

Bologna - Area della Ricerca CNR - Centro congressi October 22 - 26, 2018

Conference Chairs: Corrado Spinella (Dipartimento di Scienze Fisiche e Tecnologie della Materia - CNR) Maurizio Peruzzini (Dipartimento di Scienze Chimiche e Tecnologie dei Materiali - CNR)

Italian National Conference on

Materials Science and Technology

Bologna, October 22 - 26, 2018

Conference Chairs

Corrado Spinella (DSFTM - CNR)

Maurizio Peruzzini (DSCTM - CNR)

BOOK OF ABSTRACT

Conference Chairs

- Corrado Spinella (CNR)
- Maurizio Peruzzini (CNR)

Scientific Committee

- (Coordinator) Stefano Toffanin (CNR)
- Luigi Ambrosio (CNR)
- Federico Boscherini (CNISM, CNR e Università di Bologna)
- Andrea Camposeo (CNR)
- Alberto Credi (CNR e Università di Bologna)
- Lucia Curri (CNR)
- Stefano Frabboni (CNR e Università di Modena e Reggio Emilia)
- Paolo Fornasiero (INSTM, CNR e Università di Trieste)
- Francesca Passaretti (CNR)
- Adriana Passaseo (CNR)
- Silvia Picozzi (CNR)
- Silvia Maria Pietralunga (CNR)
- Vittorio Privitera (CNR)
- Alessandra Sanson (CNR)

Scientific Secretariat

• Antonella Tajani (CNR)

Local Committee

Roberto Zamboni, Michele Muccini, Vittorio Morandi, Roberta Chiodini, Marco Vannini, Giorgia Giovannini, Luca Ortolani, Francesco Mercuri, Ilaria Bergenti, Marco Brucale

Index

Plenary sessions	7
Plenary lectures abstract	9
List of parallel sessions	16
Orals	18
Posters	169
Author's index	206

Plenary sessions

	Monday, October 22
12:00 -13:00 Andreas Züttel	EPFL Lausanne (Switzerland)
	Energy storage materials, hydrogen storage materials
14:00 -15:00 Avelino Corma	CSIC (Spain)
	Attempts to synthesize zeolite catalysts for a preselected
	reaction
	Tuesday, October 23
09.00 -10:00 Nicolas Giuseppone	CNRS Strasbourg (France)
	Stimuli-responsive materials for mechanical actuation
16:30 -17:30 Giovanni Baldi	CE.RI.COL Colorobbia Research Centre (Italy)
	Hybrid magnetic-polymeric nanoparticles for nano medicine
	and immune therapy

Wednesday, October 24

09:00-10:00 Gaetano Granozzi	Università di Padova (Italy)
	3D Hybrid nanoarchitectures for sustainable energetics
	starting from 2d materials
16:30 -17:30 Salvo Coffa	STMicroelectronics (Italy)
	Materials for the electronic industry

Thursday, October 25

09:00-10:00 Miriam Vitiello	CNR - NANO (Italy)
	<i>Title to be defined</i>
16:30 -17:30 Luisa De Cola	Université de Strasbourg (France)
	Self-assembled and breakable materials for medical
	applications

Results showed that the ecoceramics maintained the same porous 3D structure of the cork; a characterisation of the materials was performed, as well as testing of some functional properties.

#060 - Placing of amino acids in microporous materials: a ZSM-5 and L zeolites Synchrotron x-ray characterization after l-lysine adsorption

Giada Beltrami - University of Ferrara

Other Authors: Giadal Beltrami1, Andreal Meli1, Luisa2 Pasti2, Tatiana2 Chenet2, Lara3 Gigli3, Plaisier 3Jasper3, Girolamo4 Giordano4, Massimo4 Migliori4, Armando4 Aloise4, Enrico4 Catizzone4 and Annalisa1 Martucci1 1Department of Physics and Earth Science, University of Ferrara, Via Saragat, 1, I-44122 Ferrara, Italy 2Department of Chemical and Pharmaceutical Science, University of Ferrara, Via Luigi Borsari, 43, I-44122 Ferrara, Italy 3 Elettra - Sincrotrone Trieste S.C.p.A. Strada Statale 14 34149 Basovizza, Trieste, Italy 4Department of Environmental and Chemical Engineering, University of Calabria, Via Pietro Bucci, 87036 Rende CS, Italy

Amino acids, which represent the proteins primary structural unit, belong to an important class of organic compounds exploited in several application fields, such as pharmaceutical, biomedical and food processing industries. The global market based on the amino acids production is constantly growing and cutting-edge sorbent materials for separation processes are continuously required to decrease amino acids losses during adsorption/desorption cycles. Zeolites and their adsorption properties represent an effective material in placing amino acids in form of well ordered-layers on the solid surface (Qiang et al, 2008). Based on this, two samples of l-lysine loaded ZSM-5 (SiO₂/Al₂O₃ ratio (SAR) = 51 and 21, respectively) and one sample of L (SAR 6.1) were characterized through a multidisciplinary approach. Batch method (pH=5.5) was used to enable l-lysine sorption process, capillary electrophoresis separation technique was applied to obtain adsorption isotherms, while thermal analysis were used to quantify the total weight loss. Furthermore, Synchrotron X-ray powder diffraction (carried out at the MCX Beamline of Elettra Synchrotron, at Room Temperature and using a fix wavelength of 0.82700 Å) was performed to study ZSM-5 and L sorption capacity and structural modifications driven l-lysine adsorption. Rietveld structural refinements (processed through the GSAS-EXPGUI software package; Larson and von Dreele, 1994; Toby, 2001) were carried out in monoclinic (s.g. $P2_1/n$) and hexagonal (s.g. P6/mmm) symmetry for ZSM-5 and L zeolite, respectively. Results obtained through difference Fourier map analysis highlighted that: in both ZSM-5 samples, I-lysine is located at the intersection of sinusoidal and straight channel and within the sinusoidal channel, while in L zeolite the molecule was detected within the monodimensional channel (i.e., 6 possible orientations). Refined occupancies revealed an amount of extraframework species of about 4.85, 6.51 and 17.63 % for ZSM-5 SAR 51, ZSM-5 SAR 21 and L zeolite, respectively. The content quantified is in good agreement with adsorption isotherms data and thermal analysis results. After 1-lysine adsorption, no noteworthy structural deformations were detected: channels retain their circular geometry. All the information gained revealed that ZSM-5 as well as L zeolites are efficient in I-lysine adsorption and this suggests a possible exploitation of both as sorbent materials in biocatalytic processes.

Larson, A.C. and von Dreele, R.B. (1994) Report LAUR, 86.

Qiang G., Wujung X., Yao X., Dong W., Yuhan S., Feng D. and Wanling S. (2008) Amino acid adsorption on mesoporous materials: influence of types of amino acids, modification of mesoporous materials, and solution conditions. Journal of Physical Chemistry B. 112, 2261-2267.

Toby B. H. (2001), EXPGUI a graphical user interface for GSAS, Journal of Applied Crystallography, 34, 210-213.