




Sommario

La conoscenza della posizione (location awareness) di dispositivi, persone, oggetti e ve-

icoli è un elemento fondamentale per una moltitudine di servizi e casi d’uso nelle reti di

quinta generazione, 5th generation (5G), e future -beyond 5G (B5G)- inclusi quelli rela-

tivi all’automazione, alla logistica, agli ambienti intelligenti, e all’Industria 4.0. I requisiti

relativi alle prestazioni necessarie per abilitare tali casi d’uso, sono però difficili da sod-

disfare. Si rende quindi necessaria la progettazione di nuovi algoritmi di localizzazione,

basati su tecniche di machine learning, in grado di imparare dall’ambiente e di sfruttare

appieno le informazioni fornite dalla rete. In aggiunta, l’integrazione di sistemi radar, in

particolare le reti di sensori radar, con le reti cellulari di prossima generazione è un ele-

mento fondamentale per espandere ancora di più i servizi abilitati e contemporaneamente

migliorare la qualità della comunicazione e l’efficienza nella gestione delle risorse. A tal

fine è necessario derivare modelli accurati dei disturbi introdotti dal canale wireless e

progettare nuovi algoritmi in grado di fornire informazioni di contesto, come ad esempio,

il numero di persone in una determinata area. Gli obiettivi principali di questa tesi sono:

(i) la progettazione di algoritmi basati su machine learning per la localizzazione in reti

5G e B5G; e

(ii) la caratterizzazione dei disturbi nelle reti wireless di sensori radar e la progettazione

di algoritmi per fornire informazioni di contesto.

In particolare, questa dissertazione presenta la progettazione di un algoritmo basato sul

concetto di soft information (SI) in grado di sfruttare sia misure fornite dalla rete 5G, sia

di fondere tali misure con osservazioni ottenute tramite altre tecnologie. Le prestazioni

fornite da tale soluzione sono confrontate con quelle ottenute tramite l’utilizzo di metodi

classici in scenari standardizzati dal 3rd Generation Partnership Project (3GPP), basan-

dosi su simulazioni rigorose a livello di campione dei segnali mediante un simulatore 3GPP

realizzato anch’esso durante l’attività di dottorato e nell’ambito di un progetto europeo

H2020. I risultati mostrano un guadagno di prestazioni significativo dell’approccio pro-

posto rispetto alle prestazioni riportate nei report tecnici del 3GPP. Per quanto concerne
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le reti di sensori radar invece, la dissertazione dapprima presenta l’attività sulla carat-

terizzazione statistica del clutter basata su dati sperimentali. Tali dati sono ottenuti

mediante una campagna sperimentale con una rete di sensori radar a banda ultralarga in

un ambiente indoor. Infine, la dissertazione presenta l’attività di sviluppo di un algoritmo

di conteggio di tipo crowd-centric basato su tecniche di machine learning. Le prestazioni

di tale algoritmo sono poi confrontate con quelle di metodi state-of-the-art basandosi su

misure sperimentali.
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Abstract

Location awareness is a key enabler for a variety of verticals and use cases (UCs) in 5th

generation (5G) and beyond 5G (B5G) networks, including those related to autonomy,

logistic, smart environments, and Industry 4.0. However, fulfilling the key performance

indicator (KPI) requirements for such UCs is challenging. This calls for new localiza-

tion algorithms able to learn from the environment and to fully leverage the positional

information provided by the network measurements. Moreover, the integration of next

generation cellular networks with sensor radar networks (SRNs), will be fundamental to

further enhance these new verticals, as well as to improve the communication performance

and the network resource management. This calls for an accurate modeling of the wireless

impairments and the design of algorithms able to provide physical analytics (e.g., number

of person in a monitored area) in addition to location information. The main objectives

of this thesis are:

1. design of machine learning based algorithms for localization in 5G and B5G net-

works; and

2. characterization of wireless impairments in SRNs, as well as the design of algorithms

for extracting physical analytics via SRNs.

In particular, this thesis presents the design of soft information (SI)-based localiza-

tion algorithms exploiting both radio access technology (RAT)-dependent (obtained from

the 5G network) and RAT-independent (obtained via non-3rd Generation Partnership

Project (3GPP) technologies) measurements. Performance using both SI and classical

approaches are quantified in 3GPP standardized scenarios via rigorous simulations in full

conformity with 3GPP technical specifications and reports. Results show that the pro-

posed SI approach significantly outperforms the approaches reported in 3GPP technical

reports. In addition, a statistical characterization of the clutter for SRNs employing ultra-

wideband (UWB) signals is provided based on experimental measurements carried out in

an indoor environment. Lastly, a crowd-centric counting algorithm based on machine

learning techniques is proposed and compared with state-of-the-art approaches based on

experimental measurements.
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Chapter 1

Introduction

Location awareness is a key enabler for 5th generation (5G) networks and is expected

to be even more fundamental in future beyond 5G (B5G) networks [1–7]. The availabil-

ity of nodes positional information enables a variety of novel use cases (UCs), including

those related to autonomous vehicles [8–12], smart environments [13–17], and Internet-

of-Things (IoT) [18–22]. Moreover, accurate location information can also be leveraged

for smart resource management and interference coordination/engineering in wireless net-

works [23–29]. In particular, has recognized the importance of localization in the 5G stan-

dardization process [30–32]. Different key performance indicators (KPIs) requirements in

terms of horizontal accuracy, vertical accuracy, latency, and availability have been iden-

tified and grouped into seven positioning service levels (PSLs) [32]. However, providing

the localization accuracy required by such UCs is challenging, especially in harsh wireless

propagation environments [33–38].

In order to improve the localization accuracy, 5G and B5G networks will leverage an

ecosystem of different technologies able to provide heterogeneous measurements [39–42].

Current 5G networks support heterogeneous localization in order to take full advantage

of the numerous sensors which are typically available in commercial devices (e.g., Wi-

Fi, ultra-wideband (UWB), Bluetooth, global navigation satellite systems (GNSS), and

inertial measurements units) [30, 31, 43, 44]. However, data fusion techniques typically

require the knowledge of models to account for the relationship among the different types

of observations [45–48]. These models may be difficult to obtain in complex environments

and may lead to performance degradation if the environments are highly dynamic.

In order to enable these novel UCs it is necessary to design new localization algo-

rithms which are able to: (i) fully exploit the location information inherent in these

network measurements (power, time, and angle measurements) together with contextual

data (digital maps, mobility models, and user profiles); (ii) cope with the impairments
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introduced by the wireless environment; and (iii) enable efficient and seamless fusion of

measurements gathered from different technologies. In this context, algorithms based on

machine learning techniques, are prime candidate for providing accurate localization and

are currently subject of research and standardization work [5, 49–53]. In particular, soft

information (SI)-based localization is particularly suited for providing location-awareness

in 5G and B5G networks [5, 42, 54, 55]. SI-based localization relies on statistical mod-

els learned from the environment to provide robust localization in challenging wireless

environments and seamless fusion of different type of measurements.

The synergy between localization and communication is expected to play a central

role in B5G networks, where the integrated sensing and communication paradigm is driv-

ing a fervent research world-wide and pre-standardization works [56–64]. In this context,

sensor radar networks (SRNs), which provide location and context information relative to

people and objects not equipped with a dedicate device, are fundamental [65–71]. Con-

trary to the active case, where the agents in unknown position actively participate in the

localization process, SRNs rely on the backscattered signals reflected by the targets and

the environment [65, 72–78]. The integration of SRNs with 5G and B5G networks is ex-

pected to further improve and enable new UCs envisioned by next generation of wireless

networks [79–83]. However, accurate localization via SRN is particularly challenging in

indoor environments characterized by multipath propagation, clutter, and signal obstruc-

tions (e.g., due to the presence of furniture and walls) [84–87]. Typically, measurements

are usually heavily affected by such impairments, severely affecting detection reliabil-

ity and localization accuracy [35, 37, 88]. Thanks to its fine delay resolution and the

capability of resolving multipaths, UWB technology is particularly suited for tracking

non-collaborative objects in indoor environments [89–98]. Furthermore, UWB has seen a

renewed interest in recent years, with latest flagship devices from multiple manufacturers

integrating UWB sensors to support short range communications and context-awareness

applications. However, characterization of the wireless impairments, especially the clutter,

is necessary to design and operate such networks [73, 74, 99–103]. In addition, the design

of algorithms for providing physical analytics, e.g., number of non-collaborative target

objects in a monitored area, is fundamental for supporting new applications related to

crowd sensing and behavior analysis applications in future wireless networks [104–110].

Objectives and Dissemination

The main goals of this thesis are the design of machine learning based algorithms for active

localization, the characterization of wireless impairments, and the design of algorithms

for extracting physical analytics in 5G and B5G ecosystem. The key contributions of the
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thesis can be summarized as follows:

• development of SI-based localization algorithms for 5G and B5G networks, which

can be easily integrated with already standardized architecture and procedures;

• development of a 5G localization simulator capable of simulating 5G reference signal

and measurements procedures in full conformity with 3rd Generation Partnership

Project (3GPP) technical reports and specifications;

• quantification of the performance gains provided by SI-based approach in 3GPP

standardized scenarios, leveraging both 5G specific measurements and non-3GPP

technologies;

• statistical characterization based on experimental measurements of the clutter im-

pairment in UWB SRNs operating in indoor environments; and

• design of crowd-centric counting algorithms based on machine learning techniques

for UWB SRNs.

The remainder of the thesis is organized as in the following.

Chapter 2 provides a general description of active and passive localization networks.

Classical measurements, localization, and tracking algorithms are discussed and serves for

contextualize the research activity presented in this thesis.

Chapter 3 provides a review of classical single-value estimate (SVE)-based localization

and SI-based localization. In particular, the extraction of the SI from networks measure-

ment is detailed and discussed.

Chapter 4 reviews the localization procedures in 5G networks. A detailed discussion of

the positioning reference signal (PRS) employed to perform downlink time-difference-of-

arrival (DL-TDOA) measurements is provided as an example of dedicates reference signal..

In addition, classical algorithms for localization in cellular networks are presented.

Chapter 5 introduces the concept of SI for location awareness in 5G and B5G net-

works. Main features of SI and how this approach can be applied in the context of 5G

and B5G networks are discussed. Two case study based on rigorous simulations of the ref-

erence signals and measurements procedure standardized for 5G networks are presented

in two 3GPP standardized scenarios, namely urban microcell (UMi) and indoor open

office (IOO) scenarios. Performance gains provided by SI approach are evaluated consid-

ering DL-TDOA measurements alone, and the fusion of DL-TDOA measurements with

time-of-flight (TOF) measurements obtained using Wi-Fi technology.

Chapter 6 first presents a system model for SRNs employing UWB signals in indoor

environment. Then, it provides a statistical characterization of the static clutter for UWB
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SRNs operating in indoor environments, based on experimental data. Lastly, the design of

an algorithm for extracting physical analytics is presented. In particular, a crowd-centric

counting algorithm based on unsupervised machine learning techniques is proposed. The

performance of the proposed algorithm is compared with state-of-the-art methods using

experimental data.

The results presented in this thesis have been published in the proceedings of inter-

national conferences and premier journals as indicated in the author’s publication list.

Furthermore, part of the research activity has been conducted within an European re-

search project, namely LOCUS (LOCalization and analytics on-demand embedded in the

5G ecosystem, for Ubiquitous vertical applicationS) [111], and an international project,

namely nCOT (non-Collaborative Object Tracking).

Notation

Random variables are displayed in sans serif, upright fonts; their realizations in serif,

italic fonts. Vectors and matrices are denoted by bold lowercase and uppercase letters,

respectively. For example, a random variable and its realization are denoted by x and

x; a random vector and its realization are denoted by x and x; a random matrix and

its realization are denoted by X and X, respectively. Sets and random sets are denoted

by upright sans serif and calligraphic font, respectively. For example, a random set and

its realization are denoted by X and X , respectively. The function fx(x) and, for brevity

when possible, f(x) denote the probability density function (PDF) of a continuous random

variable (RV) x; fx|y(x|y) and, for brevity when possible, f(x|y) denote the PDF of x

conditional on y = y; '(x;µ,Σ) denotes the PDF of a Gaussian RV x with mean µ

and covariance matrix Σ; operator E {·} denotes the expectation of the argument. The

notation A < B denotes that the matrix A�B is positive semi-definite; for a matrix A

and a vector a the transpose is denoted by AT and aT, respectively; tr(A) denotes the

trace of the matrix A. Operators (·)⇤ and ||·||2 denote the complex conjugate operator

and the 2-norm operator, respectively.
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Chapter 2

Preliminaries on Localization

Wireless localization networks aim to estimate nodes’ position based on the sensing of the

environment. A first classification to distinguish between different wireless localization

networks is based on the role of the node that wish to be localized. If the node actively

participate in the localization process by exchanging measurements with other network

nodes, we refer to the wireless localization network as an active localization network [1].

In this case, we refer to the nodes in unknown position and the nodes in known position

as agents and anchors, respectively. Classical example of active localization networks

are cellular networks, where the device actively exchange measurements with the base

station in order to determine its position [38]. Conversely, if the node to be localized does

not actively participate to the localization process, we refer to the wireless localization

network as passive localization network. In this case, the nodes composing the network

infer the target position (i.e., the nodes in unknown position) based on the reflection of

the electromagnetic signals in the surrounding environment. Classical example of passive

localization networks are SRNs, which can leverage dedicated signals or signals already

present on air for other purposes (i.e., signals of opportunity) for performing localization

and tracking [65].

In active localization networks, the agents are identified by an unique identification.

Thus, no ambiguities are present when assessing the source of the measurements. More-

over, agents can cooperate between them by exchanging measurements in order to further

improve the localization accuracy and perform distributed inference [112]. This is partic-

ularly important in 5G and B5G networks, where the device-to-device communications

are supported for IoT UCs [113]. Fig. 2.1 depicts a pictorial representation of an ac-

tive localization networks composed by two agents and four anchors. In addition to the

measurements performed with the anchors, agents exchange measurements to refine their

position estimates. On the other hand, in SRN the target is not directly involved in the
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works, respectively, is required. Small time-synchronization errors may determine large

error in the calculation of the distances [96]. Angle-based measurements offer a valid

alternative to time-based measurements in terms of achievable localization accuracy, but

suffer from several drawbacks. In particular, depending on the frequency band considered,

antenna array used to estimate the AOA and AOD can be large and expensive, preventing

the integration in consumer devices. Historically, angle-based measurements were used in

conjunction with time-based measurements in passive localization networks. Nowadays,

this trend is changing with the recent technological advances in electronic devices. This

is particularly relevant in 5G and B5G networks, where xxthe use of millimeter wave

spectrum allows the integration of antenna arrays composed by many radiation elements

even in small devices.

All three types of measurements inherently carry positional information regarding the

nodes relative position. Despite being used in both active and passive cases, different

variation of such measurements are preferred for the specific type of network considered.

In particular, active localization networks leverage the agents capability of exchanging

messages with the other network nodes in order to greatly simplify the measurement and

scheduling process. Thus, time-based measurements and power-based measurements are

usually employed in active localization networks. On the other hand, SRNs typically

exploits RTT measurements in both monostatic (i.e., transmitter and receiver are co-

located) and multistatic settings (i.e., transmitter and receiver are not co-located) as time-

based measurements, while they cannot rely on RSSI measurements for providing accurate

localization. Due to the reflections on different materials and the challenging wireless

propagation environments considered for SRN operations, accurate models describing the

attenuation of the transmitted signal as a function of the distance are difficult to obtain.

Even in active localization networks, power-based measurements provides worse accuracy

compared to time- and angle-based measurements. However, power measurements are

usually carried out for communication purposes and they can also be exploited to perform

localization, greatly reducing the complexity of the networks nodes.

2.2 Localization and Tracking

Location inference algorithms can be divided into two categories. Localization algorithms

which aim to estimates time-invariant quantities (i.e., the location of the agents or targets)

and tracking algorithms which aims to estimates the evolution of the states of a time-

varying system (i.e., coordinates, velocity, bearing of the agents or targets) based on

noisy observations. Observations are related to the measurements discussed in previous
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Section. In particular, observations may be the distance estimate (DE) obtained from

time- or power-based measurements, angle estimation (AE) obtained from angle-based

measurements, or a combination of both.

Localization can be achieved considering both a non-Bayesian or Bayesian approach

[115]. In the former case, the unknown position of the agent or target p is considered as

a unknown but deterministic parameter. A well-known estimator employed in the non-

Bayesian formulation, is the maximum likelihood (ML) estimator. In particular, given an

observation v, the estimated position is obtained as

p̂ = argmax
p2A

fv(v;p) (2.1)

where fv(v;p) is the likelihood function relating the position p to the observation v and

A is the region where the agent or target may be located. If the likelihood function is

Gaussian ML estimator simplifies to least squares (LS) estimators.

In Bayesian approach, the position of the agent or target p is modeled as a realization of

a RV with known PDF fp(p). In this case, any prior information can be easily incorporated

and used to refine the position estimates via the a priori distribution of the position. Two

estimators are typically employed in Bayesian approach, namely, maximum a posteriori

(MAP) and minimum-mean-square-error (MMSE) estimators. MAP estimator determines

the position estimate as

p̂ = argmax
p2A

fp|v(p|v) (2.2)

= argmax
p2A

fv|p(v|p)fp(p) (2.3)

where fp|v(p|v) is the posterior PDF. On the other hand, position estimate via MMSE

estimator is obtained as

p̂ =

Z

A

pfp|v(p|v)dp . (2.4)

Tracking problem can be formulated as a statistical filtering problem, where the evo-

lution of a time-varying system must be estimated based on noisy observations [48]. A

time-varying system can be formally described by two equations: i) the state evolution

equation h(·) which describes the relation between the system states at two consecutive

time instants tk�1 and tk; and ii) the measurement equation q(·) which describe the re-

lation between the observation and the system state at the same time instant tk. For

tracking, consider pk the positional state of the agent or target. The two equations can

9
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2.3 Physical Analytics via Sensor Radar Networks

Physical analytics describing the behavior of the network nodes is fundamental for provid-

ing context awareness in wireless networks. This is particularly relevant for SRN, where

the backscattered signals provide richer information regarding the environment and the

targets compared to the active counterpart. In particular, based on the measurements

described for localization purposes is it possible to extract synthetic metrics describing the

movements of large groups of targets or the number of targets in a monitored area without

relying on the location estimates [104]. For instance, crowd-centric counting methods rely

on features related to the energy as well as time-varying analysis of the received signals

in order to count the number of targets without incurring in the computational com-

plexity determined by the data association process. In addition, based on the reflected

waveforms it is possible to discriminate between different targets (e.g., pedestrian versus

vehicles) or infer the specific movement a human target is performing. Typically, this

is accomplished evaluating the range-Doppler signature of different type of targets (e.g.,

range-Doppler signatures of vehicles show noticeable Doppler shifts near the frequencies

corresponding to the rotation of the moving parts) via classical classification or machine

learning-based techniques [117]. Fig. 2.3 depicts the conceptual scheme for extracting

analytics via backscattered signals in SRNs.
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Chapter 3

Machine Learning based

Localization: SI Approach

Machine learning based localization has recently attracted significant attention from both

academia and standardization bodies. In particular, 3GPP is currently evaluating the

benefits of augmenting the 5G air-interface with features supporting machine learning

based algorithms in order to enhance the d localization accuracy in different UCs sce-

narios, including those with harsh wireless propagation conditions. Instead of designing

localization algorithms based on the exploitation of physical models or geometric theories,

machine learning based techniques exploit the ever-increasing volumes of data and com-

putational power to perform location inference in a data-driven manner. In this chapter

we review SI-based localization [55], which exploits unsupervised machine learning (UML)

techniques to statistically characterize the relation between the observed quantities and

the device positional features, and we highlight the main differences compared to classical

localization algorithms based on SVE.

3.1 SVE-based Localization

Classical localization methods for active localization networks can be categorized as a

SVE-based method. In general, SVE-based localization methods divide the localization

process in two stages: (i) a single-value estimation stage in which SVEs of distances,

angles, or other position- dependent quantities are measured; and (ii) a localization stage

in which prior knowledge and SVEs serve as inputs to a localization algorithm for position

inference. This two stages procedure can be formalized as follow; define a measurement yi

obtained by the exchange with the i-th anchor as a collection of measurements obtained

by different types of sensors, and where i 2 NBS = {1, 2, . . . , NBS}. For example, the
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measurement vector yi can include the entire set of waveform samples, time-based, angle-

based, and power-based metrics, or any combination of them. These measurements are

related to a feature vector θ1 which is a function of the agent positional state and in

particular its position p.2 In the first stage of SVE-based localization methods, the

measurements {yi}i2NBS
are processed in order to obtain SVEs of the feature vector, i.e.,

{θ̂i}i2NBS
, such as DE or AE [118–121]. In the second stage, the estimates {θ̂i}i2NBS

are

used as input to the localization algorithm to obtain an estimate of the agent position

p̂.3 Localization accuracy and reliability of conventional SVE-based localization depends

heavily on the quality of the estimates {θ̂i}i2NBS
, which degrades in harsh propagation

environments due to biases in SVEs caused by impairments such as multipath propagation

and non line-of-sight (NLOS) conditions [96, 122].

SVE-based localization presents two main advantages. The first stage of the local-

ization process can be accomplished by independent procedures for each measurement

vector yi, resulting in robust techniques (e.g., different processing techniques based on

the line-of-sight (LOS) or NLOS conditions of the links). In addition, SVE approach bear

a lower complexity of the location inference stage compared to machine learning based

approaches. On the other hand, SVE-based localization inherently discards part of the

positional information contained in the sensing measurements, due to the hard-decision

on the SVE. Localization accuracy of SVE-based localization can be improved via refined

SVEs, taking into account environmental information, or by discarding measurements

particularly affected by the wireless impairments [66, 74, 123–125]. In particular, physi-

cal feature extracted from sensing measurements can discriminate measurements that are

representative of the agent position or no. In cases where sensing measurements are not

representative, they can be discarded and the corresponding SVEs are not used in the

location inference. Other solutions which aims at detecting NLOS propagation conditions

and then mitigate the errors on feature estimates can also be employed [36, 126–130].

3.2 SI-based Localization

In [55], researchers have proposed and developed a method based on SI to overcome the

limitations of SVE-based localization. The SI encapsulates the ensemble of all positional

information of the agents and it is composed of soft feature information (SFI) and soft

context information (SCI): SFI is the ensemble of positional information associated with

1For brevity, the dependency of θ from the agent positional state is omitted in the following.
2The positional state, other than the position of the agent, may include the velocity vector, acceleration

vector, orientation, and angular velocity. In this work we are only interested in the position p .
3Observations v discussed in the previous chapter is a vector collecting all the SVEs θ̂i obtained from

the measurements yi with i 2 NBS.
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inter-node measurements between different agents.

3.2.1 Soft Feature Information

Formally, the SFI for a measurement y related to the feature θ is given by

Ly(θ) / fy|θ(y|θ) (3.1a)

Ly(θ) / fy(y;θ) (3.1b)

where it has been displayed the Bayesian and non-Bayesian formulation. In the non-

Bayesian formulation, the SFI is equivalent to the likelihood function of θ. Compared to

its SVE θ̂, the SFI Ly(θ) provides richer information by accounting probabilistically for

all possible values of θ, thus enabling soft-decision localization instead of hard-decision.

Depending on the specific measurements, different type of SFI are obtained. For range-

related measurements, the corresponding SFI, namely soft range information (SRI), can

be written as Ly(d). Similarly, it is defined the soft angle information (SAI) Ly(↵) for

angle-related measurements.

In addition to provide richer information compared to SVE, the statistical character-

ization of the relation between the measurements and feature, allows for efficient data

fusion. In particular, sensing measurements gathered with different types of sensor can

be fused by multiplying their corresponding SFI, as long as the measurements are condi-

tionally independent given the agent position. If such condition is satisfied, given a set of

measurements Y = {y(j)}NF
j=1 related to the feature set ⇥ = {θ(j)}NF

j=1 where y
(j) is related

to θ(j), the SFI is given by

LY(⇥) =

NFY

j=1

L
y(j)(θ(j)) . (3.2)

For example, consider the fusion of range-related and angle-related measurements. In

this settings, given the measurement y(1) related to the range d and the measurement y(2)

related to the angle ↵, the resulting SFI obtained by the fusion of SRI and SAI can be

written as

L
y(1),y(2)(d,↵) = Ly(1)(d)Ly(2)(↵) . (3.3)

SFI can be used both in a Bayesian or non-Bayesian settings to infer the agent position

p. In particular, if the position is considered as an unknown but deterministic parameter
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to be estimated, the ML estimates p̂ is obtained as

p̂ = argmax
p

f({yi}i2NBS
;p)

= argmax
p

Y

i2NBS

Lyi
(θi) . (3.4)

If the SFIs are Gaussian, the ML estimate is equivalent to the LS or weighted LS in the

case the distribution having the same or different variance, respectively. Alternatively,

by modeling the agent position as a RV the estimate can be obtained from the posterior

distribution. In particular, MMSE and MAP estimates are obtained as

p̂ =

Z
pf(p|{yi}i2NBS

)dp (3.5a)

p̂ = argmax
p

f(p|{yi}i2NBS
) (3.5b)

respectively. The posterior distribution is given by

f(p|{yi}i2NBS
) /

Y

i2NBS

Lyi
(θi) . (3.6)

If the prior distribution of p is constant the ML and MAP estimates coincide.

3.2.2 Soft Feature Information Generation

SFI can be determined using a Bayesian formulation, and in particular leveraging the

joint probability distribution of the measurement vector y and feature vector θ, referred

to as generative model. Depending on the absence or presence of prior information on the

feature vector θ, the SFI is determined by

Ly(θ) / fy,θ(y,θ) (3.7a)

Ly(θ) /
1

fθ(θ)
fy,θ(y,θ) (3.7b)

respectively. Thus, the task of determining the SFI reduces to the determination of the

generative model relating the measurements to the agent positional feature. In complex

scenarios, this is typically accomplished by employing UML techniques applied on mea-

surements and positional feature data acquired in the scenario of interest. In particular, a

two phases algorithm is used to estimate the generative model based on density estimation

techniques. The algorithm works as follow:
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i) off-line phase where a generative model estimate is obtained from the measurements

and positional feature data; and

ii) on-line phase where the generative model estimate is used to determine the SFI

associated to each new measurement.

The generative model determined by the algorithm is suited for the environment where

the on-line phase takes place, i.e., where the localization systems will operate. However, a

generative model learned in a specific environment can be used in different environments,

as long as the different environments are similar in terms of propagation characteristics

for inter-node measurements.

Inferring the generative model can be difficult for measurement vectors with high di-

mensionality, e.g., waveform samples with fine time resolution. Therefore, dimensionality

reduction techniques can be employed to facilitate the learning process and reduce the

algorithm complexity. In particular, the measurement vector y 2 R
M can be mapped

through the function  (·) to a lower dimension space, i.e.,  (y) 2 R
M 0

where M 0 << M .

Typically, UML techniques are used to perform dimensionality reduction, such as princi-

pal component analysis, Laplacian eigenmap, or approximation via neural networks. SVE

can also be seen as a type of dimensionality reduction, where the samples of the received

waveform are considered as measurement vector and the mapping is given by  (y) = θ̂.

In general, any quantity which can be calculated from the received waveform and it can

be related to the positional feature, e.g., maximum value, power, excess delay, kurtosis

of the received waveform, or combination of them, can be interpreted as a dimensionality

reduction.

In the following will be presented a widely used density estimation technique based

on the Gaussian mixture model (GMM) used to determine the generative model [134].

For notational convenience, consider the vector x = [yT,θT]
T
or x = [ (y)T,θT]

T
if

dimensionality reduction techniques are employed. In this case, the generative model to

be estimated is f(x) = f(y,θ). Prior to the density estimation process, it is beneficial

to pre-process the data in order to scale and normalize the different variables. In partic-

ular, data sphering is linear transformation that maps the original data into a set with

zero-mean and identity covariance matrix. Given the set of original data {xl}l2NT
with

NT = {1, 2, . . . , NT}, where NT is the number of training data and the measurement and

positional feature data are yl and θl, respectively, the processed data after sphering are

zl = Λ�
1
2UT(xl � x̄) (3.8)

where x̄ is the empirical mean of the original data, and UΛUT is the spectral decomposi-
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tion of the empirical covariance matrix of the original data {xl}l2NT
.5 Then, the estimated

density of the non-sphered data f̂x(x) can be easily obtained from the estimated density

f̂z(z) as follow

f̂x(x) = | det(Λ�
1
2UT)|f̂z(z)

= | det(Λ�
1
2UT)|f̂z(Λ

�
1
2UT(xl � x̄)) . (3.9)

Suppose the sphered data {zl}l2NT
as realizations of independent, identically dis-

tributed (IID) RVs following a Gaussian mixture (GM) distribution given by

f̃(z;P) =

NGMX

k=1

⇡k'(z;µk,Σk) (3.10)

where the weights ⇡k 2 R
+ for k = 1, 2, . . . , NGM,

PNGM

k=1 ⇡i = 1 and the set of parameters

P = {⇡1,µ1,Σ1, ⇡2,µ2,Σ2, . . . , ⇡NGM,µNGM
,ΣNGM

} along with the number of Gaussian

components NGM define the distribution. Then, the problem of obtaining the estimate

f̂(z) is equivalent to the problem of determining the optimum set of parameters P̂ which

can describe the sphered data {zj}l2NT
, i.e., f̂(z) = f̃(z; P̂). This problem can be solved

applying a ML approach, and in particular, given the IID assumption, the log-likelihood

function can be written as

ln
n
f̃({zl}l2NT

;P)
o
=

NTX

l=1

ln

(
NGMX

k=1

⇡k'(zl;µk,Σk)

)
(3.11)

and the optimal set of parameters P̂ in ML sense is obtained maximizing (3.11), i.e.,

P̂ = argmax
P

ln f({zl}l2NT
;P) . (3.12)

No closed-form solution can be obtained for (3.12) and iterative algorithms are employed

to determine an approximate ML solution. Among the available algorithms typically used

to solve (3.12), we briefly present the expectation-maximization (EM) algorithm which

works as follow [134]:

1. initialize the set parameter P by performing clustering on the data {zl}l2NT
(e.g.,

via k-means algorithm [135]), with the number of cluster equal to the number of

components in the GM NGM. The parameters ⇡k, µk, and Σk are calculated as the

fraction of data zl assigned to the k-th cluster, the empirical mean and empirical

5Λ is a diagonal matrix where the diagonal elements are given by the eigenvalues of the empirical
covariance matrix, and the columns of U are given by the corresponding eigenvectors.
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covariance of the data zl assigned to the k-th cluster, respectively.

2. starting from the current values of the parameters, calculate the following quantities

�l,k = ⇡k
'(zl;µk,Σk)

f̃(zl;P)
(3.13a)

Γk =

NTX

j=1

�l,k . (3.13b)

3. update the weights, mean vectors and covariance matrices as follow

⇡new
k =

Γk

NT

(3.14a)

µnew
k =

1

Γk

NTX

l=1

�l,kzl (3.14b)

Σnew
k =

1

Γk

NTX

l=1

�l,k(zl � µnew
k )(zl � µnew

k )T . (3.14c)

4. evaluate the log-likelihood function (3.11) with the new parameters (3.14) and check

for convergence of either the log-likelihood or the parameters. If convergence is not

achieved, repeat from point 2.

EM algorithm is widely employed due to its simplicity and flexibility and it can be proved

that at each iteration the log-likelihood function value is increased. However it is not

guaranteed that it will converge to the global maximum of the function. Moreover, the

convergence rate strongly depends on the initialization parameters. Multiple runs of the

EM can be done with different initialization parameter, and consider the solution with

the highest log-likelihood value.

Density estimation via GMM produces a parsimonious generative model characterized

by a small number of parameters ⇡i, µi, and Σi for i = 1, 2, . . . , NGM where the only free

parameter is the number of components in the GMNGM. However, generative models with

a fixed number of parameters may not be suitable to capture complex relation between

the measurement and feature vectors.
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Chapter 4

Localization in 5G Networks

Location awareness [1, 2, 114] is critical in many vertical applications enabled by 5G

networks, including autonomy [9–11, 136], crowdsensing [13, 15, 137, 138], smart environ-

ments [18,20,139,140], and Internet-of-Things [69,141–143]. Extracting accurate location

information is considered an important feature in 5G network and represents a fundamen-

tal component of the 3GPP standardization process. Moreover, user equipments (UEs)

location information has become a valuable asset for network operation, enabling oper-

ators to perform smart-network management based on the location information of their

customer users [23–25, 144]. In this chapter, the localization aspects of current 5G net-

works are presented and discussed. In particular, KPI requirements, reference signals,

and measurements procedures for localization based on DL-TDOA are detailed.

4.1 Localization Requirements

The standardization for location-based services (LBSs) in 5G and B5G networks is based

on various use case scenarios and network operating conditions. The service level require-

ments for the use cases are specified in terms of KPIs that are related to the localization

of user equipments (UEs). The main KPIs defined by 3GPP are horizontal and verti-

cal accuracy, availability, and latency. Other important KPIs are related to the power

consumption and energy needed for localization, and the scalability with the number of

UEs.

The 3GPP specification [32] describes seven positioning service levels (PSLs) as sum-

marized in Tab. 4.1. Such requirements are given in terms of absolute (A) position of

a UE or of relative (R) position between two UEs or between one UE and another 5G

network node; and in terms of horizontal (H) and vertical (V) accuracy. The table also re-

ports the service availability and the latency associated with each level. Requirements are
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Table 4.1: Service level requirements, also referred to as PSLs (first column), for 5G localization according
to the 3GPP TS 22.261 [32].

PSL A/R
Accuracy

Availability Latency
Environment and Velocity

H V Positioning Service Area
Enhanced Positioning

Service Area

1 A 10m 3m 95% 1 s
Indoor (30 km/h);
Outdoor (rural and
urban; 250 km/h)

Indoor (30 km/h)

2 A 3m 3m 99% 1 s
Outdoor (rural and

urban; trains 500 km/h;
others 250 km/h)

Outdoor (dense urban;
60 km/h; roads

250 km/h; railways
500 km/h); Indoor

(30 km/h)

3 A 1m 2m 99% 1 s
Outdoor (rural and

urban; trains 500 km/h;
others 250 km/h)

Outdoor (dense urban
60 km/h; roads

250 km/h; railways
500 km/h); Indoor

(30 km/h)

4 A 1m 2m 99.9% 15ms NA Indoor (30 km/h)

5 A 0.3m 2m 99% 1 s
Outdoor (rural

250 km/h)

Outdoor (dense urban
60 km/h; roads and
railways 250 km/h);
Indoor (30 km/h)

6 A 0.3m 2m 99.9% 10ms NA
Outdoor (dense urban

60 km/h); Indoor
(30 km/h)

7 R 0.2m 0.2m 99% 1 s

Indoor and outdoor (rural, urban, dense urban)
30 km/h; the relative positioning is between UEs or
other positioning nodes within 10m distance from

each other

specified for a general positioning service area or an enhanced positioning service area for

different maximum speeds.Notice that most of the foreseen services require high accuracy

(horizontal and vertical precision below a meter over 99% of instantiations) and, some of

them, low latency (location updates every few tens of milliseconds) even in complex wire-

less environments. These requirements can be fulfilled by exploiting multimodal network

capabilities, where both radio access technology (RAT)-dependent and RAT-independent

measurements are jointly used for inferring UE positional states.

4.2 Localization Measurements

The 3GPP standard has specified, since earlier releases, the signals dedicated to localiza-

tion or those that can be exploited for localization, including the PRS in down-link and the

sounding reference signal in up-link. Related measurements that carry positional informa-

tion are the down-link and up-link time-difference-of-arrival (TDOA), the AOA, and the

angle-of-departure (AOD). Other types of measurements related to UE positional states

can also be considered, particularly in private networks. Therefore, examples of measure-
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Figure 4.1: Example of accurate positional information exploited for network management; a next gen-
eration NodeBs (gNB), employing pencil beams based on estimated UE position, communicates with
five users. The lower/higher uncertainty in the estimated UE position is depicted using dark/light green
ellipses.

ments for location awareness include (i) inter-node measurements, commonly obtained by

radio measurement units; and (ii) intra-node measurements, commonly obtained by in-

ertial measurement units. The environmental information associated with a UE can also

be used as prior information to improve the localization accuracy. Examples of environ-

mental information include digital maps, dynamic models, and UE profiles. The accuracy

of location awareness is strongly affected by the quality of measurements and by the
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knowledge of the environment. Fig. 4.1 illustrates an example of position estimation with

accurate and inaccurate measurements for LBSs and shows how network management

can exploit higher localization accuracy, specifically for pencil beamforming [145]. Two

beamwidths are considered, where a smaller/larger beamwidth (dark/light green beams)

is used in case of lower/higher uncertainty. Positional information can also be used to

guide mobile gNB nodes exemplified by drones. In the bottom part of the figure, an exam-

ple is shown for estimated UE position with lower/higher uncertainty (dark/light green)

obtained with two TDOA measurements and one AOA measurement in the presence of

four gNBs (empty red circles) and a single UE (blue circle).

The following sections provides an overview of the 5G localization solutions based

on DL-TDOA measurements. Localization methods based on DL-TDOA measurements

are the most mature and well-established solutions. In particular, the PRS and the

specific measurement associated are detailed. Algorithms used for inferring DL-TDOA

measurements and localization algorithms commonly employed will also be presented.

4.3 Positioning Reference Signal

5G networks employ as default modulation orthogonal frequency division multiplexing

(OFDM) with cyclic prefix (CP) addition in order to achieve robustness with respect

to the wireless channel impairments. Compared to previous generation, the subcarrier

(SC) spacing, namely numerology, is a parameter which can be chosen depending on

the available channel bandwidth. Given a numerology µ, a resource grid of N size,µ
grid NRB

sc

SCs and N subframe,µ
symb OFDM symbols is defined, where the number of SCs per resource

block (RB) is fixed to NRB
sc = 12. The time-continuous signal representing the l-th

OFDM symbol, s
(p,µ)
l (t), on the antenna port p given the numerology µ in a subframe,

i.e., l 2 {0, 1, . . . , N subframe,µ
symb }, is given by

s
(p,µ)
l (t) =

N
size,µ
grid NRB

sc �1X

k=0

a
(p,µ)
k,l g

(µ)
k,l (t) (4.1)

for t 2 [tµstart,l, t
µ
start,l + T µ

symb,l), where

g
(µ)
k,l (t) = exp

n
2⇡∆f(k + kµ

0 �N size,µ
grid NRB

sc /2)⇥

⇥(t�Nµ
CP,lTC � tµstart,l)

o
(4.2)
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and kµ
0 is a SC offset depending on the resource grid and maximum numerology supported

by the transmitter, T µ
symb,l = (Nµ

u +Nµ
CP,l)TC, and TC = 0.508 ns is the basic time unit in

5G [146]. The quantity Nµ
u is equal to

Nµ
u = 2048⇥ 2�µ (4.3)

where  = 64 [146], and the quantity Nµ
CP,l for normal CP follows the relation

Nµ
CP,l =

8
<
:
144⇥ 2�µ + 16 if l = 0 or l = 7⇥ 2µ

144⇥ 2�µ otherwise
. (4.4)

The PRS was introduced in long-term evolution (LTE) Release 9 [147] and it has been

updated for the 5G wireless networks expanding its flexibility in terms of frequency and

time slot allocation. Similar to LTE, this reference signal is transmitted in low interference

slots, i.e., slots where no data is transmitted. A cell-specific frequency shift dependent

on the physical cell identity (PCI) is applied to the PRS pattern, which helps avoiding

collisions between PRS transmission of neighbor cells. The sequence used to generate the

PRS is a 31-long Gold sequence, where the seed is generated based on the PCI value .

The 31-long Gold pseudo-random sequence is defined as

c[m] = (c1[m+NC] + c2[m+NC]) mod 2 (4.5)

where

c1[m+ 31] = (c1[m+ 3] + c1[m]) mod 2 (4.6)

c2[m+ 31] =(c2[m+ 3] + c2[m+ 2]+

+ c2[m+ 1] + c2[m]) mod 2 . (4.7)

In (4.5), NC = 1600 and (4.6) is initialized such that c1[0] = 1, c1[m] = 0 for m =

1, 2, . . . , 30. The second sequence given by (4.7) is initialized such that cPRS
init =

P30
n=0 c2[n]2

n,

where cPRS
init depend on the PCI. In particular, the seed cPRS

init of the sequence c2[m] is given

by (4.8) at the top of the next page, where nPRS
ID,seq 2 {0, 1, . . . , 4095} is a transmission spe-

cific ID used to distinguish different PRS signals, N slot
symb = 14 is the number of symbols per

slot fixed by the standards, nµ
s,f is the slot index within a frame given a specific numerol-

ogy µ, and l is the symbol index given a generic start index lstart. The binary sequence

in (4.5) is then modulated via quadrature phase-shift keying (QPSK)-modulation and

mapped to resource elements (REs) over a specific time-frequency pattern as described in
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cPRS
init =

 
222

$
nPRS
ID,seq

1024

%
+ 210

⇣
N slot

symbn
µ
s,f + l + 1

⌘⇣
2(nPRS

ID,seq mod 1024) + 1
⌘
+

+
⇣
nPRS
ID,seq mod 1024

⌘!
mod 231 (4.8)

detail in [146]. In particular, the sequence c[m] is mapped to the symbols s[m] following

the equation

s[m] =
1p
2
(1� 2c[m]) + |

1p
2
(1� 2c[m+ 1]) . (4.9)

Given a specific antenna port p and numerology µ, the symbols s[m] are then mapped to

the REs (l, k)p,µ, i.e., the k-th SC of the l-th symbol, when (l, k) satisfies the following

conditions

8
<
:
k = mKPRS

comb +
⇣
(kPRS

offset + k0) mod KPRS
comb

⌘

l = lPRS
start, l

PRS
start + 1, . . . , lPRS

start + LPRS � 1
(4.10)

where m = 0, 1, . . ., lPRS
start is the index of the first PRS symbol within an allocated trans-

mission slot, LPRS 2 {2, 4, 6, 12} is the number of transmitted PRS symbols within a

slot, KPRS
comb 2 {2, 4, 6, 12} is the comb size, i.e., the frequency reuse factor, kPRS

offset =

{0, 1, . . . , KPRS
comb} is a SC offset with respect to the first SC allocated for PRS transmis-

sion, and the quantity k0 is an additional SC index offset which depends on the difference

l � lPRS
start.

1 Thus, the (l, k) RE given a PRS transmission can be written as

a
(p,µ)
k,l =

8
<
:
�PRSs[m] if (l, k) satisfies (4.10)

0 otherwise
(4.11)

where �PRS is a scale coefficient, k = 0, 1, . . . NPRS
FFT � 1, and l = 0, 1, . . . , N slot

symb. The

quantity NPRS
FFT represents the number of SCs allocated for PRS transmission and it is

defined as

NPRS
FFT = NRB

sc NPRS
RB (4.12)

where NRB
sc = 12 is the number of SC per RB and NPRS

RB the number of RB allocated

1The possible values of k0 can be found in Tab. 7.4.1.7.3-1 at p. 112 in [146]
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for the PRS. With respect ot the general formulation of a modulated 5G signal in (4.1),

NPRS
FFT = N size,µ

grid NRB
sc while the other quantities are determined by the specific central

frequency and channel used for transmitting the PRS.

In order to facilitate the PRS reception procedure, the time slots allocated for PRS

transmission are organized in three different interrelated logical entities: (i) positioning

frequency layers; (ii) PRS resource sets; and (iii) PRS resources. Each entity determines

a subset of parameters defining the PRSand the three entities follows a hierarchic rela-

tionship: different PRS resources are grouped in a PRS resource set, and PRS resource

sets are grouped in a positioning frequency layer. In particular, the PRS time signal is

transmitted when the quantity z(nf , n
µ
s,f), which depends on the frame number nf and slot

number nµ
s,f , fulfills the following condition

z(nf , n
µ
s,f) mod 2µTPRS

per 2
�
nTPRS

gap

 TPRS
rep �1

n=0
(4.13)

where TPRS
per 2 {4, 5, 8, 10, 16, 20, 32, 40, 64, 80, 160, 320, 640,

1280, 2560, 5120, 10240} is the PRS transmission periodicity, TPRS
gap 2 {1, 2, 4, 8, 16, 32} is

the time gap in slots between two instance of PRS resource belonging to the same set,

TPRS
rep 2 {1, 2, 4, 6, 8, 16, 32} is the number of repeated in a single instance of PRS resource

set. The quantity z(nf , n
µ
s,f) is defined as

z(nf , n
µ
s,f) = N frame,µ

slot nf + nµ
s,f � TPRS

offset � TPRS
offset,res (4.14)

where TPRS
offset 2 {0, 1, . . . , TPRS

per � 1} is the slot offset relative to the PRS resource set,

and TPRS
offset,res is the slot offset of the PRS resource in the PRS resource set. Additional

conditions and constraints on the transmission of the PRS resource set and resource are

present if muting patterns are provided. From [148], a PRS resource is defined by a

resource list, listing all the PRS resource in the resource set, an unique PRS resource set

ID used to identify the specific resource in the set, the seed used to generate the PRS

sequence nPRS
ID,seq, the initial frequency offset of the first PRS symbol kPRS

offset, the resource

slot offset with respect to the resource set slot offset, the starting symbols for the PRS

withing the slot lPRS
start, the number of symbols LPRS, an indication for identify if other

reference signals are superimposed with the PRS, and the RB block offset with respect

to the zero SC index of the resource grid allocated. Each instantiation of a PRS resource

is refereed as a PRS occasion. A PRS resource set is defined by a resource set ID, the

time allocation parameters TPRS
per , TPRS

rep , TPRS
gap (configured only if TPRS

rep 6= 1 ), a bit map

representing a muting pattern for the transmission, TPRS
offset, T

PRS
offset,res, the comb size KPRS

comb,

and the bandwidth allocated for the PRS defined in terms of RB, NPRS
RB , starting from a
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methods such as enhanced cell ID. During the time window, the UE can estimate PRS

TOA via various methods. Consider a specific realization of the PRS r(t) received by the

UE via multipath propagation, i.e.,

r(t) =

NpathX

i=0

 (i)s(t� ⌧ (i)) + w(t) (4.15)

whereNpath denotes the number of multipath components,  (i) and ⌧ (i) denote the complex

amplitude and delay of the i-th path, respectively, and w(t) the thermal noise component.

In order to obtain the PRS TOA, the UE aims to estimate the first path delay ⌧ (0). The

majority of the methods employed to estimates ⌧ (0) rely on the calculation of the cross-

correlation between the transmitted and received PRSs. Denote with r[n] = r(nTs) the

sampled version of the received signal r(t), with sampling time Ts.
2 The cross-correlation

Rr,s

⇥
n
⇤
is defined as

Rr,s

⇥
n
⇤
=

NPRS
samp�1X

j=0

r[j]s⇤[n� j] (4.16)

for n = 0, 1, . . . , NPRS
samp, where s[n] = s(nTs), (·)

⇤ denotes the complex conjugate operator

and NPRS
samp the number of PRS samples. In LOS condition, the delay of the first channel

path can be reliably estimated searching for the strongest peak in the cross-correlation.

However, in NLOS condition the first channel path (LOS component of the received signal)

is usually very weak and the strongest peak in cross-correlation represents late replicas of

the transmitted signal, reaching the UE via longest propagation paths, thus introducing

a bias in the TOA estimate [34, 149]. In order to mitigate this detrimental effect, TOA

can be estimated as the first peak of the modulo of the normalized cross-correlation which

exceeds a certain threshold ⇠, i.e.,

n̂ = argmin
n

�
R̄r,s

⇥
n
⇤
� ⇠

 
(4.17)

where

R̄r,s

⇥
n
⇤
=

|Rr,s

⇥
n
⇤
|

max{|Rr,s

⇥
n
⇤
|}

. (4.18)

Then the estimated TOA is calculated as ⌧̂ = n̂Ts. The threshold value ⇠ greatly impacts

the estimate accuracy: if ⇠ is setted too low the first path may be incorrectly estimated due

2The sampling time Ts is inversely proportional to the bandwidth of the PRS.
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to the thermal noise affecting the received signal, while if ⇠ is setted too high late NLOS

paths may be incorrectly estimated as the LOS path. Besides threshold-based methods,

iterative methods aiming at estimate the channel impulse response and consequentially

the LOS path, can be employed [150]. In each iteration, the strongest peak in Rr,s

⇥
n
⇤

is identified and then its contribute removed. Formally, denote with R
(i)
r,s

⇥
n
⇤
the cross-

correlation in the i-th iteration. The cross-correlation at iteration i+ 1 is obtained as

R(i+1)
r,s

⇥
n
⇤
= R(i)

r,s

⇥
n
⇤
�R(i)

r,s

⇥
n(i)

⇤
Rs,s

⇥
n� n(i)

⇤
(4.19)

where n(i) = argmaxn

n
R

(i)
r,s

⇥
n
⇤o

and Rs,s

⇥
n
⇤
is the normalized auto-correlation of the

transmitted signal s(t). At the iteration 0, the algorithm is initialized such that R
(0)
r,s

⇥
n
⇤
=

Rr,s

⇥
n
⇤
. The algorithms stops after a NI number of iterations or when a specific criterion

is met, such as the peak-to-average ratio falls below a certain threshold. Among the

identified NI +1 delays, {n(0), n(1), . . . , n(NI)}, the minimum is taken as estimated sample

delay, i.e.,

n̂ = min{n(0), n(1), . . . , n(NI)} . (4.20)

In order to increase the accuracy of the TOA estimates multiple PRS occasions can be

employed. Cross-correlations obtained from different PRS occasions can be coherently

accumulated in order to increase the signal-to-noise ratio (SNR), which leads to more

accurate estimates. As a downside, increasing the signal integration level, also increases

the latency of the localization systems. Moreover, depending on the UE velocity and the

channel delay spread, coherent integration may not be feasible and instead non-coherent

integration must be applied, greatly reducing the improvements of the SNR. Hence a

trade-off is present in terms of accuracy and localization latency, which are both important

key performance indicators for many use cases.

4.5 DL-TDOA-based Localization

In DL-TDOA-based localization, the UE measures the TOA of PRSs transmitted by

multiple gNBs. Then, the UE computes the relative differences of the TOAs using the

gNB with the best SNR as reference cell. Additional constraints are present in order to

ensure a minimum level of accuracy for the TOA measurements: in order to perform TOA

measurements with a specific gNB, the SNR must be greater than -13 dB. Among the cells

which are eligible for TOA measurement, the reference cell is chosen such that the SNR is

the highest, granted it is above -6 dB [151]. These relative signal time differences (RSTDs)
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measurements are then quantized and reported to the network together with metrics

quantifying the accuracy of these measurements. Based on known positions of gNBs

and their relative time synchronization, it is possible for the network to estimate the

UE position from the RSTD and accuracy metrics using multilateration. Therefore, the

localization accuracy depends on the accuracy of the reported RSTDs.

In order to perform DL-TDOA-based localization, the UE subtracts the TOA obtained

from the reference gNB from all the other TOAs in order to obtain the DL-TDOA mea-

surements. Given NBS gNBs the number of DL-TDOA measurements is NBS � 1. The

measurements are then transmitted to the core network in order to be processed and used

to locate the UE. For each DL-TDOA measurement, a metric representing the measure-

ment accuracy is also transmitted. The use of DL-TDOA measurements instead of TOA

measurements as input to the localization algorithms eliminates the need of synchronous

time between the UE and the gNBs involved in the localization process. The only synchro-

nization required is among the gNBs, where the time instant at which the different PRSs

are transmitted by the gNBs is required. Accurate time synchronization between the gNB

is more easily obtainable compared to obtaining a common time reference between the

UE and all the gNBs.

Geometrically, given a pair of neighbor and reference gNBs, the DL-TDOAs mea-

surement identifies a hyperboles where the UE might be located and the intersection of

different hyperbolas from difference pairs of neighbor and reference gNBs indicates the

UE position (see Fig. 4.3). Mathematically , the UE position can be obtained by solving

a non-linear system of equations. Without loss of generality, consider the reference gNB

as gNB 1 and indicate with

⌧̂i,1 = ⌧̂i � ⌧̂1 (4.21)

the DL-TDOA measurements obtained from the i-th neighbor gNB and the reference

gNB 1, where i = 2, 3, . . . , NBS, ⌧̂i is the TOA estimates relative to the i-th gNB and

i = 2, 3, . . . , NBS. In absence of measurements error, the UE position p 2 R
2 could be

obtained by solving

8
>>>>>><
>>>>>>:

c⌧̂2,1 = d2,1(p)

c⌧̂3,1 = d3,1(p)
...

c⌧̂NBS,1 = dNBS,1(p)

(4.22)
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where c is the signal propagation speed and

di,j(p) = di(p)� dj(p)

=
����p� pBS

i

����
2
�
����p� pBS

j

����
2
. (4.23)

In (4.23), pBS
i represents the coordinates of the i-th gNB and ||·||2 represents the 2-norm

operator. However, due to the uncertainties affecting the DL-TDOA measurements, an

exact solution of (4.22) cannot be obtained and non-linear LS approaches are typically

employed to infer the UE position. These LS approaches assume as measurement model

d̂ = cτ̂

= d(p) +w (4.24)

where

τ̂ =[τ̂2,1, τ̂3,1, . . . , τ̂NBS,1]
T (4.25a)

d(p) =[d2,1(p), d3,1(p), . . . , dNBS,1(p)]
T (4.25b)

w =[w2,1,w2,1, . . . ,wNBS,1]
T (4.25c)

with w being a zero-mean additive white Gaussian noise (AWGN) vector with covariance

matrix Σ = E
�
wwT

 
. In this setting, given a realization of the measurement bd, the UE

estimated position is obtained as

p̂ = argmin
p̃

✏(p̃) (4.26)

where the cost function ✏(p̃) is given by

✏(p̃) = (d̂� d(p̃))
T
Σ�1(d̂� d(p̃)) . (4.27)

No closed form solution exists for the LS problem and many iterative approaches have

been proposed for obtaining an approximate solution. Among those, we illustrate the

Levenberg-Marquardt which is an gradient-based iterative method with good properties

of fast convergence and robustness against inaccurate initialization points [152]. Denote

with bp(i) the solution at the iteration i, the solution at the step i+ 1 is obtained as

p̂(i+1) = p̂(i) + (Φ(p̂(i))
T
Σ�1

Φ(p̂(i)) + �(i)I2)
�1⇥

⇥(Φ(p̂(i))
T
Σ�1(d̂� d(p̂(i))) (4.28)
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Table 4.2: Main Quantities and their Significance.

Quantity Significance

µ numerology

p antenna port index

k SC index

l symbol index

m generic sequence index

nf frame index

nµ
s,f slot index within a frame, given the numerology µ

N frame,µ
slot number of slots per frame, given the numerology µ

N slot
symb number of symbols per slot

cPRS
init seed used for initializing the PRS sequence

nPRS
ID,seq PRS sequence ID, used to calculate cPRS

init

�PRS PRS scale coefficient

KPRS
comb PRS comb size

kPRS
offset SC offset for PRS transmission

k0 symbol dependent SC offset for PRS transmission

lPRS
start starting symbol index for PRS transmission within a slot

LPRS number of allocated symbols for PRS transmission within a slot

TPRS
per periodicity of the PRS resource in slot indexes

TPRS
rep

repetition of the PRS resource for a single instance of the PRS
resource set in slot indexes

TPRS
gap

gap between the repetition PRS resource for a single instance of
the PRS resource set in slot indexes

TPRS
offset,res

slot offset with respect to the initial slot of the frame allocated for
the PRS resource set

TPRS
offset slot offset with respect to TPRS

offset,res for the PRS resource

NPRS
RB number of RB allocated for the PRS transmission
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Chapter 5

SI Approach for 5G and B5G

Networks

The positional information of network nodes is inherently encapsulated in SI [55], which

is related to various types of positional features (e.g., distance, angle, and proximity)

extracted from measurements and of contextual data (e.g., dynamic model, digital map,

and user profile) corresponding to the environment. It is therefore essential to develop

localization techniques which are capable of accounting for all the SI present in a B5G

ecosystem. Indeed, accurate location awareness depends on the capability to extract and

exploit SI, both of which can be challenging in complex wireless environments.

Localization accuracy of SVE-based methods depends heavily on the quality of the

SVEs, which deteriorates in complex wireless environments. In particular, the perfor-

mance of conventional techniques degrades in wireless environments due to biases in SVEs

caused by NLOS conditions and multipath propagation. This challenges both the relia-

bility of LBSs and the efficiency of network management. To cope with impairments of

wireless environment, conventional approaches have focused on improving the estimation

of single values by modeling SVE errors [34], selecting measurements [37], and using hy-

brid models for data fusion [153]. To improve location awareness, the SI-based approach

has been recently proposed [55]. It enables full exploitation of the positional informa-

tion inherent in different types of measurements together with contextual data. The full

exploitation of the positional information requires efficient fusion algorithms for measure-

ments and data gathered from heterogeneous sensors, management strategies for networks

consisting of nodes with stringent resource limitations, and communication strategies that

can cope with the dimensionality of the SI. In order to improve the localization accuracy

and reduce the communication overhead in 5G and B5G networks, it is vital to develop

efficient methods for learning generative models that accurately characterize the wireless
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environment and innovative methods for reducing the dimensionality of SI while capturing

essential positional information.

5.1 Beyond 5G technologies

A new paradigm that is foreseen to play a key role in B5G networks is the integrated

sensing and communication, i.e., the exploitation of the same signal for both sensing

the environment and communicating information (e.g., radar and communication for au-

tonomous vehicles). This calls for research on waveform design, interference mitigation,

spectrum sharing, time sharing, and hardware reuse between sensing, localization, and

communication. Joint sensing and communication can also be used in a passive radar

setting for the detection and localization of device-free targets. Following an alternative

solution, the signals used for sensing of UE or even device-free targets can be either ex-

plicitly designed and transmitted for this task or already present in the environment for

other purposes (signals of opportunity) and these can include cellular signals. This set-

ting leverages both base stations and access points as illuminators of opportunity, without

deploying any dedicated wireless source, relying on any target device, and incurring ad-

ditional costs. The signals propagate in the monitored environment and are reflected by

both background objects (clutter) and target objects [65]. The sensing devices can be

5G standard devices or they might be augmented to monitor other technologies. Sensing

and localization in this case can be performed by a network of receivers (specific sensors

or UEs) that are deployed in a designated area to receive the signals emitted by base

stations or by other sources of opportunity and reflected by the passive targets.

Recently, research efforts have been devoted to resiliency and robustness of localization

systems in harsh electromagnetic environments affected by severe impairments such as

multipath and NLOS conditions. In such environments, the use of intelligent surfaces (ISs)

promises to mitigate these impairments by controlling the electromagnetic environment

[154]. Therefore, ISs can be employed to create desirable wireless propagation conditions

that improve the performance of localization systems in B5G networks. In addition, the

use of terahertz bands is envisioned as a key wireless technology to satisfy the demand of

extremely high throughput and can be utilized for localization in environments such as

those of B5G for Industry 4.0 [155].
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5.2 SI for Location Awareness

Localization aims to determine the positional states of network nodes. At a given time,

the positional state of a node includes its position (absolute or relative coordinates) and

other mobility-related quantities (e.g., velocity, acceleration, and orientation). Localiza-

tion methods infer the positional states of the nodes based on inter-node and intra-node

measurements, and on contextual data.

Location awareness is the knowledge of probabilistic information on possible UEs’ po-

sitional states. Such information is described by the conditional posterior of the positional

state, which can serve to (i) infer the positional state of each UE; and (ii) enable appli-

cations where probabilistic information of the positional state is sufficient. The location

awareness for the UEs at different time instants can be obtained based on inter-node

measurements with respect to both base stations and neighboring UEs (cooperation with

other UEs via side links), intra-node measurements, and contextual data. Most loca-

tion aware services, including those relying on 5G and B5G networks, require to infer

sequences of positional states. The joint posterior distribution of positional states can

be determined via a prediction step (using a dynamic model) followed by an update step

(using an observation model and a new measurement).

Location awareness can be obtained from SI, which is composed of SFI and SCI as

described in Chapter 3 [55]. SI-based approach provides a statistical characterization of

the relation between position-related measurement and a positional feature. Therefore,

even measurements affected by severe multipath or NLOS conditions can be used by SI-

based localization since SI relies on probabilistic models which have already accounted

for such situations. Compared to existing works which rely on predefined measurement

models, such as those in the field of multi-sensor multi-target tracking [156], SI-based

approaches do not require specific measurement models. This can be especially useful

if the measurement models for the wireless environment are not available or if the data

volume of the measurements prohibits the direct use of likelihood functions.

5.3 Distributed Implementation

In 5G and B5G networks, it is important to infer positional states in a distributed man-

ner. In noncooperative scenarios, each UE can determine its own position, resulting in a

distributed implementation. However, it is known that spatiotemporal cooperation can

significantly improve localization accuracy. Unfortunately, a distributed implementation

of cooperative methods is hindered by information coupling, i.e. the UE positional state

inferences are highly interrelated. Therefore, the optimal implementation of cooperative
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approaches requires a centralized implementation to determine the joint posterior distri-

bution of all UEs.

Distributed techniques for cooperative localization in B5G networks are expected to

rely on the approximation of marginal distributions. For instance, loopy belief propagation

techniques approximate the marginal posterior of each agent by disregarding the cycles in

the graph describing the network connectivity [157]. Such approximations can be obtained

from graphs that describe the network connectivity after disregarding cycles. Hence, each

node keeps track of its own positional estimate and uncertainty, and individual estimates

and uncertainties are updated by means of message passing among different processing

nodes.

5.4 Data Fusion in Heterogenous Networks

The development of 5G and B5G networks leverages an ecosystem comprised of hetero-

geneous technologies. Therefore, it is essential to exploit diverse types of measurements.

The SI-based approach naturally and efficiently fuses heterogeneous measurements from

multimodal sensors. Fusion of such measurements can be implemented by multiplying

SFIs corresponding to different measurements, as long as the random measurement data

are conditionally independent given the positional states [55].

The conditional independence of the observations adequately represents the behavior

of actual measurements obtained by sensors that are spatially scattered or by sensors

belonging to different technologies. Examples of multimodal measurements are those as-

sociated with different types of amplitude-, time-, and angle-related features from wireless

technologies operating with different modulations and frequency bands [153].

5.5 Case Study

In this section will be presented how SI can be used in the context of 5G localization. In

particular, given the already standardized architecture and protocols for 5G localization,

we propose a simple way to exploit the strengths of SI-based approach without the need

of a complete redesign. In order to accomplish this, we will discuss the application of

SI on RAT-dependent measurements supported by the standard as per Release 16. In

particular, we will focus on the generation of SRI based on DL-TDOA measurements.

Recall that the DL-TDOA measurements relative to the i-th gNB is given by (4.21)

where gNB 1 is taken as reference. SRI can be obtained considering as measurement

vector the single TDOA measurement, i.e., yi = ⌧̂i,1, and as positional feature the distance
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Table 5.1: Main features of the 5G simulator.

Parameter Value

Scenario IOO UMi

Carrier Frequency 2GHz 4GHz 2GHz 4GHz

SC Spacing 15 kHz 30 kHz 15 kHz 30 kHz

Bandwidth 50MHz 100MHz 50MHz 100MHz

Area 120m ⇥ 50m 500m ⇥ 500m

Number of Sites 12 19

Number of Sectors 1 3

Intersite Distance 20m 200m

gNB TX Power 24 dBm 44 dBm

gNB N. Ant. El. 8 (2 polarizations, 4 per polarization)

gNB Ant. El. Rad. Pattern Technical Report 38.855 [30]

gNB Ant. Height 3m 10m

UE Ant. El. Rad. Pattern Isotropic

UE Ant. Height 1.5m

Channel Model Technical Report 38.901 [158]

Signal PRS [146,148]

5.5.1 5G Localization Simulator

The results are obtained using the 5G localization simulator and developed for testing

conventional SVE-based and SI-based algorithms. Fig. 5.2 reports a diagram representing

the general structure of the simulator with its main components and parameters. The

simulator developed follows closely the specifications reported in [30], the 3GPP tech-

nical report (TR) on 5G positioning. The simulator purpose is twofold: i) to provides

baseline performance for the state-of-the-art algorithms currently employed in cellular lo-

calization systems; and ii) provides a standardized platform for testing advanced SI-based

localization algorithms which have been developed.

The simulator is capable of demonstrating 5G localization systems operating in the

following scenarios: i) UMi; and ii) IOO. In each scenario, different channel models,

number of sites, spatial displacement of the site, inter-site distance, and number of sectors

per site (i.e., number of gNB per site) are considered. The channel is compliant with [158]

40





Flavio Morselli SI for 5G and B5G Networks

Graphic user interface

In addition, a software based on the simulator outputs has been developed for showcasing

the localization estimates obtained via both SVE-based and SI-based approaches. In

particular, the software can be divided in three main components:

1. 5G Measurements Generator: Measurement vectors are obtained via the simu-

lator presented in Sec. 5.5.1. The simulator can simulate measurements relative to

UEs random positions and UEs moving over random trajectories. This allows to ob-

tain significative dataset for generative model training and validation, respectively.

Then, the simulated measurements are processed by the localization engine.

2. Localization Engine: SI-based localization algorithms are implemented via a two

steps procedure. First, in a training phase (offline) the generative model is estimated

based on datasets composed of measurements and UEs positional features obtained

from the 5G simulator. In the online phase, real-time SI-based localization is ac-

complished based on the generative model previously estimated and the positional

features of UEs moving over random trajectories.

3. Graphic Interface: A graphic user interface which allows the user to experiment

the effect on the localization algorithms using DL-TDOA measurements with dif-

ferent operating conditions. In particular it is possible to select:

• scenario (UMi and IOO);

• carrier frequency (2GHz, and 4GHz); and

• PRS bandwidth (50MHz and 100MHz).

The possible configurations reflects the 3GPP setting defined in the TRs for UMi

and IOO scenarios. The graphic user interface shows the comparison between SI-

based and SVE-based localization via trajectories plot and the empirical comulative

density function (ECDF) for the horizontal localization error.

Fig. 5.3 shows a screenshot of the graphic user interface for 5G localization based on

DL-TDOA measurements. In the graphic user interface, four main areas can be identified:

i) the top-left box shows environment with the real UE position, estimated position via

SVE-based approach, and estimated position via SI-based approach; ii) the top-right box

reports the main simulation parameters and a summary of the performance of the two

localization approaches; iii) the bottom-right box shows a graphic representation of the

SI for the current location estimate; and iv) the bottom-left box reports the ECDF for

the horizontal localization error for both localization approaches.
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5.5.2 DL-TDOA Measurements

This section presents results on localization accuracy, in terms of the ECDF of the horizon-

tal localization error, based on 3GPP standard. In particular, the performance obtained

with the SI-based approach is compared with that reported in the 3GPP TR [30]. The

position root-mean-square error (RMSE) is also presented for different generative models

of the SI and cardinalities of the trial data.

Two 5G standardized scenarios are considered, namely UMi and IOO. The UMi

scenario exhibits a lower probability of LOS links and a higher delay spread, while the

IOO scenario is characterized by higher probability of LOS links and lower delay spread.

In both cases, we account for the spatial consistency of the wireless channel. For the UMi

scenario, a 550meters by 550meters area is considered with 19 sites; each site includes

three gNBs, each covering an angular sector of 120 degrees and emitting at a power level

of 43 dBm. For the IOO scenario, a 120meters by 50meters area is considered with twelve

single-sector gNBs emitting at a power level of 24 dBm. For both scenarios, the UEs are

randomly deployed within the monitored area and the noise figure at the receiver side is

of 5 dB. Fig. 5.4 shows LOS maps and gNBs spatial displacement for the UMi (top) and

IOO (bottom) standardized scenarios. In particular, the figure shows instantiations of

UE positions in which a UE would be in LOS with zero (white), one (blue), two (green),

and at least three (orange) gNBs. Fig. 5.5 shows the empirical probability of the number

of gNBs and sites in LOS given a uniformly randomly deployed UE for the IOO and UMi

scenarios, respectively.

TDOA measurements obtained from the PRS are considered with two combinations

of bandwidth and carrier frequency: (i) 50MHz bandwidth at 2GHz, namely Type I

simulation setting; and (ii) 100MHz bandwidth at 4GHz, namely Type II simulation

setting. According to [30], the gNBs are synchronized. The channel instantiations are

generated using the QuaDRiGa channel simulator, which supports 3GPP standardized

channel models and accounts for spatially-correlated large and small scale fading [158].

The generative model for SI is based on Fisher–Wald settings, considering a GMMwith

three mixtures, i.e., NGM = 3 in (3.10). The UE location is inferred by maximizing such a

GMM. The off-line and on-line phases employ a 10-fold cross-validation technique for each

of the standardized settings. In particular, 1000 instantiations of large and small scale

fading are generated and, for each instantiation, 10 UEs are randomly deployed within

the monitored area and position inference is performed. At each iteration of the cross-

validation procedure, the TDOA-related measurements and positional feature obtained

from 900 instantiations of the 10 UEs are used to train the generative model, while 100

instantiations of the 10 UEs are used for position inference. In the on-line phase, the
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Figure 5.4: Example of LOS map for 3GPP urban micro (top) and indoor open office (bottom) scenarios
where red circles represent the gNBs. White, blue, green, and orange areas correspond to positions with
no gNBs, one gNB, two gNBs, and at least three gNBs in LOS, respectively.
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Table 5.2: Position RMSE as a function of the number of UE measurements used in each training phase.

Number of UE training
measurements

RMSE [m]

UMi Type I UMi Type II IOO Type I IOO Type II

5 3.22 2.07 2.75 1.95

50 2.71 1.62 2.50 1.48

500 2.71 1.59 2.45 1.48

5000 2.72 1.61 2.46 1.48

9000 2.72 1.60 2.46 1.48

efficiently estimated via SI-based approach as

p̂ = argmax
p

(
NBSY

i=2

L⌧̂i,1
(di,1(p))

NAPY

n=1

Lr̂n(dn(p))

)
. (5.2)

In Fig. 5.9 is depicted a pictorial representation of the SRI extracted from DL-TDOA and

TOF measurements. Intensity of SRI is shown with a red-yellow and green colormaps for

DL-TDOA and TOFmeasurements, respectively. The total SFI obtained as multiplication

of the two is shown with a blue colormap.

Consider an IOO area of 120meters by 50meters according to [30] in which a varying

number of UEs are randomly located and where NBS = 12 5G gNBs and NAP = 6 Wi-Fi

APs are deployed as in Fig. 5.10. In such a scenario, results in terms of ECDF of the

horizontal localization error for hybrid localization in 5G ecosystem are presented. In

particular, the performance of SVE-based methods for individual 5G and Wi-Fi measure-

ments, SI-based methods for individual 5G and Wi-Fi measurements, as well as results

fusing of such measurements via SI framework, are compared.

For 5G network, DL-TDOA measurements obtained considering the same simulation

assumption as in Sec. 5.5.2. On the other hand, Wi-Fi related measurements consist of

range estimates for the distance between the UEs and the APs. The range estimates are

obtained considering the true distance between the UE and AP plus a range estimation

error. Such range estimation error is modeled according to the experimental results in [165]

which are based on TOF measurements. The measurements are obtained using off-the-

shelf components operating on a fixed channel of the 2.4GHz ISM band and running a

802.11 b/g custom firmware. In particular, the measurements gathered in the scenario

referred to as Testbed I in [165] are used to generate range errors for the AP-UEs distances.

Testbed I in [165] presents similar characteristics in terms of dimensions and mix of line-

of-sight and non line-of-sight conditions with the considered IOO scenario. The fitting
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Chapter 6

Integration with Sensor Radar

Networks

The integration of sensing capabilities in the communication network can be achieved by

exploiting the signals already used for communication purposes as signal of opportunity

or by integrating radar-based system into the already deployed infrastructure [167–170].

Both approaches poses significant design challenges in terms of shared resource man-

agement and coexistence. In this thesis we will focus on the second approach, where

sensing is achieved via dedicated radar-based systems, i.e., SRNs. In particular, SRNs

leveraging UWB signals are conveying a lot of interest for tracking device-free objects

in indoor environments thanks to the ranging accuracy, multipath resolution, and pen-

etration characteristics provided by UWB signals [34, 66, 95, 96, 171, 172]. The design

of SRNs for efficient operation in challenging wireless environments requires: (i) deriva-

tion of performance limits and benchmarks [2, 88,114,173]; (ii) understanding of wireless

impairments effects [35, 37, 66, 123, 174]; and (iii) development of algorithms for track-

ing non-collaborative objects and infer physical analytics [70, 74, 116, 122, 175]. In the

following, first a system model for UWB SRNs is proposed, as well as common clutter

removal techniques. Then, a statistical characterization of the residual clutter-plus-noise

in indoor environments is presented based on experimental data. In addition, the design

of a crowd-centric counting algorithm (i.e., an algorithm that does not rely on multi-

target localization and data association) is presented and its performance compared with

state-of-the-art methods based on real data.

54



Flavio Morselli Integration with Sensor Radar Networks

6.1 System Model for SRNs

Consider a SRN in a monostatic or multistatic configuration (i.e., where the transmitters

and the receivers are colocated or separated, respectively) with sensor using UWB impulse-

radio technologies [89, 90]. The transmitter emits an UWB impulse u(t) at time instant

jTf where j 2 Z and Tf is the frame time. The impulse propagates in the environment

and is backscattered by targets and other scatterers (static or dynamic) that are present

in the monitored area. The receivers observe the backscattered echoes within a fixed

observation time To  Tf before the next impulse is transmitted. The received signal

r(t) at the generic SR receiver can be written as the superposition of the backscattered

impulses transmitted at time jTf . Specifically, where r
(j)(t) is the signal received in the

j-th frame, which is given by

r
(j)(t) = s

(j)(t) + c
(j)(t) + w

(j)(t) (6.1)

for t 2 (jTf , jTf + To] and 0 elsewhere. In (6.1), the process s
(j)(t) encapsulates the

informative components for the localization process and contains the signal backscattered

from the targets as well as the undesired multipath propagation involving reflections on the

targets. Due to the targets’ mobility, its statistical properties vary from frame to frame.

The process c(j)(t) represents the undesired clutter components due to dynamic and static

scatterers whose statistical properties vary between frames due to the mobility of dynamic

scatterers. Notice that the processes s(j)(t) and c
(j)(t) are not independent. The targets’

motion affects the signals backscattered from both static and dynamic scatterers, while

the motion of the dynamic scatterers affects the targets’ multipath. Last, the process

w
(j)(t) is a zero-mean AWGN representing the thermal noise component whose statistical

properties do not vary between frames.

Due to the fine resolution provided by the UWB signals, single scatterers cannot be

considered point reflectors as in narrowband SRNs and should be treated as range-spread

objects [176]. In this case, reflections are made up by infinitesimal contributes determined

by the illuminated objects surface. Thus, targets and clutter process cannot be written as

a finite sum of discrete components and in the j-th frame interval the components related

to the targets backscatter is [177]

s
(j)(t) =

Z To

0

u(t� ⌧)ς(j)(⌧)d⌧ (6.2)

where ς(j)(⌧) is a stochastic process representing the distributed reflections from the tar-
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gets. Similarly, the components related to the clutter is

c
(j)(t) =

Z To

0

u(t� ⌧)κ(j)(⌧)d⌧ (6.3)

where κ(j)(⌧) is a stochastic processes representing the distributed reflections from the

dynamic and static scatterers. In order to reduce the detrimental effects determined by

AWGN, prior to the clutter mitigation techniques, successive frames can be coherently

accumulated:

r
(j)(t) =

1

NI

jX

i=(j�1)NI

r
(i)(t) (6.4)

6.2 Clutter Mitigation in SRNs

Various clutter mitigation filters are available in literature [65,101,178]. In particular, we

will focus on the empty room (ER), exponential averaging filter (EAF), and single-delay

canceller (SDC), all of which aim to the estimate the clutter response and subtract it

from the received frames. In the case of ER, the filtered signal after clutter mitigation

can be written as

x
(j)(t) = r

(j)(t)� ĉ(t) (6.5)

where ĉ(t) =
PNa

h=1 r
(h)(t)/Na is an estimate of the response of the wireless environment in

absence of targets, i.e., only clutter. This technique exhibits good performance in static

environments and is suitable for implementation on low complexity devices. The main

drawback is represented by the poor performance in quasi-static or dynamic environments

and its non adaptive nature. The EAF overcomes some of the ER downsides by iteratively

updating the environment response. The filtered signal is given by

x
(j)(t) = r

(j)(t)� ĉ
(j)(t) (6.6)

where the clutter response is updated frame by frame as ĉ(j)(t) = �ĉ(j�1)(t)+(1��)r(j)(t).
The parameter � 2 (0, 1) weights the clutter signal at the previous frame and the cur-

rent received frame to obtain the current clutter estimate. This mitigation filter rejects

the static clutter while being robust to slow environmental changes. However, echoes

originated by slow moving targets are also attenuated, potentially causing performance

degradation. On the other hand, the SDC filter estimates the clutter response as the
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previous received frame, i.e. ĉ(j)(t) = r
(j�1)(t), and the filtered signal can be written as

x
(j)(t) = r

(j)(t)� r
(j�1)(t) . (6.7)

The SDC is particularly suitable for high maneuvering targets and exhibits good per-

formance even for dynamic environments, until the per-frame variability of the targets

echoes is greater than the clutter one.

6.3 Clutter Characterization in SRNs

Accurate modeling of the wireless impairments affecting the SRNs’ operations is essential

to design SRNs capable of achieving satisfactory performance in terms of localization and

tracking accuracy [55,65,179–181]. Among various wireless impairments, the clutter, i.e.,

the unwanted echoes generated by scatterers not meaningful for the target localization

process, represents one of the major challenges [101]. The clutter, if not mitigated or

properly taken into account, might lead to noticeable performance degradation [37]. In

particular, an accurate characterization of the clutter is essential to establish performance

benchmarks, develop robust mitigation filters, and design inference algorithms [2, 182–

184].

However, clutter characterization is a difficult task due to the heterogeneous operation

conditions encountered in real applications. The ability to distinguish between clutter and

useful echoes (i.e., echoes that carry positional information about the targets) depends

on the specific environment and application. For example, in synthetic-aperture radars

the echoes determined by the background are essential to obtain an accurate image of the

environment [176], while in surveillance radar they deteriorate the detection capability

[72]. In general, the characteristics of the echoes depend on: (i) the environment (e.g.,

outdoor, sea, or indoor); (ii) SRN operation (e.g., monostatic vs. multistatic); and (iii) the

signaling employed (e.g., continuous wave or impulsive).

The clutter can be modeled as a stochastic process, whose characteristics vary if ob-

served prior or after clutter mitigation filtering. Several statistical models have been

proposed in the literature to describe the clutter amplitude or power and its variability

in terms of Doppler spectrum [185–189].

Despite clutter characterization has been largely studied for narrowband radars in

a variety of frequency bands and operating conditions, no well-established counterparts

exist for SRNs operating in indoor environments with wideband and UWB signals [89].

The performance analysis (e.g., the derivation of theoretical bounds) and the design of

algorithms (e.g. coherent or noncoherent detectors for ranging) for UWB SRNs rely on
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Figure 6.2: Measurement campaign environment in the Department of Engineering at the University of
Ferrara.

x
(j)(t) is difficult due to the time-varying nature of the process and the interdependency

between the clutter-plus-noise and targets processes. However, we can initially consider

only the clutter determined by static scatterers (e.g., ground, walls, and furnitures) in the

absence of targets. In such a scenario, the filtered signal in (6.9) simplifies to x
(j)(t) =

n
(j)(t), where only the residual clutter-plus-noise is observed at the filter’s output. The

statistical properties of n(j)(t) do not depend on the particular frame index j. Therefore,

the process x
(j)(t) can be considered as a time shift of an underlying process x(t). A

set of M sample functions {x(j)(t)}j2M with frame index set M = {1, 2, . . . ,M} can

be regarded as different realizations of the process x(t). This allows to determine the

statistical properties of x(t) based on successive received frames {x(j)(t)}j2M.

Remark: The echoes due to the background and large static objects are typically

greater in amplitude and exhibit a longer duration compared to the ones originated by

moving scatterers. Moreover, the absence of dynamic scatterers allows to consider approx-

imatively independent the processes s̃(j)(t) and n
(j)(t), with the targets’ motion determin-

ing only partial shadowing of the static reflectors. Therefore, the clutter characterization

in a scenario with no targets and only static scatterers is crucial for addressing the clutter

characterization problem.
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Table 6.1: SR and measurement campaign parameters.

Parameter (Symbol) Value

SR pulse shape Gaussian

SR carrier frequency 7.26GHz

SR pulse bandwidth 1.4GHz

SR energy per pulse 2.6 pJ

Repetition interval (Tf ) 40ms

Observation time (To) 43.4 ns

Sample time (Ts ) 42.8 ps

Number of configurations tested 12

Number of frames recorded per configuration (M) 250

Number of samples per frame (N) 1245

are properties of the process xi, which depend on the discrete temporal index i. On the

other hand, the process distribution is defined as the distribution of the RV xi? , where i?

is a fixed time index with i? 2 N . In our case, stationarity and correlation are evaluated

from the samples {x(j)
i }i2N for each frame indexed by j, while samples distribution is

evaluated from the samples {x(j)
i }j2M for each sample indexed i.

As a first qualitative test, we use visual plots of the first-order statistics (e.g., mean and

variance) to evaluate the non-stationarity of the process by determining if such statistics

depend on the sample index i. In particular, the sample mean is µ̂i =
P

j2M x
(j)
i /M ,

while the sample variance is �̂2
i =

P
j2M(x

(j)
i � µ̂i)

2/(M � 1). Indeed, if such dependency

can be assessed by visual inspection, i.e., µ̂i 6= µ̂k or �̂2
i 6= �̂2

k for i 6= k and i, k 2 N ,

the process xi can be assumed non-stationary. Otherwise, if such dependency cannot be

identified, quantitative tests are necessary to asses the process stationarity.

As a second quantitative test, we use the LBT for evaluating the correlation of the

process xi. Assume xi as stationary and denote the discrete autocorrelation function at

time lag k (i.e., sample index difference) as %k. Formally, the Ljung–Box test (LBT) tests

the hypotheses

H0 : 8k 2 NL, %k = 0 (6.10a)

H1 : 9k 2 NL, %k 6= 0 (6.10b)

where NL = {1, 2, . . . , NL}, and NL is the maximum time lag tested. In our case, we can
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apply the LBT for each frame index j on the samples {x(j)
i }i2N . Consider a frame index

j and µ̂i = µ̂ = 0, then the %k can be estimated as %̂
(j)
k = v̂

(j)
k /v̂

(j)
0 where

v̂
(j)
k =

1

N

N�kX

h=1

x
(j)
h x

(j)
h+k (6.11)

is the estimate of the autocovariance function. The test statistic employed to reject the

null hypothesis is based on the estimated autocorrelation function and is given by

q(j) = N(N + 2)
X

k2NL

(%̂
(j)
k )2

N � k
. (6.12)

If the test statistic q(j) exceeds a certain critical value �↵, i.e. q(j) > �↵, the hypothesis

H0 is rejected with significance level ↵ (i.e., the samples can be assumed correlated). Oth-

erwise, the test fails to reject H0 and the samples are considered uncorrelated. Critical

values for different significance levels ↵ and sample sizes are available [190]. In the asymp-

totic regime (NL ! +1) the test statistic is distributed as a chi-square distribution with

NL degrees of freedom and the critical value �↵ is the 1� ↵ quantile of the distribution.

Various statistical tests can be employed for determining if the samples are well-

modeled by a Gaussian distribution. In our case, we want to test for each sample index

i if the samples {x(j)
i }j2M can be considered realizations of a Gaussian RV. Consider a

fixed time index i, formally goodness-of-fit tests for Gaussian distributions verifies the

hypothesis

H0 : {x(j)
i }j2M, fxi(x) 2 F(x;µ, �2) (6.13a)

H1 : {x(j)
i }j2M, fxi(x) /2 F(x;µ, �2) (6.13b)

where F(x;µ, �2) is a family of Gaussian distributions parametrized by mean µ and vari-

ance �2. Anderson–Darling test (ADT) is employed to test Gaussianity since it exhibits

a small probability of incurring in type-II error compared to other tests and it is able

to detect small departures from the Gaussian distribution in the tails of the empirical

distribution [190]. The ADT quantifies the square difference between the ECDF defined

as

F̃i,M(x) =
|{x(j)

i , j 2 M : x
(j)
i  x}|

M
(6.14)

and the hypothesized comulative density function (CDF) Fxi
(x). In case of known mean
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6.3.4 Results

Consider the experimental setting described in Sec. 6.3.2. Given a specific spatial con-

figuration of the SR, we define RC = NC/M as the ratio between the number of frames

that exhibit correlation NC, assessed via LBT, and the total number of frame M in each

configuration. Similarly, given a specific configuration we define RG = NG/M as the ratio

between the number of sample that can be considered Gaussian distributed NG, assessed

via ADT, and the total number of samples N in each configuration. Both LBT and ADT

are conducted at significance level ↵ = 0.05, with NL = 20 for the LBT. The weighting

parameter for the EAF is � = 0.8.

Fig. 6.4 shows the sample mean for the configuration 5E as a function of the sample

index i for the different clutter mitigation filters considered. It can be observed that the

mean estimate exhibits great variability from sample to sample. In particular, it can be

identified a peak of approximatively -100 dB in the first 50 samples for all the mitigation

filters. This can be attributed to the direct path between the transmitter and receiver

antennas. Moreover, other two peaks of approximatively -120 dB and width of several

samples can be identified at i ⇡ 400 and i ⇡ 600. These can be attributed to large scat-

terers, such as the table and the wall. At the same sample indices, similar peaks can be

recognized in Fig. 6.5, where it is showed the sample variance for the same configuration

as a function of the sample index i. Similar trends can be observed for the mean and the

variance in the other configurations recorded, where peaks can be identified in correspon-

dence of large scattered echoes. Furthermore, these peaks are present regardless of the

mitigation filter considered. Notice that, the presence of such peaks violate the definition

of stationarity and their width is attributable to the characteristics of the UWB signals.

In fact, due to the fine spatial resolution provided by UWB signals, the mitigated echoes

from static scatterers span multiple sample indices.

Tab. 6.2 shows RC for the configurations considered and different clutter mitigation

filters. It can be noticed that the percentage of frames exhibiting correlation exceeds

the 80% for all the configurations and mitigation filters. It can also be noticed that the

filtered samples obtained with the ER exhibit the larger percentage (greater than 90%) of

correlated frames, while the lowest is obtained employing the SDC. This can be attributed

to the fact that the ER filter does not affect the statistical properties of the input process,

being the output process a simple location shift of the input process. On the other hand,

the SDC mitigates the clutter and increases the power of the AWGN which is assumed

uncorrelated.

Tab. 6.3 shows RG for the configuration considered and different clutter mitigation

filters. It can be noticed that the percentage of samples well modeled by a Gaussian
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Table 6.2: Rate of correlated frames for different configurations and clutter mitigation filtering.

Configuration
Rate of Correlated Frames, RC

ER EAF SDC

1E 0.92 0.87 0.80

2N 0.99 0.88 0.85

3W 0.95 0.88 0.86

4S 0.99 0.92 0.81

5E 0.95 0.85 0.80

5NE 0.94 0.86 0.83

5N 0.99 0.88 0.84

5NW 0.96 0.88 0.82

5W 0.92 0.85 0.80

5SW 0.96 0.88 0.85

5S 0.95 0.87 0.81

5SE 0.98 0.85 0.80

Table 6.3: Rate of Gaussian samples for different configurations and clutter mitigation filtering.

Configuration
Rate of Gaussian Samples, RG

ER EAF SDC

1E 0.94 0.96 0.96

2N 0.82 0.94 0.96

3W 0.91 0.94 0.96

4S 0.95 0.96 0.96

5E 0.93 0.95 0.96

5NE 0.93 0.95 0.96

5N 0.93 0.96 0.95

5NW 0.92 0.95 0.95

5W 0.94 0.95 0.96

5SW 0.94 0.95 0.96

5S 0.94 0.94 0.96

5SE 0.91 0.96 0.95
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systems are preferred to image-based systems [83, 193–195], especially when privacy, im-

plementation costs, and obstructed line-of-sight represent important limitations. Among

radio-based systems, device-free systems are often preferred to systems that rely on ded-

icated or personal devices [62, 196–199].

Device-free systems are based on networks of SRs that sense the wireless environment

and detect targets from signal reflections (backscattering) [37, 55, 65, 74, 101, 149]. The

presence of obstacles and other scatterers (e.g., furniture, walls, and windows) leads to

clutter and multipath propagation, which have detrimental effects on the detection per-

formance. These phenomena are particularly severe in indoor environments, where the

number of scatterers is large [2, 34, 200].

Conventional approaches for device-free counting via SRs rely on multi-target local-

ization or tracking [180, 201], where each SR estimates a set of metrics (e.g., ranges or

angles) associated to a single detected target (namely, individual-centric approach). Typi-

cally, this approach has a complexity that grows exponentially with the number of targets

due to data association. Individual-centric information and data association are unnec-

essary when the system is only interested in crowd-centric information (i.e., the number

of targets). Therefore, there is a growing interest in conceiving methods that infer the

number of targets without relying on localization (namely, crowd-centric approach). Ex-

isting models for relating the received waveforms to the number of targets depend on the

specific environment and multipath conditions [79, 106,107].

In [137], the number of targets is inferred directly from energy samples of the received

waveform and relying on a statistical characterization of the wireless channel. However

such statistical characterization may be unknown a priori. As a possible solution, learning

techniques can be employed to directly estimate the generative model of the measurements

via a training phase. Recently, unsupervised learning has been successfully applied to

ranging for network localization [54, 55]. In soft range information, nodes’ position is

determined based on the information obtained though unsupervised machine learning

techniques in the form of likelihood functions instead of single-value metrics (e.g., time-

of-arrival, angle-of-arrival, and received signal strength). The use of unsupervised learning

for device-free counting allows the system to skip the estimation of single-value metrics and

exploit the whole received waveform to extract information about the number of targets.

Moreover, the use of likelihood functions enables an efficient fusion of the information

provided by each SR.
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clutter removal filter prevents the counting of static targets. However, due the fine time

resolution of UWB signals, a person standing in a static position is not a static target due

to the respiration motions. This makes the EAF well suited for applications involving the

count of persons such as affluence analytics and flow monitoring.

A number Nint of frames can be non-coherently accumulated at the output of an energy

detector to reduce the noise effect. First, a vector e(j) of Nbin = bTobs/Tdc energy bins

is obtained through a quadrature integration and dump block, where Td represents the

dwell time and the k-th bin is given by

e
(j)
k =

(k+1)NdX

h=kNd

|̃r(j)h |2 (6.18)

in which Nd = bTd/Tsc represents the number of samples in each energy bin, and r̃
(j)
h is

the h-th element of r̃(j). Then, the energy bin vectors from different frames are averaged

as

ē(j) =
1

Nint

jNintX

i=(j�1)Nint

e(i) . (6.19)

Note that a new energy vector ē(j) is obtained every Nint observation frames, i.e. at time

jNintTf with j 2 Z. Consider a fixed frame index j, denote with ri and ēi the vectors

representing the received signal samples and the energy bins for the i-th SR, respectively.

The counting system aims to infer the number of targets nt from the observed data

{yi}i2NR
. The observed data may refer to the received signal samples yi = ri and the

estimate bnt is updated frame by frame (i.e., at time jTo with j 2 Z), or can refer to the

energy vectors yi = ēi and the estimate bnt is updated every Nint frames (i.e., at time

jNintTf with j 2 Z).

In crowd-centric approaches, which do not rely on target positional information, the

ML estimate of nt is

bnt = argmax
nt

Y

i2NR

fy|nt(yi|nt) (6.20)

where the measurement sets are considered independent and identically distributed among

the different SRs for a given nt. The random vector y represents the measurement set

associated to an unspecified SR.

We propose a technique for crowd-centric counting of device-free targets via unsuper-

vised machine learning. First, a generative model (i.e., the joint PDF f(y, nt)) is learned
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during a training phase where a data set T = {yl}l2NT
of NT measurements indexed by

NT are collected. Then, f(y|nt) can be obtained from f(y, nt) with a priori knowledge

f(nt). The dimensionality of the problem depends on the size of y. In particular, the use

of the received signal samples vector y = r or of the energy vector y = ē may lead to

high computational complexity.2 Therefore, dimensionality reduction is performed on ē

by defining two descriptive features and principal component analysis (PCA) [202].

Consider y = [max{ē}, np, (ē)]
T, where max{ē} is the global maximum for the vector

ē, np is the number of local maxima, and  (ē) is a 1 ⇥ d vector, containing the first d

principal components of the nbin ⇥ 1 vector ē, i.e.

 (ē) =
1

max{ē}
ēTV (6.21)

where V is a nbin ⇥ d matrix with columns given by the eigenvectors associated to the d

largest eigenvalues of Σ, which is the nbin ⇥ nbin sample covariance matrix of the vectors

{ēl/max{ēl}}l2NT
. The global maximum of the energy bin vector can be related to the

presence of targets in the operating environment, while the number of peaks represents

a first coarse approximation for the number of targets. Though the advantages of being

easily obtainable, these two descriptive features do not encapsulate all the information

carried by ē. In contrast, PCA provides a concise representation of ē by projecting the

data into a low-dimension linear subspace while ensuring the lowest mean-square error.

The main drawback of the PCA approach is when highly nonlinear relation is present

between the number of targets and ē as this dimensionality reduction technique fails to

preserve the information carried by the measurements.

Learning the generative model for y is a density estimation problem with both contin-

uous and discrete RVs. The jittering technique is employed to transform the discrete RVs

into continuous RVs so classical density estimation techniques (that are suitable for contin-

uous RVs only) can be employed [203,204]. Consider x = [x̃, x̆]T where x̃ = [max{ē}, (ē)]

represents the continuous RVs; and x̆ = [np, nt]+γ represents the discrete RVs after adding

the jitter γ 2 R
2, i.e. a random vector representing a noise term. The new vector x of

continuous RVs is such that

fy,nt(y, nt) = fx(x) (6.22)

holds 8γ, fγ(0) = 1, fγ(γ) = 0 8γ 2
�
Z\{0}

 2
.

A linear transformation, namely data sphering, is then applied to the jittered training

2Analogously to the measurement set y, from now on the received signal vector r and the energy vector
ē are associated to an unspecified SR.
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data xl so that the covariance matrix becomes the identity matrix [205]

zl = Λ�
1
2AT(xl � x̄) = [z̃l, z̆l]

T (6.23)

where Λ is the diagonal matrix formed by the eigenvalues of the sample covariance matrix

relative to {xl}l2NT
, A is the matrix formed by its corresponding eigenvectors, and x̄ is

the sample mean vector from the training data.

The density estimation is carried out on the sphered training set {zl}l2NT
and then the

PDF in the original domain is obtained as | det(Λ�
1
2AT)|fz(Λ

�
1
2AT(x�x̄)). In particular,

we consider two density estimation techniques based on the Fisher–Wald (FW) and the

kernel density estimation (KDE) [54]. In the FW setting, the density function fz(z) is

approximated with a mixture of NGM Gaussian distributions as

bf(z) =
NGMX

i=1

⇡i'(z;µi,Σi) (6.24)

where '(·;µi,Σi) is the Gaussian PDF; the weights ⇡i, the mean vectors µi, and the

covariance matrices Σi are obtained through the minimization of the empirical risk in

the FW setting [206]. The solution of the minimization problem is obtained via ML esti-

mator or its approximation (e.g., the solution provided by the expectation-maximization

algorithm).

In the KDE, the density function fz(z) is approximated as

bf(z) = 1

NT

X

l2NT

K(z̃ � z̃l; H̃)K(z̆ � z̆l; H̆) (6.25)

where K(z̃; H̃), K(z̆; H̆) are product kernels, parametrized by the matrices H̃ , H̆ ,

called bandwidth matrices. We consider Gaussian kernels K(z̃ � z̃l; H̃) = '(z̃; z̃l, H̃),

K(z̆ � z̆l; H̆) = '(z̆; z̆l, H̆). The bandwidth matrices are obtained through the normal

reference rule [207].

6.4.2 Case Study

The proposed technique is validated via experimental results in terms of counting error

outage (CEO) and counting RMSE. The CEO is defined as the probability that the

counting error |bnt � nt| is above a given target value n?

Pceo(n
?) = P {|bnt � nt| > n?} (6.26)
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while the counting RMSE is defined as 3

erms =
p

E {|bnt � nt|2} . (6.27)

The measurement campaign was carried out at the Department of Engineering, Uni-

versity of Ferrara (see Fig. 6.2). The size of the monitored area is 6⇥4 m2 and the presence

of a table, chairs, panels, walls, and other objects leads to a large number of potential

scatterers (i.e., clutter and multipath). A network of NR = 3 SRs in monostatic config-

uration is emulated recording the measurements with a single SR in different locations.

The measurements are then properly combined in the online stage. The SR is based on

Novelda’s UWB SR “X4M03” chip [208]. Tab. 6.4 summarizes the SR settings and the

parameters values for the proposed technique. The number of targets (persons) nt in

the monitored area varies between 0 and nmax = 3. For each value of nt > 0, nc = 10

possible spatial arrangements of the targets in the monitored area are considered (i.e.,

spatial configurations), with index set Nc = {1, 2, . . . , nc}. Each configuration Pnt,j, with

j 2 Nc corresponds to a different nt-tuple of target positions, i.e. Pnt,j = {pn,j}n2Nt ,

where Nt = {1, 2, . . . , nt} is the index set relative to the targets, pn,j is the position of

the n-th target for the j-th configuration associated to nt. For nt = 0, only nc = 3 config-

urations (i.e., measurements of the empty room at different time instants) are considered

due to the absence of targets. Example configurations are depicted in Fig. 6.7. For each

configuration Pnt,j, one thousand observation frames per SR are collected. After the clut-

ter removal and energy detection, the number of energy vectors ē
(j)
i are 50 for each radar

and each configuration (i.e., j 2 {1, 2, . . . , 50}).

The measurements are used as input of an iterative procedure to validate the proposed

technique. At each run, the training (offline) and validation (online) phases are performed

by picking a set of configurations T for training, and a set of configurations V for val-

idating the generative model, following the leave-p-out cross-validation criteria [166].4

This procedure ensures that the validation of the proposed technique is carried out on

configurations relatively different from the ones used to learn the generative model.

Numerical results are provided for FW and KDE algorithms with ML estimation.

The jitter γ is uniformly distributed over the interval [�0.5, 0.5]2 in order to meet the

constraints in (6.22). Results are compared with two multi-target detection algorithms,

3The CEO is approximated with the rate and the expectation in the RMSE is approximated with the
sample mean due to the finite set of experimental data.

4In particular, p = 4 so the validation set V has cardinality |V| = 4 and contains one configuration
for each possible value of nt at each iteration. The training set T , with |T | = 29, contains all the other
configurations (i.e., T \ V = ; with 27 configurations relative to the case nt > 0 and 2 relative to the
case nt = 0).
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Table 6.4: SR setting and signal processing parameters values.

Parameter (Symbol) Value

SR carrier frequency 7.26GHz
SR pulse bandwidth 1.4GHz
SR energy per pulse 2.6 pJ
Repetition interval (Tpr ) 40ms
Sample time (Ts ) 42.8 ps
Number of samples per frame (ns) 1079
Observation time (Tobs) 43.4 ns
Window length EAF filter (NMA) 30
Dwell time (Td) 2 ns
Number of samples per energy bin (Nd) 47
Length energy bin vector (Nbin) 23
Number of energy bin vectors integrated (Nint) 20
Number of principal components PCA (d) 9
Number of components in FW (NGM) 9

RMSE is minimized at each offline phase. The WT left and right guard lengths are 1

and 2 bins, respectively. The CA-CFAR guard length is 1 bin and the target false alarm

probability is 0.01. The BC threshold distance is set to 0.45 m (approximatively one

and an half of the distance associated to an energy bin). In the multi-target detection

cases, each SR provides an estimate of the number of targets and the final estimate bnt is

obtained as the mode of the estimates provided by each SR.

Fig. 6.8 shows the CEO as a function of the target counting error n?. It can be

observed that the proposed algorithms outperform the multi-target detection algorithms.

The error is zero in the 63% of the cases for both KDE and FW (the CEO is below

37% for n? = 0), whereas the error is zero only in the 39% of the cases for the WT

(the CEO is below 61% for n? = 0) and 33% for the BC (the CEO is below 67% for

n? = 0). This can be attributed to the fact that even though the clutter removal filter

eliminates most of the contributes from static reflectors, the multipath generated after

target backscattering remains unaltered at the filter output. This detrimental phenomena

can be in part mitigated by the crowd-centric approach, while it severely affects the

performance of multi-target detection algorithms. It can also be observed that the CEO

is decreasing with n? more rapidly for the proposed algorithms with respect to the multi-

target detection ones. For example, the CEO goes from 0.35 with n? = 0 to 0.003 with

n? = 1 for the FW, whereas it goes from 0.61 to 0.24 with n? = 1 for WT. Therefore, even

in the presence of a counting error, its magnitude is smaller for the proposed algorithms.

Fig. 6.9 shows the CEO for FW and KDE as a function of the target counting error
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Chapter 7

Conclusion

This thesis presented the research activity on location awareness in 5th generation (5G)

and beyond 5G (B5G) ecosystems, including the integration with sensor radar networks

(SRNs). In particular, a soft information (SI)-based approach is developed for 5G net-

works considering both radio access technology (RAT)-dependent and RAT-independent

measurements. A statistical characterization of clutter impairments based on experimen-

tal measurements is carried out for ultra-wideband (UWB) SRNs operating in indoor

environments. Moreover, the design of algorithms for extracting physical analytics, i.e.,

number of person in a monitored area, based on the reflected signals in UWB SRNs is

presented.

SI-based localization is developed for 5G networks without requiring any significant

changes to the already standardized architecture and procedures. The proposed approach

can be easily adapted to leverage any combination of measurements that will be available

in B5G networks. Performance in terms of localization accuracy is evaluated for both SI-

based and single-value estimate (SVE)-based approaches considering 5G downlink time-

difference-of-arrival (DL-TDOA) measurements alone and the fusion of 5G DL-TDOA

and WiFi time-of-flight (TOF) measurements. In particular, performance are evaluated

via rigorous simulation of 5G reference signals, wireless environments, and procedures

in full conformity with 3rd Generation Partnership Project (3GPP) standards. Results

obtained in 3GPP standardized scenarios (i.e., urban microcell (UMi) and indoor open

office (IOO) scenarios) show that SI-based approach significantly outperforms SVE-based

approach.

The characterization of clutter impairments is presented for UWB SRNs operating in

indoor environments. Based on experimental data, the statistical properties in terms of

stationarity, correlation, and sample distribution of the are determined for static clut-

ter. Such properties are evaluated using statistical tests and visual inspection of the
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backscattered signals. It is shown that, the static clutter process can be considered as a

non-stationary, correlated, Gaussian process.

The design of crowd-centric counting algorithm based on machine learning techniques,

is also presented and validated via experimental data using a UWB SRN. In particular,

based on a reduced representation of the received waveform samples, the number of target

present in a monitored area is inferred without relaying on multi-target tracking and

data association. Results show that the proposed crowd-centric approach significantly

outperforms conventional algorithms.

This thesis (i) developed a machine learning approach for accurate localization in 5G

and B5G networks and (ii) explored the integration of UWB SRNs for joint communication

and sensing in B5G networks. The findings of this thesis show that techniques based on

SI and integration of cellular networks and SRNs can effectively improve and enrich 5G

and B5G ecosystems.
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