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Abstract: In this work, different procedures for sensor Fault Detection and Isolation (FDI)
applied to a simulated model of a commercial aircraft are presented. The main point of the
paper regards the design of two FDI schemes based on a linear Polynomial Method (PM) and
the NonLinear Geometric Approach (NLGA). The obtained results highlight a good trade–off
between solution complexity and achieved performances. The FDI schemes are applied to the
aircraft model, characterised by tight–coupled longitudinal and lateral dynamics. The properties
of the residual generators are experimentally investigated and verified by simulating a general
aircraft reference trajectory. The overall performance of the developed FDI schemes are analysed
in the presence of turbulence, measurement and model errors. Comparisons with other FDI
methods based on Neural Networks (NN) and Unknown Input Kalman Filter (UIKF) are finally
reported.

1. INTRODUCTION

Increasing demands on reliability for safety critical systems
such as aircraft require reliable control and fault diagno-
sis capabilities as these systems are potentially subjected
to unexpected anomalies and faults in actuators, input–
output sensors, components or subsystems. Consequently,
fault diagnosis capabilities and requirements for aircraft
applications have recently been receiving a great deal of
attention in the research community (Marcos et al. (2005);
Amato et al. (2006)). Development of appropriate tech-
niques and solutions are known as the Fault Detection and
Isolation (FDI) problem. There are, broadly speaking, two
main approaches for addressing the FDI problem, namely
hardware–based and model–based techniques (Chen and
Patton (1999); Patton et al. (2000); Isermann (2005)).

A common and important approach in model–based tech-
niques is known as the residual–based method. A crucial
issue with any FDI scheme is its robustness properties.
The robustness problem in FDI is defined as the maximi-
sation of the detectability and isolability of faults together
with the minimisation of the effects of uncertainty and
disturbances on the FDI procedure (Chen and Patton
(1999); Isermann (2005)). However, many FDI techniques
are developed for linear systems. Unfortunately, practical
models in real world are mostly nonlinear. Therefore, a vi-
able procedure for practical application of FDI techniques
is really necessary. Moreover, robust FDI for the case of
aircraft systems and applications is still an open problem
for further research.

This work deals with the residual generator design for
the FDI of input–output sensors of a general aviation
1 Corresponding author

aircraft subject to turbulence, wind gust disturbances and
measurement noises. The developed PM scheme belongs
to the parity space approach (Gertler (1998)) and it is
based on an input–output polynomial description of the
system under diagnosis. In this way, the design of distur-
bance decoupled residual generators can be reduced to the
determination of the null–space of a specific polynomial
matrix associated to the process model. On the other hand,
the development of NLGA methodology is based on the
works by De Persis and Isidori (De Persis and Isidori (2000,
2001)).

It is worth noting that a previous work by the same
authors (Bonfè et al. (2006)) described the design of
residual generators based on the NLGA for only the
longitudinal dynamics, i.e. the 3 Degrees of Freedom
(DoF) aircraft model of the general aviation aircraft. This
paper presents further investigations regarding the design
of the FDI schemes for an aircraft model described as a 6
DoF rigid body. Moreover, a new fully analytical mixed
H−/H∞ optimisation is proposed, in order to design
the residual generators so that a good trade–off between
the fault sensitivity and the properties with respect to
measurements and model errors is achieved. Therefore,
this paper investigates some design issues and provides the
FDI residual generator optimal parameters, not described
in (Bonfè et al. (2006, 2007)).

The designed residual generators have been tested on a
PIPER PA–30 aircraft flight simulator, that was imple-
mented in Matlab r© – Simulink r© environments. Compar-
isons with different disturbance decoupling methods for
FDI based on Neural Networks (NN) and Unknown Input
Kalman Filter (UIKF) have been also provided.

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 7300 10.3182/20080706-5-KR-1001.0547



2. AIRCRAFT MODEL

The description of the monitored aircraft and its mathe-
matical description are recalled in this section. The main
parameters and measured variables are reported in Table
1. The considered aircraft simulation model consists of a

Table 1. Aircraft model nomenclature.

V True Air Speed (TAS)
α angle of attack
β angle of sideslip
pω roll rate
qω pitch rate
rω yaw rate
φ bank angle
θ elevation angle
ψ heading angle
ne engine shaft angular rate[

Ix 0 −Ixz

0 Iy 0
−Ixz 0 Iz

]
inertia moment matrix

Fx, Fy , Fz body axes forces
Mx, My , Mz body axes moments
δe elevator deflection angle
δa aileron deflection angle
δr rudder deflection angle
δth throttle aperture percentage
X, Y horizontal coordinates
H altitude
γ flight path angle
m airplane mass
ωu, ωv , ωw wind gust components

PIPER PA–30, based on the classical nonlinear 6 DoF rigid
body formulation (Stevens and Lewis (2003)), whose mo-
tion occurs as a consequence of applied forces and moments
(aerodynamic, propulsive and gravitational). A set of local
approximations for these forces has been computed and
scheduled depending on the values assumed by True Air
Speed (TAS), curvature radius, flight path angle, altitude
and flap deflection. In this way, it is possible to obtain a
mathematical model for each flight condition. This model
is suitable for a state–space representation, as it can be
made explicit. The parameters in the analytic represen-
tation of the aerodynamic actions have been obtained
from wind tunnel experimental data, and the aerodynamic
actions are expressed along the axes of the wind reference
system.

The nonlinear 6 DoF model has been completed by means
of the PIPER PA–30 propulsion system consisting of
two 4–pistons aspirated engines, with the throttle valve
aperture δth as input and the overall thrust intensity
as output. Thus, the complete simulation model consists
of the aircraft 6 DoF flight dynamics and the engine
model completed with the model of input–output sensors,
the servo actuators, the atmosphere turbulence Dryden
description, the wind gust disturbances and a classical
autopilot. Moreover, the sensor models embed all the
possible sources of disturbance (calibration and alignment
errors, scale factor, white and coloured noises, limited
bandwidth, g–sensitivity, gyro drift, etc.).

Using the nomenclature of Table 1, it is possible to
develop the nonlinear model mathematical equations for
the aircraft flight attitude (Bonfè et al. (2006, 2007)).
The linear model used by the proposed PM FDI approach

described in Section 4 is obtained from the linearisation
of both the 6 DoF model and the propulsion system as
follows:

ẋ(t) = Ax(t) + B c(t) + E d(t) (1)
with

x(t) =
[
∆V (t) ∆α(t) ∆β(t) ∆pω(t) ∆qω(t) . . .
. . . ∆rω(t)∆φ(t) ∆θ(t) ∆ψ(t) ∆ne(t)

]T
c(t) =

[
∆δe(t) ∆δa(t) ∆δr(t) ∆δth(t)

]T
d(t) =

[
wu(t) wv(t) ww(t)

]T
(2)

where ∆ denotes the variations of the considered variables,
while c(t) and d(t) are the control inputs and the distur-
bances respectively. The disturbance contribution of the
wind gusts as air velocity components, wu, wv and ww,
along body axes was also considered. The output equation
associated to the model (1) is of the type y(t) = Cx(t),
where the rows of C correspond to rows of the identity
matrix, depending on the measured variables.

With reference to the NLGA FDI scheme described in
Section 3, it requires a nonlinear input affine system
(De Persis and Isidori (2001)), but the adopted simulation
model of the aircraft does not fulfil this requirement. For
this reason, the following simplified aircraft model is used:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V̇ = −
(
CD0 + CDαα+ CDα2α

2
)

m
V 2+

+g (sinα cos θ cosφ− cosα sin θ) +

+
cosα

m

tp

V
(t0 + t1ne) δth + wv sinα

α̇ = − (CL0 + CLαα)

m
V+

+
g

V
(cosα cos θ cosφ+ sinα sin θ) + qω+

− sinα

m

tp

V 2
(t0 + t1ne) δth +

cosα

V
wv

β̇ =

(
CD0 + CDαα+ CDα2α

2
)

sinβ + CY ββ cosβ

m
V+

+g
cos θ sinφ

V
+ pω sinα− rω cosα+

− cosα sinβ

m

tp

V 2
(t0 + t1ne) δth +

1

V
w�

ṗω =

(
Clββ + Clp pω

)
Ix

V 2 +
(Iy − Iz)

Ix
qωrω +

Cδa

Ix
V 2δa

q̇ω =
(Cm0 + Cmαα+ Cmq qω)

Iy
V 2 +

(Iz − Ix)

Iy
pωrω+

+
Cδe

Iy
V 2δe +

td

Iy

tp

V
(t0 + t1ne) δth

ṙω =

(
Cnββ + Cnr rω

)
Iz

V 2 +
(Ix − Iy)

Iz
pωqω +

Cδr

Iz
V 2δr

φ̇ = pω + (qω sinφ+ rω cosφ) tan θ

θ̇ = qω cosφ− rω sinφ

ψ̇ =
(qω sinφ+ rω cosφ)

cos θ

ṅe = tnn
3
e +

tf

ne
(t0 + t1ne) δth

(3)

where C(·) are the aerodynamic coefficients; t(·) are the
engine parameters; wv, wl are the vertical and lateral wind
disturbance components. In more detail, the model of Eq.
(3) has been obtained by assuming that the expressions
of aerodynamic forces and moments can be represented
by means of series expansions in the neighbourhood of
the steady–state flight condition. The engine model has
been simplified by linearising the power with respect to the
angular rate behaviour in the neighbourhood of the trim
point. The second order coupling between the longitudinal
and lateral–directional dynamics have been neglected. The
x–body axis component of the wind has been neglected. In
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fact, the aircraft behaviour is much more sensitive to the
y–body and z–body axis wind components. The rudder
effect in the equation describing the β dynamics has been
neglected.

3. NLGA RESIDUAL GENERATORS

The considered NLGA to the FDI problem was formally
developed in (De Persis and Isidori (2001)). It consists
in finding, by means of a coordinate change in the state
space and in the output space, an observable subsystem
which, if possible, is affected by the fault and not affected
by disturbances. In this way, necessary and sufficient
conditions for the FDI problem to be solvable are given.
Finally, a residual generator can be designed on the basis
of the model of the observable subsystem. More precisely,
the approach consider a nonlinear system model in the
form:{

ẋ = n(x) + g(x) c(t) + �(x) f(t) + p(x) d(t)
y(t) = h(x) (4)

in which the state vector x ∈ X (an open subset of Rn),
c(t) ∈ R�c is the control input vector, f(t) ∈ R�f is
the fault vector, d(t) ∈ R�d the disturbance vector and
y ∈ Rm the output vector, whilst n(x), g(x), �(x) and
p(x) are smooth vector fields, and h(x) a smooth map.
Therefore, if P represents the distribution spanned by the
column of p(x), the NLGA method is based firstly on
the determination the largest observability codistribution
contained in P⊥, denoted with Ω∗ (De Persis and Isidori
(2001)).

If �(x) ∈ Ω∗, the fault is not detectable. Otherwise,
the design procedure is possible and it can be found a
surjection Ψ1 and a function Φ1 fulfilling Ω∗ ∩ span{dh} =
span{d(Ψ1 ◦ h)} and Ω∗ = span{d(Φ1)}, respectively.

The functions Ψ(y) and Φ(x) defined as:

Ψ(y) =
(
ȳ1
ȳ2

)
=
(

Ψ1(y)
H2 y

)
,

and

Φ(x) =

(
x̄1

x̄2

x̄3

)
=

( Φ1(x)
H2 h(x)
Φ3(x)

)

are (local) diffeomorphisms. In the new (local) coordinate
defined previously, the system of Eq. (4) is described by
the relations in the form:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

˙̄x1 = n1(x̄1, x̄2) + g1(x̄1, x̄2) c+ �1(x̄1, x̄2, x̄3) f
˙̄x2 = n2(x̄1, x̄2, x̄3) + g2(x̄1, x̄2, x̄3) c+

+�2(x̄1, x̄2, x̄3) f + p2(x̄1, x̄2, x̄3) d
˙̄x3 = n3(x̄1, x̄2, x̄3) + g3(x̄1, x̄2, x̄3) c+

+�3(x̄1, x̄2, x̄3) f + p3(x̄1, x̄2, x̄3) d
ȳ1 = h(x̄1)
ȳ2 = x̄2

(5)

with �1(x̄1, x̄2, x̄3) not identically zero. Denoting x̄2 with
ȳ2 and considering it as an independent input, it can be
singled out the x̄1–subsystem:{

˙̄x1 = f1(x̄1, ȳ2) + g1(x̄1, ȳ2) c+ �1(x̄1, ȳ2, x̄3)m
ȳ1 = h(x̄1)

which is affected by the fault and decoupled from the
disturbance. This subsystem has been exploited for the
design of the residual generator for the FDI of the fault f .

With reference to the considered aircraft application, as
can be seen in (Castaldi et al. (2007)), it is always possible
to find two proper scalar components both of x̄1 and ȳ1,
referred to as x̄11 and ȳ11, so that the following x̄11–
subsystem can be singled out:⎧⎨

⎩
˙̄x11 = n11(x̄11, ȳ1c, ȳ2) + g11(x̄11, ȳ1c, ȳ2)c+

+ �11(x̄11, ȳ1c, ȳ2)f
ȳ11 = x̄11

(6)

where

x̄1 =
[
x̄11

x̄1c

]
ȳ1 =

[
ȳ11
ȳ1c

]
The generic adopted scalar residual generator for the fault
detection of the x̄11–subsystem (6) can be written as:{
ξ̇f = n11(ȳ11, ȳ1c, ȳ2) + g11(ȳ11, ȳ1c, ȳ2)c+ kf (ȳ11 − ξf )
rf = ȳ11 − ξf

(7)
As an example, the residual generator signal rδe

(t) for the
elevator of the input affine model of Eq. (3), with kδe

> 0
to ensure asymptotic stability, is described by the relation:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ̇1 =
V 2

m

[− (CD0 + CDαα+ CDα2α
2
)
cosα

]
+

+
V 2

m
(CL0 + CLαα) sinα− g sin θ+

−V qω sinα− (Cm0 + Cmαα+ Cmqqω)
mtd

V 2+

− (Iz − Ix)
mtd

pωrω − Cδe

mtd
V 2δe+

+kδe

[(
V cosα− Iy

mtd
qω

)
− ξ1

]

rδe
=
(
V cosα− Iy

mtd
qω

)
− ξ1

(8)

The residual generators for the aileron rδa
(t), the rudder

rδr
(t) and the throttle rδth

(t) input sensor signals have
similar formulations and they are not reported here. The
design of the residual generator gains kδe

, kδa
, kδr

and kδth

can be carried out independently.

It can be noted that the critical disturbances are previ-
ously structurally decoupled but there are some other non
critical disturbance affecting both the aircraft dynamics
and the sensor measurements which has to be considered
in order to improve the robustness of the fault detection.
For this reason, the tuning of the generic residual generator
gain kf will be performed by embedding the description
of the non critical disturbances in the x̄11–subsystem as
follows:⎧⎨

⎩
˙̄x11 = n11(x̄11, ȳ1c, ȳ2) + g11(x̄11, ȳ1c, ȳ2)c+

+ �11(x̄11, ȳ1c, ȳ2)f + e(x̄11, ȳ1c, ȳ2)ζ
ȳ11 = x̄11 + ν

(9)

where the variable ν ∈ R is the measurement noise on
x̄11, the variable ζ ∈ R and the related scalar field e(·)
represent the non critical effects which have not been
explicitly considered in the aircraft model (3).

A procedure for optimising the trade–off between the fault,
the modelling error and disturbance sensitivity of the
generic residual generator is proposed in the following. In
more detail, in order to take into account the disturbance
attenuation and fault sensitivity, the mixed H−/H∞ ap-
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proach is exploited (Chen and Patton (1999); Hou and
Patton (1996)).

In order to determine a new analytic solution to the
mixed H−/H∞ problem, aimed to tune the generic kf

of the non linear residual generator, the dynamics of the
estimation error can be linearised since the considered
aircraft application is characterised by small excursions of
the state, input and output variables with respect to their
trim values. The estimation error is defined as follows:

x̃f = x̄11 − ξf (10)
and the corresponding linearised dynamics is represented
by: {

˙̃xf = −kf x̃f + (E1 − kfE2) ε+mf
rf = x̃f +E2ε

(11)

where the disturbance augmented vector ε and the corre-
sponding E1, E2 are structurally defined as:

ε =
[
ζ
ν

]
E1 = [e11 0] E2 = [0 1] (12)

¿From the definitions of the norms H∞ and H− for a stable
transfer function G (Chen and Patton (1999)), the mixed
H−/H∞ residual optimisation problem is stated as follows.

Given two scalars β > 0 and γ > 0, find the set K defined
as:

K =
{
kf ∈ R : kf > 0, ‖Grε‖∞ < γ, ‖Grf‖− > β

}
(13)

where

Gr ε(s) = (s+ kf )−1 (E1 − kf E2) + E2 (14)

Grf (s) = (s+ kf )−1
m (15)

It is possible to prove that for each kf > 0

‖Grε‖2
∞ = max

{
1,
e211
k2

f

}
(16)

Moreover, the set Kγ defined as
Kγ = {kf ∈ R : kf > 0, ‖Grε‖∞ < γ, γ > 1} (17)

is given by:

kf > k with k =
e11
γ

(18)

On the other hand, the set
{
‖Grf‖− : ‖Grε‖∞ < γ

}
, with

γ > 1, is given by:

0 < ‖Grf‖− < βmax (γ) where βmax (γ) =
mγ

e11
(19)

By combining the previous results, it is possible to provide
an analytical expression of the set K as follows:

K =
{
kf ∈ R : kf ∈ ]k , k[ , k =

m

βmax (γ)
, k =

m

β

}
(20)

On the basis of these results, kf can be designed by
choosing a desired value of disturbance attenuation γ > 1.
Then, it is required to compute βmax (γ) and choose β ∈
]0, βmax (γ)[ to obtain a desired value of fault sensitivity.
Finally, one has to choose the gain of the nonlinear residual
generator kf ∈ ]k , k[.

4. PM RESIDUAL GENERATORS

The input–output representation of a continuous–time,
time–invariant linear dynamic system affected by faults
and disturbances is assumed to have the form:

P(s)y(t) = Qc(s) c(t) + Qd(s)d(t) + Qf (s) f(t), (21)
where y(t) ∈ �m is the output vector, c(t) ∈ �lc is the
input vector, d(t) ∈ �ld is the disturbance vector and
f(t) ∈ �lf is the fault vector; P(s), Qc(s), Qd(s) and
Qf (s) are known polynomial matrices of proper dimen-
sions.

Models of type of Eq. (21) can be frequently found in
practice by applying well–known physical laws to describe
the input–output dynamical links of various systems. Al-
gorithms to transform multivariable state–space models
to equivalent Multiple Input – Multiple Output (MIMO)
polynomial representations and vice versa are available.
Under this consideration, the polynomial matrices P(s),
Qc(s) and Qd(s) can be obtained by physical modelling or
black–box identification procedures, as suggested in (Chen
and Patton (1999); Simani et al. (2002)) for state–space
and input–output system descriptions.

An important aspect of the residual generator design for
the system of Eq. (21) concerns the de–coupling properties
of the disturbance d(t). The de–coupling can be obtained
premultiplying all the terms of Eq. (21) by the matrix
L(s) ∈ Nl (Qd(s)), i.e. the left null–space of the matrix
Qd(s):

L(s)P(s)y(t) − L(s)Qc(s) c(t) = L(s)Qf (s) f(t). (22)
Hence, the residual generator for the system of Eq. (21) is
represented by:

R(s) r(t) = L(s)P(s)y(t) − L(s)Qc(s) c(t) =
= L(s)Qf (s) f(t), (23)

where it is assumed that r(t) ∈ � and L(s) is a polyno-
mial row vector. The polynomial R(s) can be arbitrarily
selected among the polynomials with degree greater than
or equal to n∗r , where n∗r is the maximum row–degree of
the pair {L(s)P(s) , L(s)Qc(s)}. Moreover, if all the roots
of R(s) lie in the open left–half s–plane, it assures the
stability of the filter of Eq. (23).

Note that if the matrix Qd(s) has full row rank (i.e.
rankQd(s) = ld), Nl(Qd(s)) has dimension m− ld. There-
fore, a polynomial matrix B(s), whose rows represent a
minimal polynomial basis of Nl (Qd(s)), has m − ld rows
and m columns.

As it is assumed that the input–output measurements are
expressed by the following relations:{

c∗(t) = c(t) + fc(t),
y∗(t) = y(t) + fo(t),

(24)

the system of Eq. (21) becomes:
P(s) (y∗(t) − fo(t)) = Qc(s) (c∗(t) − fc(t)) +

+Qd(s)d(t), (25)

whilst the residual generator of Eq. (23):
R(s) r(t) = L(s)P(s)y∗(t) − L(s)Qc(s) c∗(t) =

= L(s)P(s) fo(t) − L(s)Qc(s) fc(t).
(26)

It is clear that the design freedom consists of the selection
of the rows of the polynomial matrix L(s), when q = m−
ld ≥ 2. These degrees of freedom are used to optimise the
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sensitivity properties of r(t) with respect to the fault f(t),
for example by maximising the steady–state gain of the
transfer function Gf (s) = L(s)Qf (s)/R(s).

If bi(s) (i = 1, . . . , q) are the row vectors of the basis
B(s), L(s) can be expressed as linear combination of these
vectors:

L(s) =
q∑

i=1

ki bi(s), (27)

where ki are real constants maximising:

lim
s→0

1
R(s)

[
q∑

i=1

kibi(s)

]
Qf (s) =

[
q∑

i=1

kibi(0)

]
Qf (0),

(28)
with the constraint:

q∑
i=1

ki
2 = 1. (29)

Under these assumptions, when the fault f(t) is a step–
function of magnitude F , the steady–state residual value
is:

lim
t→∞ r(t) = lim

s→0
s
L(s)Qf (s)

R(s)
F

s
=

=

[
q∑

i=1

ki bi(0)

]
Qf (0)F.

(30)

By defining the real vectors k = [k1, k2, . . . , kq]T and
a = B(0)Qf (0) = [a1, a2, . . . , aq], the maximisation of
the residual fault sensitivity is determined by the vector k
that maximises the steady–state fault sensitivity, i.e. the
function W given by W = aT k =

∑q
i=1 ai ki under the

constraint of Eq. (29), given the vector a. The solution
to this problem exists and it is unique. In fact, from Eq.
(29), k1 is expressed as a function of k2, k3, . . ., kq and it
is substituted into the expression of the function W . Thus

W = a1

√
1 − k2

2 − k3
2 − . . . − kq

2 + a2 k2 + . . . + aq kq.

By computing ∇W = 0 and squaring the expression,
after algebraic manipulation, an expression in the form of
Ax = b is obtained, where A and b depend on the terms
ai

2. The unknown vector x̃, under the constraint of Eq.
(29), can be expressed as x̃ = [1−∑q−1

i=1 (A−1 b)i, A−1b]T ,
where (A−1 b)i is the i–th element of the vector A−1 b.
The vector x̃ represents the squares of the solution of
the maximisation problem. If we define Ω as the set of
the vectors k whose elements are the square roots of the
elements of x̃ (since every element can be taken both with
signs ‘+’ and ‘-’, such vectors are 2q), the solution k̃ can
be reformulated as:

k̃ = arg max
k∈Ω

W (k).

The maximisation of the steady–state gain of the transfer
function Gf (s) = L(s)Qf (s)/R(s) is obtained through
a suitable choice of the real vector k. The design of the
residual generation filter can be enhanced by introducing
a method for assigning both the zeros and the poles of the
transfer function Gf (s). The previous consideration leads
to introduce the polynomial E(s) = kT (s)B(s)Qf (s),
where k(s) is a q–dimensional polynomial vector, whose
i–th element has the form ki(s) =

∑nk

j=0 k
j
i s

j . The degree
nk and the q×nk coefficients kj

i represent a design freedom

(j �= 0) that can be exploited to obtain the desired roots
of the polynomial E(s). However, in order to maximise the
steady–state gain, the following condition must hold:

k(0) = k̃ =
[
k̃1 k̃2 . . . k̃q

]T
(31)

where k0
i = k̃i, with i = 1, . . . , q. If H(s) is the reference

polynomial, whose roots are the zeros to be assigned, i.e.
H(s) =

∑nh

j=0 h
j sj , it follows that H(0) = k̃T B(0)Qf (0).

Obviously, this assumption does not provide any restric-
tion on the roots assignable. Under the previous consider-
ations, the zero assignment and pole placement problem
can be solved by finding the degree nk and the coefficients
kj

i , under the constraint of Eq. (31), in order to obtain
E(s) = H(s).

To proceed, we define the polynomial vector a(s) =
B(s)Qf (s) and its i–th element, a known polynomial
of a certain degree, nai

. If na is defined as na =
maxi=1, ..., q nai

, the i–th element of a(s) can be al-
ways written as a polynomial of degree na, i.e. ai(s) =∑na

j=0 a
j
i s

j by imposing that aj
i = 0 when j > nai

. As
E(s) = kT (s)a(s), it results:

E(s) =
q∑

i=1

nk+na∑
j=0

⎛
⎝ ∑

α+β=j

kα
i a

β
i

⎞
⎠ sj =

nk+na∑
j=0

ej sj , (32)

where

ej =
q∑

i=1

∑
α+β=j

kα
i a

β
i .

Note that the coefficients e1, . . . , enk+na depend on the
design freedom k1

i , . . . , k
nk
i . On the other hand, e0 is fixed

as the coefficients k0
i are assigned by Eq. (31).

Let’s suppose that nh ≤ nk + na. By imposing E(s) =
H(s), the following expressions are computed:

q∑
i=1

∑
α+β=j (α�=0)

kα
i a

β
i = hj −

q∑
i=1

k0
i a

j
i (33)

for j = 1, . . . , nk + na.

Eqs. (31) and (33) represent a linear system with nk + na

equations and q × nk unknowns, that can be expressed in
the classical form Ax = b, where A and b are functions
of ai

j and k0
i . The degree nk of the polynomials ki(s) has

to be chosen in order to obtain a solvable system (i.e.
rankA = rank [A b]). Note that the use of a polynomial
vector k(s) instead of a real vector k has the drawback of
increasing the complexity of the residual generator.

The detection properties of the filters in terms of fault
sensitivity and disturbance rejection can be optimised by
using a method similar to the one described in Section 3
for the NLGA residuals. In particular, the synthesis of the
dynamic filters for FDI has been performed by choosing a
suitable linear combination of residual generator functions.
This choice maximises the steady–state gain of the transfer
functions between input sensor fault signals. The roots of
the R(s) polynomial matrix are optimised for maximising
the fault detection promptness, as well as to minimise the
disturbance sensitivity.

Finally, the design problem of residual generator banks
for the isolation of faults affecting the input and the
output sensors can be solved by using the disturbance
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de–coupling method suggested above. In particular, to
univocally isolate a fault concerning one of the output
sensors, under the hypotheses that the input sensors and
the remaining output sensors are fault–free, a bank of
residual generator filters is used. The number of these
generators is equal to the numberm of the system outputs,
and the i–th device (i = 1, . . . , m) is driven by all but
the i–th output and all the inputs of the system. In this
case, a fault on the i–th output sensor affects all but the
i–th residual generator. Moreover, the parameters of the
i–th filter can be properly chosen in order to optimise its
performances when a fault is acting on the j–th output
sensor. A similar design technique can be used for input
sensor fault isolation.

5. FDI PERFORMANCE ESTIMATION

To show the diagnostic characteristics brought by the
application of the proposed FDI schemes to general avi-
ation aircrafts, some numerical results obtained in the
Matlab r© and Simulink r© environment are reported. The
final performances that are achieved with the developed
FDI schemes are finally reported. These performances are
evaluated by means of extensive simulations applied to
the aircraft simulation model. This section presents also
some comparisons of the developed PM and NLGA FDI
strategies with NN and UIKF FDI schemes.

The designed PM residual generator filters are fed by the
4 signals of the input vector c(t) and the 9 signals of
output vector y(t) acquired from the simulation aircraft
model previously described. In particular, a bank of 4
residual generator filters has been used to detect input
sensor faults regarding the 4 input control variables. Ob-
viously, the residual generator bank has been designed
to be decoupled from the 3 component wind disturbance
vector d(t) = [wu(t), wv(t), ww(t)]T . Regarding the NLGA
residual generator filters, a bank of 4 residual generator
filters has been used. However, the i–th NLGA residual
generator is fed by one signal of the input vector c(t), with
i = 1, . . . , 4. Analogously to the PM, the approximations
of the NLGA synthesis nonlinear model are related to a
particular steady–state flight condition.

The chosen single steady–state flight condition for the
design both of the PM and of the NLGA residual gen-
erators is a coordinated turn characterised by the true–
air–speed of 50 m/s, the curvature radius of 1000 m, the
flight–path angle of 0◦, the altitude of 330 m and the
flap deflection of 0o. This represents one of most general
flight condition, due to the coupling of the longitudinal
and lateral dynamics.

In order to assess the presented diagnosis techniques,
different fault sizes have been simulated on each sensor.
Single faults in the input sensors have been generated
by producing abrupt (step) variations in the input sig-
nals c(t). The residual signals indicate fault occurrence
according to whether their values are lower or higher than
the thresholds fixed in fault–free conditions. To summarise
the performances of the PM FDI scheme, the minimal
detectable step faults on the various input sensors are
collected in Table 2. Regarding the NLGA FDI scheme,
the minimal detectable faults concerning the input sensors
are summarised in Table 3. The minimal detectable fault

Table 2. PM minimal detectable step input
sensor faults.

Variable Fault Size Delay Time

δe 2o 18 s
δa 3o 6 s
δr 4o 8 s
δth 2% 15 s

Table 3. NLGA minimal detectable input sen-
sor faults.

Variable Fault Size Delay Time

δe 2o 5 s
δa 2o 3 s
δr 2o 6 s
δth 6% 3 s

values in Table 2 and Table 3 are expressed in the unit of
measure of the sensor signals. The detection delay times
represent the worst case results, as they are evaluated by
monitoring the slowest residual generator function.

The characteristics of the proposed PM and NLGA FDI
schemes have been evaluated and compared also with
respect to the UIKF scheme (Chen and Patton (1999))
and the NN technique (Korbicz et al. (2004)). In partic-
ular, a bank of UIKF has been exploited for diagnosing
faults of the monitored process. The procedure recalled
here requires the design of an UIKF bank and the basic
scheme is the standard one: a set of measured variables
of the system is compared with the corresponding signals
estimated by filters to generate residual functions. The
diagnosis has been performed by detecting the changes of
UIKF residuals caused by a fault. The FDI input sensor
scheme exploits a number of UIKF equal to the number of
input variables. Each filter is designed to be insensitive to
a different input sensor of the process and its disturbances
(the so–called unknown inputs). Moreover, the considered
UIKF bank was obtained by following the design technique
described in (Chen and Patton (1999)) (Section 3.5, pp.
99–105), whilst the noise covariance matrices were esti-
mated as described in (Simani et al. (2002)) (Section 3.3,
pp. 70–74 and Section 4.6, pp. 130–131). Each of the 4
UIKF of the bank was de–coupled from both one input
sensor fault and the wind gust disturbance component,
thus providing the optimal filtering of the input–output
measurement noise sequences.

On the other hand, a dynamic NN bank has been exploited
in order to find the dynamic connection from a particular
fault regarding the input sensors to a particular residual.
In this case, the learning capability of NN are used for
identifying the nonlinear dynamics of the monitored plant.
The dynamic NN provides the prediction of the process
output with an arbitrary degree of accuracy, depending on
the NN structure, its parameters and a sufficient number
of neurons. Once the NN has been properly trained,
the residuals have been computed as difference between
predicted and measured process outputs. The FDI is
therefore achieved by monitoring residual changes. The
NN FDI method exploits a bank of 4 time–delayed three–
layers perceptrons NN with 15 neurons in the input layer,
25 neurons in the hidden layer and 1 neuron in the output
layer. Each NN was designed to be insensitive to each input
sensor fault, and the NN were trained in order to provide
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the optimal output prediction on the basis of the training
pattern and target sequences (Korbicz et al. (2004)).

The performances of the different FDI schemes have been
evaluated by considering a more complex aircraft trajec-
tory. This closed trajectory consists of 4 steady–state flight
conditions, i.e. 2 coordinated turns and 2 straight paths.
The performed tests represent also a possible reliability
and robustness experimental evaluation of the considered
FDI techniques. In fact, in this case the diagnosis requires
that the residual generators are robust with respect to the
flight conditions that do not match the nominal trajectory
used for the design.

As an example, Fig. 1 shows the 4 residual functions
generated for the complete trajectory by the previously
designed PM filter bank, which provided the results of
Table 2 in the nominal flight condition. On the basis of
the fault–free and faulty conditions represented in Fig. 1,
this bank provides the correct isolation of the considered
input sensor fault.
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Fig. 1. PM residuals for the 1st input sensor FDI.

In particular, Fig. 1 represents the fault–free and the
faulty residual signals. Horizontal lines show the levels
of the fault–free thresholds. In the considered case, the
fault has been generated on the 1st input sensor of the
considered aircraft, starting at time t = 60 s. The first
residual function, as depicted in Fig. 1, provides also the
isolation of the fault fc(t) regarding the 1st input sensor.
In fact the residual for the the 1st input does not depend
on the considered fault, since it has been designed to be
insensitive to the related input signal.

The second example of Fig. 2 shows the 4 residual func-
tions generated by the NLGA filter bank applied to the
complete aircraft trajectory. The results achieved in the
nominal flight condition are collected in Table 3. In Fig. 2,
horizontal lines represent the FDI thresholds. Note that,
due to the NLGA design technique presented in Section 3,
only the 1st residual related to the δe signal of the filter
bank is sensitive to a fault affecting the 1st input sensor.

Table 4 summarises the results obtained by considering the
observers and filters (corresponding to the PM, NLGA,
UIKF and NN) for the input sensor FDI, whose param-
eters have been designed and optimised for the steady–
state coordinated turn represented by one reference flight
condition of the complete trajectory. Table 4 reports the
performances of the considered FDI techniques in terms
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Fig. 2. NLGA residuals for the 1st input sensor FDI.

of the minimal detectable step faults on the various input
sensors. The detection delay times reported in Table 4
represent the average delay time values among the different
fault cases for the complete trajectory. Further experiment

Table 4. Performances of the FDI schemes.

Variable PM NLGA UIKF NN

δe 4o 3o 4o 3o

δa 5o 3o 5o 4o

δr 5o 3o 4o 4o

δth 7 % 10 % 11 % 12 %
Delay Time 28 s. 29 s. 31 s. 30 s.

results have been reported in the following of this section.
They regard the performance evaluation of the developed
FDI scheme with respect to modelling errors and mea-
surement uncertainty. Extensive simulations are useful at
this stage as the FDI performances depend on the residual
error magnitude due to the model approximation as well
as on the measured signal c(t) and y(t) errors.

As remarked above, the aircraft simulator is able to vary
the reference trajectory and the properties of the signals
used for modelling both the process and measurement
errors. Due to the nature of the simulated model, the
simulation analysis represents an experimental method for
estimating the capabilities of the developed FDI scheme,
when applied to the considered aircraft.

For this experimental analysis, some performance indices
have been used and then evaluated on a number of
simulation runs equal to 1000. This number of simulations
is used to experimentally evaluate the False Alarm Rate
(FAR), the Missed Fault Rate (MFR), True Detection
Rate (TDR) and Mean Detection Delay (MDD). Table
5 summarises the results obtained by considering the
PM dynamic filters for the input sensor FDI with the
parameters optimised as described in Section 4 for a
complete aircraft trajectory. The same analysis can be

Table 5. PM residual analysis.

Sensor FAR MFR TDR MDD

δe 0.002 0.003 0.997 27s
δa 0.001 0.001 0.999 18s
δr 0.002 0.003 0.997 25s
δth 0.003 0.002 0.998 35s

applied again to the residual generated by means of the
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NLGA, NN and UIKF FDI schemes. The results are
summarised in Tables 6, 7 and 8. Tables 5, 6, 7 and 8

Table 6. NLGA residual analysis.

Sensor FAR MFR TDR MDD

δe 0.003 0.004 0.996 30s
δa 0.002 0.002 0.998 15s
δr 0.001 0.001 0.999 23s
δth 0.004 0.003 0.997 32s

Table 7. NN residual analysis.

Sensor FAR MFR TDR MDD

δe 0.004 0.005 0.995 33s
δa 0.003 0.003 0.997 23s
δr 0.004 0.004 0.996 29s
δth 0.005 0.003 0.997 38s

Table 8. UIKF residual analysis.

Sensor FAR MFR TDR MDD

δe 0.003 0.004 0.996 26s
δa 0.002 0.002 0.998 17s
δr 0.001 0.002 0.998 26s
δth 0.004 0.003 0.997 37s

show how the proper design of the dynamic filters allows
to achieve false alarm and missed fault rates less than
0.6%, detection and isolation rates bigger than 99.4%, with
minimal detection and isolation delay times.

6. CONCLUSION

The paper provided the development and application of
FDI techniques based on a PM scheme and on a NLGA
method, respectively. The PM procedure led to residual
generators optimising the trade–off between disturbance
decoupling and fault sensitivity. The proposed NLGA re-
lies on a two design steps, where the former is concerned
with the structural decoupling of critical disturbances and
modelling errors, whilst the latter regards the optimisation
of the trade–off between the fault sensitivity and robust-
ness with respect to further non critical disturbances and
uncertainties. In particular, the optimisation procedure
aimed to the robustness improvement is based on the
H−/H∞ approach which has been analytically developed.
The PM and NLGA residual generators were tested by
considering a nonlinear aircraft simulator model that takes
into account also the wind gusts, the Dryden turbulence,
the input–output sensors measurement errors, the engine
and the servo actuators.

In order to verify the achievable performances of the
approaches, the simulation results considered a typical
aircraft reference trajectory consisting of several steady–
state flight conditions, such as straight flight phases and
coordinated turns. The effectiveness of the developed FDI
schemes was shown by simulations and a comparison with
widely used data–driven and model–based disturbance de-
coupling FDI schemes, such as NN and UIKF diagnosis
methods, was provided. The properties of the proposed
residual generators with respect to uncertainty, distur-
bances and measurement noise for the aircraft nonlinear
model were experimentally investigated. Thus, the evalua-
tion of the performance achievable are estimated by using
extensive simulations.

Further works involve the analysis of the proposed FDI
algorithms when applied to real flight data.

REFERENCES

Francesco Amato, Carlo Cosentino, Massimiliano Mattei,
and Gaetano Paviglianiti. A direct/functional redun-
dancy scheme for fault detection and isolation on an
aircraft. Aerospace Science and Technology, 10(4):338–
345, May 2006.
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