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Abstract 

 

Predicting the fate of forest tree species is crucial to adopt forest management strategies that 

could effectively mitigate the effects of climate change. To this aim, tree-ring time series 

can be used to investigate growth dynamics and responses to climate and environmental 

stressors. The potentialities of tree-ring data have been recently acknowledged by the 

scientific community and tree-ring research is experiencing a “renaissance” of new uses. In 

particular, there is a raising interest in linking dendrochronological and genetic data to shed 

light on the genetic basis of local adaptation. 

My PhD thesis aims at developing a comprehensive framework to jointly analyse 

dendrochronological and genetic data in forest tree populations. By embracing the change in 

perspective proposed by recent dendrochronological literature, I switched from the classical, 

population-based dendrochronological approach to an extensive individual-based 

exploration of growth dynamics. To this aim, I exhaustively sampled the genetic and 

dendrophenotypic variance of five Norway spruce (Picea abies) populations. Within each 

population, I sampled individuals from two age cohorts following the requirements for 

parentage analysis and collecting a total of 518 adults and 604 seedlings. All individuals 

were genotyped at both neutral and potentially adaptive genetic markers. Taking advantage 

of dendrochronological techniques, all adult trees were phenotyped scoring a large set of 

dendrophenotypic traits. 

My thesis is structured in six chapters. After an overview of the state of the art in Chapter 1, 

in Chapter 2 I described the studied species, the sampling sites and the datasets used. 

In Chapter 3, I combined dendrochronological, genetic and spatial data to disentangle the 

relative importance of genetic similarity and spatial proximity on individual growth 

performances. The modelling approach used successfully captured a large fraction of 

variance in growth, which was mainly embedded in inter-individual differences. Genetic 

similarity did not explain variation in the individual parameters describing growth. In 

contrast, up to 29% of the variance of individual parameters was due to the spatial location 

of individuals. These results showed the advantages of modelling dendrochronological data 

at the individual level to study growth determinants and the relevance of micro-

environmental variation for individual growth patterns. 

In Chapter 4, I combined dendrochronological, genetic and spatial data to investigate the 

determinants of individual reproductive success. I tested a large set of dendrophenotypic 

traits against reproductive success to quantify the effect of aging, tree growth rate and 
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climate sensitivity on the number of offspring sired by each adult tree. I found that, 

regardless the number of reproductive seasons they have been through, trees with the highest 

reproductive success had higher growth rates, in particular when temperature of the previous 

vegetative season is potentially limiting. These results suggested that individuals with higher 

growth rates better compensate reproductive costs by increasing their resource intake and/or 

through other compensatory mechanisms. 

Finally, in Chapter 5 I searched for genetic signatures of local adaptation both in the adult 

and seedling cohorts, by using an integrated approach based on FST-based tests and 

environmental association analysis. I identified three and four SNPs as putative loci under 

selection in adults and seedlings, respectively. I then assessed if these SNP loci influence 

individual reproductive success. Although no evidence of such an influence was found, I 

showed how evaluating the effect of SNP loci on reproductive success might be a 

straightforward strategy to validate results from classical approaches to the study of local 

adaptation. 

The main conclusions and most promising perspectives of my work, together with the 

methodological innovations propounded are summarized in Chapter 6. 
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Chapter 1 

 

Introduction 

 

 

Both average temperature and frequency of extreme climatic events (e.g. extreme droughts, 

heat waves, late frosts, heavy rains) have increased over the last decades (Jones et al., 2001) 

and are expected to further increase during the upcoming century (IPCC, 2013). Among 

other consequences, such changes have started a complex spatial rearrangement of the 

distribution of climatic conditions (e.g. Loarie et al., 2009), niche envelopes (e.g. McKenney 

et al., 2014) and species ranges as well (e.g. Parmesan and Yohe, 2003; Parmesan, 2006; 

Lenoir et al., 2008; Chen et al., 2011). Understanding and predicting the fate of forest tree 

species is a vital concern because of the important roles they play in natural systems and for 

the ecosystem services they provide (Bonan, 2008; Allen et al., 2010). In addition, since they 

are sessile, long-lived organisms with overlapping generations, they are considered to be 

particularly vulnerable to shifts in ecological conditions (Kremer et al., 2012). Forest tree 

populations can adopt three strategies to respond to a changing environment. They can 

migrate towards new favourable habitats through seed dispersal, persist in situ by adjusting 

their phenotype and/or adapt to the new local conditions (Aitken et al., 2008). These 

strategies are often considered as alternative responses but they will likely occur 

simultaneously, intermingling their effects (Kremer et al., 2012). Forest tree populations will 

persist in their current sites depending on their sensitivity to current perturbations and their 

adaptive potential to future climatic and environmental changes (Aubin et al., 2016). High 

genetic variation for traits involved in responses to climate, large effective population sizes 

and the possibility for adaptive gene flow are expected to ensure the best long-term 

evolutionary potential to populations (Alberto et al., 2013). Although trees are supposed to 

have a generally strong potential for evolutionary changes (Savolainen et al., 2007), it is 

actually still debated whether long-term genetic adaptation and migration will be fast enough 

to keep pace with the unprecedented velocity of the ongoing climate change (e.g. Hamrick, 

2004; Jump and Peñuelas, 2005; Aitken et al., 2008; Kremer et al., 2012; Alberto et al., 

2013; Corlett and Westcott, 2013). 

A population is considered locally adapted if it has a higher fitness at its home site than non-

local populations originating from other sites (Kawecki and Ebert, 2004). Strong evidence 

that forest tree populations are generally locally adapted to climate has been accumulating 
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through a long history of common garden and reciprocal transplant experiments (e.g. 

Langlet, 1971; Savolainen et al., 2007). In such experiments fitness was often evaluated by 

measuring dendrometric traits (e.g. tree diameter and height). Nevertheless, the genetic and 

ecophysiological mechanisms that shape trees’ responses to climate are still largely unknown 

(Aubin et al., 2016; Housset et al. 2018). Filling these gaps of knowledge is crucial to predict 

the fate of forest tree species and adopt effective forest management strategies to mitigate 

the effects due to climate change. For instance, detailed knowledge of local adaptation 

dynamics is required to successfully translocate individuals from pre-adapted populations 

toward other parts of the species range (i.e. assisted gene flow) or even outside the species 

current distribution (i.e. assisted colonization) (Aitken and Whitlock, 2013). To elucidate the 

genetic architecture of climate adaptation throughout a tree lifespan, a tree-centred approach 

based on tree-ring time series has been recently proposed together with a conceptual 

framework to evaluate tree responses to past oscillations of environmental and climatic 

conditions (Housset et al. 2018). 

Tree rings are natural archives of past environmental conditions, as their morphological and 

anatomical properties are shaped by the interplay of several intrinsic and extrinsic variables 

(Carrer et al., 2015). These wood characteristics can be measured to generate retrospective 

multi-decade to multi-century time series of individual annual growth. Such tree-ring time 

series can be used to investigate tree growth dynamics and responses to climate and 

environmental stressors. For instance, correlating growth time series and monthly climatic 

variables has allowed dendroecologists to shed light on the factors that limit growth and the 

time of the year (month or season) which trees are particularly sensitive to (Fritts, 1976). 

The huge amount of information embedded in tree rings can be distilled in a multitude of 

tree-ring-based traits (i.e. dendrophenotypes, as defined in Heer et al., 2018) that represents 

an exceptional resource for addressing global change questions (Evans et al., 2018). 

Potentialities of tree-ring data have been recently acknowledged by the scientific community 

and tree-ring research is now experiencing “a renaissance of new uses” (Evans et al., 2018) 

and it is expanding far beyond its initial aims (Büntgen, 2019). Among others, there is a 

raising interest in linking dendrochronological and genetic data (Franks et al., 2014). First 

attempts in this direction were made by analysing growth-climate correlations in common 

garden experiments, exploring the effect of genetic variation among provenances on growth 

patterns (e.g. Taeger et al., 2013; Montwé et al., 2016) as well as signatures of genetic 

adaption to climate (Housset et al. 2018; Trujullo-Moya et al., 2018). Common gardens 

represent a powerful experimental set-up to assess among-population genotypic divergence 

in controlled environmental conditions (Alberto et al., 2013). However, they have some 
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well-known drawbacks: i) they are not available for most non-commercial species; ii) they 

are limited to a set of soil and climatic conditions that may not reflect the actual native 

environmental conditions; iii) provenances are usually from a low number of fecund mother 

trees that might not be representative of the genetic variation of the entire population; iv) in 

long-lived species such as trees, traits are prevalently studied on seedlings or saplings, thus 

shedding light only on early-stage dynamics. For all these reasons, comprehensive 

investigations in natural populations are required to complement the information gathered 

from common garden experiments and increase our knowledge on local adaptation in natural 

settings (Bontemps et al., 2016). 

To my knowledge, only few studies have combined dendrochronological and genetic data in 

natural settings. The influence of the genetic layout of populations on tree growth 

synchronicity (King et al., 2013; Latutrie et al., 2015), average growth rates (Babushkina et 

al., 2016) and growth-climate correlations (Bosela et al., 2016) have been investigated at 

different spatial scales. For instance, significant differences in growth patterns and climate 

sensitivity were found among Abies alba populations belonging to different post-glacial 

genetic lineages (Bosela et al., 2016). However, this study did not control for the effect of 

potential confounding environmental features (e.g. soil, elevation) that can shape growth 

dynamics as well. Effective strategies that account for such confounding environmental 

factors are essential to avoid misleading conclusions regarding the link between genetics and 

growth in natural populations (Housset et al., 2016). However, this has been addressed only 

in very few studies. Housset et al. (2016) investigated the correlation between population 

genetic structure and climate responses of Thuja occidentalis both within and among 

populations. The authors assessed the relative contribution of genetic structure, climate and 

environmental conditions to growth-climate correlations by using a statistical approach that 

merged model selection and variance partitioning. Heer et al. (2018) explored the genetic 

basis of individual silver fir responses to the 1970s stress episode that caused a large-scale 

forest dieback in Central Europe. These authors accounted both for micro- and macro-

environmental variation by first normalizing tree-ring series and then standardizing the 

metrics used to measure the magnitude of the stress episode on growth. 

Besides the relevance of studying local adaptation in natural settings, another aspect that 

should be stressed is the need for an individual-based exploration of growth dynamics. In 

fact, the classical dendrochronological approach typically has a population-based focus, 

mainly aimed at extracting and enhancing the common climatic signal while removing the 

noise introduced by inter-individual variation in growth patterns (Cook, 1985). Such 

approach is efficient as long as tree-ring time series are used to reconstruct past climate or 
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to date events. However, it prevents any characterization of the whole spectrum of individual 

growth performances, which is essential for a better understanding of tree species 

dendroecology (Carrer, 2011). On the contrary, an individual-based exploration of growth 

dynamics would allow to disentangle the role of several drivers of growth, such as age, 

competition and climatic and environmental variables (e.g. Primicia et al., 2015; Rozas, 

2015) as well as the individual genetic background. The benefits of such a change in 

perspective have been discussed in the recent dendrochronological literature (e.g. Carrer, 

2011; Galvan et al., 2014; Redmond et al., 2017). To this purpose, the adoption of new 

experimental approaches has been suggested (Galvan et al., 2014). In particular, an 

exhaustive sampling of the within-population dendrophenotypic variance seems a promising 

strategy to correctly describe the spectrum of possible growth dynamics. 

Understanding the link between individual growth and its determinants is a first step towards 

a deeper understanding about how trees’ genotypes survive, thrive or succumb in their 

environment. However, from an evolutionary point of view it is essential to dig deeper in 

the genetic consequences of growth patterns, that is the outcome of each individual in terms 

of its representation in the next generations. To maximize its fitness, that is the number of 

surviving offspring produced by each individual, an individual should invest in i) growth, in 

order to win against its competitors, ii) defences, in order to avoid predation and iii) 

reproduction (Obeso, 2002). These different investments are tightly interdependent, so that 

the existence of trade-offs between such life history traits (i.e. growth, survival, 

reproduction) has been postulated since long time (Williams, 1966; Levins, 1968). For 

instance, perennial polycarpic plants often show an inverse correlation between vegetative 

growth and seed production (Harper, 1977). The same negative relationship has been 

reported in forest tree species (e.g. Pukkala, 1987; Viglas et al., 2013; Davi et al., 2016). 

However, studies on the costs associated to reproduction in plants have often relied on 

indirect measures of fitness, quantified through the amount of resources invested in 

reproductive structures (e.g. biomass/number of seeds, pollen grains, flowers, fruits) 

(Oddou-Muratorio et al., 2018a). The development of marker-based approaches to paternity 

and parentage analysis has represented a powerful tool to quantify individual fitness in terms 

of number of gametes produced by each adult tree (Meagher and Thompson, 1987). Such 

marker-based measures of fitness are considered more reliable than the resource-based ones, 

as they account, at least partially, for all those dispersal and post-dispersal processes that 

may decouple individual fecundity from individual effective reproductive success (e.g. pre- 

and post-zygotic selection, spatial arrangements of favourable microsites for regeneration, 

early mortality rates) (Schoen and Stewart, 1986; Bernasconi, 2003; Amm et al., 2012). 
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These processes play a crucial role in shaping population dynamics, as they determine the 

initial template for plant regeneration and drive the transmission of genetic variation across 

generations (Bontemps et al., 2013). However, obtaining lifetime measures of individual 

fitness is extremely demanding in long-lived species such as trees, because they require a 

long-term monitoring far beyond the duration of most studies (Steinitz et al., 2011). Life-

stage studies usually rely on a diachronic approach (i.e. survey of the same cohort throughout 

the recruitment process; Augspurger, 1983) or on a synchronic one (i.e. survey of different 

distinct cohorts, generally seeds and recruited seedlings) (Bontemps et al., 2013). Both 

approaches are resource- and time-consuming, especially if they are replicated in multiple 

sites. Replicating these studies is essential for moving from case-study evidence towards 

generalization at the species level. 

Reproductive dynamics have a critical importance for the maintenance, demography and 

adaptation of forest tree populations (Hampe and Petit, 2005). Reproductive success is 

highly unequal within populations, with generally few individuals overwhelmingly 

contributing to the next generation and many local offspring fathered and/or mothered by 

adult trees located outside the study population (e.g. Schnabel et al., 1998; González‐

Martinez et al., 2006; Steinitz et al., 2011; Moran and Clark, 2012; Gerzabek et al., 2017). 

The phenotypic determinants that are most frequently tested against reproductive success are 

tree size (e.g. Schnabel et al., 1998; Piotti et al., 2009; Leonarduzzi et al., 2016; Chybicki 

and Oleska, 2018), investments in reproductive structures (e.g. Meagher and Thompson, 

1987; Morgan and Conner, 2001; González-Martínez et al., 2006) and flowering phenology 

(e.g. Burczyk and Prat, 1997; Piotti et al., 2012). However, the determinants of reproductive 

success as well as their interactions are still largely under-documented (Oddou-Muratorio et 

al., 2018b). In particular, the relationship between growth and reproduction has been rarely 

assessed (González-Martínez et al., 2006; Moran and Clark, 2012; Oddou-Muratorio et al., 

2018b). Considering the tight link between individual growth and reproductive output and 

the major consequences that both these processes have on the evolutionary dynamics of 

populations (Obeso, 2002), studying such relationship represents a promising research topic 

to deepen our understanding of the adaptive responses of forest trees to climate and 

environmental changes. 

 

In my PhD thesis, I built a comprehensive framework to combine dendrochronological and 

genetic data, aiming at unravelling the tight link between individual growth and reproductive 

dynamics in natural populations of Norway spruce (Picea abies (L.) Karst). To this purpose, 

I carried out a genetic and phenotypic characterization of a large sample of trees from two 
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study sites in southern and central Europe (a detailed description of study sites and data is 

provided in Chapter 2). Within each study site, multiple plots were established at different 

altitudes. Within each plot, individuals from two age cohorts (adults and seedlings) were 

sampled following the requirements for parentage analysis. All individuals were then 

genotyped at both neutral and potentially adaptive genetic markers. Taking advantage of 

dendrochronological techniques, all adult trees were phenotyped scoring a large set of tree-

ring-based phenotypic traits. First, I assessed the influence of genetic relatedness among 

individuals on growth performances (Chapter 3). I tested whether more genetically related 

individuals exhibit more similar growth performances. To answer this research question, I 

developed an analytical framework which allowed me to properly account for the 

confounding effects of other drivers of growth (i.e. age, temperature, precipitation, 

microenvironmental heterogeneity). Second, I performed a detailed investigation of the 

phenotypic basis of reproductive success in Norway spruce (Chapter 4). To this purpose, I 

tested a large set of dendrophenotypic traits against individual reproductive success to 

quantify the effect of aging, tree growth rate and climate sensitivity on the number of 

offspring sired by each adult tree. Finally, I explored patterns of allele frequencies to detect 

signals of local adaptation in the two sampling sites (Chapter 5). An integrated approach 

based on FST-based tests and environmental association analysis was used to identify genetic 

markers potentially under selection in both age cohorts. The results of these classical 

methods for the study of local adaptation were validated using an innovative approach, that 

is testing whether these genetic markers potentially under selection influence individual 

reproductive success. 
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Chapter 2 

 

Overview of the data 

 

 

2.1 Study species 

Norway spruce is one of the key European forest tree species both for its high ecological and 

economical relevance (Bucci and Vendramin, 2000). It is a monoecious, predominantly 

outcrossed and anemophilous conifer, capable of long-distance pollen and seed dispersal 

(Xie and Knowles, 1994; Burczyk et al., 2004; Piotti et al., 2009). It generally reaches 

flowering maturity around 30-40 years and starts seed production after 50 years (Giesecke 

and Bennett, 2004). Its geographical distribution is divided into a northern and a southern 

part (Fig. 1), which correspond to as many genetically differentiated groups (Lagercrantz 

and Ryman, 1990; Tollefsrud et al., 2008). In the north, the species forms a wide continuum 

covering both the entire Scandinavia and European Russia, until the Ural Mountains. In the 

south, it mainly occurs along the mountains of central and south-eastern Europe, from 

Western Alps until the Balkan peninsula. Norway spruce modern range essentially results 

from the post-glacial demographic events of the last 13000 years, but it also has been 

influenced by the intensive planting activities occurred in the last 200 years (Bucci and 

Vendramin, 2000). Although the species vegetates within a wide range of climatic and 

environmental conditions, Norway spruce is a continental tree which tolerates high summer 

temperatures but initiates bud and shoot growth at relatively low temperatures (Partanen et 

al., 1998). It prefers moist acid soils with high seasonal water storage (Sutinen et al., 2002) 

mainly because of its shallow root system that makes water supply more demanding. Such 

root system exposes the species also to the risks of windthrow, as recently seen during the 

storm “Vaia” that occurred in north-eastern Italy in October 2018 causing the loss of eight 

million m3 of standing trees (mainly spruces) (Motta et al., 2018). 

 

2.2 Study sites and sampling activities 

The first study site is located within the Campolino Natural Reserve (northern Apennines, 

Italy), which hosts the Italian southernmost autochthonous Norway spruce population 

(Chiarugi, 1936; Ravazzi, 2002; Vescovi et al., 2010; Magri et al., 2015). Here, three plots 

were established at different elevations (Table 1). The first plot (CAMH, ~1730 m a.s.l.) is 

a recent recolonization area within an abandoned wooded pasture at the upper forest limit. It 
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is a pure, highly dense and relatively young Picea abies stand, with abundant regeneration. 

The second plot (CAME, ~1615 m a.s.l.) is a mature stand, where spruce is mixed with silver 

fir (Abies alba Mill.) and beech (Fagus sylvatica L.). The third plot (CAML, ~1475 m a.s.l.) 

is a mixed forest with prevalence of beech and silver fir, where spruce occurs scatteredly. 

The second study site is located in the Bavarian National Park (Bohemian Massif, Germany). 

Here, two plots were established at the local altitudinal extremes of Norway spruce 

distribution (Table 1). The first plot (BAVH, ~1300 m a.s.l.) is a pure spruce forest while 

the second one (BAVL, ~730 m a.s.l.) is a mixed stand with beech and silver fir. 

 

 
 

Fig. 1 Map of Picea abies geographical distribution. Red dots are approximate locations of the two 

study sites. 

 

Table 1 Geographic coordinates and stand characteristics of the five Picea abies plots. 

Characteristic Unit CAMH CAME CAML BAVH BAVL 

Country  Italy Italy Italy Germany Germany 

Latitude °N 44°06’36” 44°06’47” 44°07’07” 49°05’04” 49°05’55” 

Longitude °E 10°39’44” 10°39’47” 10°40’18” 13°17’06” 13°13’39” 

Mean elevation m 1730 1615 1475 1300 730 

Area  ha 0.25 0.83 1.95 0.38 1.46 

Conspecific density ind ha-1 648 127 28 263 68 

Mean temperature °C 4.81 5.35 6.19 2.84 5.92 

Mean precipitation mm 1937 1906 1762 1141 933 

Adults sampled ind 159 105 54 100 100 

Seedlings sampled ind 148 100 63 150 150 

 

In each of the five plots data collection was done following the same sampling scheme which 

consisted in delimiting a roughly circular area and sampling all the adult trees within, as well 
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as a subset of seedlings (Fig. 2), for a total of 518 and 611 individuals, respectively (Table 

1). Trees were identified as adults based both on their size and the presence of cones. 

Seedlings were collected from different cohorts (average basal diameter: 5.7±0.2 cm; 

average height: 36.4±1.5 cm; Fig. 3), accordingly to local densities. Fresh needles were 

collected from all individuals for genetic analyses. Adult tree stems were cored at 1.3 m 

using a Pressler increment borer and taking one increment core in the Italian plots and two 

in the German ones. Spatial positions of both adults and seedlings were recorded using 

compass and laser distancimeter in the Italian plots and a GPS device in the German ones. 

Diameter at breast height (DBH) and basal diameter were recorded for all adults and 

seedlings, respectively. 

 

 
Fig. 2 Maps of the five Picea abies plots. Adults are represented by black dots, while 

seedlings by grey ones. 
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Fig. 3 Frequency distribution of (a) basal diameter and (b) height of all sampled seedlings. 

 

 

2.3 Genetic data 

DNA was extracted from 50 mg of frozen needles using the DNeasy 96 Plant Kit (Qiagen) 

following the manufacturer’s instructions. Adults and seedlings were genetically 

characterized by using both neutral and potentially adaptive genetic markers (Table 2). 

 

Table 2 Number of individuals genotyped with neutral (SSR) and potentially adaptive (SNP) genetic 

markers. 

 CAMH CAME CAML BAVH BAVL Total 

Adults genotyped at SSR loci 159 105 54 100 100 518 

Seedlings genotyped at SSR loci 148 100 63 148 145 604 

Adults genotyped at SNP loci 152 103 52 100 100 507 

Seedlings genotyped at SNP loci 142 100 63 150 150 605 

Adults genotyped with SNP after 

filtering procedure 
138 86 47 93 88 452 

Seedlings genotyped with SNP after 

filtering procedure 
126 93 59 130 148 556 

Non-admixeda adults for which SNP 

are available 
115 77 25 79 73 369 

Non-admixeda seedlings for which 

SNP are available 
109 85 36 101 123 454 

aThe level of admixture was evaluated on STRUCTURE results on SSR data. Individuals were 

considered non-admixed whether they had a q1 <0.2 or >0.8. 

 

Neutral genetic markers 

All sampled individuals were genotyped with 11 nuclear microsatellite markers (nSSR) 

(Pa05, Pa28, Pa44: Fluch et al., 2011; SpAGG03: Pfeiffer et al., 1997; WS0092.A19, 

WS0022.B15, WS0016.O09, WS00111.K13, WS0023.B03: Rungis et al., 2004; 

EATC1E03, EATC2G05: Scotti et al., 2002) and three chloroplast ones (cpSSR) (Pt26081, 

Pt63718, Pt71936: Vendramin et al., 1996). The 14 microsatellite markers were multiplexed 

in four PCRs using the Type-it Microsatellite PCR kit (Qiagen), optimizing the final volume 

of PCRs to 6 μl. The PCR mix was 3 μl of Type-it Multiple PCR Master Mix, 0.6 μl of 
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primers premix, 1.4 μl of RNase-free water and 1 μl of DNA (∼10 ng/μl). The amplification 

profile required an initial step at 95 °C for 5 min, followed by 30 cycles at 95 °C for 30 s, 

57 °C for 90 s and 72 °C for 30 s, with a final 30 min extension step at 60 °C. All PCRs were 

performed on a GeneAmp PCR System 9700 thermal cycler (Perkin Elmer) and PCR 

products were run on AB 3500 sequencer (Applied Biosystems, USA), with LIZ-500 as 

internal size standard. Allele calling and binning were performed manually using 

GeneMarker (Softgenetics). 

 

Potentially adaptive markers 

Sampled individuals were genotyped with a set of 135 single nucleotide polymorphisms 

(SNPs). Such SNPs were located within candidate genes which were likely involved in wood 

formation, growth and phenology (Heuertz et al., 2006; Chen et al., 2010, 2012a, 2012b, 

2016; Pavy et al., 2013; Källman et al., 2014; Heer et al., 2016; Table 3). SNP genotyping 

was done using PCR-based KASPTM genotyping assays at LGC Genomics Ltd. (Hoddesdon, 

UK). 

 

Table 3 Sources of 135 SNPs used in the KASP assays. 

Number of SNPs Reference 

70 Pavy et al. (2013) 

22 Chen et al. (2012b) 

16 Chen et al. (2012a) 

13 Heer et al. (2016) 

7 Heuertz et al. (2006), Chen et al. (2010), Källman et al. (2014) 

6 Chen et al. (2016) 

1 http://dendrome.ucdavis.edu/NealeLab/crsp/ 

 

The dataset was initially filtered by removing SNPs that were not called correctly for the 

majority of the dataset (>80% of missing data) because they may interfere with subsequent 

filtering steps. Then, individuals and SNPs with more than 20% of missing data, as well as 

monomorphic SNPs, were removed. Finally, all SNPs with a minor allele frequency (MAF) 

<2% were removed. At the end of the filtering procedure, the SNP dataset was made up of 

1008 individuals and 115 SNP markers (Table 2; Appendix 1). 
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2.4 Standard genetic analyses 

 

Linkage disequilibrium 

Presence of within-population linkage disequilibrium among SSR loci was tested with 

Genepop 4.7 (Rousset, 2008), using log-likelihood ratio statistics (G test) with Bonferroni 

correction. The 11 SSRs used were unlinked. 

 

Within-plot genetic variation 

For each plot and demographic stage and both on nSSR and SNP datasets, standard genetic 

parameters (Na, HE, HO, FIS) were calculated by using GenAlEx v6.5 (Peakall and Smouse, 

2012). Allelic richness (Ar) was calculated both on nSSR and SNP datasets using HP-RARE 

v1.0 (Kalinowski, 2005) based on a minimum sample size of 50 and 40 diploid individuals, 

respectively. Diversity indexes for cpSSR (h = number of haplotypes, Pb = haplotypic 

richness) were calculated by using Contrib (Petit et al., 1998). All these calculated 

parameters were reported in Table 4. 

 

Pairwise genetic differentiation 

To assess genetic differentiation, pairwise G’ST values (Hedrick, 2005) between each stand 

and demographic stage were calculated with GenAlEx using 999 permutations on nSSR data, 

while pairwise FST values on SNP data (Table 5). The picture of genetic differentiation 

emerging from the two datasets was consistent. In particular, i) no significant genetic 

differentiation was found across generations within each plot, ii) the two study sites showed 

the highest genetic differentiation values (average pairwise G’ST of 0.0843 and average 

pairwise FST of 0.026), and iii) the German site was more genetically homogeneous with 

respect to the Italian one (average pairwise G’ST of 0.024 vs. 0.034; average pairwise FST of 

0.005 vs. 0.011). 

 

Genetic structure 

Two approaches were applied to assess the existence of genetic structure within or between 

study sites. Preliminarily, a Principal Coordinates Analysis (PCoA) was carried out both on 

SSR and SNP datasets to provide a visual representation of the genetic distance relationships 

among the sampled Norway spruce trees. Such analysis was performed using GenAlEx. 

Point clouds resulting from PCoA showed a slight genetic differentiation between the two 

study sites (Fig. 4) on both datasets. 



17 

 

Table 4 Averaged genetic diversity parameters calculated for each plot and demographic stage, both 

on nSSR and SNP datasets. Na: number of alleles, Ar: allelic richness, HO: observed heterozygosity, 

HE: expected heterozygosity, FIS: fixation index, h: number of haplotypes, Pb: haplotypic richness. 

Marker Plot Na Ar HO HE FIS H Pb 

SSR CAMHa 10.18 (2.10) 8.82 (2.66) 0.63 (0.09) 0.65 (0.09) 0.03 (0.01) 13 8.46 

 CAMHs 9.91 (2.12) 8.6 (2.59) 0.65 (0.10) 0.65 (0.10) -0.003 (0.01) 15 8.91 

 CAMEa 8.73 (1.79) 7.74 (2.33) 0.64 (0.09) 0.64 (0.09) -0.005 (0.02) 11 7.40 

 CAMEs 8.73 (1.84) 7.7 (2.32) 0.60 (0.10) 0.62 (0.09) 0.07 (0.04) 12 7.97 

 CAMLa 8.72 (1.76) 8.65 (2.61) 0.61 (0.09) 0.63 (0.09) 0.03 (0.02) 11 9.63 

 CAMLs 9.36 (1.96) 9.03 (2.72) 0.63 (0.09) 0.64 (0.09) 0.01 (0.02) 15 12.67 

 BAVHa 12.45 (2.62) 11.05 (3.33) 0.52 (0.07) 0.65 (0.09) 0.16 (0.03) 20 13.69 

 BAVHs 13.27 (2.67) 11.42 (3.44) 0.56 (0.08) 0.66 (0.09) 0.13 (0.03) 17 11.26 

 BAVLa 12.09 (2.75) 10.84 (3.27) 0.62 (0.09) 0.66 (0.10) 0.05 (0.02) 18 11.64 

 BAVLs 13.18 (2.75) 11.19 (3.37) 0.61 (0.08) 0.66 (0.09) 0.07 (0.02) 19 9.96 

SNP CAMHa 1.98 (0.01) 1.90 (0.02) 0.29 (0.02) 0.31 (0.02) 0.07 (0.02)   

 CAMHs 1.97 (0.02) 1.89 (0.02) 0.29 (0.02) 0.31 (0.02) 0.06 (0.01)   

 CAMEa 1.96 (0.02) 1.89 (0.02) 0.30 (0.02) 0.31 (0.02) 0.04 (0.02)   

 CAMEs 1.98 (0.01) 1.89 (0.02) 0.31 (0.02) 0.31 (0.02) 0.02 (0.01)   

 CAMLa 1.97 (0.01) 1.94 (0.02) 0.30 (0.02) 0.32 (0.02) 0.05 (0.02)   

 CAMLs 1.97 (0.01) 1.94 (0.02) 0.32 (0.02) 0.32 (0.02) 0.002 (0.02)   

 BAVHa 2.00 (0) 1.96 (0.01) 0.32 (0.02) 0.33 (0.01) 0.04 (0.02)   

 BAVHs 2.00 (0) 1.97 (0.01) 0.33 (0.02) 0.33 (0.01) 0.01 (0.01)   

 BAVLa 2.00 (0) 1.97 (0.01) 0.34 (0.02) 0.34 (0.01) 0.005 (0.01)   

 BAVLs 2.00 (0) 1.97 (0.01) 0.34 (0.02) 0.34 (0.01) 0.01 (0.01)   

 

 

Table 5 Matrix of pairwise values of genetic differentiation among each stand and demographic 

stage. G’ST values were calculated on nSSR dataset and are reported below the diagonal, while FST 

were calculated on SNP dataset and reported above. All parameters were statistically different from 

zero, based on AMOVA with 999 permutations. 

 CAMH 

ad 

CAMH 

sdl 

CAME 

ad 

CAME 

sdl 

CAML 

a 

CAML 

sdl 

BAVH 

ad 

BAVH 

sdl 

BAVL 

ad 

BAVL 

sdl 

CAMH 

ad 
- 0.002 0.007 0.007 0.015 0.014 0.028 0.024 0.025 0.023 

CAMH 

sdl 
0.0003 - 0.006 0.008 0.016 0.016 0.030 0.026 0.026 0.024 

CAME 

ad 
0.0135 0.0160 - 0.004 0.018 0.018 0.030 0.026 0.024 0.024 

CAME 

sdl 
0.0150 0.0175 0.0006 - 0.017 0.018 0.030 0.026 0.025 0.025 

CAML 

ad 
0.0339 0.0399 0.0536 0.0486 - 0.005 0.030 0.028 0.027 0.025 

CAML 

sdl 
0.0360 0.0378 0.0539 0.0537 0.0031 - 0.029 0.026 0.024 0.022 

BAVH 

ad 
0.0877 0.0838 0.1140 0.1077 0.0790 0.0759 - 0.003 0.009 0.006 

BAVH 

sdl 
0.0709 0.0700 0.0945 0.0931 0.0660 0.0650 0.0036 - 0.007 0.003 

BAVL 

ad 
0.0788 0.0793 0.1009 0.0991 0.0890 0.0939 0.0240 0.0144 - 0.003 

BAVL 

sdl 
0.0729 0.0704 0.0944 0.0915 0.0740 0.0720 0.0100 0.0084 0.0027 - 
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Next, the Bayesian clustering algorithm implemented in STRUCTURE v.2.3.4 (Pritchard et 

al., 2000) was used to i) determine the most likely number of genetic clusters (K) in which 

sampled individuals can be divided an ii) quantifying the probability (q value) of each 

individual to belong to each of the identified genetic clusters. The analysis was performed 

both on SSR and SNP datasets, running the standard admixture model with correlated allele 

frequencies. K ranged from one to ten, and ten runs were replicated for each K. Burn-in 

period consisted of 5×104 and 1×104 iterations for SSR and SNP data, respectively. 

Similarly, data collection consisted of 2×105 and 5×104 iterations. Convergence toward 

reliable q value estimates was assessed by checking whether log-likelihood and alpha 

parameter trends were constant. The most likely K was selected calculating the empirical 

statistic ΔK (Evanno et al., 2005), which is implemented in the STRUCTURE 

HARVESTER software (Earl and vonHoldt, 2012). The CLUMPAK online software was used 

for coordinating the different runs and obtaining q values averaged over the runs (Kopelman 

et al., 2015). The Bayesian clustering analysis showed the presence of a genetic structure 

with optimal grouping at K = 2 both on nSSR and SNP datasets (Fig. 5). Such grouping 

globally distinguished the German plots from the Italian ones (Fig. 5). However, CAML 

showed the largest signal of admixture. Based on SSR data, 19% of individuals were clearly 

assigned to the German cluster, while the percentage of individuals that were hybrids 

between the two inferred genetic clusters (i.e. 0.2< q1 <0.8) reached 41%. Numbers of 

individuals that were clearly assigned to one of the two inferred genetic cluster (i.e. q1 ≤0.2 

or q1 ≥0.8) are reported in Table 2. 

 

 
 

Fig. 4 First two axes of the PCoA performed on both nSSR and SNP datasets. 
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Fig. 5 Results of STRUCTURE analyses on SSR (above) and SNP (below) data. The most 

likely grouping of individuals was consistently found at K = 2, as it is clearly shown by the 

scatterplot of K vs. ΔK. In the barplots, each bar represents the probability of each 

individual to belong to the two identified genetic clusters. 

 

2.5 Dendrochronological data 

Increment cores were processed following standard dendrochronological techniques 

(Schweingruber, 1988). Tree-ring width (TRW) was measured with a LINTAB device 

(Rinntech, Germany) to a precision of 0.01 mm. All time series were visually and statistically 

crossdated using COFECHA (Holmes, 1983). In the German plots, TRW time series from 

each of the two increment cores were averaged to obtain a unique time series per tree (Fig. 

6). 

TRW time series were converted to basal area increment (BAI) time series with the function 

bai.in of the R package dplR (Bunn, 2008). BAI describes growth variations better than 

linear measurements such as TRW, because it takes into account the geometrical bias 

introduced by the age-related stem circumference increase (Biondi and Qeadan, 2008). The 

annual BAI was calculated as: 

𝐵𝐴𝐼 =  𝜋(𝑟𝑡
2 − 𝑟𝑡−1

2 ), (1) 

where rt and rt-1 were the stem radii in the current (t) and previous (t-1) years. 

TRW time series were also standardized applying 20-year long spline functions with 50% 

frequency response with the program ARSTAN (Cook and Kairiukstis, 1990) (Fig. 7). Such 

standardization method converts TRW into dimensionless tree-ring indexes (RWI), 

removing low-frequency growth trends in periods longer than decades. In this way, high-

frequency growth variability is retained and can be correlated with climatic fluctuations. For 

each plot, a mean standardized chronology was calculated, using a bi-weight robust estimate 

of the mean (Cook, 1985) with the program ARSTAN. 
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For 36 trees, core could not be analysed due to a high number of fractures or missing 

segments. In this way, dendrochronological data were successfully produced for 482 trees 

(Table 6). By a rough analysis of tree age data, it emerged that the five plots were 

characterized by different age structures (Fig. 8; Table 6). In CAMH and CAML, 81% and 

64% of the trees were younger than 60 years, with a median age of 42 and 53 years, 

respectively. In the other three plots, the percentage of trees < 60 years was markedly lower 

(CAME: 16%; BAVH: 3%; BAVL: 20%) and the median age ≥100. 

 

Table 6 Number of individuals successfully phenotyped. Minimum, median and maximum values 

of age and diameter at breast height (DBH) are reported, as well as average individual growth rates 

calculated both on tree-ring width (TRW) and basal area increment (BAI) time series. 

 Unit CAMH CAME CAML BAVH BAVL 

Adults sampled ind 159 105 54 100 100 

Adults successfully phenotyped ind 156 102 52 98 74 

Minimum age years 13 37 33 32 31 

Median age years 42 131 53 174 98 

Maximum age years 140 162 164 247 249 

Minimum DBH cm 11 17 20 18 15 

Median DBH cm 25 47 33 46 69 

Maximum DBH cm 56 89 122 87 136 

Average TRW  mm 2.97 1.78 2.81 1.31 3.08 

Average BAI mm2 1240 1178 1652 766 2643 

 

 

 
Fig. 6 Individual raw tree-ring width (TRW) time series within each plot. 
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Fig. 7 Individual tree-ring index (RWI) time series (grey lines) and plot mean 

standardized chronology (coloured lines). 

 

 

 

Fig. 8 Age distribution in (a) Italian and (b) German site. 
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2.6 Climatic data 

Monthly mean temperature and total precipitation data for the 1901-2013 period were 

obtained from the CRU TS V.4.0 database with 0.5° steps through the Climate Explorer 

application (Harris et al., 2014). The CRU data were extracted from the grid point closest to 

each study site (Apennine grid centre: 44°15'0'' N, 10°45'0'' E; Bavarian grid centre: 49°15'0'' 

N, 13°15'0'' E). To obtain plot-specific climatic data, the gridded data were successively 

corrected for the coordinates and altitude of each plot, using the climate software ClimateEU 

v.4.63 (Hamann et al., 2013). 
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Chapter 3 

 

Disentangling the effects of spatial proximity and genetic similarity 

on individual growth performances 

 

 

3.1. Introduction 

Cambial growth is a complex phenotypic trait influenced by several determinants such as 

climate, tree age, competition, disturbances (e.g. pathogen outbreaks, management, 

wildfires) as well as individual microenvironmental conditions and genetic background 

(Cook et al., 1990; Schweingruber, 1996). Although recent advances in genomics have 

discovered some genetic and epigenetic factors involved in growth processes of model plants 

(Busov et al., 2008), most of the genetic architecture of growth traits is still unknown for 

forest tree species (Grattapaglia et al., 2009). However, the available literature about 

common garden experiments and progeny trials showed that growth traits (e.g. height, 

diameter, tree ring width, wood density) have moderate to high values of heritability 

(Cornelius, 1994; Hannrup et al., 2004; Martinez Meier et al., 2008; Klisz et al., 2016; Mihai 

and Mirancea, 2016; Quesada et al., 2017; Lind et al., 2018). The heritability of a phenotypic 

trait is the essential prerequisite for potentially adaptive responses (Ritland and Ritland, 

1996; Lind et al., 2018). Heritability should be ideally estimated in situ (Ritland, 1996; 

Kremer et al., 2014), because it can be easily overestimated when assessed under controlled 

environmental conditions, and this bias can be even larger for complex traits (Ritland, 2000; 

Castellanos et al., 2015). A potential first step in this direction is to jointly analyse 

quantitative trait variation and genetic relatedness in natural conditions (Ritland, 1996, 

2000). The extent of relatedness between two individuals reflects their coancestry (that is 

how many common ancestors do they share and how much these ancestors are distant in 

time) and the resulting probability of their alleles being identical by descent (Weir et al., 

2006; Wang, 2017). Related individuals have more similar genotypes with respect to 

unrelated ones and, thus, they are expected to show also more similar phenotypes for 

quantitative traits (Falconer and Mackay, 1996). Over the last decades, substantial 

improvements in genotyping techniques and genetic analyses gave to population genetic 

studies a greater power to address ecological questions (Selkoe and Toonen, 2006). Although 

hyper-variable microsatellites often do not provide any information about potentially 
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adaptive responses (King et al., 2013), they are considered as almost ideal markers to 

estimate relatedness, and study demographic processes in general, with high resolution 

power (Hardy, 2003; Weir et al., 2006). 

Generating genetic data is currently far easier than obtaining a deep phenotypic 

characterization of numerous individuals (Araus and Cairns, 2014). The recent development 

of high throughput phenotyping techniques has started to fill this gap, at least in controlled 

conditions for annual species or, for forest trees, at the seedling stage (Furbank and Tester, 

2011; Fiorani and Schurr, 2013; Araus and Cairns, 2014). However, a deep phenotyping of 

a large number of forest trees in natural conditions remains challenging. An available option 

is taking advantage of dendrochronology to characterize growth performances through 

individual annual tree-ring width (TRW) data (Heer et al., 2018). For this purpose, a shift in 

the classical dendrochronological perspective is required. Indeed, the traditional 

dendrochronological approach mainly aims at finding the within population common 

climatic signal, by reducing the amount of unwanted noise through some useful but 

potentially controversial procedures (for a detailed discussion of their advantages and 

limitations see Carrer (2011)). In dendrochronological studies few individuals per site are 

usually sampled (~ 20/site), preferentially selecting old dominant trees, which are supposed 

to present the best signal to noise ratio (Fritts, 1976). Tree-ring time series are then 

standardized to remove age-related and low-frequency trends determined by non-climatic 

factors, and to homogenize growth rates and variances (Cook, 1985). Finally, standardized 

tree-ring time series are usually averaged into a unique site chronology (Cook and 

Kairiukstis, 1990). Whereas this approach is ideal for reconstructing past climate, it prevents 

characterizing the whole range of individual growth performances and responses to climate 

(Carrer, 2011) and eventually predicting how trees may cope with climate change (Redmond 

et al., 2017). Carrer (2011) proposed an individual-based dendrochronological approach 

after finding out that investigating the whole range of individual responses outperforms the 

classical method to obtain more robust and reliable estimates of mean growth-climate 

correlations. Additionally, Galvan et al. (2014) suggested the adoption of new protocols for 

sampling all adult trees within a circumscribed area, to better quantify how climate affects 

individual tree growth. 

Recent dendrochronological studies underlined the relevance of individual-based linear 

mixed-effects models to quantify and disentangle the effects of different drivers of growth 

(Linares et al., 2010; Hereş et al., 2012; Galvan et al., 2014; Macalady and Bugmman, 2014; 

Primicia et al., 2015; Redmond et al., 2017). Such individual-based models offer the 

possibility of estimating model parameter both at the population and individual level. 
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However, the above-mentioned studies were mainly focused on the mean effect of each 

driver at the population level, whereas inter-individual variation was poorly investigated. In 

contrast, I argue that the individual parameters obtained by such modelling approach can be 

considered as a new type of tree-ring based traits (see Housset et al., 2018). In fact, such 

parameters describe how individual trees respond to specific yearly-based drivers of growth 

(e.g. age, climate), while holding constant the others. In this way, inter-individual variation 

of sensitivities to drivers of growth could be explicitly quantified (Albert et al., 2011) and 

linked to factors that are time-constant (e.g. genotypes) or measured occasionally (e.g. 

microenvironmental features, competition). 

In this chapter, I assess whether sharing the same microenvironment and/or genetic 

characteristics influence inter-individual variation of growth performances within natural 

populations of Norway spruce. To my knowledge, King et al. (2013) is the only study that 

tried to answer a similar question, assessing whether genetic relatedness or climate affect 

TRW variation along forest trees’ altitudinal transects. In their work, 115 Norway spruce 

individuals from five populations were genotyped with five nSSR markers. The authors 

visually compared genetic relatedness and growth synchronicity, concluding that among-

population TRW variation is more climate- than genetic-driven at regional scale. Here, I 

embrace the change in perspective suggested by recent dendrochronological literature to 

switch from a classical population-based approach to a deep individual-based exploration of 

growth dynamics. Five plots were intensively sampled collecting dendrochronological data 

from 482 trees. All individuals were genotyped at 11 nSSR to thoroughly characterize the 

genetic structure within each plot. I developed an individual-based analytical framework to 

quantify inter-individual variation of TRW and assess the effects of different growth 

determinants. Specifically, the aims were i) disentangling the effects of age and climate vf 

on TRW at both individual and population level, ii) assessing whether genetic similarity and 

spatial proximity (used as a proxy for microenvironmental heterogeneity) determining 

similar individual growth performances, and iii) quantifying the extent of the fine-scale 

spatial arrangement of phenotypes. 

 

3.2 Materials and methods 

Study sites and datasets have been already presented in Chapter 2. In the following 

paragraphs, I will give some details about estimates of genetic relatedness among individuals 

(3.2.1) and dendrochronological measures at the individual level (3.2.2). After that, I will 

exhaustively describe the two-step analytical framework developed to assess whether 

Norway spruce growth performances were influenced by the spatial proximity among 
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individuals (hereafter, spatial structure) and the genetic similarity or relatedness among 

individuals (hereafter, genetic structure). First, the effects of climate and age on TRW were 

estimated using a random slope mixed-effects model (3.2.3). This primary step allowed us 

to obtain individual parameters which summarize individual growth performances, taking 

into account the effects of climate and age simultaneously. After that, individual parameters 

were tested against genetic and spatial variables by two alternative methods (3.2.4). Finally, 

the existence and the extent of fine-scale spatial arrangements of individual parameters were 

investigated through both correlograms and kriging (3.2.5). 

 

3.2.1 A measure of genetic relatedness  

Using SSR data, pairwise relatedness coefficients and their confidence intervals were 

estimated within each study site using the triadic likelihood estimator by Wang (2007) as 

implemented in the R package related (Pew et al., 2015). 

 

3.2.2 Dendrochronological measures at the individual level 

Cross-correlation coefficients among all pairs of individuals within each study site were 

calculated using both TRW and RWI data, to measure the strength of synchronicity in 

growth. A Spearman correlation was used to avoid problems of heteroscedasticity between 

series. Growth-climate correlations were calculated using Pearson’s correlation coefficient 

both on individual time series and mean chronologies, using the length of the individual time 

series and the common interval 1915-2013, respectively. Correlations were computed 

between RWI and monthly temperature and precipitation, for a biological year extending 

from April of the previous year to October of the current year.  

 

3.2.3 A random slope mixed-effects model 

A linear random slope mixed-effects model was used to quantify the effects of age and 

climate on TRW at both population and individual level. Preliminary analyses carried out on 

the whole dataset showed a high number of significant interactions between a plot factor and 

the other variables, suggesting the existence of significant differences among plots. Thus, 

the analyses were performed separately for each plot, using the nlme package (Pinheiro et 

al., 2018) of the R statistical suite. 

Since it is well known that growth is non-linearly affected by tree age (Cook, 1985), both a 

linear and a quadratic term for age (A, A2) were included in the model as fixed-effect 

variables. In the classical dendrochronological approach, the age effect is removed by 

applying detrending techniques (Cook et al., 1990). However, the use of raw data could give 
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three significant advantages: i) avoiding transformation to RWI, which are dimensionless 

values with a less clear biological meaning (Redmond et al., 2017); ii) preserving low-

frequency variations associated to long-term trends (Esper et al., 2002); iii) retaining all the 

information recorded by the rings during the entire tree lifetime, thus maximizing inter-

individual variation. Two climatic variables (total precipitation (P) and mean temperature 

(T) of the vegetative season, from April to September) and all two-way interactions (P:T, 

P:A, T:A) were also included in the model as fixed effects. To avoid collinearity problems 

due to the inclusion of interaction terms, all explanatory variables were centred and the 

variance inflation factor (VIF) was calculated for each variable using the R package car (Fox 

and Weisberg, 2011). VIF values were always ≤ 1.25, confirming the absence of collinearity 

problems (Zuur et al., 2010). 

A random factor TreeID was included in the model to estimate inter-individual variances of 

intercept and slopes (σ2
I,i). These variances provide conditional individual parameters (bi), 

which represent how each tree responds to climate and age. As TreeID contributes to both 

intercept and slopes (i.e. random slope model), the assumed theoretical model (Pinheiro and 

Bates, 2000) is the following: 

𝑦𝑘𝑖 = (𝛽0 + 𝑏0𝑖) + (𝛽1 + 𝑏1𝑖)𝑥𝑘𝑖 + ⋯+ 𝜀𝑘𝑖, (2) 

where yki is the TRW of the k-th year of the i-th tree, β0 and β1 are, respectively, the fixed 

intercept and slope parameters (i.e. the common effect for all trees in the plot), b0i and b1i 

are the random intercept and slope of the i-th tree (i.e. the effect for each individual tree), xki 

is one of the explanatory variables measured in k-th year for the i-th tree and εki is the within-

tree error which is assumed to be normally distributed (εki ~ N (0, σ2)). To correct for 

autocorrelation in time between multiple measurements on each tree, which causes the 

residuals not to be independent, a first-order autoregressive correlation structure (using the 

corAR1 constructor in the lme function) was also included in the model. In this way, a Φ 

parameter was estimated, which represents the within-tree temporal TRW autocorrelation. 

ACF function of the R package nlme was used to check whether temporal autocorrelation 

pattern was successfully removed (Pinheiro and Bates, 2000). 

If all the explanatory variables are expressed, (2) becomes: 

𝑦𝑘𝑖 = (𝛽0 + 𝑏0𝑖) + (𝛽𝑃 + 𝑏𝑃𝑖) 𝑃𝑘 + (𝛽𝑇 + 𝑏𝑇𝑖) 𝑇𝑘 + (𝛽𝐴 + 𝑏𝐴𝑖) 𝐴𝑘𝑖 + (𝛽𝐴2 + 𝑏𝐴2) 𝐴𝑘𝑖
2 +

 𝛽𝑃:𝑇𝑃𝑘𝑇𝑘 + 𝛽𝑃:𝐴𝑃𝑘𝐴𝑘𝑖 + 𝛽𝑇:𝐴𝑇𝑘𝐴𝑘𝑖  (3) 

where 
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𝑏𝑖 = 

[
 
 
 
 
𝑏0𝑖

𝑏𝑃𝑖

𝑏𝑇𝑖

𝑏𝐴𝑖

𝑏𝐴2𝑖]
 
 
 
 

 ~ ℕ (0,Ψ𝐼) (4) 

Independency of the different random effects was assumed, so that the variance-covariance 

matrix ΨI is: 

Ψ𝑖 = 

[
 
 
 
 
 
𝜎𝐼,0

2 0 0 0 0

0 𝜎𝐼,𝑃
2 0 0 0

0 0 𝜎𝐼,𝑇
2 0 0

0 0 0 𝜎𝐼,𝐴
2 0

0 0 0 0 𝜎𝐼,𝐴2
2

]
 
 
 
 
 

 (5) 

For each plot, the model selection procedure is a slightly modified version of the top-down 

strategy proposed by Zuur et al. (2009): i) it started from the beyond optimal model (3), 

which contains all explanatory variables and pairwise interactions; ii) using maximum 

likelihood estimation, each fixed variable was dropped whether the Likelihood Ratio Test 

on nested models indicated that a simpler model structure was more parsimonious; iii) the 

final optimal model was presented using restricted maximum likelihood estimation. All 

random effects were purposely kept in each model, regardless whether their variances (σ2
I,i) 

were significantly >0, to obtain a coherent quantification of heterogeneity among individuals 

(Bolker et al., 2008) ending up with the same set of individual parameters for all five plots. 

Normality and homoscedasticity of normalised residuals were checked (Zuur et al., 2009) 

and both marginal and conditional R2 were calculated (respectively, the variance proportion 

explained by only fixed effects and by both random and fixed effects; Nakagawa and 

Schielzeth, 2013), using the R package piecewiseSEM (Lefcheck, 2016). 

 

3.2.4 Testing the influence of genetic and spatial structure on individual parameters 

Two approaches were used to investigate the effects of genetic and spatial structure on 

growth performances. In the first one, genetic structure was included as the matrix of 

pairwise relatedness coefficients, whereas spatial structure as the matrix of pairwise spatial 

distances. Spatial proximity was thus considered a proxy for shared microenvironmental 

conditions. Since relatedness coefficients and spatial distances are pairwise data, 

dendrochronological data needed to be pairwise too. Thus, matrices of pairwise absolute 

differences of individual parameters (b) were calculated. The rationale was to check whether 

smaller differences in individual parameters were exhibited by more genetically related or 
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spatially closer trees. The correlation between i) relatedness and dendrochronological 

matrices and ii) spatial and dendrochronological matrices was tested by Mantel test using 

the R package vegan (Oksanen et al., 2018). 

Although this first approach based on pairwise data allowed to make a more direct 

comparison with King et al. (2013)’s study, Mantel test suffers from some limitations. In 

fact, it just performs a simple correlation between two similarity/dissimilarity matrices, and 

requires often unmet assumptions about the linearity and homoscedasticity of distance-

distance relationships (Legendre et al., 2015). Therefore, variance partitioning (Legendre 

and Legendre, 2012) was used as a second approach. This statistical method allowed us to 

partition the explanatory power (adjusted R2) of two sets of explanatory variables (i.e. 

genetic and spatial structure) on a response data table (i.e. individual parameters). Genetic 

structure was included through a principal component analysis on genotypes, using the 

dudi.pca function of the R package adegenet (Jombart and Ahmed, 2011). In each plot, only 

principal components accounting for more than 50% of the variance in genotypes were used. 

Spatial structure was instead modelled by a distance-based Moran’s eigenvectors map 

(dbMEM, Dray et al., 2006), which has been proposed as a powerful and informative method 

of spatial analysis by Legendre et al. (2015). In each plot, only the statistically significant 

eigenfunctions modelling positive spatial autocorrelation, as estimated by the mem function 

of the R package adespatial (Dray et al., 2018), were retained. The relative contributions of 

genetic and spatial structure in explaining the variance of individual parameters were 

assessed using the varpart function of the R package vegan, following the procedure 

described in Borcard et al. (2011). Significance of the variance components was calculated 

through ANOVA-like permutation test for redundancy analysis (RDA) and partial 

redundancy analysis pRDA based on 1× 104 permutations (Legendre and Legendre, 2012). 

 

3.2.5 Investigating the fine-scale spatial arrangement of individual parameters 

The fine-scale spatial arrangement of individual parameters and relatedness coefficients was 

investigated through Moran’s I correlograms, using the R package spdep (Bivand and Piras, 

2015) and SPAGeDi v1.2 (Hardy and Vekemans, 2002), respectively. Ten distance classes 

with even sample size were used. For relatedness coefficients, 95% confidence intervals 

were calculated by 1× 104 permutations of individual spatial coordinates to test the statistical 

significance of observed Moran’s I values. Finally, ordinary kriging with an isotropic global 

neighbourhood was applied to identify the existence and extent of within-plot clusters of 

trees exhibiting similar individual parameters. Input parameters for kriging (i.e. partial sill, 

range and nugget size) were obtained by fitting a theoretical exponential curve on variograms 
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with a restricted maximum likelihood approach. All analyses were performed using the R 

package geoR (Ribeiro and Diggle, 2016). 

 

3.3 Results 

 

3.3.1 Relatedness coefficients 

The highest average relatedness coefficients were recorded in CAME (0.103 ± 0.124 SD) 

and CAML (0.115 ± 0.143 SD) while the lowest one in BAVL (0.065 ± 0.097 SD) (Fig. 9a). 

The proportion of pairs of individuals with relatedness coefficients significantly higher than 

0 (i.e. CI lower limit not overlapping 0) ranged from 0.063 in BAVL to 0.179 in CAML. 

 

3.3.2 Dendrochronological measures at the individual level 

The frequency distributions of within-plot cross-correlation coefficients calculated on TRW 

were generally platykurtic, with a percentage of tree pairs with negative cross-correlation 

coefficients ranging from 14% in BAVH to 37% in CAMH (Fig. 9b). Average cross-

correlation coefficients varied from 0.115 (± 0.398 SD) in CAMH to 0.398 (± 0.346 SD) in 

CAML. Average cross-correlation coefficients calculated on RWI were similar to the ones 

from TRW, but generally showed a lower proportion of negative values and a lower standard 

deviation (Fig. 9b). 

 

 
 

Fig. 9 Boxplot of pairwise relatedness coefficients calculated within each plot (a) and 

frequency distributions of cross-correlation coefficients (b). Grey bars represent cross-

correlation coefficients calculated on raw tree-ring width (TRW) data, while pink bars 

cross-correlation coefficients calculated on standardized data (RWI). 
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Growth-climate correlations showed a large inter-individual variation, both for monthly 

temperature and precipitation responses. Only 1% of the individual growth-climate 

correlations was larger than ±0.4 (Fig. 10). Growth-climate correlations calculated on mean 

chronologies were globally low and heterogeneous among plots, confirming the absence of 

a strong common climatic signal among plots. In addition, 11 out of 190 growth-climate 

correlations calculated on mean chronologies are >90th or <10th percentile of the 

distribution of individual growth-climate correlations (Fig. 10). 

 

3.3.3 Effects of age and climate on tree-ring width at population and individual level 

At the population level, TRW was mainly determined by age, but the shape of this 

relationship was different among plots: in CAMH, CAME and BAVL there was a quadratic 

dependency, with downward concavity for CAMH and CAME and upward concavity for 

BAVL, whereas this relationship was linear and negative in CAML and BAVH (Fig. 11). 

TRW was positively associated with the mean temperature of the vegetative season and this 

relationship was consistent among plots, with slopes ranging from 0.0608 mm/°C in BAVL 

to 0.1168 mm/°C in CAML (Table 7; Fig. 12). TRW was also influenced by total 

precipitation of the vegetative season. The linear relationship was negative in the Italian plots 

and positive in the German ones. Slope parameters were statistically different from 0 but 

extremely small, ranging from -0.00006 mm/mm in CAMH to 0.00039 mm/mm in BAVL 

(Table 7; Fig. 12). 

 

Table 7 REML-estimated parameters significant after the model selection procedure: β0, ..., β7 are 

the parameters of fixed effects, σI,0, ..., σI,4 are the standard deviations of random effects, Φ1 is the 

within-tree temporal autocorrelation. Marginal and conditional R2 are also reported. 

 CAMH CAME CAML BAVH BAVL 

β0  3.18  1.81  2.56 9.81 × 10-1  2.33 

βP -6.01 × 10-5 -6.67 × 10-5 -8.78 × 10-5 1.15 × 10-5  3.99 × 10-4 

βT   6.72 × 10-2  7.99 × 10-2  1.17 × 10-1 8.30 × 10-2  6.08 × 10-2 

βA -6.33 × 10-3  1.10 × 10-3 -9.69 × 10-3 1.67 × 10-3 -1.42 × 10-2 

βA
2 -1.27 × 10-3 -7.98 × 10-5 - -  1.21 × 10-4 

βP:T   1.96 × 10-4  7.55 × 10-5  7.28 × 10-5 7.28 × 10-5  7.29 × 10-4 

βP:A -  1.31 × 10-6  2.19 × 10-6 2.19 × 10-6 -6.01 × 10-6 

βT:A -1.63 × 10-3 -4.62 × 10-4  4.03 × 10-4 4.03 × 10-4 -8.39 × 10-4 

σI,0  1.29  6.07 × 10-1  3.17 × 10-1 5.02 × 10-1  1.33 

σI,P  2.31 × 10-6  1.27 × 10-8  1.60 × 10-7 1.04 × 10-7  9.19 × 10-7 

σI,T  3.07 × 10-4  1.08 × 10-4  5.78 × 10-5 4.37 × 10-2  3.88 × 10-2 

σI,A  4.41 × 10-2  8.79 × 10-3  9.90 × 10-3 6.93 × 10-3  2.49 × 10-2 

σI,A
2  1.28 × 10-3  5.94 × 10-5 - -  2.42 × 10-4 

Φ1  5.39 × 10-1  7.89 × 10-1  8.78 × 10-1 6.17 × 10-1  6.43 × 10-1 

Marg R2  0.29  0.02  0.05 0.02  0.06 

Cond R2  0.94  0.56  0.17 0.79  0.86 
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Fig. 10 Boxplot of individual growth-climate correlations calculated between standardized 

tree-ring time series and monthly temperatures and precipitations, from previous April up to 

current October. Months are abbreviated with lowercase and uppercase letters for the 

previous and current year of growth, respectively. Red dots are the growth-climate 

correlations calculated on mean chronologies built for each plot for the common period 1915-

2013. Red dots are filled when the correlation values are below the 10th or above the 90th 

percentile of the distribution of individual growth-climate correlations. 

 

Most of the total TRW variance was explained by random effects. Except for CAML, 

conditional R2 values were high (ranging from 0.56 in CAME to 0.94 in CAMH) and much 

larger than marginal R2 values (Table 7). Among individual parameters, the intercepts and 

the parameters describing the growth-age relationship showed a standard deviation 

significantly different from 0 (Table 7). Several trees showed very different behaviours in 

the individual sensitivity to age with respect to the overall effect observed at the population 

level (Fig. 11). The standard deviation of remaining individual parameters were negligible, 

with the only exception of the growth-temperature relationship in BAVH. 
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Fig. 11 Growth-age relationship for each plot. Black solid lines represent the effect of age 

on tree-ring width at the population level, dashed lines are the limits of 95% confidence 

intervals. Grey lines represent the individual sensitivity to age. 

 

 

3.3.4 Influence of genetic and spatial structure on individual parameters 

Genetic structure had no influence on growth performances. In fact, none of the Mantel tests 

performed between the relatedness matrix and the matrices of pairwise differences among 

individual parameters were significant, except for the intercept of CAML (r = 0.117, P < 

0.01) (Fig. 13). On the other hand, spatial structure had a larger effect in determining similar 

growth responses. In fact, seven out of 23 Mantel tests between the spatial matrix and the 

matrices of pairwise differences among individual parameters were significant (Fig. 14), 

with positive correlation values ranging from 0.076 to 0.205. 
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Fig. 12 Influence of temperature and precipitation on tree-ring width data in each plot. 

Black solid lines represent the effect on TRW at the population level, dashed lines are the 

limits of 95% confidence intervals. Grey lines are the individual sensitivities to temperature 

and precipitation. 

 

 

The same picture emerged also from the variance partitioning and partial RDA analyses (Fig. 

15). Overall, the genetic structure explained a low proportion of variance (adjusted R2 

ranging from 0 to 0.13), and its effect was never statistically significant (Fig. 15d). On the 

contrary, the contribution of the spatial structure is much larger (adjusted R2 up to 0.29) and 

its effect was statistically significant in nine cases out of 23 (Fig. 15c). A significant effect 

of the spatial structure was found on the intercepts (b0) in the Italian plots, and on the growth-

age relationship (bA and bA
2) in the German plots. 
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3.3.5 Fine-scale spatial arrangement of individual parameters 

Spatial autocorrelograms revealed the existence of a clear departure from random spatial 

arrangements only for the intercepts of CAMH and CAME and the slope of the growth-age 

relationship of BAVH (Fig. 16). This picture was confirmed by the results of the kriging 

analysis (Fig. 17). In Fig. 17 kriging results are presented only when variograms had a range 

parameter >3 m and a partial sill >0. A signal of spatial clumping was found for the intercepts 

of the Italian plots, for the growth-age relationship in the German plots and for the slope of 

the growth-temperature relationship in BAVH. Regarding the intercepts of the Italian plots, 

the intensity of spatial structuring (i.e. partial sill parameter) increased with altitude, with 

tree clusters’ size (i.e. range parameter) varying from 12 m in CAMH to 16 m in CAME 

(Fig. 17). Spatial genetic structure was weak to negligible in all plots, with statistically 

significant Moran’s I values found only in the first distance class in CAMH and BAVH (Fig. 

16). 

 

 
 

Fig. 13 Scatterplots of pairwise relatedness coefficients (on the x axis) vs. pairwise absolute 

differences of individual parameters (on the y axis). X axis values range from 0 to 1. Mantel 

test results (i.e. correlation coefficients and P-values) are reported for each combination of 

plot × individual parameter. The graph is coloured only when the Mantel test was 

significant, otherwise it is in greyscale. The R function densCols was used to colour points 

accordingly to their local densities in each area of the scatterplot, ranging from black/red 

(high density) to light grey/blue (low density). 
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Fig. 14 Scatterplots of pairwise spatial distances (on the x axis) vs. pairwise absolute 

differences of individual parameters (on the y axis). Each tick on the x axis corresponds to 

20 m of linear distance. Mantel test results (i.e. correlation coefficients and P-values) are 

reported for each combination of plot × individual parameter. The graph is coloured only 

when the Mantel test was significant, otherwise it is in greyscale. The R function densCols 

was used to colour points accordingly to their local densities in each area of the scatterplot, 

ranging from black/red (high density) to light grey/blue (low density). 

 



37 

 

 
Fig. 15 Conceptual representation by Venn diagram (a) and plot-by-plot results (b) of 

variance partitioning on individual growth parameters. In the barplots, dark and light grey 

represent the portions of variance (adjusted R2) uniquely explained by spatial (Spat) and 

genetic (Gen) structure, respectively. The portions of bars filled with striped lines represent 

the joint effect of spatial and genetic structure. The amount of unexplained variance 

(residuals) is represented in white. On the right side of the figure, the effect of spatial 

structure on individual parameters while controlling for genetic structure (c) and the effect 

of genetic structure while controlling for spatial structure (d) are represented. Statistical 

significance of the variance components, assessed through ANOVA like permutation tests 

for partial redundancy analysis (pRDA), is reported in the heat maps. 
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Fig. 16 Moran’s I spatial correlograms on individual parameters (first to fifth column) and on pairwise relatedness coefficients 

indicating the spatial genetic structure (SGS, last column). 
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Fig. 17 Distribution maps from spatial interpolation (kriging) of individual parameters. Colors range from the highest values of within-plot parameters 

(red) to the lowest ones (blue). Partial sill (s2), range (phi) and nugget size values used in the kriging are reported. These values were estimated by 

fitting a theoretical exponential curve on each variogram. 
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3.4 Discussion 

 

3.4.1 Advantages of analysing individual dendrochronological data with a random slope 

model 

Studying growth dynamics at the individual level is fundamental for understanding species 

dendroecology (Carrer, 2011; Galvan et al., 2014; Primicia et al., 2015; Rozas et al., 2015; 

Redmond et al., 2017). Inference of climate sensitivity might be inaccurate when based only 

on mean chronologies from few dominant trees (Cherubini et al., 1998). Indeed, Carrer 

(2011) found that growth-climate correlations based on mean site chronologies are often 

above the 90th percentile of the distribution of individual growth-climate correlations. We 

observed a similar discrepancy when calculating growth-climate correlations at the plot 

level, with 11 values that are outliers as compared to the distribution of individual growth-

climate correlations. These outliers were found in periods, such as spring of the previous 

year and summer of the current year, which are usually considered informative in 

dendrochronological studies. Altogether, such considerations highlight the importance of 

exploring individual growth dynamics and growth-climate correlations. To this aim, the 

main step forward provided by our work is using an individual-based modelling approach to 

distil all the information from an intensive sampling of inter-individual phenotypic variance 

in a natural setting. We downscaled the experimental set-up to a within-population level by 

sampling all adult trees within a circumscribed area. Such approach is inherently different 

from studying growth patterns of different populations in common garden experiments (as 

discussed in Heer et al., 2018) and allowed us to correctly represent the whole spectrum of 

individual responses (Galvan et al., 2014). Then, we estimated mean and individual 

sensitivities to precipitation, temperature and age through a random slope mixed-effects 

model. Among other promising features, this modelling strategy i) estimates the effect of 

every variable or their interactions ceteris paribus (i.e. holding other factors constant) 

allowing to remove the effect of tree age when estimating sensitivity to climate (Bowman et 

al., 2013), and ii) provides individual parameters. In other words, all the information 

embedded in each time series is distilled into parameters that reflect individual growth 

responses to climate, after having removed the effects of the other factors. Such parameters 

describing individual sensitivities to climate can indeed represent a valuable addition to other 

recently introduced dendrophenotypic measures that characterized trees’ responses to 

climate (Heer et al., 2018). Such dendrophenotypes can be linked to other individual features 

ranging from detailed microenvironmental characteristics to genome-wide data. For 
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example, Heer et al. (2018) and Housset et al. (2018) showed how dendrophenotypes can be 

promisingly used in association genetic studies. 

The random slope mixed-effects model used successfully captured most of the variance of 

TRW. We found that the variance explained by only fixed effects was rather small (marginal 

R2 averaged over plots = 0.08) and lower than in other multi-site studies (marginal R2 of 

0.23 and 0.25 in Redmond et al. (2017) and Galvan et al. (2014), respectively). This can be 

partially attributed to the fact that analyses were run plot-by-plot. When the analysis was 

carried out on the whole dataset, including the plot as fixed effect, the marginal R2 increased 

to 0.24 (results not shown). However, the variance explained by both fixed and random 

effects was much higher than considering fixed effects only. Except for CAML, the only 

plot where Norway spruce density is extremely low, conditional R2 values ranged from 0.56 

up to 0.94. This is a quite remarkable result, especially considering that we used as response 

variable a complex phenotypic trait such as TRW data, without applying any noise-removing 

technique (e.g. standardization, detrending). This finding highlights that most of the variance 

in growth is embedded in inter-individual differences. Although a large part of inter-

individual variation is linked to unmeasured factors, such high conditional R2 values confirm 

the relevance of an individual-based approach relying on the exhaustive sampling of 

phenotypic variance to comprehensively understand growth dynamics at the population 

level. 

 

3.4.2 Effects of age and climate on tree ring width 

The influence that ontogeny has on tree growth is well-known (Cook et al., 1990), and our 

results coherently show the effect of cambial age on TRW is relevant and multi-faceted. The 

expected downward trend of TRW with increasing age (Esper et al., 2002) was observed in 

all plots with distinctions that need to be discussed and can be partially interpreted in the 

light of stand history. For instance, CAMH is an area recently recolonized after high altitude 

pasture cessation and, thus, is the only Italian plot mainly made up of young individuals (109 

out of 156 are younger than 50 years old). Such age distribution and the large number of 

samples collected in CAMH provided a higher accuracy when modelling the juvenile phase 

of tree lifetime (Bowman et al., 2013). This allowed us to detect a short initial period when 

TRW moderately increases with age followed by a general decrease due to competition. 

Although the relationship between TRW and age is generally negative, an initial positive 

trend may appear when young cohorts are intensively sampled (e.g. Mencuccini et al., 2005; 

Ivkovic et al., 2013; Nehrbass-Ahles et al., 2014; Primicia et al., 2015). In BAVL, growth-

age relationship decreases up to 100 years and then begins to increase but, interestingly, with 
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a much larger confidence interval, revealing a large inter-individual variation. This could 

reflect complex competition dynamics occurring in this plot with some old trees, reaching 

heights >55 m (Lars Opgenoorth, personal observation), which likely outcompeted 

remaining ones. Besides mean, stand-specific effects, it is worth noting that inter-individual 

variation of growth-age relationships is large in all plots. This suggests that ontogenetic 

trends are key to shed some light on the complex interaction among growth constrains, 

individual or local features (e.g. genotype and microtopography) and environmental 

variables (Rita et al., 2016), and deserve increasing attention in dendroecological studies 

(Szeicz and MacDonald, 1994; Carrer and Urbinati, 2004; Bowman et al., 2013; Carrer et 

al., 2015). The use of random intercept models instead of classical dendrochronological 

analyses has been considered a step forward for separating the effects of different drivers on 

tree growth (Rita et al., 2016; Redmond et al., 2017). Our results highlight the further 

advantage of using random slope models to better account for inter-individual variation of 

growth responses. 

In all plots, climatic variables showed a small effect size on TRW revealing a low sensitivity 

to temperature and precipitations, both at the population and individual levels. Interestingly, 

the use of random slope models allowed us to show that inter-individual variation associated 

to responses to climatic variables is substantially negligible (i.e. all individuals within the 

plot are similarly influenced by temperature and precipitations). The two most different 

individuals in terms of their growth response to a 100 mm Δ of precipitation exhibit a 

difference in radial increment of only 0.04 mm. Temperature has a slightly larger effect size, 

since the two individuals that are most contrasting in their growth response to a 1°C Δ of 

temperature show a difference in radial increment of only 0.17 mm. One possible reason of 

such low sensitivity to temperature and precipitation is the way climatic variables were used 

in the model (i.e. mean temperature and total precipitation of the vegetative season). 

However, this choice was supported by the absence of a clear and common pattern of growth-

climate correlations among plots. This idiosyncratic behaviour confirms the large among-

site variation in climate responses usually found in Norway spruce even at the regional scale 

(Makinen et al., 2002; Levanič et al., 2009). Another possible explanation for the low 

sensitivity to precipitation is that water availability is high at both sampling sites (Bässler, 

2004; Crespi et al., 2018) and, thus, it is likely not a limiting factor to growth. Nonetheless, 

spruce is often pictured as a highly drought-sensitive species in the montane belt of South-

eastern Germany (Hartl-Meier et al., 2014) and it is strongly dependent on summer water 

availability at low elevation in Central Europe (Wilson and Hopfmüller, 2001; Kolár et al., 
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2017). However, these studies were based on mean chronologies over few dominant trees 

per site and comparisons with our results should be taken with caution. 

 

3.4.3 Effects of spatial and genetic structure on individual parameters 

The largest inter-individual variation of TRW is associated to the intercepts (b0) of the model 

in all plots. The intercept represents how constantly each tree grows due to factors not 

explicitly considered in the model. An advantage of our individual-based modelling 

approach is that the intercept as well as other individual parameters can be a posteriori linked 

to individual-based features such as the genotype and microenvironmental conditions. A 

multitude of microenvironmental features spanning from light availability to soil 

characteristics create a mosaic of favourable or unfavourable niches for trees’ survival and 

growth (Carrer et al., 2013). Such complexity makes the microenvironment a multifaceted 

hyperspace difficult to characterize. However, sampling a large number of individuals in a 

limited area allowed us to use spatial position as a proxy of microenvironmental conditions, 

capturing their spatial heterogeneity. Using genotypic and spatial data we assessed whether 

similarity in growth performances summarized by individual model parameters is affected 

by sharing similar genetic characteristics and/or microenvironment. We found a generally 

larger effect of spatial structure than genetic structure on growth performances, regardless 

of the statistical approach used. Additionally, spatial analyses showed that model intercepts 

were spatially structured in the Italian plots, with an average radius of clusters equal to ~14 

m. Thus far, few dendrochronological studies investigated whether growth traits are spatially 

structured. In Norway spruce, previous studies detected ~30 m-wide groups of trees with 

similar DBH irrespective of stand history (Lamedica et al., 2011) and found a patchy 

distribution of regeneration age and adult mortality (Castagneri et al., 2010; Carrer et al., 

2013). These studies concluded that the spatial aggregation of such traits should result from 

microenvironmental heterogeneity creating favourable niches for Norway spruce 

regeneration. Interestingly, the effect of spatial structure on individual model intercepts was 

nearly absent in German plots that are instead characterized by spatially structured growth-

age relationships. Such discrepancy likely reflects the main differences between the two 

sites. German plots are generally less heterogeneous in terms of microenvironmental 

conditions than Italian plots, which are located on a steep and rocky sandstone slope 

(Chiarugi, 1936; Magini et al., 1980). 

The genetic structure did not have any influence on growth performances, in agreement with 

King et al. (2013). Norway spruce is a highly outcrossing species capable of long-distance 

pollen and seed dispersal (Xie and Knowles, 1994; Piotti et al., 2009). At the local scale, 
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such features cause a strong reshuffle of genetic variation, the presence of few pairs of related 

individuals (Androsiuk et al., 2013; King et al., 2013), and weak to absent spatial genetic 

structure both within-populations and along altitudinal transects (Geburek, 1998; Unger et 

al., 2011). This considered, it would be interesting to apply our experimental design and 

analytical approach on species with limited dispersal and strong spatial arrangement of 

genotypes. This would shed some light on how sharing a common coancestry may influence 

growth traits across a spectrum of dispersal syndromes. 

 

3.4.4 Conclusions and outlook 

The joint analysis of dendrochronological and genetic data has raised much interest in recent 

literature (Evans et al., 2018). Potential applications span from individual-based association 

genetic studies in natural conditions (Heer et al., 2018) to the study of local adaptation to 

climate (Housset et al., 2018; Trujillo-Moya et al., 2018). Fundamental prerequisites for 

assessing the genomic basis of dendrophenotypes is to identify potential drivers of inter-

individual variation of growth traits (Heer et al., 2018) and a correct definition of 

dendrophenotypic traits (Housset et al., 2018). Here we have presented a statistical approach 

for modelling growth and estimating individual parameters which summarize key 

ecophysiological processes. By including individual trees as a random factor, we were able 

to capture a considerable portion of variance and to show that, in Norway spruce, influence 

of tree age on TRW is more relevant than that of climatic variables. We tested the 

relationship between individual parameters and spatial and genetic structure and found that 

sharing the same microenvironment is likely more relevant than genetic similarity to 

inducing similar growth patterns. On the other hand, it should be stressed that our 

investigation is based on neutral genetic markers and, thus, only allowed us to assess genetic 

similarity and relatedness among individuals. However, although jointly analysing 

phenotypic variation and genetic relatedness is a necessary and feasible first step for 

estimating heritability in situ (Ritland, 1996, 2000), our study demonstrates that a large 

proportion of phenotypic variance remained unexplained requesting further investigations. 

For instance, focusing on candidate genes for growth traits could increase our understanding 

of inter-individual variation. Rapid technical advances will allow, in next years, to make a 

detailed genomic and dendroanatomical characterization of hundreds of trees feasible. In the 

meanwhile, we demonstrated the advantages of individual modelling and the relevance of 

small-scale spatial processes for treating dendrochronological data. In addition, our 

statistical framework could have two straightforward applications: i) the screening of 

available dendrochronological datasets to quantify inter-individual variation of 
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dendrophenotypes across species, and ii) the quantitative assessment of the proportion of 

variance unexplained by neutral processes based on cost-effective genetic markers. The 

latter would reveal whether searching for signals of local adaptation by sophisticated 

genomic approaches could be lucrative. All these indications should be carefully taken into 

account in designing future association genetic studies in natural forest tree populations. 

 

 

Results of this chapter have been published in a peer-review journal. 
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Chapter 4 

 

Do dendrophenotypic traits influence individual reproductive 

success? 

 

 

4.1 Introduction 

Individual fitness can be defined in terms of reproductive success, as the actual number of 

surviving offspring produced by an individual. The distribution of within-population 

individual reproductive success ultimately affects next generations’ allelic frequencies 

(González-Martínez et al., 2006) and it is shaped by a complex interaction of local selection, 

gene flow and genetic drift (Klein et al., 2008; Oddou-Muratorio et al., 2018a). 

Understanding which individuals have a higher reproductive success and why are crucial 

issues in evolutionary research (Smouse et al., 1999). In forest tree populations, the 

distribution of reproductive success is usually skewed, with few individuals that 

overwhelmingly contribute to the next generation (e.g. Kaufman et al., 1998; Smouse et al., 

1999; Piotti et al., 2012; Moran and Clark, 2012; Leonarduzzi et al., 2016; Gerzabek et al., 

2017). Modelling and identifying the causes of such unequal reproductive success is still a 

challenging task (Klein et al., 2008). In fact, reproductive success is the outcome of the 

complex interplay among i) individual tree features (e.g. phenotype, microsite conditions), 

ii) spatial processes, such as seed and pollen dispersal, as well as the relative arrangements 

of adult trees and sites favourable to offspring establishment iii) time-related processes, such 

as the flowering phenology (Smouse and Sork, 2004; Klein et al., 2008; Oddou-Muratorio 

et al., 2018a) and iv) pure random chance. Thus, research on this evolutionary process needs 

to comprehensively take into account all these aspects. 

The development of highly polymorphic genetic markers has allowed plant biologists to 

move from quantifications of individual basic fecundity (i.e. the number of pollen grains and 

seeds produced) to more reliable estimates of individual reproductive success (Oddou-

Muratorio et al., 2018a). Reproductive success is indeed not a linear function of basic 

fecundity (Schoen and Stewart, 1986), even if the latter is commonly used as a proxy for the 

former (Davi et al., 2016). Pre- or post-zygotic selection may decouple male basic fecundity 

and male reproductive success (Bernasconi, 2003). As well, trade-offs between seed number 

and quality as well as high mortality at the seed and seedling stages may decouple female 



47 

 

basic fecundity and female reproductive success (González-Martínez et al., 2006; Moran 

and Clark, 2012). Combining genetic markers and modelling approaches to parentage 

analysis has represented a relevant advance for assessing reproductive success (Jones et al., 

2010). A modelling approach to parentage analysis permits to explicitly account for 

biologically meaningful phenomena such as dispersal process and inter-individual variation 

of fecundity (Oddou-Muratorio et al., 2005; Burczyk et al., 2006; Klein et al., 2008; Moran 

and Clark, 2012) as well as for uncertainty in parentage assignments (Jones et al., 2010) in 

the estimates of individual reproductive success. 

Full-probability methods have been recently proposed to extend parentage analysis in a 

modelling framework and estimate, among others parameters, the effects of phenotypic 

variables on reproductive success (e.g. Burczyk et al., 2006; Oddou-Muratorio and Klein, 

2008; Chybicki and Burczyk, 2010). Such effects can be assessed through estimating 

selection gradients, defined as the slope of the regression of reproductive success on 

measures of individual phenotype (Morgan and Conner, 2001). Among phenotypic traits 

potentially linked to individual reproductive success, tree size is the most frequently 

investigated (e.g. Schnabel et al., 1998; Kameyama et al., 2001; González-Martínez et al., 

2006; Piotti et al., 2009; Leonarduzzi et al., 2016; Chybicki and Oleksa, 2018). In a recent 

review of 170 studies on individual fitness in herbs, shrubs and trees, Younginger et al. 

(2017) demonstrated that size is a reliable indirect measure of fitness. However, these 

authors also highlighted that using size to quantify fitness may be inappropriate in age-

structured natural populations. In fact, tree size depends both on age and growth rate, and 

these two commingled components are not necessarily highly correlated. While the effects 

of age and growth rates on reproductive investments has been previously explored (e.g. 

Viglas et al., 2013; Davi et al., 2016), the combined effect of these two factors on individual 

reproductive success has been only rarely assessed in forest trees. González-Martínez et al. 

(2006) did not find any significant effect of age and growth rate on female reproductive 

success in a Pinus pinaster stand, while Moran and Clark (2012) showed a hump-shaped 

relationship between reproductive success and both age and growth rate in two populations 

of red oaks (Quercus spp). Such sporadic evidence might suggest a potential “senescence 

effect” (i.e. individuals tend to have a lower reproductive success beyond a certain age 

threshold) possibly due to a trade-off between investments in growth and reproduction. A 

similar trade-off between growth and resources allocated to reproductive structures has been 

often demonstrated (e.g. Pukkala et al., 2010; Davi et al., 2016). 

Individual tree age and growth rate can be easily assessed through dendrochronological 

techniques, but the study of tree rings offers much more interesting opportunities. Tree rings 
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are natural archives of past environmental information and their morphological and 

anatomical properties are influenced by a multitude of environmental and climatic variables 

(Carrer et al., 2015). By generating multi-decade to multi-century time series of individual 

annual growth, ring-width data are an exceptional resource to analyse trees’ responses to 

climate and environmental stressors (Evans et al., 2018). Indeed, dendrophenotypic traits 

(i.e. tree-ring-based phenotypes, sensu Heer et al., 2018) have raised much interest in recent 

literature. They have been correlated to population genetic parameters calculated on neutral 

genetic markers (e.g. Avanzi et al., 2019; Babushkina et al., 2016; Housset et al., 2016; King 

et al., 2013; Latutrie et al., 2015) and fruitfully used in genotype-phenotype association 

studies (Heer et al., 2018; Housset et al., 2018; Trujillo-Moya et al., 2018). Whether a 

comprehensive set of dendrophenotypic traits may influence individual reproductive success 

has never been addressed, except for a couple of studies investigating single growth 

parameters (González-Martínez et al., 2006; Moran and Clark, 2012). 

The aim of this study was to assess the effects of a large set of dendrophenotypic traits on 

reproductive success within natural populations of Norway spruce. Following the approach 

proposed by Housset et al. (2018) my individual phenotyping was based on three classes of 

dendrophenotypic traits which describe i) individual absolute levels of growth, ii) individual 

sensitivity to climate and iii) individual growth reactions to extreme climatic events. Eleven 

variables were measured for 518 adult trees from five plots. A total of 604 established 

seedlings were collected to estimate the individual reproductive success of the local adult 

trees. A full probability method for parentage analysis fed by genotypes at 11 biparentally-

inherited nuclear and three paternally-inherited chloroplast markers as well as spatial and 

phenotypic data was used to assess the influence of dendrophenotypes on individual fitness, 

disentangling the potential sex-specific effects on female and male reproductive success. 

Such relationships were tested both through selection gradients estimated within the 

neighbourhood model framework and by fitting a generalized linear model (GLM) on the 

most likely genealogies from the neighbourhood model run without selection gradient. The 

outcomes of these two methods were compared to evaluate the soundness of results. 

 

4.2 Materials and methods 

Study sites and datasets have been already presented in Chapter 2, sections 2.2, 2.3, 2.5. In 

the following paragraphs, I will describe the variables tested as potential determinants of 

reproductive success (4.2.1) and the methods used to assess such relationships (4.2.2). 
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4.2.1 Dendrophenotypic and ecological variables 

A set of 11 dendrophenotypic and three ecological and spatial variables were measured for 

all adult trees (Table 8) to successively assess their effects on both female and male 

individual reproductive success. 

 

Age and growth rate. Individual age and average basal area increment (BAI) were calculated 

for each tree. Individual age can be intended as a proxy of the number of reproductive 

seasons each tree have experienced throughout its lifetime. Average BAI is a long-term 

growth measure resulting from the intermingled effects of all growth determinants that have 

been acting in such lifespan. 

 

Table 8 Dendrophenotypic and ecological variables investigated in this study as potential 

determinants of reproductive success and their abbreviations. 

Variable Definition 
Female selection 

gradient 

Male selection 

gradient 

Age Total tree age γ1 β1 

BAI Average individual basal are increment γ2 β2 

PrevT 
Correlation between individual RWI time series and 

mean temperature of previous vegetative season 
γ3 β3 

WintT 
Correlation between individual RWI time series and 

mean temperature of winter 
γ4 β4 

CurrT 
Correlation between individual RWI time series and 

mean temperature of current vegetative season 
γ5 β5 

PrevP 
Correlation between individual RWI time series and 

total precipitation of previous vegetative season 
γ6 β6 

WintP 
Correlation between individual RWI time series and 

total precipitation of winter 
γ7 β7 

CurrP 
Correlation between individual RWI time series and 

total precipitation of current vegetative season 
γ8 β8 

Rt2003 
Resistance to 2003 summer drought, expressed as 

the ratio between drought and pre-drought growth  
γ9 β9 

Rc2003 
Recovery to 2003 summer drought, expressed as the 

ratio between post-drought and drought growth 
γ10 β10 

Rs2003 
Resilience to 2003 summer drought, expressed as 

the ratio between post-drought pre-drought growth 
γ11 β11 

Den10 

Number of conspecific adult trees in a 

neighbourhood of 10-m radius around each 

individual 

γ12 β12 

Den20 

Number of conspecific adult trees in a 

neighbourhood of 20-m radius around each 

individual 

γ13 β13 

Centr Centrality index γ14 β14 

 

Sensitivity to climate. A growth-climate correlation analysis was performed using the 

climatic data described in section 2.6. Each RWI time series was correlated against mean 

temperature and total precipitation of i) previous vegetative season (from April to October 

of the previous year) (PrevT, PrevP), ii) winter (from November of the previous year to March 
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of the current year) (WintT, WintP) and iii) current vegetative season (from April to October 

of the current year) (CurrT, CurrP). 

 

Growth reaction to extreme climatic conditions. In the ongoing climate change scenario, the 

predicted higher intensity and/or frequency of such extreme episodes will likely affect 

growth and survival of tree populations (Lloret et al., 2011). Thus, dendrophenotypic traits 

describing individual growth reactions to extreme climatic events can be particularly fruitful 

to shed light on tree species potential to cope with such events. These reactions were 

expressed in terms of resistance, recovery and resilience (Lloret et al., 2011). In this 

framework, resistance (Rt) measures tree growth reduction during the extreme episode; 

recovery (Rc) measures tree growth increase after the extreme episode; resilience (Rs) 

measures the capacity of the tree to reach pre-episode growth levels. Since spruce growth is 

highly influenced by the summer water deficit of the current growing season (Lebourgeois, 

2007), all these indices (Rt2003, Rc2003, Rs2003) were calculated on BAI time series for year 

2003, when Europe experienced one of the hottest and driest summer over the last centuries 

(Fink et al., 2004). Such extreme climatic conditions occurred also in my study sites, where 

summer temperatures were, on average, 3°C above the mean values calculated for the 1901-

2013 period, while precipitations 37% below (Fig. 18a and Fig. 18b, respectively). All 

indices were calculated with the res.comp function of the R package pointRes (van der 

Maaten-Theunissen et al., 2015) using a “reference period” of four years before and after 

the 2003 extreme climatic event (Fig. 18c). 

 

Local density. By using spatial positions, conspecific local density was calculated as the 

number of adult trees found in a 10 and 20 m-radius neighbourhood around each adult 

individual (Den10 and Den20, respectively). A centrality index (Centr) was also calculated to 

take into account a potential “edge-effect”, i.e. trees may exhibit lower densities at the 

borders because individuals outside the plot were not sampled. Such index was expressed as 

the lowest distance between each tree and the borders of the polygon representing the convex 

hull (drawn using chull function in R) of the set of tree locations in each plot. 
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Fig. 18 Climatic and growth fluctuations of the last twenty years in sampled Picea abies 

plots. (a) Mean temperature and (b) mean precipitation of the summer period (June-July-

August; JJA). (c) Mean basal area increment (BAI) chronologies calculated at the plot 

level. A 4-year reference period before and after the 2003 extreme climatic event was used 

to calculate the indices describing growth reactions to extreme climatic conditions (i.e. 

resistance, recovery, resilience). 

 

4.2.2 Determinants of female and male individual reproductive success 

Two different methods were used to assess the effect of dendrophenotypic ad ecological 

variables on both female and male individual reproductive success. First, it was tested 

through selection gradients estimated within the neighbourhood model framework. 

Secondly, female and male individual reproductive success, calculated from the most likely 

genealogies from the neighbourhood model run without selection gradients, were modelled 

as a function of dendrophenotypic and ecological variables by fitting a GLM. Both methods 

have advantages and drawbacks. The neighbourhood model allows to estimate selection 

gradients simultaneously with all other model parameters (Burczyk et al., 2006) and, thus, 

limits the propagation of error possibly linked to a categorical parentage assignment. 

However, being the neighbourhood model based on a maximum-likelihood estimation of 
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parameters, it might fail to converge when it has to estimate a high number of parameters. 

To model the effects of phenotypic traits on reproductive success, neighbourhood model 

performs a soft-max regression analysis, which is an efficient approach to multinomial 

logistic regression. It is worth mentioning that soft-max regression uses exponential function 

for all explanatory variables, that, thus, are assumed to have a multiplicative effect on 

reproductive success (Smouse et al., 1999). On the contrary, GLM has the major advantage 

of modelling the shape of the relationship between reproductive success and phenotypic 

traits more flexibly, e.g. by using the link function that describes the error distribution more 

properly, or by implementing model averaging strategies. In addition, it allows to account 

for interaction terms, whether there are enough degrees of freedom to increase the number 

of fitted parameters. 

 

Neighbourhood model. The neighbourhood model is one of the possible methods to 

reconstruct offspring genealogies given the genetic data of a sample of putative parents and 

offspring (Jones et al., 2010). It represents an elegant and efficient method to estimate 

parameters related to reproductive success while accounting for uncertainty about parentage 

assignments (Chybicki, 2018). It is a spatially explicit modelling approach that uses 

multilocus genotypes and spatial positions of both offspring and putative parents to 

simultaneously estimate offspring genealogies as well as seed and pollen immigration rates, 

self-pollination rate, genotyping errors, parameters of pollen and seed dispersal kernels and 

selection gradients (Adams and Birkes, 1991; Oddou-Muratorio et al., 2005; Burczyk et al., 

2006; Klein et al., 2008; Chybicki and Burczyk, 2010; Chybicki, 2018). Selection gradients 

are the slopes of the linear regression analysis between reproductive success and the 

phenotypic traits of putative parents (Morgan and Conner, 2001). The neighbourhood model 

advantageously allows to estimate selection gradients of phenotypic traits in both female and 

male parents, making possible to evaluate their importance on both female and male 

individual reproductive success (Burczyk et al., 2006). In this study, neighbourhood model 

was used as implemented in NMπ software (Chybicki, 2018). In such a framework, the 

probability of observing the i-th offspring with genotype oi is modelled as the sum of 

probabilities of alternative events, that is: 

𝑃𝑟(𝑜𝑖) =  𝜔𝑖𝑚𝑠𝑃𝑟(𝑜𝑖|𝑢 × 𝑢) + (1 − 𝜔𝑖𝑚𝑠)∑ ψ𝑖𝑗
𝐽
𝑗  [𝑠 𝑃𝑟(𝑜𝑖|𝑝𝑗 × 𝑝𝑗) +

 𝑚𝑝 𝑃𝑟(𝑜𝑖|𝑝𝑗 × 𝑢) + (1 − 𝑠 − 𝑚𝑝)∑ 𝜑𝑗𝑘Pr (𝑜𝑖|𝑝𝑗 × 𝑝𝑘)
𝐽
𝑘≠𝑗 ],  (6) 
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where ms and mp are the seed and pollen immigration rates from outside the neighbourhood, 

respectively; s is the self-pollination rate; ωi is a binary variable that indicates whether 

offspring are dispersed or not (in this study, it was equal to 1 because we analysed 

established seedlings); ψij and φjk are the female and male reproductive success of the j-th 

and k-th putative parents, respectively; pj is the genotype of the j-th putative parent and u is 

the genotype of an unsampled putative parent located outside the neighbourhood. Pr(oi|u × 

u), Pr(oi|pj × pj), Pr(oi|pj × u), and Pr(oi|pj × pk) are the Mendelian transition probabilities that 

the observed oi genotype of the i-th offspring originated outside the neighbourhood or from 

a local mother that is self-pollinated, pollinated by a unknown father outside its 

neighbourhood or by a local father. Transition probabilities are computed as a function of 

genotypes and mistyping error rates (ε). Here, allele frequencies of the background 

population located outside the neighbourhood were assumed to be equal to local allele 

frequencies (as suggested by Burczyk and Chybicki, 2004). Reproductive success (ψij, φjk) 

is assumed to be a function of reproductive success covariates, such as relative spatial 

positions of individuals as well as phenotypic traits. They are expressed as: 

𝜓𝑖𝑗 = 𝜇𝑗𝜋𝑖𝑗
𝑠 𝜆𝑗

𝑓
 / ∑ 𝜇𝑘𝜋𝑖𝑘

𝑠 𝜆𝑘
𝑓𝐽

𝑘 ,  (7) 

𝜑𝑗𝑘 = (1 − 𝜇𝑘)𝜋𝑗𝑘
𝑝 𝜆𝑗𝑘

𝑚  /  ∑ (1 − 𝜇𝑙)𝜋𝑗𝑙
𝑝𝜆𝑗𝑙

𝑚𝐽
𝑙  ,  (8) 

where J is the number of putative parents; μj indicates the gender of the j-th putative parent 

(in this study, it was always equal to 0.5 because Norway spruce is a hermaphrodite species); 

πij
s is the effect of the i-th offspring position relatively to the j-th putative parent position; 

πjk
p is the effect of the j-th putative parent position relatively to the k-th putative parent 

position; λj
f and λjk

m are the effects of the measured phenotypic traits on female and male 

individual reproductive success, respectively. πij
s and πjk

p are assumed to equal the 

probability of seed and pollen dispersal, respectively. In this study, such probabilities were 

modelled using an exponential-power distribution, that is: 

𝜋𝑖𝑗 = 𝑐 exp [− (
𝑑𝑖𝑗

𝑎
)
𝑏

],  (9) 

where dij is the Euclidean distance between the i-th and j-th individual; a and b are the scale 

and shape parameters of dispersal kernel, respectively. λj
f and λjk

m are exponential functions 

of form: 

𝜆𝑗
𝑓

= exp(∑ 𝛾𝑛𝑧𝑗𝑛
𝑁
𝑛 ), (10) 

𝜆𝑗𝑘
𝑚 = exp(∑ 𝛽𝑛𝑧𝑘𝑛

𝑁
𝑛 ), (11) 
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where N is the number of measured phenotypic traits; zjn is the n-th phenotypic traits 

measured for the j-th putative parent; γn and βn are the slope coefficients mirroring the effects 

of the n-th phenotypic character on female and male reproductive success, respectively. 

Analyses were performed on the entire dataset, setting the neighbourhood size to 215 m (i.e. 

the maximum within-plot pairwise spatial distance between individuals) to model the 

dispersal process at the neighbourhood level. First, neighbourhood model was run estimating 

all parameters, including selection gradients (14 γ parameters and 14 β parameters for female 

and male effects, respectively; Table 8). Before model fitting, dendrophenotypic and 

ecological variables were scaled to compare the relative strength of selection gradients (as 

suggested by Chybicki, 2018). Different models were sequentially run to find the optimal 

fitting. A first series of 28 models was run including only one selection gradient at a time. 

This step aimed at ranking female and male selection gradients based on their fits in terms 

of the Akaike Information Criterion (AIC) of the model. Based on such ranking, a second 

and a third series of models were run adding sequentially female and male selection 

gradients, respectively. Each selection gradient was retained in the model when it improved 

the model fitting, which was evaluated by a Likelihood-ratio test on nested models. A final 

model including all the retained female and male selection gradients was run to get the final 

estimates of all model parameters.  

Secondly, neighbourhood model was run estimating all parameters (i.e. immigration and 

self-pollination rates, genotyping errors and pollen and seed dispersal kernel parameters) but 

no selection gradients. The resulting most likely genealogies were used to calculate female 

and male individual reproductive success, expressed as the sum of gametes assigned to each 

mother and father tree, respectively. Such estimates were successively tested against 

dendrophenotypic and ecological variables by fitting a GLM, as described in the following 

paragraph. 

 

Generalized Linear Model. Using parentage assignments, female and male individual 

reproductive success (ψ and φ, respectively) were calculated as the sum of gametes produced 

by each mother and father tree, respectively. Such reproductive success estimates were then 

modelled as a function of dendrophenotypic and ecological variables fitting a GLM with 

negative binomial error distribution to account for overdispersion. The starting models were 

the following: 

𝜓,𝜑 ~ 𝑃𝑙𝑜𝑡 +  𝐴𝑔𝑒 + 𝐴𝑔𝑒2 +  𝐵𝐴𝐼 + 𝐵𝐴𝐼2 + 𝑅𝑡2003 + 𝑅𝑐2003 + 𝑅𝑠2003 + 𝑃𝑟𝑒𝑣𝑇 +

 𝑊𝑖𝑛𝑡𝑇 + 𝐶𝑢𝑟𝑟𝑇 + 𝑃𝑟𝑒𝑣𝑃 + 𝑊𝑖𝑛𝑡𝑃 + 𝐶𝑢𝑟𝑟𝑃 + 𝐷𝑒𝑛10 + 𝐷𝑒𝑛20 +  𝐶𝑒𝑛𝑡𝑟 +  𝜀, (12) 
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where plot was considered as a categorical variable, whereas all the other variables as 

quantitative covariates. A quadratic term for both tree age (Age2) and average BAI (BAI2) 

was included in the model to test for an age-related decline of reproductive success and a 

trade-off between reproductive success and growth, respectively. All explanatory variables 

were centred and scaled. Analyses were performed by using the glm.nb function of the R 

package MASS (Venables and Ripley, 2002) in the R suite. To avoid collinearity problems, 

the variance inflation index (VIF) was calculated for each variable of (12) using the R 

package car (Fox and Weisberg, 2011). The variable with the highest VIF was sequentially 

dropped from the model until all variables had VIF values <3 (Zuur et al., 2010). This 

procedure led to the exclusion of Rs2003 and Den20 from both models of female and male 

reproductive success. After this first step, model averaging with Bayesian information 

criterion (BIC) was performed to account for model uncertainty and to reduce parameter 

estimation bias (Burnham and Anderson, 2002) through the R package MuMIn (Barton, 

2018). To this aim, alternative models with all possible combinations of the considered 

variables were built using the dredge function. The site variable (Plot) was arbitrarily forced 

to be always included in each alternative model. Model comparison was made using BIC, 

by selecting models with ΔBIC <10 (Aho et al., 2014). On this subset of models, model 

averaging based on model weights was performed using the model.avg to obtain averaged 

standardized conditional coefficients. 

 

4.3 Results 

 

4.3.1 Dendrophenotypic traits 

The five plots were characterized by different age structures (Fig. 8; Fig. 19a). In CAMH 

and CAML, 81% and 64% of the trees were younger than 60 years, with a median age of 42 

and 53 years, respectively. In the other three plots, the percentage of trees < 60 years was 

markedly lower (CAME: 16%; BAVH: 3%; BAVL: 20%) and the median age ≥100. 

The distribution of individual average BAI was quite similar among plots, except for BAVL 

which was much more variable and had three times the standard deviation of other plots 

(Fig. 19b). Growth-climate correlations were globally low, with mean correlation values of 

0.014 and 0.018 for temperature and precipitation responses, respectively (Fig. 19c-h). 

Correlation values showed a wide range of individual responses to temperature and 

precipitation, ranging from highly negative (-0.774) to highly positive (0.552) values. 
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Fig. 19 Dendrophenotypic traits for each plot. Dendrophenotypic traits are grouped based 

on the three classes of phenotypic measures defined according to Housset et al. (2018). 

 

 

Mean values of the indices describing growth reactions to extreme climatic conditions are 

reported in Table 9. Once again, it is worth mentioning the large inter-individual variation 

associated to such indices, with individuals showing opposite growth reactions (Fig. 19i-k). 

By analysing resistance and resilience values, it emerged that trees from the German site 

were more affected by the 2003 summer drought with respect to trees from the Italian one. 

In fact, almost all trees from the German site showed a growth decline (89% and 91% of 
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trees with Rt <1 in BAVH and BAVL, respectively) while the ones from the Italian site were 

less affected (54%, 61% and 67% of trees with Rt <1 in CAME, CAML and CAMH, 

respectively) (Fig. 19i). Similarly, in the four years following the 2003 summer drought, 

German trees grew less, on average, with respect to the pre-drought period (Fig. 19k; Table 

9). 

 

Table 9 Mean values of resistance, recovery and resilience to 2003 summer drought calculated for 

each plot. Standard deviations are reported in brackets. 

 CAMH CAME CAML BAVH BAVL 

Rt2003  0.94 (±0.26) 0.99 (±0.18) 0.92 (±0.18) 0.80 (±0.19) 0.75 (±0.21) 

Rc2003 1.17 (±0.30) 1.03 (±0.22) 1.09 (±0.28) 1.03 (±0.20) 1.22 (0.39) 

Rs2003 1.08 (±0.38) 1.01 (±0.24) 0.98 (±0.23) 0.82 (±0.25) 0.88 (±0.24) 

 

4.3.2 Individual reproductive success 

For each seedling, the a posteriori probabilities of the first most likely and the second most 

likely genealogies were determined. The probabilities of the most likely genealogy were 

generally much higher than those of the second one (Fig. 20), with an average value of 0.80 

(±0.19). Mother trees could be identified for 296 (49%) of the total 604 sampled seedlings, 

while father trees only for 79 (13%) seedlings. Seedlings with both parents, one parent and 

no parents inside the plot were 79 (13%), 217 (36%) and 308 (51%), respectively. As 

expected, within-plot distribution of individual reproductive success was skewed. The 

percentages of trees producing >2 gametes were 5% in CAMH and BAVH, 9% in CAML, 

13% in CAME and BAVL (Fig. 21). 

 

Fig. 20 Distribution of the a posteriori probabilities of the first most likely (gray bars) and 

the second most likely (pink bars) genealogies determined by NMπ for each seedling. 
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Fig. 21 Distribution of individual reproductive success. Each bar corresponds to an adult 

individual. Pink bars represent the number of gametes produced by maternal function, 

while light blue bars the ones produced by paternal function. The total number of gametes 

produced by each tree are divided by the total number of gametes sampled within each plot. 
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4.3.3 Determinants of female and male individual reproductive success 

 

Neighbourhood model. Since neighbourhood model parameters estimated with no selection 

gradients very highly consistent with those of the model run including selection gradients, 

only the latter were shown (Table 10). Seed and pollen immigration rates were equal to 

0.461 (± 0.025) and 0.755 (±0.029), respectively. Estimates of genotyping error rates ranged 

from zero to 0.085, with an average value of 0.040. Self-pollination rate was not statistically 

higher than zero, and it was treated as a fixed parameter, using the default value in NMπ (s 

= 0.01). The scale parameter of the seed dispersal function (1/δs) was equal to 0.026 (± 0.002) 

and, therefore the estimated mean seed dispersal distance was 37.5 m. The scale parameter 

of the pollen dispersal function (1/δp) did not significantly differ from zero, and it was treated 

as a fixed parameter (1/δp = 0). This means that the estimated mean pollen dispersal distance 

was equal to ∞. Shape parameters of both seed and pollen dispersal functions were not 

statistically different from 1, and were treated as fixed parameters (bs = 1, bp = 1). When 

shape parameter of an exponential-power function is equal to 1, the curve is reduced to an 

exponential function. When bp = 1 and mean pollen dispersal distance equal to ∞, the pollen 

dispersal function becomes basically a flat curve. 

 

Table 10 Final estimates of model parameters obtained by running the neighbourhood model 

including all parameters. Here, immigration and self-pollination rates (ms, mp, s) pollen and seed 

dispersal parameters (1/ δs, 1/ δp, bs, bp) as well as genotyping errors (ε1- ε11) are reported. Selection 

gradients are reported separately in Table 11. 

Description Parameter Estimate s.e. 95 % CI 

Probability of seed immigration ms 0.461 0.025 0.410, 0.486 

Probability of pollen immigration mp 0.755 0.029 0.699, 0.811 

Probability of self-pollination s 0.01   

Scale parameter of seed dispersal 1/ δs 0.026 0.002 0.022, 0.031 

Scale parameter of pollen dispersal 1/ δp 0   

Shape parameter of seed dispersal bs 1   

Shape parameter of pollen dispersal bp 1   

Genotyping error rates:     

WS0092.A19 ε1 0.049 0.010 0.029, 0.068 

Pa28 ε2 0.051 0.012 0.029, 0.074 

Pa05 ε3 0   

WS0022.B15 ε4 0.043 0.010 0.024, 0.062 

WS0016.O09 ε5 0.022 0.008 0.007, 0.038 

Pa44 ε6 0.031 0.009 0.014, 0.048 

EATC1E03 ε7 0.026 0.007 0.013, 0.039 

EATC2G05 ε8 0.085 0.012 0.062, 0.108 

WS0111.K13 ε9 0.047 0.010 0.027, 0.067 

WS0023.B03 ε10 0.058 0.011 0.037,0 .079 

SpaGG03 ε11 0.032 0.008 0.016, 0.048 
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Female reproductive success was significantly, positively influenced by age (γ1 = 0.312), 

average BAI (γ2 = 0.231) and growth-climate correlations with temperatures of the previous 

vegetative season (γ6 = 0.207), while it was negatively influenced by resilience (γ5 = -0.364) 

(Fig. 22; Table 11). Male reproductive success was significantly, positively influenced by 

age (β1 = 0.792), growth-climate correlations with precipitation of the previous vegetative 

season (β9 = 0.637) and average BAI (β2 = 0.416) (Fig. 22; Table 10). 

 

 

Fig. 22 Comparison of the results of the two methods applied to assess the effects of 

dendrophenotypic and ecological variables on both female and male reproductive success. 

Red boxes indicate that the variable has a significant and positive effect, while blue boxes 

that it has a significant and negative effect. The magnitude of all significant variables is 

reported, and it is expressed in terms of selection gradient for the neighbourhood model 

and averaged coefficients for GLM. All reported coefficients are in standard deviation 

units, so they are comparable within method. Striped boxes indicate the variables which 

were removed from the model because of collinearity (VIF >3; Zuur et al., 2010). 
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Generalized Linear Model. Averaged standardized coefficients predicting the effects of 

dendrophenotypic and ecological variables on both female and male individual reproductive 

success are reported in Table 12. Female individual reproductive success was strongly 

positively associated to age, both for the linear term (β = 0.505) and the quadratic one (β = -

0.319), to average BAI (β = 0.245) and to growth-climate correlations with the mean 

temperature of the previous vegetative season (β = 0.204) while it was negatively associated 

to growth-climate correlations with winter precipitation (β = -0.268) (Fig. 22). Male 

individual reproductive success was positively associated to age (β = 0.759), while it was 

negatively associated to growth-climate correlations with temperatures of the current 

vegetative season (β = -0.335). (Fig. 22). BAI had only a marginal effect on male 

reproductive success (β = -0.335; P < 0.10). The plot factor was statistically significant in 

both models, meaning that there were differences among plots in the mean female and male 

individual reproductive success. Since BAVH was the reference level, plot-specific 

estimates were calculated by comparing BAVH with the other plots (Table 12). 

 

Table 11 Slopes of the regression of phenotypic traits against female and male individual 

reproductive success (shortened to FRS and MRS, respectively). Only selection gradients that were 

statistically significant in the final run of the neighbourhood model were reported. 

Variable Description Parameter Estimate s.e. 95 % CI 

Age Effect of tree age on FRS γ1 0.312 0.098 0.119, 0.505 

BAI Effect of tree average BAI on FRS γ2 0.231 0.054 0.126, 0.337 

Rs2003 Effect of tree resilience on FRS γ5 -0.364 0.111 -0.582, -0.146 

PrevT 
Effect of correlation with temperatures of 

the previous vegetative season on FRS 
γ6 0.207 0.079 0.052, 0.363 

Age Effect of tree age on MRS β1 0.792 0.236 0.329, 1.255 

BAI Effect of tree average BAI on MRS β2 0.416 0.127 0.166, 0.665 

PrevP 
Effect of correlation with precipitation of 

the previous vegetative season on MRS 
β9 0.637 0.200 0.245, 1.028 
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Table 12 Averaged standardized coefficients predicting the effect of dendrophenotypic, ecological 

and plot variables on both female and male individual reproductive success. Coefficients are in 

boldface if the 95% confidence interval (95% CI) does not overlap zero. 

 Female Reproductive Success Male Reproductive Success 

Variable Estimate s.e. 95% CI Z Estimate s.e. 95% CI z 

Intercept -1.084 0.336 -1.743, -0.424 3.215 -3.985 0.720 -5.396, -2.575 5.528 

Age  0.505 0.150 0.211, 0.799 3.355 0.759 0.238 0.293, 1.224 3.186 

Age2 -0.319 0.124 -0.562, -0.076 2.573 -0.212 0.208 -0.620, 0.196 1.020 

BAI  0.245 0.099 0.051, 0.439 2.464 0.259 0.156 -0.046, 0.564 1.659 

BAI2 0.028 0.025 -0.021, 0.077 1.099 0.004 0.054 -0.102, 0.110 0.065 

PrevT  0.204 0.099 0.01, 0.397 2.056 -0.160 0.162 -0.478, 0.159 0.980 

WintT -0.125 0.115 -0.351, 0.101 1.079 0.231 0.179 -0.12, 0.582 1.286 

CurrT  0.124 0.110 -0.092, 0.341 1.122 -0.335 0.157 -0.643, -0.028 2.131 

PrevP  0.031 0.121 -0.206, 0.269 0.259 0.171 0.179 -0.179, 0.522 0.955 

WintP -0.268 0.108 -0.48, -0.056 2.469 0.030 0.171 -0.306, 0.366 0.175 

CurrP  0.142 0.113 -0.081, 0.364 1.245 -0.042 0.175 -0.385, 0.3 0.243 

Rt2003 -0.134 0.117 -0.363, 0.095 1.141 -0.147 0.195 -0.529, 0.235 0.752 

Rc2003 -0.004 0.098 -0.196, 0.188 0.041 0.046 0.155 -0.258, 0.35 0.296 

Rs2003         

Den10 -0.080 0.159 -0.392, 0.232 0.502 0.306 0.230 -0.144, 0.757 1.330 

Den20         

Centr  0.090 0.103 -0.111, 0.291 0.874 0.090 0.166 -0.236, 0.417 0.542 

PlotCAMH  0.509 0.464 -0.402, 1.419 1.094 1.846 0.726 0.422, 3.269 2.535 

PlotCAME  0.677 0.342 0.007, 1.347 1.977 2.483 0.671 1.168, 3.798 3.692 

PlotCAML  0.360 0.506 -0.632, 1.352 0.709 2.510 0.989 0.572, 4.448 2.535 

PlotBAVL   0.678 0.503 -0.307, 1.664 1.347 1.857 0.957 -0.018, 3.733 1.937 

 

 

4.4 Discussion 

Quantifying individual reproductive success and its determinants are crucial topics in 

evolutionary research because of the major consequences that the transmission of genetic 

variation across generations has on populations’ adaptive potential (Oddou-Muratorio et al., 

2018a). In this study, I investigated such reproductive dynamics within five Norway spruce 

natural populations to identify which trees had the highest reproductive success and why. 

Reproductive success was highly heterogeneous within plots, with generally few individuals 

overwhelmingly contributing to the next generation. A skewed distributions of reproductive 

success is usually found in parentage-based studies on conifers (e.g. González‐Martinez et 

al., 2006; Lian et al., 2008; Piotti et al., 2009; Steinitz et al., 2011; Leonarduzzi et al., 2016), 

broad-leaves species (e.g. Aldrich and Hamrick, 1998; Schnabel et al., 1998; Moran and 

Clark, 2012; Gerzabek et al., 2017; Oddou-Muratorio et al., 2018a) and also herbaceous 

plants (e.g. Meagher and Thompson, 1987). Apart from this finding that was somehow 

expected, the main step forward offered by my work is a detailed investigation of the 

potential phenotypic determinants of both male and female reproductive success. 
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To my knowledge, in Picea abies the relationship between reproductive success and 

potential phenotypic determinants was investigated only by Piotti et al. (2009), that found 

no correlation between tree size and reproductive success in a population at the tree-line. 

Few others paternity-based studies were made on this species but they aimed only at 

estimating pollen immigration rates from external sources in seed orchards (Paule et al., 

1993; Pakkanen et al., 2000; Burczyk et al., 2004). Here, I assessed the sex-specific effects 

of a large set of dendrophenotypic traits on individual reproductive success. Age, average 

BAI and growth-climate correlations with mean temperature of the previous vegetative 

season were found to be consistently associated with reproductive success. I decided to focus 

the discussion on findings which were consistent between the two statistical approaches 

used, while overlooking other results that were method-dependent. 

 

4.4.1 Beyond diameter as a phenotypic determinant of reproductive success 

Most parentage-based studies aimed at assessing the determinants of reproductive success 

used tree diameter as phenotypic trait to be correlated with individual fitness (e.g.; Oddou-

Muratorio et al., 2005, 2008; Klein et al., 2008; Chybicki and Oleksa, 2018). Diameter is a 

soft trait that can be easily measured (Hodgson et al., 1999), but it is also a very rough 

representation of how a tree copes with its environment. Diameter results from the interplay 

of a multitude of intrinsic and extrinsic factors, and it is mainly determined by age and 

growth rate of a tree (indeed, it is basically their product) (Chybicki and Oleska, 2018). For 

these reasons, carefully selecting the phenotypic variables to be correlated with reproductive 

success is crucial not to confound the effects of different processes, such as aging and tree 

annual productivity. Quantifying both the effects of age and growth rate on individual 

reproductive success is particularly relevant for long-lived species forming age-structured 

natural populations, such as forest trees, for which mere measures of tree size are considered 

potentially misleading proxies of fitness (Younginger et al., 2017). Through 

dendrochronological techniques it is indeed possible to simultaneously assess trees’ age and 

growth rate. Growth rate is usually calculated in terms of average TRW or average BAI. 

Describing growth rate through BAI instead of TRW has some advantages. BAI better 

represents the absolute growth rate of stemwood biomass (Hember et al., 2015) and it is less 

influenced by geometric constraints due to the age-related increase of stem circumference 

(Biondi and Quedan, 2008) with respect to linear measurements such as TRW. Therefore, 

BAI is usually recommended to evaluate growth differences among years (Biondi and 

Quedan, 2008). BAI is characterized by an age-related sigmoid trend: comparing average 

BAI of trees of different ages may be misleading. In this study, I took advantage of a 
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modelling approach to disentangle the effects of both age and average BAI. Such approach 

allowed me to i) evaluate the effect of a single variable ceteris paribus (i.e. isolating the 

relative contribution of each variable while holding constant the effects of the others) and ii) 

to check for potential collinearity between variables. 

 

4.4.2 Age and growth rate effects on reproductive success 

The joint effects of age and growth rate on reproductive success have been rarely 

investigated in forest tree species (González-Martínez et al., 2006; Moran and Clark, 2012). 

To my knowledge, this is the first multi-site parentage-based study aimed at disentangling 

such effects in conifers. A previous study evaluated the effects of tree size, age and growth 

on female reproductive success in a single Pinus pinaster population (González-Martínez et 

al., 2006). These authors found that reproductive success was neither associated to tree age 

nor to diameter increment in the 10 years before sampling, while it was highly, positively 

influenced by diameter and size of cone crop. In red oaks, Moran and Clark (2012) found a 

hump-shaped relationship between female reproductive success and both age and growth 

rate. However, their statistical inferences were based on a small subsample of trees for which 

these phenotypic traits were scored (34/51 out of 317 for age and growth, respectively). This 

implies, for example, that the hump-shaped relationship between female reproductive 

success and age founded in their study might be driven by the only very old sampled tree 

(approx. 170 yrs) which had a low number of assigned seedlings. In fact, the relationship 

between age and reproductive success seemed to increase linearly at least in the age interval 

for which heteroscedasticity was not problematic (between 70 yrs and 110 yrs). An 

advantage of the large number of individuals sampled and phenotyped for my work (518 

trees from five plots) was the low heteroscedasticity due to the scarce sampling of extreme 

values of covariates. 

Consistently across methods, average BAI had a positive effect on both female and male 

reproductive success. This means that faster growing trees have produced a larger number 

of surviving offspring, both through the male and female function. Such finding excluded a 

possible trade-off between growth rate and reproductive success, as previously hypothesized 

by Moran and Clark (2012) in red oaks. Although a negative correlation between radial 

growth rates in previous years and cone production has been found in conifers (e.g. Pukkala, 

1987; Davi et al., 2016), my results suggested that, at least in Norway spruce, those trees 

that had been able to invest a larger amount of resources in growth (with respect to the 

population average) have had an advantage in terms of lifetime fitness. A positive and 

significant effect of tree size on reproductive success has been often found in conifers (e.g. 
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Picea glauca, Schoen and Stewart (1986); Pinus pinaster, González-Martínez et al., (2006); 

Abies sachalinensis, Lian et al. (2008); Abies alba, Leonarduzzi et al. (2016); Taxus baccata, 

Chybicki and Oleska (2018)) but not accounting for the effect of age might have misguided 

the interpretation of such relationship, as explained earlier. The focus of my study on the 

effect of individual growth rate given the effect of other predictors (in particular, age) 

changed the perspective on the relationship between growth and reproductive investment 

with respect to population-level researches (Obeso, 2002). At the population level, 

reproduction is costly and reduces vegetative growth, at least for a limited period of time 

(e.g. Pukkala, 1987; Obeso, 2002; Petit and Hampe, 2006; Davi et al., 2016). For example, 

low radial growth rates in previous years were associated to higher cone production in silver 

fir (Davi et al., 2016), whereas masting years determined a 15-20% reduction of diameter 

growth in Norway spruce (Pukkala, 1987). When this relationship was analysed at the 

individual level, as in my case, a positive effect of growth rate on reproductive success was 

shown. The positive effect is extended to the entire tree lifetime and it might determine a 

higher fitness in evolutionary terms on the long-term (i.e. a higher genomic heritage in the 

next generation). For instance, these individuals may better compensate costs of 

reproduction by increasing their resource intake and/or developing other compensatory 

mechanisms (Tuomi et al., 1983; Obeso, 2002). It should be stressed that my study was not 

aimed at tracking the costs of reproduction at specific years or masting events. Not knowing 

when the seeds that originated the sampled seedlings were produced, I could not calculate 

trade-offs between costs and gains of reproduction in single reproductive seasons. On the 

contrary I could quantify individual lifetime fitness by providing a snapshot relative to the 

time period covered by the sampled seedling cohort. However, the indications emerging 

from my study showed that a higher reproductive success was associated to a larger lifetime 

growth rate, despite the possible reproductive costs in terms of growth that trees might 

experience. 

Age had a positive effect on reproductive success as well. The shape of this relationship was 

different among sexes: there was a quadratic dependency with downward concavity for 

female reproductive success, whereas the relationship was linear for male reproductive 

success. On the “father” hand, this age-related increase in reproductive success was likely 

determined by the higher number of reproductive seasons that each tree experienced 

throughout its lifetime. This explanation was previously proposed by Schnabel et al. (1998) 

that, using diameter as a proxy for age, found a positive effect on female reproductive 

success of Gleditsia triacanthos. However, diameter is not necessarily a good proxy of tree 

age. For example, Blum (1961) and Gibbs (1963) reported a large age variation between 
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trees of the same diameter in hardwood trees. In Norway spruce, diameter and age can be 

weakly related because of the period of slow growth during juvenile life stages under the 

dense shade of adult tree canopies (Piussi, 1979) or because of peculiar ecological conditions 

(e.g. at the upper forest limit, as reported by Piotti et al., 2009). On the “mother” hand, the 

quadratic term for age included in the GLM was significant indicating that there was an age-

related decrease in reproductive success at ~ 160 years (Fig. 23). Such senescence effect was 

found also by Moran and Clark (2012) that showed how female reproductive success 

declined after ~ 100 years in red oaks. Signatures of reproductive senescence were reported 

by Silvertown et al. (2001) which found an age-related decline of reproductive value in 6 of 

the 65 iteroparous perennial plant species analysed. Female reproductive senescence may be 

due to a reduced seed production with increasing age, coupled with the advancement of 

established seedlings out of the seedling cohort that may increase the local number of 

conspecific competitors (Moran and Clark, 2012). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 23 The black solid line represent the effect of age on individual female reproductive 

success, dashed lines are the limits of the 95% confidence interval. The red point points to 

the age (~ 160 years) beyond which reproductive success started to decrease. 

 

 

4.4.3 The influence of climate sensitivity on reproductive success 

Among the dendrophenotypic traits related to climate sensitivity, PrevT was the only one 

that positively influenced female reproductive success consistently across methods. In a 

context in which sampled trees showed an average slightly negative value of PrevT, such 

positive relationship between reproductive success and PrevT means that those trees that 
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responded more positively (or less negatively) to mean temperature of the previous 

vegetative season produced more offspring. Although Norway spruce has a very large 

among-site variation in its climate responses (Makinen et al., 2002; Lebourgeois, 2007), an 

average negative climate-growth correlation with temperature of the previous summer has 

been often documented (e.g. Miina 2000; Makinen et al., 2002; Carrer et al., 2012). Such 

negative correlation can be partly explained by the fact that, in boreal trees, high temperature 

during the latter part of the previous summer promotes flowering during next summer (Tirén, 

1935; Lindgren et al., 1977; Pukkala et al., 2010) and that significant growth reduction can 

be associated to these masting years (e.g. Chalupka et al., 1975; Pukkala, 1987). However, 

it is essential to highlight that growth-climate correlations were generally calculated at the 

population level, thus preventing to depict the entire range of individual climate responses 

(Carrer, 2011). When such climate responses were investigated at the individual level, a 

large inter-individual variation was found (Carrer, 2011; Avanzi et al., 2019). Among this 

wide spectrum of climate responses, my results pointed out that trees which better handle 

potential growth limitations due to the temperature of the previous vegetative season were 

the most successful in terms of lifetime fitness. As explained before, this might represent a 

mechanism to compensate the costs of reproduction (Tuomi et al., 1983; Obeso, 2002) in 

Norway spruce. 

 

4.4.4. Sex-specific strategies for increasing reproductive success 

Differential effects of phenotypic traits on reproductive success between sexes have been 

rarely investigated in studies based on genetic markers, most of which aimed at assessing 

only male reproductive success by paternity analysis. Moreover, even in parentage-based 

studies high pollen immigration rates may strongly reduce the sample size of gametes 

assigned to local fathers thus impeding a thorough analysis of male selection gradients (e.g. 

González-Martínez et al., 2006). A recent study evaluated the ecological determinants of 

male vs. female individual fecundities in three F. sylvatica stands by applying a Bayesian 

framework to paternity and parentage analyses (Oddou-Muratorio et al., 2018a). These 

authors found that both female and male fecundities increased with tree size and decreased 

with density, but that the details of these effects were sex-specific. In fact, male fecundity 

was positively associated to the sum of diameters of stems of individual genets, while female 

fecundity to the diameter of the largest stem, suggesting that larger fecundities were achieved 

by sex-specific strategies. In particular, gains in male fecundity were achieved by 

incrementing tree crown (i.e. several small stems) to likely increase flower production and/or 

maximize pollen dispersal. By contrast, gains in female fecundity could require a larger 
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investment in both aerial and underground biomass (i.e. a bigger main stem) to increase 

resources for seed production. 

In my study, I found that average BAI influence female and male reproductive success in a 

similar manner (i.e. with a similar slope, whatever the approach). On the other hand, the 

effect of age was sex-specific. There was a quadratic dependency with downward concavity 

for female reproductive success, whereas the relationship was linear and positive for male 

reproductive success. Although cone production does not decline with age in other conifers 

(e.g. Viglas et al., 2013; Davi et al., 2016), a similar senescence effect on reproductive 

success associated to the female function was interpreted in oaks as an age-related reduction 

of the seed crop (Moran and Clark, 2010), possibly due to the higher unit costs of seed vs. 

pollen production (Sato, 2004). Indeed, possible larger costs of seed production were also 

highlighted by the already discussed positive effect of PrevT on female reproductive success 

only. As seed production requires a substantial investment of resources, those mother trees 

that managed to develop a larger aerial and underground biomass, regardless potential 

growth limitations, might be the most successful in terms of lifetime fitness (Oddou-

Muratorio et al., 2018a). 

 

4.4.5. Conclusions and outlook 

Understanding the phenotypic basis of reproductive success is a crucial topic in evolutionary 

research. To this aim, combining parentage analysis with a dendrophenotypic 

characterization of putative parents offers the unique opportunity of linking forest trees’ 

growth performances and their evolutionary gains. In order that results can be generalized at 

least at the regional scale, such approach has requirements that strongly limits its practical 

implementation. First, the experimental set-up is resource- and time-consuming and the low 

number of offspring assigned to local parents often limits further analyses on reproductive 

success (Younginger et al., 2017). Secondly, if it is not properly replicated, it can only 

provide idiosyncratic evidence. A handful of multi-site studies aimed at elucidating 

phenotypic and ecological determinants of reproductive success were performed in broad-

leaves (Moran and Clark, 2012; Piotti et al., 2012; Bontemps et al., 2013; Gauzere et al., 

2013; Gerber et al., 2014; Oddou-Muratorio et al., 2018a) and in conifers (Leonarduzzi et 

al., 2016). Most well-replicated studies were focused on F. sylvatica, which is probably one 

of the most intensively studied species when dealing with reproductive dynamics in natural 

settings (Piotti et al., 2012; Bontemps et al., 2013; Gauzere et al., 2013; Oddou-Muratorio 

et al., 2018a). Such studies led to a thorough and generally coherent description of the 

species reproductive dynamics. Gathering results on replicated sites is the only way to move 
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from case-study evidence towards a generalization at the species level. Here, I have 

presented a detailed investigation of potential determinants of reproductive success in five 

natural populations of Norway spruce. By embracing the change in perspective suggested 

by recent dendrochronological literature to switch from a classical population-based 

approach to a deep individual-based exploration of growth dynamics (Carrer, 2011; Galvan 

et al., 2014; Büntgen, 2019), a large set of dendrophenotypic traits were tested against 

reproductive success in order to i) decouple the effects of aging and tree growth rate and ii) 

evaluate the effects of climate sensitivity on reproductive success. The main findings of my 

work coherently suggest that, regardless the number of reproductive seasons they have been 

through, individuals with the highest lifetime fitness are those keeping general high growth 

rates and, in particular, when temperature of the previous vegetative season might be 

limiting. My study itself suffers from several limitations. The main one is that the five plots 

were not replicates in a statistical sense. Future investigations would certainly benefit from 

a careful selection of highly comparable sites (or altitudinal transects). Moreover, several 

factors that can shape dispersal dynamics were not considered (e.g. tree height, density of 

other species, intensity of competition, flowering phenology) thus leaving open questions 

about how they could interact with the phenotypic and ecological variables tested in this 

study. It should be noted that enlarging the number of covariates also requires a substantial 

increase of the sample size in order to ensure sufficient statistical power. Despite such 

potential refinements of the experimental set-up presented here, I deem that combining 

marker-based measures of fitness and a comprehensive set of dendrophenotypic traits is a 

fruitful strategy to gain deeper insights on reproductive dynamics of forest tree natural 

populations, thus increasing knowledge about the transmission of genetic information across 

generations in Norway spruce. 

 

 

This Chapter resulted in a draft that we will soon submit to New Phythologist. 
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Chapter 5 

 

Do SNP loci putatively under selection have an influence on 

individual reproductive success? 

 

 

5.1 Introduction 

Local adaptation plays a key role in driving populations toward phenotypic and genetic 

optima in response to local environmental conditions (Savolainen et al., 2007). A population 

is indeed considered locally adapted whether it has a higher fitness in its own site than non-

local populations originating from different sites (Clausen et al., 1948; Kawecki and Ebert, 

2004). Investigating whether and how natural populations are adapted to their habitats and 

predicting their potential to cope with future environmental changes are nowadays crucial 

issues, especially in the context of the ongoing climate change. Gathering this information 

is particularly urgent for forest tree species because of their key role in natural systems and 

for the ecosystem services they provide (Bonan, 2008; Allen et al., 2010). In addition, being 

sessile, long-lived organisms with overlapping generations, they are potentially more 

vulnerable to shifts in ecological conditions (Kremer et al., 2012). In fact, although there is 

strong evidence that forest tree populations are generally adapted to local climate (e.g. 

Savolainen et al., 2007), their ability to timely respond to future climatic conditions is still 

debated (e.g. Jump and Peñuelas, 2005; Aitken et al., 2008) as well as the genetic and 

physiological mechanisms involved in their responses to climate are still largely unknown 

(Aubin et al., 2016; Housset et al. 2018). 

The genetic signature of local adaptation can be identified by applying a variety of statistical 

methods (Vitti et al., 2013). A first class of methods is represented by FST-based outlier 

detection tests. The rationale of such methods is that loci under divergent (or homogenizing) 

selection show larger (or lower) variation in allele frequencies among populations than 

neutral genomic regions (Lewontin and Krakauer, 1973). Therefore, potentially adaptive loci 

exhibiting larger or lower FST values than neutral expectations may be indicative of local 

adaptation. However, FST-based methods do not provide any clue about the selective 

pressures that may drive selection (Schoville et al., 2012). For this purpose, environmental 

association analysis (EAA) has been proposed as a fruitful class of methods aimed at 

identifying genetic variants associated with environmental variables (reviewed in Rellstab 
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et al., 2015). By explicitly integrating environmental information into the analysis of 

genomic datasets, such methods have the potential for detecting even subtle adaptive patterns 

that may be not discovered by traditional FST -based tests (De Mita et al., 2013; Rellstab et 

al., 2015). Therefore, FST-based tests and EAA are considered complementary methods for 

the detection of genomic regions potentially under selection (De Mita et al., 2013; de 

Villemereuil et al., 2014). These two classes of methods have been widely used for the study 

of local adaptation in forest tree species, both separately (e.g. Sork et al., 2010; Grivet et al., 

2011; Pluess et al., 2016; Rellstab et al., 2016) and in combination (e.g. Jump et al., 2006; 

Eckert et al., 2010; Brousseau et al., 2016; Sork et al., 2016; Cuervo-Alarcon et al., 2018; 

Ruiz Daniels et al., 2018). 

Once loci putatively under selection have been identified, the subsequent step for elucidating 

their effective relevance in adaptive responses to climate change is their experimental 

validation (Barrett and Hoekstra, 2011; Savolainen et al., 2013). In a pivotal study aimed at 

carrying out such validation approach in forest trees, Jaramillo-Correa et al. (2015) 

undertook these two steps (i.e. identifying molecular markers associated with climate in 

natural populations and testing their effect on fitness in controlled and/or natural conditions). 

To validate the 18 SNP loci found to be associated with climate in Pinus pinaster natural 

populations, they set up a common garden experiment at the hot and dry limit of the species 

ecological niche. They showed that the frequency of locally advantageous alleles was highly 

correlated to survival rates at the population level. Another promising approach to validate 

markers potentially under selection is studying temporal changes of genotypic frequencies, 

i.e. changes in allele frequencies in subsequent life stages (Cuervo-Alarcon et al., 2018; 

Robledo-Arnuncio and Unger, 2018). In this context, parentage-based methods can offer the 

unique advantage of precisely reconstructing the genealogy of specific markers in their 

transmission across generations. This may provide additional insights with respect to mere 

comparison of individuals which are randomly sampled in subsequent age cohorts.  

In this study, patterns of allele frequencies were explored across two study sites to detect 

signals of local adaptation in Norway spruce. In each site, both adult trees and seedlings 

were sampled at distinct elevations (i.e. low and high altitude in Germany; low, intermediate 

and high altitude in Italy) (Table 1). Such experimental design intercepts a large 

heterogeneity in environmental conditions, including differences in temperature and 

precipitation which influence Norway spruce growth performances (Miina, 2000; 

Lebourgeois, 2007; Carrer et al., 2012). All individuals were genotyped with a set of 135 

SNP loci that were putatively located in candidate genes involved in wood formation, growth 

and phenology (Chen et al., 2012b; Pavy et al., 2013; reviewed and selected by Heer et al., 
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2016) (Table 3). My first aim was to identify candidate SNP loci potentially involved in 

adaptive responses both in adults and seedlings. To this purpose, an integrated approach 

based on two FST-based tests (BayeScan, Foll and Gaggiotti, 2008; pcadapt, Luu et al., 2017) 

and one EAA method (Bayenv2, Coop et al., 2010) was used to detect potential signatures 

of selection. SNP loci were considered potentially under selection when detected by at least 

two out of the three methods used. Then, my second and main aim was to assess whether 

these potential outlier SNP loci have any influence on individual fitness. To this purpose, 

individual reproductive success estimated through the analyses described in Chapter 4 was 

regressed against SNP genotypes through a GLM fitting. 

 

5.2 Materials and methods 

Study sites and datasets have been already presented in Chapter 2, sections 2.2, 2.3, 2.4. In 

the following paragraphs, I will describe the environmental variables used for EAA (5.2.1) 

and the three methods used to detect signatures of local adaptation (5.2.2). After that, the 

influence of SNP genotypes on reproductive success was assessed. Such evaluation was 

made both at i) single SNP level by modelling reproductive success as a function of locus 

that were found to be potentially under selection (5.2.3) and ii) at the dataset level by 

applying a variance partitioning approach to evaluate the relative contribution of the entire 

set of SNP loci on individual reproductive success (5.2.4). 

 

5.2.1 Environmental variables 

Climatic data for the reference period 1901-2013 were used as proxies for the selective 

pressures imposed by climate on adult trees, whereas climatic data for the reference period 

1980-2013 were used for the seedlings. The environmental variables included latitude, 

longitude and altitude, as well as annual and growing season total precipitation, and annual 

and growing season mean, maximum and minimum temperature (Table 13). Spearman’s 

rank correlation between all pairs of environmental variables were calculated. 

 

5.2.2 Signatures of local adaptation at SNP loci 

Both FST outlier tests and EAA were used to detect SNP loci that may be putatively under 

selection. All methods that will be described here were applied on adults and seedlings 

separately. Individuals that resulted admixed from the STRUCTURE analysis on SSR 

genotypes (i.e. q1 >0.2 and <0.8) (Fig. 5) were removed from the dataset, that was made up 

of 369 adults and 454 seedlings (Table 2). 
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Table 13. Summary of the environmental variables used for environmental association analysis 

(EAA). 

Abbreviation Description 

Lat Latitude 

Lon Longitude 

Alt Altitude 

MeanAT Mean annual temperature (°C) 

MaxAT Maximum annual temperature (°C) 

MinAT Minimum annual temperature (°C) 

MeanGST Mean temperature of the growing seasona (°C) 

MaxGST Maximum temperature of the growing season (°C) 

MinGST Minimum temperature of the growing season (°C) 

TotAP Total annual precipitation (mm) 

TotGSP Total precipitation of the growing season (mm) 

aFrom April to October 

 

Two different methods were applied for the detection of FST outlier SNP loci, one based on 

a Bayesian approach and the other on a principal component analysis (PCA). The first 

method is implemented in the BayeScan v2.1 software (Foll and Gaggiotti, 2008). It assumes 

an island model where each population diverged from an ancestral gene pool from which it 

shows a certain degree of genetic differentiation, measured by a FST coefficient. The method 

decouples the FST coefficients into a population-specific effect (β), shared by all loci, and a 

locus-specific effect (α), shared by all populations. The presence of selection is inferred if 

the locus-specific effect is necessary to explain the observed divergence. Positive and 

negative values of α suggest diversifying and balancing selection, respectively. BayeScan 

implements these two alternative models (with and without selection, that is with or without 

α, respectively) within a Bayesian framework, using a reversible-jump MCMC algorithm to 

estimate the posterior probabilities of both models. Here, MCMC was made up of 20 pilot 

runs of 1 × 104 iterations each, followed by a burn-in of 5 × 104, a sample size 5 × 104 and a 

thinning of 10 and 20 for adults and seedlings, respectively. Prior odd was set to 10, 

indicating that the neutral model is 10 times more likely than the model with selection. A 

value of 10 is considered reasonable for the identification of candidate loci within a few 

hundreds of markers, according to manual instructions. SNP loci were considered outlier 

whether they showed a significant effect of α under a false discovery rate (FDR) threshold 

of 0.05. 

The second method used for the detection of FST outliers is implemented in the R package 

pcadapt (Luu et al., 2017). It accounts for population structure through PCA, which is 

particularly advantageous when there is evidence of gene flow across populations like in 

forest tree species (De Mita et al., 2013). The rationale behind pcadapt is that differences in 
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allele frequencies among populations, caused by positive selection, are mirrored in 

differences in PCA loadings contributed by different loci. Preliminarily, the number of 

principal component (PC) to be retained (K) was defined by running a PCA with a large 

number of PCs (20 in our case). The best K was chosen as the one showing most of the 

cumulative explained variance, by plotting the percentage of variance explained by each PC 

in decreasing order (i.e. scree plot). Such choice was confirmed by plotting individuals on 

the first two PCs (i.e. score plot) to verify if the grouping is consistent with the chosen K. 

After this preliminary steps, PCA was run setting the number of PCs to the optimal K value. 

Alleles with minor allele frequency (MAF) <5% were removed from the analysis. The 

Mahalanobis distance was used to detect outlier SNPs. A FDR of 0.05 was applied to avoid 

false positives, by using the R package qvalue (Storey et al., 2015). 

For EAA, the correlation between environmental variables and allelic frequencies at SNP 

loci was evaluated using the Bayesian method implemented in the software Bayenv2 (Coop 

et al., 2010; Gunther and Coop, 2013). This method tests for associations, while explicitly 

integrating a covariance matrix of allele frequencies in the model. This allows to explicitly 

take into account the among-population allele frequency correlations due to neutral 

processes. Here, the covariance matrix was calculated as the mean of 20 covariance matrices 

estimated from 20 independent runs of 2×106 iterations each. The correlation between such 

covariance matrix and that of pairwise FST was calculated to check whether the covariance 

matrix well represented the true variance of allele frequencies across populations. Bayes 

factors (BF) were calculated for each SNP against each environmental variable using 1 × 105 

iterations and the covariance matrix as null model. This approach was repeated five times to 

account for instability between runs (Blair et al., 2014). The cut-off for significant BF was 

set to the 99th percentile of the BF distribution. All SNPs with BF greater than such threshold 

were considered significantly associated with the corresponding environmental variable. The 

strength of such associations was evaluated by applying the Jeffreys’ scale of evidence for 

BF (i.e. 3≤ BF ≤10 = substantial selection; 10≤ BF ≤30 = strong selection; 30≤ BF ≤100 = 

very strong selection; BF >100 = decisive selection) (Jeffreys, 1961). 

Results of the three methods (BayeScan, pcadapt, Bayenv2) were compared across methods 

and generations. methods with different demographic assumptions can be used and 

compared, so that common loci detected in consensus are more likely to be real target of 

selection (Li et al., 2012). Here, SNPs that were detected by at least two methods out of the 

three used were considered as likely candidates of loci under selection. For these SNPs, 

genotype frequencies at the plot level were calculated to investigate whether there were 

similar patterns across or within study sites. 
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5.2.3 The effect of SNP loci potentially under selection on reproductive success 

Individual reproductive success was calculated from the parentage assignments obtained by 

the final run of the neighbourhood model (see 4.2.2). The parameters included in this final 

model were genotyping errors, seed and pollen immigration rates, scale parameter of the 

seed dispersal kernel (Table 10) as well as some selection gradients (Table 11). SNPs 

detected by at least two of the methods described in 5.2.2 were investigated as potential 

determinants of individual total (ω), maternal (ψ) and paternal (φ) reproductive success. This 

relationship was assessed by fitting a GLM with negative binomial error distribution to 

account for overdispersion. The starting models were the following: 

𝜔,𝜓, 𝜑 ~ 𝐴𝑔𝑒 + (𝑆𝑁𝑃 ∗ 𝑃𝑙𝑜𝑡) + 𝑆𝑁𝑃2 +  𝜀. (13) 

Different types of selection (e.g. directional, balancing or diverging) were modelled by 

including both a linear and a quadratic term of the individual genotype at the given candidate 

locus (SNP and SNP2), expressed in terms of allelic doses. Tree age was added to take into 

account the number of reproductive opportunities that each tree had throughout its lifetime, 

while plot to account for differences among plots. An interaction term between the candidate 

locus and the plot (SNP:plot) was included to assess if genotypes had different effects across 

plots. Analyses were performed by using the glm.nb function of the R package MASS 

(Venables and Ripley, 2002) in the R suite. To avoid collinearity problems, the variance 

inflation index (VIF) was calculated for each variable of (13) using the R package car (Fox 

and Weisberg, 2011). The variable with the highest VIF was sequentially dropped from the 

starting model until all variables had VIF values <5 (Zuur et al., 2010). The optimal model 

was selected using the Anova function of the R package car. Variables were dropped whether 

the Likelihood Ratio Test on nested models indicated that a simpler model structure was 

more parsimonious. 

 

5.2.4 Relative contribution of the entire set of SNP loci on reproductive success 

A variance partitioning approach (Legendre and Legendre, 2012) was used to evaluate 

whether the entire set of SNP loci had an overall influence on individual total, maternal and 

paternal reproductive success. The rationale of such approach is to assess the relative 

contribution of different sets of explanatory variables on a response data table. Here, three 

sets of explanatory variables were considered, that is i) genetic structure (Gen), ii) spatial 

structure (Spat) and iii) phenotypic characteristics (Phen) (Fig. 24). Genetic structure was 

included through a PCA on SNP genotypes, using the dudi.pca function of the R package 

adegenet (Jombart and Ahmed, 2011). In each plot, only PCs accounting for >70% of the 
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variance in genotypes were used. Spatial structure was modelled by a distance-based Moran's 

eigenvectors map (dbMEM, Dray et al., 2006), which has been proposed as a powerful and 

informative method of spatial analysis by Legendre et al. (2015). In each plot, only the 

statistically significant eigenfunctions modelling positive spatial autocorrelation, as 

estimated by the mem function of the R package adespatial (Dray et al., 2018), were retained. 

Phenotypic characteristics were modelled by using tree age and average BAI, which were 

the most relevant dendrophenotypic features influencing reproductive success according to 

the results of the previous chapter. The relative contribution of genetic and spatial structure 

as well as phenotypic characteristics in explaining the variance of individual reproductive 

success was assessed using the varpart function of the R package vegan (Oksanen et al., 

2018), following the procedure described in Borcard et al. (2011). Such relative 

contributions were expressed in terms of adjusted R2 according to Ezekiel’s formula 

(Ezekiel, 1930), which is: 

𝑅𝑎𝑑𝑗
2 = 1 −

(𝑛−1)

(𝑛−𝑚−1)
(1 − 𝑅2) (14) 

where n is the number of observations and m is the number of explanatory variables (i.e. the 

degrees of freedom of the model). Ezekiel’s adjustment can be used as long as n is much 

larger than m (Borcard et al., 2011). When m > n/2 this adjustment may be excessively 

conservative and the R2 value not reliable. Significance of the variance components was 

calculated through ANOVA-like permutation test for redundancy analysis (RDA) and partial 

redundancy analysis pRDA based on 1× 104 permutations (Legendre and Legendre, 2012). 
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Fig. 24 Conceptual representation by Venn diagram of the variance partitioning of a 

response table by three sets of explanatory variables (Gen: genetic structure; Spat: spatial 

structure; Phen: phenotypic characteristics). The relative contribution of each of these three 

sets of explanatory variables are represented by [a], [b] and [c] fractions, respectively. [d], 

[e], [f] fractions represent the amount of variation explained jointly by two sets of variables, 

while [g] the one explained by all three sets. The amount of unexplained variance 

(Residuals) is represented by [h]. 

 

 

5.3 Results 

 

5.3.1 Relationships between environmental variables 

Spearman’s rank correlation coefficients between environmental variables calculated on the 

two reference periods (1901-2013 and 1980-2013) were strongly consistent (Fig. 25). 

Annual and growing season total precipitation were significantly positively correlated to 

each other. In addition, they were significantly negatively correlated with longitude and 

latitude, while positively with altitude. The annual mean, maximum and minimum 

temperatures were strongly correlated with those of the growing season. 
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Fig. 25 Spearman’s rank correlation coefficient matrices for environmental variables for 

the reference periods 1901-2013 (a) and 1980-2013 (b). Correlation coefficients are 

reported below the diagonal, while the corresponding P values that were <0.05 are reported 

above and indicated with an asterisk (*). 

 

 

5.3.2 Signatures of local adaptation at SNP loci 

Three and four outlier SNP loci were identified by BayeScan for adults and seedlings, 

respectively. (Fig. 26). For all these seven loci, α values were positives, thus indicating 

diversifying selection (Table 14). 

 

Table 14 Summary statistics of the outlier SNP loci identified by BayeScan. 

Stage ID SNP log10PO prob q value alpha 

Adults 36 GQ02805.H15.1.75 1.000 1.000 0.000 1.631 

 52 GQ03209.H09.1.774 0.978 1.656 0.011 1.271 

 109 SB18.686 0.884 0.882 0.046 1.272 

Seedlings 29 GQ0046.B3.E02.1.777 0.881 0.868 0.044 1.181 

 36 GQ02805.H15.1.75 1.000 1.000 0.000 1.615 

 52 GQ03209.H09.1.774 0.966 1.456 0.019 1.226 

 62 GQ03702.D08.1.1408 0.976 1.617 0.012 1.306 
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Fig. 26 Results of the outlier detection made by BayeScan. Outlier SNP loci are reported 

in red. SNP loci were considered outlier whether they showed a significant effect of α under 

a false discovery rate (FDR) threshold of 0.05. 

 

 

Three and 16 outlier SNP loci were identified by pcadapt for adults and seedlings, 

respectively (Fig. 27c; Table 15). Even if scree and score plots indicated K=1 and K=2 as 

the grouping explaining most of the variation of adult and seedling genotypes, respectively 

(Fig. 27a,b), K was set to 2 for both adults and seedlings to account for the results of the 

Bayesian clustering that showed an optimal grouping at K=2 (Fig. 5). 

 

Table 15 Summary statistics of the outlier SNP loci identified by pcadapt. 

Stage ID SNP P value 

Adults 22 FCL1947Contig1.1181 6.1 × 10-6 

 52 GQ03209.H09.1.774 8.0 × 10-17 

 68 GQ03912.E20.1.589 1.2 × 10-10 

Seedlings 2 08Pg04341e.2 1.3 × 10-8 

 8 c89584.g2.i1.197 1.2 × 10-6 

 22 FCL1947Contig1.1181 4.6 × 10-8 

 23 FCL2232Contig1.745 1.7 × 10-7 

 32 GQ01312.B05.2.453 1.3 × 10-5 

 36 GQ02805.H15.1.75 1.4 × 10-4 

 41 GQ02907.H19.1.164 1.5 × 10-7 

 43 GQ03104.H16.1.718 8.3 × 10-6 

 51 GQ03201.F12.1.693 2.2 × 10-3 

 52 GQ03209.H09.1.774 4.8 × 10-11 

 68 GQ03912.E20.1.589 8.4 × 10-3 

 88 P3747.3 6.9 × 10-3 

 95 paP08075.2 7.0 × 10-8 

 98 PBB.PF02309.12.1 7.0 × 10-3 

 103 PGLM2.0624 4.7 × 10-4 

 108 SB18.506 5.8 × 10-6 
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Fig. 27 (a) Scree plots showing the percentage of variance explained by each of the 20 PCs 

tested. (b) Score plots showing the projection of the individuals onto the first two PCs. 

Individuals are colour-coded according to the study site (Italy: light blue; Germany: 

salmon). (c) Manhattan plots showing which SNP loci were considered outlier after 

applying a FDR of 0.05. 

 

The correlation between the covariance matrix calculated by BayEnv2 and that of pairwise 

FST was equal to -0.90 (P <0.001) and to -0.91 (P <0.001) for adults and seedlings, 

respectively. Such high correlation coefficients proved that both covariance matrices well 
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represented the true variance of allele frequencies across populations. The 99th percentile of 

the BF distribution gave me a cut-off value of BF equal to 4.91 and 3.54 for adults and 

seedlings, respectively. Based on such thresholds, a total of 26 statistically significant SNP-

environmental variable associations were identified (Table 16), for a total of seven SNPs 

involved. Annual and growing season total precipitation (TotAP, TotGSP) and minimum 

annual temperature (MinAT) were found in several of these 26 significant associations. The 

other significant associations concerned latitude, longitude and altitude, which were highly 

correlated with TotAP, TotGSP and MinAT (Fig. 25). 

 

Table 16 SNP-environmental variable significant associations identified by Bayenv2. 

Stage ID SNP Variable BF Jeffreys’ scale 

Adults 36 GQ02805.H15.1.75 Lat 13.67 Strong 

   Lon 13.41 Strong 

   Alt 8.61 Substantial 

   TotAP 14.08 Strong 

   TotGSP 13.67 Strong 

 52 GQ03209.H09.1.774 Lat 6.48 Substantial 

   Lon 6.59 Substantial 

   MinAT 5.52 Substantial 

   TotAP 5.39 Substantial 

 104 PGLM2.0690 MinAT 5.01 Substantial 

 109 SB18.686 Alt 6.67 Substantial 

   TotAP 5.83 Substantial 

   TotGSP 6.82 Substantial 

Seedling 29 GQ0046.B3.E02.1.777 Lat 3.60 Substantial 

 36 GQ02805.H15.1.75 Lat 10.38 Strong 

   Lon 10.35 Strong 

   Alt 5.09 Substantial 

   TotAP 9.75 Substantial 

   TotGSP 8.17 Substantial 

 52 GQ03209.H09.1.774 Lat 4.42 Substantial 

   Lon 4.39 Substantial 

   TotAP 3.85 Substantial 

 62 GQ03702.D08.1.1408 Lat 4.31 Substantial 

   Lon 4.39 Substantial 

   MinAT 6.67 Substantial 

 115 WS00841.F23.1.82 Lon 3.54 Substantial 

 

 

Comparing the results from pcadapt, BayeScan and Bayenv2 (Fig. 28), three and four SNPs 

were identified as potential loci under selection by at least two methods in adults and 

seedlings, respectively (Table 17). Of these SNPs, two loci were consistently identified both 
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in adults and seedlings (SNP36, SNP52). Genotype frequencies at the plot level were 

represented in Fig.29. 

 

Fig. 28 Number of SNP loci that were found to be likely under selection in (a) adults and 

(b) seedlings, according to the results of the three methods used. The representation through 

Venn diagram allowed to highlight how many SNP loci were in common across methods. 

 

 

Table 17 SNP loci that were found to be likely under selection with at least two of the three methods 

used to investigate signatures of local adaptation. 

Stage ID SNP Method 

Adults 52 GQ03209.H09.1.774 pcadapt, BayeScan, Bayenv2 

 36 GQ02805.H15.1.75 BayeScan, Bayenv2 

 109 SB18.686 BayeScan, Bayenv2 

Seedlings 36 GQ02805.H15.1.75 pcadapt, BayeScan, Bayenv2 

 52 GQ03209.H09.1.774 pcadapt, BayeScan, Bayenv2 

 29 GQ0046.B3.E02.1.777 BayeScan, Bayenv2 

 62 GQ03702.D08.1.1408 BayeScan, Bayenv2 

 

 

5.2.3 The effect of SNP loci potentially under selection on reproductive success 

None of the three SNPs that were found to be likely under selection in adults (SNP52, 

SNP36, SNP109; Table 17) had a significant effect on total, maternal and paternal 

reproductive success. In all cases, the best model included only age and plot variables.  
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Fig. 29 Genotypic frequencies of the SNP loci putatively under selection in the five plots. 

SNP36 and SPN52 were detected in both adults and seedlings, while the other three loci 

only in one of the two life stages. 
 

 

5.2.4 Relative contribution of the entire set of SNP loci on reproductive success 

Overall, the genetic structure at SNP loci explained a low proportion of the variance of 

individual reproductive success (adjusted R2 ranging from -0.18 to 0.16; Table 19), and its 

effect was never statistically significant (Fig. 30a). Similarly, the contribution of spatial 

structure was also quite low (adjusted R2 ranging from -0.06 to 0.18; Table 19) but 

statistically significant (P <0.05) in four cases out of 15 and marginally significant (P <0.1) 

in one case (Fig. 30b). On the contrary, the most relevant contribution is that of phenotypic 

characteristics (adjusted R2 up to 0.55; Table 19), whose effect was statistically significant 

(P <0.05) in six cases out of 15 and marginally significant (P <0.1) in 3 cases (Fig. 30c). 



84 

 

Table 19 Adjusted R2 values estimated through a variance partitioning approach. These values 

represent the relative contribution of genetic and spatial structure as well as phenotypic 

characteristics in explaining the variance of total, maternal and paternal reproductive success (RS). 

Individual 

fractions 
Plot n m m > n/2?a 

Adjusted R2 

for total RS 

Adjusted R2 for 

maternal RS 

Adjusted R2 for 

paternal RS 

[a] CAMH 113 30 yes 0.06031 0.06772 -0.17833 

[b]   8 yes 0.02156 0.06461 -0.05804 

[c]   2 yes 0.03834 0.03472 0.01437 

[d]   0  -0.03588 -0.03864 0.00033 

[e]   0  -0.01984 -0.01188 -0.00967 

[f]   0  -0.04543 -0.03850 -0.03192 

[g]   0  0.03135 0.01607 0.01886 

[h]     0.94959 0.90590 1.24440 

[a] CAME 77 23 yes -0.04827 -0.03373 -0.03640 

[b]   6 yes 0.15442 0.18154 0.11541 

[c]   2 yes 0.33685 0.41114 0.12983 

[d]   0  0.06712 0.06930 -0.00126 

[e]   0  -0.09499 -0.19163 0.00493 

[f]   0  -0.06529 -0.14728 0.02520 

[g]   0  -0.03540 0.01842 -0.03987 

[h]     0.68556 0.69223 0.80216 

[a] CAML 25 12 no -0.04592 -0.07338 -0.07687 

[b]   4 yes 0.02173 0.00108 0.07258 

[c]   2 yes 0.49883 0.54902 -0.07171 

[d]   0  0.10617 0.10810 -0.00037 

[e]   0  0.31417 0.26045 0.40297 

[f]   0  -0.18349 -0.23913 0.20265 

[g]   0  -0.37456 -0.31879 -0.42843 

[h]     0.66305 0.71266 0.89918 

[a] BAVH 77 27 yes -0.00419 0.01688 0.07313 

[b]   5 yes -0.00038 0.00992 -0.06367 

[c]   2 yes 0.16609 0.14135 0.10320 

[d]   0  0.07506 0.07295 0.04707 

[e]   0  -0.00974 -0.01300 0.01488 

[f]   0  -0.10849 -0.11065 0.02380 

[g]   0  0.01568 0.02062 -0.01251 

[h]     0.86597 0.86194 0.81410 

[a] BAVL 53 19 yes 0.06429 0.05768 0.15870 

[b]   4 yes 0.15591 0.08964 0.13912 

[c]   2 yes -0.02588 -0.02408 -0.01599 

[d]   0  0.02343 0.08336 -0.11754 

[e]   0  0.08753 0.05069 0.13702 

[f]   0  0.01492 0.00959 -0.00554 

[g]   0  -0.01987 -0.00190 -0.08688 

[h]     0.69967 0.73503 0.79111 
aEzekiel’s formula (Ezekiel 1930) for “adjusting” the R2 can be used as long as the degrees of freedom of the 

model (m) are much smaller with respect to the number of observations (n). Here, I reported whether our data 

follow the rule of thumb reported in Borcard et al. (2011), that is that m should not exceed n/2. 
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Fig. 30 (a) Effect of genetic structure (Gen) on total, maternal and paternal reproductive success while controlling for spatial structure (Spat) and phenotypic 

characteristics (Phen). (b) Effect of spatial structure (Spat) while controlling for genetic structure (Gen) and phenotypic characteristics (Phen). (c) Effect of phenotypic 

characteristics (Phen) while controlling for genetic (Gen) and spatial structure (Spat). Statistical significance of the variance components, assessed through ANOVA 

like permutation tests for partial redundancy analysis (pRDA), is reported in the heat maps. 
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5.4 Discussion 

In the present chapter, I investigated the adaptive genetic variation of Norway spruce natural 

populations in order to detect genomic regions potentially under selection. The three 

methods used to detect signals of local adaptation (e.g. two FST-based tests and one EAA) 

identified different sets of outlier SNPs, but partly overlapping. In particular, three and four 

SNPs were detected as putative loci under selection in adults and seedlings, respectively. 

Two SNPs were consistently identified as markers putatively under selection both in adults 

and seedlings. Along with such a handful of SNP loci, I identified the environmental 

variables that are potentially driving the adaptive process, i.e. annual and vegetative season 

total precipitation and minimum annual temperature. Finally, I regressed individual 

reproductive success against the genotypes at these SNP loci that were likely under selection. 

No significant relationship between such SNP loci and individual reproductive success was 

found. 

Forest tree species have recently received extensive attention regarding local adaptation and 

landscape genomics. In conifers, there are several studies aimed at identifying loci which are 

likely involved in adaptive responses to environmental selective pressures (e.g. Namroud et 

al., 2008; Eckert et al., 2009, 2010; Grivet et al., 2011; Mosca et al., 2012, 2014; Prunier et 

al., 2012; Brousseau et al., 2016; Ruiz Daniels et al., 2018). Among them, some focused 

their investigations precisely on the adaptive genetic variation of Norway spruce (Chen et 

al., 2012, 2016; Karlgren et al., 2013; Kallman et al., 2014; Scalfi et al., 2014; Di Pierro et 

al., 2016). For instance, Scalfi et al. (2014) genotyped 27 Norway spruce populations located 

in central and south-east Europe with a set of 384 SNPs. At such spatial scale and by 

integrating FST-based tests and environmental associations, these authors identified six SNPs 

as putatively under selection markers and confirmed previous evidence that temperature is a 

relevant variable in driving the selective process in conifers (Eckert et al., 2010; Wang et 

al., 2010; Alberto et al., 2013). The same set of SNPs of Scalfi et al. (2014) was also used 

by Di Pierro et al. (2016), who genotyped 24 natural populations across the Italian part of 

the species range. In this work, 13 SNPs were overall detected as potentially under selection 

loci, three of which have already been found by Scalfi et al. (2014) at a broader spatial scale. 

In this second study, precipitation was significantly associated to population genotype 

frequencies, thus emerging as a relevant variable in shaping Norway spruce adaptive 

responses. In my study, I genotyped five Norway spruce populations from central and south-

east Europe with an initial set of 135 SNPs. Although the number of populations was much 

lower with respect to the above-mentioned studies, it should be noted that the number of 

individuals per population were generally higher in my study (N ranging from 25 to 123), 
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leading to overall comparable sample sizes. None of the SNPs that I found to be likely under 

selection has been reported as putative outlier in previous studies performed in Norway 

spruce. However, the SNP datasets used in this kind of studies often poorly overlapped, 

preventing correct comparisons of the results. Nevertheless, I found that genotype 

frequencies were mainly associated to annual and growing season total precipitation (TotAP, 

TotGSP) and minimum annual temperature (MinAT). TotAP and TotGSP were themselves 

highly correlated, meaning that the genotype-environment correlations probably intercepted 

the same signal. On the contrary, MinAT was weakly related to both TotAP and TotGSP. 

Such evidence suggested that both temperature and precipitations were relevant in shaping 

Norway spruce adaptive responses. This might be linked to the fact that the species is 

sensitive to soil water supply (Sutinen et al., 2002) and to early spring temperatures 

regulating bud burst (Partanen et al., 1998). 

Of the five SNPs detected as putatively under selection loci, only SNP29 and SNP62 were 

successfully found to be in annotated genes. Such information was derived from Heer et al. 

(2016) that analysed 3257 SNPs selected from various SNP resources and annotated them 

using P. abies reference genome (Nystedt et al., 2013). SNP62 (GQ03702.D08.1.1408) was 

found to be in the gene sequence MA.10228148g00100, which encodes for a transcriptional 

regulator factor (TRAF). In mammals, TRAF proteins are involved in protein processing 

and ubiquitination and in immune activation and responses to stresses as well (Zapata et al., 

2007) while their biological roles are poorly defined in plants. In Arabidopsis thaliana, 

Huang et al. (2016) identified two TRAF proteins (MUSE13 and MUSE14) that took part in 

regulating a complex molecular pathway involved in pathogen resistance, autoimmunity and 

homeostasis maintenance. On the other hand, SNP29 (GQ0046.B3.E02.1.777) was found 

within the gene sequence MA.10426168g0010, that encodes for an AA2 protein 

(PlantCAZyme; Ekstrom et al., 2014). This family of proteins contains lignin-modifying 

peroxidases that catalyses a large number of oxidative reactions. Although the molecular 

mechanisms are still poorly uderstood, there is some evidence that this protein family may 

increase the expression of defensive mechanisms against pathogens in plants (Stintzi et al., 

1993; Karthikeyan et al., 2005). 

Although selected among candidate genes putatively involved in wood formation, growth 

and phenology (Chen et al., 2012b; Pavy et al., 2013; Heer et al., 2016), the number of 

genetic markers tested in this work was low (135 SNPs). However, it should be noted that 

the genomic resources available were quite limited for conifers. For instance, the first conifer 

genome assemblies were published only recently (Norway spruce: Nystedt et al., 2013; 

white spruce: Birol et al., 2013; loblolly pine: Zimin et al., 2014), because of their enormous 
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genome sizes (20-30 Gb) and high number of repetitive sequences. The road toward fully 

assembled and annotated conifer genomes still presents significant technological challenges 

(De La Torre et al., 2014). Another limitation of this study was the fact that the five plots 

were not true replicates in a statistical sense. Future investigations would certainly benefit 

from a careful selection of highly comparable altitudinal transects, involving a higher 

number of population replicated across a broad spatial scale. As an example, Brosseaux et 

al. (2016) fruitfully investigated patterns of local adaptation to altitude in silver fir by 

analysing nine populations pairs (low vs. high elevation) along the southern edge of the 

species range. 

Despite these limitations, the most relevant aspect of this work lies in the opportunity of 

testing putatively under selection loci against individual reproductive success. Both GLM 

fitting and variance partitioning consistently showed that reproductive success was strongly 

associated with the phenotypic features included in the analyses (i.e. age and average BAI), 

confirming the results of Chapter 4. Also micro-environmental variation had a marginal 

influence, at least in some stands, partially confirming the results of Chapter 3. On the 

contrary, there is no evidence that any SNP loci influenced individual reproductive success. 

This lack of statistical evidence may be partially due to the fact that genotype frequency data 

at SNP loci may suffer from heteroscedasticity, due to the generally low frequency of the 

minor allele. To this purpose, sample size should be larger to get greater statistical power. 

Here, I lost part of this power because many individuals were discarded after the filtering 

procedure or because they were considered genetically admixed and, as such, excluded from 

the analysis. Nonetheless, reconstructing the genealogy of specific markers in their 

transmission across generations and directly evaluating their effects on reproductive success 

might be a straightforward strategy to validate the results from classical approaches to the 

study of local adaptation. 

 



89 

 

Chapter 6 

 

Conclusions and future insights 

 

 

In this PhD thesis, I presented a comprehensive framework to jointly analyse 

dendrochronological and genetic data. The combination of selected approaches contributed 

to elucidate the tight link between growth and reproductive dynamics within Norway spruce 

natural populations. 

The analytical framework developed in Chapter 3, aimed at assessing the relative importance 

of potential growth determinants, successfully captured a large amount of the variance in 

growth, which was mainly due to inter-individual differences. This first result highlighted 

how commonly used dendrochronological procedures aimed at removing inter-individual 

variation (e.g. standardization, averaging individual data to obtain site chronologies) might 

be risky when the focus of the study is understanding the effect of growth determinants and 

quantifying responses to climate. In this regard, individual-based modelling approaches are 

particularly suitable for taking into account such inter-individual variation, which lies at the 

basis of evolutionary processes. Inter-individual variance in response to climate is indeed 

relevant in determining the fate of forest tree species in the ongoing global change scenarios. 

The other main finding of this chapter is that microenvironmental features are more relevant 

than genetic similarity in determining similar growth patterns. However, a large proportion 

of phenotypic variance remained unexplained requesting further investigations. For instance, 

focusing on candidate genes for growth could increase our understanding of such large inter-

individual variation and its relationship with spatial processes. 

Investigating the phenotypic basis of reproductive success shed some light on the 

evolutionary constraints acting on Norway spruce life history traits. Indeed, the main 

findings of Chapter 4 consistently suggested that, regardless the number of reproductive 

seasons they have been through, individuals with the higher lifetime fitness had higher 

growth rates, in particular when temperature of the previous vegetative season is potentially 

limiting. This means that individuals which grew more throughout their entire lifetime had, 

on the long-term, a higher fitness in evolutionary terms, because they may better compensate 

reproductive costs by increasing their resource intake and/or through other compensatory 

mechanisms. It seems straightforward to identify competition as the ecological process that 

translates the higher average lifetime growth rates into a larger reproductive success. In the 



90 

 

future, the effects of other phenotypic (e.g. tree height, flowering phenology, wood 

anatomical features) and ecological (e.g. competition, drought and other extreme climatic 

events) determinants of reproductive success, as well as their interactions, should be 

integrated to better characterize the intricate network of processes shaping the individual 

evolutionary outcome of forest trees. 

The investigation of the adaptive genetic variation of Norway spruce natural populations 

provided new insights on genes that may be involved in processes leading to local adaptation. 

A total of five SNPs were found to be likely under selection in both adult and seedling 

cohorts. The most relevant aspect emerging from this chapter was the methodological 

approach to test whether such loci influence individual reproductive success. Although no 

evidence of such an influence was found, I showed how evaluating the effect of SNP loci on 

reproductive success might be a straightforward strategy to validate results from classical 

approaches to the study of local adaptation. Further investigations based on a larger number 

of SNPs and a larger sample size will be necessary to gain sounder results. In addition, 

genotype–phenotype association analysis might be applied to identify genomic regions that 

are potentially involved in the architecture of adaptive traits. 

In general, future investigations aimed at elucidating the link between growth and 

reproductive dynamics would certainly benefit from a careful selection of highly comparable 

sites. Gathering results on well-replicated sites is the only way to move from case-study 

evidence towards generalizations at the species level. However, it should be noted that such 

experimental set-up is resource- and time-consuming and that replicates would require a 

significant further effort. Besides these potential refinements, I deem that combining genetic 

and dendrochronological data within a parentage analysis framework is fruitful to gain 

deeper insights on growth and reproductive dynamics of natural populations and to shed new 

light on the transmission of potentially adaptive genetic variation across generations. 
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Appendix 1 

 
IDa SNP Scaffold Gene Type Probe 

1 0.10267.01.11641.contigContig1.154 MA.139238 MA.139238g0010 NonSyn T/C 

2 08Pg04341e.2 MA.135525 MA.135525g0010 Intron T/A 

3 08pg08102j MA.89683 MA.89683g0010 Syn A/C 

4 08pg15170h MA.101422 MA.101422g0010 NonSyn A/G 

5 AP2L3.2319 MA.2193 MA.2193g0020 Intron A/G 

6 c74958.g1.i1.1765.HT MA.10428140  Intergenic T/C 

7 c80226.g1.i1.820.HT MA.10436298  Intergenic T/G 

8 c89584.g2.i1.197 MA.90007  Intergenic A/C 

9 CDF1.merged.p1.469 MA.2474564 MA.2474564g0010 Syn A/G 

10 CL1414Contig1.01.11984.contigContig2.201 MA.133096 MA.133096g0010 Intron T/A 

11 CL22Contig1.934 MA.30402 MA.30402g0010 Syn A/G 

12 CL3444Contig1.02.9029.contigContig1.407 MA.49382 MA.49382g0010 Intron A/C 

13 CL697Contig1.1468 MA.12670  Intergenic C/G 

14 CL866Contig1.01.10993.contigContig1.209 MA.10234164 MA.10234164g0010 Intron A/G 

15 CL995Contig1.252 MA.124514  Intergenic A/C 

16 FCL1104Contig1.834 MA.4218  NA T/C 

17 FCL1156Contig1.373 MA.10435905 MA.10435905g0030 Syn T/C 

18 FCL1488Contig1.1814 MA.37369 MA.37369g0010 Syn A/G 

19 FCL1522Contig1.865 MA.10427843  NA T/G 

20 FCL164Contig1.1221 MA.59480 MA.59480g0010 Syn T/C 

21 FCL1942Contig1.292 MA.10426376  Intergenic T/C 

22 FCL1947Contig1.1181 MA.657535   T/C 

23 FCL2232Contig1.745 MA.7211   T/C 

24 FCL697Contig1.1758 MA.109548  Intergenic T/C 

25 GCAT.2.0.GQ0131.B3.H20.EPB.03 MA.8519251 MA.8519251g0010 NonSyn T/A 

26 GCAT.2.0.GQ0172.B3.r.H11.EPB.06 MA.58914 MA.58914g0010 Intron A/G 

27 GCAT.2.0.GQ02010.B3.r.E06.EPB.02 MA.10427662 MA.10427662g0010 Syn A/G 

28 GQ00410.P08.1.111 MA.2784169 MA.2784169g0010 NonSyn A/G 

29 GQ0046.B3.E02.1.777 MA.10426168 MA.10426168g0010 Syn A/C 

30 GQ0062.A21.1.168 MA.68129 MA.68129g0010 Syn T/C 

31 GQ0082.C07.1.844 MA.10426168 MA.10426168g0010 Syn A/G 

32 GQ01312.B05.2.453 MA.913693 MA.913693g0010 NonSyn A/C 

33 GQ0207.I07.1.41 MA.59732 MA.59732g0010 Syn A/G 

34 GQ0256.F18.1.547 MA.185096 MA.185096g0010 Syn G/C 

35 GQ02803.I06.3.2091 MA.10433428  Intergenic T/A 

36 GQ02805.H15.1.75 MA.10430373  Intergenic T/C 

37 GQ02811.M07.1.118 MA.10436794  Intergenic T/G 

38 GQ02818.M02.1.334 MA.93052 MA.93052g0010 Syn A/G 

39 GQ02830.K01.1.272 MA.57955 MA.57955g0010 NonSyn T/C 

40 GQ02901.G01.3.181 MA.91105  Intergenic A/G 

41 GQ02907.H19.1.164 MA.10431084   A/G 

42 GQ03102.M11.1.991 MA.19866  Intergenic A/G 

43 GQ03104.H16.1.718 MA.8230652  Intergenic T/C 

44 GQ03109.J19.1.782 MA.10427740  Intergenic A/C 

45 GQ03109.L07.1.719 MA.295515  Intergenic T/C 

46 GQ03110.O16.1.1413 MA.2382  Intergenic T/C 

47 GQ03111.D17.1.1106 MA.10426088  Intergenic A/G 
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48 GQ03111.P07.1.80 MA.74264 MA.74264g0020 Syn T/C 

49 GQ03114.H08.1.159 MA.58159 MA.58159g0010 NonSyn T/C 

50 GQ03116.D16.1.66 MA.363801 MA.363801g0010 Syn T/C 

51 GQ03201.F12.1.693 MA.5933  Intergenic T/C 

52 GQ03209.H09.1.774 MA.58340  Intergenic A/G 

53 GQ03224.A01.1.188 MA.75636 MA.75636g0010 Syn T/C 

54 GQ03230.M01.1.766 MA.10434080 MA.10434080g0010 NonSyn A/G 

55 GQ03237.D15.1.370 MA.121869  Intergenic A/G 

56 GQ03407.I03.1.21 MA.55851 MA.55851g0010 NonSyn T/C 

57 GQ03412.L23.1.1340 MA.942991  NA T/C 

58 GQ03414.P13.2.1203 MA.10436085  Intergenic A/G 

59 GQ03604.O12.1.630 MA.8396769   A/G 

60 GQ03605.F01.2.643 MA.15776   A/G 

61 GQ03614.F14.1.1273 MA.8910932  Intergenic A/G 

62 GQ03702.D08.1.1408 MA.10228148 MA.10228148g0010 Syn A/G 

63 GQ03712.F05.1.170 MA.141 MA.141g0010 NonSyn A/G 

64 GQ03716.M20.1.928 MA.9130892  Intergenic T/C 

65 GQ03719.P11.1.1591 MA.10433955 MA.10433955g0020 Intron A/G 

66 GQ03815.P06.1.1333 MA.92132 MA.92132g0010 Syn A/G 

67 GQ03819.E08.1.554 MA.281207   T/C 

68 GQ03912.E20.1.589 MA.14427 MA.14427g0010 Syn T/C 

69 GQ04001.H11.3.589 MA.10433187 MA.10433187g0010 Syn T/C 

70 GQ04013.J19.4.1537 MA.10434838  Intergenic T/C 

71 MA.10219080g0010.579.C.T MA.10219080 MA.10219080g0010 Syn T/C 

72 MA.103581g0010.6996.C.T MA.103581 MA.103581g0010 Syn T/C 

73 MA.10430155g0010.2606.T.G MA.10430155 MA.10430155g0010 Intron T/G 

74 MA.10430492g0030.1681.A.T MA.10430492 MA.10430492g0030 NonSyn T/A 

75 MA.115536g0010.2534.A.C MA.115536 MA.115536g0010 NonSyn A/C 

76 MA.654072g0010.1774.G.T MA.654072 MA.654072g0010 NonSyn A/C 

77 MA.7133366g0010.479.T.C MA.7133366 MA.7133366g0010 Syn A/G 

78 MA.91554g0010.2937.C.T MA.91554 MA.91554g0010 Syn T/C 

79 MA.96461g0010.2684.T.C MA.96461 MA.96461g0010 Intron T/C 

80 NODE.2238.length.196.cov.80.989799.117 MA.10434331  Intergenic T/G 

81 NODE.32475.length.733.cov.91.013641.619 MA.4671  Intergenic A/G 

82 NODE.4223.length.996.cov.63.923695.391 MA.10435805 MA.10435805g0010 Syn A/G 

83 NODE.4953.length.1279.cov.202.146210.373 MA.10435489 MA.10435489g0010 Syn A/G 

84 P03706.2 MA.124661 MA.124661g0010 Intron A/G 

85 P04801.5 MA.41523 MA.41523g0010 Intron A/G 

86 P06971.3 MA.104065 MA.104065g0020 Syn A/G 

87 P07840F1.3 MA.9889985  Intergenic T/C 

88 P3747.3 MA.93259 MA.93259g0010 Intron T/C 

89 pa08pg01018e MA.212053   T/G 

90 Pabies1391.224 MA.10591 MA.10591g0010 NonSyn A/T 

91 PabiesCry.823 MA.10428291 MA.10428291g0010 NonSyn G/C 

92 PabiesMYB2.3545 MA.115536 MA.115536g0010 NonSyn A/G 

93 PabiesSb62.472 MA.19619 MA.19619g0010 Syn A/G 

94 PabiesZTL.514 MA.70291 MA.70291g0010 Syn A/G 

95 paP08075.2 MA.394947 MA.394947g0010 Syn T/C 

96 PaPHYO.RIII336 MA.6718  Intergenic A/C 

97 PaPHYO.RIV211 MA.6809 MA.6809g0030 Intron T/C 
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98 PBB.PF02309.12.1 MA.53529  Intergenic T/A 

99 PGLM0.0295 MA.10260690 MA.10260690g0010 NonSyn A/G 

100 PGLM1.1163 MA.88541 MA.88541g0010 NonSyn T/C 

101 PGLM2.0104 MA.10436040 MA.10436040g0020 Syn T/C 

102 PGLM2.0395 MA.7312 MA.7312g0010 Syn A/C 

103 PGLM2.0624 MA.10436947 MA.10436947g0010 NonSyn T/C 

104 PGLM2.0690 MA.182569 MA.182569g0020 Syn A/C 

105 PGLM2.0812 MA.12354  Intergenic A/C 

106 PGLM2.1030 MA.140984 MA.140984g0020 Syn T/C 

107 PGLM2.1091 MA.953992  Intergenic C/G 

108 SB18.506 MA.14940 MA.14940g0020 Syn T/G 

109 SB18.686 MA.14940  Intergenic A/C 

110 SPA2.1601 MA.101443 MA.101443g0010 Intron A/G 

111 ss538946232 MA.134110  Intergenic T/C 

112 WS.2.0.GQ0013.BR.1.M07.3.171 MA.10430608 MA.10430608g0010 Syn A/G 

113 WS.2.0.GQ00410.B3.L15.1.478 MA.7457516  Intergenic T/C 

114 WS.2.0.GQ02828.B7.G06.1.930 MA.10436842  Intergenic A/G 

115 WS00841.F23.1.82 MA.10431591  Intergenic T/G 

 02739.B22.2345 MA.14534 MA.14534g0010 Intron A/C 

 FCL116Contig1.249 MA.4907 MA.4907g0010 NonSyn T/C 

 FCL1399Contig1.562 MA.1170922  Intergenic A/G 

 FCL1727Contig1.865 MA.60257  Intergenic A/C 

 GQ0013.BR.1.A19.18.422 MA.10436059 MA.10436059g0010 NonSyn T/C 

 GQ0031.B3.r.N13.1.1306 MA.10431764  Intergenic T/G 

 GQ01313.K05.3.371 MA.9139232  Intergenic A/G 

 GQ0202.C02.1.71 MA.18326  Intergenic T/C 

 GQ02814.E08.1.259 MA.623831 MA.623831g0010 Syn T/C 

 GQ03112.C10.1.583 MA.60257 MA.60257g0010 Syn A/G 

 GQ03210.O01.1.1242 MA.10431764  Intergenic A/G 

 GQ03304.M18.1.273 MA.39167 MA.39167g0010 NonSyn T/C 

 GQ03308.J05.1.1406 MA.30905 MA.30905g0010 Syn T/C 

 GQ03326.H03.1.842 MA.10229417  Intergenic T/C 

 GQ03607.I03.1.292 MA.8420140  Intergenic A/C 

 MA.10434099g0020.1498.A.G MA.10434099 MA.10434099g0020 Syn A/G 

 PGLM2.0334 MA.918722 MA.918722g0010 Syn T/C 

 PTC9341 MA.5950 MA.5950g0010 Intron A/G 

 ss538953158 MA.82939  Intergenic T/C 

 WS.2.0.GQ0222.B7.B17.1.379 MA.100136 MA.100136g0010 Syn T/G 

aThe SNP ID was reported only for the 115 SNP loci that were retained after the filtering procedure. 


