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Abstract: Phytopathogenic fungi are among the main causes of productivity losses in agriculture. To
date, synthetic chemical pesticides, such as hydroxyanilides, anilinopyrimidines and azole derivatives,
represent the main treatment tools for crop plant defence. However, the large and uncontrolled
use of these substances has evidenced several side effects, namely the resistance to treatments,
environmental damage and human health risks. The general trend is to replace chemicals with
natural molecules in order to reduce these side effects. Moreover, the valorisation of agri-food
industry by-products through biotransformation processes represents a sustainable alternative to
chemical synthesis in several sectors. This research is aimed at comparing the anti-phytopathogenic
activity of waste bovine and porcine bile with secosteroids obtained by biotransformation of bile
acids with Rhodococcus strains. The ultimate goal is to apply these natural products on food crops
affected by phytopathogenic fungi.

Keywords: biotransformation; waste bile acids; secosteroids; in vitro antifungal activity; phytopatogens

1. Introduction

Fungal phytopathogens represent one of the main causes of production depletion in
agriculture [1,2].

The only tool available nowadays to fight against the plants attacked by fungi is
represented by synthetic pesticides. The wide use of synthetic compounds in agriculture
has certainly made it possible to maintain, if not increase, agricultural production in the
last century, in the face of a continuous increase in demand for agricultural products [3].
However, their use has led to the emergence of numerous problems, such as soil and water
pollution and drug resistance in phytopathogens, making the management of crop pro-
tection treatments ever more difficult, with effects on the environment that are even more
important [4]. The first compound recognised for its fungicidal activity was discovered by
Bénédict Prévost in 1807, through the ascertaining of Tilletia spore germination inhibition by
metallic copper in soil [5]. Otherwise, the first organic fungicide, an organomercurial com-
pound, was synthesised at the beginning of the 20th century. Later on, several studies have
been carried out on the production of many synthetic fungicides, such as 2-methoxyethyl
silicate and 2-hydroxyphenyl mercury, effective against some fungi such as Fusarium spp.
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and Dreschlera spp. [6]. There are many examples of antifungal agents in the literature
and on the market, including benzimidazoles, dithiocarbamates, strobilurins [7] and azole
molecules such as triazoles, which are widely used in agriculture [8]. In the face of such a
varied availability of effective compounds, their common characteristics of great stability
in the environment are evident, determining important accumulation phenomena in the
environment (long degradation times) that affect the agricultural products themselves
and the health of consumers. In fact, since the 1950s and 1960s, several studies have been
evidencing how biocides used in agriculture can affect human health in the long term [9],
by dermal contact, inhalation or ingestion of contaminated food or water [10], provoking
adverse health effects at endocrine, immunological and neurological levels, as well as
carcinogenic risk and premature births [9].

Among the environmental risks of large and uncontrolled use of fungicides and syn-
thetic agripharmaceutical products, there are toxicological effects on not-targeted species,
as earthworms or soil microorganisms, leading to dramatic changes in the overall ecological
balance [11–14].

Given the above premises, a growing need is by the use of effective natural—rather
than synthetic-compounds. In fact, many scientists are focusing on biopesticides and
natural compounds for a more sustainable management of crop protection strategies [13,15].
Substances with antifungal activity can be produced by microorganisms, plants, or animals,
and themselves can be used as antagonists for a biocompatible and more sustainable
defence of crops [16]. Moreover, plant extracts (e.g., essential oils) have been demonstrated
to inhibit the production of mycotoxins from many fungal species [17,18], evidencing
their effective role also as tools to prevent post-harvest infections [19]. However, the
natural compounds for crop defence share the following advantages: reduced toxicity
towards organisms that do not represent the target of action (high selectivity); reduced
persistence in the environment; low or no toxicity to mammals (absent in many cases);
lower risks for operators linked to their use; and lower risk of developing resistance [20].
The disadvantages compared to synthetic compounds can instead be summarised in a more
reduced effectiveness, also due to a reduced stability in the environment [21]. On the other
hand, the tendency to seek ever more sustainable solutions to crop management becomes a
need that also derives from the greater attention of consumers, who show more and more
preferences towards products with an allegedly low residue of pesticides and with reduced
environmental impact [22].

In addition, new currents of thought relating to defence tend to highlight how the
implementation of sustainable plant protection is increasingly aimed at putting into prac-
tice mechanisms aimed not at eliminating the pathogen, but rather at containing it. In
fact, every organism, even if pathogenic, performs a function within the ecosystem for
which its eradication from the environment would cause imbalances between existing
populations [23–26].

Natural active substances with antifungal properties currently used in agriculture are
mainly phytoalexins and phytoanticipins [27]. There are many examples in literature of
effective crop control by employing natural compounds or extracts (e.g., plant extracts) in
pest control, even if most of them reflect in vitro evidence. A coumarin isolated from Citrus
paradis exhibits antifungal activity both in vitro and in vivo against Penicillium italicum and
Penicillium digitatum [28]; chlorogenic acid, pyrogallol, pyrocatechol, phenol and resorcinol
can inhibit Botryodiplodia Theobroma that causes Java black rot (one of the most significant
postharvest diseases of the sweet potato); sesquiterpenes exhibit antifungal activity against
R. solani [29], etc. [25].

An alternative approach to the use of natural compounds or extracts from natural
sources can be the production of new antifungal products by fermentation or biotransfor-
mation technologies, starting from low-value substrates or from by-products of agri-food
processes [30]. These methodologies are commonly used to improve existing technologies
and to enhance low-value molecules and thus could be profitably used in this area as well.
Bile acids are surfactant steroid compounds found in the digestive tracts of vertebrates [31].
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Their main physiological function is to emulsify bile lipids and dietary lipids. Bile acids
may be easily recovered as side products from the food industry and thus represent a
discard product, from cattle or pig slaughterhouses [32], that is used to produce bile acid
substitutes for humans [33]; surface active molecules are also known to express antifungal
activity, thus we thought that it could be an interesting approach to use modified bile acids
as antifungal agents [34,35].

Chemical synthesis involves a number of disadvantages due to the use and disposal
of solvents and high temperatures with consequent risks to operators. To overcome the
problems arising from chemical synthesis it is possible to exploit the microbial biotransfor-
mation approach [36] as it has a number of advantages over chemical synthesis, such as
regio- and stereospecific functionalisation of molecules, the possibility to perform complex
reactions in one-pot one-step and finally greater environmental sustainability (mild reaction
conditions and aqueous media) [37].

Thus, this study is focused on the evaluation of the anti-phytopathogenic activity
of bile acids and 9,10-secosteroids, a newly-biosynthesised compound derived from bio-
transformation of bile acids, hypothesizing that because they are new molecules that have
never been used for this purpose, they can bypass the issues with traditional pesticides. As
a potential target, ten phytopathogenic fungi that cause multiple problems affecting the
agricultural sector worldwide have been identified.

2. Results

In this study ten phytopathogenic fungi, causing multiple damage to many important
crops every year, were chosen.

Bovine and porcine bile acids and the corresponding secosteroids have been evaluated,
together with the biotransformation products, for their inhibition of fungi growth.

Table 1 shows the phytopathogenic fungi used for this study, the target plant crops
and the phytopathyes resulting from the infection.

Table 1. Most common phytopathogenic fungi in agriculture used as targets in this research.

Fungus Target Plant Crops Phytopathy

Botrytis cinerea Pear [38], vine [39,40], citrus
[41,42], apricot [43], cherry [44] Gray rot

Neonectria galligena Pome fruits (apple, pear, quince,
medlar) [45–47] Cancer of the pome fruit

Alternaria sp.

Asteraceae (lettuce [48], radicchio
[49], artichoke [50], sunflower
[51]), potato [52], tomato [52],
broad bean [53], peas [54]

Black spots, wilt and rot

Fusarium moniliforme Corn [55] Gray rot
Fusarium oxysporum f. sp.

radicis licopersici Tomato [56] Root rot

Phoma betae Chard [57,58] Foot pain

Penicillium crustosum Cereals [59], apple [60], pear [61],
dried fruit [62]

Production of dangerous
toxins for animals

Pythium ultimum Cabbage [63], carrot [64],
cucumber [65], melon [66] Root rot and wilt

Sclerotinia minor

Soy, sunflower, kidney bean,
cucumber, lettuce, spinach, kale,
sweet potato, Irish potato, pepper,
tomato, peanut [67]

Rust, white mould, rot

Sclerotinia sclerotiorum
Herbaceous and succulent plants,
especially flowers and vegetables
[67–69]

White mould
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2.1. Bile Acids and Secosteroids Deriving from Biotransformation

In Figure 1, the structures of bile acids (used as substrates) and of secosteroid deriva-
tives (obtained after biotransformation of bile acid with Rhodococcus rhodnii) are reported.
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Figure 1. Bile acids and biotransformation products.

Through the biotransformations of cholic acid 1a, deoxycholic acid 1b and hyocholic
acid 1c, only one secosteroid product is obtained (2a, 2b and 3c, respectively), while in the
biotransformation carried out with hyodeoxycholic acid 1d in the extract, the presence of
two biotransformation molecules, characterised as secosteroids, was evidenced (4d and
5d). The 5d product derives from the hydroxylation of the aromatic ring formed after the
opening of the B ring of the steroid nucleus. Bile acids deriving from porcine and bovine bile
and the respective products obtained through biotransformation with strains belonging to
the Rhodococcus genus extracts employed to be tested as potential antifungal agents against
phytopathogens microorganisms have been obtained and described in Costa et al. [70,71].

2.2. Preliminary Screening for Antifungal Activity

In this study, a preliminary screening of antifungal activities has been conducted. After
appropriate incubation time, the inhibition percentage of diametrical growth was observed
and compared to the negative control (DMSO) as showed in Figure 2.
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Tables 2 and 3 show the antifungal activity results obtained respectively with bile
acids (1a,d) and with secosteroids (2a,b, 3c and 4d + 5d) expressed as growth inhibition
percentage related to the negative control.

Table 2. Antifungal activity screening obtained with bile acids (1a–d).

Strain 1a 1b 1c 1d

Botrytis cinerea 72 ± 3.2% 70 ± 1.7% 78± 1.2% 56± 4.6%
Neonectria
galligena 52 ± 4.2% 48 ± 2.3% 41 ± 0.4% 15 ± 0.7%

Alternaria sp. 66 ± 1.2% 66 ± 2.6% 73 ± 3.3% 66 ± 1.8%
Fusarium

moniliforme 30 ± 0.5% 83 ± 1.1% 39 ± 0.8% 39 ± 1.7%

Fusarium
oxysporum 22 ± 2.3% 70 ± 3.5% 48 ± 2.7% 37 ± 2.2%

Phoma betae 61 ± 2.5% 100 ± 0% 86 ± 1.8% 87 ± 0.3%
Penicillium
crustosum 24 ± 4.2% 32 ± 0.7% 8 ± 3.5% 0 ± 0%

Pythium ultimum 23 ± 3.5% 78 ± 1.3% 72 ± 0.2% 100 ± 0%
Sclerotinia minor 68 ± 1.4% 85 ± 0.7% 56 ± 2.5% 52 ± 3.2%

Sclerotinia
sclerotiorum 73 ± 4.2% 77 ± 0.9% 80 ± 0.9% 69 ± 3.2%

1a = cholic acid, 1b = deoxycholic acid, 1c = hyocholic acid, 1d = hyodeoxycholic acid.

Table 3. Antifungal activity screening obtained with secosteroids.

Strain 2a 2b 3c 4d + 5d

Botrytis cinerea 30 ± 1.7% 64 ± 3.8% 62 ± 3.9% 78 ± 1.2%
Neonectria
galligena 36 ± 3.9% 50 ± 4.7% 39 ± 4.2% 56 ± 3.1%

Alternaria sp. 0 ± 0% 0 ± 0% 0 ± 0% 0 ± 0%
Fusarium

moniliforme 34 ± 1.3% 45 ± 2.0% 42 ± 1.9% 95 ± 1.3%

Fusarium
oxysporum 40 ± 4.8% 40 ± 3.2% 40 ± 3.1% 66 ± 2.9%

Phoma betae 37 ± 0.7% 67 ± 0.9% 100 ± 0% 70 ± 1.3%
Penicillium
crustosum 8 ± 1.7% 12 ± 1.5% 12 ± 2.1% 20 ± 0.8%

Pythium ultimum 85 ± 1.2% 55 ± 0.3% 87 ± 0.7% 100 ± 0%
Sclerotinia minor 81 ± 0.2% 89 ± 1.1% 93 ± 1.7% 60 ± 0.8%

Sclerotinia
sclerotiorum 79 ± 0.9% 78 ± 1.1% 100 ± 0% 98 ± 0.3%

2a = secosteroid from cholic acid, 2b = secosteroid from deoxycholic acid, 3c = secosteroid from hyocholic acid,
4d + 5d = secosteroids from hyodeoxycholic acid.
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Results of the screening using bile acids at the concentration of 1000 µg/mL showed
that P. betae, S. minor and F. moniliforme were sensitive to the tested compounds (with a
growth inhibition equal or greater than 80%). Namely, P. betae proved to be particularly
sensitive to three of the bile acids tested: deoxycholic acid 1b, hyocholic acid 1c and
hyodeoxycholic acid 1d, with an inhibition percentage of 100%, 86% and 87%, respectively.
Otherwise, S. minor and F. moniliforme underwent an evident growth inhibition only in case
of the use of deoxycholic acid 1b with growth inhibition of 83 and 85%, respectively.

Significant inhibition of fungal growth has been obtained using secosteroids. In
addition to F. moniliforme and P. betae, which were, respectively, sensitive to the 4d + 5d
mixture with 95% inhibition and to the 3c extract with 100% inhibition, other fungi have
undergone growth reduction with some secosteroids. For example, P. ultimum evidenced
growth inhibition with three different secosteroid extracts, i.e., 85% inhibition using the 2a
extract, 87% using 3c and 100% with the extract containing the 4d + 5d blend.

S. minor was also found to be particularly sensitive to some secosteroid extracts,
obtaining inhibition yields from 81% with extract 2a up to yields of 93% with extract 3c.

Finally, S. sclerotiorum was found to be particularly sensitive to the samples containing
the secosteroids 3c and 4d + 5d with growth inhibition yields of 100% and 98%, respectively.

2.3. Inhibition of Diametrical Growth Test

Fungi that showed a growth inhibition equal to or more than 80% compared to controls
were further analysed by repeating the test with a concentration range between 1000 and
25 µg/mL. The IC50 values evidenced by bile acids (1a,d) and secosteroids (2a,b, 3c and
4d + 5d) are reported in Tables 4 and 5, respectively. Fluconazole was used as positive
control at two different concentrations (50 and 100 µg/mL). The computation of the IC50
was carried out using the GraphPad Prism software.

Table 4. IC50 values of bile acids for selected fungi expressed in µg/mL.

Strain 1a 1b 1c 1d

Fusarium
moniliforme - 428.9 ± 11.13 - -

Phoma betae - 22.14 ± 0.98 247.5 ± 6.82 196.6 ± 8.41
Pythium ultimum - - - 284.1 ± 4.13
Sclerotinia minor - 377.6 ± 28.75 - -

Sclerotinia
sclerotiorum - - 712.8 ± 64.22 -

1a = cholic acid, 1b = deoxycholic acid, 1c = hyocholic acid, 1d = hyodeoxycholic acid.

Table 5. IC50 values of secosteroids for selected fungi expressed in µg/mL.

Strain 2a 2b 3c 4d + 5d

Fusarium
moniliforme - - - 133.3 ± 3.86

Phoma betae - - 23.95 ± 0.97 -
Pythium ultimum 677.0 ± 21.16 - - 176.2 ± 5.79
Sclerotinia minor 730.7 ± 58.26 227.3 ± 19.15 67.90 ± 6.42 -

Sclerotinia
sclerotiorum - 135.3 ± 10.28 18.49 ± 1.54 180.98 ± 16.73

2a = secosteroid from cholic acid, 2b = secosteroid from deoxycholic acid, 3c = secosteroid from hyocholic acid,
4d + 5d = secosteroids from hyodeoxycholic acid.

Bile acids and secosteroids were particularly active against the pathogens F. moniliforme,
P. betae, P. ultimum, S. minor and S. sclerotiorum. While cholic acid did not show a particular
anti-phytopathogenic activity, the extract containing secosteroid 2a proved to be active
against P. ultimum and Sclerotinia minor, with IC50 of 677.0 and 730 µg/mL, respectively.
Deoxycholic acid 1b, has been shown to be effective against various fungi, in particular
against P. betae (IC50 of 22.14 µg/mL). The extract containing the secosteroid 2b showed
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activity against S. minor and S. sclerotiorum: the test against S. minor showed an IC50 lower
than that of the corresponding pure bile acid, while against S. sclerotiorum IC50 it was
133.50 µg/mL.

The results obtained with hyocholic acid 1c and the corresponding secosteroid 3c
showed that both the biotransformed compounds were effective against P. betae, with
an IC50 of the 3c compound about ten times lower than the starting bile acid. As for S.
minor, only product 3c shows a significant growth inhibition activity with an IC50 value of
67.90 µg/mL.

S. sclerotiorum is sensitive to both 1c and 3c but with highly different IC50 values: in
the first case the value was 712.80 µg/mL, while in the case of the extract containing the
secosteroid 3c the IC50 is equal to 18.49 µg/mL (value almost forty times lower than 1c
bile acid).

Finally, hyodeoxycholic acid 1d showed activity only against P. betae and P. ultimum
with IC50 values of 196.6 and 284.1 µg/mL, respectively.

The biotransformation mixture, containing the secosteroids 4d + 5d instead, showed
activity against F. moniliforme and S.sclerotiorum (unlike the starting bile acid for the bio-
transformation), while against P. ultimum the secosteroids 4d + 5d show IC50 significantly
lower than that of hyodeoxycholic acid (176.2 µg/mL).

In Figures 3 and 4, the results obtained using bile acids and biotransformation extracts
at different concentrations (range 25–1000 µg/L) as potential anti-phytopathogenic agents
are reported.
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Figure 3. Growth inhibition of phytopathogenic fungi treated with bile acids (1a,d). FM = Fusarium
moniliforme; PB = Phoma betae; PU = Pythium ultimum; SM = Sclerotinia minor; SS = Sclerotinia sclerotio-
rum. C− = DMSO; C+ 50 = fluconazole 50 µg/mL; C+ 100 = fluconazole 100 µg/mL. 1a = cholic acid,
1b = deoxycholic acid, 1c = hyocholic acid, 1d = hyodeoxycholic acid.
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Figure 4. Growth inhibition of phytopathogenic fungi with secosteroids (2a,b, 3c and 4d + 5d).
FM = Fusarium moniliforme; PB = Phoma betae; PU = Pythium ultimum; SM = Sclerotinia minor;
SS = Sclerotinia sclerotiorum. C− = DMSO; C+ 50 = fluconazole 50 µg/mL; C+ 100 = fluconazole
100 µg/mL. 2a = secosteroid from cholic acid, 2b = secosteroid from deoxycholic acid, 3c = secos-
teroid from hyocholic acid, 4d + 5d = secosteroids from hyodeoxycholic acid.

In Figure 3, the anti-phytopathogenic activity of bile acids is shown. In most cases the
fungal strains treated with the synthetic antifungal compound fluconazole evidenced the
highest sensitivity. However, only in the case of Phoma betae, treated with deoxycholic acid
(1b), the results were comparable to those obtained with fluconazole at 50 and 100 µg/mL.

As in the previous case, analysing the activity of secosteroids compared to that of
fluconazole, known for its antifungal efficacy, it can be pointed out that in most cases, and
as however generally expected, the positive control has a greater activity than the biotrans-
formation products. The extract containing the compound 3c, derived from the biotransfor-
mation of hyocholic acid, evidenced an efficacy comparable to that exerted by the synthetic
antifungal (positive control), in particular against Phoma betae and Sclerotinia sclerotiorum.

Moreover, the extract deriving from the biotransformation of deoxycholic acid con-
taining the compound 2b has shown a biological activity comparable to that of fluconazole
against Sclerotinia minor, so that, also in this case the biotransformation process leads to the
advantage of obtaining a molecule that can be potentially used in the agricultural sector as
a selective tool in a more sustainable strategy for crop plant defence.
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3. Discussion

Massive use of the synthetic agropharmaceuticals that have characterised treatments
in agriculture in the last century has on the one hand determined an exponential increase in
agricultural production in the face of an equally high increase in the human population and
in food needs, but on the other hand, problems of environmental pollution (accumulation
in water and soil; alterations of ecosystems, etc.) and problems related to human and
animal health are emerging. All these critical aspects, also linked to the growing sensitivity
of public opinion and politics towards a more sustainable management of production, have
led to the need for more sustainable and biocompatible crop control tools [23–26].

This work was focused on the evaluation of the anti-phytopathogenic activity of
bovine and porcine bile acids and extracts containing molecules deriving from the biotrans-
formations of the same bile acids, called secosteroids. The targets used for this research
were ten phytopathogenic fungi that cause multiple problems affecting the agricultural
sector worldwide.

Each pathogen was grown in a medium containing 1000 µg/mL of test substance, a
concentration coherent with potential use in the field. In this phase both the secosteroids
and the bile acids were tested to be compared. For the diametrical growth inhibition
determination, the fungal growth of the treated phytopathogens was compared to that of
the negative controls.

Molecules that gave an inhibition percentage greater than-or equal to-80% were tested
again in a concentration range of 25–1000 µg/mL, to check the possible dose–response
effect and to compute the IC50 values.

In general, the data obtained with fluconazole provide the best results but those
obtained with Phoma betae treated with deoxycholic acid are quite interesting because
deoxycholic acid is a surface-active agent (and not a specific antifungal agent). It is a waste
product, obtained from the processing of bovine and pig bile to produce ursodeoxycholic
acid, a drug used in the treatment of gallstones. Moreover, recently, deoxycholic acid has
been approved for use in the cosmetic field in the treatment of imperfections [72] as well
as being known to inhibit the growth of Candida albicans [73]. This aspect supports the
substantial safety of the compounds useful for facilitating the possible path towards their
application on a large scale in agriculture, since the regulatory aspects in this context are in
any case stringent and different from the already consolidated areas of application. In fact,
to the best of our knowledge the application to the agricultural field is completely new for
these kinds of compounds and, therefore, it is promising to avoid negative environmental
impact, toxicological effects on humans, animals and plants and resistance phenomena to
treatments by phytopathogens which, on the other hand, can characterise normal treat-
ments with synthetic pesticides. The only study present reports that deoxycholic acid can
induce complementary lines of defence, such as callose deposition, reactive oxygen species
accumulation and jasmonic acid and salicylic acid signalling pathways [74].

For the biotransformation products, the positive control in most cases has a greater
activity than the biotransformation products. However, it could be hypothesised that even
if the inhibition effect occurs at higher concentrations than the control, the potential absence
of resistance effects make them anyhow promising as natural alternatives to synthetic
compounds. Furthermore, their use cannot be excluded in any case, but instead can be
supported-if not as an alternative-at least as a complementary support to treatments with
synthetic compounds. In fact, this type of integrated approach would make it possible to
reduce the quantity of synthetic compounds used, counterbalanced by the use of natural ef-
fective biotransformation compounds, reducing in any case the impact on the environment
and all the critical aspects already extensively highlighted [23–26].

In the literature, there are few studies where microbial biotransformations have been
used to obtain new antifungals. However, among the most relevant and related research
studies, Bajpai et al. reports that molecules derived from the biotransformation of eicos-
apentenoic acid and docosahexenoic acid lead to the formation of compounds active on
Botritis cinerea and Fusarium oxysporum, respectively [75,76].
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Of particular interest was the extract deriving from the biotransformation of deoxy-
cholic acid containing the compound 2b as it has shown a biological activity comparable to
that of fluconazole against Sclerotinia minor, so that, also in this case, the biotransformation
process leads to the advantage of obtaining a molecule that can be potentially used in the
agricultural sector as a selective tool in a more sustainable strategy for crop plant defence.
There are no known biotransformation products active on this fungus, however there are
some in vitro studies where extracts containing steroid-derived molecules are used in the
fight against this pathogen. Some examples are represented by solamargin and solasonin,
steroidal glycoalkaloids isolated from eggplants (Solanumn melongena) that showed a pro-
tective efficacy against the attacks of fungi, bacteria, and phytophagous insects [77]. The
EC50 values (15–25 µg/mL) obtained with extracts from eggplant leaves containing these
molecules pointed out the capacity against phytopathogens with efficacy comparable with
that obtained against Sclerotinia sclerotiorum and Phoma betae with the extract containing
product 3c.

Results obtained with the extract deriving from the biotransformation of hyocholic
acid containing the compound 3c against Phoma betae and Sclerotinia sclerotiorum points
out an important selectivity in exerting biological activity against phytopathogens, sup-
porting the safety of the biotransformed compound against non-target microorganisms. To
date, hyocholic acid is considered a full waste from the processing of porcine bile and no
valorisation approach has been attempted so far. The only scientific evidence regarding
its biological activity is in the regulation of glucose homeostasis, and therefore in a totally
different context from the one highlighted here [78].

To the best of our knowledge, in the literature there are no studies about the antifi-
topathogenic activity of biotransformed products against Phoma betae. On the contrary,
interesting results are reported about Sclerotinia sclerotiorum, but concerning the antifungal
properties of bioconverted products starting from different substrates than those used for
this study. In particular, the results referred to anti-fungal properties of several bioconverted
extracts obtained starting from hydroxylated fatty acid mixtures employed as substrate,
such as ricinoleic and eicosadienoic acids, produced by the biotransforming activity of a
Pseudomonas PR3 bacterial strain [79]. These extracts showed antifungal activity against
Sclerotinia sclerotiorum with MIC value of 500 µg/mL, comparable to those obtained with
the extracts 2a, 3c and 4d + 5d.

Thanks to the biotransformation process, these products, currently considered wastes,
could be recovered and potentially used as an effective tool to control phytopathogens in
agriculture, promoting a more sustainable way to manage crop plant defence.

4. Materials and Methods
4.1. Microrganisms

In this study the following 10 phytopathogenic fungi were used: Alternaria sp. (ATCC
20084); Botrytis cinerea (ATCC 11542); Fusarium moniliforme (ATCC 36541); Fusarium oxyspo-
rum (ATCC 48112); Neonectria galligena (ATCC 11684); Phoma betae (ATCC 24797); Penicillium
crustosum (ATCC 52044); Phytium ultimum (CBS 29131); Sclerotinia minor (ATCC 52583);
Sclerotinia sclerotiorum (ATCC 46762).

4.2. Secosteroids Synthesis

The tested biotransformation mixture extracts containing secosteroids were obtained
as previously reported by Costa et al. [70,71]. The products obtained were the following:
3,7α,12α-trihydroxy-9-oxo-9,10-seco-23,24-dinor-1,3,5(10)-cholatrien-22-oic acid 2a from
biotransformation of cholic acid; 3,12α-dihydroxy-9-oxo-9,10-seco-23,24-dinor-1,3,5(10)-
cholatrien-22-oic acid 2b from biotransformation of deoxycholic acid; 3-hydroxy-6,9-epoxy-
9,10-seco-23,24-dinor-1,3,5(10),6,8-cholapentaen-22-oic acid 3c from biotransformation of
hyocholic acid; 3,9β-dihydroxy-6x,9α-epoxy-9,10-seco-23,24-dinor-1,3,5(10)-cholatrien-22-
oic acid 4d and 3,4,9β-trihydroxy-6β,9α-epoxy-9,10-seco-23,24-dinor-1,3,5(10)-cholatrien-
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22-oic acid 5d from biotransformation of hyodeoxycholic acid. Products 4d and 5d were in
the same mixture.

4.3. Preliminary Screening

A screening was initially performed to evaluate the biological activity of the com-
pounds against phytopathogenic fungi. In this preliminary phase, Petri dishes (90 mm in
diameter) were prepared containing potato dextrose agar (PDA, Difco, Ditroit, MI, USA)
integrated first with the starting bile acids, then with the mixtures of biotransformation
products at the concentration of 1000 µg/mL. The compounds were dissolved in DMSO
at a concentration of 0.1 g/mL, and 0.2 mL of this solution was added to the medium
after sterilisation once the temperature of 45 ◦C was reached [80]. The negative control
consisted of PDA medium with the addition of the same concentration of DMSO in the tests
(0.1% v/v). Subsequently, a piece of mycelium from the stationary phase mother culture
was added to each Petri dish [80]. Then the cultures were incubated at 26 ± 1 ◦C in the
dark. The rate of growth inhibition was determined by measuring the mycelium diameter
after 7 days and comparing it to the negative control, then carrying out the percentage ratio.
All experiments and analyses were repeated in triplicate and averaged.

4.4. Mycelial Growth Inhibition

After screening, compounds with fungal activity equal or higher than 80% were
identified and these were further investigated. The tests were repeated with the same
growth conditions but at different compound concentrations, in particular at 1000; 500;
250; 100; 50 and 25 µg/mL. DMSO (0.1%) was used as negative control and fluconazole as
positive control (100 and 50 µg/mL). A disc of mycelium (10 mm in diameter) was used
as inoculum and added to each Petri dish. The growth inhibition rate was determined by
measuring mycelial diameter (the average of two orthogonal diameters, subtracting the
inoculum diameter) daily for 7 days then carrying out the percentage ratio [81,82]. All tests
were performed in triplicate and averaged.

4.5. Statistical Analysis

Results were expressed as Mean ± SD for the screening and IC50 for the mycelial
growth inhibition test. Statistical analysis was performed using GraphPad Prism 5 statistical
software, by applying mean values using one-way ANOVA to determine if there was a
significant difference between the growth of the negative control and that of the compound.
A p-value of less than 0.05 was considered significant.

5. Conclusions

This study investigated the growth inhibition effect induced by bile acids deriving from
porcine and bovine bile and the respective products obtained through biotransformation
with strains belonging to the Rhodococcus genus against some phytopathogenic fungi with
a strong impact on many crops of great economic interest in the food supply chain.

Bile acids showed in general low biological activity against phytopathogenic fungi
tested. However, deoxycholic acid 1b instead showed interesting potential as a tool for
a selective phytopathogenic fungi biocontrol, since the bioactivity has been selectively
expressed against Phoma betae with the interesting and significant IC50 of 22.14 µg/mL.

On the other hand, considering the derivatives obtained with a biotransformation
approach, interesting results have already been obtained from a preliminary screening.
The extract containing the secosteroid 3c towards Phoma betae in fact showed an IC50 value
of 23.95 µg/mL. Similarly, the same extract was found to be effective against S. sclerotio-
rum with a similarly interesting growth inhibition value (IC50 of 18.49 µg/mL). Finally,
the extract deriving from the biotransformation of deoxycholic acid 2b has also proved
to be a good anti-phytopathogenic agent, in particular towards Sclerotinia minor even in
comparison to the synthetic compounds (fluconazole). The biotransformation strategy can
therefore be a useful process for converting waste molecules into molecules useful for vari-
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ous application contexts, such as that of eco-sustainable treatments in agriculture, explored
with this research. The use of bioproducts as tools for a more sustainable management of
crop protection is today a necessity to counter the emerging evidence of the environmental
and toxicological problems induced up to now by the massive use of synthetic agrophar-
maceuticals and the phenomena of resistance to treatments, which are more and more
widespread.

In conclusion, this study represents the first attempt to valorise such industry by-
products through biotechnological approaches for agricultural purposes. The next step
of this work involves the design and execution of an applicative study in the controlled
environment of greenhouses and in the field (test centre) in order to assess effective potential
large-scale applications.
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