, . . . , C} . (3.70)

This generator is the result of a thermalized limit of the SIP(k) (page 17 of [14] ). The last

theorem of this Chapter is stated below.

Theorem 3.6. The KMP(k) is dual to dual-KMP(k)with duality function

Dn(x) =
∏
i∈V

ni! Γ(2k)

Γ(2k + ni)
L(2k−1)
ni (xi) (3.71)

where L
(2k−1)
n (x) is the generalized Laguerre polynomial of degree n.

Proof. As expected, the duality function is the same as the one for the BEP(k) and SIP(k).

This shouldn’t surprise since BEP(k) and SIP(k) are dual through duality function (3.71) and

the thermalization limit doesn’t affect the duality property. Indeed, considering two graph

vertices, one has from [14]

LKMP (k)f(x1, x2) = lim
t→∞

(etL
BEP (k) − I)f(x1, x2) (3.72)

and

Ldual-KMP (k)f(n1, n2) = lim
t→∞

(etL
SIP (k) − I)f(n1, n2) . (3.73)

Thus, combining the previous two equations and (3.68), the claim follows.





Chapter 4

Lie algebra representations

This Chapter is a non-comprehensive review of Lie algebras and representation theory: the

expert reader could skip the whole Chapter without being affected. However, we would like to

give a quick review of Lie algebra representation assuming no previous knowledge of the subject.

We will only recall the main definitions and results which are needed in the context of stochastic

duality. References on the subject and more details about Lie algebras and their representation

can be found in [36]. In general a Lie algebra description starts with the introduction of the

commutator also known as Lie bracket [x, y] = xy − yx where the operation on the right hand

side are the usual ones. Let’s start by introducing what a Lie algebra is.

Definition 4.1 (Lie algebra). A finite dimensional linear space g over a field F , together with

an operation g× g→ g, denoted with the Lie bracket (x, y)→ [x, y] of x and y, is called a Lie

algebra over F if the following axioms are satisfied:

• (x, y)→ [x, y] is bilinear (4.1)

• [x, y] = −[y, x] (anti-commutative) (4.2)

• [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 (Jacobi identity) (4.3)

for all x, y, z ∈ g.

As field F we will usually assume it to be the set of complex numbers C. The dimension

of a Lie algebra is its dimension as a vector space over C. We say that two Lie algebras

g and g′ are isomorphic if there exists a vector space isomorphism φ : g → g′ satisfying

φ ([x, y]) = [φ(x), φ(y)] for all x, y ∈ g, in this case φ is called an isomorphism for the two Lie

algebras. A ∗-structure on a Lie algebra g is a map ∗ : g→ g such that

• (x∗)∗ = x

• (ax+ by)∗ = āx∗ + b̄y∗

• [x, y]∗ = [y∗, x∗].

51



52 Chapter 4 Lie algebra representations

where ·̄ stands for the complex conjugate. If V is equipped with an inner product 〈·, ·〉 and ·∗

denotes the adjoint with respect to this inner product, i.e.

〈Av,w〉 = 〈v,A∗w〉

then A → A∗ is an adjoint operation on g. If {x1, x2, . . . xn} is a basis for g, then the Lie

bracket on g is uniquely characterized by the commutation relations

[xi, xj ] =

n∑
k=1

cijkxk for 1 ≤ i < j ≤ n . (4.4)

where cijk are said structure constants. The center of a Lie algebra g is the set

{x ∈ g : [x, a] = 0 ∀ a ∈ g} .

We say that the center is trivial if it contains only the zero element. The conjugate algebra of

g is ḡ such that

[x̄, ȳ] = [y, x] . (4.5)

Definition 4.2 (Homomorphism). A Lie algebra homomorphism is a linear map φ : g1 → g2
such that

φ
(

[x, y]g1

)
= [φ(x), φ(x)]g2 ∀ x, y ∈ g1 .

The homomorphism φ is unitary if it preserves the ∗−structure of the adjoint operation,

i.e. φ(A∗) = φ(A)∗. If φ is invertible then its inverse is also a Lie algebra homomorphism and

in this case we say that φ is a Lie algebra isomorphism.

If V is a finite dimensional vector space over F , we denote by gl(V ) the set of linear trans-

formation A : V → V , equipped with the bracket operation [x, y] = xy−yx then gl(V ) becomes

a Lie algebra over F since the axioms in equations (4.1), (4.2) and (4.3) are immediately satis-

fied. It is sometimes useful and convenient to fix a basis for V and identify gl(V ) with the set

of all n× n matrices over F , denoted by gl(n, F ).

Definition 4.3 (Representation). A representation of g is a pair (ρ, V ) where ρ is a Lie algebra

homomorphism and V is a vector space ρ : g→ gl(V ).

A representation is irreducible if its only invariant subspaces are W = V or W = {0}, where

an invariant subspace of V is a linear subspace W ⊂ V such that xw ∈ W for all w ∈ W and

x ∈ g. A representation is unitary if the homomorhism ρ is unitary, it is faithful if ρ is an

isomorphism to its image, ρ(g) = {ρ(x) : x ∈ g}. Let V,U be two representations of the same

Lie algebra g, then an intertwiner of the two representations is a linear map φ : V → U that

preserves the structure of the representation, i.e.,

φ(xv) = xφ(v) ∀ x ∈ g, v ∈ V .
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Definition 4.4 (Equivalent representations). Let (ρ1, V1) and (ρ2, V2) be two representations of

g, they are said to be equivalent if there existx a nonsingular linear transformation T : V1 → V2

with ρ2(x) = Tρ1(x)T−1 for all x ∈ g.

Proposition 4.1 (Schur’s lemma).

1. Let V and U be irreducible representations of the same Lie algebra and let φ : V → U be

an intertwiner. Then either φ = 0 or φ is an isomorphism.

2. Let V be an irreducible representation of a same Lie algebra and let φ : V → V be an

intertwiner. Then φ = λI for some λ ∈ C.

Using Schur’s lemma it is possible to prove the following important corollary

Corollary 4.1. Let (ρ1, V1) and (ρ2, V2) be isomorphic irreducible representations of some Lie

algebra. Then there exists an intertwiner φ : V1 → V2 that is unique up to a multiplicative

constant, such that

φρ1(x) = ρ2(x)φ .

Proof. By assumption, V1 and V2 are isomorphic, so there exists an isomorphism φ : V1 → V2.

Assume that ψ : V1 → V2 is another intertwiner. Then φ−1 ◦ ψ is an intertwiner from V1 into

itself, so by the second item of Schur’s lemma,φ−1 ◦ ψ = λI and hence ψ = λφ.

For an arbitrary Lie algebra g it is always possible to construct its universal enveloping

algebra.

Definition 4.5 (Universal enveloping algebra). For every Lie algebra g, the universal envelop-

ing algebra of g is defined by the pair (U(g), i), where U is an associative algebra with unity

and i : g→ U(g) is a linear map satisfying

i([x, y]) = i(x)i(y)− i(y)i(x)

for x, y ∈ g.

So any Lie algebra can naturally be embedded in an algebra, the universal enveloping

algebra; existence and uniqueness of the pair (U(g), i) is not hard to establish (see Chapter 5

of [36] ). We now give three concrete example of Lie algebras and their representation given

in terms of (unbounded) operators, we assume that the operators act on an appropriate dense

subspace of the L2-space. These representation will be recalled in Chapters 5 and 6 where we

constructively show (self-)duality.

We now introduce three different algebras, namely the the Lie algebra su(2), the Lie algebra

su(1, 1) and the the Heisenberg algebra. For each one we will present two different representa-

tions in the spirit of Definition 4.3. It will be useful to recall that the coproduct of Lie algebra

elements X is denoted by ∆(X) and defined via the tensor product ⊗, as

∆(X) = 1⊗X +X ⊗ 1 (4.6)

and that it can be extended as an algebra homomorphism to the universal enveloping algebra.
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4.1 The Lie algebra su(2)

The Lie algebra su(2) is the three dimensional complex Lie algebra defined by commutators

between its elements sx, sy and sz:

[sx, sy] = 2isz [sy, sz] = 2isx [sz, sx] = 2isy . (4.7)

Conventionally this setting is equipped with a ∗− structure, i.e. an adjoint operation that is

defined by

s∗x = sx, s∗y = sy, s∗z = sz . (4.8)

A faithful unitary representation of su(2) is defined by matrices

Sx :=

(
0 1

1 0

)
Sy :=

(
0 −i
i 0

)
Sz :=

(
1 0

0 −1

)
. (4.9)

Elements sx, sy and sz can be mapped into some other operators which also generate the su(2)

Lie algebra. This new basis will be more convenient for our purpose and we will always refer

to it as the actual basis of generators that generates the su(2) algebra.

J0 :=
1

2
sz J+ :=

1

2
(sx + isy) J− :=

1

2
(sx − isy) .

Using commutation relation in (4.7), one easily finds that J0, J+ and J− satisfy the following

commutation relations

[J0, J±] = ±J± and [J+, J−] = 2J0 . (4.10)

The ∗− structure is defined by (J0)∗ = J0, (J+)∗ = J− and (J−)∗ = J+. The Casimir element

is

Ω = 2(J0)2 + J+J− + J−J+

which is central, i.e. commutes with all the algebra generators, is self-adjoint. It will be useful

to have an expression for the coproduct of the Casimir:

∆(Ω) = ∆(2(J0)2) + ∆(J+J−) + ∆(J−J+) = 2∆(J0)∆(J0) + ∆(J+)∆(J−) + ∆(J−)∆(J+)

= 2(1⊗ J0 + J0 ⊗ 1)2 + (1⊗ J+ + J+ ⊗ 1)(1⊗ J− + J− ⊗ 1)

+ (1⊗ J− + J− ⊗ 1)(1⊗ J+ + J+ ⊗ 1)

= 1⊗ Ω + Ω⊗ 1 + 4J0 ⊗ J0 + 2J+ ⊗ J+ + 2J− ⊗ J− .

Discrete Representation

The action of the three generators on functions f in F (N), the set of all functions on N, is

given by

(J+f)(n) = nf(n− 1) (J−f)(n) = (2j − n)f(n+ 1)

(4.11)

(J0f)(n) = (n− j)f(n)
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where f(−1) = f(2j + 1) = 0. The inner product is defined by

〈f, g〉 =

2j∑
n=0

f(n)g(n)w(n) where w(n) =

(
2j

n

)
(4.12)

which conserve the the ∗− structure and the action of the Casimir is basically a multiplication

by a constant, (Ωf)(n) = 2j(j + 1)f(n).

We end this Section finding a relation for the transpose of the operator J−, it will be used

later on in Chapter 6. Using the adjoint relation (J+)∗ = J− we have that

〈J+f, g〉 = 〈f, J−g〉∑
n

(J+f)(n)g(n)w(n) =
∑
n

f(n)(J−g)(n)w(n)∑
n,k

(J+)n,kf(k)g(n)w(n) =
∑
n,k

f(n)(J−)n,kg(k)w(n)

=
∑
n,k

f(k)(J−)k,ng(n)w(k)

since the above equality is true for every f and g, then

(J+)n,kw(n) = (J−)n,kw(k)

(J−)k,n = w(k)−1(J+)n,kw(n)

= w(k)−1((J+)k,n)Tw(n)

So J− = w−1(J+)Tw = d(J+)Td−1 from which we infer

(J+)T = d−1(J−) , (4.13)

where d is a diagonal matrix with elements d = 1
w(n)δk,n.

4.2 The Lie algebra su(1, 1)

The Lie algebra su(1, 1) is defined by the following commutation relations between its elements

tx, ty and tz:

[tx, ty] = 2itz [ty, tz] = −2itx [tz, tx] = 2ity . (4.14)

Which are the same as those (4.7) except for the minus sign in the second commutator. It is

customary to equip su(1, 1) with a ∗− structure, i.e. an adjoint operation such that

t∗x = tx, t∗y = ty, t∗z = tz . (4.15)

A faithful representation of su(1, 1) is defined by matrices

Tx :=

(
0 1

−1 0

)
Ty :=

(
0 i

i 0

)
Tz :=

(
1 0

0 −1

)
, (4.16)
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this representation doesn’t satisfy the self-adjoint relations in (4.15) and hence do not define a

unitary representation of su(1, 1). In fact, all unitary irreducible representation of su(1, 1) are

infinite dimensional. Again, we will map generators tx, ty and tz into a new set of generators

defined as

K0 :=
1

2
tx K+ :=

1

2
(ty + ity) K− :=

1

2
(ty − itz) .

Using the old commutation relations in (4.14) and the adjoint relation in (4.15) one finds that

this new set of generators satisfy

[K0,K±] = ±K± and [K−,K+] = 2K0 . (4.17)

and the ∗− structure is given by

(K0)∗ = K0, (K+)∗ = K−, (K−)∗ = K+ .

The Casimir element is

Ω = 2(K0)2 −K+K− −K−K+

which is self-adjoint, Ω = Ω∗ and it commutes with every element of the algebra. The coproduct

of the Casimir is

∆(Ω) = ∆(2(K0)2)−∆(K+K−)−∆(K−K+) = 2∆(K0)∆(K0)−∆(K+)∆(K−)−∆(K−)∆(K+)

= 2(1⊗K0 +K0 ⊗ 1)2 − (1⊗K+ +K+ ⊗ 1)(1⊗K− +K− ⊗ 1)+

− (1⊗K− +K− ⊗ 1)(1⊗K+ +K+ ⊗ 1)

= 1⊗ Ω + Ω⊗ 1 + 4K0 ⊗K0 − 2K+ ⊗K− − 2K− ⊗K+

Discrete Representation

The action of the three generators on functions f in F (N) is given by

(K+f)(n) = nf(n− 1) (K−f)(n) = (n+ 2k)f(n+ 1)

(4.18)

(K0f)(n) = (n+ k)f(n) .

Equipping this setting with the inner product

〈f, g〉 =
∑
n∈N

f(n)g(n)w(n) where w(n) =
Γ(2k + n)

n!Γ(2k)
(4.19)

the ∗− structure holds. The action of the Casimir on function f in F (N) is basically a

multiplication by a constant: (Ωf)(n) = 2k(k − 1)f(n).
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It will be useful to have a relation for the transpose of the operator as well, this can be

done in the following way, using the adjoint relation (K+)∗ = K−,

〈K+f, g〉 = 〈f,K−g〉∑
n

(K+f)(n)g(n)w(n) =
∑
n

f(n)(K−g)(n)w(n)∑
n,k

(K+)n,kf(k)g(n)w(n) =
∑
n,k

f(n)(K−)n,kg(k)w(n)

=
∑
n,k

f(k)(K−)k,ng(n)w(k).

This implies

(K+)n,kw(n) = (K−)k,nw(k)

(K−)k,n = w(k)−1(K+)n,kw(n)

= w(k)−1((K+)k,n)Tw(n)

We call d the a diagonal matrix with elements dk,n = 1
w(n)δk,n, so that we finally have K− =

w−1(K+)Tw = d(K+)Td−1 from which we infer

(K+)T = d−1(K−)d . (4.20)

Continuous Representation

A continuous representation of the three generators on functions f in F (R+) is given by

(K+f)(x) = xf(x) (K−f)(x) =

(
x
d2

dx2
+ 2k

d

dx

)
f(x)

(4.21)

(K0f)(x) =

(
x
d

dx
+ k

)
f(x) .

for x ∈ R+.

4.3 The Heisenberg algebra

The Heisenberg algebra is the Lie algebra with generators a and a† such that

[a†, a] = 1 , (4.22)

with ∗−structure a∗ = a†.
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Discrete Representation

The Heisenberg algebra has a representation on F (N) such that

(af)(n) = nf(n− 1) (a†f)(n) = f(n+ 1) (4.23)

This representation satisfies the ∗−structure with weight w(n) =
1

n!
. Later on, we will need

the action of the transpose of a, namely aT ; to this end we will use the ∗−structure of the

Heisenberg algebra.

〈af, g〉 = 〈f, a†g〉∑
n

(af)(n)g(n)w(n) =
∑
n

f(n)(a†g)(n)w(n)∑
n,k

(a)n,kf(k)g(n)w(n) =
∑
n,k

f(n)(a†)n,kg(k)w(n)

=
∑
n,k

f(k)(a†)k,ng(n)w(k) .

Since the above holds for all functions f and g we get

(a)n,kw(n) = (a†)k,nw(k) (4.24)

((a)k,n)T = w(k)(a†)k,nw(n)−1 . (4.25)

Using the diagonal matrix d, with elements dk,n = 1
w(n)δk,n, we have

aT = d−1a†d .

Continuous Representation

A conjugate continuous representation for the Heisenberg algebra can be preformed with op-

erators A and A†, working on smooth functions f : R → R with compact support, defined

as

(Af)(x) =
d

dx
f (A†f)(x) = xf(x) (4.26)

sometimes known as the annihilation and creation operators. They satisfy the commutation

relation

[A†, A] = −1 . (4.27)



Chapter 5

Algebraic approach

In the context of Markov processes duality and self-duality can be framed under two main

structural categories which we will refer as change of representation in the context of duality

and symmetries of the generator for self-duality. We will show the abstract theory in the next

two Sections and we will show examples and applications in the last two ones. Reference and

pioneering work on this can be found in [15] for the change of representation approach and [32]

for the symmetries approach.

5.1 Change of representation and duality

In several cases, duality between two Markov generators arises from duality of operators which

are some sort of building blocks (such as derivatives and multiplication operators) for the

expression of the generators and therefore it is possible to consider these building blocks duality

as duality between two representations of a Lie algebra. We will call such duality function

intertwining function or intertwiner and the dual Lie algebra is known as the conjugate Lie

algebra. The starting point would be to recognize the two representations of the Lie algebra,

then, once an intertwining function has been found, one should retrieve the Markov generators

as an element of the universal enveloping Lie algebra, if this is the case then duality between

the two generators is a mere consequence of this procedure. Let g be a Lie algebra with basis

elements x1, . . . ,xn that satisfy commutation relations of the form

[xi,xj ] =
n∑
k=1

cijkxk (for i < j) .

Let X1, . . . , Xn on a linear space V and Y1, . . . , Yn be linear operators on a discrete linear space

W such that the following commutation relations are satisfied

[Xi, Xj ] =

n∑
k=1

cijkXk and [Yi, Yj ] = −
n∑
k=1

cijkYk

59
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Then X1, . . . , Xn is a representation on g and Y1, . . . , Yn is a representation on the conjugate

Lie algebra ḡ.

Theorem 5.1. Let g be a Lie algebra with basis elements {xi}ni=1 and {yi}ni=1 be basis elements

of the conjugate Lie algebra ḡ. Then the following statements are verified

• {Yi}ni=1 is a representation for ḡ if and only if {Y T
i }ni=1 is a representation for g.

• For i = 1, . . . , n Xi is dual to Yi via D (which is invertible) if and only if {Xi}ni=1 and

{Y T
i }ni=1 are two irreducible equivalent representation of g.

Proof. The first item is a simple computation, indeed

[Y T
i , Y

T
j ] = Y T

i Y
T
j − Y T

j Y
T
i = (YjYi)

T − (YiYj)
T = (YjYi − YiYj)T = −[Yi, Yj ]

T

=

(∑
k

cijkYk

)T
=
∑
k

cijkY
T
k .

For the second item, one implication is a consequence of Schur’s Lemma, in Corollary 4.1,

which states that there exist an invertible intertwiner D : V →W such that

XiD = DY T
i for i = 1, . . . , n .

On the other hand, using the duality hypothesis, since D is invertible we have

Xi = DY T
i D

−1 for i = 1, . . . , n

and it is easy to verify that they are representations of the same Lie algebra:

[Xi, Xj ] = [DY T
i D

−1, DY T
j D

−1] = D[Y T
i , Y

T
j ]D−1 = D

∑
k

cijkY
T
k D

−1 =
∑
k

cijkXk .

We think of Xi and Yi as building blocks used to construct more elaborate operators.

The following theorem (taken from [15], Theorem 2.1) says how these operators need to be

constructed in order to preserve the duality property.

Theorem 5.2 (Combination of dual operators). Let X1, Y1 (resp. X2, Y2) be two operators

dual to each other with the same duality function D = D(x, y), such that for i = 1, 2, Xi

work on a common domain D (D ⊆ D(Xi) and Yi work on Ddual (Ddual ⊆ D(Yi)). Then for

c1, c2 ∈ R we have

1. c1X1 + c2X2 is dual to c1Y1 + c2Y2, with the same duality function D.

2. X1X2 is dual to Y2Y1 with the same duality function D.

More generally, we can say that
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3. Consider two collections of operators: {Xi, i ∈ I} and {Yi, i ∈ I}; if Xi is dual to Yi for

every i with duality function D, then, every element of the algebra generated by {Xi, i ∈ I}
is dual to an element of the algebra generated by {Yi, i ∈ I}.
More precisely (Xi1)n1 · · · (Xik)nk is dual, with duality function D, to ((Yik)nk · · · (Yi1)n1

for all n1, . . . , nk ∈ N. Moreover for constants {ci, i ∈ I} also
∑
i∈I

ciXi is dual to
∑
i∈I

ciYi

with duality function D.

Proof.

1. [c1X1 + c2X2]D(·, y)(x) = c1X1D(·, y)(x) + c2X2D(·, y)(x)

= c1Y1D(x, ·)(y) + c2Y2D(x, ·)(y)

= [c1Y1 + c2Y2]D(x, ·)(y).

2. X1X2D(·, y)(x) = X1[X2D(·, y)(x)]

= X1Y2D(x, ·)(y)

= Y2[X1D(·, y)(x)]

= Y2Y1D(x, ·)(y).

3. follows from 1. and 2..

Theorem 5.3 (Factorized duality function). Suppose we have operators X1 dual to Y1 with

duality function D1 and X2 dual to Y2 with duality function D2; then X1⊗X2 is dual to Y1⊗Y2,

with duality function D1 ⊗D2, where

D1 ⊗D2(x1, x2; y1, y2) = D1(x1; y1)D2(x2; y2).

Proof.

X1 ⊗X2[D1 ⊗D2(·, ·; y1, y2)](x1, x2)

= X1X2[D1(·; y1)D2(·; y2)](x1, x2)

= [X1D1(·; y1)](x1)[X2D2(·; y2)](x2)

= [Y1D1(x1; ·)](y1)[Y2D2(x2; ·)](y2)

= Y1Y2[D1(x1; ·)D2(x2; ·)](y1, y2)

= Y1 ⊗ Y2[D1 ⊗D2(x1, x2; ·, ·)](y1, y2).

The next theorem shows that once a duality relation for operators belonging to an algebra

is available and these operators can be combined together to produce the generator of a Markov

process, then the duality relation will carry over.
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Corollary 5.1. Assume that L can be written as a linear combination of finite products of

operators Xi and that Xi and Y T
i are two equivalent irreducible representations of the same

algebra g. Then Ldual is a linear combination of a finite product of operators Yi with reverse

order and it is dual to L with duality function D (which is the invertible intertwiner of the two

representations).

Proof. The proof is straightforward from Theorem 5.1 and Theorem 5.2.

Note that in general it is not guaranteed for L and/or Ldual to be Markov generators,

however it can be verified separately.

Example 5.1. Suppose we are under the hypothesis of Corollary 5.1, then if L has the form

L = X1X2X3 +X4X5 ,

then Ldual becomes

Ldual = Y3Y2Y1 + Y5Y4 ,

5.2 Symmetries and self-duality

In this Section we recal a general scheme for constructing self-dualities of Markov processes

whose generator is symmetric with respect to another operator.

Definition 5.1. Let A and B be two matrices having the same dimension. We say that A is

a symmetry of B if A commutes with B, i.e.

[A,B] = AB −BA = 0 .

The main idea is that self-duality (in the context of Markov process with countable state

space) can be recovered starting from a trivial duality which is based on reversible measures of

the processes and then one can act with a symmetry of the model on this trivial self-duality to

turn it into a non-trivial one. The following theorem formalizes this idea.

Theorem 5.4 (Symmetries and self-duality). Let d be a self-duality function of the generator

L and let S be a symmetry of L, then D = Sd is again a self-duality function for L.

Proof. The proof follows from a straightforward computation

LD = LSd = SLd = SdLT = DLT

where the second identity follows from the fact that S and L commutes, while the third one is

self-duality of the generator L with self-duality function d.
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If there is a description on the process generator in terms of a Lie algebra, then symmetries

can be constructed using this algebraic structure. The two main elements of this thereon are

the initial self-duality d and the symmetry operator S. In general, if the process has a reversible

measure the self-duality d can easily be found starting from the reversibility

Lemma 5.1. If the process associated to generator L has reversible measure µ, then the function

d(x, y) =
δx,y
µ(x)

is a self-duality function.

Proof. The proof follows from the reversibility of the measure µ. Since we are on a countable

state space, we can check the notion of duality in matrix notation in equation (1.11). Namely,

Ld = dLT

which expanded reads ∑
x′

L(x, x′)d(x′, y) =
∑
y′

d(x, y′)LT (y′, y) ,

once we substitute the expression of d∑
x′

L(x, x′)
δx′,y
µ(y)

=
∑
y′

δx,y′

µ(x)
LT (y′, y) ,

the sum on the left hand side only survive for x′ = y while the one on the right hand side only

for y′ = x, i.e,

L(x, y)
1

µ(y)
= L(y, x)

1

µ(x)

which is exactly the detailed balance equation in (2.5).

We will usually refer to the diagonal self-duality function as trivial or cheap self-duality

function.

One may now wonder how the operator S is found; for example, in [32] it is found using

the expression of the process generator written in terms of the underlying algebra generators

which turn out to be an element of the universal enveloping algebra. Then one should look

for symmetries of this element which is central, i.e. it commutes with all the generator of the

algebra. Whenever the process generator L can be written as the coproduct, defined in Chapter

4, of the Casimir Ω, then a symmetry of the Casimir can be extended via the coproduct as a

symmetry of the generator as this lemma shows.

Lemma 5.2. If S is a symmetry of the central element C, then ∆(S) is a symmetry for ∆(C).
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Proof. Starting from [C, S] = 0 we want to show that [∆(C),∆(S)] = 0.This follows from the

fact that the coproduct is an algebra homomorphism.

[∆(C),∆(S)] = ∆(C)∆(S)−∆(S)∆(C) = ∆(CS)−∆(C) = ∆(CS − SC) = 0 .

The last two Sections of this Chapter are used to show explicit examples of dualities and

self-dualitites which are proved making use of the previous theorems.

5.3 Classical dualities

We start with the change of representation approach characterized in theorems of Section 5.1

which is used in order to derive some known dualities and describes how do they fit the abstract

scheme. As a warm up we recall the last example of Section 1.5. Consider, to this end, the

generators of the Heisenberg algebra described in equations (4.26). The Laplace duality is

clearly an intertwining function between operator A acting on the x variable and A† acting on

the y variable, i.e. for D(x, y) = exy

(AD(·, y))(x) = (A†D(x, ·))(y)

where the action of A and A† are defined in equation (4.26). Using Corollary 5.1 it is also

true that D is an intertwining function for a linear combination of operator, for example if we

consider the second derivative we derive the generator of Brownian motion,

L =
1

2
A2 =

1

2

d2

dx2

then the dual operator must be

Ldual =
1

2
(A†)2 =

1

2
y2 .

At this point, using duality it is immediate to evaluate the generating function of the Brownian

motion (Xt)t≥0 initialized at x

Ex
(
eyXt

)
= E

(
ey(x+Wt)

)
= Ey

(
exYt

)
= et

y2

2 exy (5.1)

where in the first equality we used that Xt has the same distribution of x+Wt for (Wt)t≥0 the

standard Brownian motion, the second one is due to duality and the last one follows from the

fact that the “semigroup” generated by y2

2 is the multiplication with et
y2

2 .
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Example 5.2 (Algebraic description of duality between Wright-Fisher diffusion and Kingman

coalescent). We go back now to the duality between the Wright-Fisher diffusion and the King-

man coalescent in Example 1.5. Using the continuous and discrete generators of the Heisenberg

algebra we can write the generators of the two processes. In particular, we have that

LWF =
x(x− 1)

2

∂2

∂x2
=

1

2
A†(1−A†)A2 (5.2)

and that (
LKf

)
(n) =

1

2
n(n− 1) [f(n− 1)− f(n)] =

1

2
a2(1− a†)a† (5.3)

Note that the order of the Heisenberg generators is reversed for the two processes generator,

as it should, from Theorem 5.2. The transposed operators of the discrete Heisenberg algebra

generators are

(aT f)(n) = (n+ 1)f(n+ 1)

((
a†
)T

f

)
(n) = f(n− 1) ,

and they satisfy the same commutation relations as A and A†, namely[
aT ,
(
a†
)T]

= 1 .

Duality now follows from Corollary 5.1 and the fact that the moment duality function D(x, n) =

xn, is an intertwiner between the two representations, namely

AD (·, n) (x) = aD (x, ·) (n)

A†D (·, n) (x) = a†D (x, ·) (n) .

The next example we show can be also fit into the scheme of Section 5.1, however we will

also give another explanation which does not involve the conjugate algebra. It is the duality

between SIP(k) and BEP(k) interpreted as a change of representation of the su(1, 1) Lie algebra.

Example 5.3 (Classical duality between BEP(k) and SIP(k)). Let’s start by considering the

BEP(k) generator defined in Section 2.6 working on two sites, i and j, for two sites only we have

that x = (xi, xj); we then write it using the su(1, 1) Lie algebra generators in their continuous

representation given in equation (4.21),

LBEP (k) = xixj

(
∂

∂xi
− ∂

∂xj

)2

− 2k(xi−xj)
(
∂

∂xi
− ∂

∂xj

)
= K+

i K
−
j +K−i K

+
j − 2K0

iK0
j + 2k2 .

(5.4)

A discrete representation for the conjugate su(1, 1) Lie algebra is

(K+f)(n) = (2k + n)f(n+ 1) (K−f)(n) = nf(n− 1)

(5.5)

(K0f)(n) = (n+ k)f(n) .
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An easy computation shows that their transpose satisfy the usual su(1, 1) commutation relation

((K+)T f)(n) = (2k + n− 1)f(n− 1) ((K−)T f)(n) = (n+ 1)f(n+ 1)

((K0)T f)(n) = (n+ k)f(n) .

Using the conjugate Lie algebra in (5.5), we can write SIP generator on two sites(
LSIP f

)
(n) = ni(2k + nj)

[
f(ni,j)− f(n)

]
+ nj(2k + ni)

[
f(nj,i)− f(n)

]
=
(
K+
i K

−
j +K−i K

+
j − 2K0

iK
0
j + 2k2

)
f(n)

where n = (ni, nj) and ni,j = (ni − 1, nj + 1) is the hop of one particle from site i to site j.

Note that here the order of all the products K+
i K

−
j is not reversed, but this is not an issue

since the operators Ka with a ∈ {+,−, 0} work on different sites and so they commutes. As in

the previous example, the duality between BEP and SIP is a consequence of Corollary 5.1 and

the fact that the classical duality function

D(x, n) =
xnΓ(2k)

Γ(2k + n)
(5.6)

is an intertwiner between the Ka and the Ka for a ∈ {+,−, 0}.

As already mentioned the conjugate algebra in this case can be relegated in the backward

due to the fact that K+
i K

−
j = K−j K

+
i . If instead of the conjugate algebra generators in (5.5),

we use the discrete representation of the su(1, 1) Lie algebra in equations (4.18), then it is

verified that

LBEP (k)D(·, n)(x) =
(
K+
i K
−
j +K−i K

+
j − 2K0

iK0
j + 2k2

)
D(·, n)(x) =(

K+
i K

−
j +K−i K

+
j − 2K0

iK
0
j + 2k2

)
D(x, ·)(n) = LSIPD(x, ·)(n) .

5.4 Classical self-dualities

Classical self-dualities for SEP(j), SIP(k) and IRW (see [14] where these dualities are summa-

rized) can easily be found using Theorem 5.4, where in all the three cases the trivial self-duality

function d is a diagonal matrix with the inverse of the reversible measure on the diagonal, i.e.

dx,y = 1
µREV (x)

δx,y, where µREV (x) is respectively ρSEP (x) in equation (2.11), ρSIP (x) in equa-

tion (2.14) and ρIRW (x) in equation (2.17). Before going on with our examples, we remark that

thanks to structure of all our generators remarked in 2.5 as well as the product structure of the

(self-)duality function in Theorem 5.3 it is posssible to introduce the (self-)duality function in

just one site and keep in mind that they factorize over the graph G. The classical self-duality
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functions found here with the aid of generator symmetries are

D(x,y)cl =
∏
i∈V

x!

(x− y)!


1 for IRW

(2j − y)!

2j!
for SEP(j)

Γ(2k)

Γ(2k + y)
for SIP(k)

(5.7)

Example 5.4 (Classical self-duality of SEP(j)). The su(2) Lie algebra has Casimir given by

Ω = 2(J0)2 + J+J− + J−J+

we recall for simplicity the coproduct of the Casimir

∆(Ω) = 1⊗ Ω + Ω⊗ 1 + 4J0 ⊗ J0 + 2J+ ⊗ J+ + 2J− ⊗ J−

On two sites the SEP generator (2.10) reads

LSEP = J+ ⊗ J− + J− ⊗ J+ + 2J0 ⊗ J0 + 2j2

It is easy to see that

LSEP =
1

2
∆(Ω)− 1

2
⊗ Ω− Ω⊗ 1

2
+ 2j2

since (Ωf)(n) = 2j(j + 1)f(n), then(
1

2
⊗ Ω + Ω⊗ 1

2

)
f(n1)f(n2) = 2j(j + 1)f(n1)f(n2)

which means that, when acting on functions f(n1)f(n2), the action of LSEP is, up to a constant,

equal to the action of ∆(Ω), and so one has the SIP generator in terms of the coproduct of

the Casimir element. This simple observation ensures that it is enough to look for a symmetry

of the Casimir. A possible choice would be to take S = J+, since Ω is a central elements,

then [Ω, J+] = 0; this can be verified explicitly using the su(2) algebra commutation relation.

Indeed,

[Ω, J+] = ΩK+ − J+Ω = 2(J0)2J+ + J+J−J+ + J−(J+)2 −
(
2J+(J0)2 + J+J−J+ + J−(J+)2

)
= 2(J0)2J+ + J−(J+)2 − 2J+(J0)2 − (J+)2J− .

We now use the commutation relation of the su(2) algebra in equation (4.10), in particular we

substitute the following

J0J+ = J+ + J+J0 J−J+ = −2J0 + J+J−

J+J0 = −J+ + J0J+ J+J− = 2J0 + J−J+
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so that we get

[Ω, J+] = 2J0(J+ + J+J0) + (−2J0 + J+J−)J+ − 2(−J+ + J0J+)J0 − J+(J0 + J−J+)

= 0 .

Using the fact that LSEP is, up to a constant, equal to ∆(Ω), and using Lemma 5.2, we have

that the SEP generator has ∆(J+) = 1 ⊗ J+ + J+ ⊗ 1 as a symmetry. In order to have a

factorized form of the self-duality function we consider the exponential of J+ since if J+ is a

symmetry so is (J+)i for every i ∈ N, to be more precise we have that

∆(S) = e∆(J+) =

∞∑
i=0

(J+)i

i!

will produce a factorized self-duality function for the symmetric inclusion process. To show

that, we use the fact that the final expression for the duality function will have a product form,

we can just find its expression for one site. In Lemma 2.1 we proved that the SEP reversible

measure is the binomial distribution, neglecting constants and quantities which would not affect

a duality relation (in the spirit of Remark 1.3). We consider as cheap self duality function

dch(x, y) =
y!(2j − y)!

2j!
δx,y (5.8)

Proposition 5.1 (Symmetry for the classical self-duality of SEP(j)). The one site classical

duality function of SEP in Equation (5.7) can be written in the form

Dcl = Sdch where S = eJ
+
.

Proof. The proof is a straightforward calculation.

Dcl(x, y) =
(
eJ

+
dch(·, y)

)
(x) =

∑
i

1

i!
(J+)i

y!(2j − y)!

2j!
δx,y =

∑
i

1

i!

y!(2j − y)!

2j!

x!

(x− i)!
δx−i,y

=
x!

(x− y)!

(2j − y)!

2j!
.

We use now the same procedure to find the classical self-duality function for the symmetric

inclusion process.

Example 5.5 (Classical self-duality of SIP(k)). The su(1, 1) Lie algebra has Casimir given by

Ω = 2(K0)2 −K+K− −K−K+ ,

we recall for simplicity the coproduct of the Casimir

∆(Ω) = 1⊗ Ω + Ω⊗ 1 + 4K0 ⊗K0 − 2K+ ⊗K− − 2K− ⊗K+
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On two sites the SIP generator (2.13) is

LSIP = K+ ⊗K− +K− ⊗K+ − 2K0 ⊗K0 + 2k2

and so one has the SIP generator in term of the coproduct of the Casimir

LSIP = −1

2
∆(Ω)− 1

2
⊗ Ω− Ω⊗ 1

2
+ 2k2

Again, the action of Ω on a function f on N is a multiplication by a constant, i.e. (Ωf)(n) =

2k(k − 1)f(n), and so(
1

2
⊗ Ω + Ω⊗ 1

2

)
f(n1)f(n2) = 2k(k − 1)f(n1)f(n2)

in other words, the action of LSIP is, up to a constant, equal to the action of ∆(Ω). This

simple observation assures us that it is enough to look for a symmetry of the Casimir. A

possible choice would be S = K+, indeed,

[Ω,K+] = ΩK+ −K+Ω = 2(K0)2K+ −K+K−K+ −K−(K+)2 −
(
2K+(K0)2 − (K+)2K− −K+K−K+

)
= 2(K0)2K+ −K−(K+)2 − 2K+K0 + (K+)2K− .

We now use the commutation relation of the su(1, 1) algebra in equation (4.17), in particular

we substitute the following

K0K+ = K+ +K+K0 K−K+ = 2K0 +K+K−

K+K0 = −K+ +K0K+ K+K− = 2K0 +K−K+

so that we get

[Ω,K+] = 2K0(K+ +K+K0)− (2K0 +K+K−)K+ − 2(−K+ +K0K+)K0 +K+(−2K0 +K−K+)

= 0 .

Using the fact that LSIP is, up to a constant, ∆(Ω) as well as Lemma 5.2 we have that the

SIP generator has ∆(K+) = 1 ⊗K+ + K+ ⊗ 1 as a symmetry. In order to have a factorized

form of the self-duality function we consider the exponential of K+ since if K+ is a symmetry

so is (K+)n for every n ∈ N, to be more precise we have that

∆(S) = e∆(K+)

will produce a factorized self-duality function for the symmetric inclusion process. To show

that, we use the fact that the final expression for the duality function will be in product form,

we can just find its expression for one site. In Lemma 2.2 we proved that the SIP reversible

measure is the negative binomial distribution, neglecting constants and quantities which would

not affect a duality relation (in the spirit of Remark 1.3), we consider as a cheap self-duality

function

dch(x, y) = δx,y
x!Γ(2k)

Γ(2k + x)
(5.9)
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Proposition 5.2 (Symmetry for the classical self-duality of SIP(k)). The one site classical

duality function of SIP in Equation (5.7) can be written in the form

Dcl = Sdch where S = eK
+
.

Proof. The proof is a straightforward calculation.

Dcl(x, y) =
(
eK

+
dch(·, y)

)
(x) =

∑
i

1

i!
(K+)i

y!Γ(2k)

Γ(2k + y)
δx,y

=
∑
i

1

i!

y!Γ(2k)

Γ(2k + y)

x!

(x− i)!
δx−i,y =

x!

(x− y)!

Γ(2k)

Γ(2k + y)
.

Last, we show how to find the classical self-duality function for the independent random

walk. In this context no Casimir is available and so we will not be using Lemma 5.2. The

symmetry of the generator will be found by inspection of the generator itself, however, it

should not surprise that it has the same form as in the previous two examples.

Example 5.6 (Classical self-duality of IRW). The generator of the Independent Random Walk

in (2.16) can be written for two sites in terms of the discrete generators of the Heisenberg algebra

with representation in equation (4.23) as

LIRW = (1⊗ a− a⊗ 1)(a† ⊗ 1− 1⊗ a†) .

The coproduct of a is a symmetry of LIRW , indeed

[LIRW ,∆(a)] = LIRWa− aLIRW = (1⊗ a− a⊗ 1)(a† ⊗ 1− 1⊗ a†)(a⊗ 1 + 1⊗ a)

− (a⊗ 1 + 1⊗ a)(1⊗ a− a⊗ 1)(a† ⊗ 1− 1⊗ a†)

which turns out to be zero by doing the algebra. As in the two previous cases, we want a

factorized self-duality function and so we chose the exponential of ∆(a). For one site, the

classical self-duality function is given by the following Proposition

Proposition 5.3 (Symmetry for the classical self-duality of IRW). The one site classical duality

function of IRW in Equation (5.7) can be written in the form

Dcl(x, y) =
(
Sdch(·, y)

)
(x) where S = ea .

Proof.

Dcl(x, y) =
(
eadch(·, y)

)
(x) =

∑
k

1

k!
(a)ky!δx,y =

∑
k

1

k!
y!

x!

(x− k)!
δx−k,y =

x!

(x− y)!
.
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We conclude the Chapter with a final remark on the norm of orthogonal polynomials. In general

orthogonal polynomials are uniquely defined once their L2 norm is fixed or, equivalently, the

leading coefficient is fixed. One may wonder how to chose the “right” normalization. One

option would be to use the Gram–Schmidt method for orthogonalization [19]. Suppose we have

duality and self-duality functions which are non orthogonal polynomials. Then it turns out

that, using those as input for the Gram–Schmidt procedure, the method releases, as an output,

the orthogognal polynomials with the suitable normalization.

Remark 5.1. First assume {Pn(x)}∞n=0 is a polynomial sequence orthogonal to the measure

w(x) with respect to a scalar product on L2(Ω, w). Assume vn(x) is a certain duality function

(the classical one), so using Gram–Schmidt we have

un = vn −
n−1∑
k=0

〈vn, uk〉
〈uk, uk〉

uk.

We pulg in our ansatz un(x) = bnPn(x) to get

bnPn(x) = vn −
n−1∑
k=0

〈vn, bkPk(x)〉
〈bkPk(x), bkPk(x)〉

bkPk(x) = vn −
n−1∑
k=0

〈vn, Pk(x)〉
〈Pk(x), Pk(x)〉

Pk(x) . (5.10)

Consider the scalar product with Pn(x) in both sides of the above equality to find

bn〈Pn(x), Pn(x)〉 = 〈vn(x), Pn(x)〉 .

And so we have an explicit formula for the coefficient we want to find, i.e.

bn =
〈vn(x), Pn(x)〉
〈Pn(x), Pn(x)〉

.

The value of the coefficient bn can now be evaluated case by case. The example below shows the

computation for Laguerre polynomials: starting with the classical (monomial) duality functions,

one gets the (normalized) orthogonal ones.

Example 5.7 (Orthogonal duality via Gram–Schmidt). Recall from equation (5.6) that the

classical duality function between BEP(k) and SIP(k) is

vn(x) = xn
Γ(2k)

Γ(2k + n)
.

Using the definition of hypergeometric function in equation (A.1) we can write the explicit

formula for generalized Laguerre polynomials of parameter 2k − 1

L(2k−1)
n (x) =

n∑
j=0

(−x)jΓ(2k + n)

Γ(2k + j)(n− j)!j!
=

n∑
j=0

(−1)jΓ(2k + n)

Γ(2k)(n− j)!j!
vj(x) .
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At this point we substitute in the formula for bn(x):

bn =
〈vn(x), L

(2k−1)
n (x)〉

〈L(2k−1)
n (x), L

(2k−1)
n (x)〉

=
〈vn(x), L

(2k−1)
n (x)〉

〈
∑n

j=0

(−1)jΓ(2k + n)

Γ(2k)(n− j)!j!
vj(x), L

(2k−1)
n (x)〉

=
〈vn(x), L

(2k−1)
n (x)〉

(−1)nΓ(2k + n)

n!Γ(2k)
〈vn(x), Ln(x)〉

= (−1)n
n!Γ(2k)

Γ(2k + n)
.

So, a new duality function is given by

(−1)n
n!Γ(2k)

Γ(2k + n)
L(2k−1)
n (x) .

The other cases we have, work in the same way: We see that up to some conserved quantity,

which are irrelevant to our purpose, it is possible to find the normalization for the new orthog-

onal dualities. It seems that the Gram–Schmidt procedure doesn’t affect the duality property

even if it is not clear why. One should check a posteriori, as we did, that the orthogonal

functions found in this way are actually duality or self-duality functions.



Chapter 6

Orthogonal dualities from an

algebraic outlook

In this Chapter we have two goals, one would be to fit the new duality relations established in

Chapter 3 under the algebraic approach of Chapter 5, this is done in the spirit of works [34] and

[29]. On the other hand we would also like to fill in the gap between change of representation-

duality and symmetries-self-dualities. To this end we can show that both orthogonal duality

and orthogonal self-duality can be understood via a change of representation of the appropriate

Lie algebra.

6.1 Change of representation: orthogonal (self-)duality

The first part of this Section is taken from the work [34], so we refer to it for more details

and technicalities. The main idea is that it is possible to write two Markov generators as

combination of elements of the appropriate Universal enveloping algebra. This guaranties (self-

)duality as long as one has two representations associated via an intertwining function. Given

the structure of our generators of Chapter 2 it turns out that the duality functions are product

of the intertwining functions, just like the previous results.

The main difference with the theory described in Section 5.1, where we show duality results

via a change of representation, is that now we use two different representations of the very

same Lie algebra. The concept of conjugate algebra is now replaced by a deeper use of the

∗-structure of the algebra. From [34] (Theorem 2.2) we have the following result.

Theorem 6.1. Let Ω = Ω1 × . . . × ΩN and Ωdual = Ωdual
1 × . . . × Ωdual

N . Consider the Lie

algebra g endowed with two unitarily equivalent ∗-representations which are intertwined by the

function di = di(xi, yi) with (xi, yi) ∈ Ωi × Ωdual
i in the following way

[X∗di(·, yi)] (xi) = [Xdi(xi, ·)] (yi) , (6.1)

73
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where X and X are two representations for X ∈ g. More precisely, the adjoint of the first

representation is intertwined with the second one. Suppose that L and Ldual are self-adjoint

operators on L2(Ω, µ) and L2(Ωdual, ν) respectively, that can be written as the same element

Y of the Universal enveloping algebra U(g) using the two representations above, respectively.

Then L and Ldual are dual with duality function

D(x, y) =
N∏
i=1

di(xi, yi) , x = (x1, . . . , xN ) ∈ Ω , y = (y1, . . . , yN ) ∈ Ωdual .

Proof. The idea is to write the abstract element Y as Y =
∑

Y(1) ⊗ · · · ⊗ Y(N), where for

i = 1, . . . , N Y(i) ∈ U(g), then since L = Y and Ldual = Y, we need to show that equation (1.8)

is verified. Thanks to the product structure of D, it is enough to show that

[Y ∗i d(·, yi)](xi) = [Yid(xi, ·)](yi) .

Since Y(i) = Yi,1Yi,2 · · ·Yi,ki for some Yi,j ∈ g, then thanks to equation (6.1) the result follows.

A similar approach can be used in context of self-duality. Except for the Heisenberg algebra,

the Lie algebras we will work with features a central element in the universal enveloping algebra,

the Casimir Ω commutes with every other elements of the algebra. It is interesting to notice

that, whenever the Casimir is available within the algebra, then the generator of the processes

defined in Chapter 2 can be related to it via the coproduct ∆. More specifically, we will see

that the generator of the process is, up to a constant, the coproduct of the Casimir ∆(Ω).

We now move on to the following theorem which shows a connection between the generator

of the process and self-duality. We will use it to show self-duality for our usual processes. Let

S be a metric space, we denote by F (S) the space of real-valued functions on S. We will also

work with functions f : S × S → R and a linear operator A : D(A) ⊂ F (S)→ F (S).

We will need the notion of intertwining function between two operators, after recalling its

definition we present a basic example to clarify.

Definition 6.1 (Intertwining function). The function f : S×S → R is an intertwining function

between operators A and B if the action of A on the first variable of f is equal to the action of

B on the second variable, i.e. (Af(·, y)) (x) = (Bf(x, ·)) (y).

Remark 6.1. As already introduced, sometimes it will be convenient to have a shorter nota-

tion: if T : F (S)→ F (S) is an operator and f : S × S → R a function, we write Txf for the

function

(x, y) 7→ [Tf(·, y)](x)

and similarly for Tyf . In this notation f(x, y) is an intertwining function between A and B if

Axf = Byf .



Change of representation: orthogonal (self-)duality 75

Example 6.1. Consider the two operators acting on g : R→ R defined as follows

(Ag) (x) = xg(x) (Bg) (y) =
∂

∂y
g(y) .

Then f(x, y) = exy is an intertwining function between A and B since

(Af(·, y)) (x) = xexy = (Bf(x, ·)) (y) .

For operators A and B we call a composition of the form

S(A,B) = An1Bn2An3 . . . Ank−1Bnk , for n1, . . . , nk ∈ N0

a string in A and B. If S(A,B) is a string of this form, then the reverse string is

Srev(A,B) = AnkBnk−1 . . . An2Bn1

and this operation can be extended to linear combinations of strings: if

C =

k∑
i=1

ciSi(A,B) , (6.2)

then

Crev =
k∑
i=1

ciS
rev
i (A,B) . (6.3)

We are particularly interested in operators such that C = Crev.

Theorem 6.2 (Intertwining functions, symmetries and self-duality). Let A and B be finite

order difference or differential operators on F (S), and let f : S × S → R be an intertwining

function between A and B.

1. If f is symmetric, i.e., f(x, y) = f(y, x), then f is an intertwining function between B

and A.

2. Suppose that f is also an intertwining function between B and A, and C is a linear

combination of strings in A and B such that C(A,B) = Crev(A,B). Then C is a self-

dual operator with duality function f .

Proof. For the first item, using the intertwiner hypothesis (Af(·, y)) (x) = (Bf(x, ·)) (y) and

the symmetry of f , namely f(x, y) = f(y, x), we will show that (Af(x, ·)) (y) = (Bf(·, y)) (x).

First we show that

[Af(·, y)](x) = [Af(y, ·)](x) . (6.4)

In the discrete case, denoting by ax,x′ the elements of the matrix associated to the operator A,

we have

(Af(x, ·)) (y) =
∑
y′

ay,y′f(x, y′) =
∑
y′

ay,y′f(y′, x) = (Af(·, x))(y) ,
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where we used the symmetry of the function f . In the continuous case for a first order differ-

ential operator ∂x =
∂

∂x

[∂xf(·, y)](x) = lim
h→0

f(x+ h, y) + f(x, y)

h
= lim

h→0

f(y, x+ h) + f(y, x)

h
= [∂xf(y, ·)](x) .

For a finite order differential operator A =
∑
ak(x)∂k1x1 · · · ∂

kL
xL

, x = (x1, . . . , xL), this leads to

(6.4) as in the previous case, assuming f is sufficiently smooth. Our initial hypothesis that the

function f intertwines between the operator A and the operator B implies that

(Af(·, x)) (y) = (Bf(y, ·)) (x) . (6.5)

Identity (6.4) holds for the operator B as well, i.e.

(Bf(y, ·)) (x) = (Bf(·, y)) (x) . (6.6)

Combining together equations (6.4), (6.5) and (6.6) one proves that

(Af(x, ·)) (y) = (Bf(·, y)) (x) ,

i.e., f is an intertwining function for B and A: in the notation of Remark 6.1 this is Bxf = Ayf .

For the second item observe that

(An1Bn2)xf = (An1)x(An2)yf = (An2)y(A
n1)xf = (An2Bn1)yf .

Iterating this procedure we get that

S(A,B)xf = Srev(A,B)yf . (6.7)

So now

Cxf =

k∑
j=1

cjSj(A,B)xf =

k∑
j=1

cjS
rev
j (A,B)yf = Crevy f = Cyf ,

where the second identity comes from (6.7) and the fourth identity holds due to conditions on

C.

Example 6.2. Suppose, as in the previous theorem, that f is an intertwining function between

operators A and B as well as between B and A, then examples of self-dual operators are

• C1 = AB.

• C2 = [A,B]2 = ABAB +BABA−AB2A−BA2B.

Remark 6.2. In our applications the operator C will always be the generator of the processes.

Typical examples to have in mind for F (S) are C (S), Cc(S), C0(S) the sets of continuous real-

valued functions on S, continuous real-valued functions with compact support on S, continuous

real-valued functions on S going to zero at infinity.
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Theorem 6.2 heavily relies on operators A and B so one may wonder how to construct them.

In the majority of the cases the two operators A and B arise naturally from the structure of the

Casimir element of the underlying algebra. The next lemma shows that, whenever the generator

is (in terms of) the coproduct of the Casimir, A and B can be found as the coproduct of two

other operators.

Lemma 6.1. If the Casimir element Ω is a linear combination of strings in X and Y , i.e.

Ω = h(X,Y ), then ∆(Ω) = h(∆(X),∆(Y )). In particular, if Ω = Ωrev, then ∆(Ω) = ∆(Ω)rev.

Proof. Consider the coproduct of Ω

∆ (Ω) = ∆ (h(X,Y )) = h(∆X,∆Y )

where the second equality follows from the fact that the coproduct is an algebra homomorphism.

In the applications of the next Section, h turns out to be a polynomial of fourth degree.

Moreover, anytime the process generator is, up to a constant, equal to the coproduct of the

Casimir L ∼ ∆(Ω), it will be sufficient to look for operators X and Y for which the Casimir Ω

is equal to Ωrev instead of operators A and B for which the generator L is equal to Lrev. We

end this Section showing that, once an intertwining function between two operators is available,

it can be used to find an intertwining function for the coproduct of the two operators in the

following way.

Lemma 6.2. If X and Y are two Lie algebra elements acting on F (S) and f(x, y) is an

intertwining function between X and Y , then f(x1, y1)f(x2, y2) intertwines ∆(X) with ∆(Y ).

Proof. Recalling that, for Lie algebra elements X the coproduct of X is defined as

∆(X) = 1⊗X +X ⊗ 1 ,

then

[∆(X)f(·, y1)f(·, y2)](x1, x2) = f(x1, y1)[Xf(·, y2)](x2) + [Xf(·, y1)](x1)f(x2, y2)

which, using the intertwining hypothesis, becomes

f(x1, y1)[Y f(x2, ·](y2) + [Y f(x1, ·](y1)f(x2, y2) = [∆(Y )f(x1, ·)f(x2, ·)](y1, y2) .



78 Chapter 6 Orthogonal dualities from an algebraic outlook

6.1.1 Duality results

We use this Section for an application of Theorem 6.1 to prove the orthogonal duality relation

between BEP(k) and SIP(k) processes. Recalling the generators of these two processes in

Section 2.6 and Section 2.3 respectively one would like to find two representations of an abstract

element Y belonging to the Universal enveloping su(1, 1) Lie algebra. We take Yi,l as the

coproduct of Casimir element of the su(1, 1) Lie algebra

Yi,l = 1⊗ Ωl + Ωi ⊗ 1 + 4K0
i ⊗ K0

l − 2K+
i ⊗ K−l − 2K−i ⊗ K+

l .

So that, for appropriate representations Yi,l and Yi,l we can find

LSIP =
∑

1≤i<l≤N
Yi,l + 2k2 , (6.8)

while

LBEP =
∑

1≤i<l≤N
Yi,l + 2k2 . (6.9)

The first representation, Yi,l, used in (6.8) is the standard discrete one introduced in equation

(4.18), while we need to find the second one such that normalized Laguerre polynomials are

intertwining functions. This is done in [34] (Lemma 4.12) using the recurrence relation and

the differential equation for d(x, n) = n!Γ(2k)
Γ(2k+n)Ln(x), where Ln(x) is the generalized Laguerre

polynomial in x of degree n and parameter 2k − 1. It turns out that the second (continuous)

representation is

(K+f)(x) = −x ∂
∂x
f(x)− 2k − x

2
f(x) (K−f)(x) = −1

2
ixf(x)

(6.10)

(K0f)(x) = 2ix
∂2

∂x2
f(x) + 2i(2k − x)

∂

∂x
f(x) +

i

2
(4k − x)f(x) .

It is simple to verify that K+, K− and K0 satisfy the su(1, 1) commutation relations in equation

(4.17) and that LBEP can easily be found using this representation as in equation (6.9). Finally,

Theorem 6.1 gives duality between symmetric inclusion process SIP(k) and Brownian energy

process BEP(k).

Theorem 6.3. Generators LSIP and LBEP are dual with duality function

D(x, n) =
n!Γ(2k)

Γ(2k + n)
Ln(x) .

6.1.2 Self-duality results

This Section includes five sub-sections where detailed examples are provided: in each sub-

section the natural Lie algebra is recalled from Chapter 4. Each paragraph ends with a theorem

where the statement of a self-duality relation is proven via Theorem 6.2.
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Remark 6.3. The generators in Chapter 2 were defined in the most general setting, i.e. on

an undirected and connected graph G. However, noticing that our generators only acts on two

(connected) variables at time, without loss of generality we can restrict the setting on two sites.

Self-duality of SEP with Krawtchouk polynomials

Recall the su(2) Lie algebra introduced in Chapter 4.1 where the coproduct of the Casimir is

∆(Ω) = 1⊗ Ω + Ω⊗ 1 + 4J0 ⊗ J0 + 2J+ ⊗ J− + 2J− ⊗ J+

The SEP generator (in equation (2.10)) on two sites is

LSEP = J+ ⊗ J− + J− ⊗ J+ + 2J0 ⊗ J0 + 2j2 .

It is easy to see that

LSEP =
1

2
∆(Ω)− 1

2
⊗ Ω− Ω⊗ 1

2
+ 2j2

since (Ωf)(n) = 2j(j + 1)f(n), then(
1

2
⊗ Ω + Ω⊗ 1

2

)
f(n1)f(n2) = 2j(j + 1)f(n1)f(n2)

which means that, when acting on functions f(n1)f(n2), the action of LSEP is, up to a constant,

equal to the action of ∆(Ω).

The idea now (see [43] and [34]) is to look for eigenfunctions of Xp = J+ + J− − a(p)J0

with an appropriate choice of a(p). Let’s start from the three term recurrence relation for the

symmetric Krawtchouk polynomials, defined via the hypergeometric function as

Kn(x) := 2F1

(
−n,−x
−2j

∣∣∣∣ 1

p

)
n, x ∈ N2j .

The three term recurrence relation for Kn(x) is

−xKn(x) = p(2j − n)Kn+1(x)− (2jp− 2np+ n)Kn(x) + n(1− p)Kn−1(x) .

We want to read this identity as an eigenvalue equation for Xp with Krawtchouk polynomials

as eigenfunctions. We set

a(p) =
(1− 2p)

[p(1− p)]1/2
,

so that k(x, n) =
(

p
1−p

) 1
2

(n+x)
Kn(x) is a symmetric (in n and x) eigenfunction of the operator

Xp , i.e.

(Xpk(x, ·)) (n) = λ(x)k(x, n)

where λ(x) = − x− j
[p(1− p)]1/2

is the eigenvalue. Define

Jp = −[p(1− p)]1/2Xp,
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then k(x, n) is of course also an eigenfunction of Jp: (Jpk(x, ·))(n) = (x−j)k(x, n). Comparing

this with the action of J0, we have

(Jpk(x, ·)) (n) = (J0k(·, n))(x), (6.11)

i.e., k is an intertwining function between J0 and Jp. We have now worked everything out in

order to prove the following theorem.

Theorem 6.4. The symmetric exclusion process is self-dual with duality function k(x1, n1)k(x2, n2).

Proof. The statement of the theorem follows from Theorem 6.2. First, by Lemma 6.2 k(x1, n1)k(x2, n2)

is an intertwining function between ∆(J0) and ∆(Jp) because of equation (6.11). More-

over, k(x1, n1)k(x2, n2) is symmetric in (x1, x2) and (n1, n2), so by the first item of Theo-

rem 6.2 it is also an intertwining function between ∆(Jp) and ∆(J0). It is left to show that

L(∆(J0),∆(Jp)) = Lrev(∆(J0),∆(Jp)) where L is the generator of the SEP process. Using

Lemma 6.1, we can just check that Ω = Ωrev with respect to J0 and Jp. Indeed, using the

following identities

J− + J+ = Xp + aJ0 J− − J+ = [Xp, J
0] (6.12)

we have

2Ω = 4(J0)2 + 2J+J− + 2J−J+ = 4(J0)2 + (J− + J+)2 − (J− − J+)2

= 4(J0)2 + (Xp + a(J0)2 −
([
Xp, J

0
])2

= 4(J0)2 +

(
− 1
√
p
√

1− p
Jp + aJ0

)2

−
([
− 1
√
p
√

1− p
Hp, J

0

])2

.

From 4 + a2 = 1
p(1−p) we obtain

Ω =
1

2p(1− p)
((J0)2 + J2

p )− 1− 2p

2p(1− p)
(J0Jp − JpJ0) +

1

2p(1− p)
[J0, Jp]

2,

from which we can read off that Ω = Ωrev. By Theorem 6.2 the SEP generator is self-dual with

duality k(x1, n1)k(x2, n2).

The su(2) algebra is generated by J0 and Jp for which we have a representation on the n

variable as well as a representation on the x variable. Using equations in (6.12) operators J+

and J− can also be realised as operators on the x variable, producing a different representation

of the su(2) algebra. It is important to stress that in this case the Krawtchouk polynomials

are not intertwining as for the operators J0 and Jp. Indeed, some straightforward but long

computations would show that the operators J+ and J− have a tri-diagonal representation on

the x variable, which we identify with the subscript p[
J−p k(·, n)

]
(x) =

4p− 1

4
(2j − x)k(x+ 1, n)− 2

√
p(1− p)(x− j)k(x, n) +

4p− 3

4
xk(x− 1, n)[

J+
p k(·, n)

]
(x) =

4p− 3

4
(2j − x)k(x+ 1, n)− 2

√
p(1− p)(x− j)k(x, n) +

4p− 1

4
xk(x− 1, n) .
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One could also upgrade the representation for function of only one variable, the x one.

Self-duality of SIP with Meixner polynomials

The su(1, 1) algebra is the Lie algebra generated introduced in Chapter 4.2, with Casimir

Ω = 2(K0)2 −K+K− −K−K+ ,

we recall for simplicity the coproduct of the Casimir

∆(Ω) = 1⊗ Ω + Ω⊗ 1 + 4K0 ⊗K0 − 2K+ ⊗K− − 2K− ⊗K+ .

On two sites the SIP generator (2.13) is

LSIP = K+ ⊗K− +K− ⊗K+ − 2K0 ⊗K0 + 2k2 ,

and so one has the SIP generator in term of the coproduct of the Casimir

LSIP = −1

2
∆(Ω)− 1

2
⊗ Ω− Ω⊗ 1

2
+ 2k2 .

Again, the action of Ω on a function of f on N is a multiplication by a constant with respect

to n, meaning that (Ωf)(n) = 2k(k − 1)f(n), and so(
1

2
⊗ Ω + Ω⊗ 1

2

)
f(n1)f(n2) = 2k(k − 1)f(n1)f(n2)

in other words, the action of LSIP is, up to a constant, equal to the action of ∆(Ω).

Consider the symmetric Meixner polynomials defined in Section 3.2.2

Mn(x) := 2F1

(
−n,−x

2k

∣∣∣∣ 1− 1

c

)
x, n ∈ N0 .

The three term recurrence relation for the Meixner polynomials is

(c− 1)xMn(x) = c(n+ 2k)Mn+1(x)− (n+ nc+ 2kc)Mn(x) + nMn−1(x) .

Let’s define Xc := K+ + K− − a(c)K0 with a(c) = (1+c)√
c

, for which the function m(x, n) =

c
1
2

(x+n)Mn(x; 2k, c) is an eigenfunction, namely

(Xcm(x, ·)) (n) =
(c− 1)√

c
(x+ k)m(x, n) .

Calling Kc =

√
c

(c− 1)
Xc we have

(Kcm(x, ·)) (n) = (x+ k)m(n, x) =
(
K0m(·, n)

)
(x) ,

so that m(x, n) is an intertwining function between K0 and Kc. We have now all the ingredients

to prove self-duality for the SIP process.
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Theorem 6.5. The symmetric inclusion process is self-dual with duality function m(x1, n1)m(x2, n2).

Proof. The proof is analogous to the proof of Theorem 6.4, note that in this case the expression

for the Casimir as function of K0 and Kc becomes

Ω = −(c− 1)2

2c
((K0)2 +K2

c ) +
1− c2

2c
(K0Kc +KcK

0) +
(c− 1)2

2c
[Kc,K

0]2 .

The realisation of K+ and K− as operator on the x variable can be found as in the previous

Section, and it turns out that[
K+
c m(n, ·)

]
(x) =

1

c− 1
(2k + x)m(n, x+ 1) +

2
√
c

c− 1
(x+ k)m(n, x) +

c

c− 1
xm(n, x− 1)[

K−c m(n, ·)
]

(x) = − c

c− 1
(2k + x)m(n, x+ 1) +

2
√
c

c− 1
(x+ k)m(n, x)− 1

c− 1
xm(n, x− 1)

where we stress again that the Meixner polynomials are not a change of representation between

K+ (resp. K−) and K+
c (resp. K−c ) as it happens between K0 and Kc.

Self-duality for BEP and Bessel functions

In this Section we show self-duality for the BEP process of parameter k. It is the first time

we show self-duality for a continuous process, the result is not available using the techniques

of Chapter 3 but it could be found here [56] via a generating function approach and here [34]

using a change of representation argument. Consider the BEP(k) process defined in Section

2.6. We use the su(1, 1) Lie algebra of the previous Section with a continuous representation,

which has been already introduced in [34] so we recall here what we need. Generators H, E

and F are defined on L2(R+, µk), with µk =
z2k−1e−z

Γ(2k)
, k > 0, and act on functions f(z) as

(Hf) (z) := (−2z∂z − (2k − z)) f(z)

(Ef) (z) := −1

2
izf(z) (6.13)

(Ff) (z) :=

(
−2iz∂2

z − 2i(2k − z)∂z +
i

2
(4k − z)

)
f(z)

where ∂z :=
∂

∂z
. Note that in this case the ∗-structure is H∗ = −H, E∗ = −E and F ∗ = −F

and the Casimir Ω is still self-adjoint. The BEP generator (in equation (2.20)) on two sites is

LBEP = −1

2
(∆(Ω)− 1⊗ Ω− Ω⊗ 1) + 2k2.

Bessel functions of the first kind are defined in terms of hypergeometric functions as

Jν(z) :=
(z/2)ν

Γ(ν + 1)
0F1

(
−

ν + 1

∣∣∣∣−z2

4

)
ν > −1 .
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They are solutions of the second order differential equation

−∂2
zJν(z)− 1

z
∂zJν(z) +

ν2

z2
Jν(z) = Jν(z) .

From the differential equation above, one infers that Jν(zw) is an eigenfunction for the second

order operator T with eigenvalue w2, as in [34] we have

T = −∂2
z −

1

z
∂z +

ν2

z2
TJν(zw) = w2Jν(zw) . (6.14)

Consider now the action of operator F on the z variable of Jν(zw) as in equation (6.13), using

the second order differential equation for Jν(zw) in (6.14) we can find that the eigenfunctions

of F are given in terms of Bessel functions J(2k−1)(
√
zw), which are solutions of the following

second order differential equation

−2z∂2
zJ(2k−1)(

√
zw)− 2∂zJ2k−1(

√
zw) +

(2k − 1)2

2z
J(2k−1)(

√
zw) = J(2k−1)(

√
zw) .

Consider ( [34], Lemma 4.16) the function defined as follows,

J(z, w) = e
1
2

(z+w)(zw)−k+ 1
2J2k−1(

√
zw) , (6.15)

then J(z, w) is an eigenfunction for F with eigenvalue
1

2
iw, i.e.

(FJ(·, w)) (z) =
1

2
iwJ(z, w) = (−EJ(z, ·)) (w) .

We see that J(z, w) is an intertwining function between operators F and −E. Given the

symmetry if J , i.e. J(z, w) = J(w, z), we could also obtain the action of E on the w variable.

Theorem 6.6. The Brownian energy process is self-dual with duality function J(z1, w1)J(z2, w2).

Proof. The proof is analogous to the proof of Theorem 6.4 where the intertwined operators are

F and −E, and the Casimir is

Ω =
1

2
H2 + EF + FE =

1

2
[−E,F ]2 − (−E)F − F (−E) ,

which is equal to Ωrev.

Operators E, F and H act on variables z and w in the following way for duality functions

J(z, w; k).
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(HJ(·, w; k)) (z) := (−2z∂z − (2k − z)) J(z, w; k)

= (−2w∂w − (2k − w)) J(z, w; k)

= (HJ(z, ·; k)) (w)

(FJ(·, w; k)) (z) :=

(
−2iz∂2

z − 2i(2k − z)∂z +
i

2
(4k − z)

)
J(z, w; k)

=
1

2
iwJ(z, w; k)

= (−EJ(z, ·; k)) (w)

(EJ(·, w; k)) (z) := −1

2
izJ(z, w; k)

=

(
2iw∂2

w + 2i(2k − w)∂w −
i

2
(4k − w)

)
J(z, w; k)

= (−FJ(z, ·; k)) (w) .

It is immediate to notice that, with these two continuous representations, our self-duality

functions are indeed intertwining functions between F and −E and E with −F .

A change of variable for Bessel functions and self-duality for the Brownian mo-

mentum process

The idea of this Section is to obtain the self-duality of the BMP process as a consequence of

the change of variable highlighted in Remark 2.3. The representation (6.13) will provide a new

representation for the action of the Lie algebra generators(
H̃f
)

(x) :=

(
−x∂x −

(
1

2
− x2

))
f(x)(

Ẽf
)

(x) := −1

2
ix2f(x) (6.16)(

F̃ f
)

(x) :=

(
− i

2
∂2
x + ix∂x +

i

2
(1− x2)

)
f(x) .

In equation (6.15) we set z = x2, w = y2 and k = 1
4 so that the candidate BMP self-duality

function becomes

J̃(x, y) = e
1
2

(x2+y2)(|xy|)
1
2J−1/2(xy) = e

1
2

(x2+y2)

√
2

π
cos(xy) ,

where the second identity follows from the fact that, for fixed parameter ν = −1/2, Bessel

functions assume the simple form of

J−1/2(x) =

√
2

πx
cos(x) .
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Theorem 6.7. The Brownian momentum process is self-dual with self-duality function J̃(x1, y1)J̃(x2, y2).

Proof. Given the su(1, 1) algebra representation in (6.16), one could argue similarly as in The-

orem 6.6 to prove that J̃(x, y) is indeed a self-duality function for the BMP process. However,

we follow another analogous path. We show here that the self-duality for the BMP process can

be obtained from the self-duality of the BEP via the change of variable in Remark 2.3.

For the invertible operator V : L2(R+, µ1/4) → L2
e(R, e

−x2
√
π

) given by (V f)(x) = f(x2) and

where L2
e is the L2 space of even functions, we have

H̃ = V HV −1

Ẽ = V EV −1

F̃ = V FV −1 .

One can now easily check that

LBMP = V LBEP (1/4)V −1 . (6.17)

At this point we indicate with D1/4(z, w) and D(x, y) the self-duality functions of the BEP

process with k = 1/4 and the BMP process respectively, so that the following relation holds

D(x, y) =
(
VxVyD

1/4
)

(x, y) = D1/4(x2, y2) , (6.18)

where we use the notation of Remark 6.1. For the generators this gives

LBMP
x D = LBMP

x VxVyD
1/4

= VxL
BEP (1/4)
x VyD

1/4

= VxVyL
BEP (1/4)
y D1/4

= VxL
BMP
y VyD

1/4

= LBMP
y D .

Here we used that operators acting on x commute with operators acting on y, the first and

last equalities are true in virtue of equation (6.18), the second and fourth ones both come

from equation (6.17), and the third one is the self-duality of the BEP(1/4) process in Theorem

6.6.

As before, it is an easy computation to find the realisation of operators E, F and H on
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function of x and y acting on J̃ .(
HJ̃(·, y; k)

)
(x) :=

(
−x∂x −

(
1

2
− x2

))
J̃(x, y; k)

=

(
−y∂y −

(
1

2
− y2

))
J̃(x, y; k)

=
(
HJ̃(x, ·; k)

)
(y)(

F J̃(·, y; k)
)

(x) :=

(
− i

2
∂2
x + ix∂x +

i

2
(1− x2)

)
J̃(x, y; k) =

1

2
iy2J̃(x, y; k)

=
(
−EJ̃(x, ·; k)

)
(y)(

EJ̃(·, y; k)
)

(x) := −1

2
ix2J̃(x, y; k)

=

(
i

2
∂2
y − iy∂y −

i

2
(1− y2)

)
J̃(x, y; k)

=
(
−F J̃(x, ·; k)

)
(y) .

See that our self-duality functions are indeed intertwining functions between F (resp. E) and

E(resp. −F ).

Self-duality of IRW and Charlier polynomials

Last paragraph of this Section is dedicated to independent random walkers, in this case no

Casimir element is available and so we will show that conditions of Theorem 6.2 are satisfied

following a different route. Since it will be easier to work with another representation of the

Heisenberg algebra, we will introduce a new representation. Taking λ = 1 and the operator Z

to be the identity we would find the Lie representation presented in Section 4.3. However, we

will now have that the Heisenberg algebra has generators a, a† and Z satisfying the relations

[a, Z] = [a†, Z] = 0 [a†, a] = Z .

The ∗−structure is defined by a∗ = a†, and Z∗ = Z. In this setting, a, a† and Z are operators

on l2(N0, µ) where the scalar product is defined by

〈f, g〉µ =
∑
n∈N

f(n)g(n)µ(n)

and µ(n) =
λn

n!
for λ > 0. Generators a, a† and Z act on functions f(n) on N0 as

(af)(n) := nf(n− 1)

(a†f)(n) := λf(n+ 1) (6.19)

(Zf)(n) := λf(n) .
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In this representation the independent random walk generator (in equation (2.16)), up to

constant λ, on two sites is

LIRW = (1⊗ a− a⊗ 1)(a† ⊗ 1− 1⊗ a†) = a† ⊗ a− 1⊗ aa† − aa† ⊗ 1 + a⊗ a† . (6.20)

We remark that since no Casimir element is available we will not be looking for a function

for which the Casimir is reversible, this time we will search directly for operators for which

L is equal to Lrev. To this end let’s define the operator X := Z − a† and we notice that the

Heisenberg algebra is generated by a and X, since using Z = [a,X] and a† = −X + [a, Z], the

generator of the IRW process in (6.20) becomes

LIRW = −X ⊗ a+ 1⊗ aX + aX ⊗ 1− a⊗X . (6.21)

As done before, it is time to introduce our candidate self-duality functions: the Charlier poly-

nomials are defined by

Cn(x) = 2F0

(
−n,−x
−

∣∣∣∣− 1

λ

)
, x, n ∈ N0

they are clearly symmetric in x and n. They satisfy the three term recurrence relation

−xCn(x) = λCn+1(x)− (n+ λ)Cn(x) + nCn−1(x) ,

and the following forward shift relation

xCn(x− 1) = λCn(x)− λCn+1(x) . (6.22)

We conclude this Section with the proof of the next theorem, by giving operators A and B

such that the hypothesis of Theorem 6.2 are satisfied.

Theorem 6.8. The independent random walk process is self-dual with self-duality function

C(x1, n1)C(x2, n2), where C(x, n) = Cn(x)

Proof. First, let’s show that item one of Theorem 6.2 is satisfied. From the definition of the

Charlier polynomials we have that C(n, x) = C(x, n), so that C(x1, n1)C(x2, n2) is symmetric

in (x1, x2) and (n1, n2). Define A = a⊗1−1⊗a and B = X⊗1−1⊗X, then C(x1, n1)C(x2, n2)

is an intertwining function for A and B. Indeed, for one site

(XC (·, x)) (n) =
((
Z − a†

)
C (·, x)

)
(n)

= λ (C(n, x)− C(n+ 1, x))

= xC(n, x− 1)

= (aC (n, ·)) (x)
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where the second equality follows immediately from (6.19) and the third one follows from

equation (6.22). For two sites it simply becomes

(BC(x1, ·)C(x2, ·)) (n1, n2) = (XC(x1, ·))(n1)C(x2, n2)− C(x1, n1)(XC(x2, ·)(n2)

= (aC(·, n1)(x1)C(x2, n2)− C(x1, n1)(XC(·, n2))(x2)

= (AC(·, n1)C(·, n2, )) (x1, x2) .

For the second item one can check from (6.21) that the generator of the IRW process is given

by LIRW = AB, which is equal to Lrev.

Operators a, a† and Z act on variables n and x in the following way for Charlier polynomials.

(aC(x, ·)) (n) := nC(x, n− 1) = λC(x, n)− λC(x+ 1, n) =
((
Z − a†

)
C(·, n)

)
(x)(

a†C(x, ·)
)

(n) := λC(x, n+ 1) = λC(x, n)− xC(x− 1, n) = ((Z − a)C(·, n)) (x)

(ZC(x, ·)) (n) := λC(x, n) = (ZC(·, n)) (x) .

6.2 Symmetries leading to orthogonal self-duality

In this Section we explicitly show who are the operator symmetries S̃, given in terms of the

underling Lie algebra generators which allows to recover the orthogonal duality functions. It

is important to mention that, since we start from a (trivial) duality which is orthogonal then

the operator S̃ that produces the orthogonal duality must be unitary. Recall that a unitary

operator is a linear operator such that the inverse is its adjoint, i.e.

UU∗ = U∗U = I .

As a consequence of this, we will have that the norm of the cheap duality function must be the

same as the norm of the orthogonal duality function, since, for some appropriate Hilbert space

‖ Dorthogonal ‖= 〈S̃dcheap, S̃dcheap〉 =‖ dcheap ‖ .

6.2.1 Krawtchouk polynomials

Standard Krawtchouk polynomials are defined as

Kj,p(x, y) = K(x, y) = 2F1

(
−x,−y
−2j

∣∣∣∣ 1

p

)
=

x∧y∑
i=0

(−1)i

i!

x!

(x− i)!
y!

(y − i)!
(2j − i)!

2j!

(
1

p

)i
. (6.23)

Since the scalar product of two self-duality functions is still a self-duality function (Proposition

1.2), we define the scalar self-duality function as

Dsca
ab (x, y) := 〈Dcl

a (x, ·), Dcl
b (y, ·)〉w =∑

i

Dcl(x, i)(ab)iDcl(y, i)w(i)
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where w(n) =
2j!

(2j − n)!n!
. We choose to set, for example a = 1 and b = −1

p (this choice is not

unique), so we have that K(x, y) = Dsca
−1/p(x, y). In matrix notation the relation becomes

K = Dcl(dch)−1(Dcl
−1/p)

T = eJ
+
dch(dch)−1(eJ

+
dch−1/p)

T = eJ
+
dch−1/p(e

J+
)T , (6.24)

which is clearly symmetric. Using the transpose equation for J− as in (4.13) we have (J+)T =

d−1(J−)d. Substitution into K produces

K = eJ
+
dch−1/p(d

ch)−1eJ
−
dch . (6.25)

Setting (N)x,y =
(
−1
p

)y
δx,y it is clear that

K = eJ
+
NeJ

−
dch = eJ

+
e−J

−
Ndch (6.26)

and N anti-commutes with J− with factor p, i.e. NJ− = −pJ−N which implies that NeJ
−

=

e−pJ
−
N so we can write the orthogonal self-duality function in matrix notation as

K = eJ
+
e−pJ

−
dch−1/p , (6.27)

since Ndch = dch−1/p by definition of the self-duality with parameter. We now identify the

symmetry as

S̃ = eJ
+
e−pJ

−
. (6.28)

The next lemma shows via generating functions that S̃dch−1/p is a Krawtchouk polynomial. This

can be done showing that the generating function of Krawtchouk polynomials has the same

form of the generating function of S̃dch−1/p. It will be convenient to define the generating function

G as in [42] (formula 9.11.10), i.e. the generating function of g(n) is

(G g) (t) =

2j∑
n=0

g(n)

(
2j

n

)
tn ,

which, for Krawtchouk polynomials Kn(x) of parameters p and 2j is

2j∑
n=0

Kn(x)

(
2j

n

)
tn =

(
1− (1− p)

p
t

)x
(1 + t)2j−x . (6.29)

Lemma 6.3. The generating function of S̃dch−1/p, i.e.

G(S̃dch−1/p) =

2j∑
n=0

eJ
+
e−pJ

−
dch−1/p

(
2j

n

)
tn

is the generating function of Krawtchouk polynomials in equation (6.29).
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Proof. The idea is to evaluate G
(
eJ

+
e−pJ

−
dch−1/p

)
which can be done in a simple way using

the fact that G, understood as operator acting on functions of the n variable commutes with

operators J± in the following way.

GJ+f(t) =

2j∑
n=0

nf(n− 1)

(
2j

n

)
tn

= 2j t

2j∑
n=0

f(n)

(
2j

n

)
tn − t2

2j∑
n=0

f(n)

(
2j

n

)
ntn−1

=

(
2j t− t2 ∂

∂t

)
Gf(n)

= J +Gf(t) ,

this implicitly defines the operator J + which acts on function of the t variable as

J + := 2j t− t2 ∂
∂t

.

Similarly,

GJ−f(n) =

2j∑
n=0

(2j − n)f(n+ 1)

(
2j

n

)
tn =

2j∑
n=0

f(n)

(
2j

n

)
tn−1 =

(
∂

∂t

)
Gf(n) = J−Gf(n) ,

so the operator J− is a first derivative, defined as

J−g(t) :=
∂g

∂t
(t) .

The action of the exponentials on functions of the t variable, can be found as follows. Clearly,

using Taylor expansion (
e−pJ−φ

)
(t) = e−p

∂
∂tφ(t) = φ(t− p)

since both sides are equal to
∑

n

φ(n)(t)

n!
(−p)n. The action of the other exponential operator

can be found solving a partial differential equation. Set

ψ(t, γ) = eγ(−t
2 ∂
∂t

+2j t)f(t) = eγK +
f(t)

which is solution of
∂

∂t
ψ(t, γ) =

(
t2
∂

∂t
+ 2j t

)
ψ(t, γ) .

with the aid of Feynman-Kac formula one finds

ψ(t, γ) = eγJ+
f(t) = eγ(2j t−t2 ∂

∂t)f(t)

= e
∫ γ
0 2j t

1+st
dsf

(
t

1 + γt

)
= (1 + γt)2jf

(
t

1 + γt

)
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we get the wanted result for γ = 1, i.e.

eJ+
f(t) = (1 + t)2jf

(
t

1 + t

)
.

We now use the commutative property of operators J± and J± with G so that we just need to

calculate the rhs of

G
(
eJ

+
e−pJ

−
dch−1/p

)
= eJ+

e−pJ−G
(
dch−1/p

)
.

The generating function of the cheap self-duality function is

G
(
dch−1/p(x, ·)

)
(t) =

2j∑
n=0

n!(2j − n)!

2j!

(
−1

p

)n
δx,n

(
2j

n

)
tn =

(
− t
p

)x
and so

eJ+
e−pJ−G

(
dch−1/p

)
= eJ+

e−pJ−
(
− t
p

)x
= eJ+

(
− t− p

p

)x
= (1 + t)2j

(
−

t
1+t − p
p

)x
= (1 + t)2j−x

(
1− 1− p

p
t

)x
,

which is exactly the generating function of Krawtchouk polynomials.

6.2.2 Meixner polynomials

Standard Meixner polynomials are defined as

Mk,p(x, y) = M(x, y) = 2F1

(
−x,−y

2k

∣∣∣∣ 1− 1

p

)
=

x∧y∑
i=0

1

i!

x!

(x− i)!
y!

(y − i)!
Γ(2k)

Γ(2k + i)

(
p− 1

p

)j
.

(6.30)

Consider the scalar product self-duality w.r.t w(n) =
Γ(2k + n)

Γ(2k)

Dsca
ab (x, y) := 〈Dcl

a (x, ·), Dcl
b (y, ·)〉w =∑

i

Dcl(x, i)Dcl(y, i)(ab)iw(i) .

Setting a = 1 and b = p−1
p we have that

Dsca
p−1
p

(x, y) = M(x, y) , (6.31)

so we can write the Meixner polynomials in terms of classical self-duality functions as a scalar

product, i.e.

M(x, y) := 〈Dcl(x, ·), Dcl
p−1
p

(y, ·)〉w =∑
i

Dcl(x, i)Dcl
p−1
p

(y, i)w(i) .
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In matrix notation the relation becomes

M = Dcl(dch)−1(Dcl
p−1
p

)T = eK
+
dch(dch)−1dchp−1

p

(eK
+
dchp−1

p

)T = eK
+
dchp−1

p

(eK
+

)T (6.32)

which is clearly symmetric. Using equation (4.20), i.e. (K+)T = d−1(K−)d and subbing (K+)T

into M we find

M = eK
+
dchp−1

p

(eK
+

)T = eK
+
dchp−1

p

(dch)−1eK
−
dch (6.33)

letting N(x, y) =
(
p−1
p

)x
δx,y we have

M = eK
+
NeK

−
dch . (6.34)

As before it is easy to show that NK− = p
p−1K

−N and seeing the operator N as a factor of

the cheap self-duality function

M = eK
+
e

p
p−1

K−
dchp−1

p

, (6.35)

where we identify the symmetry as S̃ = eK
+
e

p
p−1

K−
. This computation shows that also or-

thogonal duality can be viewed as the product of the symmetry S̃ and the cheap duality of

parameter p−1
p .

As done before, one can check independently that the S̃dchp−1
p

are Meixner polynomials using

their generating function as in [42] (formula 9.10.11), where the generating function of g(n) is

defined as

(Gg (n)) (t) =

∞∑
n=0

g(n)(2k)n
tn

n!
.

For Meixner polynomials Mn(x) of parameters p and 2k the generating function can be evalu-

ated and it is
∞∑
n=0

Mn(x)(2k)n
tn

n!
=

(
1− t

p

)x
(1− t)−2k−x . (6.36)

Lemma 6.4. The generating function of S̃dchp−1
p

coincides with the generating function of

Meixner polynomials in equation (6.36).

Proof. The proof follows the same idea of the one before; instead of evaluatingG

(
eJ

+
e−pJ

−
dchp−1

p

)
we find continuous operators K ± as

GK+f(n) =

∞∑
n=0

nf(n− 1)(2k)n
tn

n!
=

(
t2
∂

∂t
+ 2k t

)
Gf(n) = K +Gf(n) ,

from which we infer

K + := t2
∂

∂t
+ 2k t .
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Similarly,

GK−f(n) =
∞∑
n=0

(2k + n)f(n+ 1)(2k)n
tn

n!
=

(
∂

∂t

)
Gf(n) = K −Gf(n) ,

so the operator K − is a first derivative, defined by

K − :=
∂

∂t
.

As before, using Taylor expansion(
e

p
p−1

K−
φ
)

(t) = e
p
p−1

∂
∂tφ(t) = φ

(
t+

p

p− 1

)
.

While the other operator is

eK +
f(t) =

1

(1− t)2k
f

(
t

1− t

)
,

found solving
∂

∂γ
ψ(t, γ) =

(
t2
∂

∂t
+ 2k t

)
ψ(t, γ)

We now use the commutative property of operators K± and K ± with G to justify

G

(
eK

+
e

p
p−1

K−
dchp−1

p

)
= eK +

e
p
p−1

K−
G

(
dchp−1

p

)
.

The generating function of the cheap self-duality function is

G

(
dchp−1

p

(x, ·)
)

(t) =

∞∑
n=0

n!Γ(2k)

Γ(2k + n)

(
p− 1

p

)n
δx,n(2k)n

tn

n!
=

(
p− 1

p
t

)x
and so

eK +
e

p
p−1

K−
G

(
dchp−1

p

)
= eK +

e
p
p−1

K−
(
p− 1

p
t

)x
= eK +

(
p− 1

p

(
t+

p

p− 1

))x
= eK +

(
p− 1

p
t+ 1

)x
=

1

(1− t)2k

(
p− 1

p

t

1− t
+ 1

)x
= (1− t)−2k−x

(
p− t
p

)x
which is exactly the generating function of Meixner polynomials.

6.2.3 Charlier polynomials

Standard Charlier polynomials are defined as

Cλ(x, y) = 2F0

(
−x,−y
−

∣∣∣∣− 1

λ

)
=

x∧y∑
k=0

(−1)k

k!

x!

(x− k)!

y!

(y − k)!

1

λk
. (6.37)
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Using again the ideas of Section 1.4, i.e. the fact that the scalar product of (self-)dualities is still

a (self-)duality, we define the following scalar self-duality function with respect to w(n) =
1

λn

Dsca
ab (x, y) := 〈Dcl

a (x, ·), Dcl
b (y, ·)〉w =∑

k

Dcl
a (x, k)Dcl

b (y, k)µ(k) =

∑
k

x!

(x− k)!
ak

y!

(y − k)!
bk

1

k!
=

x∧y∑
k=0

(ab)k

k!

x!

(x− k)!

y!

(y − k)!

Setting ab = − 1
λ so that, for example, we can choose a = 1 and b = − 1

λ we have that

Cλ(x, y) = Dsca
−1/λ(x, y) In matrix notation the relation becomes

Cλ = Dcl
1 d

ch
−1(D

−1/λ
cl )T = eadch(dch)−1dch−1/λ(ea)T = eadch−1/λ(ea)T (6.38)

which is clearly symmetric. Using that aT = (dch)−1a†dch as shown in (4.24) we get that

C̃λ = eadch−1/λ(ea)T = eadch−1/λ(dch)−1ea
†
dch . (6.39)

Recalling the definition of dcha , we see that dch−1/λ(dch)−1 =
(
− 1
λ

)y
and calling (N)x,y =(

− 1
λ

)x
δx,y we have that

C̃λ = eaNea
†
dch . (6.40)

At this stage we could already identify the symmetry, however, we rather have a symmetry

only in terms of the generators of the Heisenberg algebra. To this end, note that

Na† = −λa†N

since

(Na†f)(n) = Nf(n+ 1) =

(
− 1

λ

)n
f(n+ 1)

and

(−λa†Nf)(n) = −λa†
(
− 1

λ

)n
f(n) = −λ

(
− 1

λ

)n+1

f(n+ 1) =

(
− 1

λ

)n
f(n+ 1) .

This implies that Nea
†

= e−λa
†
N , and so we can finally write the orthogonal self-duality

function as

C̃λ = eae−λa
†
Ndch = eae−λa

†
dch−1/λ , (6.41)
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where the last identity follows from the fact that acting with the operator N will just produce

the factor − 1
λ in the cheap duality. It is easy now to identify the symmetry that, applied to

the cheap duality dch−1/λ, produces the Charlier orthogonal polynomials. Indeed,

S̃ = eae−λa
†
. (6.42)

We conclude the Chapter showing that the generating function of S̃dch−1/λ coincides with

the generating function of the Charlier polynomials as defined in [42] (formula 9.14.11) in the

following way

(Gg (n)) (t) =

∞∑
n=0

g(n)
tn

n!
,

For Charlier polynomials Cn(x) of parameter λ the generating function is

∞∑
n=0

Cn(x)
tn

n!
= et

(
1− t

λ

)x
. (6.43)

Lemma 6.5. The generating function of S̃dch−1/λ coincides with the generating function of

Charlier polynomials in equation (6.43).

Proof. The proof follows the same idea of the previous two. We need to evaluate eae−λa†G
(
dch−1/λ

)
where a and a† are found as before:

(Ga f)(n)

∞∑
n=0

nf(n− 1)
tn

n!
= tGf(n) = aGf(n)

so we get

a := t ,

and of course

eaφ(t) = etφ(t) .

While

(Ga† f)(n)
∞∑
n=0

f(n+ 1)
tn

n!
=

∂

∂t
Gf(n) = a†Gf(n)

which allows us to infer that

a† :=
∂

∂t
,

and that

e−λa†φ(t) = e
−λ

∂

∂tφ(t) = φ(t− λ) .

The generating function of the cheap self-duality function is

Gdch−1/λ =

(
− t
λ

)x
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and so we can easily find that

eae−λa†G
(
dch−1/λ

)
= eae−λa†

(
− t
λ

)x
= ea

(
− t− λ

λ

)x
= et

(
1− t

λ

)x
which is exactly the generating function of Charlier polynomials.



Chapter 7

Perspective on the asymmetric

processes

7.1 Overview of the processes

This last Chapter is contains some (work in progress) results regarding the asymmetric versions

of the exclusion process introduced in Section 2.2 and the inclusion process introduced in Section

2.3. Being our aim to study dualities, we will work with the asymmetric version of these models

that have the algebraic structure leading to duality. The asymmetric simple exclusion process

is introduced in [17], while the asymmetric simple inclusion process is introduced in [16]. Now

particles move asymmetrically with a bias determined by a parameter q ∈ (0, 1), when the

limit q → 1 is considered one recovers the symmetric versions studied in Chapter 2. From

the algebraic point of view when passing from symmetric to asymmetric processes, one has

to change from the original Lie algebra to the corresponding deformed quantum Lie algebra,

where the deformation parameter q is related to the asymmetry. In the context of the standard

ASEP with hard core exclusion, this was first observed by Schütz [60, 61]. Some dualities for

these models have been shown in [16,17], in particular self-duality functions loose their product

structure, which is indeed replaced by a nested structure that we will recall below. These self-

dualities in the limit q → 1 degenerate to the classical (triangular) self-dualitites with product

structure of the asymmetric cases. Orthogonal self-dualitites for these asymmetric models are

not known yet, and this is the question that is preliminary explored in this Chapter. Let’s now

introduce the two processes via their generators, for a detail description of the processes, their

algebraic construction via quantum Hamiltonian and its symmetries as well as their properties,

such as self-duality results with classical self-duality functions, we refer to the papers [16, 17]

mentioned above.

In analogy of what done in Chapter 2 we define our processes on the undirected and con-

nected graph G = (V,E) with |V | = N sites (vertices) and edge set E. Moreover, the asymme-

try introduced will not affect the shape of the generators in the sense that their action is read

97
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on two sites only and then summed up to N . The following definitions regarding q numbers

are required

Definition 7.1 (q-number). For q ∈ (0, 1) and n ∈ N we introduce the q-number

[n]q =
qn − q−n

q − q−1

which satisfy lim
q→1

[n]q = n.

The first four q-numbers are [0]q = 0, [1]q = 1, [2]q = q+q−1 and [0]q = q2+1+q−2. It is also

possible to define the analogue of the factorial, the binomial coefficient and the Pochhammer

symbol.

Definition 7.2 (q-factorial, q-binomial and q-Pochhammer). We define the q-factorial

[n]q! = [n]q · [n− 1]q · · · [1]q n ∈ N

the q-binomial coefficient as(
n

k

)
q

=
[n]q!

[k]q![n− k]q!
n, k ∈ N, k ≤ n ,

last, we define the q-Pochhammer symbol by

(a; q)m = (1− a)(1− aq) · · · (1− aqm−1) m ∈ N, a ∈ R .

Later on we will use the q-version of the Newton formula, which we recall

N∑
κ=0

(
N

κ

)
q

qκN
(
tq−1

)κ
=

N∏
j=1

(1 + tq2(j−1)) . (7.1)

7.1.1 Asymmetric Exclusion Process

The asymmetric exclusion process of parameters q and 2j, ASEP(q,j), is a particle system

process where particle jumps (in both directions) to nearest neighbors sites according to rates

described by the generator. Each site can accommodate up to 2j particles, if this number is

reached, the jump is forbidden.

Definition 7.3 (ASEP(q, j) process). Let q ∈ (0, 1) and j ∈ N/2, then the ASEP(q,j) generator

has the form

LASEP (q,j)f(x) =
∑

1≤i<l≤N
(i,l)∈E

qxi−xl−(2j+1)[xi]q[2j − xl]q
[
f(xi,l)− f(x)

]
+ (7.2)

qxi−xl+(2j+1)[2j − xi]q[xl]q
[
f(xl,i)− f(x)

]
where xi is the number of particles in site i ∈ V and xi,l denotes the particle configuration that

is obtained from x by moving a particle from site i to site l. Moreover, f : {0, 1, . . . , 2j}N → R
is a function in the domain of the generator.
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The reversible product measure µα is (see Thereom 3.1 of [17] )

Pµα(xi = n) =
αn

Z
(α)
i

(
2j

n

)
q

· q−4jinq2j(1+n) , n ∈ N (7.3)

where

Z
(α)
i =

2j∑
n=0

(
2j

n

)
q

αnq2n(1+j−2ji)

is a normalizing constant.

7.1.2 Asymmetric Inclusion Process

The asymmetric inclusion process of parameters q and 2k, ASIP(q,k), is a particle system

process where particle jumps (in both directions) to nearest neighbors sites. It can be considered

as the asymmetric analogue of the SIP(k) process.

Definition 7.4 (ASIP(q, k) process). Let q ∈ (0, 1) and k ∈ N/2, then the ASIP(q,k) is

specified by the following generator

LASIP (q,k)f(x) =
∑

1≤i<l≤N
(i,l)∈E

qxi−xl+(2k−1)[xi]q[2k + xl]q

[
f(xi,l)− f(x)

]
+ (7.4)

qxi−xl−(2k+1)[2k + xi]q[xl]q

[
f(xl,i)− f(x)

]
where xi is the number of particles in site i ∈ V and xi,ldenotes the particle configuration that

is obtained from x by moving a particle from site i to site l. Moreover, f : NN → R is a

function in the domain of the generator.

The product reversible measure µα is (see Thereom 2.1 of [16] )

Pµα(xi = n) =
αn

Z
(α)
i

(
n+ 2k − 1

n

)
q

· q4kin n ∈ N (7.5)

where

Z
(α)
i =

∞∑
n=0

(
n+ 2k − 1

n

)
q

αnq4kin

is a normalizing constant.

7.2 Perspective and open problems

We devote the rest of this thesis to some results that are still work in progress. The idea would

be to implement the theory of Section 1.4 to produce orthogonal self-duality functions for the

asymmetric processes starting from their classical self-duality functions. Remember that these
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new functions are biorthoognal by construction. We recall the classical self-dualtiy functions

for ASEP(q, j) and ASIP(q, k) as well as their reversible measures as in [16,17] and then apply

Proposition 1.5. We mention that we multiply for some constants (to the dual variable) to the

functions introduced [16, 17], this will bring some advantages in the computation of the scalar

product, while the self-duality property is not affected, see Remark 1.3. Since the generators

do not depend on these constants (namely λ1 and λ2) we will chose them in a convenient way.

Setting these constants equal to one, one recovers the standard classical self-duality functions.

7.2.1 Biorthogonal self-duality functions for ASEP(q, j)

For the asymmetric exclusion process of parameter q and j we have that dclλ1 and dclλ2 are both

self-duality functions (See Theorem 3.2 of [17]), where

dclλ1(x, n) =
L∏
i=1

Z
(α)
i ·

(
xi
ni

)
q(

2j
ni

)
q

· qxi[2
∑i−1
m=1 nm+ni]+4jini λni1 · 1ni≤xi , (7.6)

and

dclλ2(x, n) =
L∏
i=1

Z
(α)
i ·

(
xi
ni

)
q(

2j
ni

)
q

· q−ni[2
∑i−1
m=1 xm+xi]+4kini λni2 · 1ni≤xi . (7.7)

The following lemma shows that dclλ1 and dclλ2 are biorthogonal for an appropriate choice of

the parameters λ1 and λ2.

Lemma 7.1. Choosing λ1 = − q
α and λ2 = − 1

qα we have

〈dcl
− qα

(x, ·), dcl
− 1
qα

(·, n)〉µ(α) =
δx,n
µα(n)

. (7.8)

Proof.

〈dλ1(x, ·), dλ2(·, n)〉µ(α) =

x1∑
y1=n1

. . .

xL∑
yL=nL

L∏
i

(
xi
yi

)
q(

2j
yi

)
q

· qxi[2
∑i−1
m=1 ym+yi]+4jiyi λyi1 ·

·

(
yi
ni

)
q(

2j
ni

)
q

· q−ni[2
∑i−1
m=1 ym+yi]+4jini λni2 ·

αyi

Z
(α)
i

(
2j

yi

)
q

· q−4jiyi ·
(
Z

(α)
i

)2

= q4j
∑L
i ini · λ

∑L
i ni

2 ·
L∏
i

Z
(α)
i ·

x1∑
y1=n1

. . .

xL∑
yL=nL

L∏
i

(
yi
ni

)
q

(
xi
yi

)
q(

2j
ni

)
q

· q(xi−ni)[2
∑i−1
m=1 ym]qyi(xi−ni) (αλ1)yi .

Let’s call c(x, n) what does not depend on yi, so that

c(x, n) :=

L∏
i=1

(
xi
ni

)
q(

2j
ni

)
q

q4j
∑L
i=1 iniλ

∑L
i=1 ni

2 Z
(α)
i .
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where we have used that (
yi
ni

)
q

(
xi
yi

)
q

=

(
xi
ni

)
q

(
xi − ni
yi − ni

)
q

.

We now have reduced to

〈dλ1(x, ·), dλ2(·, n)〉µ = c(x, n)
L∏
i=1

xi∑
yi=ni

(
xi − ni
yi − ni

)
q

q2(xi−ni)
∑i−1
m=1 ym qyi(xi−ni) (αλ1)yi

=c(x, n)

L∏
i=1

xi∑
yi=ni

(
xi − ni
yi − ni

)
q

q2yi
∑L
m=i+1(xm−nk) qyi(xi−ni) (αλ1)yi

=c(x, n)

L∏
i=1

xi−ni∑
zi=0

(
xi − ni
zi

)
q

q2zi
∑L
m=i+1(xm−nk)q2ni

∑L
m=i+1(xm−nk) qzi(xi+ni)qni(xi−ni) (αλ1)zi+ni

where we used the change of variable yi−ni = zi in the last identity. Calling c̃(x, n) what does

not depend on zi, i.e.

c̃(x, n) := c(x, n)

L∏
i=1

(
q2

∑L
m=i+1(xm−nk)qxi−ni αλ1

)ni
.

We now have that

〈dλ1(x, ·), dλ2(·, n)〉µ(α) = c̃(x, n)

L∏
i=1

xi−ni∑
zi=0

(
xi − ni
zi

)
q

(
q2

∑L
m=i+1(xm−nm) αλ1

)zi
qzi(xi−ni) .

Using the Newton formula for q-coefficients as in equation (7.1), we get

〈dλ1(x, ·), dλ2(·, n)〉µ(α) = c̃(x, n)
L∏
i=1

xi−ni∏
r=1

(
1 + q2r−1 q2

∑L
m=i+1(xm−nm)αλ1

)
.

Let us choose λ1 = − q−1

α . Suppose nL 6= xL then the L-th term in the product is equal to∏xL−nL
r=1

(
1− q2(r−1)

)xL−nL that contains the term r = 1 that is equal to 0. Suppose now that

nL − xL = · · · = ni+1 − xi+1 = 0 and ni − xi 6= 0, then the i-th term in the product is equal to

xi−ni∏
r=1

(
1− q2(r−1)

)
= 0 .

Then

〈d
− q−1

α

(x, ·), dλ2(·, n)〉 = c̃(n, n) δx,n

where

c̃(n, n) =
∏
i

Z
(α)
i(

2j
ni

)
q

q4jini ·
(
−λ2

q

)ni
=

1

µα(n)

choosing λ2 = − q
α we get the result.
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Now we can apply Proposition 1.5 with

d(x, n) = d
− q−1

α

(n, x) d̃(x, n) = d− q
α

(x, n) ,

then

D(x, n) := 〈d(x, ·), d̃(·, n)〉 D̃(x, n) := 〈d̃(x, ·), d(·, n)〉

are duality functions and are biorthogonal, i.e.

〈D(·,m), D̃(·, n)〉c = δv(m,n) .

7.2.2 Biorthogonal self-duality functions for ASIP(q, k)

For the asymmetric inclusion process of parameter q and k we have that dclλ1 and dclλ2 are both

self-duality (See Theorem 5.1 of [16]), where

dclλ1(x, n) =
L∏
i=1

Z
(α)
i ·

(
xi
ni

)
q(

yi+2k−1
ni

)
q

· qxi[2
∑i−1
m=1 nm+ni]−4kini λni1 · 1ni≤xi (7.9)

where we used that
∑

i ni

[
2
∑i−1

m=1 nm + ni

]
= const. Moreover

dclλ2(x, n) =
L∏
i=1

Z
(α)
i ·

(
xi
ni

)
q(

yi+2k−1
ni

)
q

· q−ni[2
∑i−1
m=1 xm+xi]−4kini λni2 · 1ni≤xi . (7.10)

Note that dclλ1 and dclλ2 are actually the same modulo a multiplicative constant, i.e.∏
i

qxi[2
∑
m<i nm+ni] = qC ·

∏
i

q−ni[2
∑
m<i xm+xi], C =

∑
i

xi ·
∑
i

ni .

In analogy of what proved in Lemma 7.1, we can show that d1 and d2 are biorthogonal for

an appropriate choice of the parameters λ1 and λ2.

Lemma 7.2. Choosing λ1 = − q−1

α and λ2 = − q
α we have

〈dcl
− 1
αq

(x, ·), dcl
− qα

(·, n)〉µ(α) =
δx,n
µα(n)

. (7.11)

Proof.

〈dλ1(x, ·), dλ2(·, n)〉µ(α) =

=

x1∑
y1=n1

. . .

xL∑
yL=nL

∏
i

(
xi
yi

)
q(

yi+2k−1
yi

)
q

· qxi[2
∑i−1
m=1 ym+yi]−4kiyi λyi1 ·

·

(
yi
ni

)
q(

ni+2k−1
ni

)
q

· q−ni[2
∑i−1
m=1 ym+yi]−4kini λni2 ·

αyi

Z
(α)
i

(
yi + 2k − 1

yi

)
q

· q4kiyi ·
(
Z

(α)
i

)2

= q−4k
∑
i ini · λ

∑
i ni

2 ·
∏
i

Z
(α)
i ·

x1∑
y1=n1

. . .

xL∑
yL=nL

∏
i

(
yi
ni

)
q

(
xi
yi

)
q(

ni+2k−1
ni

)
q

· q(xi−ni)[2
∑i−1
m=1 ym+yi] (αλ1)yi
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where (
yi
ni

)
q

(
xi
yi

)
q

=

(
xi
ni

)
q

(
xi − ni
yi − ni

)
q

then, for

c(x, n) :=
∏
i

(
xi
ni

)
q(

ni+2k−1
ni

)
q

q−4k
∑
i ini · λ

∑
i ni

2 ·
∏
i

Z
(α)
i

we find

〈dλ1(x, ·), dλ2(·, n)〉µ(α) = c(x, n) ·
x1∑

y1=n1

. . .

xL∑
yL=nL

∏
i

(
xi − ni
yi − ni

)
q

· q(xi−ni)[2
∑i−1
m=1 ym+yi] (αλ1)yi

= c(x, n) ·
x1∑

y1=n1

. . .

xL∑
yL=nL

∏
i

(
xi − ni
yi − ni

)
q

· q2yi
∑L
m=i+1(xm−nm) q(xi−ni)yi (αλ1)yi

= c̃(x, n) ·
∏
i

xi−ni∑
zi=0

(
xi − ni
zi

)
q

·
(
q2

∑L
m=i+1(xm−nm) · αλ1

)zi
q(xi−ni)zi

with the convention
∑L

m=i+1(xm − nm) = 0 for i = L and with

c̃(x, n) = c(x, n) ·
∏
i

(
q2

∑L
m=i+1(xm−nm)+(xi−ni) · αλ1

)ni
.

We use the Newton formula in equation (7.1) that yields

〈dλ1(x, ·), dλ2(·, n)〉µ(α) = c̃(x, n) ·
L∏
i=1

xi−ni∏
j=1

(
1 + q2j−1q2

∑L
m=i+1(xm−nm) · αλ1

)
.

Let us choose λ1 = − q−1

α . Suppose nL 6= xL then the L-th term in the product is equal to∏xL−nL
j=1

(
1− q2(j−1)

)xL−nL that contains the term j = 1 that is equal to 0. Suppose now that

nL − xL = · · · = ni+1 − xi+1 = 0 and ni − xi 6= 0, then the i-th term in the product is equal to

xi−ni∏
j=1

(
1− q2(j−1)

)
= 0 .

Then

〈d
− q−1

α

(x, ·), dλ2(·, n)〉µ(α) = c̃(n, n) δx,n

c̃(n, n) =
∏
i

Z
(α)
i(

ni+2k−1
ni

)
q

q−4kini ·
(
−λ2

q

)ni
=

1

µα(n)

choosing λ2 = − q
α we get the result.
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Now we can apply Proposition 1.5 with

d(x, n) = d
− q−1

α

(n, x) d̃(x, n) = d− q
α

(x, n) ,

then

D(x, n) := 〈d(x, ·), d̃(·, n)〉 D̃(x, n) := 〈d̃(x, ·), d(·, n)〉

are duality functions and are biorthogonal, i.e.

〈D(·,m), D̃(·, n)〉c = δv(m,n) .

For both ASEP(q, j) and ASIP(q,k) future work will concern orthogonality result. In partic-

ular, for each case we only have that the two novel self-duality functions are biorthogonal by

construction, one should check by hand if they are actually the same function, possibly Quan-

tum q-Krawtchouk polynomials for the exclusion (see Section 14.14 of [42]) and q- Meixner for

the inclusion (see Section 14.13 of [42]). Moreover, we also wonder if there is a constructive

approach, in the spirit of the one of Section 1.4 which establishes orthogonal polynomials as

duality functions by construction.



Appendix A

Basics on hypergeometric

orthogonal polynomials

In this Section we give a quick overview of the continuous and the discrete hypergeometric

polynomials (see [20, 42, 54, 59]) by reviewing some of their structural properties that will be

used in the following.

We start by recalling that the hypergeometric orthogonal polynomials arise from an hy-

pergeometric equation, whose solution can be written in terms of an hypergeometric function

rFs.

Definition A.1 (Hypergeometric function). The hypergeometric function is defined by the

series

rFs

(
a1, . . . , ar
b1, . . . , bs

∣∣∣∣x) =

∞∑
k=0

(a1)k · · · (ar)k
(b1)k · · · (bs)k

xk

k!
(A.1)

where (a)k denotes the Pochhammer symbol defined in terms of the Gamma function as

(a)k =
Γ(a+ k)

Γ(a)
.

Remark A.1. Whenever one of the numerator parameter aj is a negative integer −n, the

hypergeometric function rFs is a finite sum up to n, i.e. a polynomial in x of degree n.

The continuous case. Consider the hypergeometric differential equation

σ(x)y
′′
(x) + τ(x)y

′
(x) + λy(x) = 0 (A.2)

where σ(x) and τ(x) are polynomials of at most second and first degree respectively and λ is

a constant. A peculiarity of the hypergeometric equation is that, for all n, y(n)(x), i.e. the nth

derivative of a solution y(x), also solves an hypergeometric equation, namely

σ(x)y(n+2)(x) + τn(x)y(n+1)(x) + µny
(n)(x) = 0 (A.3)
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with

τn(x) = τ(x) + nσ
′
(x) (A.4)

and

µn = λ+ nτ
′
+

1

2
n(n− 1)σ

′′
. (A.5)

We concentrate on a specific family of solutions: for each n ∈ N, let µn = 0, so that

λ = λn = −nτ ′ − 1

2
n(n− 1)σ

′′
(A.6)

and equation (A.3) has a particular solution given by y(n)(x) constant. This implies that y(x)

is a polynomial of degree n, called polynomial of hypergeometric type (see Remark A.1) and

denoted by pn(x). In the following we will assume that those polynomials are of the form

pn(x) = anx
n + bnx

n−1 + . . . an 6= 0 . (A.7)

It is well known [54] that polynomials of hypergeometric type satisfy the orthogonality relation∫ b

a
pn(x)pm(x)ρ(x)dx = δn,md

2
n(x) (A.8)

for some (premarkibly infinite) constants a and b and where the function ρ(x) satisfies the

differential equation

(σρ)
′

= τρ . (A.9)

The sequence d2
n can be written in terms of σ(x), ρ(x) and an as

d2
n =

(ann!)2∏n−1
k=0(λn − λk)

∫ b

a
(σ(x))nρ(x)dx . (A.10)

As a consequence of the orthogonal property the polynomials of hypergeometric type satisfy a

three terms recurrence relation

xpn(x) = αnpn+1(x) + βnpn(x) + γnpn−1(x) (A.11)

where

αn = cn+1,n βn = cn,n γn = cn−1,n (A.12)

with

ck,n =
1

d2
k

∫ b

a
pk(x)xpn(x)ρ(x)dx . (A.13)

The coefficients αn, βn, γn can be expressed in terms of the squared norm d2
n and the leading

coefficients an, bn in (A.7) as [54]

αn =
an
an+1

βn =
bn
an
− bn+1

an+1
γn =

an−1

an

d2
n

d2
n−1

. (A.14)
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Finally, we will use the raising operator R that, acting on the polynomials pn(x), provides the

polynomials of degree n+ 1. Such an operator is obtained from the Rodriguez formula, which

provides an explicit form for polynomials of hypergeometric type

pn(x) =
Bn(σn(x)ρ(x))(n)

ρ(x)
with Bn =

an∏n−1
k=0

(
τ ′ + n+k−1

2 σ′′
) . (A.15)

The expression of the raising operator (see eq. 1.2.13 in [54]) reads

Rpn(x) = rnpn+1(x) (A.16)

where

Rpn(x) = λnτn(x)pn(x)− nσ(x)τ
′
np
′
n(x) and rn = λn

Bn
Bn+1

. (A.17)

Remark that the raising operator increases the degree of the polynomial by one, similarly to

the so-called backward shift operator [42]. However the raising operator in (A.16) does not

change the parameters involved in the function ρ, whereas the backward operator increases the

degree and lowers the parameters [44].

The discrete case. Everything discussed for the continuous case has a discrete analog,

where the derivatives are replaced by the discrete difference derivatives. In particular it is

worth mentioning that

∆f(x) = f(x+ 1)− f(x) and ∇f(x) = f(x)− f(x− 1) .

The corresponding hypergeometric differential equation (A.2) is the discrete hypergeometric

difference equation

σ(x)∆∇y(x) + τ(x)∆y(x) + λy(x) = 0 (A.18)

where σ(x) and τ(x) are polynomials of second and first degree respectively, λ is a constant.

The differential equation solved by the nth discrete derivative of y(x), y(n)(x) := ∆ny(x), is the

solution of another difference equation of hypergeometric type

σ(x)∆∇y(n)(x) + τn∆y(n)(x) + µny
(n)(x) = 0 (A.19)

with

τn(x) = τ(x+ n) + σ(x+ n)− σ(x) (A.20)

and

µn = λ+ nτ
′
+

1

2
n(n− 1)σ

′′
. (A.21)

If we impose µn = 0, then

λ = λn = −nτ ′ − 1

2
n(n− 1)σ

′′
(A.22)
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and y(n)(x) is a constant solution of equation (A.19). Under these conditions, y(x), solution

of (A.18), is a polynomial of degree n, called discrete polynomial of hypergeometric type (see

remark A.1) and denoted by pn(x).

The derivation of the orthogonal property is done in a similar way than the one for the contin-

uous case where the integral is replaced by a sum

b−1∑
x=a

pn(x)pm(x)ρ(x) = δn,md
2
n (A.23)

constants a and b can be either finite or infinite and the function ρ(x) is solution of

∆[σ(x)ρ(x)] = τ(x)ρ(x) . (A.24)

The sequence d2
n can be written in terms of σ(x), ρ(x) and an as

d2
n =

(ann!)2∏n−1
k=0(λn − λk)

b−n−1∑
x=a

(
ρ(x+ n)

n∏
k=1

σ(x+ k)

)
. (A.25)

As a consequence of the orthogonal property, the discrete polynomials of hypergeometric type

satisfy a three terms recurrence relation

xpn(x) = αnpn+1(x) + βnpn(x) + γnpn−1(x) (A.26)

where

αn = cn+1,n βn = cn,n γn = cn−1,n (A.27)

with

ck,n =
1

d2
k

b∑
x=a

pk(x)xpn(x) . (A.28)

The coefficients αn, βn, γn can be expressed in terms of the squared norm d2
n and the leading

coefficients an, bn in (A.7) as [54]

αn =
an
an+1

βn =
bn
an
− bn+1

an+1
γn =

an−1

an

d2
n

d2
n−1

. (A.29)

The discrete Rodriguez formula

pn(x) =
Bn
ρ(x)
∇n
[
ρ(x+ n)

n∏
k=1

σ(x+ k)

]
with Bn =

an∏n−1
k=0

(
τ ′ + n+k−1

2 σ′′
)

(A.30)

leads to an expression for the discrete raising operator R (see eq. 2.2.10 in [54])

Rpn(x) = rnpn+1(x) (A.31)
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where

Rpn(x) =
[
λnτn(x)− nτ ′nσ(x)∇

]
pn(x) rn = λn

Bn
Bn+1

. (A.32)

We remark again that the raising operator shouldn’t be confused with the backward shift

operator in [44] which changes the value of parameters of the distribution ρ.

References on these are [42] for the discrete polynomials and [2] for the Bessel functions.
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