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Abstract

Galaxy clusters play an important role in modern cosmology and astrophysics. They act as
cosmic laboratories where we can study galaxy formation and evolution, and improve our
understanding of the nature of Dark Matter using dynamical and gravitational lensing methods.
As powerful gravitational lenses, clusters can be used as natural cosmic telescopes thus extending
our detection limit of faint sources and revealing the most distant galaxies. Over the last decades,
strong gravitational lensing has been widely used to study the mass distribution on both galaxy
and cluster scales. In this context, dedicated surveys with Hubble Space Telescope (HST) and
ground-based extensive spectroscopic campaigns have provided data with extraordinary quality,
particularly over the last decade. The richness of these data sets, however, cannot be compared
with the impressive data volume that upcoming surveys (such as ESA Euclid satellite, Vera Rubin
Observatory or James Webb Space Telescope) will generate over the next years. The volume and
the complexity of these new datasets can be efficiently dealt using machine learning and deep
learning methods, which enable the exploration of hidden correlations within a multi-dimensional
parameter space, a discipline which has had a phenomenal development in recent years in many
different fields, becoming the dominant methodology over standard methods. In this thesis, we
take advantage of this multidisciplinary tool to enable a number of scientific investigations of
cluster internal structure and background source population. Specifically, we addressed three
complementary issues which exploit imaging and spectroscopic observations of a sample of a
dozen galaxy clusters.

As a first application, we implemented deep learning architectures to select galaxy cluster
members in galaxy clusters, in the redshift range 0.2 − 0.6, which is a critical first step for a
variety of cluster studies, such as galaxy evolution in dense environments, cluster mass estimates,
strong lensing models. By using HST multi-band images alone, convolution neural networks
(CNNs) were used to disentangle member galaxies from background and foreground sources,
once they were suitably trained with a large sample of spectroscopically confirmed sources in
several cluster fields (from VLT VIMOS and MUSE observations), thus avoiding the complicated
and time consuming photometric measurement process. We performed several experiments by
studying the model dependence on member redshift, magnitude and colours, and characterised
limits and capabilities of several CNN models. We compared the deep network performance
with other conventional photometric-based approaches, finding that CNNs are able to classify
members with a superior purity-completeness rate (≳ 90%), and showing stable results across
the parameter space. In view of the currently available and upcoming large area surveys (e.g.
Rubin LSST observatory), we also repeated these experiments using multi-band images of a
subsample of galaxy clusters from the Subaru 8 m telescope, finding acceptable performances,
opening interesting prospects for the next generation surveys.

As a second step, we focused on the identification of galaxy-galaxy strong lenses (GGSL)
in galaxy clusters, which can be used to study the internal mass distribution of clusters, traced
by the sub-halo population around cluster member galaxies, and can later be compared with
cosmological simulations. In this work, we opted for a methodology that combines the need to
simulate a large number of GGSL to train deep neural networks, while maintaining the imaging
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complexity of real observations. By exploiting high-precision cluster lens models available for
8 clusters (with redshift in 0.2 − 0.6), we used the estimated deflection angle maps to simulate
thousands of realistic strong-lenses in real HST images by ray tracing background sources on the
lens plane. Thus, GGSLs are reproduced by taking into account both the sub-halo and the cluster
scale mass distributions which affect the morphology, brightness and frequency of galaxy-scale
lensing events. We found that deep networks trained on this realistic dataset are able to detect a
large fraction of real strong-lensing events, with a limited number of false negative events. We
characterised the model performance by exploring their dependence on several parameters for the
sources and the galaxy lenses. Moreover, we processed hundreds of cluster members, which are
either spectroscopically confirmed or selected with the aforementioned CNN methodology, to test
deep model generalisation capabilities and to search for galaxy-galaxy strong-lens candidates.

Finally, we implemented a 3D spectroscopy cross-correlation tool on the MUSE integral field
spectrograph data to measure redshifts in an automated and computationally efficient fashion,
a crucial ingredient to enable the cluster investigations described above. In fact, the mining of
spectroscopic information allows us to build datasets used to train neural networks, to confirm
cluster galaxy membership, to measure the redshift of the lens and the source in lensing events.
Optimised to be executed on graphic processors, this tool is able to process an entire MUSE
dataset in a few tens of seconds, by cross-correlating the 90 000 spectra included in the data
cube with a sample of spectral templates. We validated the tool by comparing the redshift
measurements of ∼ 270 galaxies, with z ∈ (0, 7), in the cluster MACS J0416.1-2403 with those
obtained with conventional techniques relying on heavy user interactions. Even though the
tool is still under development, particularly when dealing with low signal-to-noise spectra, our
preliminary results appear rather promising and will soon be applied routinely on MUSE data.
In addition, such a 3D cross-correlation provides reliable velocity maps of lensed galaxies with a
vast improvement over pixel-by-pixel manual measurements by conventional methods.

The methodologies developed in this thesis can be extended beyond the HST imaging data
with a relatively modest effort and promise to have important applications with the upcoming
next generation facilities. These include for example deep observations of galaxy clusters with
the James Webb Space Telescope, and generally wide area surveys from space and ground
(Euclid, Rubin LSST) which will discover up to 105 galaxy clusters and groups, and will
require automated machine learning based methodologies to fully exploit their astrophysical and
cosmological content.
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Chapter 1

Introduction

Galaxy clusters are the largest gravitationally bound systems in the Universe. They play a key
role in the ongoing understanding of some of the biggest issues in astrophysics and cosmology:
the nature of dark matter and dark energy. They are composed of hundreds of galaxies (called
“members” or “cluster members”) moving at thousands of kilometers per second, trapped within
the cluster potential well. Due to their masses and sizes (∼ 1015M⊙, ∼ 1 Mpc), they serve as
cosmic laboratories where studying a wide range of physical and astrophysical phenomena:
the formation and evolution of cosmic structures, the galaxy population developments, the
chemical evolution of the Universe, plasma physics on the largest scales and relativistic particle
acceleration. Furthermore, galaxy clusters, by acting as powerful gravitational lenses, extend
the detection limits of faint background sources by revealing high-z galaxies that would not be
observable otherwise; their estimated mass profiles provide important constrains on the dark
matter distribution and allow to test cosmological models. Actually, the first observational
evidence of dark matter has been found by Zwicky (1937) which compared the dynamical mass
of clusters measured with the virial theorem, with the luminous mass estimated by considering
the galaxy mass-to-luminosity ratio. Now we know that the dark matter is the principal mass
component in galaxy clusters (about 80− 90%), the remaining baryonic part is mainly composed
of hot X-ray emitting plasma, while star contribution to the cluster mass is just 1 − 2%.

The first galaxy cluster catalogue was published by Abell (1958), it contained ∼ 1700
clusters identified by searching galaxy overdensity within a specified solid angle (combined
with further selection criteria). Such approach is still in use today exploiting optical or near-
infrared imaging (e.g., Rykoff et al. 2014; Rettura et al. 2014), even if other techniques have
been developed: galaxy clusters can be detected by identifying their X-ray emitting gas content
(e.g., Pacaud et al. 2016), by using the distortion in cosmic microwave background due to the
thermal Sunyaev–Zel’dovich effect (Sunyaev & Zeldovich 1972) at millimeter wavelengths (e.g.,
Bleem et al. 2015; Planck Collaboration et al. 2016), by searching for significant concentration
of Lyman−α emitters (Jiang et al. 2018), or by constructing weak lensing convergence maps,
where galaxy clusters appear as peaks (Gavazzi & Soucail 2007; Shan et al. 2012).

According to the cold dark matter scenario, supported by several independent studies (Peebles
1982; Bond et al. 1982; Blumenthal et al. 1982, 1984), galaxies and galaxy clusters were
built up through a hierarchical clustering process dynamically dominated by dark matter in
an expanding Universe, a model known as ΛCDM, initially proposed by Press & Schechter
(1974). Assuming such hierarchical structure formation paradigm of the universe, cosmological
numerical simulations clearly describe formation and evolution of galaxy clusters across time
(Borgani & Kravtsov 2011; Chiang et al. 2013), as shown in Fig. 1.1: a cluster begins with its
collapse on the peaks of the dark matter density field and hierarchically grows through accretion
and mergers of small halos.
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CHAPTER 1. INTRODUCTION

Figure 1.1: A schematic flow of the cosmic evolution of a massive galaxy cluster, starting from the early
formation stage (∼ 1 billion years after the Big Bang, z ∼ 4), until the assembling of a massive bound
structure (M ∼ 1015M⊙, after 10 Gyrs). The axis labels the cosmic time, in terms of age of Universe
(Gyrs) and redshfit (between brackets). The three images, describing the dark matter density field, are
extracted from cosmological hydrodynamical simulations (Borgani & Kravtsov 2011) at three different
redshfits (z = 4, 2, 0). Image from Rosati (2018).

In the last decades, strong gravitational lensing has turned out as a powerful tool to measure
the total mass distribution in the core of galaxy clusters and so, once the baryonic counterpart has
been independently mapped, to study the dark matter distribution. By combining mass tracing
achieved through weak leaning (Umetsu et al. 1999; Umetsu & Broadhurst 2008; Umetsu et al.
2011; Umetsu 2013; Umetsu et al. 2014, 2018; Schneider et al. 2000; Hoekstra et al. 2013;
Gruen et al. 2013), galaxy dynamics (Stock et al. 2015; Biviano et al. 2013; Balestra et al.
2016) or X-ray analysis (Gómez et al. 2012) with strong lensing techniques, it is possible to
reconstruct cluster mass density profile over a large range of radial scales, from kpc to Mpc
(Newman et al. 2009, 2011; Merten et al. 2015; Caminha et al. 2017a,b, 2019; Bergamini et al.
2019, 2021b). Furthermore, by characterising cluster substructures, ΛCDM paradigms can be
tested by comparing the reconstructed mass profile with N-body or hydrodynamical simulations
(Diemand & Moore 2011; Genel et al. 2014; Meneghetti et al. 2020). Finally, due to the flux
magnification of lensed sources, galaxy clusters act as cosmic telescopes, allowing to reveal
high-z faint (lensed) galaxies (Zheng et al. 2012; Vanzella et al. 2017b, 2020, 2021).

In recent years, dedicated Hubble Space Telescope observations, e.g. Cluster Lensing And
Supernova survey with Hubble (CLASH, Postman et al. 2012a), Hubble Frontier Field survey
(HFF, Lotz et al. 2017) and Reionization Lensing Cluster Survey (RELICS Coe et al. 2019), have
provided supreme-quality multi-band imaging of massive galaxy clusters. Besides space-born
surveys, ground-based wide-field imaging of SUBURU/Suprime-Cam (Miyazaki et al. 2002)
can be added to extend the analysis to the outer regions of clusters. These observations can
be exploited together with an extensive spectroscopic coverage, part of CLASH-VLT VIMOS
programme (Rosati et al. 2014), combined with archival observations carried out with the integral
field spectrograph MUSE on the VLT (Bacon et al. 2014). Nevertheless, this data richness is
just the tip of a deep iceberg: upcoming space and ground based surveys, e.g. the ESA Euclid
satellite (Laureijs et al. 2011), the Vera Rubin Observatory (Ivezić et al. 2019) or the James Webb
Space Telescope (Gardner et al. 2006), are set to routinely produce tens of terabytes of data of
unprecedented quality and complexity on a daily basis: an unprecedented “data-revolution" (also
called “data-tsunami" or, with a little of irony, “datageddon") which has been compared with
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other human social drastic changes, like the bronze age transition (Hey 2012). Indeed, these
volumes of data can be dealt only through a novel framework, delegating most of the work to
automatic tools and by exploiting all advances in high-performance computing, machine learning,
data science and computer visualisation (Brescia et al. 2018). This paradigm transition has led
Astronomy into a new age, involving astronomers and data-scientists to develop a new generation
of instruments, looking for new methodologies and acquiring new skills in order to handle
many different astronomical problems. The ensemble of techniques, methods and approaches
to explore these intensive volume of data is known as Data Mining, whose applications within
the context of Astronomy led to a new discipline which combines Astronomy, computer science
and statistics: the Astroinformatics (Djorgovski et al. 2006; Borne et al. 2009). Within this
framework, Machine Learning (ML) and Deep Learning (DL) paradigms embed the intrinsic
data-driven learning capability to explore huge amounts of multi-dimensional data by searching
for hidden correlations within the data parameter space.

Such multidisciplinary paradigms have guided the present thesis, whose main scientific
goals are: the development of a new method to select cluster members and to identify galaxy-
galaxy strong-lenses in galaxy clusters, using only image-based classification algorithms, thereby
avoiding the time-consuming photometry extraction, particularly challenging in galaxy clusters.
These classification tasks have been addressed by implementing and testing a plethora of deep
learning architectures. Given the restrict number of known strong-lenses in galaxy clusters, we
opted for an approach that combines the need to simulate large sets of training images with the
complexity of high-resolution HST imaging of clusters. Realistic strong-lensing events were
obtained utilising high-precision lens models developed by our research group for a sample of
eight clusters from the CLASH and HFF surveys.

Furthermore, in this work, we also developed a fast, automatic, GPU-optimised cross-
correlation tool, able to process the whole MUSE data cube (∼ 90 000 spectra) in a few tens of
seconds, a critical feature, which will become essential in the next future, with the upcoming
data-intensive surveys. Even if this is not a pure deep learning method, it represents a method
with which extract (i.e. to mine) information from astronomical data, and, more important, it
represents a crucial ingredient in order to build spectroscipically confirmed dataset with which
neural networks can be trained and tested. Indeed, it can complement the observations by
providing cluster galaxies membership, measuring the lens and source redshift in lensing events,
extracting kinematical information. The tool has been used to estimate galaxy velocity maps
and measure galaxy redshift, with z ∈ (0, 7). Although the tool is under implementation, our first
results indicate that the redshift for the 70% of the processed spectra can be correctly recovered
and velocity maps of background lensed spiral galaxies can be accurately reconstructed (RMS
∼ 3 km s−1) in a fully automated fashion.

The thesis is structured as follows. Chapter 2 introduces the physical and mathematical
concepts necessary for the development of this work. It is split into two parts: (i) a summary of
the physical proprieties of galaxies and the models used to describe them; (ii) an illustration of
the gravitational lensing formalism, by underlining the mathematical instruments exploited to
build the strong-lensing simulations. Chapter 3 presents an overview of the machine learning
and deep learning techniques, by also emphasising their usage in the astronomical context,
together with a systematic description of the implemented architectures. Chapter 4 outlines the
imaging and spectroscopic data used in this work, by summarising the surveys which provided
these data. In Chapter 5, we show the networks capabilities to identify cluster members using
images, by varying the experiment configurations in order to analyse model dependence on
member redshift, train and test sample sizes, source magnitude and colours. We also compare our
results with other catalogue-based approaches and describe the process to identify new members
by complementing the spectroscopic sets. In Chapter 6, we illustrate the methodology with
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which we simulated thousands of galaxy-galaxy strong-lens examples handling the deflection
angle maps provided by cluster lens models, we discuss the networks classification results by
considering false negative and false positive distributions, establishing networks limits. We also
test network capabilities to identify real strong-lenses by processing an ensemble of known events
and hundreds of spectroscopic and candidate members. Chapter 7 illustrates the GPU-based
cross-correlation tool, with a computing time benchmark, a validation phase involving simulated
galaxy spectra. We measure galaxy velocity maps and automatically estimate the redshifts for an
ensemble of galaxies (in a wide z range 0 − 7). Finally, we draw our conclusion in Chapter 8.

Throughout the thesis, we adopt a flat ΛCDM cosmology model with ΩM=0.3, ΩΛ= 0.7, and
H0 = 70 km s−1 Mpc−1. All of the astronomical images are oriented with north to the top and east
to the left. Unless otherwise specified, magnitudes are in the AB system.
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Chapter 2

Galaxy populations and Gravitational
Lensing

In this chapter, I outline the physical and mathematical concepts necessary for the development
of this work. It is structured into two parts: (i) a description of the physical properties of galaxies
and their population in galaxy clusters (Sec. 2.1); (ii) a summary of the gravitational lensing
formalism, focused on the key ingredient used for the strong-lensing simulation (Sec. 2.2).

2.1 Galaxy description
In this section, we describe the main properties of galaxies and the galaxy population in clusters.
Sec. 2.1.3 is particularly important, as we illustrate the galaxy surface brightness by describing
the equations used to simulate galaxy-galaxy strong lenses by injecting a source behind a lens
cluster galaxy (see Chap. 6). In Sec. 2.1.4, we list the main galaxy mass density profiles used in
the cluster lens models and for the source-lens plane mapping when simulating strong-lenses
(see Sec. 6.2). Similar mass density profiles were used to simulate galaxy velocity maps thus
validating the cross-correlation tool (see Sec. 7.3.1).

2.1.1 Galaxy morphological classification
Galaxies occur in different shapes and sizes: some have smooth profiles with elliptical isophotes,
others have spiral arms with an elliptical-like bulge, and still others have irregular or peculiar
morphologies. Before the advent of modern instruments, these objects appeared as blurred
diffuse sources and were listed in astronomical catalogues (e.g. Messier catalogue and New
General Catalogue) as nebulae (Schneider 2006). Their existence was established only in the
1920s, a decade opened with the Great Debate between Harlow Shapley and Heber Curtis on the
nature of the nebulae. Such question was solved in 1925 by Edwin Hubble, who exploited the
discovery of Cepheids in the Andromeda “nebula” to derive a distance of ∼ 300 kpc and, even
if this measurement is ∼ 3 times smaller than the distance estimated today, it provided a clear
evidence of the extra-galactic nature of Andromeda and marked the beginning of extra-galactic
astronomy (Mo et al. 2010).

Based on morphological features, Edwin Hubble set out galaxies in a sequence (Hubble
1926, 1936), that, with later additions and modifications, is still used today (see Fig. 2.1). Hubble
recognised three main galaxy types: ellipticals, lenticulars and spirals, classifying as irregulars
galaxies that would not fit in any of the other classes. Based on Hubble sequence, galaxies were
also classified as “early-type” and “late-type”, describing the galaxy life cycle progression from
ellipticals to spirals, and, although this hypothesis has now been discarded, the terms are still
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CHAPTER 2. GALAXY POPULATIONS AND GRAVITATIONAL LENSING

in use, even if they lost their original meaning. Nowadays galaxies are classified according to
other properties (e.g., spectral parameters as emission or absorption lines, spectral distribution,
integrated colour, fraction of gas content, level of star formation), which correlate with Hubble’s
morphological classification. Here we restrict the galaxy description to the main classes identified
by Hubble (Longair 2008; Mo et al. 2010):

- Elliptical galaxies (E): these galaxies show no structural features, they are characterised by
a smooth, elliptical surface brightness and have red photometric colour. Their absolute
magnitude ranges from the brightest known galaxies, having MB ∼ −24, to the fainter
dwarf ellipticals (dE), with MB ∼ −18. Ellipticals are divided into eight sub-classes,
corresponding to their ellipticities ϵ = 1 − b/a, where a and b are the semi-major and
semi-minor isophotal axis; so, the common notation En indicates the isophote shape, with
n = int(10 · ϵ), i.e. the closest integer to the value 10 · ϵ. Given the lack of hot, young stars,
elliptical spectra are characterised by the so-called 4000Å break (see Fig. 2.2): most of the
light emerges at wavelengths > 4000Å with the typical K star absorption lines; while, in
the bluer part, the spectrum shows strong H and K absorption lines of calcium.

- Spiral galaxies (S-SB): they consist of a disk with spiral arm structure (often with a bar)
surrounding a central bulge. They are divided into two sub-classes: normal spiral (S) and
barred spiral (SB). Their arms are characterised by clumps of bright O and B stars, HII
regions, molecular clouds and dust absorption. Spirals are further classified as Sa, Sb,
Sc, according to three criteria: (i) the openness of the winding arms, (ii) the resolution
degree of the arms and (iii) the size of the spheroidal components relative to the disk. In
contrast to ellipticals, they also emit at blue and ultraviolet wavelengths (see Fig. 2.2), due
to the presence of young, hot stars, whose light heat and ionise interstellar medium (ISM),
resulting into strong emission lines.

- Lenticulars (S0-SB0): they appear as transitional stage between ellipticals and spirals.
Lenticular light disribution can be decomposed into a central bulge and an extensive disk
without spiral arms or HII regions. Depending on whether or not they show a bar, these
galaxies are divided into S0 or SB0.

- Irregulars (Irr): they are galaxies with only weak (Irr I) or no (Irr II) regular structures.
They have neither a dominating bulge nor a rotationally symmetric disk. They appear as
patchy systems with few HII rgions. They are arranged at the end of the spiral sequence (in
the Sd galaxies). Many of these irregulars are similar to the Milky Way galaxy satellites,
the Magellanic Clouds, which became the prototypes these Sm (or SBm) galaxies, in
which the spiral structure is reduced to a single stubby arm. Irregulars without spiral
structure are called Im galaxies.

Besides the morphological classification, galaxies can be arranged as a function of their
spectral distribution (e.g., Fig. 2.2). In particular, the galaxy colour distribution (e.g. F606−F814,
or g−r) is bimodal, with a narrow red peak and and broader blue distribution (Bell et al. 2004).
Such bimodality is even more evident by arranging galaxies on a colour-magnitude diagram
(as example of this bimodality see the colour panel and colour-magnitude diagram in Fig. 5.2),
where it is possible to identify: (i) a nearly horizontal sequence, which is called “red-sequence”,
composed by non-star-forming or passive early-type, gas and dust poor galaxies; and (ii) a “blue
cloud” consisting of star-forming, gas and dust rich, late-type galaxies (Schneider 2006; Mo et al.
2010). Clearly, such separation is not sharp: based on spectral analysis, Dressler & Gunn (1983)
found evidence of an intermediate galaxy class, the so-called E+A galaxies, whose spectra are
characterised by strong Balmer absorption lines, due to a conspicuous A-star population, but no
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Figure 2.1: Morphological galaxy classification: a modified form of Hubble’s diagram. Image from
Sparke & Gallagher (2007).

significant OII or Hα emission lines. This suggests a stellar formation process which quenched
in the last 1-2 Gyrs (Mo et al. 2010). Even if this transition is not completely understood,
galaxy-galaxy mergers seem to trigger the starburst mechanism which leads to the E+A stage
(Yang et al. 2004; Bekki et al. 2005).

2.1.2 Galaxy population in clusters
As early as the 1930s, it was realised that the galaxy morphological mixture depends on the
environment, so, galaxy clusters, characterised by dense environments, host a large fraction of
early-type galaxies (e.g., the analysis of “clusters of nebulae” carried out by Hubble & Humason
1931). Evidences of a morphology-density correlation has been found by Dressler (1980, 1984),
which showed that the fraction of spiral galaxies decreases from ∼ 60% in the lowest density
regions to less than ∼ 10% in the highest density regions, while elliptical and lenticular fraction
reveals the opposite trend: the fraction of E + S0 galaxies is ∼ 80% in regular clusters compared
to ∼ 30% in the field. More recently, it has been found that galaxies in denser environments are
more massive, redder, more concentrated, less gas-rich and with lower specific star-formation
rates (e.g., Kauffmann et al. 2004; Weinmann et al. 2006; Renzini 2006). This dichotomy
suggests that galaxies undergo morphological transformation in dense environments: as a galaxy
falls into the gravitational well, its gas component experiences a ram pressure (Gunn & Gott
1972) exerted by the intra-cluster medium (ICM), which strips the galactic gas, and, since stars
and dark matter are not affected, the gas is left behind while the galaxy fall in the cluster (Sparke
& Gallagher 2007; Treu et al. 2003); this mechanism, together with the thermal evaporation of the
galactic inter-stellar medium due to the hotter ICM (Cowie & Songaila 1977), the turbulent and
viscous stripping of the ISM (Nulsen 1982), results into a quenching of star formation. However,
such in-falling galaxy interacts also with the cluster gravitational potential: tidal compression of
ICM could even led to an increase of the star formation rate, while tidal truncation of the galaxy
outskirt can change the galaxy structure or contribute to star formation rate decreasing (Treu
et al. 2003).

The center of almost all of galaxy clusters is dominated by the presence of the Brightest
Cluster Galaxy (BCG). These massive and luminous galaxies are known as cD galaxies (i.e.

7



CHAPTER 2. GALAXY POPULATIONS AND GRAVITATIONAL LENSING

Figure 2.2: Spectra of different types of galaxies from the ultraviolet to the near-infrared. From ellipticals
to late-type galaxies, the blue continuum and emission lines became stronger. The panel also shows the
main absorption and emission lines. Image from Mo et al. (2010).

central diffuse). Even if they seem giant ellipticals, BSGs have several features which distinguish
them from early-type galaxies (Kormendy 1982). They are the most massive known galaxies
(≳ 1012M⊙) and their light covers up to ∼ 30% of the entire visible light of a rich cluster (Mo et al.
2010), but their most distinctive characteristic is the the extraordinary extended and diffuse stellar
outer envelope (Longair 2008). cD galaxies are found only in regions where the galaxy density
exceeds 1h−3Mpc−3, compared with an average galaxy density of 10−2h−3Mpc−3 (Dressler 1984).

Based on the studied carried out by Oemler (1974), galaxy clusters are distinguished into
three main types according to their galaxy content: (i) cD clusters, with a dominant central cD
galaxy and an high fraction of E and S0 galaxies; (ii) spiral-rich clusters where spirals are about
the 50% of the galaxy population, not too dissimilar from that of the field; and (iii) spiral-poor
clusters with no dominant cD galaxy and an higher fraction of S0. Thus, regular, cD clusters are
systems which had time to achieve the dynamical equilibrium, whereas for the other systems this
relaxation process is still ongoing.

2.1.3 Galaxy surface brightness
A convenient and wide-used way of describing the light distribution of elliptical and spiral
galaxies is the formulation proposed by Sérsic (1963, 1968), as a generalisation of de Vaucouleurs
R1/4 law (de Vaucouleurs 1948), based on which the one-dimensional surface brightness is a
function of the isophotal semi-major axis length R, also known as R1/n profile (Mo et al. 2010;
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Figure 2.3: Left panel: The observed logarithm of the Sérsic index (n) as a function of the absolute
magnitude B (together with 0.2−dex contours). Right panel: the Sérsic index logarithmic distribution.
The dotted line indicates a separability threshold between bulge and disc dominated galaxies. Image from
Driver et al. (2006).

Longair 2008):

I(R) = Ie exp
{︄
− βn

[︄(︄
R
Re

)︄1/n

− 1
]︄}︄

(2.1)

where Re is the effective radius enclosing half of the total light emitted, Ie is the surface brightness
within Re, n is the so-called Sérsic index whose value determines the degree of concentration of
the profile and βn is a normalisation constant which ensure that the total light sums to the total
luminosity emitted by the galaxy.

This formalism can be used to distinguish between disc and bulge dominated galaxies. It
can been shown that a galaxy sample split into two populations (e.g., the work conducted by
Driver et al. 2006 on the Millennium Galaxy Catalogue, Liske et al. 2003): one centred on n = 4,
corresponding to ellipticals, and the other centred on n = 1, corresponding to disc-dominated
galaxies; the distinction occurs at n ∼ 2 (see Fig. 2.3).

According to Eq. 2.1, the luminosity within a given radius R is given by integrating:

L(R) =
∫︂ R

0
2πR′I(R′)dR′ = 2π

n exp (βn)
β2n

n
IeR2

e γ

(︄
2n, βn

(︃ R
Re

)︃1/n)︄
(2.2)

where γ is the incomplete gamma function. Thus, the total luminosity predicted by the profile is:

Ltot = lim
R→∞

L(R) = 2π
n exp (βn)

β2n
n

IeR2
e Γ(2n) (2.3)

where Γ is the gamma function. These two last equations can be used to obtain a relation between
bn and n, indeed, by definition of effective radius, it results L(Re) = Ltot/2, by replacing Re in
Eq. 2.2 and comparing this equation with Eq. 2.3, it is possible to write:

Γ(2n) − 2γ(2n, βn) = 0 (2.4)

which is a non-linear equation that can only be solved numerically. Analytical expressions which
approximate the value of βn have been found by expanding gamma functions (e.g., Prugniel &
Simien 1997; Ciotti & Bertin 1999). In this work, since we are interested to simulate galaxy with
n ∈ [1, 2], we exploited the following expression (Capaccioli 1989):

βn ∼ 1.9992n − 0.3271 for n ∈ (0.5, 10) (2.5)

9
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which well approximates βn for Sérsic index n ∈ [1, 5) with errors < 10−2 (e.g., see Fig. 2 in
Graham 2001).

In order to generalise Eq. 2.1, i.e. to include the ellipticity of the isophotes (parametrised with
the axis ratio, q), their orientation (according to the position angle, φ), for an arbitrary source
position ys = (ys1 , ys2), given a rigid grid of points y = (y1, y2) in which evaluate the surface
brightness I(R), the semi-major axis length R is computed with:

R1 = (y1 − ys1) cosφ + (y2 − ys2) sinφ (2.6)
R2 = −(y1 − ys1) sinφ + (y2 − ys2) cosφ (2.7)

R =

√︂
(R1/q)2 + R2

2 (2.8)

2.1.4 Galaxy mass density profiles
In this section we introduce three widely used models which describe the mass density distribution
of galaxies:

- Singular Isothermal Sphere (SIS), a one-parameter model whose mass density profile ρ(r)
is expressed as (Schneider 2006):

ρSIS(r) =
σ2

0

2πGr2 (2.9)

where the Line of Sight (LoS) velocity dispersion σ0 is the sole free parameter. This
distribution suffers of two issues which make the model unphysical: it has a diverging
density as r → 0 and an infinite total mass (m(r) ∝ r) for r → ∞.

- Pseudo Isothermal Elliptical Mass Distribution (PIEMID, Kassiola & Kovner 1993): this
model introduces the core radius rc as additional parameter. The mass density profile, in
its circular form, is given by:

ρPIEMD(r) =
σ2

0

2πG
1

r2 + r2
c

(2.10)

So, this profile is characterised by a finite central density ρPIEMD(r = 0) = σ2
0

2πGr2
c
, with a flat

core since dρPIEMD(r)/dr
⃓⃓⃓
r=0
= 0; while for r ≫ rc the PIEMD model behaves like a SIS

profile, with an unbound total mass.

- dual Pseudo Isothermal Ellipctical mass distribution (dPIE, Limousin et al. 2005; Elíasdót-
tir et al. 2007), which introduces an extra parameter: the truncation radius rcut. The dPIE
mass density profile is expressed as:

ρdPIE(r) =
ρ0(︄

1 + r2

r2
core

)︄(︄
1 + r2

r2
cut

)︄ with rcut > rcore and ρ0 =
σ2

0

2πG
rcut + rcore

r2
corercut

(2.11)

The dPIE profile has a flat core with central density ρ0. For r ∈ (rcore, rcut) the profile
behaves like a SIS model (ρ(r) ∝ r−2), while for r ≫ rcut it decreases as ρ(r) ∝ r−4.
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2.2 Strong Gravitational Lensing
The idea that gravity could bend the light ray is dated back to the eighteenth century, formulated
by Isaac Newton according to his corpuscular theory of light (Newton 1704). However, accurate
predictions of this deflection were made only after the publication of Albert Einstein’s theory of
general relativity (Einstein 1916), with Arthur Eddington’s expedition to Principe Island, who
exploited a solar eclipse to measure the deflection angle for dozens of stars in the Hyades open
cluster. Results were later published by Dyson et al. (1920), causing, inter alia, a remarkable
prominence in the press of the time. Actually, Eddington’s expedition provided the first evidence
in support of Einstein’s theory.

According to the General Relativity, the bending of the light ray is caused by the curvature
of the space-time in a region due to the presence of a massive object. This light ray deflection
caused by a mass distributions along the LoS (Line of sight) is called gravitational lensing,
whereas the masses, determining the space-time deformation, are named gravitational lenses.

In this chapter I summarise the gravitational lensing fundamentals: Sect. 2.2.1 is dedicated to
the lensing refraction index and the deflection angle, the lens equation is derived in Sect. 2.2.2,
while the lensing potential proprieties are described in Sect. 2.2.3, the first and second order
approximation of the lens equation are shown in Sect. 2.2.4, finally, in Sect. 2.3 the cluster lens
models are briefly described.

2.2.1 Lensing refraction index and deflection angle
The light ray path can be described by Fermat’s principle, which states that the photons travel
along trajectories of stationary optical length respect to variation of the path, i.e.the light path is
the one that is covered in the least time, it follows the so-called geodesic; formally:

δ

∫︂ B

A
n(S(l))dl = 0 (2.12)

where n is the index of refraction, S(l) is the light path, A and B are the starting and ending point.
To find the index of refraction, we assume the “weak-field” first-order approximation, i.e. the
gravitation potential ϕ is much smaller that the squared speed of light, c2, ϕ/c2 ≪ 1, which is a
valid assumption for most of the lensing phenomena.

In general, the space-time infinitesimal interval (a.k.a line element), ds2, i.e. the infinitesimal
distance between neighboring points, can be written as:

ds2 = gµνdxµxν (2.13)

where gµν are the components of the metric tensor g, while dxµ and dxν are the infinitesimal
displacements along the four space-time directions. Within the weak-field approximation, the
metric gµν can be written as (Carroll et al. 2004):

gµν = ηµν + hµν with |hµν| ≪ 1 (2.14)

where ηµν is the Minkowski metric (diag[−1, 1, 1, 1]) and hµν is a slight perturbation acting on a
flat space-time. By also assuming a static gravitational field (i.e. characterised by a variation
much more slowly than the speed of light), the perturbation element takes the diagonal form
hµν = diag[−2ϕ

c2 ,
−2ϕ
c2 ,

−2ϕ
c2 ,

−2ϕ
c2 ]. By replacing this term in Eq. 2.14, the line element in Eq. 2.13 can

be written as:

ds2 = −

(︄
1 +

2ϕ
c2

)︄
c2dt2 +

(︄
1 −

2ϕ
c2

)︄
dx2 (2.15)
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Solving the perturbed geodesic for a photon (i.e. with a null proper time, ds2 = 0), imme-
diately allows to derive the speed of light c′, as measured by an external observer (Meneghetti
2019):

c′ =
|dx|
dt
= c

⌜⎷
1 + 2ϕ

c2

1 − 2ϕ
c2

≃ c
(︄
1 +

2ϕ
c2

)︄
(2.16)

where we have exploited the weak-field approximation 2ϕ
c2 ≪ 1. Finally, from this equation, it is

immediate to derive the refraction index:

n =
c′

c
=

1(︂
1 + 2ϕ

c2

)︂ ≃ 1 −
2ϕ
c2 (2.17)

Since ϕ < 0, it always results in n ≥ 1 and, thus, the light speed is lower than in vacuum.
Eq. 2.12 is a standard variational problem, which leads to the well known Euler equations.

By introducing a curve parameter λ, such that dS
dλ ≡ e, where e is the unit tangent vector to the

light path, it is possible to demonstrate (see, for example, Meneghetti 2019 or Congdon & Keeton
2018) that all the solution to the variational problem satisfy the Euler equation:

d
dλ

(ne) − ∇n = 0 (2.18)

by manipulating this latter equation:

de
dλ
=

1
n

[︂
∇n − e(∇n · e)

]︂
=

1
n
∇⊥ ln n ∼ −

2
c2∇⊥ϕ (2.19)

where we have replaced the refraction index expression (Eq. 2.17) and approximated ln n ∼ 2ϕ
c2 .

Thus, the deflection angle of the light ray, due to the gravitational potential, is given by the
integral of −ė = −de/dλ along the light path:

α̂ =
2
c2

∫︂ λB

λA

∇⊥ϕdλ (2.20)

Since ∇⊥ϕ points away from the center, α̂ has the same direction. By also considering a light path
coincident with the z-axis and by assuming small deviation of photon trajectory, we can replace
in Eq. 2.20 the integration variable λ with z. We also impose that the lens is localised in z = 0.
Moreover, since most of the light deflection occurs within a region whose dimension is typically
much smaller than the distances between observer and lens and between lens and source, the
lens can be considered thin. With this thin screen approximation (Narayan & Bartelmann 1996)
the integration limits in Eq. 2.20 can let to infinity, and the deflection angle can be expressed as:

α̂ =
2
c2

∫︂ +∞

−∞

∇⊥ϕdz (2.21)

The typical gravitation lensing system is shown in Fig. 2.4, where the lens, located at redshift
zL (i.e. at an angular diameter distance DL), deflects the light coming from a background source
placed at redshift zS (i.e. at an angular diameter distance DS ). The optical axis is the line
perpendicular to both source and lens plane. The distance of the source and the lens from the
optical axis is η = βDS and ξ = θDL, respectively.

Within the thin screen approximation, the lens mass distribution can be projected along the
line of sight, characterised by a surface mass density:

Σ(ξ) =
∫︂

ρ(ξ, z)dz (2.22)
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Figure 2.4: Sketch of a typical gravitational lensing system. DS and DL are the angular diameter distances,
respectively, of the lens and the source from the observer, while DLS is the distance between the lens and
the source plane. η and ξ are the 2D distances, respect to the optical axis, on the source and lens plane,
respectively. Image from Bartelmann & Schneider (2000).

and the deflection angle can be expressed as the sum of the light ray bending due to all the mass
element in the lens plane (Narayan & Bartelmann 1996):

α̂(ξ) =
4G
c2

∫︂
(ξ − ξ′)Σ(ξ′)
|ξ − ξ′|

d2ξ′ (2.23)

In the case of circular symmetric lens, the light deflection can be reduced to a one-dimension
problem: the deflection angle points toward the center of the symmetry with a modulus of:

α̂(ξ) =
4GM(ξ)

c2ξ
(2.24)

where M(ξ) is the mass enclosed within a radius of ξ: M(ξ) = 2π
∫︁ ξ

0
Σ(ξ′)ξ′dξ′.

2.2.2 Lens equation
From the lensing geometry shown in Fig. 2.4, in the small-angle approximation, α̂, θ and β are
related through the well-known lens equation, geometrically deduced from Fig. 2.4:

θDs = βDS + α̂DLS (2.25)

where DLS is the angular diameter distance between the lens and the source plane. By defining
the reduced deflection angle as α(θ) = α̂(θ)DLS /DS , lens equation can be rewritten as:

β = θ − α(β) (2.26)

Typically, lens equation is expressed in a dimensionless form, by introducing a length scale on
the lens plane ξ0 and the corresponding length scale on the source plane, η0 = ξ0DS /DL. In
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this way, it is possible to define two dimensionless vectors: x = ξ/ξ0, y = η/η0, so that the
dimensionless deflection angle is written as: α(x) = DLDLS

ξ0DS
α̂(ξ0x). By replacing these definition,

Eq. 2.25 can be written as:
y = x − α(x) (2.27)

In order to describe the lensing geometry, a quantity called Einstein radius, θE, is typically
used, since it represent a natural angular-scale for gravitational lensing (Narayan & Bartelmann
1996), e.g. sources closer than θE are significantly magnified, or, the typically angular separation
between multiple images is 2θE. It can be derived from the lens equation, by assuming circular
symmetric lens with an arbitrary mass profile, i.e. by combining Eq. 2.26 with Eq. 2.24:

β(θ) = θ −
DLS

DS DL

4GM(θ)
c2θ

(2.28)

where the reduced deflection angle has been used, together with the relation ξ = θDL. By
imposing that the source lies on the optical axis (β = 0), the source is deformed into a ring,
whose radius is the so-called Einstein Radius:

θE =

[︄
4GM(θE)

c2

DLS

DLDS

]︄1/2

(2.29)

2.2.3 Lensing potential
Typically, the lensing potential is used to describe the light ray bending due to a gravitational
lens, which is defined as the projection on the lens-plane of the Newtonian gravitational potential
(Meneghetti 2019):

ψ̂(θ) =
DLS

DLDS

2
c2

∫︂ +∞

−∞

ϕ(DLθ, z)dz (2.30)

whose dimensionless counterpart is:

ψ(x) =
D2

L

ξ2
0

ψ̂(θ) (2.31)

Given this definition, it is possible to show that the lensing potential fulfils these conditions
(Meneghetti 2019):

- the gradient of the lensing potential is the reduced deflection angle:

∇θψ̂(θ) = α(θ) (2.32)

- the convergence, κ, describes an isotropic magnification of the source (i.e. an isotropic
focusing of the light rays), it is defined as a dimensionless surface density:

κ(θ) =
Σ(θ)
Σcr

with Σcr =
c2

4πG
DS

DLDLS
(2.33)

where Σcr is the so-called critical surface density. The laplacian of the lensing potential is
twice the convergence:

∆θψ̂(θ) = 2κ(θ) (2.34)

14



CHAPTER 2. GALAXY POPULATIONS AND GRAVITATIONAL LENSING

- the shear, γ = (γ1, γ2), is a pseudo-vector, which introduces an anisotropy, by causing a
stretch of the source along a certain direction, its components are defined as:

γ1(θ) =
1
2

(︄
∂2

∂θ2
1

−
∂2

∂θ2
2

)︄
ψ̂(θ) (2.35)

γ2(θ) =
∂2ψ̂(θ)
∂θ1∂θ2

=
∂2ψ̂(θ)
∂θ2∂θ1

(2.36)

Thus, the deflection angle and the image distortion parameters (i.e. convergence and shear) can
be inferred from the lensing potential.

2.2.4 First and second order lens mapping
This section is dedicated to the description of the first and second order lens equation approxima-
tion. The section is extracted from Meneghetti (2019).

In theory, the distorted image of a source due to a gravitational lens can be determine by
solving the lens equation taking into account a large number of light rays. However, if the source
is much smaller than the angular dimension on which the physical properties of the lens change,
the relation between the source and image can locally be linearised, i.e. the image distortion can
be described by a Jacobian matrix. Thus, let’s assume that this condition is satisfied and let’s
consider a point on lens plane at θ0, where the deflection angle is α0, corresponding to a point
on the source plane at β0 = θ0 − α0; for a infinitesimally near point on the lens plane located at
θ = θ0 + dθ, the deflection angle is α ≃ α0 +

dα
dθ dθ, which corresponds to a point on the source

plane located at β = β0 + dβ = θ − α. Thus, the vector β − β0 is mapped through:

β − β0 =

(︄
I −

dα
dθ

)︄
(θ − θ0) (2.37)

So, the Jacobian matrix, A, describing the image deformation can be expressed as:

A ≡
∂β

∂θ
=

(︄
δi j −

∂αi(θ)
∂θ j

)︄
=

(︄
δi j −

∂2ψ̂(θ)
∂θi∂θ j

)︄
(2.38)

where the indices i and j, ∈ (1, 2), label the components of θ or α on the source plane. Eq. 2.38
can be rewritten in terms of convergence and shear:

A =
(︄
1 − κ − γ1 −γ2

−γ2 1 − κ + γ1

)︄
(2.39)

This Jacobian matrix can be expressed as a combination of the isotropic and anisotropic part.
In order to split these components, the shear tensor is written in a diagonal form, by applying a
rotation:

Γ =

(︄
γ1 γ2

γ2 −γ1

)︄
= γ

(︄
cos 2φ sin 2φ
sin 2φ − cos 2φ

)︄
(2.40)

where ±γ = ±
√︂
γ2

1 + γ
2
2 are the eigenvalues of the shear tensor and φ is the direction of the

eigenvectors with respect to the axis θ1, corresponging to the direction along which the source is
stretched. Thus, the Jacobian matrix (Eq. 2.39) can be expressed as:

A = (1 − κ)
(︄
1 0
0 1

)︄
− γ

(︄
cos 2φ sin 2φ
sin 2φ − cos 2φ

)︄
(2.41)
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This equation specifies the contribution of the convergence and the shear to the source image
distortion: convergence isotropically focuses the light ray producing an image rescaled by a
constant factor 1/(1 + κ); while, due to the shear, the source intrinsic shape is stretched along the
direction φ and shrunk along the perpendicular one.

So, if the “small-source" condition is satisfied, by also imposing that the origin of the source
and lens reference frames coincide with the source and image positions, i.e. β0 = θ0 = (0, 0), the
components of β can be expressed as a linear combination, i.e. a linear mapping between θi and
βi elements through the Jacobian matrix:

βi ≃
∑︂

j

∂βi

∂θ j
θ j =

∑︂
j

Ai jθ j i, j ∈ (1, 2) (2.42)

Since gravitational lensing does not involve emission or absorption of photons, neither it
changes the photon momenta, the surface brightness is conserved (Liouville theorem) despite the
light bending. So, the changing in the solid angle subtended by the source, due to the lensing,
implies a magnification (or a demagnification) of the flux. The inverse of the Jacobian matrix
M = A−1 is called the magnification tensor and its determinant is the so-called magnification:

µ = detM =
1

detA
=

1
(1 − κ)2 − γ2 (2.43)

while the magnification tensor eigenvalues describe the amplification in the tangential and radial
directions:

µt =
1

1 − κ − γ
µr =

1
1 − κ + γ

(2.44)

the tangential and radial critical lines are the locus of points on the lens plane for which the
magnification goes to infinity, i.e. by imposing, respectively, 1/µt = 1 − κ − γ = 0 and
1/µr = 1 − κ + γ = 0. An image near to the tangential critical line is tangentially distorted, while
an image close to the radial critical line is stretched perpendicularly to this line.

Finally, the first order lens mapping (Eq. 2.42) can be extended by including the second order
terms:

βi ≃
∑︂

j

∂βi

∂θ j
θ j +

1
2

∑︂
j

∑︂
k

∂2βi

∂θ j∂θk
θ jθk

=
∑︂

j

Ai jθ j +
1
2

∑︂
j

∑︂
k

Di jkθ jθk

(2.45)

where:

Di jk =
∂2βi

∂θ j∂θk
=
∂Ai j

∂θk
(2.46)

In conclusion, it should be underlined that given the lensing potential and the angular diameter
distances DL, DS and DLS , the lensing geometry is completely defined, since all the quantities
which characterise the image distortion can be deduced from the potential.

2.3 Cluster lens models
This section briefly outlines the public software LensTool (Kneib et al. 1996; Jullo et al. 2007;
Jullo & Kneib 2009) used by Bergamini et al. (2019, 2021b) and Caminha et al. (2019) to fit
the cluster lens models, from which we extracted the lensing potential used to generate the
galaxy-galaxy strong-lens dataset with which we trained the neural networks (see Chap. 6).
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Figure 2.5: Left panel: total surface mass density, ΣT , in the inner region of MACS J0416-2403.
Right panels: decomposition of the total surface mass density into the two extended dark matter halos
contributions (top right panel) and cluster galaxies components (bottom right panel). The contour level on
the lens plane are in units of 1014M⊙Mpc−2.

LensTool performs a parametric fit to constrain the total mass distribution of a galaxy
cluster, by exploiting the observed multiple image positions as constraints for the lens model. In
particular, the best-fit model is determined with a Bayesian Markov chain Monte Carlo approach,
minimising the lens-plane likelihood:

L =

N∏︂
i=1

1∏︁ni
j=1 ∆xi j

√
2π

e−χ
2
i /2 with χ2

i =

ni∑︂
j=1

[x j
obs − x j(W)]2 (2.47)

where N is the number of sources and ni is the number of multiple images associated to the i-est
source (a.k.a family), ∆xi j are the observed position uncertainties; x j

obs is the position of the j-est
image on the lens plane, while x j(W) is its corresponding predicted position, given the model
parameter set W.

Typically, the total mass distribution is parametrised by combining three components (Natara-
jan et al. 2017; Bonamigo et al. 2018; Bergamini et al. 2021a,b; Caminha et al. 2017a,b, 2019):

ϕtot =

Nh∑︂
i=1

ϕhalo
i +

Ngal∑︂
j=1

ϕ
gal
j +

Nsl∑︂
k=1

ϕshear+los
k (2.48)

where the first term accounts for the smooth cluster-scale halos (dark Matter content combined
with the baryonic intra-cluster gas and intra-cluster light contributions); the second component
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describes the clumpy sub-halos related to the cluster member galaxies (dark Matter and baryons);
the third sum takes into account massive structures in the cluster outskirts and massive halos
along the light-of-sight. So, in this equation, Nh, Ngal and Nsl are the number of cluster-scale
halos, the number of cluster members and the shear plus line-of-sight contributions, respectively.

Since the sub-halos are described with a circular dPIE profiles (see Eq. 2.11), each cluster
member introduces two additional free parameters (σ0 and rcut), resulting in 2Ngal extra free
parameters, which can not be constrained. To solve this problem, the velocity dispersion and
the truncation radius for each galaxy are measured by assuming the following scaling relation
(Brainerd et al. 1996; Jullo et al. 2007):

σ
gal
0, j = σ

ref
0

(︄
L j

L0

)︄α
(2.49)

rgal
cut, j = rref

cut

(︄
L j

L0

)︄β
(2.50)

where L0 is a reference luminosity, L j, σ0, j and rgal
cut, j are the luminosity, the velocity dispersion

and the truncation radius of the j-est cluster member; in this way the additional set of free
parameters is composed by σref

0 , rref
cut (i.e. the reference velocity dispersion and the reference

truncation radius), together with the scaling relation slopes α and β.
These lens modelling techniques produce deflection and magnification maps, as well as mass

distribution maps which include the sub-halo and cluster halo components (see Fig. 2.5).
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Chapter 3

Machine Learning approach

3.1 Data Mining in the realm of astronomy
As introduced in Chap. 1, it is evident that nowadays, and even more in the next feature, the
volumes of data provided by upcoming dedicated surveys cannot be dealt with traditional
methods. The modern multi-wavelength, multi-epoch, high-dimensionality, heterogeneous,
Peta-scaled datasets require automatic, scalable and reliable methods that allow the exploration,
mining and, in the final analysis, the inferring of knowledge. In this context Data Mining and
Machine Learning (hereafter ML) techniques have become a necessity. This prompted the
scientific community to develop general purpose, web-based and distributed tool-infrastructure
able not only to face the data-intensive challenge, but also to offer opportunities of collaborations
between astronomers and data-scientists (e.g. the Virtual Observatory, Djorgovski & Williams
2005; Graham et al. 2005; Pasian et al. 2012; or DAME, Djorgovski et al. 2012).

Machine Learning, sometimes treated as a branch of artificial intelligence, consists in the
development of algorithms that allow an automatic adaptation of computers capabilities to solve
the assigned problem based on empirical data: such techniques embed the intrinsic data-driven
learning capability to explore huge amounts of multi-dimensional data by searching for hidden
correlations within the data parameter space. A ML method can be thought as a “learner” which
exploits examples of data to comprehend characteristics, discerns patterns, uncover anomalies
and associations from the unknown underlying data distributions (Bishop 2006; Kamath 2009).
Such collection of examples is typically called Knowledge Base (hereafter KB): a large ensemble
of examples used to train the method and test its performance. The KB can be represented as
a table in which each sample could be: a vector of features, a curve describing the variability
over the time, a spectra or an image. In theory, the KB should be large enough to equally
cover, qualitatively and quantitatively, all the parameter space; in practice, however, some
regions of the parameter space will be undersampled, or even unparameterised, regions could be
characterised by extremely different signal-to-noise ratio, resulting into a heterogeneous space;
these are common problems in the context of astronomy, in which observation are affected by
the instrumental characteristics and limits (e.g. photometric depth, spatial or spectral resolution,
differences between throughput effectiveness of filter pass-bands or between the camera Field
of View sizes), by also operating in a not-controlled environment. Such difficulties, if not
properly contained, could lead to the building of uncompleted, rich of missing data and highly-
heterogeneous KBs, which only partially represent the real distribution and the resulting trained
model will not gain a sufficient degree of generability (Batista & Monard 2003; Marlin 2008;
Parker 2010).

Despite these difficulties, the number of ML applications in the context of astronomy is
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exploded in the last decade1. The ML application spectrum has rapidly expanded over time, for
example: photometric redshift have been measured by training Multi-Layer Perceptron networks
(Brescia et al. 2013; Cavuoti et al. 2012, 2015; Schmidt et al. 2020); regressors, such as Random
Forest, Multi-Layer Perceptron and Support Vector Machine, have been applied to estimate
the galaxy star formation rate (Delli Veneri et al. 2019) or to infer dark matter halo properties
(von Marttens et al. 2021); ML-classifiers have photometrically identified astronomical sources,
such as globular clusters or Quasar by disentangling from other objects, using Random Forest,
Multi-Layer Perceptron, Principal Component Analysis and Neural-Gas models (Brescia et al.
2012, 2015; D’Abrusco et al. 2016; Nakoneczny et al. 2019; Angora et al. 2019); clustering
models have been applied to various astronomical datasets: identification and characterisation
of X-ray sources from spectra (Hojnacki et al. 2007), automatically segmenting and labelling
of sources in galaxy clusters (Hocking et al. 2015), classification of asteroids and clustering
of chemical species from Mars spectral images (Galluccio et al. 2008). Further astronomical
examples can be found in Sec. 3.4 referred to the Deep Learning approach, in Sec. 5.1 referred to
cluster member selection and in Sec. 6.1 referred to the galaxy-galaxy strong lenses identification.

3.2 Data Mining paradigms and functionalities
Nowadays a plethora of ML-based algorithms exist, that exploit different paradigms:

- Supervised learning: it is a type of algorithm that maps an input to an output, by inferring
a function from a domain in Rn to a domain in Rm, where m < n. The KB is composed by
pairs, consisting of an input sample and a desired output vector. In astronomy, supervised
methods have been deployed to address a plethora of problems, e.g. searching of quasar
candidates (Abraham et al. 2012; Brescia et al. 2015), measuring the galaxy photometric
redshifts (Cavuoti et al. 2012; Sadeh et al. 2016), star formation rate estimation (Delli
Veneri et al. 2019), fitting galaxy surface brightness profile (Tuccillo et al. 2018).

- Unsupervised learning: it is the task of learning patterns from unlabelled data, by clustering
samples assuming a certain metric. Typically, such kind of algorithms produce a tree-
like structures across the parameter space. Unsupervised algorithms have found several
applications in the realm of astronomy, for example: transient detection in light curves
(Webb et al. 2020), source segmentation and labelling in galaxy clusters (Hocking et al.
2015), identification of globular clusters (D’Abrusco et al. 2016; Angora et al. 2019).

- Self-supervised learning: it is an approach with which unlabelled samples are encoded
into a low-dimension space. It consists of an encoder, which maps data from a domain
∈ Rn into a latent domain ∈ Rm, where m ≪ n, and a decoder which maps the opposite
function (i.e., from the latent space to the original domain). As examples in astronomy,
these autoencoders have been used to: map interstellar dust (Thorne et al. 2021), recover
the spectral energy distribution of galaxies (Frontera-Pons et al. 2017), emulate thermal
Sunyaev-Zeldovich maps of galaxy clusters (Rothschild et al. 2021), deblend overlapping
galaxies (Reiman & Göhre 2019).

- Reinforcement learning: it is a technique with which a model (in this context called agent)
learns how it should act to maximise a certain goal. The agent learns to make a sequence
of decision in order to achieve a goal in an uncertain, potentially complex environment.

1Between 2006 and 2011 fewer than 50 papers regarding ML application in astronomy were published per year,
whereas in the 2018 the number is grown to 300 per year with a 50% increasing respect to the 2016 (Acquaviva
2020).
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As examples, reinforcement learning methods have been applied to control adaptive optics
for astronomical systems (Nousiainen et al. 2021) and to calibrate hyperparameters in data
pipelines of radio telescope (Yatawatta & Avruch 2021).

Within these paradigms, several functionalities can be defined:

- Classification: it is the process with which samples are divided into m groups by exploiting
the relation between the input and its label. A classifier learns a mapping between input
space X ∈ Rn to a labelled set Y ∈ Rm, where m is the number of classes.

- Regression: it is the procedure in which one or more floating values are fitted for each
item, by searching a mapping between the input domain ∈ Rn to a domain ∈ Rm, where
m < n is the number of values fitted for each sample. The regressor can either exploit a
prior assumption on the data distribution, or, in the absence of such well-defined function,
it can automatically search for a statistical correlation between the two domains.

- Clustering: it is a strategy based on the natural splitting of the dataset into groups, without
any previous labelling, by performing a self-adapting mechanism. The method maps the
input domain X ∈ Rn to a domain W ∈ Rn, preserving the input topology and, in the same
time, simplifying the dataset representation. The number of clusters could be set by the
user or automatically determined by minimising a certain metric.

- Dimensional reduction: it is the reducing of the number of involved dimensions (i.e. the
number of features composing the dataset). It could based on a posterior analysis of the
feature informative contribution (i.e. a feature selection technique, Guyon & Elisseeff
2003) or on a data transformation which linearly, or non-linearly, projects the dataset into
a space with fewer dimensions (Jolliffe 2011; Guyon & Elisseeff 2006).

3.3 Artificial Neural Networks
Inspired by biological behaviour, Artificial Neural Network (hereafter ANN) architecture is based
on a collection of artificial neurons (called perceptrons, Minsky & Papert 1969; Rojas 1996;
Hassabis et al. 2017), arranged in several layers, where each neuron takes as input the signal
coming from neurons belonging to the previous layer; such as biological neurons, the variation
of the synaptic connection sensibility (with respect to a certain input signal) is correlated to the
learning mechanism (Hebb 1949). During the training, these connection sensibilities among
layers (i.e. the weights) are iteratively adapted through a forward-backward mechanism. After
the training, ANNs define a non-linear relation between the input and output spaces, which is
encoded within the weight matrices. An illustrative representation of a perceptron in shown in
Fig. 3.1: an artificial neuron performs a weighted sum of inputs ({xi}

n
i=1), which is added to a

bias term, describing the neuron’s resting state. Thus, the output of a perceptron is:

y(x; w) = σ
(︄ n∑︂

i=1

wixi + b
)︄

(3.1)

where the weights {w}ni=1 represent the sensibility of connections, and σ is the so-called activation
function describing the neuron reaction to the incoming stimuli.

As stated before, these artificial neurons are typically organised in layers, within which there
is no communication between neurons, but each layer receives the information from the previous
layer, propagating it towards the next layer, as shown in Fig. 3.2. In such architectures, layers
are nominally distinguished in: (i) input layer, (ii) hidden layer, (iii) output layer. Hidden layers
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Figure 3.1: Schematic representation of an artificial neuron. Image from Rojas (1996).

transform input by combining features in order to extract an abstract representation of them.
The output layer provides a supplementary transformation fulfilling the required task. Finally,
a layer in which all neurons are connected with all neurons of the following layer are called
fully-connected (or dense) layer. For example, Multi-Layer Perceptron (MLP, Hastie et al. 2001)
is one the most typical and widely used feed-forward fully-connected network.

Figure 3.2: Architecture of a multi-layer network with three hidden layers. Hidden layers are denoted as
hm, m = 1, 2, 3, h4 is the output layer and x is input layer. Image from Bengio (2009).

The output of a fully-connected layer can be expressed as:

hk = σ
(︂
b +Wk · hk−1

)︂
(3.2)

where b is the vector of biases (composed by n elements, where n is number of neuron in the
k-est layer) and Wk is the weight matrix related to the k-est layer, whose elements wk

i j are the
connections between the i-est neuron in the (k − 1)-est layer and j-est neuron in the k-est layer.

Finally, concerning the activation function σ in Eq. 3.1 and 3.2, despite the varieties of such
functions, all of them share a threshold behaviour implying that only intense signal will be
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propagated. In the extreme case in which neuron transmits information through a step activation
function, the network is composed only of excitatory and inhibitory neurons (Minsky & Papert
1969). In all the other cases, the neuron acts as a threshold gate capable of implementing logical
functions of n arguments (Rojas 1996). A setup of the widely-used activation functions is shown
in Tab. 3.1.

Activation function Equation

Step(1,5) σ(x) =

⎧⎪⎪⎨⎪⎪⎩ 0 x ≤ 0
1 x > 0

Rectified Linear Unit (ReLU)(1,5) σ(x) = max(0, x)

Parametric ReLU (PReLU)(2,3) σ(x) =

⎧⎪⎪⎨⎪⎪⎩αx x ≤ 0
x x > 0

Exponential Linear Unit (ELU)(4,6) σ(x) =

⎧⎪⎪⎨⎪⎪⎩α(ex − 1) x ≤ 0
x x > 0

Softplus(1,7,8) σ(x) = ln (1 + ex)

Sigmoid(1,6,7,8) σ(x) =
1

1 + e−x

Hyperbolic tangent(1,6) σ(x) =
ex − e−x

ex + e−x

Softmax(1,5,6) σi(x) =
exi∑︁N
j=1 ex j

i = 1, . . . ,M x = (x1, . . . , xM)

Table 3.1: List of activation functions commonly used in Neural Networks and their equation.
(1)Szandała (2020); (2)He et al. (2015b); (3)Maas et al. (2013); (4)Clevert et al. (2015); (5)Bishop (2006);
(6)Goodfellow et al. (2016); (7)Glorot et al. (2011); (8)Dugas et al. (2000).

With the exception of softmax, all other activation functions listed in Tab. 3.1 can be optionally
used2 to mimic a biological neuron behaviour by adding a non-linearity to the perceptron response.
PReLU is a parametric version of the rectifier, the leakage coefficient (i.e. α) could be included
in the learning parameter set (He et al. 2015b), whereas if it is maintained fixed during the
training (typically with a value of ∼ 0.01) the rectifier takes the name of Leaky ReLU (LeReLU).
The presence of the leakage coefficient allows: (i) a small, non-zero gradient also when the
unit is saturated and not active, (ii) a gain of the convergence with the increase of the units
(Maas et al. 2013). Both ELU and Softplus are non-linear and continuous variants of the rectifier
(Dugas et al. 2000). ELU forces to make the mean activations closer to zero, which speed up
the learning (Clevert et al. 2015). Finally, softmax activation function (a.k.a. softargmax) is a
logistic function which maps a vector of M floating values into M probabilities (M is the number
of classes involeved in the classification task):

σ : x ∈ RM → p ∈ [0, 1]M,with
M∑︂
j=1

p j = 1

2If no activation function is set, then the neural response is linear.
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Respect to the other activations, softmax is only used for a classifier as activation function for all
the neurons in the output layer, since its output can be interpreted as an estimator of P(Y = i |x),
where Y is the class associated with the input x and i is an integer number i = 1, . . . ,M labelling
the i-est class (Bengio 2009).

3.4 Deep Learning approach
Although multi-layer ANNs are universal approximators (Hornik et al. 1989), performance of
ANNs is strongly dependent on the chosen ensemble of features with which data are represented
(Bengio et al. 2012), this limits ML algorithms to process natural data in their raw form and
it has forced the scientific community to design feature extractor pipelines that transform raw
data into a suitable internal representation (Lecun et al. 2015). In order to expand the scope
and the application fields of Machine Learning, it was necessary to make learning methods
less dependent on feature engineering by developing algorithm able to identify and disentangle
the underlying explanatory factors hidden in the observed environment (Schmidhuber 2014).
Deep Learning (hereafter DL) algorithms allow a network to be fed with raw data and to auto-
matically discover the representations needed to solve the problem. In fact, DL techniques are
representation-learning methods (Bengio et al. 2012) composed by tens (sometimes hundreds)
levels of representation, obtained by assembling non-linear modules that transform the represen-
tation at one level (starting with the raw input) into a representation at a higher, slightly more
abstract level. With the composition of enough such transformations, very complex functions
can be learned, resulting into a network automatically able to extract meaningful features from
raw data which become the input vector to any standard ML model. Even if DL methods had
been used for decades (the first applications date back to 1989 with the earliest convolutional
networks implemented by LeCun et al. 1989), the advent of modern Graphic Processing Units
(GPUs) has made possible a real revolution (Oh & Jung 2004; Schmidhuber 2014), improving
computing times by orders of magnitude (GPU computational costs are ∼ 700 times lower,
Simard et al. 2005) and causing an unprecedented impact on our society by influencing an ever
so broad spectrum of disciplines: from self-driving vehicles (Huval et al. 2015) to medical
image analysis (Cireşan et al. 2013; Litjens et al. 2017), from image and object recognition3

(Krizhevsky et al. 2012; Lu & Tang 2014) to natural language processing (Collobert & Weston
2008; Gonzalez-Dominguez et al. 2014; Wu et al. 2016), from financial applications (Kleanthous
& Chatzis 2020) to AI gamer4 (Campbell et al. 2002; Silver et al. 2016; Silver et al. 2018); DL
algorithms have even bordered into the world of art5 (Gatys et al. 2015; Smith & Leymarie
2017; Agüera y Arcas 2017). An interesting historical overview of the main stages in the DL
developments can be found in Schmidhuber (2014).

Clearly, also the number of DL astronomical applications is exploded: over the last fifteen
years more than 800 referred articles exploiting DL methods have been published6. For example:

3In 2014, for the first time, the human-level performance in face verification has been surpassed by DL algorithms
(Lu & Tang 2014).

4In 2018 an AI gamer called AlphaGo Zero achieved superhuman performance in the game of Go, chess and
shogi, convincingly defeated any world champion program, with a self-play training based on reinforcement learning
(Silver et al. 2018).

5AIVA (Artificial Intelligence Virtual Artist, https://www.aiva.ai/) is an AI composer created in 2016 and
specialised in classical and symphonic composition. It is the first AI composer recognised by a professional artists
and editors association (SACEM). While Edmond de Belamy is AI painter based on generative adversarial network
(Goodfellow et al. 2014a), in 2018 one of its artwork has been sold for $432’500 (https://www.nytimes.com/
2018/10/25/arts/design/ai-art-sold-christies.html).

6This number has been computed by counting the number of referred papers including "Deep Learning" in the
abstract in the NASA/ADS archive from 2005 to 2021.
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deep neural networks have been used to estimate photometric redshift directly from Sloan Digital
Sky Survey images (Hoyle 2016; Pasquet-Itam & Pasquet 2018), to classify radio galaxies
from FIRST images (Aniyan & Thorat 2017; Lukic et al. 2018; Wu et al. 2019a), or to detect
exoplanets from Kepler light curves (Pearson et al. 2018); deep learning methods were also able
to retrieve the full set of parameters of one-component Sérsic models exploiting HST images
reproducing GALFIT results ∼ 3000 faster (Tuccillo et al. 2017, 2018; Li et al. 2021a) and
to predict cluster masses from Chandra X-ray images (Ho et al. 2019; Ntampaka et al. 2015,
2016, 2019); deep generative algorithms (Goodfellow et al. 2014a) can simulate galaxy images
trained with HST 0.030′′/pixel images (Lanusse et al. 2021), or deblend overlapping galaxies
(Reiman & Göhre 2019); finally, region-based deep networks (Girshick et al. 2013) were able
to automatically identify and deblend sources in multi-band DECam images (Reiman & Göhre
2019).

3.5 Convolutional Neural Networks
For the historical point of view, the first convolutional network was the neocognitron which
is a self-organiser multi-layer ANN introduced by Fukushima (1980) exploiting convolutional
and down-sampling layers, inspired by the physologist work by Hubel & Wiesel (1959), which
showed how the cat visual cortex is composed by retinal ganglion cells, which individually
respond to patterns of light stimuli, defining a light receptive field (already observed by Kuf-
fler 1953) with separate excitatory and inhibitory regions. Finally, the translation invariance
introduced in the time delay neural network (Waibel et al. 1989) combined with the typical
forward-backwards propagation led to the implementation of the current paradigm of Convolu-
tional Neural Networks (CNNs, LeCun et al. 1989, 1990, 1998).

CNN represents one of the most widely-used supervised technique among the Deep Neural
Networks, specialised for processing data characterised by a grid topology, e.g. images, that
can be treated as a grid of pixels (Goodfellow et al. 2016), whose peculiarity is an ensemble of
receptive fields which trigger the neuron activity. The receptive field is represented by a small
matrix (called as kernel or filter), which connects two consecutive layers through a convolution
operation. Similar to the adaptation mechanism imposed by supervised machine learning, the
kernels are modified during the training. The idea behind CNN is a convolution-subsampling
chain mechanism: deep networks are characterised by tens of layers (in some cases hundreds,
as proposed by He et al. 2015a and Xie et al. 2016), where at each depth level, the convolution
acts as a filter, emphasising (or suppressing) some properties; while the subsampling (often
called pooling) makes sure that only essential information is moved towards the next layer.
At each level, the processed input is transformed into an ensemble of feature maps, resulting
into a hierarchically learning of high-level representations of data input: lower layers maintain
a faithful representation of the image, while deeper level includes the extraction of abstract
patterns capturing progressively larger deformations of the input (Mahendran & Vedaldi 2014).
Remarkably, this behaviour emerges naturally in the learned network without any mechanism
directly encouraging this extraction.

As previously said, CNNs are organised as a hierarchical series of layers, based on convolu-
tion and pooling operations. Convolution kernel is represented by a 4D matrix W, where the
element Wi, j,k,l is the connection weight between the output unit i and the input unit j, with an
offset of k rows and l columns. This kernel is convoluted with the input signal and adapted during
the training. Given an input X, whose element Xi, j,k represents an observed data value of the
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channel i at row j and column k, the neuron activity can be expressed as (Goodfellow 2010):

Zi j k = c(W,X, s)i j k + bi =

=
∑︂
l m n

Xl,( j−1)×s+m,(k−1)×s+nWi l m n + bl (3.3)

Zi j k ←− p(Z, d)i j k (3.4)
Zi j k ←− σ(Z, {a}q)i j k (3.5)

where c(W,X, s) is the convolution operation between the input X and the kernel W with stride
s; b is an addend that acts as bias; p(Z, d) is the pooling operation with down-sampling factor d;
σ(Z, {a}q) is the activation function characterised by the set of hyper-parameters {a}q.

Unlike traditional artificial neural networks (e.g. Multi-Layer Perceptron), where all neurons
of two consecutive layers are fully connected among them, the connection among neurons,
performed with convolutional layers, is sparse and shared, i.e. the interaction between neurons
belonging to different layers is limited to a small fraction and such interaction filter is shared
for all neurons in a certain receptive field. This reduces the number of operations, the memory
requirements and, thus, the computing time. Moreover the repeating of the same kernel over the
input grid allows a little translation equivariance of the network.

The pooling function reduces the dimension, by replacing the network output at a certain
location with a summary statistic of nearby outputs (Goodfellow et al. 2016). Typically down-
sampling is performed by applying a max-pooling filter to (usually non-overlapping) subregions
of the input (Zhou & Chellappa 1988), but other functions may also be used, e.g. Global
Average pooling (Lin et al. 2013) or Spatial Pyramid pooling (He et al. 2015). Pooling reducing
the number of parameters to learn and provides basic translation invariance to the internal
representation of the network (Goodfellow et al. 2016).

3.6 Data flow: network training, validating and testing
A complete ML experiment is structured into three phases, each of them exploits an independent
fraction of the KB. Typically, the KB is split into three not-overlapping sets: the training set
(generally 60 − 80% of the KB), validation set (5 − 15%), test set (10 − 30%).

During the training stage, the model parameters are iteratively adjusted according to a
predefined loss function (a.k.a cost function): for supervised learning this function is a comparison
between the output predicted by the model and “truth”, for unsupervised learning this metric is
related to network capability to map the input. The time required to process all the examples in
the training set is called epoch. Typically, a large number of epochs is necessary to fit the model
parameters allowing a convergence to the best possible configuration.

The validation set can be used for two main, mutually excluding, reasons: (i) at the end of
the training, to chose the best hyper-parameter setup between different possible configurations,
(ii) during the training (actually, at the end of each epoch), to update some hyper-parameters or
to introduce reguralisation techniques (e.g. early-stopping criteria).

After the network has been trained and validated, the test set is used to measure the perfor-
mance of the model, to understand if the network is able to apply the knowledge gained from
the training on samples never processed before, achieving a good level of generalisation. For
this reason the test set should cover the whole KB reproducing the same training parameter set.
Network performance are measured through a set a metrics, listed and discussed in Sec. 3.6.6.

Although the canonical training-testing split (briefly described at the beginning of the section)
is widely used within the ML context, it is correctly applied only when samples are uniformly
distributed in the parameter space and when the KB size is so large to ensure that the randomly

26



CHAPTER 3. MACHINE LEARNING APPROACH

extraction of testing examples equally cover the whole space reflecting the training distribution.
As already stated, this cannot be typically achieved in the context of astronomy. The simple
way with which is possible to get over this problem is the usage of a k-fold split, which is also
exploited to estimate prediction error (Hastie et al. 2001).

In the next sections I show how the network learns from the training set through the definition
of the loss function, the adaptation rule and the chose of an optimisier (Secs. 3.6.1 and 3.6.2); in
Secs. 3.6.2 and 3.6.3 I introduce the overfitting and underfitting problems and how these tasks can
be handle by modifying the loss function, take advantage of specific layers, by also exploiting the
validation set, involving data augmentation techniques and the inclusion of adversarial examples.
Finally, in Sec. 3.6.5 I describe the adopted k-fold strategy to split the KB into validation, test
and training set, while in Sec. 3.6.6 I show the statistical estimators used to measure network
performances on the test set.

3.6.1 Loss function and adaptation mechanism
For a supervised classification problem, the most common loss function is the binary cross-
entropy (Goodfellow et al. 2016):

H(y, ȳ) = −
1
N

N∑︂
i=1

ȳ(xi) · log(y(xi)) + (1 − ȳ(xi)) · log(1 − y(xi)) (3.6)

where ȳ is the target and y is the output of the final layer; N is the number of extracted samples.
Such cost function can be generalised for M classes:

H(y, ȳ) = −
1
N

N∑︂
i=1

M∑︂
j=1

ȳ j(xi) · log(y j(xi)) (3.7)

From this latter equation is clear that cross-entropy is the negative log-likelihood divided by N
conditionally independent samples. Some other loss functions are:

- Mean Squared Error (MSE):

MS E(y, ȳ) =
1
N

N∑︂
i=1

(y(xi) − ȳ(xi))2 (3.8)

- Mean Absolute Error (MAE):

MAE(y, ȳ) =
1
N

N∑︂
i=1

|y(xi) − ȳ(xi)| (3.9)

- Kullback–Leibler divergence (DKL):

DKL(y, ȳ) =
N∑︂

i=1

y(xi) log
(︄
y(xi)
ȳ(xi)

)︄
(3.10)

These functions can be indifferently used for regression or classification. Since KL divergence
can be written as DKL(y, ȳ) = H(y, ȳ) − H(y), it can be interpreted as a dissimilarity measure
between the true and the predicted distributions (as the cross-entropy) by subtracting the self
cross-entropyH(y) which could not be identically zero (Kullback & Leibler 1951).
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Thus, during the training, samples extracted from the train set are propagated through the
network, while weights and biases are adapted along with a backward flow in order to minimise
the cost function. Backpropagation is the understanding of how changing the weights and biases
in a network changes the cost function. Ultimately, this means computing the partial derivatives
∂C/∂w and ∂C/∂b, i.e. the derivatives of the cost function respect to the weights and biases;
such process can be schematised as follow7 (Nielsen 2015):

1. Compute the adaptation for the output layer L:

δL = ∇hC ⊙ σ
′(zL) (3.11)

where h is the output of the L-est layer, σ′(zL) is the derivatives of the neuron respond
respect to the involved weights or biases, and ⊙ denotes the element-wise product;

2. for all the other layers l = L − 1, . . . , 1 compute:

δl = ((wl+1)Tδl+1 ⊙ σ′(zl) (3.12)

3. the weights and biases adaptation is performed by estimating:

∂C

∂bl
j

= δl
j (3.13)

∂C

∂wl
jk

= hl−1
k δl

j (3.14)

4. finally, the weights and biases updating is modulated by a factor, called learning rate,
which represents the intensity of the modification:

w← w + η∇wC b← b + η∇bC (3.15)

It should be noted that the gradient of the loss function is an average estimation of the gradients
calculated for the extracted training examples, in fact, the training set is split into several batches,
each of them includes a relatively small number of examples extracted from the whole training
set.

3.6.2 Regularisation techniques
In the Machine Learning context, overfitting and underfitting are two central challenges. Method
performances are determined by the simultaneous reduction of both the training loss and the
difference between the training and test error; these factors affect the method generalisation
capabilities, which determine the amount of underfitting or overfitting.

Overfitting is a constant and ubiquitous problem in the ML context. It can be defined as the
tendency of an algorithm to extract more information than necessary to capture the noise-less
signal from the training set (Bashir et al. 2020), which results to a model hyper-specialisation on

7Here the notation is simplified: just a simple connection between the j-est and k-est elements is considered for
the l-est layer, using the notation valid for a fully connected layer with N-dimensional input and M-dimensional
output whose weights are encoded into an N × M weights matrix (i.e. w jk for j = 1, . . . ,N and k = 1, . . . ,M). In
any case, it should be remarked that, for a convolutional layer connecting N-dimensional input and M-dimensional
output, the weights are encoded into a 4D matrix (i.e. w jkmn where j and k label the input and output dimension,
whereas m and n label the vertical and horizontal offset). So, the Eq. 3.14 must be repeated ∀m, n ∈ H ×W where H
and W are the filter height and width. In both cases biases are MD vectors, i.e. with the output dimension.
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the learning set preventing the gain of generalisation. This may happen due to a variety of reasons:
a not appropriate number of samples in the training set, an excessively long learning phase, a
trivial solution in the training set characterised by a too fast convergence (Huesmann et al. 2021).
On the other hand, too simple model could not be able to extract abstract properties during the
training phase; in this case, the model is underfitted; it could be the result of insufficient capacity,
insufficient training, or insufficient information retention (Bashir et al. 2020).

Both problems are related to the model capacity, defined as the network capability to fit a
wide variety of functions (Goodfellow et al. 2016). Overfitting occurs for large capacity models,
it is usually identified by observing the evolution of the training and valid loss: assuming the
independence between these two sets, a diverging trend is suggesting an high generalisation
error and an inappropriate large variance, implying, therefore, the model overfitting (Zhang et al.
2018); on the contrary, underfitting takes place when a model is below its optimal capacity, it
could result in a more or less constant performance with the ongoing of the training, even if the
simultaneous reduction of both training and valid loss does not imply the lack of underfitting. In
fact no underfitting predictor can be universally applicable (Sehra et al. 2021). Nevertheless, this
does not rule out probabilistic bounds on the likelihood of underfitting.

Regularisation is an ensemble of techniques aimed at reducing the generalisation error
without influencing the training error (Goodfellow et al. 2016), i.e. it prevents overfitting by
reducing the model capacity. Generally, a model can be regularised by adding a penalty term,
called regulariser, to the cost function (Bishop 2006). Common regularisation methods are: L2
and L1 parameter regularisation (Nowlan & Hinton 1992) and dropout (Srivastava et al. 2014).
A overview on regularisation functions, together with a performative comparison, can be found
in Parkes et al. (2021).

The L2 parameter norm penalty (commonly known as weight decay) drives the weights
closer to zero, by adding a regularisation term to the cost function:

C′ = C +
1
2
λ2

N∑︂
i=1

w2
i (3.16)

where N is the number of involved weights and λ2 is coefficient which modulates the strength
of the decay. L2 regularisation is also known as Tikhonov regularisation (Groetsch 1984) or
ridge regression (Tibshirani 2013). The addition of the weight decay term modifies the learning
rule to shrink the weight vector by a factor which linearly scales with weights (i.e. (1 − ηλ2)w),
before performing the usual gradient update. The usage of L2 regularisation allows the model
to constrain the weights when the input has a higher variance, by preserving adaptation along
directions which significantly contribute to minimising the loss function and affecting only
weight changes in the other directions (Goodfellow et al. 2016).

Formally, the L1 regularisation term added to the cost function is defined as:

C′ = C + λ1

N∑︂
i=1

|wi| (3.17)

where, again, λ1 determines the intensity of the regularisation and N is the number of involved
weights. The effect of this regularisation is different from that of L2. Specifically, the L1
regularisation contribution to the adaptation mechanism no longer scales linearly with each wi,
instead it is a constant factor equals to λ1 sign(wi), applied to each involved wi. This results in
a more sparse solution implying that some parameters have an optimal value equals to zero.
Due to this sparsity property, L1 regularisation has been used as a feature selection mechanism
(Tibshirani 2013; Hara & Maehara 2016; Hara & Maehara 2017; Hastie et al. 2001), since
features corresponding to weights identically zero may safely be discarded.
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Dropout is a computationally inexpensive widely-used regularisation technique. It consists
in the random masking of weights (i.e. it randomly deletes rows from the weight matrix).
This function prevents units from co-adapting, reduces significantly overfitting and gives major
improvements over other regularisation methods (Hinton et al. 2012; Goodfellow et al. 2013;
Warde-Farley et al. 2013; Srivastava et al. 2014). Dropout can be thought as a bagging method
which exponentially creates many ensembles of subnetworks sharing their parameters (Goodfel-
low et al. 2016). Dropout has been shown to be equivalent to L2 regularisation, after that the
weight decay coefficients, corresponding to each input feature, have been individually scaled by
their Fisher information (Wager et al. 2013).

A common way with which overfitting can be prevented is the application of an early stopping
regularisation criterion (Prechelt 1997; Raskutti et al. 2011). Such technique exploits the valid
set to iteratively measure the generalisation error. Given this collection of measurements, it is
possible to impose a semi-empirical early stopping to the learning mechanism, by comparing the
generalisation error at the current epoch with error evaluated at the previous epochs. Finding the
epoch which minimises the generalisation error can be interpreted as the finding an approximate
solution to the bias-variance tradeoff phenomena (von Luxburg & Schoelkopf 2008; Hastie et al.
2001), in fact stopping too early reduces variance but increases bias; on the contrary, stopping
too late enlarges variance though reduces bias (Yao et al. 2007). Solving this bias-variance
tradeoff leads to an early stopping rule. Such rules search for the minimum of the valid loss
function assuming that this latter function has a convex (U-like) shape. One way with which an
early stopping criteria can be implemented is through the creation of a best-model checkpoint,
i.e. the saving of the model when a generalisation error minimum is found, by dumping the
whole parameter ensemble. This parameter coping leads to a negligible memory cost, but it
prevents a too early stopping. Indeed the form of the valid function is unknown, for some
architectures (e.g. Residual Networks, He et al. 2015a) the training and valid losses have a
descending trait characterised by a step-like behaviour: the loss function alternates periods during
which it is practically constant with moments in which it rapidly converges. In these cases, it is
advisable to force the model to overfit and to choose a posteriori the epoch that guarantees the
best compromise between bias and variance.

3.6.3 Data augmentation
The best way with which a ML-model can generalise its learning is to train it on larger dataset
(Goodfellow et al. 2016). Clearly, in practice, the amount of available data can be limited, thus,
in order to get around this problem, artifacts can be added to training set (Cui et al. 2015; Poole
et al. 2014; Jannik Bjerrum 2017; Mikołajczyk & Grochowski 2018). In the DL context, the
simplest way with which artifacts can be produced is through image rotations, vertical and
horizontal flipping (Perez & Wang 2017). The inclusion of these images in the training set also
offered the possibility to make the network invariant to these operations (Goodfellow et al. 2016;
Shorten & Khoshgoftaar 2019). Of course, this approach is not applicable when objects in the
images have a uniquely defined spatial orientation (e.g. alphabet letters or numeric digits), but
works as an advantage for astronomical images as there is no specified spatial orientation for
the observed sources. On the other hand, an uncontrolled augmentation could introduce false
correlations among the training samples, therefore, typically, only a fraction of sources have
been subject to these transformations.

Even with large datasets, a model can overfit when the problem is trivial. Especially in
classification tasks, the repetition of the same slightly-warped sample, the lack of borderline
or interloper objects, the building of to crispy categorical datasets, could lead to overfitting
or, more commonly, in the inability to predict the membership for samples slightly different
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from the training examples. This can be observed by testing the network on training samples
on which a faint noise is added, producing the so-called adversarial examples (Szegedy et al.
2013). Such adversarial samples are so similar to the originals that an human observer is not
able to distinguish between the original and the adversarial example, but the network entirely
mistakes the prediction. Although this is not properly overfitting, the model turns out to be
incapable to generalise. In order to solve this problem adversarial samples can be added to
training set (Goodfellow et al. 2014b). Adversarial examples can be generated by augmenting
the dataset with the inclusion of noised version of original images (Goodfellow et al. 2014b),
by warping images (Zhao et al. 2020) or by directly perturbing the feature nodes (Kong et al.
2020). In the context of astronomy, the limited amount of labelled data, the heterogeneous and
the (typically) low signal-to-noise ratio prevent to apply image deformations or the addition
of noise (for the same reason the cropping of astronomical images is avoided). In this work,
given such complicated uncontrollable environment, in order to introduce adversarial examples,
very complex samples have been added to the datasets. These examples are objects whose
membership inferring is sophisticated and it is typically deduced by combining photometric and
spectroscopic information together with human experience, or, at least, whose classification is
not so crispy and it depends on flexible criteria. Specifically, in this thesis we addressed two
problems: the identification of cluster members (Chap. 5) and of galaxy-galaxy strong-lenses in
galaxy clusters (Chap. 6). Concerning cluster galaxy membership, we built the KB by exploiting
spectroscopic information, by assuming as member a galaxy with a cluster rest-frame velocity
separation within ±3000 km s−1. In this way, adversarial examples are represented by those
objects weakly bound to the cluster, which are indistinguishable from members based on their
photometry and colors, but are correctly classified only through a dynamical analysis. With
regard to the strong-lenses classification, the KB positive class is composed by simulated lensing
events, while the negative class is represented by spectroscopic members which do not reveal
any strong-lensing feature based on visual classification. Adversarial examples also include faint
injected sources or lenses with small Einstein radii, in these cases arc or ring-like features are
masked by the lens galaxy, resulting into images indistinguishable from the negative class.

3.6.4 Optimisation
Once the loss function has been set together with the regularisers, in order to apply an update on
weights and biases, the network requires an optimiser. The optimisation is the process with which
the generalisation error is minimised. Such error is evaluated on the training set, that underlies
an unknown probability distribution; for such reason this error is also called as empirical risk
(Goodfellow et al. 2016), defined as:

E(x,y)∼ p̂data(x,y)[C( f (x; w,b), y)] =
1
N

N∑︂
i=1

C( f (x(i); w,b), y(i)) (3.18)

where N is the number of training samples, C is the selected cost function evaluated by combining
the network output given the current weights and biases f (x; w,b) and the ground truth y, on the
empirical distribution of the data, p̂data(x, y). Eq. 3.18 is stating that the optimiser minimises the
expectation value of the loss function taken across the empirical data distribution.

Non-convex loss functions, such as for ANNs, might have many local minima, a common
issue that must be addressed by the optimiser. Local minima could pose a serious problem
when they correspond to high costs (i.e. high values of the loss function) compared to the cost
of global minimum (Brady et al. 1989; Sontag & Sussmann 1989; Floudas & Gounaris 2009).
Although this problem continues to interest various research areas, many authors claimed that
very large network architectures are not affected by this problem, since the local minima have
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low costs, comparable with the global minimum; therefore, it is not important to find the real
global minimum, rather a minimum with a sufficiently low cost, trying to avoid the saddle points
which are more frequent than high-cost local minima (Saxe et al. 2013; Dauphin et al. 2014;
Goodfellow et al. 2014c). Besides saddle points and local minima, there are other points with
zero gradient: maxima (that typically do not attract optimisers) and flatten regions (in which
gradient and Hessian are all zero).

Optimisation algorithms are based on the Stochastic Gradient Descendent (SGD, Bishop
2006; Goodfellow et al. 2016). An unbiased estimation of the gradient can be obtained by
exploiting an average of gradients evaluated on a batch of m samples extracted from the training
set (Bottou & Bousquet 2008). In the simplest formulation SGD updates weights and biases
using a fraction of loss function gradient:

θt+1 = θt + η∇C(θt) (3.19)

where θt is parameter ensemble to optimise (i.e. weights and biases) at the current epoch t, η is
the learning rate labelling the magnitude of the adaptation. Since the SGD estimator introduces
a source of noise due to random sampling of m examples, it is a good practice to gradually
decrease hyper-parameter η with the ongoing of the training through a linear decay (Wu et al.
2019b).

In order to accelerate SGD, it is possible to add a momentum (Polyak 1964). This algorithm
is designed to accumulate a decaying averaged movement by summing the past gradients and
impose an adaptation in this cumulative direction. The momentum is inspired from the physical
analogy: assuming unit mass, the velocity may also be regarded as the momentum of a particle.
Formally, this algorithm introduces a variable v which plays the role of a velocity (i.e. it imposes
a direction and an intensity to the parameter movement in its space), which is computed from an
exponentially decaying average of the accumulated gradients:

v ← αv − η∇θ
(︄

1
m

m∑︂
i=1

C( f (x(i); θ), y(i))
)︄

(3.20)

θ ← θ + v (3.21)

where α is an hyper-parameter determines the contributions of the previous estimated gradients.
A variant of the momentum algorithm was introduced by Sutskever et al. (2013) inspired by
Nesterov’s accelerated gradient method (Nesterov 1983, 2003). Updating rules 3.20 - 3.21 is
rewritten as:

v ← αv − η∇θ
(︄

1
m

m∑︂
i=1

C( f (x(i); θ + αv), y(i))
)︄

(3.22)

θ ← θ + v (3.23)

The difference with the standard momentum is where the gradient is estimated: in the Nesterov
momentum the gradient is evaluated after the velocity application and it can be thought as a
correction to the standard momentum (Goodfellow et al. 2016).

The momentum algorithms try to minimise the path through the minimum by averaging
the previous gradients, paying the price of adding an extra hyper-parameter to an already large
hyper-parameter space. Considering that learning rate significantly affects model performances,
several optimisers use an independent learning rate for each parameter and automatically update
these learning rates during the training. The most used self-adapting optimisers are Adagrad
(Duchi et al. 2011), RMSProp (Hinton et al. 2012), Adam (Kingma & Ba 2014) and Adadelta
(Zeiler 2012).

32



CHAPTER 3. MACHINE LEARNING APPROACH

In the AdaGrad (Adaptive Gradient, Duchi et al. 2011) algorithm, the learning rates of
all parameters are individually adapted with a scaling factor which is inversely proportional
to the square root of the sum of all the previous squared values of the gradient. In this way,
parameters with largest derivative have a learning rate which rapidly decreases, and vice versa.
The adaptation rule can be summarised as:

g ← ∇θ

(︄
1
m

m∑︂
i=1

C( f (x(i); θ), y(i))
)︄

(3.24)

r ← r + g ⊙ g (3.25)

θ ← θ −
η

δ +
√

r
⊙ g (3.26)

where δ is a small constant used for numerical stability, typically 10−7, g is the gradient; in the
Eq. 3.26 both square root and division are applied element-wise. Even if AdaGrad exploits some
theoretical properties, empirically, however, the collection of all historical squared gradients
can turn out in a excessive decrease of the learning rates (Goodfellow et al. 2016), indeed when
AdaGrad algorithm is applied on non-convex loss function, the learning path might pass through
different structures by finally arriving in a locally convex region with a negligible value of the
learning rate. RMSProp (Hinton 2012) is a batch version of RProp (Resilient backPropagation,
Riedmiller & Braun 1993) algorithm, which solves this problem by including an exponentially
decaying average to emphasise the contribution of more recent gradient respect to extreme past
gradients. The adaptation rule of RMSProp can obtained by replacing Eqs. 3.24 - 3.26 with:

θ̃ ← θ + αv (3.27)

g ← ∇θ

(︄
1
m

m∑︂
i=1

C( f (x(i); θ̃), y(i))
)︄

(3.28)

r ← ρr + (1 − ρ)g ⊙ g (3.29)

v ← αv −
η

δ +
√

r
⊙ g (3.30)

θ ← θ + v (3.31)

where also Nesterov’s momentum has been included8; respect to the AdaGrad algorithm, RM-
SProp has a further hyper-parameter ρ, which is the decay rate used to discard past history.

Adam (Kingma & Ba 2014) is another self-adaptive learning rate optimisation algorithm,
whose name derive from the expression adaptive moments. It can be thought as variant of
RMSProp where first and second order momentum estimations are embedded and both moments
are bias-corrected to take into account their initialisation to zero. Adam updating rule can be
summarised as:

8Nesterov’s momentum can be added also in AdaGrad by combining Nesterov Eqs. 3.22 and 3.22 with AdaGrad
optimisation rules 3.24 - 3.26.
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g ← ∇θ

(︄
1
m

m∑︂
i=1

C( f (x(i); θ), y(i))
)︄

(3.32)

t ← t + 1 (3.33)
s ← ρ1s + (1 − ρ1)g (3.34)
r ← ρ2r + (1 − ρ2)g ⊙ g (3.35)

ŝ ←
s

1 − ρt
1

(3.36)

r̂ ←
r

1 − ρt
2

(3.37)

θ ← θ − η
ŝ

δ +
√

r
(3.38)

where ρ1 and ρ2 are the decay rates for moment estimations, s and r are the biased first and
second moments, while ŝ and r̂ are bias-corrected first and second moments. Despite the
theoretical properties of Adam, it is not robust to the hyper-parameter setup which is critical for
the algorithm performance. AMSGRad (Reddi et al. 2019) try to circumvent this problem by
combining the historical collection of past steps (as AdaGrad) with the unbiased estimation of
the first and second moments. The adaptation rule is modified by adding a selection criteria on
the second order momentum: ŝ ← max(ŝt, ŝt−1), i.e. by preserving the maximum between the
current second-order momentum and the previous step estimation. This slightly modification
allows a stable convergence by also preventing Adam pitfalls.

Another variant of AdaGrad is AdaDelta (Zeiler 2012) algorithm, which combines; (i) an
accumulation of previous steps over a restricted window (Schaul et al. 2012), (ii) a parameter
updating which involves an approximation of Hessian diagonal (Becker & Lecun 1989), (iii) a
gradual reduction of the learning rates near minima based on the achieved amount of epochs
(Robbins & Monro 1951). The adaptation rule can be expressed as:

gt ← ∇θ

(︄
1
m

m∑︂
i=1

C( f (x(i); θ), y(i))
)︄

(3.39)

rt = ρrt−1 + (1 − ρ)g ⊙ g (3.40)

∆θt = −ηt

√︂
1
w

∑︁t−1
k=t−w−1(∆θ)2

k + δ
√

rt + δ
⊙ gt (3.41)

(∆θ)2
t ← ρ

⌜⎷
1
w

t−1∑︂
k=t−w−1

(∆θ)2
k + (1 − ρ)(∆θ)2

t (3.42)

θt+1 = θt + ∆θt (3.43)

where w is the window size, ρ is the decay rates for the second order momentum, ηt is the
current value of the learning rate gradually reduced as the optimiser approaches to a minimum.
Besides the exponentially decaying of the accumulated momentum (Eq. 3.40), the algorithm
maintains the w most recent squared parameter updates (∆θ)2

k exponentially decreased with the
same decay rate ρ used for the momentum. The computed parameter modification (Eq. 3.41)
is an approximation of the Newton’s method used to find local minima and maxima (Davidon
1968) through the Hessian:

∆θt ∝ H−1
t gt ∼ −

1
|diag(Ht)| + δ

⊙ gt (3.44)
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since the gradient has been computed as an average over m samples, Eq. 3.41 is actually involving
the root mean square of the gradient for each examples, according to the definition given in
Eq. 3.18:

gt = ∇θ

(︄
1
m

m∑︂
i=1

C( f (x(i); θ), y(i))
)︄
=

1
m

m∑︂
i=1

∇θ C( f (x(i); θ), y(i)) ≡ E[g]t (3.45)

=⇒ g2
t ≡ E[g2]t = E[g ⊙ g]t =

=
1
m

m∑︂
i=1

∇θ C( f (x(i); θ), y(i)) ⊙ ∇θ C( f (x(i); θ), y(i)) =

=
1
m

m∑︂
i=1

(︄
∇θ C( f (x(i); θ), y(i))

)︄2

≡ RMS[g]t (3.46)

and, given the momentum definition (Eq. 3.40), under the assumption of locally smooth diagonal
curvature, the reverse of the diagonal Hessian is approximated with only RMS measures of the g
and ∆θ:

1
diag(Ht)

∝

√︂
1
w

∑︁t−1
k=t−w−1(∆θ)2

k + δ
√

rt + δ
∼

RMS[∆θ]t−1

RMS [g]t
∼

1
(∆ f )2

t /(∆θ)2
t
∼

1
∂2 f /∂θ2

t

(3.47)

since this approximation is always positive (Becker & Lecun 1989), it ensures that the updating
direction follows the negative gradient.

Adadelta showed robustness with respect to different types of data inputs, number of layers,
hyper-parameter setup and network architectures with performance at least comparable with
other optimisers and negligible computational cost (Zeiler 2012). It has been efficiently adopted
to solve various problems: classification of variable sources (Kim et al. 2021), identification of
post-merged galaxies (Bickley et al. 2021), prediction of morphological galaxy types (Cavanagh
et al. 2021), synthetic galaxy image generation based on cross-survey mapping (Buncher et al.
2021), even to invert nonlinear Schrödinger equation (Wang & Li 2021), just to cite some recent
results. In this work, we tested different architectures, by also varying the hyper-parameter setup
and the optimiser, finding, at the end of ∼ 100 different networks training, that Adadelta turned
out to be the best-choice as optimiser.

Finally, batch normalisation (Ioffe & Szegedy 2015) is a recent innovations in deep learning
optimisation; even if it is actually not an optimisation algorithm, it improves the optimisation
with an adaptive reparametrisation of very deep model, making, sometimes, dropout unnecessary
(Goodfellow et al. 2016); although it looks like a regulariser, it is not at all, since it depend on
parameters which are adapted during the training. Such technique can be applied to normalise
any layer output: let X = xk

i the input of the batch normalisation layer (i.e. the output of the
previous layer), where i = 1, . . . ,m labels the extracted samples and k = 1, . . . ,D labels the
dimension of the input vector, each dimension is independently transformed with:

µBN ←
1
m

m∑︂
i=1

xi σ2
BN ←

1
m

m∑︂
i=1

(xi − µBN)2 (3.48)

x̂i ←
xi − µBN√︂
σ2

BN + δ
(3.49)

yi ← γx̂i + β ≡ BNγ,β(xi) (3.50)

where δ is a small constant value used for numerical stability. Thus, the mean and variance are
computed and used for normalise the input (for each dimension), then, a scaling and shifting are
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applied where γ and β coefficients are adapted during the training as any other fitted parameter;
so that, updating directions imposed by the gradient will never force the increasing of standard
deviation or mean.

3.6.5 Knowledge Base partitioning and augmenting
As already introduced at the beginning of this section, in this work we opted for a stratified
k-fold partitioning (Hastie et al. 2001; Kohavi 1995) to handle the training and test phases. In
this way, the test set fully covers the input parameter space: the whole data set was split into
k = 10 non-overlapping folds, of which, iteratively, one extracted subset was used as a blind
test set, while the others were taken as a training set. Such an approach has several advantages:
(i) increase of the statistical significance of the test set; (ii) the blind test is performed only on
original images; and (iii) it ensures a complete coverage of both training and test sets, keeping
them well-separated at the same time.
Before the k-fold splitting we randomly extracted a small sample of sources (10% of the data
set), reserved as validation set during the training phase in order to control the gradual reduction
of the learning rate on the plateau of the cost function (Bengio 2012) and an early stopping
regularisation process (Prechelt 1997; Raskutti et al. 2011).

The data preparation flow is depicted in Fig. 3.3: (i) the dataset is composed by multi-band
images; (ii) a fraction of sources (10%) is extracted as validation set; (iii) the remaining samples
are split into k = 10 folds without overlapping; (iv) for each of them, a fraction of samples is
augmented through cutout rotations and flips; (v) the training sets are built by concatenating
k − 1 folds (composed by the original images and the artefacts) and the learning is evaluated
on the k-th fold (without artefacts), acting as blind test; (vi) finally, the model performances
are evaluated on the whole training set, obtained by stacking all its (test) folds. Concerning the
augmentation, the cutouts have been rotated around the three right angles and flipped with respect
to the horizontal and vertical axes (an example of such process is shown in Fig. 3.4). Given
the considerable number of model parameters to fit (∼ 105), deep learning networks require an
adequate amount of samples, in order to avoid overfitting (Cui et al. 2015; Perez & Wang 2017).
However, an uncontrolled augmentation could introduce false correlations among the training
samples. Therefore, only a fraction of sources have been subject to these transformations. The
resulting augmentation factor is computed as 1+5∗u times the original dimension of the training
set (where u is the fraction of samples involved into the augmentation process). Obviously, such
augmentation process involves only the training images.

3.6.6 Statistical estimators
In order to assess the model classification performances, we chose the following statistical
estimators: average efficiency (among all classes, abbreviated as AE), purity (also know as
positive predictive value or precision, abbreviated as pur), completeness (also known as true
positive rate or recall, abbreviated as comp), and F1-score (a measure of the combination of
purity and completeness, abbreviated as F1). Such set of statistical estimators is directly derived
from the classification confusion matrix (Stehman 1997).

In a binary confusion matrix, as in the example shown in Table 3.2, columns indicate the
class objects as predicted by the classifier, while rows refer to the true objects per class. The
main diagonal terms contain the number of correctly classified objects for each class, while
the terms FP and FN report the amount of, respectively, False Positives and False Negatives.
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Figure 3.3: Data preparation flow: from the whole dataset (i.e. the knowledge base) a validation set is
extracted. The rest of the dataset is split through a k-fold partitioning process (in this image, we simplified
the figure assuming k = 4 folds, while in reality we used k = 10). The training samples are then arranged,
by permuting the involved augmented folds, while the test samples do not include the artefact images
generated by the augmentation process. These sets are finally stacked in order to evaluate the global
training performances.

Figure 3.4: Data augmentation example for a cluster member at redshift z = 0.531 (e.g. within the
gravitational potential of the galaxy cluster MACS J1149+2223). Five HST bands are represented from
the top to the bottom (F435, F606, F814, F105, F140). The first column shows the original cut-out,
while the three rotations (90°, 180°, 270°) are reported in columns 2 − 4. The two vertical and horizontal
flips are shown in the last two columns.

37



CHAPTER 3. MACHINE LEARNING APPROACH

Predictions
positive negative

True
positive TP FN
negative FP TN

Table 3.2: Generic confusion matrix for a binary classification problem. In a confusion matrix, columns
indicate the number of objects per class, as predicted by the classifier, while rows are referred to the
true (known) objects per class. Hence, the main diagonal terms report the number of correctly classified
objects for each class. While, the terms FP and FN count, respectively, the False Positives and False
Negative quantities.

Therefore, the derived estimators are computed as:

AE =
T P + T N

T P + FP + T N + FN
(3.51)

pur =
T P

T P + FP
(3.52)

comp =
T P

T P + FN
(3.53)

F1 = 2 ·
pur · comp
pur + comp

(3.54)

(3.55)

The AE is the ratio between the sum of the correctly classified objects (for all the involved
classes) and the total amount of objects; it describes an average evaluation weighted on all
involved classes. The purity of a class is the ratio between the correctly classified objects and the
sum of all objects assigned to that class (i.e. the predicted membership); it measures the precision
of the classification. The completeness of a class is the ratio between the correctly classified
objects and the total amount of objects belonging to that class (i.e. the true membership), it
estimates the sensitivity of the classification. By definition, the dual quantity of purity is the
‘contamination’, a measure which indicates the amount of misclassified objects for each class.
Finally, the F-measure provides a way to combine purity and completeness into a single measure;
respect to the Eq. 3.54, it can be expressed in a more general (weighted) form (Chinchor 1992):

Fβ = (1 + β2)
pur · comp

(β2 · pur) + comp
β > 0 (3.56)

where β is the relative importance given to the completeness over the purity. In this work we used
β = 1, i.e. we equally weighted purity and completeness, resulting into an F1-score which is the
harmonic mean between purity and completeness. The F1-score allows to include the information
about the gap between purity and completeness: indeed, a method with pur=comp= 0.5 has an
higher F1 than a method with pur= 0.2 and comp= 0.8.

Among these estimators, completeness and purity are the most interesting estimators, suitable
for measuring the quality of the classification performed by any method. The completeness, in
fact, measures the capability to extract a complete set of candidates of a given class, while purity
estimates the capability of selecting a pure set of candidates (thus, minimising the contamination).
Therefore, the classification quality is usually based on either one of such two estimators or
their combination, depending on the specific interest of an experiment (D’Isanto et al. 2016).
The statistical evaluation was completed by also using the Receiver Operating Characteristic
curve (ROC, Hanley & McNeil 1982), which is a diagram where the True Positive Tate (TPR,
i.e. the completeness rate) is plotted versus the False Positive Rate (FPR, i.e. the contamination
rate, which corresponds to 1− purity) by varying a membership probability threshold. The
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model performances are measured in terms of the area under the curve (AUC), thus providing
an aggregate measure of performance across all possible classification thresholds: an area of 1
represents a perfect classification, while an area of 0.5 indicates a useless result (akin to a toss of
a coin). Examples of ROC curves can be found in Fig. 5.7, Fig. 5.8, Fig. A.1 and Fig. 6.8.

3.7 Implemented architectures
In this work several CNN architectures have been implemented: the Visual Geometry Group
network (hereafter VGG, Simonyan & Zisserman 2014), Residual Network (hereafter ResNet,
He et al. 2015a), Inception Network (herafter GNet9, Szegedy et al. 2014) and Residual Inception
Network (hereafter ResGNet, Szegedy et al. 2016). All these architectures have been imple-
mented through keras (Chollet et al. 2015) and tensorflow (Abadi et al. 2015) exploiting
their mutual integration. Both of them are open-source Python libraries, allowing the automatic
handling of the Graphic Processing Unit (GPU), achieving a huge gain in terms of computational
cost. In this work the experiments were performed with an NVIDIA GPU Titan Xp and an
NVIDIA GPU Quadro P5000, requiring ∼ 20 up to ∼ 50 minutes to complete the training (on a
single fold, see Sec. 3.6.5; this means that a complete training and test experiment, i.e. performed
on 10 folds, requires ∼ 200 up to ∼ 500 minutes). We performed hundreds of experiments, by
varying the models, the architecture configuration, by exploring the hyper-parameter and the
feature space, searching for both the best network setup and the optimal physical space. At
the end of thousands of hours of training we found that the implemented VGG-like networks
turned out to be the best model, showing a high resilience to the hyper-parameter variation and
training configuration, it resulted the network with the best performances and the great gener-
alisation capabilities (a comparison between the networks is shown in Tab. A.1 in appendix A,
regarding the cluster member identification, and in Tab. B.1 in appendix B, for what concern the
galaxy-galaxy strong-lens classification), furthermore it is the model which requires the lowest
computing time and memory resources. For all these reasons, the other implemented networks
are briefly outlined in Sec. 3.7.2, while VGG is widely described in Sec. 3.7.1, and, for the same
reasons, the analysis of the performances and behaviour, classification capabilities and limits are
referred only to the VGG.

3.7.1 Visual Geometry Group network
VGG (Visual Geometry Group) network has been presented in the work by Simonyan & Zis-
serman (2014), where the authors analyse the model dependence on the depth building and
comparing network with 11, 13, 16 and 19 layers, making the VGG19 a standard reference.
Besides the comparison between architectures with different depth, the peculiarities of VGG
are: (i) the usage of only 3 × 3 kernel filters and (ii) the chain of several convolutional layers
with the same number of filters, interspersed by a max-pooling. The exclusive adoption of small
filters allows the building of such deep model, constraining, at the same time, the number of
parameters and, so, saving memory. The repeated application of many convolutional layers
before the pooling operation allows to exploit translation invariance, by replacing a single layer
with a mini-network composed by many smaller layers (Szegedy et al. 2015). For example,
the capability of capture correlation between signals of a 7 × 7 convolutional layer can be
recovered by a reduction of the geometric size of the filters and the concatenation of three 3 × 3

9In their original work, Szegedy et al. (2014) chose the name GoogleLeNet which is the name with which
the network has been submitted to the ILSVRC14 competition, as a homage to Yann LeCuns pioneering LeNet 5
network presented in LeCun et al. (1989). In this work the name has been simplified as GNet to avoid the weighting
of text and tables.
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Figure 3.5: Streamlined representation of the VGG-like architectures used in this work. The VGG is
shown in the top of the panel, while the SC-VGG is displayed in the bottom of the panel. Orange and
blue items describe two different block operations, respectively: (i) convolution, batch normalisation
and activation function, (ii) convolution, batch normalisation, activation function and pooling. The
simultaneous reduction of the square dimensions and their increasing amount intuitively represent the
abstraction process typical of a CNN. Green circular units are arranged in order to describe the fully
connected (i.e. dense) layers. The dimensions of the feature maps are reported for each pooling operation,
together with the number of features extracted by the CNN.

convolutional layers. In this example also the computing time is reduced: since the three layers
have the same number of channels C (i.e. the number of 3 × 3 filter kernels) the amount of
parameters is 3(32C) = 27C, while for a single 7 × 7 convolutional layer this amount grows to
72C = 49C, i.e. 81% more. Same reason can be done when a 5 layer is replaced by two 3 × 3
layers, resulting into a saving of 94% of parameters.

In this work, a VGG-like network has been implemented; respect to the the original work
by Simonyan & Zisserman (2014), the proposed model has been set with: (i) a LeackyReLU
activation function for each neural units, (ii) a batch normalisation layer after each convolutional
layer, (iii) a dropout regulariser between the dense layers. Moreover, only for the identification
of galaxy-galaxy strong-lenses (see Chap. 6), we implemented a VGG in which each channel
is independently propagated toward the output layer, obtaining a membership probabilities for
each channel; the probability vectors related to the positive class (i.e. the GGSL) are averaged to
compute a global output, whereas the probability vector for the negative class is calculated as
a complementary vector, i.e. 1 − Pr(y = GGSL); these vectors are used to estimate the binary
cross-entropy (Eq. 3.6), which is used to during the back-propagation phase. Such single channel
network has been called Single Channel VGG (hereafter, SC-VGG). A simplified layout of the
implemented VGGs is shown in Fig. 3.5, where the VGG is depicted at the top of the panel,
while the SC-VGG is presented at the bottom of the figure, this latter refers to the dataset whose
samples are images with a side of 128 pixels, whereas for the dataset with cutout side of 256
pixels, the last operational block (convolution chain combined with the MaxPool2D operation) is
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VGG for CLMs identification VGG for GGSLs identification
Layer Output Shape Params # Layer Output Shape Params #

Input layer (64, 64, NC) 0 Input layer (128, 128, 3) 0
Conv2D LReLU (64, 64, 64) 6976 Conv2D LReLU (128, 128, 64) 6976
Conv2D LReLU (64, 64, 64) 36928 Conv2D LReLU (128, 128, 64) 36928

Max Pool2D (32, 32, 64) 0 Max Pool2D (64, 64, 64) 0
Conv2D LReLU (32, 32, 128) 73856 Conv2D LReLU (64, 64, 128) 73856
Conv2D LReLU (32, 32, 128) 147584 Conv2D LReLU (64, 64, 128) 147584

Max Pool2D (16, 16, 128) 0 Max Pool2D (32, 32, 128) 0
Conv2D LReLU (16, 16, 256) 295168 Conv2D LReLU (32, 32, 256) 295168
Conv2D LReLU (16, 16, 256) 590080 Conv2D LReLU (32, 32, 256) 590080
Conv2D LReLU (16, 16, 256) 590080 Conv2D LReLU (32, 32, 256) 590080
Conv2D LReLU (16, 16, 256) 590080 Conv2D LReLU (32, 32, 256) 590080

Max Pool2D (8, 8, 256) 0 Max Pool2D (16, 16, 256) 0
Conv2D LReLU (8, 8, 512) 1180160 Conv2D LReLU (16, 16, 512) 1180160
Conv2D LReLU (8, 8, 512) 2359808 Conv2D LReLU (16, 16, 512) 2359808
Conv2D LReLU (8, 8, 512) 2359808 Conv2D LReLU (16, 16, 512) 2359808
Conv2D LReLU (8, 8, 512) 2359808 Conv2D LReLU (16, 16, 512) 2359808

Max Pool2D (4, 4, 512) 0 Max Pool2D (8, 8, 512) 0
Conv2D LReLU (4, 4, 512) 2359808 Conv2D LReLU (8, 8, 512) 2359808
Conv2D LReLU (4, 4, 512) 2359808 Conv2D LReLU (8, 8, 512) 2359808
Conv2D LReLU (4, 4, 512) 2359808 Conv2D LReLU (8, 8, 512) 2359808
Conv2D LReLU (4, 4, 512) 2359808 Conv2D LReLU (8, 8, 512) 2359808

Max Pool2D (2, 2, 512) 0 Max Pool2D (4, 4, 512) 0
Flatten (2048) 0 Conv2D LReLU (4, 4, 512) 2359808

Dense LReLU (4096) 8392704 Conv2D LReLU (4, 4, 512) 2359808
Leaky ReLU (4096) 0 Conv2D LReLU (4, 4, 512) 2359808

Dropout (4096) 0 Conv2D LReLU (4, 4, 512) 2359808
Dense LReLU (4096) 16781312 Max Pool2D (2, 2, 512) 0
Leaky ReLU (4096) 0 Flatten (2048) 0

Dropout (4096) 0 Dense LReLU (4096) 8392704
Dense (2) 8194 Dropout (4096) 0

Output Layer (2) 0 Dense LReLU (4096) 16781312
Dropout (4096) 0
Dense (2) 8194

Leaky ReLU (4096) 0
Output Layer (2) 0

Table 3.3: VGGs configuration. The columns specify the layer operation, the shape of the output and the
number of parameters to fit. The output shape of a layer is a 4D matrix, but, since the first dimension is
the fixed size of the input data batch, we do not mention this number to prevent confusion. To avoid the
weighted of the text we merged the Conv2D and Leaky ReLU layer as a one layer (as well as for Dense
and Leaky ReLU) and we omitted the batch normalisation layer that always follows the Conv2D operation.
The total amount of trainable parameters is larger than 45M. The last dimension of the input layer is
the involved number of channels (i.e. the number of photometric bands used), a quantity depending on
the specific experiment (see sections 5.2 and 6.2). Left columns refer to the network used for cluster
members identification (see Chap. 5, while right columns describe the VGG adopted for the strong lensing
events classification (see Chap. 6). In this latter work we also trained the net with cutout whose size is
256 pixels, in this case the last operational block )convolutions chain combined with the MaxPool2D) is
repeated again before the flatten layer, always with 512 filters. The implementation of SC-VGG (used
for the strong-lensing work) consists in the iteration of this VGG for three times: excluding the final
probabilities averaging, the only difference is the input layer, whose dimension is [(128, 128, 1)] × 3 or
[(256, 256, 1)] × 3.

41



CHAPTER 3. MACHINE LEARNING APPROACH

repeated again before the flatten layer, always with 512 filters. A configuration layout is shown
in Tab. 3.3.

Concerning the other hyper-parameters, at the end of all experiments we found that AdaDelta
is the best-choice as optimiser (it allowed an performance improvement up to 5%). To avoid
memory loss, the network has been trained with input data batches of size equals to 64 patterns
for the cluster member identification, while, for what concern the strong-lenses classification it
has been reduce to 32 patterns.

3.7.2 Other implemented network
Network performance can be improved by increasing its sizes, which includes both expanding the
depth (i.e. the number of layers) and the width (i.e. the number of units in each level). However,
enlarging the architecture dimension means an increasing of the amount of parameters, which
makes the network more prone to overfitting, in particular when the training involves restricted
dataset. This expansion weights down the computing and ends up to require a dramatically
amount of computing resources. Moreover, if the added capacity is not sufficient, then computing
resources and times are unnecessarily wasted. The fundamental way of solving these issues is to
move from fully connected to sparsely connected layers, even inside convolutions (Arora et al.
2013). Inception and residual networks try solve this problem by constructing sophisticated
topology algorithms that approximate sparse structures. This is achieved by building networks
with repeated inception modules and residual blocks.

Inception Networks (Szegedy et al. 2014) exploit the concept of Network in Network
proposed by Lin et al. (2013) which inserted a micro fully connected network within a deep
architecture by abstracting data within the receptive field. This architecture is implemented
as chain a inception modules, each of them processes the input through several parallel path
characterised by different convolutional filters and sub-sampling, by concatenating the outputs.
In this way, this network embeds a sort of hyper-parameter optimisation, since the most adapted
filter combinations automatically produce the feature maps that allow to solve the problem.

Residual Networks (He et al. 2015a) are based on the idea that a certain network layer should
be able to extract feature maps carried at least the same information (necesary to solve the
problem) carried by input itself. Thus, this architecture is implemented as a sequence of residual
blocks in which the input is processed by a set of convolution and pooling units, but it is also
propagated directly to the output (though the so-called short-cut) and summed to the resulting
extracted feature maps. An evolution of this architecture is the Residual NeXt (Xie et al. 2016),
based on which the residual block perform an aggregated transformation: an N-dimensional
feature map is split into M lower dimension (N/M) features maps, which are independently
processed by the network and finally summed together and to the propagated input.

Finally, Residual Inception Networks (Szegedy et al. 2016) combine the the previous de-
scribed architectures. These models are composed as a chain of inception residual modules,
in which the large usage of different convolutional filters and subsampling is combined to the
aggregated transformation and input short-cut propagation.

3.8 Benchmark methods
The results achieved by the application of CNN to the cluster member selection (Chap. 5) has
been compared with two two techniques based on photometric catalogues (see Sec. 5.3.3): a
Random Forest (RF, Breiman 2001) and a Bayesian Method (briefly described in Grillo et al.
2015). Here we summarise the main feature and functionality of these two methods.
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A Bayesian classifier is a model able to minimise the error probability (Devroye et al.
1996), defined as: L(g) = P[g(X) ≠ Y], where (X,Y) are pair values ∈ Rd × {1, . . . ,M} (i.e.
Y is the ensemble of class labels related to the manifold X), g is a classifier (i.e. a function
g : x ∈ X ⊆ Rd → y ∈ {1, . . . ,M}), L is an application mapping g into probabilities. The minimal
probability error is denoted L∗ = L(g∗), that can be written as:

g∗ = argmin
g:Rd→{1,...,M}

P[g(X) ≠ Y]

Given a classical linear model ȳi =
∑︁p

j=1 xi jθ j, i = 1, . . . , n, the method estimates {θ}pi in order
to minimise a coherent combination of the residuals ri = yi − ȳi. The implemented method
exploits a minimum covariance determinant method (Rousseeuw 1984), which is based on the
minimisation of the median of squared residuals.

Random forest is a machine learning classifier consisting of a collection of tree-structured
classifiers {h(x,Θk), k = 1, ...} where the {Θk} are independent identically distributed random
vectors and each tree casts a unit vote for the most popular class at input x. The generalisation
error for this algorithm depends on the strength of single trees and from their correlations
through the raw margin functions. To improve the model accuracy by keeping trees strength,
the correlation between trees is decreased and bagging with a random selection of features is
adopted. Bagging, or bootstrap aggregating, is a method designed to improve the stability and
accuracy of machine learning algorithms. It also reduces variance and helps to avoid overfitting.
In this work, we used the RF provided by Scikit-Learn python library (Pedregosa et al. 2011).
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Chapter 4

Observational data

The works presented in the following chapters are based on extensive observations of the core of
several massive clusters, which provided large volumes of spectroscopic and photometric data
characterised by an unprecedented quality. Particularly, imaging have been acquired with the
Hubble Space telescope (HST) and with the Subaru telescope, while spectroscopy were obtained
with the VIMOS multi-object panoramic spectrograph and with the integral field spectrograph
MUSE (Multi Unit Spectroscopic Explorer), both of them part of Very Large Telescope (VLT)
programs. In this chapter, we outline the used instrumentation and the corresponding imaging
and spectroscopic observational surveys.

4.1 Imaging

4.1.1 Hubble Space Telescope imaging
Hubble Space Telescope1 has been widely recognised as one of the most productive machine
ever built. It was lauched in 1990 in a stable orbit at 600 km of height, with a revolution time
around 96 minutes. It provides images with an angular resolution of 0.050′′.

In this work, the used images were acquired by the Advanced Camera for Survey (ACS)
and the Wide Field Camera 3 (WFC3), both of them have of a large set of broad and narrow
band-pass filters, covering a spectral range from the UV ot the near-IR, whose transmission
curves are shown in Fig. 4.1.

WFC32 consists of two working channels: the UVIS channel, which covers the ultraviolet
wavelength range, approximately 2000−4000 Å, and the NIR channel, over the range 0.9−1.7 µm.
In this work, we used only NIR channel. Its detector is a 1k×1k HgCdTe array, with a pixel scale
of 0.13′′/pixel and a FoV of 123′′ × 137′′. This camera replaced the WFPC2 in 2009 during the
servicing mission 4.

The ACS3 detector consists of two 2k×4k CCDs, which are butted together to create an
effective FoV of 202′′ × 202′′, with a pixel scale of 0.049′′/pixel. It covers a spectral range from
3700 Å up to 11000 Å. This camera replaced the HST Faint Objects Camera during the service
mission 3B in 2002. Originally ACS had two independent working channels: Wide Field Camera
(WFC) and High Resolution Camera (HRC); however after an electric fault in 2007, only the
WFC was recovered during the service mission 4 in 2009.

The images were calibrated, reduced and then combined into mosaics with a pixel scale of
0.030′′ and 0.065′′ (see Koekemoer et al. 2007, 2011).

1http://www.stsci.edu/hst
2http://www.stsci.edu/hst/wfc3
3http://www.stsci.edu/hst/acs/
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Figure 4.1: Transmission curves of HST/ACS and HST/WFC3 filters. Figure from Monna et al. (2014).

4.1.2 Subaru imaging
Subaru telescope is a ground-based instrument built in Hilo, Hawaii. Its primary mirror has
a effective diameter of 8.2m made of ULE (ultra-low thermal expansion glass), with a focal
length of 15m. In this work, the used images were acquired with the Subaru Prime Focus
Camera (Suprime-Cam, Miyazaki et al. 2002), which consists in a mosaiac of ten 2k×4k CCDs
with a pixel scale of 0.20′′/pixel, covering a FoV of 34′ × 27′. The Suprime-Cam have two
photometric band systems for broad-band filters: the Johnson-Morgan-Cousins system, i.e. b, v,
rc, ic (Johnson & Morgan 1953; Cousins 1978; Bessell 1990), and the Sloan Digital Sky Survey
(SDSS) system, i.e. g′, r′, i′, z′ (Fukugita et al. 1996). The transmission curves are shown in
Fig. 4.2.

4.2 Spectroscopic data
The VLT (Very Large Telescope) is a telescope facility operated by the European Southern
Observatory on Cerro Paranal in Chile, it consists of an array of four Ritchey-Chrétien Unit
Telescopes (UT), whose primary mirrors have a diameter of 8.2m, and four auxiliary movable
telescopes (AT), with mirrors of 1.8m of diameter. The UTs are equipped with an adaptive
optic system, which correct for the aberrations introduced by the atmospheric turbulence. The
maximum FoV of an UT is 27′. The eight VLT telescopes can work independently or in a

Figure 4.2: Transmission curves of Subaru Surprime-Cam standard filters (solid line). The dotted lines
indicate the combined responses by considering the CCD quantum efficiency, the throughput of the prime
focus corrector, the reflection of the primary mirror and atmospheric absorption. Figure from Miyazaki
et al. (2002).
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combination mode by summing their collecting area and acting as a single telescope of 16m of
diameter.

The spectroscopic data used in this work are measured with MUSE4 IFS (Bacon et al. 2012,
2014, 2015), located at the Nasmyth B focus of the VLT/UT4. It is a second generation instrument,
which exploits the imporved spatial resolution of adaptive optics: by combining a set of image
slicers and 24 spectrographs, it generates a data cube, whose FoV is 1′ × 1′, with a pixel scale of
0.2′′/pixel (operating with the Wide Field Mode); thus a total amount of (60/0.2)2 = 90 · 103

spectra, with a wavelength range included in 4650 − 9300 Å, a spectral sampling of 1.25Å/pixel
and a spectral resolution of R(λ = 4650 Å) ∼ 1750 (or R(λ = 9300 Å) ∼ 3750).

MUSE can observe with two operating modes: (i) WFM (Wide Field Mode), which is the
mode with which observations are carried out to produce the data used in this work, and (ii)
NFM (Narrow Field Mode). With the WFM, MUSE observes with the maximum FoV, i.e. 1′ × 1′

sampled in pixels of 0.2′′ × 0.2′′. The whole MUSE FoV is divided in sub-fields which are sent
to 24 IFUs, that collect a spectrum for each one of the 90 · 103 pixels; then, the MUSE data
reduction software arranges these spectra in a data cube, i.e. a tree-dimensional matrix, whose
first two dimensions represent the observed FoV and the spectrum lies on the third dimension.
Fig. 4.3 shows a layout of the data cube (3 partially overlapped observations of the M1206 core,
z = 0.439), obtained by extracting frames at 20 wavelengths.
With the WFM, MUSE observes in a reduced area of 7.5′′ × 7.5′′, sampled in pixels of 0.025′′ ×
0.025′′.

4.3 Galaxy Clusters Programs
Data used in this thesis were collected as part of several galaxy cluster surveys: CLASH, CLASH-
VLT, HFF and RELICS. These surveys provided extensive and high quality spectroscopic and
photometric data for 69 galaxy clusters spanning a redshift range from z = 0.189 (Abell 383) to
z = 0.972 (SPT-CLJ0615-5746). In this work, CLASH, CLASH-VLT and HFF data are used to
train the convolutional neural networks, i.e. to build the Knowledge Base, while RELICS data
are finally processed by the trained networks to test their achieved level of generalisation.
In this section we outline the primary scientific goals and features of these surveys.

4.3.1 CLASH survey
The Cluster Lensing And Supernova survey with Hubble (CLASH5, Postman et al. 2012a),
whose Principal Investigator (P.I.) is Marc Postman, was one of the three selected HST Multy-
Cycle Treasury Programs in 2011. CLASH observed 25 massive galaxy clusters using HST
panchromatic imaging (16 filters of WFC3 and ACS cameras, covering the wavelength range
2000 − 17000Å), for a total of 524 HST orbits. Furthermore, these clusters have been observed
with the Advanced CCD Imaging Spectrometer of Chandra6. A selection of 15 CLASH clusters
is shown in Fig. 4.4. The four clusters, observed by also the Subaru telescope, which are used in
this thesis (and which are part of CLASH observation) are shown in Fig. 4.5. These coloured
images were produced with the Trilogy code (Coe et al. 2012), by combining HST/WFC3 and
HST/ACS filters from the optical to the near-infrared, and by combining Subaru Suprime-Cam b,
v, rc, ic (i′ for Abell 209) and z′.

4https://www.eso.org/sci/facilities/develop/instruments/muse.html
5https://archive.stsci.edu/prepds/clash/

https://www.stsci.edu/~postman/CLASH/Home.html
6http://cxc.harvard.edu/cal/Acis/
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Figure 4.3: Layout of MUSE data cube (actually, 3 partially overlapped observations of the M1206
core, z = 0.439) represented as a set of images extracted at 20 wavelengths. The corresponding central
wavelength is quoted in each panel. Images are coloured according to this wavelength, from violet to red.

CLASH program was completed in 2003, but its data products still supply the scientific
community, by accomplishing its main science goals: revealing and characterising distant lensed
galaxies at z ≥ 7 (e.g., Zheng et al. 2012; Coe et al. 2013; Bouwens et al. 2014), mapping
and studying the dark matter distribution in galaxy clusters (e.g., Umetsu et al. 2014; Merten
et al. 2015; Sartoris et al. 2014), understanding dark energy and testing cosmological paradigms
by detecting supernovae (e.g., Riess et al. 2018; Gómez-Valent & Amendola 2018), study the
internal structure and the evolution of cluster galaxies (e.g., Postman et al. 2012b; Connor et al.
2017; Fogarty et al. 2017).

4.3.2 CLASH-VLT program
Built on CLASH survey, the “Dark Matter Mass Distributions of Hubble Treasury Clusters and
the Foundations of ΛCDM Structure Formation Models” program (hereafter CLASH-VLT7,
Rosati et al. 2014) is an ESO-Large Program approved in 2014 (P.I. Piero Rosati), which consists
of an comprehensive spectroscopic campaign on 13 CLASH clusters, accessible from the VLT.
Spectroscopic observations have been carried out with the Visible wide field Imager and Multi-
Object Spectrograph (VIMOS), instelled on the UT3 of the VLT. VIMOS has a spectral range of
3600 − 10000 Å and a spectral resolution between 13 Å and 28 Å. The program was completed
in 2016, after 225 hours of observations, finalising its original goals: confirming at least 500

7https://sites.google.com/site/vltclashpublic/home
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Figure 4.4: Colour-composite images of the 15 CLASH clusters included in our analysis, obtained by
combining HST/WFC3 and HST/ACS filters from optical to near IR. Images are squared cut-outs, ∼ 130′′

across, centred on the cluster core. For each cluster, the central redshift is reported between brackets.

members per cluster, over 3 − 5 Mpc, for accurate cluster mass reconstruction from dynamical
analysis (e.g., Balestra et al. 2016; Annunziatella et al. 2017; Girardi et al. 2015; Jiménez-
Teja et al. 2018); measuring redshift of over 200 magnified galaxies out to z ∼ 7, with which
constraining cluster strong lensing model (e.g., Pizzuti et al. 2016; Parry et al. 2016; Grillo et al.
2018; Bonamigo et al. 2018; Mercurio et al. 2021). An impressive example of the spectroscopic
coverage of CLASH-VLT data is shown in Fig. 4.6, where spectroscopic confirmed sources are
plotted on Subaru Suprime-Cam rc band field of MACSJ0416.1-2403.

4.3.3 Hubble Frontier Fields survey
The Hubble Frotier Fields survey (HFF8, P.I. Matt Mountain) used the HST/ACS and HST/WCF3
cameras to produce the deepest observations of the core of clusters (Lotz et al. 2014, 2017;
Koekemoer et al. 2014). In particular, HFF provided ultra-deep observations (5σ point-source
depth of F814 = 29.1 mag, i.e. 1.5 magnitudes deeper than CLASH) of six clusters (which are
shown in Fig. 4.6), for a total of 840 orbits (i.e. 160 per cluster), in three ACS filters (F435, F606,
F814) and in four WFC3 bands (F105, F125, F140, F160). The six clusters were selected for
their high-magnification lensing properties, for the large set of spectroscopic confirmed multiple
images systems, for the available magnification maps and for absence of bright stars in the FoV.

The primary science goals of HFF are the exploration of the high-redshift universe by
revealing galaxy populations of z = 5 − 10 (e.g., Kikuchihara et al. 2020; Vanzella et al. 2021;
Meyer et al. 2021); the studying of the stellar populations of faint galaxies and the characterisation
of high-z star-forming galaxies (e.g., Bhatawdekar et al. 2019; Vanzella et al. 2019; Furtak et al.
2021); set the stage of the James Webb Space Telescope (e.g., Ryan & Reid 2016; Vanzella et al.
2017a).

8https://outerspace.stsci.edu/display/HPR/HST+Frontier+Fields
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Figure 4.5: Colour-composite images of the 4 Subaru clusters, obtained by combining Subaru Suprime-
Cam filters b, v, rc, ic (i′ for Abell 209) and z′. Images are squared cutouts ∼ 20′ across, centred on the
cluster core. For each cluster, the central redshift is reported between brackets.

4.3.4 RELICS survey
The Reionization Lensing Cluster Survey (RELICS9, P.I. Dan Coe) extends the CLASH and HFF
strategy through a wider, shallower survey of 41 galaxy clusters (z ∈ [0.182, 0.97]), observed for
a total of 188 HST orbits (5 per cluster), using the same 7 HFF filters, i.e. spanning a wavelength
range 4000 − 17000 Å (Coe et al. 2019). RELICS data products are less deep than CLASH
and HFF (5σ point-source depth of F160 = 26.5 mag, i.e. 1.0 and 2.2 magnitude shallower
than CLASH and HFF), however observations covered a larger area. 21 clusters have been
selected among the most massive clusters known based on Planck PSZ2 estimations, and 20
additional clusters based on observed or suggesting exceptional lensing strength. None of them
had existing HST infrared imaging. A selection of 33 RELICS clusters, used in this thesis, is
shown in Fig. 4.8.

RELICS was mainly designed to: search for brightly lensed high-redshfit galaxies in the
epoch of reionisation (e.g., Salmon et al. 2018, 2020; Strait et al. 2020); extend robust strong-lens
model to other clusters (e.g., Acebron et al. 2018; Cerny et al. 2018); improve the precision of

9https://relics.stsci.edu/
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Figure 4.6: Spatial distribution of galaxies on the Subaru Suprime-Cam rc band field of MACSJ0416.1-
2403 (29′ × 25′). Red circles indicate the 880 confirmed cluster members (with rest-frame velocity in
±3000 km s−1 from the cluster central redshift, z = 0.396), blue circles represent the other 3307 sources
with z ∈ (0.02, 4.15). Large black circles mark 1, 3 and 5 Mpc radii from the northern BCG. The HST
colour composite image (2.0′ × 1.8′) shows the view of the core. On the left, the 3D source distribution in
z (restricted in 0.2 − 0.6). Figure from Rosati et al. (2014).

mass scaling relations and tighten limits on the dark matter particle cross section, by combing
lensing, X-ray observations and SZ studies (e.g., Sayers et al. 2019).
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Figure 4.7: Colour composite image of the 6 HFF clusters. The cluster ID and central redshift are written
in white. Credit: https://esahubble.org/.
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Figure 4.8: Colour-composite images of the 33 RELICS clusters used as run set, obtained by combining
HST bands from optical to near IR. The images are squared cutouts, ∼ 220′′ across (excluded for
Abell 2163, Abell 520 and Abell 1758, for which the cutouts are ∼ 380′′ across), centred on the cluster
core. For each cluster, the central redshift is reported between brackets.
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Chapter 5

Identification of Cluster Members

In this chapter I present the identification of cluster member population in galaxy clusters
exploiting CNN capabilities to classify objects based on imaging data alone. As introduced in
section 3.7, we test classification capabilities of four architectures, whose comparison is shown
in Tab. A.1, however, since performances are strictly comparable, to avoid the weighting of the
text, we restrict the following analysis to the results achieved by the application of the VGG
network (see Sec. 3.7.1), i.e. the model which required the least use of computational resources,
with the shortest computing time and with the smallest hyper-parameter space. This chapter is
largely extracted from Angora et al. (2020).

5.1 Aim of the work
As introduced in Sec. 2, galaxy clusters are massive systems made of hundreds of galaxies bound
by dark matter, such galaxies are called cluster members (hereafter CLMs). Disentangling these
galaxy members from background and foreground sources is an essential step in the measurement
of physical properties of galaxy clusters, e.g. the galaxy luminosity and the galaxy stellar mass
functions (Annunziatella et al. 2014, 2016, 2017; Mercurio et al. 2016); furthermore, high-
precision strong lensing models require the simultaneous identification of background multiple
images and galaxy members in order to study the cluster mass distribution (e.g. Caminha et al.
2017b, 2019; Medezinski et al. 2016; Lagattuta et al. 2017), separate the sub-halo population
from cluster projected total mass distribution (e.g. Grillo et al. 2015; Bergamini et al. 2019), test
structure-formation models, cold dark matter paradigm and to constrain cosmological parameters
(e.g. Diemand & Moore 2011; Meneghetti et al. 2020; Grillo et al. 2016, 2018).

Cluster members can be identified through spectroscopic measurements. However obtaining a
complete sample of spectroscopic members is an expensive and time-consuming task, which can
be simplified and accelerated thanks to the use of a limited amount of spectroscopic information
combined with other techniques. In recent yeas, the CLM selection has been addressed in
several ways: by exploiting the the members’ red-sequence in colour-magnitude diagrams, aided
by spectroscopic measurements (Caminha et al. 2019); by estimating photometric redshifts of
sources in galaxy clusters with a Bayesian method (Molino et al. 2017, 2019) or using ML
techniques (Lopes & Ribeiro 2020); by training a Multi-Layer-Perceptron with a quasi-Newton
approach, used as galaxy member classifier (Biviano et al. 2013; Cavuoti et al. 2015; Brescia
et al. 2013); or by fitting a multivariate normal distribution in a multi-dimensional colour space
combining spectroscopic members and field galaxies (Grillo et al. 2015). Besides the necessity
of spectroscopic information, all these methods require accurate photometric measurements,
which are difficult to obtain with standard photometric techniques in galaxy clusters, due to the
strong contamination from bright cluster galaxies, including the brightest cluster galaxies, and
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the intra-cluster light (Molino et al. 2017).
In this work, we bypassed this problem by avoiding the extraction of photometry-based

features (i.e. the typical information provided by software like SExtractor, e.g. magnitudes corre-
sponding to different apertures, galaxy size measurements, such as semi-major and semi-minor
axis lengths, Kron or Petrosian apertures), designing a CNN able to select cluster members
exploiting only Hubble Space Telescope panchromatic images combined with a large spectro-
scopic coverage. We studied the network dependence on the involved filters, on the member
redshift, magnitude and colours, on the training setup and sizes, on the cutout crowding; we also
performed a comparison with two different photometric approaches (i.e. a Bayesian method
and a Random Forest); we exploited the trained network to identify new candidate members
in galaxy clusters and test this classification by estimating the cumulative projected number of
cluster members and the differential number density profiles. Finally, we also trained the CNN
using the SUBARU imaging, by performing a comparison between ground-based wide-field data
and images acquired by space-born telescope with smaller FoV.

5.2 Knowledge Base
In order to build the Knowledge Base suitable to address the CLM identification, we used the
spectroscopic information based on CLASH-VLT VIMOS program (ESO 200h Large Program
186.A-0798, "Dark Matter Mass Distributions of Hubble Treasury Clusters and the Foundations
of ΛCDM Structure Formation Models", PI: P. Rosati; Rosati et al. 2014), combined with
archival observations carried out with the MUSE spectrograph (Bacon et al. 2014). We exploit
such measurements to label the training set, by defining as CLM a source having rest-frame
velocity separation |v| ≤ 3000 km s−1, respect to the cluster central velocity (Grillo et al. 2015;
Caminha et al. 2016, 2017a). On the contrary, non-cluster-members (NCLMs) are those having
greater differences in velocity. Formally:

yi =

⎧⎪⎪⎨⎪⎪⎩ 1, if |v| = c |zi − zcl|/(1 + zcl) ≤ 3000 km s−1

0, otherwise
(5.1)

where yi is the label related to the i-est source (CLM: 1, NCLM: 0), c is the speed of light (in
km s−1), zi and zcl are the source and the cluster redshift, respectively. In this work, we built
the KB by stacking all members belonging to clusters spanning a reshift range 0.18 − 0.59.
The 15 involved clusters are shown in Fig. 4.4 in Chap. 4. Images were acquired by the HST
ACS and WFC3 cameras. To build the dataset, we opted for images with spatial resolution of
0.065′′. Among the 16 available HST filters, we considered bands covering the spectral range
4000 Å − 16000 Å, that is, the optical and NIR bands, excluding the UV filters for which the
signal-to-noise ratio (S/N) of faint CLMs was too low. This results into 12 available bands (7
optical bands and 5 NIR bands). As detailed below, we test 3 different filter combinations: (i)
including all the available bands, (ii) using only the optical filters, (iii) selecting 3 optical and
2 near-infrared bands (i.e. the HFF filters). These configurations are summarised in Tab. 5.1.
For each spectroscopic source within the HST images (excluding the BCGs), we extracted a
squared cut-out with a side of ∼ 4′′ (64 pixels), centered on the source position. This size is
large enough to include most of the member light as suggested by the galaxy effective radii
estimated by Tortorelli et al. (2018) in RX J2248-44311 (z = 0.346), who found a value in
the range (0.08′′, 1.16′′), with a median of 0.31′′. A selection of the sources composing the
dataset is shown in Fig. 5.1, where objects were extracted from the field of view of four clusters:

1Also known as Abell S1063
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CLMs

Interlopers

NCLMs

Figure 5.1: Examples of RGB cutouts of cluster members, interlopers and non-members extracted from
HST images (F435, F606, F814). To emphasise fainter sources, images have been stretched by clipping
values within ±3σ and then normalised. Cutouts are ∼ 4′′ across.

RX J2248-4431 (R2248, z = 0.346), MACS J0416-2403 (M0416, z = 0.397), MACS J1206-0847
(M1206, z = 0.439), and MACS J1149+2223 (M1149, z = 0.542). n

We did not apply any magnitude or colour thresholds, nor did we use photometric information
to train the network, at least non directly, indeed, magnitude is encoded within the cutouts
presented to the network, whereas colour-like features are automatically computed in the first
convolutional layer by algebraically summing the involved bands (see Eq. 3.3); the photometry
information together with the cluster rest-frame velocity separation are shown in Fig. 5.2. Given
the member red-sequence dependence on cluster redshift, we exploited the correlation between
the Balmer break and the normalised colour (a.k.a. corrected colour or differential colour), as
shown in Girardi et al. (2015), defined as the difference between the observed colour and the
colour-magnitude relation, that is:

(F814 − F160)norm = (F814 − F160)obs − [colour-magnitude(F814)] (5.2)

the colour-magnitude relation was fitted for each cluster with spectroscopic confirmed members,
using a robust linear regression (Cappellari et al. 2013), that takes into account a possible intrinsic
data scatter and clips outliers, adopting the least trimmed squares technique (Rousseeuw &
Driessen 2006). In this way, the red-sequence is centered around the zero for members belonging
to clusters at different redshift (as shown in the bottom left panel of Fig. 5.2); furthermore, it is
possible to define a global limit to separate bluer and redder members, regardless of the specific
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cluster red-sequence. Avoiding photometry thresholds allows us to: (i) increase the KB, (ii)
neglect any kind of photometry measurements and (iii) introduce adversarial examples to prevent
overfitting (see section 3.6.3). Particularly, this latter condition is achieved by “contaminating”
the KB by also including small fraction of faint and blue members, together with interlopers, as
shown in the panels of Fig. 5.2:

- faint members: ≲ 10% (≲ 4%) of CLMs have F814 ≥ 24 mag (≥ 25 mag);

- blue members: ≲ 20% (≲ 6%) of CLMs have (F606 − F814)norm ≤ −0.15 mag (≤
−0.5 mag);

- interlopers: typically red early-type galaxies, photometrically indistinguishable from
CLMs (see also Fig. 5.1), weakly bound to the cluster, ≲ 23% of NCLMs have |v| ∈
(3000, 6000) km s−1.

We found that, in absence of these adversarial sources, networks are quickly prone to overfitting
and lose any generalisation capability. On the other hand, these are the most challenging cases
for the network and they affect the metrics evaluated on the test set, enlarging the number of
False Positives and False Negatives (as discussed in Sec.5.4). However, the benefits outweighs
the costs: given the limited number of sources, these adversarial examples make the network
able to efficiently predict the membership of sources extracted from other clusters (e.g. RELICS
clusters, Sec. 5.5.1), which does not happen for the same network trained on dataset from which
these objects have been, even partially, excluded.

Due to different pointing strategies and to the fields of view of HST ACS and WFC3 cameras,
many sources do not have a complete photometric coverage, especially in the IR range. As a
result, these objects with missing information were not useful for the training process (Batista &
Monard 2003; Marlin 2008; Parker 2010). With the aim of maximising the number of training
samples and, at the same time, of researching the optimal filter combination, we have chosen
four different band configurations:

- ACS: only the seven optical bands (i.e. F435, F475, F606, F625, F775, F814, F850)
were included in the training set, obtaining 1603 CLMs and 1899 NCLMs;

- ALL: the training set involved all twelve bands (i.e. the seven optical bands and the five IR
bands F105, F110, F125, F140, F160), thus reducing the number of objects to 1156 and
1425, respectively for CLMs and NCLMs, due to the rejection of missing data;

- Mixed: we selected five bands, corresponding to the filters available in the Hubble Frontier
Fields survey, covering the optical-IR range, namely, F435, F606, F814, F105, F140,
respectively. This includes 1249 CLMs and 1571 NCLMs;

- Mixed*: same band combination as in the previous case (mixed), but including two further
clusters, namely, Abell 2744 (A2744) and Abell 370 (A370), for which only HFF imaging
were available. This set is composed of 1629 CLMs and 2161 NCLMs.

In practice, the three configurations, ACS, ALL and mixed, share the same clusters, while explor-
ing different spectral information by varying the number of sources. The mixed* configuration
considers an augmented cluster data set by including additional spectroscopic members. A
summary of the cluster sample and the spectroscopic data sets is given in Tab. 5.1.

As explained in Sec. 3.6.5, we opted for a stratified k-fold strategy to handle the split of
dataset, preceded by a sample extraction to build the validation set. In particular, we extracted
10% of samples reserved for the validation phase, the number of folds has been set to k = 10,
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Figure 5.2: Knowledge Base layout for CLMs (coloured in green) and NCLMs (coloured in grey):
magnitude and colour logarithmic distributions are shown in the upper panels, the colour-magnitude
relation is plotted in bottom left panel, while the cluster velocity separation logarithmic distribution is
shown in the bottom right panel (constrained within ±9000 km s−1).

the 15%2 of each training fold has been augmented through rotations and flips, resulting into an
augmentation factor equals to 1.75. We studied fluctuations of performances by evaluating the
results for each fold, while we measured the network global classification capability by stacking
the all test folds. Obviously, the test set does not contain augmented objects. Moreover, the
validation and the k-fold splitting are applied independently for each cluster involved in the
training phase, in this way, samples are extracted for each cluster FoV, ensuring that the k-est
fold is populated by objects extracted from each cluster proportionally to the number of available
spectroscopic sources, that is, providing adequate coverage of the training set respect to the test
set. The statistical estimators adopted to estimate network performances are listed in Sec. 3.6.6.
In this work, we are interested to find the best compromise between purity and completeness.
Unless otherwise specified, we assume a membership probability threshold of 0.50.

2This percentage of sources to augment has been empirically determined by measuring the network performance
and its propensity to overfit as a function of the augmented sources; we found that this fraction represents a good
trade-off, balancing the need to increase the training set size avoiding the network overfitting.
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mixed* (mixed) ACS ALL
Cluster zcluster zmin zmax CLMs NCLMs CLMs NCLMs CLMs NCLMs ref
Abell 383 A383 0.188 0.176 0.200 59 51 91 79 59 51 (1, 2)
RX J2129+0005 R2129 0.234 0.222 0.246 47 124 66 132 40 118 (3, 1)
Abell 2744 A2744 0.308 0.288 0.331 156(a) 279(a) only frontier-field bands (4, 1)
MS 2137-2353 MS2137 0.316 0.303 0.329 45 49 70 80 45 49 (3, 1)
RX J2248-4431(b) R2248 0.346 0.332 0.359 131 112 203 166 117 86 (5, 1)
MACS J1931-2635 M1931 0.352 0.338 0.365 68 97 80 110 65 96 (3, 1)
MACS 1115+0129 M1115 0.352 0.338 0.365 78 69 116 111 62 55 (3, 1)
Abell 370 A370 0.375 0.361 0.389 224(a) 311(a) only frontier-field bands (6, 1)
MACS J0416-2403 M0416 0.397 0.382 0.410 237 277 266 287 227 230 (7, 8, 9, 1)
MACS J1206-0847 M1206 0.439 0.425 0.454 172 216 226 242 149 203 (10, 1)
MACS J0329-0211 M0329 0.450 0.435 0.464 74 76 104 104 66 73 (3, 1)
RX J1347-1145 R1347 0.451 0.438 0.467 56 107 71 120 56 107 (3, 1)
MACS J1311-0310 M1311 0.494 0.477 0.507 52 54 69 95 52 54 (3, 1)
MACS J1149+2223 M1149 0.542 0.527 0.558 141 237 149 270 129 202 (11, 12, 1)
MACS J2129-0741 M2129 0.587 0.571 0.603 89 102 92 103 89 101 (1, 3)

TOTAL 1629 2161 1603 1899 1156 1425
(1249) (1571)

Table 5.1: Cluster sample description. The name and short name of the clusters, their redshift and their
spectroscopic range to identify CLMs (i.e. |v| < 3000 km s−1, as state in Eq. 5.1) are reported in the first 5
columns. The four band configurations, described in Sec. 5.2, are listed in columns 6 to 11. The references
for each cluster can be found in the last column.
(a) Different spectroscopic data sets are described in the text. The case mixed is similar to the mixed* one,
with the only difference that it does not include the two clusters A2744 and A370. Numbers between
brackets in the bottom row refer to the the mixed configuration.
(b) The cluster RX J2248.7−4431 is also known as Abell S1063.
(1) Rosati & Clash-VLT Team 2020; (2) Monna et al. 2015; (3) Caminha et al. 2019; (4) Mahler et al.
2018; (5) Caminha et al. 2016; (6) Lagattuta et al. 2019; (7) Grillo et al. 2015; (8) Balestra et al. 2016;
(9) Caminha et al. 2017a; (10) Caminha et al. 2017b; (11) Grillo et al. 2016; (12) Treu et al. 2016.

5.3 Experiments
In this section, we describe several experiments designed to test and compare CNN performances.
Specifically, with the band configurations described in the previous section (see also Tab. 5.1),
we performed the following tests or experiments:

- EXP1: efficiency of the DL approach by stacking the data of all the clusters in terms of:

- EXP1a: global evaluation;

- EXP1b: redshift-dependence, namely separating CLMs into redshift bins;

- EXP2: magnitude or colour dependence, by stacking data of a group of three clusters and
varying their redshift range through:

- EXP2a: separating bright and faint sources;

- EXP2b: separating red and blue galaxies;

- EXP3: a comparison of performances of our image-based CNN technique with other
approaches, based on photometric measurements of field and cluster galaxies;

Practically, with the EXP1 we evaluated CNN global performances embracing a traditional
approach based on a training-test split applied on the whole member population; while in the
EXP2 we excluded three clusters (A370, MS2137 and M0329) from the training set, which act
as as blind test clusters performing a sort of "stress test”; finally, with the EXP3 we compare
CNN classification capabilities with two photometric-based techniques.
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Figure 5.3: Redshift distribution of 1629 spectroscopic members used for the EXP2 configuration. The
three clusters A370 (z = 0.375, 224 CLMs), MS2137 (z = 0.316, 45 CLMs) and M0329 (z = 0.450, 74
CLMs) are used as blind test set.

Class % mixed ACS ALL mixed*
AE 86.7 87.4 87.7 89.3
pur 83.1 85.0 86.4 88.3

CLM compl 88.4 88.5 86.4 86.7
F1 85.6 86.7 86.4 87.4
pur 90.0 89.9 88.9 90.0

NCLM compl 85.5 86.7 88.9 91.2
F1 87.7 88.3 88.9 90.6

Table 5.2: CNN percentage performances in the EXP1 experiment. The performances are related to the
four band configurations (see Sec. 5.2) and expressed in terms of the statistical estimators described in
Sec. 3.6.6. The overall best results are highlighted in bold.

5.3.1 EXP1: Combination of all clusters
At the first stage, we evaluated the global efficiency of a DL approach including all the available
clusters, regardless of their redshift (ranging between 0.2 and 0.6), by exploring different
combinations of photometric bands (as described in Sec. 5.2) and assembling the data set by
stacking the information from all the images extracted from our cluster sample. We wanted
to verify that DL models, given their intrinsic generalisation capabilities, were able to learn
how to disentangle cluster members from non-member (foreground or background) sources,
independently from the cluster redshift (EXP1a). This although their members have different
characteristics, such as apparent magnitudes or sizes, and also different signal-to-noise ratio at a
fixed apparent magnitude, due to the different image depths. The results are shown in Fig. 5.4
and Table 5.2, as a function of the band configuration (described in Sec. 5.2), while performances
for each cluster are presented in Tab. 5.3.

Concerning NCLMs, we found similar values of the average efficiency (87% − 89%), the
purity (stable around ∼ 90%) and the F1-score (with variations within 1.5%), regardless of band

59



CHAPTER 5. IDENTIFICATION OF CLUSTER MEMBERS

AE
pur CLM

compl CLM
F1 CLM

pur nonCLM

compl nonCLM

F1 nonCLM

80

82

84

86

88

90

92

mixed

ACS

ALL

mixed*

Figure 5.4: Performance percentages of the CNN in the EXP1 experiment with the four band configura-
tions (see Sec. 5.2) in terms of the statistical estimators described in Sec. 3.6.6

configuration. On the other hand, the CLM identification was, in general, characterised by larger
variation (83% − 91%) in the statistical estimators. By exploring performances achieved for
each cluster (see Tab. 5.3), the CNN trained with the mixed and ACS configurations tend to be
more complete than pure for the CLM classification, while the CNN appear to be more balanced
between purity and completeness when trained on ALL and mixed* band configurations.

With the mixed* configuration, CNN achieved the best performances for CLM and it was
also very stable in terms of NCLM, reaching an overall efficiency of ∼ 89%. This analysis is
confirmed by also analysing the results achieved for each cluster (see Tab. 5.3): CNN trained
with the mixed* configuration covers ∼ 42% of the best performances (followed by the 30%
covered by ACS), moreover, even when it is not the best configuration, by averaging the cross-
compared couples of the same estimator, we measured a difference with the corresponding best
configuration of 2.0 ± 0.3%, where differences of more than 5% occur in 9% of cases. On the
other hand, by comparing the CNN results achieved with the mixed* configuration with the
second best configuration, we found an average difference of 0.3 ± 0.5, implying that the CNN
trained on the mixed* dataset has performances comparable with the best combination of all
the other configurations; whereas by repeating this reckoning for the other configurations, we
measure an average differences of 4.3 ± 0.5%, 3.1 ± 0.5%, 3.4 ± 0.5%, respectively for mixed,
ACS and ALL band configuration.

These performance discrepancies can be due to the different sizes of the datasets or to the
peculiar filter combinations. In order to disentangle the dependence on these two terms, we
performed an additional experiment using the common sample of sources (i.e. the ALL dataset),
exploring how the band combination affects the results. The statistical estimators related to this
experiment are listed in Tab. A.2. We found that all the cross-differences are strictly comparable
within 2%, with a maximum efficiency of 87.7% and a maximum CLM F1-score of 86.4%,
suggesting that the dimension of dataset (i.e. the sampling and the covering of the parameter
space) contributes more than the combination of filters, at least for the band configurations
considered in this work. This behaviour can be also deduced from the performance increasing
between the mixed and mixed* configuration; indeed, these two datasets share the same samples
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A383 z = 0.188 R2129 z = 0.234 A2744 z = 0.308
mixed ACS ALL mixed* mixed ACS ALL mixed* mixed ACS ALL mixed*

AE 77.0 81.8 78.3 83.0 89.7 91.6 93.7 92.3 93.6
pur 77.2 82.9 82.5 86.3 76.5 84.6 86.5 84.4 95.3

CLM compl 81.5 82.9 75.0 81.5 90.7 91.7 88.9 88.4 86.5
F1 79.3 82.9 78.6 83.8 83.0 88.0 87.7 86.4 only mixed* 90.7
pur 76.7 80.6 74.4 79.6 96.2 95.6 96.2 95.5 92.8

NCLM compl 71.7 80.6 82.1 84.8 89.3 91.6 95.3 93.8 97.6
F1 74.2 80.6 78.0 82.1 92.6 93.6 95.8 94.6 95.2

MS2137 z = 0.316 R2248 z = 0.346 M1931 z = 0.352
mixed ACS ALL mixed* mixed ACS ALL mixed* mixed ACS ALL mixed*

AE 83.7 81.5 88.2 88.4 89.5 86.5 90.2 88.1 84.0 86.0 84.9 90.0
pur 80.0 79.7 85.7 89.7 88.6 85.2 90.7 88.3 91.3 85.3 83.6 100.0

CLM compl 87.8 81.0 90.9 85.4 92.4 91.3 92.5 89.8 67.7 80.6 78.0 75.8
F1 83.7 80.3 88.2 87.5 90.5 88.1 91.6 89.1 77.8 82.9 80.7 86.2
pur 87.8 83.1 90.9 87.2 90.6 88.3 89.5 87.9 80.8 86.4 85.7 85.4

NCLM compl 80.0 81.9 85.7 91.1 86.1 80.7 87.2 86.1 95.5 89.9 89.7 100.0
F1 83.7 82.5 88.2 89.1 88.3 84.3 88.3 87.0 87.5 88.1 87.6 92.1

M1115 z = 0.352 A370 z = 0.375 M0416 z = 0.397
mixed ACS ALL mixed* mixed ACS ALL mixed* mixed ACS ALL mixed*

AE 88.1 84.9 89.6 92.5 88.9 90.3 90.0 91.5 92.2
pur 85.7 82.5 90.9 91.8 85.8 92.4 90.3 95.7 93.3

CLM compl 93.0 89.5 89.3 94.4 87.6 87.1 88.8 86.8 87.1
F1 89.2 85.8 90.1 93.1 only mixed* 86.7 89.7 89.5 91.0 91.5
pur 91.2 87.9 88.2 93.4 89.5 88.6 89.7 88.1 91.7

NCLM compl 82.5 80.0 90.0 90.5 87.9 93.3 91.1 96.1 96.9
F1 86.7 83.8 89.1 91.9 88.6 90.9 90.4 91.9 94.3

M1206 z = 0.439 M0329 z = 0.450 R1347 z = 0.451
mixed ACS ALL mixed* mixed ACS ALL mixed* mixed ACS ALL mixed*

AE 87.7 90.3 87.4 89.7 81.6 81.9 83.3 85.0 91.2 90.7 89.7 89.9
pur 83.7 89.8 84.2 89.9 76.9 76.8 79.1 83.3 79.7 81.6 80.4 81.0

CLM compl 89.7 90.2 86.7 86.5 89.6 91.5 88.3 91.0 100.0 96.9 93.8 92.2
F1 86.6 90.0 85.4 88.2 82.8 83.5 83.5 87.1 88.7 88.6 86.5 86.2
pur 91.3 90.8 89.9 89.6 87.9 89.5 88.1 90.0 100.0 97.9 96.2 95.6

NCLM compl 86.2 90.4 88.0 92.3 73.9 72.3 78.8 78.3 86.6 87.0 87.5 88.7
F1 88.7 90.6 88.9 90.9 80.3 80.0 83.2 83.7 92.8 92.2 91.7 92.0

M1311 z = 0.494 M1149 z = 0.542 M2129 z = 0.587
mixed ACS ALL mixed* mixed ACS ALL mixed* mixed ACS ALL mixed*

AE 77.1 82.5 75.8 78.1 85.9 90.7 88.0 89.4 85.5 86.4 84.9 86.1
pur 72.7 80.3 75.0 76.0 74.5 83.3 80.5 82.3 85.9 87.3 91.0 91.3

CLM compl 85.1 77.8 78.3 80.9 94.5 92.6 91.5 91.3 82.7 83.1 75.3 77.8
F1 78.4 79.0 76.6 78.4 83.3 87.7 85.6 86.6 84.3 85.2 82.4 84.0
pur 82.9 84.1 76.7 80.4 96.1 95.6 94.0 94.5 85.3 85.6 81.0 82.7

NCLM compl 69.4 86.0 73.3 75.5 80.8 89.7 85.7 88.3 88.0 89.2 93.4 93.5
F1 75.6 85.1 75.0 77.9 87.8 92.6 89.7 91.3 86.6 87.4 86.7 87.8

Table 5.3: CNN percentage performances evaluated for each cluster and for each band configuration
related to the EXP1 experiment.
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Figure 5.5: Comparison among the four band configurations (see Sec. 5.2), in terms of F1 score and
average efficiency (AE) percentages (top panels), together with their square root of variances (bottom
panels), as the number of spectroscopic sources in the training set increases (EXP1). In all panels, the
linear best-fit trends are displayed as dashed lines. Due to the k-fold approach, performances have been
averaged over the 10 folds, i.e. the x-axis shows the dimension of the training set, thus, the k-est fold used
as test set has a size of N/9.

related to 13 common cluster and the only difference is the inclusion of two additional clusters in
the mixed* configuration. With an addition of 380 CLMs, we measured an improvement of ∼ 2%
in term of F1-score and efficiency. Such difference is particularly evident by looking at Tab. 5.3:
the CNN trained with the mixed configuration covers just the 13% of the best metrics (respect
to the 41% related to the mixed*) with an average difference between all the cross-compared
estimators 2.7 ± 0.6%.

The dependence on the dataset dimension is also shown in Fig. 5.5, where performances
and their fluctuations are displayed as function of the involved number of samples. For each
configuration, we split the knowledge space into ten disjointed subsets, which have been pro-
gressively merged in order to build a dataset with which CNN has been trained and tested,
always using the k-fold approach. As expected, there is a clear improvement of the classification
capabilities as the number of sources increases (an accuracy gain of ∼ 2.3% for an increment
of 500 sources). Furthermore, fluctuations of these estimators tend to be better constrained
for a large set of objects, stabilising around 3% when the number of samples is ≥ 2000 and
showing an average reduction of ∼ 9% by quadrupling the number of sources. Although this
evident dependence, it must be emphasised that increasing of the available filters supplies, at
least in part, the lack of samples: the usage of the complete set of bands (i.e. ALL), which is
also the smallest dataset, allows to compensate the restrict number of spectroscopic examples,
achieving a good trade-off between purity and completeness, as it is clear from Tab. A.2. Thus,
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k-fold global k-fold global k-fold global k-fold global k-fold global
zCLM ∈ (0.18, 0.32) zCLM ∈ (0.32, 0.37) zCLM ∈ (0.37, 0.41) zCLM ∈ (0.41, 0.46) zCLM ∈ (0.46, 0.60)

AE 86.4 ± 1.1 86.2 89.0 ± 1.2 89.2 88.8 ± 1.4 88.6 88.1 ± 1.0 87.9 89.6 ± 1.3 89.6
pur 84.9 ± 2.6 84.1 87.0 ± 1.7 86.9 87.9 ± 1.6 87.3 87.1 ± 1.0 87.0 87.7 ± 2.0 87.3

NCLM compl 89.6 ± 1.6 89.2 92.1 ± 1.8 92.4 90.3 ± 1.5 90.3 89.5 ± 1.6 89.2 92.8 ± 0.9 92.7
F1 86.9 ± 0.9 86.6 89.3 ± 1.2 89.5 89.0 ± 1.3 88.8 88.2 ± 1.0 88.1 90.0 ± 1.2 89.9
pur 89.3 ± 1.1 88.5 91.7 ± 1.7 91.8 90.2 ± 1.5 89.9 89.4 ± 1.5 88.9 92.5 ± 0.9 92.2

CLM compl 83.1 ± 3.2 83.1 85.9 ± 2.1 86.0 87.3 ± 1.8 86.9 86.6 ± 1.2 86.6 86.5 ± 2.2 86.5
F1 85.7 ± 1.4 85.7 88.5 ± 1.3 88.9 88.6 ± 1.4 88.4 87.9 ± 1.0 87.8 89.2 ± 1.4 89.2

Table 5.4: Statistical estimators measured in each redshift bin for the EXP1b experiment. Due to the
k-fold approach, the performances are reported as pairs of mean and error (evaluated on the 10 folds) and
as a single global value.

the CNN classification capabilities seem to be largely dependent on dataset dimension once an
optimal band configuration has been set. Conversely, by increasing the dataset size over a critical
value (between 1500 and 2000 sources), performances do not improve further, whereas it is the
combination of filters which plays a critical role.

In order to quantify the dependence on filter combination, we performed an additional
experiment in which we used the same sources related to the mixed* dataset and we explored
all possible filter combinations. Results are outlined in Tab. A.3, from which is clear the
performance increasing with the enlarging of the involved bands: excluding the usage of the
only F435 filter (which has the lowest S/N ratio), by averaging efficiencies and F1-scores of
experiments involving the same number of filters, we measured accuracy equals to 78.9%, 83.7%,
86.1%, 87.5%, 89.3%, and F1-score equals to 76.6%, 81.7%, 84.1%, 85.7%, 87.4%, by moving
from experiments involving just one band to experiments with all the 5 bands related to the
mixed* configuration. These performances correspond to a relative increasing of 6%, 3%, 2%,
2% for both accuracy and F1-score, suggesting a saturation of performance; indeed, by cross-
comparing all the efficiencies related the experiments involving 3 filters with those involving 4
bands, we measure an average relative increasing of 1.6%, to compare with the relative increasing
between 2 and 3 filters experiments equals to 3.0%, and between 1 and 2 filters experiments
equals to 6.2%. By using just one filter (always excluding the experiment involving only F435
band), performances are typically ≲ 80%, with an CLM F1-score ranging in (73%, 79%) and
efficiency in (76%, 81%), implying that even if a single band encodes morphology information,
this is not enough to allow the cluster member separation, also suggesting that the use of colours
(or rather, a filter weighted combinations) improves significantly the network classification
capabilities. It is worth underling that the ACS filter combination (i.e. F435, F606 and F814)
carries enough information to identify members, showing performances higher than any other 3
filter configurations and than when just one WFC3 band is added to this combination (i.e. by
comparing F435, F606, F814 with F435, F606, F814, F105 and F435, F606, F814, F140, we
measure a average relative reduction of ≲ 0.4%), such configuration becomes optimal only when
both F105 and F140 are included. This analysis confirms the requirement to exploit the optimal
combination between ACS and WFC3 bands in order to disentangle CLM from background and
foreground sources.

Finally, since the training set used in this study was composed of galaxies spanning a large
redshift range, as part of EXP1, we investigated whether any dependence on redshift is present.
To this aim, the CLM redshift range was split into five equally populated bins (∼ 280 samples)
and, to complete the knowledge space, we extracted without repetitions an appropriate number
of objects from the NCLM population. The network has been trained within each ensemble
adopting the k-fold approach, using only the mixed* band combination. The performances and
fluctuations related to the mixed* band combination are graphically shown in Fig. 5.6, while
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Figure 5.6: Percentages of CNN classification results for the four statistical estimators, CLM purity (pur,
in red), completeness (compl, in orange) and F1-score (in green), together with the average efficiency (AE,
in blue), measured as a function of CLM redshift range (EXP1b). The top panel describes their fluctuation
in each bin (evaluated on the 10 folds), with the boxes delimiting the 25th and 75th percentiles (first and
third quartile) and error bars enclosing the maximum variations. The bottom panel shows these metrics
globally evaluated in each bin by stacking the 10 folds (these performances are also listed in Tab. 5.4, see
columns named as “global”), together with the best-fit lines.

details on the metrics are given in Table 5.4, in which, we have specified the fluctuation of
estimators as an error estimated on the ten folds. Despite the dissimilarities between galaxies
at different depths, the CNN did not seem to be affected by the CLM redshifts. In fact, CNN
performances achieved in different redshift bins were all comparable, with a dispersion included
within 0.04− 1σ for the 65% of cross-compared estimator pairs and a mean separation of ∼ 0.8σ.

Since the mixed* band combinations provided the best results, all further experiments in the
next sections refer to this band configuration.

5.3.2 EXP2: Selection of clusters as blind test set
A second set of experiments was devoted to the study of the CNN capability to predict cluster
membership of sources belonging to clusters that are not included in the training set, that is,
avoiding having member galaxies belonging to the same cluster populating both the training and
test sets (as has been done for EXP1). Thus, we considered A370 (z = 0.375), MS 2137-2353
(MS2137, z = 0.316), and MACS J0329-0211 (M0329, z = 0.450) as blind test clusters, while
the remaining clusters were organised into three different training sets based on different redshift
ranges, as shown in Fig. 5.3. Specifically:

- Narrow: clusters with redshift 0.332 ≤ z ≤ 0.412 (514 CLMs, 555 NCLMs)

- Intermediate: clusters with redshift 0.286 ≤ z ≤ 0.467 (898 CLMs, 1157 NCLMs)

- Large: clusters with redshift 0.174 ≤ z ≤ 0.606 (1286 CLMs, 1725 NCLMs)

The training set configurations were mostly organised to identify CLMs in A370. This is the
most significant test bench since it includes 535 spectroscopic sources and it is in the middle of
CLM redshift range. The other two clusters, MS2137 and M0329, were chosen as additional test
sets located at redshift lying outside the narrow and intermediate ranges, while remaining well
within the large training set.
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Figure 5.7: Summary of the EXP2 experiment. The statistical performances for the three clusters (A370,
M0329 and MS2137) are reported in each row, while results for the three training configurations (i.e.
narrow, intermediate and large) are organised by column. The global performances achieved by stacking
together the three clusters are reported in the bottom row. For each test set, we display the ROC curves
(grey lines refer to the performances achieved by any training fold, while the main trend is emphasised in
red, together with its AUC score); the box plots represent the fluctuation of measured estimators related
to the CLMs, together with the average efficiency measured for both classes. As in Fig. 5.6, such boxes
delimit the 25th and 75th percentiles, while error bars enclose the maximum variations.

The results are shown in Fig. 5.7 and detailed in Table 5.5. They show that: (i) the large
training set reached best results in most cases, with an average improvement between 1.1% and
4.3% with respect to the intermediate case; (ii) the narrow training ensemble provided, in most
cases, the worst results, showing a lower trade-off between purity and completeness, particularly
evident (larger than 3σ) for A370 and M0329; (iii) a reduction of performance fluctuations with
the increasing of training set (∼ 50% moving from the narrow to the large training set). This
confirmed that the best performances were reached by extending the knowledge base, that is,
when the CM training sample covers the largest available redshift range.

Moreover, with the EXP2 we evaluated the network capabilities to identify members in clus-
ters that were not involved in the training phase, thus, this experiment estimates the performance
loss when we apply a trained network to an unseen cluster. By comparing performances achieved
on these three clusters between EXP1 and EXP2 experiments (i.e. by measure the differences
between the statistical estimators listed in Tab. 5.5 and in Tab. 5.3), we found an average drop of
∼ 2% both in terms of accuracy and CLM F1-score.

We also analysed the CNN classification performances separately on bright and faint (EXP2a)
galaxies, as well as on red and blue galaxies (EXP2b). The magnitude values adopted to split
the CLM into equally sized samples are F814=22.0, 21.7, and 21.6 mag for A370, M0329, and
MS2137, respectively. For the analysis of the colour dependence, we used the normalised colour
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stacked A370
Narrow Intermediate Large Narrow Intermediate Large

AE 84.5 ± 0.6 85.5 ± 0.4 86.6 ± 0.3 AE 85.4 ± 0.7 86.6 ± 0.3 87.4 ± 0.3
CLM pur 79.6 ± 1.2 83.2 ± 0.2 82.5 ± 0.6 pur 80.3 ± 1.4 84.5 ± 0.2 83.9 ± 0.7

% comp 87.6 ± 0.8 83.9 ± 0.8 88.5 ± 0.4 comp 86.5 ± 0.7 83.1 ± 0.6 86.6 ± 0.6
F1 83.3 ± 1.2 83.6 ± 0.2 85.4 ± 0.6 F1 83.3 ± 1.4 83.8 ± 0.2 85.1 ± 0.7

M0329 MS2137
Narrow Intermediate Large Narrow Intermediate Large

AE 81.7 ± 0.5 83.5 ± 0.5 84.8 ± 0.3 AE 84.1 ± 1.1 82.4 ± 2.3 85.4 ± 0.7
CLM pur 76.9 ± 0.7 79.2 ± 0.5 79.2 ± 0.4 pur 81.5 ± 1.9 84.4 ± 1.8 82.3 ± 1.0

% comp 90.0 ± 0.6 90.4 ± 0.4 93.9 ± 0.4 comp 87.6 ± 1.5 77.1 ± 4.8 88.9 ± 0.7
F1 82.9 ± 0.7 84.4 ± 0.5 85.9 ± 0.4 F1 84.2 ± 1.9 80.0 ± 1.8 85.4 ± 1.0

Table 5.5: Percentage performances on a blind test set related to the EXP2 experiment. Performances
have been displayed by splitting between the three test clusters: A370 (z = 0.375), MS2137 (z = 0.316),
M0329 (z = 0.450) and by their stacking. Best results are emphasised in bold. For ease of reading, only
statistics related to the CLM class are reported, together with the average efficiency (AE), which refers to
both classes.

stacked A370
% bright faint redder bluer bright faint redder bluer
pur 85.9 ± 0.4 82.2 ± 0.8 91.0 ± 0.5 79.4 ± 0.9 88.4 ± 0.7 83.6 ± 0.9 90.5 ± 0.7 79.8 ± 1.0
compl 95.2 ± 0.7 81.4 ± 1.0 95.2 ± 0.6 75.7 ± 1.0 96.8 ± 0.7 80.8 ± 1.2 93.9 ± 0.4 77.4 ± 1.2
F1 90.3 ± 0.4 81.7 ± 0.8 93.1 ± 0.7 77.6 ± 0.8 92.4 ± 0.7 82.1 ± 0.9 92.2 ± 0.8 78.6 ± 0.9

M0329 MS2137
% bright faint redder bluer bright faint redder bluer
pur 80.7 ± 0.6 81.1 ± 1.7 88.3 ± 0.9 74.4 ± 1.2 90.8 ± 1.0 76.7 ± 1.5 87.5 ± 0.3 72.0 ± 1.3
compl 98.0 ± 1.0 85.1 ± 0.6 95.1 ± 0.6 78.6 ± 0.8 88.9 ± 1.2 80.0 ± 0.9 90.6 ± 0.6 76.2 ± 1.0
F1 89.3 ± 0.5 83.0 ± 1.7 91.7 ± 0.7 76.5 ± 1.0 89.7 ± 1.1 78.3 ± 1.2 89.0 ± 0.4 74.1 ± 1.1

Table 5.6: Statistical performances of the CNN model in EXP2a and EXP2b. Performances have been
displayed by splitting between the three test clusters: A370 (z = 0.375), MS2137 (z = 0.316), M0329
(z = 0.450) and by their stacking. Best results are emphasised in bold.

(F814 − F160)norm, defined in Eq. 5.2. By applying the correction for the colour-magnitude
sequence, we found that blue members can be defined as galaxies having (F814 − F160)norm <
−0.160, −0.165, −0.157 for A370, M0329, and MS2137, respectively. Both experiments (EXP2a
and EXP2b) were performed using the large redshift configuration.

The results of the CLM identification are shown in Table 5.6. Concerning EXP2a, all
the statistical estimators indicated a very good performance of the method, although with a
lower efficiency in identifying faint objects, as expected, due to the reduced S/N ratio of fainter
members. In fact, brighter members were detected with higher completeness (90% − 98%) and
purity (81% − 91%), with a significant F1 score improvement (89% − 92%), when compared
to fainter members (completeness: 80% − 85%; purity: 77% − 85%; F1 score: 78% − 83%),
obtaining remarkable results for A370, in which purity and completeness of CLMs are ∼ 88%
and ∼ 97%, respectively. Nevertheless, fainter CLMs were identified with an acceptable F1 score
(∼ 80%).

The experiment EXP2b, also showed good performances of the method for both red and blue
objects, although the colour dependence of the results was evident. In particular, red galaxies
were classified with a mean F1 score of ∼ 91%, decreasing down to ∼ 77% for blue objects. The
results reflect the underlying similarity between blue members and background objects, which
implies that they cannot be separated easily. This was confirmed by the analysis of false positives
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R2248 z = 0.346 M0416 z = 0.397
CNN RF Bayesian ∆ CNN RF Bayesian ∆

AE 88.1 86.5 85.9 1.6 AE 92.2 89.2 87.1 3.0
pur 88.3 87.7 80.9 0.6 pur 93.3 93.0 84.6 0.3

CLM compl 89.8 87.7 96.1 -6.3 compl 87.1 86.5 91.2 -4.1
F1 89.1 87.7 87.8 1.3 F1 91.5 89.7 87.8 1.8
pur 87.9 85.1 94.4 -6.5 pur 89.0 84.5 90.0 -1.0

NCLM compl 86.1 85.1 74.4 1.0 compl 96.9 92.3 82.7 4.6
F1 87.0 85.1 83.2 1.9 F1 91.5 88.3 86.2 3.2
µ∆ −0.91 ± 1.42 µ∆ 1.11 ± 1.12

M1206 z = 0.439 M1149 z = 0.542
CNN RF Bayesian ∆ CNN RF Bayesian ∆

AE 89.7 87.9 85.0 1.8 AE 89.4 86.9 85.5 2.5
pur 89.9 90.4 80.2 -0.5 pur 82.3 78.8 71.8 3.5

CLM compl 86.5 81.9 91.2 -4.7 compl 91.3 88.5 98.0 -6.7
F1 88.2 85.9 85.3 2.3 F1 86.6 83.4 82.9 3.2
pur 89.6 86.3 90.8 -1.2 pur 94.5 92.7 98.6 -4.1

NCLM compl 92.3 92.9 79.4 -0.6 compl 88.3 86.0 78.4 2.3
F1 90.9 89.7 84.7 1.2 F1 91.3 83.4 87.4 3.9
µ∆ −0.24 ± 0.90 µ∆ 0.66 ± 1.60

Table 5.7: Comparison between our image-based CNN model and two different photometric catalogue-
based approaches, referred to the EXP3 experiment. The comparison involves two different model: a
Random Forest and a Bayesian method, applied on photometric tabular information of four clusters:
R2248 (z = 0.346), M0416 (z = 0.397), M1206 (z = 0.439) and M1149 (z = 0.542). Last column, ∆,
shows the difference between CNN estimators and the best between the two photometric approaches (see
Eq. 5.3), while rows µ∆ list the averages among these ∆s for each cluster.

and false negatives discussed in Sec. 5.4.

5.3.3 Comparison with photometric approaches (EXP3)
This section is dedicated to a comparison of the classification performance of cluster members
using the image-based DL method described above along with two different techniques based
on photometric catalogues. The first is a random forest classifier3 (RF, Breiman 2001) and the
second one is a photometry-based Bayesian model (BM) described in Grillo et al. (2015), which
has already been applied in order to enlarge the cluster member selection, including galaxies
without spectroscopic information, for four clusters: R2248, M0416, M1206, and M1149 (Grillo
et al. 2015; Caminha et al. 2016, 2017b; Treu et al. 2016). Both methods are briefly described
in Sec. 3.8. Both techniques critically use multi-band photometric information, for example,
magnitudes and colours.

In this experiment, CNN was trained with the mixed* filter set (see Sec. 5.2). We focused on
the results obtained by these three methods on four galaxy clusters: R2248, M0416, M1206, and
M1149. The statistical estimators are detailed in Table 5.7 and shown in Fig. A.1 as ROC curves
for each involved cluster, while in Fig. 5.8 performances are summarised by combining the
results from the four clusters based on their ROC curves (upper left panel), the trade-off between
purity and completeness (right panel), and the usual statistical estimators (bottom left panel). The

3Random forest has been developed by our team by exploiting Scikit-Learn python open source library (Pedregosa
et al. 2011).
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Figure 5.8: Comparison among the image-based CNN and two photometric catalogue-based approaches,
namely, a random forest and Bayesian method (EXP3), by combining results from the four clusters
(R2248, M0416, M1206, M1149). Upper left panel shows the ROC curves for the three methods with
measured Area Under the Curve (AUC). The right panel reports the trends of purity and completeness as
a function of the probability thresholds used to obtain the ROC curves, where, for each diagram, we mark
the intersection between such curves, i.e. the probability for which completeness and purity are equal.
Bottom left panel shows the differences between the three methods based on the statistical estimators
described in Sec. 3.6.6.

photometric techniques show an average efficiency around 86−89%, with some values ≳ 96% for
the Bayesian approach, although the F1 scores always remain between 83% and 88%. The CNN
confirmed its ability to detect CLMs with an F1-score between 87% and 91%. The upper left
panel in Fig. 5.8 shows that globally CNN reaches an AUC of ∼ 94%, which is ∼ 8% higher than
the Bayesian method, while exhibiting the sharpest rise and the highest plateau. This means that
for the CNN method there is a larger probability range in which the performances remain stable,
while for the other methods a fine-tuning of the probability value is needed to balance purity and
completeness. These behaviours are also represented in the right panels of Fig. 5.8, in term of
trade-off between purity and completeness as a function of a membership probability threshold:
CNN completeness remains between 95 and 80% for a large probability range, dropping down for
Pr ≥ 85%, RF completeness has a sharply descending trend, falling below 80% for Pr ≥ 65%,
while the BM shows a more constant and lower decreasing completeness with values ranging
between 90 and 70% for Pr ≤ 70%; a complementary, similar reasoning can be done for the
purity curves. Moreover CNN performances are characterised by a larger probability range in
which purity and completeness are comparable: pur/compl ∈ (0.95, 1.05) for Pr ∈ (30%, 70%);
whereas this range is Pr ∈ (30%, 50%) for the BM and Pr ∈ (40%, 50%) for the RF. As result,
the CNN purity-completeness cross-over occurs at ∼ 89%: ∼ 6% better than the Bayesian
classifier and ∼ 2% better than RF. This confirms a more balanced behavior of CNN with respect
to photometric methods. A summary of the results is shown in the bottom left panel of Fig. 5.8,
where the differences among the CNN and the two photometric methods are measured using
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the four statistical estimators. The CNN performances were overall near 90% and remained
consistently higher than those of photometric-based methods, with a gain between 1.5% and
3.1% respect to the RF, and between 4.6% and 8.0% respect to the BM.

Analysing the results achieved for each cluster (see Tab. 5.7 and Fig. A.1), we found that
CNN has a stable behaviour regardless of the considered cluster with AUC values ≥ 92.7% and
efficiency ranges in 88.1% and 92.2%; also the RF classifier has stable performances, although
always minor than CNN: difference between AUC values range within 0.1% and 2.6%, while
differences between efficiencies are constrained between 1.6% and 2.5%; the Bayesian classifier
is the method with the largest performance fluctuations: the AUC value drops to ∼ 66% in the
case of R2248, but reaches the ∼ 95% for M1149 (which is the best score among the AUCs
related to this cluster), efficiency is stable around 85.9 ± 0.4%, however it shows the largest
trade-off between completeness and purity, which differences (completeness − purity) range
between 6.6% and 27.2% (to compared with the (−1.5, 9.0)% and (−8.5, 9.7)%, respectively for
the CNN and RF). In order to emphasise the CNN capabilities compared to the other methods,
we also computed the differences:

∆estim = estimCNN − max{estimRF , estimBayesian}, estim ∈ [pur, compl, F1, AE] (5.3)

which is a kind of stress test for the CNN since we estimated the difference between CNN metrics
and the corresponding maximum scores achieved by RF or BM. All these differences are listed in
the last column of Table 5.7, together with the average among these ∆s for each cluster (rows µ∆).
Despite such test disadvantages the CNN, we found that CNN outperforms the best combination
of the other two methods in the 64% of cases, with ∆s oscillates between −6.7% and +4.6%,
suggesting that the CNN performances are at least comparable with the best combination of the
results achieved by the two photometric approaches.

Finally, we analysed the common predictions among the three methods, both in terms of
correctly classified and misclassified sources, separately for CLMs and NCLMs. Such results
are graphically represented in Fig. A.2. All three methods share ∼ 76% of their commonalities
(i.e. summing of correct and incorrect predictions), of which, ∼ 97% (i.e. 74.6% with respect to
the whole set of common sources) were correctly classified. Common true positives and true
negatives (i.e. CLMs and NCLMs that have been correctly classified) were ∼ 75%. The CNN
and Bayesian method shared the largest fraction of predictions ∼ 90% (of which ∼ 93% were
correct) with respect to the joint classification of CNN and RF (∼ 82%); this implied that RF had
a significant fraction of uncommon predictions (∼ 14%).

Concerning the misclassified objects, the methods shared ∼ 2% of incorrect predictions,
of which: ∼ 1% of CLMs were common false negatives (FNs, i.e. CLMs sources wrongly
predicted as NCLMs), while 2.5% were common false positives (FPs, i.e. NCLMs sources
wrongly predicted as CLMs). The CNN exhibited the least fraction of misclassifications (about
10%). The CNN showed a percentage of FNs larger than BM (10% versus 7%), which, in turn,
had a wider FP rate (11% versus 17%). Therefore, although CNN and Bayesian methods shared
a significant fraction of incorrect predictions (85% of common misclassifications, suggesting the
existence of a fraction of sources for which the membership is particularly complex for both of
them), these two models exhibit a different behaviour: the CNN tended to produce more pure
than complete CLMs samples, whereas the BM showed the opposite, which is in agreement with
what is reported in Table 5.7.

5.4 False Positive and False Negative analysis
In the previous sections we studied the impact on the classification performances due to the
amount of data available: the EXP1 (Sec. 5.3.1) enabled an analysis of the trade-off between
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Figure 5.9: Ensemble of object cut-outs with a size of 64 pixels (∼ 4′′), corresponding to some specific
CNN predictions in the clusters R2248 (first three rows) and M0416 (last two rows). The True Positives
(TPs), i.e. the CLMs correctly identified, are shown on first and fourth row with green boxes, while False
Positive and False Negative (FPs and FNs) are shown on the second, third and fifth row, framed by red and
blue boxes, respectively. The images were obtained by combining five HST bands: F435, F606, F814,
F105, F140. The figure shows sources in the F814 band with a magnitude F814 ≤ 25 mag. TPs are
shown together with their spectroscopic redshift, while FNs together with their cluster rest-frame velocity
separation. For convenience, in the case of FPs, their cluster velocity separations are quoted when within
±9000 km s−1, otherwise their redshift is shown.

the information carried by the imaging bands and the number of samples in the dataset; while
the EXP2 is configured as a "stress” test, with which we explored the CNN to predict the
membership for sources in clusters whose members (and non-members) have been completely
excluded from the training set, with this experiment we also investigated the dependence of
member classification performance on the magnitudes and colours. In this section we specifically
analyse CNN predictions, by investigating the False Positive and False Negative distributions,
trying to understand the causes of such misclassifications. In the first place we studied the CNN
classification dependence on the cutout crowding, then, we inspected the False Positive and
False Negative dependence on their magnitude and colour. In this analysis we used the CNN
predictions trained with mixed* band configuration (see Sec. 5.2).

For easy reading, we specify the definition of True Positive (TP), True Negative (TN), False
Positive (FP) and False Negative (FN), already given in Sec. 3.6.6, within the context of this
work. We assume the cluster member as the positive class, thus, the TPs are CLMs correctly
classified, FPs are NCLMs classified as CLMs, FNs are CLMs classified as NCLMs, and, finally,
TNs are NCLMs correctly classified. A short sample of TPs, FPs and FNs in R2248 and M0416,
and in M1206 and M1149 are shown in Fig. 5.9 and Fig. 5.10, respectively.
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Figure 5.10: Same of Fig. 5.9 for the cluster M1206 (first three rows) and M1149 (last three rows).

A critical aspect of the classification of members within the central cluster region is the
impact of crowding. Therefore, we specifically focused on the DL ability to predict cluster
membership in such circumstances (see a few examples of cut-outs in Figs. 5.9 and 5.10). We
introduced a contamination index (CI) for each cut-out, defined as:

CI =
Nc∑︂
i=1

1/(di · F814i) (5.4)

where Nc is the number of contaminants in the cut-outs, di is the distance in arcsec between
the central source and i−th contaminant, while F814i is the magnitude of the contaminating
source. The indices for cut-outs without contaminants were set to zero. Then, we normalised
this index in the [0, 1] interval. Fig. 5.11 shows that the four contamination index distributions
of, respectively, TPs, TNs, FPs and FNs mostly overlapped and followed the same trend. In fact,
the 48% of FNs and 28% of FPs had a non-zero contamination index, as well as the 31% and
43% of TNs and TPs. The lack of a correlation between the contamination index and incorrect
prediction rates (FPs and FNs) suggests that the source crowding did not significantly affect the
CNN classification efficiency.

By analysing the FP and FN rows in Figs. 5.9 and 5.10, we can see an interesting dichotomy:
FPs appear as red galaxies, while FNs as blue; in addition, the FPs have F814 < 24 mag, whereas
FNs are found also down to F814 ∼ 25. In order to quantify such behaviours, we analysed the
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Figure 5.11: Logarithmic distribution of the contamination index (see Eq. 5.4) for True Positives (TPs,
green), True Negatives (TN, cyan), False Positives (FP, red) and False Negatives (FN, blue). The
distribution includes all available clusters.

distribution of FPs and FNs in terms of: (i) the F814 magnitude for both FPs and FNs (left panel
in Fig. 5.12); (ii) the correlation between the CNN incorrect predictions and normalised colours
(F606 − F814)norm (right panel in Fig. 5.12). These results are summarised in Table 5.8.

Left panel in Fig. 5.12 and Col. 4 in Table 5.8 showed that almost all CLMs fainter than
F814 = 25 mag (representing a small fraction with respect to the total, see Col. 2 in Table 5.8)
were FNs. This was not due to any failure on the part of the model, but, rather, to the poor
sampling of such objects within the parameter space available to train the model. This was also
confirmed when comparing the percentage of FPs and FNs with respect to the percentage of
CLMs and NCLMs in Table 5.8 as a function of magnitude. In fact, Table 5.8 showed that the
model tried to reproduce the distribution in terms of fractions of CLMs for FPs, and in terms of
the fraction of NCLMs for FNs.

We analysed the correlations between the CNN incorrect predictions and colours. These
distributions are shown in the right panel of Fig. 5.12 using the normalised colour (F606 −
F814)norm, while, in Table 5.8 the misclassification percentages are summarised. Also in this
case, the distributions of FPs and FNs, as a function of colours, are mimicking, respectively, the
distributions of CLMs and NCLMs in Table 5.8. Very blue sources ((F606 − F814)norm < −0.5)
populated only 5.8% of CLMs and represented the ∼ 35.4% of incorrect predictions, which
is very similar to the fraction of very blue sources in the population of NCLMs (i.e. 43.2%).
Conversely, redder sources were typically correctly classified, showing a FN rate of 16.6%.
Moreover, from the fraction of FN/CLMs, we observed that almost all the blue cluster members
were wrongly classified as NCLMs (see Col. 4 in Table 5.8 and right panel in Fig. 5.12).

Regarding FPs, there was not a real classification problem with faint and very blue objects,
whose rates in terms of CLMs were, respectively, 3.4% and 5.8%, corresponding to 2.2% and
4.3% of incorrect predictions, respectively. From Table 5.8, it was also evident that within red
misclassifications, FPs were more frequent than FNs (29.5% versus 16.6%), reproducing the
distributions of CLMs (39.2%) and NCLMs (15.4%), respectively. Finally, we found that a
fraction of FPs are interlopers (identified as those sources having |v| ∈ (3000, 6000) km s−1): even
if they represent just the 4% of the whole NCLM set, 56.2% of them are FPs covering up to
30% of the whole FP ensemble; this behaviour is due to the similarity between members and
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Figure 5.12: Magnitude (left panel) and colour (right panel) logarithmic distributions of FPs (red) and
FNs (blue), overlapped to the CLM (green) and NCLM distributions (open grey), for the fifteen clusters
(stacked) included in our study. The number of objects for each plotted distribution is quoted between
brackets in the legend. The normalised colour (F606 − F814)norm is obtained by applying the correction
for the colour-magnitude relation for each cluster (Eq. 5.2). Tab. 5.8 outlines such results.

interlopers (as partially shown in Fig 5.9 and in Fig. 5.10 looking for objects whose velocity
separation is lager than 3000 km s−1), indeed 83.6% of interlopers are red galaxies, of which
47.5% are FPs.

Fig. 5.13 shows the colour-magnitude relation of CLMs (green squares), overlapping the
FP (red cross), FN (blue cross) and NCLM (grey circle) distributions. It emphasises the CLMs
undersampling of the blue and faint region, together with the large concentration of FNs among
bluer and fainter sources (see blue crosses). Among all the FNs, ∼ 35% are very blue ((F606 −
F814)norm < −0.5), ∼ 40% of these had F814 > 25 mag, suggesting that in the bluer region
the FNs follows the NCLM distribution, while among FPs, ∼ 64% of them are red ((F606 −
F814)norm > −0.1), but only ∼ 1% of these have magnitude fainter than F814 > 25 mag. On
the other hand, ∼ 35% of all FPs were within the yellow contours, which refer to the 1σ
colour-magnitude relation, indicating that they were on the red sequence.

As introduced in Sec. 5.2, we did not apply any photometric thresholds, in this way we
exploited faint and blue members together with red interlopers as adversarial examples to
prevent the model overfitting and increasing the network generalisation capabilities. In order
to understand the impact of these examples, we report, in Tab. 5.9, the statistical estimators
for the stacked sample considering either the whole sample, by removing faint and very blue
objects (i.e. F814 > 25 & (F606 − F814)norm < −0.5) and, only for the sake of completeness, by
also excluding interlopers (i.e. 3000 km s−1 < |v| ≤ 6000 km s−1). As already stated (Sec. 5.2),
the exclusion (even partial) of these objects from the whole KB causes an apparent significant
improvement of the performances, but the network loses any capability to detect members in
other clusters, i.e. the network is prone to overfit in the absence of these adversarial sources.
However, it is worth quantifying their influence in term of misclassifications, by evaluating the
statistical estimators on a test set from which they have been excluded. By comparing these
results (Tab. 5.9), we observed a relevant increase of the completeness (for the stacked sample, it
goes from 84.8% to 90.8%). This was mainly motivated by the sensible reduction of the FNs
amount, which, by definition, had a higher impact on the completeness, rather than on other
estimators. In fact, the purity showed a smaller improvement, going from 87.9% to 88.4%.
Whereas, by also removing interlopers from the test set, we observed a significant increasing of
purity (from 88.4% to 94.5%), due to the exclusion of a large fraction of FPs (∼ 56%).
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Figure 5.13: Colour-magnitude relation for the CLMs (green squares), with the overlapped distributions
of False Positives (FPs, red crosses), False Negatives (FNs, blue crosses) and NCLMs (grey circles), for
the sample of fifteen clusters (stacked). The yellow contour delimits the red-sequence at 1σ confidence
level. Colours reported on the y-axis are corrected for the mean red-sequence of each cluster (see Sec. 5.2).

In summary, the FNs were mainly blue and faint CLMs, while FPs were typically red galaxies
weakly bound to cluster. This was expected, given their under-representation in the dataset and
the similarity between blue member with NCLMs and between interlopers with CLMs. We note,
in fact, that we were mapping a population of cluster members in the central and highest density
region of clusters, dominated by a high fraction of bright and red members. Nevertheless, the
simple exclusion of fainter sources with F814 > 25 and (F606 − F814)norm < −0.5 improved
the CNN performance.

Similar performances in terms of the distribution of false positives and negatives for sources
with F814 > 25 and (F606 − F814)norm < −0.5 were obtained by the random forest classifier
and the photometry-based Bayesian method. By comparing the behaviour of these three models
on four clusters (R2248, M0416, M1206 and M1149), we found that the rate of blue FN is 28%
for the Bayesian method and 25% for the random forest versus the 20% for the CNN. The rate of
faint FN is 1% for the random forest and 6% for the Bayesian method versus the 5% of CNN.
For what concerns FPs, the CNN, being the purest method, preserved the lowest contamination
for both bluer and fainter members, with only four NCLMs classified as CLMs, compared
with the 12 and 24 NCLMs for the Bayesian method and the random forest, respectively. This
comparison, while it confirms the good performances of the CNN, also shows that the three
methods have comparable efficiencies in the faint and blue region of the parameter space, which
is likely due to undersampling of members in this region of the knowledge base, as pointed out
above. This is due to the fact that the population of galaxies in the densest central cluster regions
is brighter and redder than that of the less dense and outer cluster regions (see Annunziatella
et al. 2014; Mercurio et al. 2016 for the specific study of M1206). Clearly, an improvement of
the model’s performances would require including member galaxies in the outer cluster regions
and balancing the number of bluer and fainter members. In our case, even if the spectroscopic
data cover more than two cluster virial radii, multi-band HST imaging with sufficient depth is
only available in the central cluster regions.
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CLMs FPs FPs/NCLMs
Total Number 1187 139 0.084
F814 <25.0 96.6% 97.8% 0.131
F814 ≥25.0 3.4% 2.2% 0.005
(F606 − F814)norm ≤ −0.5 5.8% 4.3% 0.008
(F606 − F814)norm ≤ −0.25 13.7% 23.0% 0.033
(F606 − F814)norm < 0.0 60.8% 70.5% 0.070
(F606 − F814)norm ≥ 0.0 39.2% 29.5% 0.161

NCLMs FNs FNs/CLMs
Total Number 1655 181 0.152
F814 <25.0 62.7% 79.0% 0.125
F814 ≥25.0 37.3% 21.0% 0.950
(F606 − F814)norm < −0.5 43.2% 35.4% 0.928
(F606 − F814)norm ≤ −0.25 64.6% 56.1% 0.656
(F606 − F814)norm <0.0 84.6% 83.4% 0.209
(F606 − F814)norm ≥0.0 15.4% 16.6% 0.065

Table 5.8: Summary of False Positive and False Negative distributions. Fractions of CLMs (Col. 2), False
Positives (FPs) (Col. 3) and the ratio of FPs to NCLMs (Col. 4) as a function of magnitude (second and
third row) and colours (fourth to sixth row). The total number of spectroscopic CLMs and FPs are quoted
in the first row. Fractions are computed only for sources whose F814 and F606 magnitudes are available
(∼ 84% of the whole dataset). Similar fractions for NCLMs, FNs (False Negatives) and FNs/CLMs are
quoted in the bottom half of the table. This table can be compared with Fig. 5.12 and Fig. 5.13 where FPs
and FNs are plot as a function of magnitude F814 and normalised colour (F606 − F814)norm.

5.5 Selection of member candidates
The experiments described in the previous sections are mostly focused on the classification
efficiency and limits of the image-based CNN approach and evaluating its dependence from
observational parameters such as redshift, number of CLM, photometric band compositions,
magnitude and colour. In this section, we are mainly interested in evaluating the degree of
generalisation capability of the trained CNN in classifying new sources as cluster members,
a step process that is commonly referred to as run in the ML context. The training set was
constructed by combining all clusters with the mixed* band configuration. In order to maximise
the parameter space sampling, we did not use the k-fold approach, instead we exploited the
whole spectroscopic source ensemble to train the network, by just excluding the validation set
used for the regularisation processes (see Sec. 3.6.5), i.e. we did not apply any training-testing
split.

Similarly to what was done to build the knowledge base (see Sec. 5.2), for the run set we
used squared cut-outs ∼ 4′′ across, centered on the source positions as extracted by SExtractor
(Bertin & Arnouts 1996), once spectroscopic sources have been excluded from the SExtractor
catalogues. Thus, the run set was composed by 16156 unknown sources. The CNN identified
a total of 1418 members with F814 ≤ 25 mag, which is approximately the magnitude limit of
the spectroscopic members (only ∼ 3% of spectroscopic members has F814 > 25). Within
this CLM candidate sample: 158 (i.e. 11%) sources have normalised colour ≤ −0.25, while
just 27 (i.e. 2%) are very blue sources with normalised colour ≤ −0.5, such quantities are
comparable with the fractions shown in Tab. 5.8. Finally, we found that ∼ 48% of candidate
CLMs have membership probabilities larger than 90%. The magnitude (F814) distribution and
the colour-magnitude relations ((F606 − F814)norm versus F814) of both spectroscopic and
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Figure 5.14: CNN membership predictions (run) together with spectroscopic sources: the F814 distribu-
tion is shown in the upper left panel and in the second row panels; the normalised colour − magnitude
sequence is shown in the upper right panel and in the last row. The magnitude distributions and the
colour-magnitude sequences are plotted: (i) by stacking members of all the involved clusters (first row
panels) and (ii) individually for four cluster: R2248, M0416, M1206 and M1149 (second and third row
panels). Spectroscopic CLMs are shown in green, candidate members in purple, spectroscopic NCLMs
with blue squares and candidate NCLMs with open cyan circle. We only plot identified members with
F814 ≤ 25 mag. The grey region within the CM diagrams limits the area corresponding to ±1σ from the
median (dashed horizontal line) of (F606 − F814)norm.
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Complete sample F814 < 25.0 & F814 < 25.0 &
(F606 − F814)norm ≥ −0.5 (F606 − F814)norm ≥ −0.5 &

(|v| ≤ 3000 ∨ |v| > 6000)
true CLMs 1187 1100 1100
pred CLMs 1145 1130 1057
TPs 1006 999 999
FPs 139 131 58
FNs 181 101 101
pur 87.9% 88.4% 94.5%
compl 84.8% 90.8% 90.8%
F1 86.3% 89.6% 92.6%

Table 5.9: Comparison among CNN performances considering the whole sample (Col. 2), by removing
sources with F814 ≥ 25 and (F606− F814)norm < −0.5 (Col. 3) and by additionally excluding interlopers
(Col. 4).

predicted CLMs are shown in Fig. 5.14 both by stacking all clusters (first row panels) and by
splitting the predictions made in the FoV of four clusters: R2248, M0416, M1206, and M1149
(second and third row panels). The magnitude distributions indicate that the CNN was able to
complete the spectroscopic CLMs sample down to F814 = 25. This was also confirmed by the
analysis of the colour-magnitude diagrams, which show that the photometrically identified CLMs
complete the spectroscopic red-sequence at F814 < 25, emphasising the CNN capability to
disentangle CLMs from background objects. We counted also the number of recognised CLMs
within 1, 2, and 3σ from the median of normalised colour (F606 − F814)norm, respectively equal
to 1156, 1336 and 1382 (i.e. 81.5%, 94.2% and 97.5%).

Finally, to further validate the galaxy cluster selection, we used both spectroscopic members
and candidate CLMs identified by CNN to estimate the cumulative projected number of cluster
members and the differential number density profiles (Fig. 5.15). According to our previous
analysis, we excluded candidate CLMs with F814 > 25 mag, where only ∼ 3% of spectroscopic
members were present. To properly compare profiles of clusters with different virial masses,
we computed the values R200 from of the values of M200c obtained by Umetsu et al. (2018)
with independent weak lensing measurements4. We then computed all profiles as a function
of the projected radius in units of R200 and rescaled them by the number of members, N0,
found within the radius R/R200 = 0.15 in each cluster. In Fig. 5.15, we showed the cumulative
projected number and the normalised projected number density profiles of cluster members after
applying such renormalisations, where the shaded areas correspond to 68% confidence levels.
Interestingly, we found that the radial distributions of all clusters followed a universal profile,
including M0416, which is an asymmetric merging cluster. Our profiles, properly normalised,
indicated the self-similarity of mass cluster profile expected in N-body simulation due to the
scale-free nature of gravity (Kravtsov & Borgani 2012). We noted that a similar relation among
rescaled projected mass profiles was found in Bonamigo et al. (2018) and Caminha et al. (2019),
using strong lensing modelling. This result confirms that our methodology was able to identify
the CLM population with a high degree of purity and completeness. Based on this accurate CNN
membership, we are planning to analyse the luminosity and mass functions of a larger sample of
clusters to study the ensemble variance of the galaxy number profiles. We expect our method to
yield more robust results than those obtained using photometric redshifts.

4We note again that R200 =
(︂

2G
H(zcl)2

M200c
200

)︂ 1
3 , where H(zcl) is the Hubble constant computed at the cluster redshift.
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Figure 5.15: Cumulative (left) and normalised (right) projected number of CLMs for 12 clusters (with
available M200c in Umetsu et al. 2018), including spectroscopic CLMs and candidate members identified
by CNN (limited to F814 ≤ 25 mag). The areas correspond to the 68% confidence level regions. All
profiles are normalised by the number N0 of members with R < 0.15 R200 in all clusters. The number of
spectroscopic, CNN-identified members ("run"), N0 values and the adopted values of R200 are quoted in
the right-side legend. The dashed line in the right panel corresponds to R = 0.15R200.

5.5.1 Selection of members in RELICS clusters
As final application of our trained network, we performed a run on 33 RELICS clusters (Coe et al.
2019), with central redshift ranging in (0.20, 0.87). A layout of the involved RELICS clusters
is shown in Fig. 4.8 in Chap. 4. Globally, the run set is composed by 39586 sources. Tab. 5.10
summarises the number of objects in each cluster, the amount of CLMs and NCLMs identified by
the CNN, together with information about the photometric distribution of the candidate members.
We restricted the candidate CLM sample to sources with F814 ≤ 25 mag, identifying 5988
objects as cluster members. The resulting member magnitude distribution and the normalised
colour-magnitude relation for both candidate CLMs and NCLMs are shown in Fig. 5.16. By
comparing this colour-magnitude sequence with the one in the upper right panel of Fig. 5.14,
members appear to be spreading out the same colour range: 86.4% of CLMs are within 1σ
from the median colour of spectroscopic members (98.2% within 3σ); the CNN classified as
members 602 sources with F814 ∈ [24, 25] (∼ 10%); a large fraction (∼ 50%) of candidate
members are red (i.e. (F606 − F814)norm ≥ 0 mag), while just ∼ 6.5% are very blue objects with
(F606 − F814)norm < −0.25 mag. Such quantities are comparable with the spectroscopic set of
members (see Tab. 5.8), given the FPs and FNs analysis carried in Sec. 5.4: the oversampling of
red members is partially due to the interlopers which increase the FP rate in the redder region,
while the undersampling of blue members can be traced back to the high FN rate in the bluer
region of parameter space.

5.6 Cluster member selection with ground-based images
In this section we present the identification of cluster members achieved by exploiting images
acquired by SUBARU Suprime-Cam, comparing, in this way, CNN classification capabilities
carried out with two different instruments. With the upcoming data of the Vera Rubin Observatory,
we wanted to explore the network behavior in presence of ground-based wide field images,
analysing the trade-off between the increasing of the available sources, due to the expanding
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CLM with CLMs with (F606 − F814)norm

Cluster zcluster N CLMs NCLMs F814 ≥ 24 ≥ 0 < 0 < −0.25 < −0.5
A2163 Abell2163 0.203 1904 251 1653 7 144 107 1 0
A520 Abell520 0.203 1875 119 1756 3 65 54 3 0
R1514 RXC J1514.9-1523 0.223 862 113 749 8 60 53 3 0
A1763 Abell1763 0.228 1083 158 925 13 81 77 1 0
P171 PLCK G171.9-40.7 0.270 691 176 515 1 88 88 9 1
A1758 Abell1758a 0.280 2827 278 2549 27 137 141 3 0
A697 Abell697 0.282 861 151 710 6 80 71 4 0
R0232 RXC J0232.2-4420 0.284 1026 156 870 11 82 74 1 0
A2813 Abell2813 0.292 1040 163 877 16 97 66 1 0
A2537 Abell2537 0.297 733 167 566 11 84 83 9 0
AS295 AbellS295 0.300 1005 180 825 23 91 89 10 0
A1300 Abell1300 0.308 999 141 858 11 63 78 5 0
R0142 RXC J0142.9+4438 0.341 1038 167 871 19 87 80 11 0
M0035 MACS J0035.4-2015 0.352 1063 144 919 18 77 67 5 0
M0308 MACS J0308.9+2645 0.356 845 218 627 14 103 115 10 1
R0949 RXC J0949.8+1707 0.383 1060 194 866 19 101 93 7 1
P287 PLCK G287.0+32.9 0.390 1210 246 964 31 119 127 6 0
SM0723 SMACS J0723.3-7327 0.390 1114 142 972 10 66 76 11 2
R0032 RXC J0032.1+1808 0.396 932 239 693 29 120 119 16 2
R2211 RXC J2211.7-0350 0.397 925 222 703 24 107 115 14 1
M0159 MACS J0159.8-0849 0.405 1038 185 853 27 100 85 7 1
A3192 Abell3192 0.425 1168 210 958 33 96 114 16 1
M0553 MACS J0553.4-3342 0.430 1399 192 1207 29 98 94 10 5
S0254 SPT-CLJ0254-5857 0.438 1172 156 1016 19 74 82 18 1
M0417 MACS J0417.5-1154 0.443 1050 176 874 23 83 93 16 2
R0600 RXC J0600.1-2007 0.460 1231 254 977 31 138 116 15 0
P308 PLCK G308.3-20.2 0.480 1090 204 886 17 99 105 25 2
P004 PLCK G004.5-19.5 0.540 2065 205 1860 23 94 111 30 9
R0018 RXC J0018.5+1626 0.546 1191 222 969 27 102 120 33 12
W0137(a) WHL 0137-08 0.566 1046 170 876 30 70 100 26 9
P209 PLCK G209.79+10.23 0.677 1040 150 890 15 74 76 11 6
P138 PLCK G138.61-10.84 0.702 1016 56 960 3 25 31 20 12
A0102 ACT-CLJ0102-49151 0.870 1987 183 1804 24 88 95 34 14
TOTAL 39586 5988 33598 602 2993 2995 391 82
FRACTION [%] 15.1 84.9 10.0 50.0 50.0 6.5 1.4

Table 5.10: Summary of the run performed on 33 RELICS clusters. The name, the short name of the
clusters and their redshift are reported in the first 3 columns; the amount of sources in the run set, the
identified CLMs and NCLMs are listed in columns 4 to 6; columns from 7 to 11 show the number of faint
CLMs (F814 ≥ 24), the amount of CLMs with (F606 − F814)norm respectively ≥ 0, < 0, < −0.25 and
< −0.5 mag.
(a) The cluster WHL 0137-08 is also known as WHL J24.3324-8.477.
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Figure 5.16: CNN membership predictions (run) on the RELICS clusters, represented as (i) CLMs
distribution of F814 magnitudes (left panel), (ii) normalised colour - magnitude sequence for both CLMs
and NCLMs (right panel). Candidate CLMs are shown in purple, while candidate NCLMs with open cyan
circle. We only plot identified members with F814 ≤ 25 mag. The grey region within the CM diagrams
limits the area corresponding to ±1σ from the median (dashed horizontal line) of (F606 − F814)norm,
estimated from the spectroscopic CLM sample.

of the FoV sizes (SUBARU FoV is ∼ 30′, with respect to the HST FoV of ∼ 3′), and the
degradation of the image quality, due to the seeing and to different sampling (SUBARU images
have a sampling of 0.200′′/pixel, with respect to the HST sampling of 0.065′′/pixel).

In order to maximise the number of filters available for all the involved clusters, we restrict
the analysis to 4 clusters: Abell 209 (A209, with central redshfit zcl = 0.209), MACS J1115+0129
(M1115, with central redshift zcl = 0.352), MACS J1206-0847 (M1206, with central redshift
zcl = 0.439) and MACS J0329-0211 (M0329, with central redshift zcl = 0.450). For these
clusters, B, V, R, I and Z bands are all available. These four clusters are shown in Fig. 4.5 in
Chap. 4.

Similarly to what has been done for HST images (see Sec. 5.2), in order to label the dataset,
we used the extensive spectroscopic information obtained by combining CLASH-VLT VIMOS
programme with MUSE archival observations, identifying as CLM a source having rest-frame
velocity separation |v| ≤ 3000 km s−1 (see Eq. 5.1). Concerning the image extraction, for each
spectroscopic source, we extracted a squared cutout centred on source position with the same
side used for HST cutouts, i.e. equals to 4′′, corresponding to 20 pixels. A sample of the dataset
is shown in Fig. 5.17, where sources extracted from the involved clusters are split between
members, interlopers and non-members. By comparing these cutouts with the ones drawn out
from HST images (Fig 5.1), it is clear the reduction of the image quality: SUBARU images
appear as blurred versions of the HST cutouts. The number of samples for each involved cluster
is shown in Tab. 5.11.

In order to train the network, we opted for stratified k-fold approach, following the same
method applied for the HST images (see Sec. 5.2), as described in Sec. 3.6.5: 10% of sample are
reserved for the validation set, the rest of which has been partitioned into k = 10 non-overlapped
folds, 15% of each training fold has been augmented through rotations and flips (with a resulting
augmentation factor equals to 1.75). Finally, since the number of NCLMs significantly exceeds
the number of CLMs, before the k-fold splitting, we extracted subset of them (equals to the 120%
of the CLMs set), in order to balance the classes.

Within this experiment, we trained the CNN individually for each cluster and by stacking
all the involved clusters, testing, in this way, the network capabilities to generalise the learning
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CLMs

Interlopers

NCLMs

Figure 5.17: Examples of RGB cutouts of cluster members, interlopers and non-members extracted from
SUBARU images (B, V, R bands). To emphasise fainter sources, images have been stretched by clipping
values within ±3σ and then normalised. Cutouts are 4′′ across.

over the considered cluster redshift range (0.20, 0.46). The results are shown in Tab. 5.12.
Concerning the global performance, achieved by stacking all the involved clusters, by comparing
the results with those carried out with HST data (see Tab. 5.2), we measured a decreasing of ∼ 6%,
∼ 4% and ∼ 7%, respectively for average efficiency, CLM and NCLM F1-score. Despite this
reduction, the network is able to identify members with an acceptable trade-off between purity
and completeness, characterised by an F1-score ranges in ∼ 82%, ∼ 85%. Respect to the network
behaviour trained with HST images, in this experiment we found that the CNN is more complete
than pure, with differences between ≲ 1% and ∼ 8%. Regarding the performed comparison
between the "cluster-by-cluster” training and the global training, despite the photometric and
morphological differences between members at different redshift, we measure an average 5%
improvement with the enlarging of the KB, evaluated by cross-comparing all the statistical
estimator couples. As already observed for the analysis carried out with HST images, even
this experiment confirms the classification capabilities increasing with the enlarging of the KB,
particularly the involving of members belonging to clusters at different redshift improves the
network generalisation degree respect to an individual "cluster-by-cluster” training.

The network misclassifications (i.e. False Positives and False negatives) are shown in
Fig. 5.18 in terms of magnitude and normalised colour logarithmic distributions (left and central
panels), as well as in terms of the normalised colour - magnitude relation (right panel). While,
a summary of FP and FN percentages as a function of magnitude and colour is reported in
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Abell 209 MACS J1115+0129 MACS J0329-0211 MACS J1206-0847
(A209) (M1115) (M1206) (M0329) TOTAL

zcluster 0.209 0.352 0.4390 0.450
zmin 0.196 0.338 0.425 0.435
zmax 0.221 0.365 0.454 0.464

CLM 996 724 672 508 2900
NCLM 1485 1767 2168 1317 4569

Table 5.11: SUBARU cluster sample description. The cluster central redshifts and the spectroscopic
range to identify CLMs are listed in the first, second and third row. The numbers of CLMs and NCLMs
for each involved cluster are reported in the fourth and fifth row.

% A209 A209* M1115 M1115* M1206 M1206* M0329 M0329* STACKED
AE 86.3 86.5 76.6 81.9 80.0 82.5 73.2 84.8 84.1
pur 83.7 85.7 72.9 78.7 76.1 79.0 71.6 81.0 81.5

CLM compl 88.6 86.0 81.1 84.9 84.6 86.1 72.7 89.1 86.3
F1 86.1 85.8 76.8 81.7 80.1 82.4 72.2 84.9 83.9
pur 89.0 87.2 80.8 85.2 84.5 86.3 74.7 89.1 86.8

NCLM compl 84.3 87.0 72.5 79.1 75.9 79.3 73.7 80.9 82.2
F1 86.6 87.1 76.4 82.0 79.9 82.6 74.2 84.8 84.4

Table 5.12: CNN percentage performances with SUBARU images. Statistical estimators are related to
the individual training of each cluster and to the global training achieved by staking all the four clusters
(then evaluated separately for each cluster, flagged with an asterisk). The best results for each cluster are
highlighted in bold.

Tab. 5.13. As it can be seen from the distributions in Fig. 5.18, FPs and FNs do not gather in
specific regions of the parameter space, rather they reflect the CLMs and NCLMs distributions,
at least down to i = 23 mag and (v − i)norm > −0.5 mag; indeed, as expected, there is an excess
of FNs in the member faint end (i ≥ 23) and in the bluest region of the parameter space.
((v − i)norm < −0.5 mag). Such behaviour is also evident in the colour-magnitude diagram (right
panel in Fig. 5.18). Concerning the FPs, their colour distribution nearly coincides with that of
CLMs, suggesting that FPs are galaxies photometrically similar to the members (for both red
and blue regions). More in general, FPs strictly follow the NCLM trends as shown in Col. 6 of
Tab. 5.13: the fraction FP/NCLM is almost constant in the considered magnitude and colour
ranges (∼ 20%). Finally, regarding the interlopers, only 50 of them (i.e. ∼ 30%) have been

CLMs NCLMs FP FN FP/NCLM FN/CLM Interlopers (FP)
Total Number 2020 2538 517 241 20.4% 11.9% 173 (123)
i <23.0 90.9% 82.3% 84.5% 78.0% 20.9% 10.2% 82.7% (82.1%)
i ≥23.0 9.1% 17.7% 15.5% 12.0% 17.8% 28.8% 17.3% (17.9%)
(v − i)norm ≤ −0.5 20.0% 36.6% 39.8% 42.3% 21.0% 25.2% 54.3% (73.2%)
(v − i)norm ≤ −0.25 34.8% 61.2% 62.7% 68.5% 20.8% 23.5% 69.4% (72.5%)
(v − i)norm < 0.0 69.1% 81.8% 83.7% 86.3% 20.9% 14.9% 62.4% (72.5%)
(v − i)norm ≥ 0.0 30.9% 18.2% 16.3% 13.7% 18.2% 5.3% 37.6% (62.5%)

Table 5.13: Fractions of CLMs (Col. 2), NCLMs (Col. 3), FPs (Col. 4), FNs (Col. 5), FPs to NCLMs
ratio (Col. 6), FNs to CLMs ratio (Col. 7) and interlopers (Col. 8) as a function of magnitude (second and
third row) and colours (fourth to seventh row). The total number of spectroscopic samples are quoted in
the first row. The fractions of false positive interlopers have been reported between brackets in the last
column. These numbers are computed only for sources whose i and v magnitudes are available (∼ 70% of
the whole dataset).
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Figure 5.18: Magnitude (left panel) and colour (central panel) logarithmic distributions, together with
colour-magnitude relation (right panel), of FPs (red) and FNs (blue), overlapped to the CLM (green) and
NCLM (grey) distributions for the four clusters involved in our analysis. The normalised colour (v− i)norm
is obtained by applying the correction for colour-magnitude relation for each cluster (Eq. 5.2). Tab. 5.13
outlines such results.

correctly classified, resulting that 22% of FPs are interlopers.
Respect to CNN performances achieved exploiting HST imaging, characterised by strong

dichotomies (faint vs. bright and blue vs red sources, see Figures 5.12, 5.13 and Tab. 5.8), in
this experiment, which involved wide-field ground-based images, we have not found any similar
behaviour: although the performances are lower, miscassification appears to be distributed in
the whole parameter space. Another example is represented by interlopers: even if ∼ 70% of
them are FPs, they populate both the red and blue region of the parameter space (∼ 45% of
them are red galaxies, while in the HST experiments the interloper red population composed
the ∼ 84% of the whole interloper ensemble). Thus, respect to experiments involving HST data,
the performance reducing achieved with SUBARU supreme-cam imaging is due to the different
quality of the images. Indeed, the CNN trained with HST image was able to detect up to the
90% of the member population by disentangling them from background and foreground sources,
which can not be separated with worse resolution imaging; however, the larger source sampling
achieved by SUBURU, due to its wider FoV, allows to build KB with which the CNN achieved
more uniform results, in terms of magnitude and colour distributions.

5.7 Conclusions
In this work, we carried out a detailed analysis of CNN capabilities to identify members in
galaxy clusters, disentangling them from foreground and background objects, based on imaging
data alone. Such a methodology, therefore, avoided the time consuming and challenging task of
building photometric catalogues in cluster cores, since it just requires the position of sources,
on which cutouts are extracted. We used optical-NIR high quality HST images, supported by
MUSE and CLASH-VLT spectroscopic observations of fifteen clusters, spanning the redshift
range zcluster = (0.19, 0.60). The redshift for a large fraction of the spectroscopic objects (∼ 80%)
has been estimated using MUSE data cubes, so the source set should not be affected by bias
in the selection. We used this extensive spectroscopic coverage to build a KB by combining
CLMs and NCLMs. We performed several experiments by consecutively varying the HST band
combinations and the set of training clusters to study the dependence of DL efficiency on (i)
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band configuration, training size and cluster redshift (EXP1); (ii) the magnitude and colour of
cluster galaxies (EXP2). We also compared the CNN performance with other methods (random
forest and Bayesian model), based on photometric measurements (EXP3). The main results can
be summarised as follows:

- Despite members belonging to clusters spanning a wide range of redshift, the CNN
achieved a purity-completeness rate ≳ 90%, showing a stable behaviour and a remarkable
generalisation capability over a relatively wide cluster redshift range (Sec. 5.3.1).

- The CNN efficiency was maximised when a large set of sources was combined with HST
passbands, including both optical and infrared information. The robustness of the trained
model appeared reliable even when a subset of clusters was moved from the training to the
blind test set, causing a small drop (< 5%) in performance. As predictable, we found that
CNN performs better on bright sources than for faint objects, as well as the unsuccess rate
is higher for the blue galaxies than for red ellipticals. However, the results maintained the
purity, completeness and F1 score greater than 72% (Table 5.6 in Sec. 5.3.2).

- By using images, rather than photometric measurements, the CNN technique was able to
identify CLMs with the lowest rate of contamination and the best trade-off between purity
and completeness, when compared to photometry-based methods, which instead require a
critical fine-tuning of the classification probability.

- The false negatives, that is, the NCLMs wrongly classified as CLMs were mainly blue
and faint. This was simply the result of their under-sampling in the training dataset, as
well as their similarity with NCLMs. However, by excluding sources with F814 > 25 mag
and (F606 − F814)norm < −0.5 mag, the CNN performance improved significantly gaining
more 6% and 1%, respectively in term of completeness and purity (Sec. 5.4). These
performances reflected the capability of the CNN to classify unknown objects, from
which a highly complete and pure magnitude limited sample of candidate CLMs could be
extracted for several different applications in the study of the galaxy populations and mass
distribution of galaxy clusters via lensing techniques.

- The usage of ground-based wide-field imaging (e.g. acquired by SUBARU Suprime-Cam,
Sec. 5.6) lead to a decreasing of performance, up to 10%, with F1-scores ∼ 84%; however,
the involving of sources in the outskirt of clusters allows the sampling of the bluer region
of the parameter space, resulting into performance less dependent on colour.

In this work, we limit our analysis to the center of galaxy clusters, where we can exploit an
extensive spectroscopic coverage and the complete optical-NIR spectral information; however,
this method can be extended in external regions, which host a larger fraction of blue members
that could be misclassified by the network (since it has been mainly trained on red elliptical
galaxies, as already mentioned). To solve this issue, we will apply other DL methods, such as
deep auto-encoders (Goodfellow 2010) and conditional generative adversarial networks (Mirza
& Osindero 2014), on wide-field ground-based lower resolution images to complement high
quality HST imaging in cluster outskirts. Moreover, this method can be fruitfully extended
to upcoming survey facilities, such as Vera Rubin Observatory (Ivezić et al. 2019) and Euclid
(Laureijs et al. 2011). Finally, the results obtained in this work encourage the exploration of
Deep Learning techniques to automatically estimate galaxy properties, such as stellar masses,
sizes or magnitudes.
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Chapter 6

Identification of Galaxy-Galaxy Strong
Lenses in clusters

In this chapter I present the adopted strategy to identify the Galaxy-Galaxy Strong Lenses
(GGSLs) with CNNs exploiting a dataset whose samples are generated by combining simulations
with the complexity of observed clusters. This chapter will be the subject of a forthcoming
publication.

6.1 Introduction
Strong gravitational lensing is a very powerful tool for studying galaxy evolution and cosmology.
For example strong lenses have been exploited to analyse galaxies structures and their evolution
(Treu & Koopmans 2002; Auger et al. 2010; Sonnenfeld et al. 2013) or to constrain the stellar
initial mass function of galaxies (Spiniello et al. 2012; Sonnenfeld et al. 2019). Strong lensing
acts as unique tool to reveal high-redshift magnified sources, otherwise undetectable (Vanzella
et al. 2020, 2021), to measure cosmological parameters exploiting time delay observations
(Grillo et al. 2018; Millon et al. 2020), to test cosmological paradigms (Diemand & Moore 2011;
Meneghetti et al. 2020). Moreover, the multiple images detection in galaxy clusters (together
with galaxy members identification) allows to build lensing models with which is possible to
study the cluster mass distribution, the sub-halo populations and dark matter halos (e.g., Caminha
et al. 2017b, 2019; Bergamini et al. 2019, 2021b).

Despite all these applications, strong lenses are rare, since they require the alignment of
the lens with a foreground source. This low number of known events makes it difficult to use
any Machine Learning approach to search for GGSL. Indeed, the most common technique
for the GGSL identification has long been the visual inspection of candidates, selected via a
colour-magnitude selection or with a semi-automated searching for arc-shaped and ring-shaped
features (Le Fèvre & Hammer 1988; Jackson 2008; Sygnet et al. 2010; Pawase et al. 2014; Seidel
& Bartelmann 2007; Gavazzi et al. 2014; Sonnenfeld et al. 2018). Recently, Sonnenfeld et al.
(2020) proposed a crowdsourcing to find lenses using images of galaxies acquired within the
Hyper Suprime-Cam survey (Aihara et al. 2018; Miyazaki et al. 2018), together with simulated
lenses and non-lenses, to “train” ∼ 6000 volunteer citizens in the lens identification, their
answers are then collected into a Bayesian framework to obtain a lens-probability. Given the
large redshift range at which GGSLs are searched, their different morphology, colours and
magnitudes the automatic finding of lens through artificial networks requires large simulated
dataset (e.g., Metcalf et al. 2019). Recent attempts to exploit Deep Learning approaches have
been proposed by Jacobs et al. (2019a,b), which searched for lensing events within the Dark
Energy Survey (Dark Energy Survey Collaboration et al. 2016), and by Petrillo et al. (2017,
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Figure 6.1: The involved clusters (also listed in Tab. 6.1). The tangential critical lines corresponding
to 4 different redshfits, z = [1.5, 3.0, 4.5, 6.0] (respectively coloured in cyan, green, orange and red), are
overlapped to the cluster FoV.

2019b); Li et al. (2020, 2021b), which explored the Kilo Degree Survey (de Jong et al. 2015).
Both works exploited Convolutional Neural Networks trained on images simulated by adding
arcs and rings on the top of selected Luminous Red Galaxy cutouts.

In this work, we present a novel approach based on the injection of a Sérsic profile galaxy
(Sérsic 1963, 1968) behind an observed HST member galaxy: by exploiting fitted cluster lens
models, we tracked the light rays from the source plane to the lens plane, to the observer, obtained
an GGSL example within the complexity of a galaxy cluster.

6.2 Building the dataset
As mentioned above, the restricted number of known GGSL events prevents from training any
Machine Learning model, therefore, in order to build the Knowledge Base, we simulate a large
dataset involving a variety of strong lensing configurations, by keeping the complexity and
heterogeneity of the observed imaging data. In this work, we simulate GGSLs in 8 clusters with
a redshift range (0.2 − 0.6), using three ACS bands, F435, F606, F814, from the HFF survey,
when observations were available, from CLASH otherwise, as listed in Tab. 6.1.

To simulate strong lenses, we use the (reduced) deflection angle maps computed by tacking
the gradient of the potential map (Eq. 2.32), once a cluster lens model has been fitted. The
lens models were developed with the public software LensTool (Kneib et al. 1996; Jullo et al.
2007; Jullo & Kneib 2009), which determines the best-fit cluster lens model with a Bayesian
Markov chain Monte Carlo approach, by minimising the difference between the multiple images
observed positions and their predicted positions given the set of model parameter (see Sec. 2.3).
In this way, given the cluster redshift (i.e. the distance from the cluster lens plane) and source
redshift (i.e. the distance from the source plane), the tangential and radial critical lines are found
by imposing that the magnification of the images goes to infinity (i.e. setting the denominators
in Eq. 2.44 equal to zero). The magnification is estimated by computing the convergence (with
Eq. 2.34) and the components of the shear (Eqs. 2.35 and 2.36).
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Cluster zcluster Survey M(a)
200c[1014M⊙] Nimg ∆rms[′′] ref

RX J2129+0005 R2129 0.234 CLASH 7.78±2.43 22 0.20 (1)
RX J2248-4431(b) R2248 0.346 HFF 19.81±5.97 55 0.55 (2)
MACS J1931-2635 M1931 0.352 CLASH 11.62±8.84 19 0.38 (1)
MACS J0416-2403 M0416 0.397 HFF 11.43±2.66 182 0.40 (3)
MACS J1206-0847 M1206 0.439 CLASH 15.05±3.20 82 0.46 (2)
MACS J0329-0211 M0329 0.450 CLASH 12.70±2.19 23 0.24 (1)
RX J1347-1145 R1347 0.451 CLASH 35.40±5.05 20 0.36 (1)
MACS J2129-0741 M2129 0.587 CLASH N/A 38 0.56 (1)

Table 6.1: Description of the cluster sample involved in the GGSL simulation. The name, the short name
of the clusters and their redshift are reported in the first 3 columns. The fourth column shows the surveys
from which images are extracted. Nimg (Col. 5) is the number of multiple images used to constrain the
model, ∆rms is the root-mean-squared separation between the observed and the predicted multiple images
positions. The reference lens model for each cluster can be found in the last column. (a) The halo mass
measured by Umetsu et al. (2018).
(b) The cluster RX J2248.7−4431 is also known as Abell S1063.
(1) Caminha et al. 2019; (2) Bergamini et al. 2019; (3) Bergamini et al. 2021b.

In this work, we exploit the deflection maps computed from the cluster lens models fitted
by Bergamini et al. (2019, 2021b) and Caminha et al. (2019) in 8 clusters, spanning a redshift
range ∈ (0.23, 0.59), listed in Tab. 6.1 and shown in Fig. 6.1, where the tangential critical lines
corresponding to 4 different redshifts are overlapped to the cluster FoV. By exploiting these
high-precision “macro” models, we use the complex cluster mass distribution (see e.g. the
surface mass density in Fig. 2.5, from Grillo et al. 2015 for the M0416 cluster), which affects the
formation of the lensing event. We note that in simulations of GGSL in the field (e.g., Petrillo
et al. 2019a,b; Li et al. 2021b; Gentile et al. 2022), the effect of a cluster/group environment is
often reproduced with an external shear added to a local galaxy mass model. In our case, we
model the whole cluster deflection field by taking into account all the physical components that
actually contribute to the cluster potential model: the cluster-scale mass component due to the
dark matter cluster halo and the smooth hot-gas mass traced by Chandra X-ray data, the clumpy
component of cluster galaxies (dark matter and baryons in each sub-halo), foreground-structures
in the outer cluster region and line-of-sight mass contributions (Bergamini et al. 2019, 2021b).
As a consequence, the Einstein radius associated to each galaxy member is larger than what it
would have been in absence of the cluster deflection field. As an example, to quantify the effect
of the cluster potential on a single galaxy, we used the lens model of M0416 (Bergamini et al.
2021b) to measure the mass of each galaxy within 3′′, with and without the large-scale mass
contribution, finding that a typical ratio between these masses is 3.8 ± 1.0, implying that the
(median) mass contribution of the galaxy alone is just ∼ 26%.

An example of the simulation process is graphically shown in Fig. 6.2: given the source and
the cluster redshift, we determined all the critical lines using our deflection maps (central panel
in Fig. 6.2); galaxy lenses are chosen by selecting critical lines associated to galaxy members;
the galaxy position on the source plane (β) is randomly extracted within a buffer surrounding
the corresponding caustic (whose width is set to 0.5re, left panel in Fig. 6.2). The brightness
is computed assuming a Sérsic profile (Sérsic 1963, 1968), Is(β) (see Sec. 2.1.3), and, since
the surface brightness is conserved (i.e. I(θ⃗) = Is(β⃗)), the observed and the intrinsic surface
brightness can be related using the lens equation (Eq. 2.26). So, the source image on the lens
plane is reconstructed through ray-tracing: the ray positions θ⃗i j on the lens plane are defined
with a squared grid and the surface brightness Is(β⃗i j) is assigned to the element centred in θ⃗i j,
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Figure 6.2: Example of GGSL simulation. Left panel: source plane at z = 2.5 where the caustic (in red) is
plotted, together with the buffer (black dotted line) delimiting the injection region and the injected source
(F814 = 26.3 mag, Sérsic index n = 1.5 and effective radius re f f = 0.14′′); the cutout is ∼ 4′′ across.
Central panel: cluster lens plane, i.e. the cluster M1206 (z = 0.439) with all the critical lines (in white),
among them, the selected critical line emphasised in the upper left ∼ 1′′0 cutout (coloured in red); the
green spot indicates the position of the caustic on the lens plane; the cutout is ∼ 2′ across. Right panel:
simulated GGSL event results into an arc-shaped object partially surrounding the galaxy member; the
critical line is overlapped to the image (red dotted line); the cutout is ∼ 10′′ across.

Parameter Symbol Extraction description
Position (source plane) ys Extracted within a buffer around the caustic (width 0.5re)
Source magnitude mF814 Sampled from CDF, P(i+), COSMOS + HST fields
Source redshift zs Sampled from CDF, P(z|∆i+), COSMOS

Effective Radius re
re = 2.54 kpc, z ≤ 1
re = B(1 + z)β, z > 1 (Shibuya et al. 2015)

Sérsic index n Extracted within (1.0, 2.0)
axis ratio q Extracted within (0.2, 1.0)
position angle φ Extracted within (0.0, π)

Table 6.2: List of Sérsic parameters and their adopted value range, for the injected sources.

by mapping this latter to the corresponding position on the source plane using the second order
approximation of the lens equation (Eq. 2.45). The resulting image is convolved with the point
spread function (PSF) and coadded to the observed cluster galaxy (right panel in Fig. 6.2); finally,
a squared cutout centered on the centroid of the critical curve is extracted. The PSFs used in
this work are measured by Tortorelli et al. (2018), as a combination (obtained with the software
developed by Paolillo et al. 2011) of PSFs extracted from an ensemble of selected point-like
sources in the field (HFF ACS bands of R2248 and M1149), with empirical PSFs made available
within the PSF library developed by Anderson & King (2006). In this way, the lens galaxy is
automatically selected by choosing the critical line.

Another example is displayed in Fig. 6.3, where the same source has been injected in the
centroid of caustics at different redshifts, showing the typical reddening and thickening with the
increasing of depth.

As already stated, we assumed that the injected source is a galaxy whose surface brightness
is described by a Sérsic profile (see Sec. 2.1.3 and Eqs. 2.1, 2.6- 2.8), parametrised through an
attribute tuple composed by: Sérsic index (n), effective radius (re), axis ratio (q), position angle
(φ), which are added to the source redshift (zs), its position on the source plane (ys = (ys1 , ys2))
and the spectral flux density (Fν) which is converted into instrumental count rate (Ne): for HST
ACS system, the conversion between flux density and count rate is computed through (Ryon
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Figure 6.3: Example of a simulated Einstein Ring, obtained by injecting the same source in the centroid
of caustics at different redshift. The source brightness has been computed assuming a Sérsic profile
(F814 = 26.0 mag, Sérsic index n = 1.0, reff = 0.1′′).

2021):

magAB = −2.5 × log Fν − 48.60
magAB = −2.5 × log Ne + ZP

ZP = −2.5 × log (PHOTFLAM) − 5 × log (PHOTPLAM) − 2.4079

where magAB is magnitude in the AB system in a certain passband in any of the ACS system, ZP
is the instrumental zeropoint which is calculated with the header keywords: PHOTFLAM (the
inverse sensitivity) and PHOTPLAM (pivot wavelenght). Thus the conversion is given by:

log Ne = (ZP + 48.6)/2.5 × log Fν (6.1)

In order to estimate the flux density we combine the BPZ (Bayesian photo-z) public code1

described in Benítez (2000), which includes various Spectral Energy Distributions (SEDs) and
filter transmission curves of different instruments, with the Barak package2 used to handle both
SEDs and passband filters, to extract spectral flux density given the passband together with the
galaxy SED, redshift and magnitude. All the available SEDs are shown in Fig. B.1. The SED
used in this work is a starburst template from Kinney et al. (1996) (plotted in bottom central
panel of Fig. B.1 with a red line). Thus, given the source magnitude in the F814 band and its
redshift, the SED is redshifted and normalised by matching the flux equivalent to the given
magnitude in the given passband; finally, the magnitude is converted into a flux density. We find

1https://www.stsci.edu/~dcoe/BPZ/
2https://nhmc.github.io/Barak/
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that with this process we could generated realistic GGSL examples, however, we are planning to
inject galaxies described with different SEDs and to include extinction correction.

In Tab. 6.2 we list the parameter set which allows to generate the source: the axis ratio
and the position angle values are randomly extracted from a uniform distribution constrained
between [0.2, 1.0] and [0, π], respectively. The Sérsic index is also extracted from a uniform
distribution between [1.0, 2.0], imposed to approximate late-type galaxy profiles. In order to
reproduce the observed universe, we avoid a uniform sampling of the other required parameters.
Rather, concerning the source magnitude and redshift, we exploit the COSMOS 2015 catalogue
(Scoville et al. 2007; Laigle et al. 2016), completed with HST fields observations, to estimate the
redshift probability density function (PDF) within a magnitude range, i.e. p(z |∆m), from whose
Cumulative Distribution Functions (CDFs) we extract a magnitude and a redshift that will be
assigned to the injected galaxy. The COSMOS catalogue contains PSF-matched photometry
and photometric redshifts for ∼ 8 × 105 objects covering an area of ∼ 2deg2. As shown in
Fig. 6.4, we estimate the number counts (i.e. the number of galaxies per square degree per
magnitude bin) and compare with the number counts taken from Capak et al. (2007), obtained
by combining observation in the F814 band of Hubble Deep Field North and South (Williams
et al. 1996; Metcalfe et al. 2001). We interpolate these counts down to i+ = 29, and, in order
to complete the number counts beyond the COSMOS depth limit, we compute the difference
between COSMOS and Capak et al. (2007) number counts. We selecte 6 magnitude ranges
(with i+ limits = {22, 24, 25, 26, 27, 28, 29}mag), in each of which we have fitted a redshift PDF,
p(z |∆i+), by approximating it with a simple function of the form (see, e.g., Lombardi & Bertin
1999; Lombardi et al. 2005):

p(z |∆i+) =
{︄

Az2e−z/z0 for i+ ∈ [22, 24) (6.2)
Az2e(−z/z0)1/2

otherwise (6.3)

The PDFs fitted in each magnitude bin are shown in the right panels of Fig. 6.4. In order to
extract a relation between the fraction of sources and their magnitude, we estimate the CDF
for number counts, P(i+), and redshift, P(z|∆i+). So, given the global number of galaxies to
inject, we use the CDF P(i+) to extract a magnitude, î+, assigned to each galaxy, and, for each
considered bin, we exploit the cumulative distribution, P(z | î+ ∈ ∆i+), to extrapolate a redshift.

Finally, regarding the source effective radius, we exploit the relation describing the redshift
evolution of galaxy physical sizes studied by Shibuya et al. (2015) approximated with a function
of the form: re = B(1 + z)β (fitted by combining galaxy radii estimated in the UV and optical
bands). However, after comparing this relation with the effective radii measured by Tortorelli
et al. (2018), we found a significant discrepancy for low-z galaxies. Therefore, to constrain
galaxy sizes at lower redshift, we adopt this relation only for z > 1, while for z ≤ 1 we opt for a
constant function whose value is set to the effective radius evaluated in z = 1:

Re(z) [kpc] =

⎧⎪⎪⎨⎪⎪⎩ 2βB = 2.54 for z ≤ 1
B(1 + z)β for z > 1

(6.4)

Given such relation, by assuming a deviation σ = 0.25kpc (obtained by Shibuya et al. 2015
analysis) for the whole redshift range, we extract the re corresponding to a given z within
(−1.5σ,σ) (bottom right panel in Fig. 6.5), we opted for these thresholds by analysing the
resulting Re(z) limits: since we are also interested in finding background galaxies with size
Re ∼ 0.5 kpc (close to the PSF size, for z > 4, as shown in the bottom right panel of Fig. 6.5), we
set Re in the range (−1.5σ,σ).

The simulation process is carried out through the PyLensLib (Meneghetti 2021) and can be
summarised as follow:
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Figure 6.4: Left panel: number counts estimated from COSMOS catalogue (grey bars), compared with
Capak et al. (2007) (black line), together with the 5σ HFF and CLASH F814 depth limit (cyan and
mint-green vertical lines) with the counts added to complete the distribution (light magenta area), the 6
magnitude ranges within the redshift PDFs have been estimated (coloured hatched bars), showed in the
second and third column panels.

1. Inputs: the deflection angle map, the lens redshift (i.e. the cluster central redshift, zcluster)
and the number of objects to simulate;

2. the mF814 magnitudes are extracted from the magnitude CDF, P(i+), obtained using the
COSMOS catalogue completed with HST fields observations;

3. for each magnitude bin, the source redshift (zs) is derived from the corresponding CDF,
P(z |∆i+), approximated with Eq. 6.2 or 6.3, imposing a minimum value for zs equals to
zcluster + 0.43;

4. given the source redshift, the effective radius is extracted within (−1.5σ,σ) from the re(zs),
computed according to Eq. 6.4;

5. the axis ratio, the position angle and the Sérsic index are extracted from uniform distribu-
tions constrained between [0.2, 1.0], [0, π] and [1.0, 2.0], respectively;

6. the starburst SED is redshifted at zs and normalised using the selected mF814 magnitude;
this SED is used to extract the flux density corresponding to the involved bands, which in
turn are converted into count rates;

7. given the source and lens redshift, together with the deflection angle maps, the critical
lines are computed from convergence and shear (Eqs. 2.34, 2.35, 2.36) by imposing that
magnification goes to infinity (Eq. 2.43);

8. the critical lines with θE ≤ 0.2′′ or θE > 5′′ are excluded (to avoid the inclusion of the main,
largest, critical line, and the very small-scaled galaxies); then a probability is assigned to
each critical line as a function of its θE (i.e. larger critics have more chance to be selected);

3Following the same approach carried out by Meneghetti et al. (2020), we measured the lensing cross-section
for the involved galaxy clusters, finding that this goes to zero when zs gets close to zcluster: it is negligible for
zs ≲ zcluster + 0.1, while at zs = zcluster + 0.4 it has more than doubled its first non-null value.
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9. once the critical line has been identified (which is associated to the lens), the corresponding
caustic is computed with the second order approximation lens equation (Eq. 2.45) and the
galaxy position in source plane (β⃗) is extracted within a buffer surrounding the caustic
(whose width is 0.5re);

10. the surface brightness is computed by assuming a Sérsic profile (Eqs. 2.1, 2.6- 2.8), in
each β⃗i j and assigned to the corresponding element θ⃗i j (mapped with Eq. 2.45);

11. the resulting image is convolved with a PSF and summed to the HST F814 image;

12. finally, the image in the other bands is simulated by rescaling the count rates:

XF = XF814 · (NF/NF814) for F ∈ {F606, F435} (6.5)

where F labels the other involved ACS bands (F606 and F435), NF is the count rate in a
certain bandpass, XF814 is the non-convoluted image in the F814 filter and XF is the output
image in the F band, which is finally convolved with the corresponding PSF;

13. a squared cutout centred on critical line centroid is extracted for each simulated galaxy.

Fig. 6.5 layouts the features for the ∼ 3000 injected galaxies: the top panels show the fraction
of number counts (split into the 6 involved bins) and the whole normalised redshift distribution,
while the normalised redshift distribution for each magnitude bin is shown in the second and third
row panels; the bottom right panel displays the re evolution with zs, overlapped to the Eq. 6.4
(together with the zs and re distribution); finally, to validate our simulation, we plot the relation
θE(F160) in the bottom right panel (together with F160 and θE distribution): Einstein radii are
computed by measuring the area of the selected critics and the corresponding cluster member
F160 magnitude is associated with these radii. It can be strongly compared with the scaling
relation for the cluster member velocity dispersion, σCLM (see Eq. 2.49), once the Einstein
radius has been written as a function of the cluster member F160 magnitude, mCLM

i = mF160, by
assuming a SIS profile (see Eq. 2.9 described in Sec. 2.1.4):

θE,i = 4π
(︄
σref

v

c

)︄2(︄DLS

DS

)︄
100.8α(mref

F160−mCLM
i ) (6.6)

where mref
F160 is the F160 reference magnitude, chosen to be that of the BCG, σref

v is a free
parameter of the lens model; α is the slope in the scaling relation (Eq. 2.49), its value has been
fitted when velocity dispersion measurements were available (i.e. for the cluster models provided
by Bergamini et al. 2019 and Bergamini et al. 2021b), taken from the literature in the other
cases. The modest discrepancy between the scaling relations (plotted in the bottom left panel
of Fig. 6.5) is due to the multiple sampling of the same cluster member, which results to be
associated with several critical lines, obtained by varying the redshift of the injected galaxy.

In order to complete the Knowledge Base, it is necessary to select an adequate number of
non-GGSLs (i.e. the negative class for the classification problem). To perform this selection,
by exploiting the spectroscopic information obtained by combining CLASH-VLT VIMOS
programme with MUSE archival observations (as done for the cluster member identification, see
Section 5.2), we extract squared 10′′ across cutouts centred on the cluster member positions (with
rest-frame velocity separation |v| ≤ 5000 km s−1) belonging to 16 clusters, listed in Tab. 6.3. Since
some of these cutouts could be contaminated by strong lensing events, this member ensemble has
been submitted for a visual inspection to our science team, through the Google Forms Service4

4https://developers.google.com/apps-script/reference/forms

92

https://developers.google.com/apps-script/reference/forms


CHAPTER 6. STRONG LENSES IDENTIFICATION

20 22 24 26 28 30
i+ or F814

10−4

10−3

10−2

10−1

n
/N
/0
.5
m
a
g
/d
eg

2
Injected sources (N = 2994)

Capak et al. 2007 ApJS 172(1):99

0 1 2 3 4 5 6 7
z

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

p(
z

)

COSMOS p(z)

Injected sources (N = 2994)

0 1 2 3 4 5 6 7
0.00

0.05

0.10

0.15

p(
z)

COSMOS p(z)
F814 ∈ [22, 24)
N = 88

0 1 2 3 4 5 6 7
0.00

0.02

0.04

0.06

0.08

0.10 COSMOS p(z)
F814 ∈ [24, 25)
N = 156

0 1 2 3 4 5 6 7
0.00

0.02

0.04

0.06

0.08 COSMOS p(z)
F814 ∈ [25, 26)
N = 304

0 1 2 3 4 5 6 7
z

0.00

0.02

0.04

0.06

0.08

p(
z

)

COSMOS p(z)
F814 ∈ [26, 27)
N = 488

0 1 2 3 4 5 6 7
z

0.00

0.02

0.04

0.06

COSMOS p(z)
F814 ∈ [27, 28)
N = 810

0 1 2 3 4 5 6 7
z

0.00

0.02

0.04

0.06 COSMOS p(z)
F814 ∈ [28, 29]
N = 1148

0

200

400

N
(F

16
0)

0

100

200

300

N
(z

)

16 18 20 22 24
F160

100

θ E
[a

rc
se

c]

max θE = 5.0′′

min θE = 0.2′′

This work

Scaling relation:
Bergamini +2019,
Bergamini +2021,
Caminha +2019

0 200 400
N(θE)

2 4 6
z

100

R
e

[k
p

c]

Re(z ≤ 1) = 2.54 kpc

Re(z > 1) = B(1 + z)β

limits +1σ
−1.5σ, σ = 0.25kpc

re = 70mas

0 250 500
N(Re)

Figure 6.5: GGSL set layout. The number counts as a function of magnitude, compared with Capak et al.
(2007), is shown in the upper left panel. The extension (dashed line) at faint magnitudes reproduces HST
deep fields’ counts. The normalised redshift distribution for the whole sample is plotted in the upper right
panel (together with the PDF fitted from COSMOS photometric redshift), while panels in the second and
third rows show the normalised redshift distribution for each involved magnitude interval (together with
the PDFs fitted from COSMOS photometric redshift). The missing of low-z galaxies in these plots is due
to the adopted selection on the source redshift, i.e. zs > zcluster + 0.4. The resulting scaling relation, i.e. θE

vs. F160 (in orange), compared with Bergamini et al. (2019, 2021b) and Caminha et al. (2019) relation
(in red), is shown in the bottom left panel, while the bottom right panel represents the adopted relation for
the redshift evolution of Re (constant for z ≤ 1, taken from Shibuya et al. 2015 for z > 1), together with
the upper and lower limits within which Re is extracted (light red area) and the 0.070′′ threshold, under
the which the source size is indistinguishable from the PSF, after the convolution.
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Figure 6.6: Examples of RGB cutouts of GGSLs and non-GGSL, by combining F435, F606, F814
bands. GGSL cutouts are sorted in order of increasing θE (on columns) and F814 (on rows). To emphasise
fainter sources, images have been stretched by clipping values within ±3σ and then normalised. Cutouts
are ∼ 9′′ across; red and green squares enclose an area with a side of ∼ 4′′ and ∼ 8′′, respectively. zs, θE

value and F814 magnitude are shown at the bottom of each GGSL cutout.
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Cluster zcluster N Cluster zcluster N
Abell 383 A383 0.188 70 Abell 370 A370 0.375 172
Abell 209 A209 0.209 75 MACS J0416-2403 M0416 0.397 120
RX J2129+0005 R2129 0.234 51 MACS J1206-0847 M1206 0.439 147
Abell 2744 A2744 0.308 126 MACS J0329-0211 M0329 0.450 66
MS 2137-2353 MS2137 0.316 52 RX J1347-1145 R1347 0.451 44
RX J2248-4431(b) R2248 0.346 178 MACS J1311-0310 M1311 0.494 53
MACS J1931-2635 M1931 0.352 28 MACS J1149+2223 M1149 0.542 130
MACS 1115+0129 M1115 0.352 96 MACS J2129-0741 M2129 0.587 45

Table 6.3: Description of the cluster sample involved in the non-GGSL selection. The name of the clusters
and their redshift are reported in the first 3 columns. The fourth column shows the number of non-GGSLs
identified through visual inspection.
(a) The cluster RX J2248.7−4431 is also known as Abell S1063.

developed using the Google Apps Script platform5. In this way, 7 expert astronomers were
called to identify strong lensing events within the presented cutouts. To help the identification,
image was separately shown in three bands (F435, F606, F814) and by combining these filters
into an RGB cutout; moreover the member F814 magnitude was provided and any spectroscopic
source (with zs ≥ zcluster + 0.1) within the cutout has been circled. The answers have been then
collected, by assigning to each galaxy a score of +1, +0.5 or −1, when an astronomer identifies
a reliable GGSL, a less likely GGSL or a non-GGSL, respectively. In this way, we obtain a
dataset of non-GGSLs as pure as possible, by removing from the KB even suspicious GGSLs.
Furthermore, we also exclude cutouts which are contaminated (e.g. by a star or in the nearby of
a brighter galaxies) or corrupted (due to cuts of the FoV or overlapping between different bands).
All these scores are finally averaged so that at end of this process, we visually inspected ∼ 2000
galaxies: ∼ 1500 selected as non-GGSL, while ∼ 280 cutouts were excluded and ∼ 320 were
judged as candidate GGSLs (including both reliable and doubtful GGSLs).

As a result, the Knowledge Base is composed by ∼ 3000 GGSLs and ∼ 1500 non-GGSLs.
This difference between the amount of images in each class makes the problem unbalanced.
Actually, this unbalancing is intentional (indeed we simulated two times the number of non-
GGSLs), since we wanted to ensure a diversity among the simulated events, in order to cover
as wide a parameter space as possible. Thus, the pre-processing phase has been performed
differently for the two classes, in order to compensate their different sample sizes:

- the valid set is obtained by extracting the 10% of GGSL and the 20% of non-GGSL,
resulting into ∼ 300 GGSLs and non-GGSLs;

- k-fold splitting (as always with k = 10) applied for each of these two sets (after the valid
sample exclusion), i.e. the training sets are composed by ∼ 2500 GGSLs and ∼ 1100
non-GGSLs;

- the training folds are independently augmented involving the 10% of GGSLs and the 50%
of non-GGSLs, the resulting augmentation factors are, 1.5 and 3.5, respectively. Thus, the
both classes are populated with ∼ 3800 training examples.

We build two datasets by extracting cutouts with side of 128 pixels (∼ 4′′) and 256 pixels
(∼ 8′′). Hereafter, we refer to these two datasets as EXP-A and EXP-B, respectively. A sample
of simulated GGSLs and non-GGSLs is shown in Fig. 6.6, where limits of both ∼ 4′′ and ∼ 8′′

5https://developers.google.com/apps-script/overview
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cutouts are marked, respectively, as red and green squares; moreover GGSL cutouts are sorted in
order of increasing the galaxy-lens θE (on columns) and the source intrinsic magnitude F814
(on rows). Besides the typical arc and ring like features, several GGSL images do not reveal
any strong lensing event (i.e. the appear as non-GGSL), this mainly happens when: (i) the
injected sources are faint, so the lens galaxy masks the GGSL signal (38% of sources have
F814 > 28 mag), (ii) for small-scale lenses with limited θE , so the source is hidden by lens galaxy
halo (35% of lenses have θE < 0.5′′), (iii) a combination of the previous two cases (13% of
examples have both F814 > 28 mag and θE < 0.5′′). Although these cutouts represent the most
challenging cases for the classifier, they act as adversarial examples (see Sec. 3.6.3) preventing
network overfitting and allowing the network to gain a high degree of generalisation, indeed, we
also performed some experiments by removing faint sources and small-scale lenses, even though
networks achieved nearly perfect results, they were not able to identify strong lensing events
when tested on real data, probing an insufficient generalisation capabilities, i.e. the networks
overfitted. Finally, it should be noted that, since critical lines are formed around galaxy members,
the same cutout could represent both a GGSL (with the addition of an injected source) or a
non-GGSL (without the injection).

6.3 Experiments
This section is dedicated to the experiment description and the result analysis. As already stated
in Sec. 3.7, we test classification capabilities of different architectures, whose comparison is
shown in Tab. B.1; from which is clear that, among the involved networks, two of them (the
VGG and SC-VGG) show a stable behaviour for both GGSL and non-GGSL (abbreviated as
NGGSL in tables and figures, to avoid the weighted of the text), for both the cutout configurations
(with size ∼ 4′′ and ∼ 8′′). Moreover, networks behaved differently when tested on real images,
clearly suggesting that the VGG and SC-VGG gained a larger degree of generalisation than the
other architectures. As in the case of cluster member identification (see Chapter 5), we restrict
the following analysis to the results achieved by the application of these two networks (see
Section 3.7.1).

6.3.1 CNN performance comparison
A summary of performance is shown in Tab. B.1 and graphically in Fig. 6.7. Unless otherwise
specified, performances are computed by assuming a probability threshold of 0.50. In general
terms, CNNs correctly classified at least 80% of sources, with accuracy peaks of ∼ 90%. By
exploring these results, it is evident the performance dropping between EXP-A and EXP-B (which
is clear even for the other implemented architectures, Tab. B.1). All models seem to be affected
by the thumbnail sizes: when trained with 8′′ cutouts, networks show an average efficiency
around 80%, whereas they achieve accuracy > 87% with smaller cutouts, with differences ranges
between 8% to 10%; suggesting that CNNs lose their identification capabilities with increasing
of the physical size of the image. This suggests that larger images could include neighbours
which contaminate the cutouts and affect network performances, whereas wide-separation arcs
or strongly asymmetric lensing features could be (partially) lost with smaller cutouts. Such
dependence on the Einstein Radius (θE) and other parameters will be discussed in further details
below.

Respect to the GGSL identification, all CNNs appear more pure than complete (even by
including other architectures, Tab. B.1), with purity-completeness differences ranging between
1.4% up to 11.3%, particularly enhanced for the EXP-B configurations. Concerning the negative
class, i.e. the non-GGSLs, networks reveal the opposite behaviour with purity-completeness
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EXP-A (∼ 4′′ cutouts) EXP-B (∼ 8′′ cutouts)
Class % VGG VGG* SC-VGG SC-VGG* VGG VGG* SC-VGG SC-VGG*

AE 87.7 89.7 89.4 89.7 79.4 81.4 79.2 81.7
pur 93.4 90.4 93.1 91.5 89.6 89.2 90.2 88.0

GGSL compl 88.6 92.5 91.7 93.4 78.4 86.9 78.9 87.2
F1 91.0 91.5 92.4 92.5 84.0 88.1 84.5 87.6
pur 76.7 88.5 81.4 89.6 72.7 74.3 73.1 77.5

NGGSL compl 85.4 85.4 84.1 84.1 81.7 81.7 79.3 79.3
F1 81.1 86.9 82.8 86.8 77.2 78.0 75.7 78.4

Table 6.4: Performance comparison between the VGG architectures, related to the two cutout configura-
tions (EXP-A and EXP-B, described in Section 6.2) and expressed in terms of the statistical estimators
described in Section 3.6.6. Performances are also evaluated by removing faint sources and small-scaled
lenses (i.e. F814 > 28 mag and θE < 0.25′′), marked with an asterisk.
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Figure 6.7: Comparison between VGGs performance on EXP-A and EXP-B dataset configuration, in
terms of statistical estimators described in Section 3.6.6.Performances are also evaluated by removing
faint sources and small-scaled lenses (i.e. F814 > 28 mag and θE < 0.25′′), marked with an asterisk in the
legends.

differences fluctuating in (−9.0%,−2.7%). Such typical dichotomy turns out when, at least for a
fraction of examples, there is not clear distinction between classes, even when they are inspected
by experts. In this work, such boundary class encloses fainter sources and small-scaled lenses,
whose intersection represents 7% of the GGSL set. As already stated, these cutouts prevent
model overfitting by acting as adversarial examples (Sec. 3.6.3), but, in order to quantify their
effect on model performances, we also measure the statistical estimators by removing them
from the test set, these re-estimated performances are reported in Tab. 6.4 and Fig. 6.4, marked
with an asterisk. Clearly, non-GGSL completeness is not affected by this modification, while
non-GGSL purity increases up to ∼ 12% for the EXP-A configurations, ∼ 4% for the EXP-B
configurations, with an F1 score improving of 4% and 2%, respectively for EXP-A and EXP-B
configurations. Regarding the GGSL identification we find a more balanced trade-off between
purity and completeness: respect to a purity maximum decreasing of ∼ 3%, we measure a
maximum completeness increasing of 10%, with an average F1 improvement ranging between
0.1%, for the more stable model (i.e. the SC-VGG trained with EXP-A configuration), and 4.1%,
related to the volatile network (i.e. the VGG trained with EXP-B configuration). The unequal
impact of this test-example exclusion, respect to the cutout configurations, confirms the larger
performance fluctuation of the EXP-B experiments, regardless for the adopted model.

Due to this difference, we focus the analysis on the results achieved by the VGG and SC-VGG
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Figure 6.8: Comparison between VGG and SC-VGG models, by evaluating performance fluctuations
over the k = 10 folds. Top panels: ROC curves, where grey lines represent the results achieved on each
fold, blue line is the mean between these latter, red lines refer to the global stacked performance (the
AUC values are shown in legend). Bottom panels: box plots, where the boxes delimit the 25th and 75th
percentile, i.e. first and third quartile, Q1, Q3, with IQR = Q3 − Q1 is the so-called interquartile range,
and error bars standardly enclose (Q1 − 1.5 · IQR,Q3 + 1.5 · IQR) (corresponding to the 90.3% of data,
i.e. within ±2.698σ values). Black horizontal lines are the medians.

with the EXP-A configuration.
Fig. 6.8 and Tab. B.2 show a comparison between VGG and SC-VGG models in terms of

performance fluctuations. Indeed, due to the adpoted k-fold approach, performances were also
evaluated in each fold. From ROC curves (top panels in Fig. 6.8), models appear comparable,
even if SC-VGG achieves results slightly better (with an AUC increasing ∼ 1%). However,
their different classification capabilities are evident by exploring the fluctuation of the statistical
estimators (bottom panel in Fig. 6.8 and Tab. B.2). Both of them have similar GGSL purity,
in terms of median (∼ 93.3%), first and third quartile (Q1 ∼ 92.4%, Q3 ∼ 94.5%) and inter-
quartile range IQR = Q3 − Q1 ∼ 2.1%, with differences spanning in (−0.6%, 0.4%). Larger
differences occur for the other GGSL metrics: SC-VGG performances show an overall significant
improvement in terms of completeness (median: +2.8%, first and third quartile: +4.5%, +2.1%,
“minimum” and “maximum” variation: +6.3%, +1.6%), which in turn is reflected into a F1 score
gain, ranging in (+0.8%,+3.8%). Concerning the non-GGSL metrics (only listed in Tab. B.2),
SC-VGG achieves lager purity values, while VGG shows better completeness, even if the average
purity increasing of SC-VGG is ∼ 4.7%, while the average gain in term of completeness obtained
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by the VGG is ∼ 1.0%. Looking at non-GGSL F1 scores, SC-VGG achieves the best results,
varying in (+0.8%,+2.2%), with an average improvement of 1.6%. In term of inter-quartile range,
even if both models seem to reproduce the same trend, characterised by GGSL metrics more
constrained than the ones related to non-GGSL, SC-VGG shows more reliable IQRs for almost
all the estimators, with relative increasing ranging in (7%, 62%) and an average of 31%. Thus,
based on this analysis, SC-VGG is the architecture characterised by the best trade-off between
purity and completeness for both GGSL and non-GGSL (92.4%, 82.8% vs. 91.0%, 81.1%),
most stable results evaluated on k = 10 folds (⟨IQR⟩S C−VGG = 2.1% vs ⟨IQR⟩VGG = 3.4%),
particularly accentuated for the GGSL completeness, with respect of which it shows a relative
improvement of 62%.

We also perform an experiment using a single band. We restricted this analysis only to the
EXP-A cutout configuration. The results are outlined in Tab. B.4, where we summarise the
comparison between the network trained and tested using one band (F435, F606 and F814
independently) with the predictions carried out by the VGG and SC-VGG models. Although
performances reproduce the VGG and SC-VGG trends (i.e. a high GGSL purity, around 91%,
and a low NGGSL purity, about 76%), the use of a single band does not provide any improvement:
we found a reduced accuracy (between 0.5% and 3.3%), a GGSL F1-score (0.2% − 6%) and
a NGGSL F1-score (1.8% − 5.2%). This leads to an average performance reduction of 1.8%,
1.3% and 3.5%, respectively for the average efficiency, GGSL and NGGSL F1-scores. Despite
this reduction, performances suggest that GGSL can be also classified using just a single band,
as already shown by Petrillo et al. (2017, 2019a); Li et al. (2021b), which exploited the optical
images from the Kilo-Degree Survey (de Jong et al. 2015).

Finally, since we have selected the non-GGSLs through a visual inspection (see Sec. 6.2, we
compare the predictions made by neural networks with the outcomes of this visual selection. As
pointed out, since our aim is to produce a non-GGSL catalogue as pure as possible, the resulting
set of GGSL candidates is strongly contaminated. Thus, these sets of candidates are more suited
to perform a comparison on the identification of non-GGSLs than of GGSLs. However, by
considering the ∼ 1800 visually inspected sources, we measure an high fraction of non-GGSL
predicted in common (∼ 95%), while the percentage of common GGSLs is just ∼ 35%. By
taking as candidate GGSLs only those sources with a CNN probability ≥ 0.75, we found that all
the 105 candidates are classified as GGSLs by both neural networks and astronomers.

6.3.2 False Negative and False Positive analysis
In this section we specifically analyse CNN predictions, by investigating the False Positive
and False Negative distributions, trying to understand the causes of such misclassifications,
by inspecting correlations with: (i) galaxy-lens magnitude and colour6 (respect to the False
Positives), (ii) redshift, intrinsic magnitude, source effective radius, size of the galaxy-lens, ratio
between the source and distance between the source and the caustic centroid normalised to the
caustic size (respect to the False Negatives). In this analysis we use the predictions of both VGG
and SC-VGG.

For easy reading, we specify the definition of True Positive (TP), True Negative (TN), False
Positive (FP) and False Negative (FN), already given in Sec 3.6.6, within the context of this work.
We assume the GGSL as the positive class, thus, the TPs are strong-lenses correctly classified,
FPs are non-GGSLs classified as GGSLs, FNs are GGSLs classified as non-GGSL, and, finally,
TNs are non-GGSLs correctly classified.

6Similarly to what as done for the cluster member identification work (Chap. 5), we used the normalised colour
to bring together galaxies at different redshift (see Eq. 5.2).
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Figure 6.9: Selection of False Positives common to both VGG and SC-VGG models (they represent
the 8% and 7% of the FP ensemble, respectively, referred to VGG and SC-VGG). The probability of
belonging to the GGSL class is shown in each thumbnail (referred to the SC-VGG model). Cutouts are
∼ 4′′ across.
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Figure 6.10: True Negative (TN) and False Positive (FP) analysis related to the VGG and SC-VGG
performances, as a function of the galaxy lens features: F814 magnitude (left panel), (F606 − F814)norm
normalised colour (right panel). In both panels, TN rates are plotted with purplish lines, while FP rates with
reddish lines, in both cases, solid for VGG, dotted for SC-VGG. The FP Ratio (FPR = FP/(T N+FP)) for
each involved features is plotted in the bottom of each panel (as purple line for VGG, red for SC-VGG).

Concerning the non-GGSL mistakenly classified as strong-lenses, a selection of False Posi-
tives common to both VGG and SC-VGG models is displayed in Fig. 6.9, while Fig. 6.10 shows
the TN and FP rate, together with the False Positive Ratio (FPR = FP/(T N + FP)) as a function
of the cluster member photometry: F814 magnitude (left panel) and the normalised colour (right
panel), also summarised in Tab. B.3. The number of False Positives follows both the non-GGSL
magnitudes and colours distribution for F814 > 19 and (F606− F814)norm > −0.5, characterised
by an approximately constant FPR with a median of ∼ 0.20 and ∼ 0.16, respectively for the F814
and colour dependence. There are two FP excesses, respectively, in the brighter and bluer part of
the parameter space. The FP increasing up to ∼ 7% (with FPR spikes around 0.9 and 0.5 for
(F606 − F814)norm ∼ −0.7, related to VGG and SC-VGG results) for (F606 − F814)norm < −0.5
is reasonable: (i) disc galaxies, with a red bulge surrounding by blueish spiral-like structures, are
confused as strong-lenses (see Fig. 6.9); (ii) blue galaxies are under-represented in the KB, since
we have sampled the core of clusters (where cluster lens models have been fitted), populated by
red members. VGG and SC-VGG dependence on colours appears strictly comparable within
1%. Models have similar trends also with regard to the F814 magnitude: an about constant FPR
ratio of ∼ 0.16 for F814 > 19.5, with a FP excess in the brightest region. This can be due to
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Figure 6.11: True Positive (TP) and False Negative (FP) analysis, related to the VGG and SC-VGG
performances, as a function of: source redshift (zsrc, upper left panel), lens dimension (θE , upper right
panel), source effective radius (re, central left panel), source intrinsic F814 magnitude (central right panel),
source. In all panels, TP rates are plotted with green lines, while FP rates with blueish lines, in both cases,
solid for SC-VGG, dotted for VGG. The FN Ratio (FNR = FN/(T P + FN)) for each involved features is
plotted in the bottom of each panel (as green line for VGG, blue for SC-VGG).

the embedded lensed features in the training set. Indeed, as already discussed, several lens-like
structures are hidden by galaxy halo, so, in presence of bright galaxies, the networks suggest
the existence of a lens event blended by the galaxy. FPRs are also shown in Fig. B.2 binned on
colour-magnitude diagrams, which show a decreasing FPR gradient in the faint-red direction.
FPRs related to VGG and SC-VGG are comparable for large parts of the parameter space: 84%
of this space are characterised by differences between ratios ranging ∈ [−0.25%, 0.25%].

Regarding the strong-lenses misclassified as non-GGSLs, Fig. 6.11 shows the True Positive
and False Positive rate, together with the False Negative Ratio (FNR = (FN/(T P + FN)) as a
function of: source redshift (upper left panel), galaxy-lens size (measured in term of θE, upper
right panel), source effective radius (re, bottom left panel), source intrinsic F814 magnitude
(bottom right panel), also summarised in Tab. B.3. The number of False Negatives decreases
with θE, characterised by FNR ratio which becomes ≲ 0.06 for θE ≥ 3′′ and zero for θE ≥ 4′′,
therefore, interestingly, also strongly asymmetric lensing features with large θE are correctly
classified, even if they are partially lost outside the cutout. On the other hand, FNs are associated
with small scaled galaxy-lens: a fraction of FN larger than 10% gathers at θE < 0.5′′. At the same
time, misclassifications increase with the source F814 magnitude showing a FN fraction ∼ 0.10
for F814 ≥ 27 mag. The VGG and SC-VGG FN ratios are similar (0.05) down to F814 = 27,
but they diverge in the faint end: SC-VGG shows a constant FNR of ∼ 0.10, while the VGG FNR
continues to increase up to 0.20 for F814 ≥ 28 mag. The combined dependence on galaxy-lens
Einstein radius and source F814 magnitude is shown in the top panels of Fig. B.3, where a FNR
increasing gradient clearly points toward the small θE and faint magnitude region for both VGG

101



CHAPTER 6. STRONG LENSES IDENTIFICATION

100

101

102

103

N

SC-VGG TP (2372)

SC-VGG FN (208)

VGG TP (2294)

VGG FN (286)

10−4 10−3 10−2 10−1 100

fluxsrc/fluxlens

0.0

0.1

0.2

0.3

F
N
R

SC-VGG FNR (208/2580) VGG FNR (286/2580)

100

101

102

103

N

SC-VGG TP (2372)

SC-VGG FN (208)

VGG TP (2294)

VGG FN (286)

10−3 10−2 10−1

Dsc

0.0

0.1

0.2

0.3

F
N
R

SC-VGG FNR (208/2580) VGG FNR (286/2580)

Figure 6.12: True Positive (TP) and False Negative (FP) analysis, related to the VGG and SC-VGG
performances, as a function of ratio between source and lens flux (left panel), and distance between the
source and caustic centroid normalised to the caustic size (Dsc, right panel). In all panels, TP rates are
plotted with green lines, FP rates with blue and cyan lines; solid and dotted lines refer to the SC-VGG and
VGG models (see text). Bottom panels show the FN Ratio (FNR = FN/(T P + FN)) for each parameter
(green line for VGG, blue for SC-VGG).

Figure 6.13: Selection of False Negative common to both VGG and SC-VGG models. The probability of
belonging to the GGSL class is shown in each thumbnail (referred to the SC-VGG model). Cutouts are
∼ 4′′ across.

and SC-VGG. Model performances differ significantly in this part of the parameter space, where
the VGG FN ratio grows up to 0.3 (twice the SC-VGG FNR).

Analogously, the VGG and SC-VGG False Negative dependencies on the source redshift
are comparable for z < 3 with ratios ∼ 0.10, representing the 70% of the whole FN set, but the
VGG FNR significantly diverges by increasing the redshift up to ∼ 0.21 for z ≥ 6, respect to the
SC-VGG whose FNR remains about constant, ∼ 0.07, for z ≥ 3. This VGG divergence with
z, solved by the SC-VGG, can be due to the drop out (i.e. the source emits in some bands, but
not in others): by increasing z, the source reddening causes the dropping out of the lens event
from the image at lower wavelengths toward the image at higher wavelengths. With the VGG,
convolutions at first layer combine images corresponding to several filters, mixing and fuzzing
the signals, instead, by using the single-channel approach, only filters which carry information
(useful to disentangle GGSL from non-GGSL) contribute to the classification, while dropped out
bands do not affect the membership. Finally, concerning the dependence on the source effective
radius, models have similar behavior for re ∈ (0.14′′, 0.27′′) with a FNR ∼ 0.10, they differ
significantly for re ≤ 0.14 where the VGG FNR ratio is ∼ 2.5 times larger than that of SC-VGG.
Here, we are observing the same dependence on zsrc parametrised through Eq. 6.4, which can
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be evinced from bottom panels in Fig. B.3: small effective radii, < 0.15′′, are associated with
sources at higher redshift, whose classification is affected by the drop out problem.

We also analyse (see Fig. 6.12) the False Negative dependence on the ratio between the
source and the flux ratio, together with the distance between the source and caustic centroid
normalised to the caustic size (Dsc, i.e. the distance on the source plane divided by the circular
radius of the caustic). We do not find any significant dependence on the flux ratio (left panel in
Fig. 6.12): the FNR is roughly constant with values around 10%, VGG and SC-VGG FNRs are
similar for flux ratios ≥ 0.01 (25% of the GGSL sample), with differences within 2% and a mean
of 0.01 ± 0.02%; while for flux ratios < 0.01 (75% of the GGSL set), the difference is slightly
more pronounced with a mean FNRVGG − FNRS C−VGG = 0.06 ± 0.01. On the other hand, there
is a slight increase of the FNR as a function of Dsc (right panel in Fig. 6.12): the SC-VGG FNR
moves from ∼ 5% for Dsc < 0.02, up to ∼ 9% for Dsc ≥ 0.04, similarly the VGG FNR grows
from ∼ 7% for Dsc < 0.02, up to ∼ 12% for Dsc ≥ 0.04.

Finally, a selection of False Negatives is shown in Fig. 6.13, split into two groups: (i) adver-
sarial examples on the first row, with source F814 ∈ (27.5, 29.0) mag and θE ∈ (0.10′′, 0.25′′),
and (ii) “clear” GGSLs on the second row, with visible arc-like features. All the adversarial FNs
have probabilities (to be a GGSL) equal to zero, while “clear” could be retrieved by reducing
the GGSL probability threshold: Fig. 6.14 shows purity and completeness as a function of the
probability threshold. This diagram can be used to select the desired purity or completeness level,
particularly, by setting the probability threshold corresponding to the intersection between purity
and completeness (i.e. Pr = 0.25), the True Positive Rate improves of 3.5%, by paying a price
of 1.8% in terms of purity. Clearly, this low probability value increases the number of sources
that have to be inspected, which could become a problem in the next future when the number of
galaxies will be more than 2 orders of magnitudes larger than the one characterising this work.

The analysis carried out in this section can be compared with other studies even if based
on different datasets. For example, we can compare our results with Petrillo et al. (2019a) and
Gentile et al. (2022), who trained CNNs on a simulated dataset built with an hybrid approach:
arc and ring like features are superimposed on real galaxy images, selected from KiDS (de Jong
et al. 2015) and VOICE (Vaccari et al. 2016) surveys, respectively. Specifically, we can compare
the False Negative distribution in terms of θE (top right panel in Fig. 6.11) and the ratio between
the source and the lens fluxes (left panel in Fig. 6.12) with the same distributions obtained by
these authors (see Fig. 3 in Petrillo et al. and Fig. 6 in Gentile et al.). With respect to these works,
we find similar FNR ranges, especially when compared with Petrillo et al. (2019a), whose FNR
as a function θE varies in the 4% − 15% range, while in Gentile et al. FNR values are larger
(10% − 35%). On the other hand, we do not find a similar dependence on the flux ratio, as we
measure a FNR roughly constant (∼ 10%), in contrast to the clear decreasing trend found by
Gentile et al. (FNR within 60% and 5%) and Petrillo et al. (FNR within 35% and 1%).

6.4 Searching for strong-lenses in galaxy clusters
The experiments described in the previous sections are mostly focused on the classification
efficiency and limits of the image-based CNN approach with simulated lenses and evaluating its
dependence from observational parameters, such as magnitude and colour, or lens features, such
as Einstein radius. In this section, similar to what has been done for the cluster member selection
(Sec. 5.5), we are mainly interested in evaluating the degree of generalisation achieved by the
trained CNNs in classifying real sources as GGSLs. As introduced in Sec. 5.5, this step process
is commonly referred to as run in the ML context. In order to maximise the parameter space
sampling, we did not use the k-fold approach, instead we exploited the whole source ensemble
to train the network, by just excluding the validation set used for the regularisation processes
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Figure 6.14: Purity (red) and completeness (orange) as a function of GGSL probability threshold. Vertical
lines correspond to the purity-completeness intersection at Pr = 0.25 (as a solid line) and to the classical
threshold at Pr = 0.50 (as a dotted line). Purity and completeness values at Pr = 0.25 and at Pr = 0.5 are
reported in the panel.

(see Sec. 5.2), i.e. we did not apply any training-testing split. Firstly, we perform a run on 33
already known GGSLs in galaxy clusters to explore the CNN capabilities to find, at least, the
known strong-lenses; then we process the networks on a large ensemble of galaxies searching
for GGSLs around members in CLASH and HFF galaxy clusters; finally we extended this run
phase to the RELICS clusters. We visually inspect the candidate GGSLs with respect to the
classification probability.

6.4.1 Performance with real strong-lenses
The confirmed GGSLs used in this test are listed in Tab. 6.5 and shown in Fig. 6.15 and Figs. B.4 -
B.7. They are extracted from different works (Desprez et al. 2018; Vanzella et al. 2017b; Diego
et al. 2015; Smith et al. 2005; Caminha et al. 2016; Bergamini et al. 2021b, 2019), except
for four strong-lensing events whose cutouts are centered on cluster galaxies around the giant
arc in M1206 (a.k.a. “snake-arc”), to test CNN generalisation capabilities presenting types of
completely different forms (see last four rows in Fig. B.7). These table and figures also show
the VGG and SC-VGG predictions, where classification results are organised according to two
membership probability thresholds: Pr > 0.5, Pr ∈ [0.2, 0.5] and Pr < 0.2, respectively called
as True Positive (TP), quasi True Positive (qTP) and False Negative (FN) in Tab. 6.5. On 33
processed GGSLs, 24 of them are common classified by both models, of which 22 are correctly
classified. By considering as correct also prediction with Pr ∈ [0.2, 0.5], VGG True Positive
are 28, i.e. 85% (26 by excluding qTPs, i.e. 79%), whereas SC-VGG scores 27 TPs, i.e. 82%
(25 by excluding qTPs, i.e. 76%). All typical lenses, with arc or ring like features have been
correctly classified (see, for example, the Einstein rings, fourth row in Fig. B.7 or the third and
forth row in Fig. B.6), even the strong-lensing events related to the snake-arc in M1206 (see last
four rows in Fig. B.7) are predicted as GGSLs by both models with high probabilities (0.7 − 1.0).
Concerning the common FNs, both models failed the identification of the GGSL in A383 (named
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RA DEC Cluster Image ref VGG SC-VGG Reference
22.9577568 -13.6032558 A209 A1 TP TP Desprez et al. (2018)
22.9648793 -13.6363138 A209 A2 TP TP Desprez et al. (2018)
42.0113589 -3.5480288 A383 B1 FN FN Desprez et al. (2018)
52.4201304 -2.2216321 M0329 C1 TP TP Desprez et al. (2018)
64.0340808 -24.0667448 M0416 E1 FN FN Vanzella et al. (2017b)
64.0284705 -24.085668 M0416 E2 qTP FN Desprez et al. (2018)
64.0170899 -24.0895541 M0416 E3 TP TP Diego et al. (2015)
64.04275 -24.06316 M0416 E4 TP TP Bergamini et al. (2021b)
64.03262 -24.06838 M0416 E5 TP TP Bergamini et al. (2021b)
64.03250 -24.07849 M0416 E6 TP TP Bergamini et al. (2021b)
64.02442 -24.08106 M0416 E7 TP FN Bergamini et al. (2021b)

168.956259 1.4974098 M1115 F1 TP TP Desprez et al. (2018)
177.403888 22.426630 M1149 D1 TP FN Smith et al. (2005)
177.393135 22.411336 M1149 D2 TP qTP Smith et al. (2005)
206.896032 -11.7536032 R1347 H1 FN TP Desprez et al. (2018)
206.87105 -11.76684 R1347 H2 TP TP Caminha et al. (2019)
22.4287798 0.1080707 R2129 I1 TP TP Desprez et al. (2018)
342.1557424 -44.5459123 R2248 G1 qTP TP Desprez et al. (2018)
342.1633643 -44.5297236 R2248 G2 FN qTP Desprez et al. (2018)
342.18205 -44.54035 R2248 G3 TP TP Caminha et al. (2016)
342.18867 -44.54015 R2248 G4 TP TP Caminha et al. (2016)
342.16691 -44.53483 R2248 G5 TP TP Caminha et al. (2016)
342.17554 -44.53558 R2248 G6 FN TP Caminha et al. (2016)
67.4020771 -2.8713932 M0429 J1 TP TP Desprez et al. (2018)
67.3892478 -2.8741192 M0429 J2 TP FN Desprez et al. (2018)
116.2121685 39.4598681 M0744 K1 TP TP Desprez et al. (2018)
181.56667 -08.80478 M1206 L1 TP TP Bergamini et al. (2019)
181.56532 -08.80608 M1206 L2 TP TP Bergamini et al. (2019)
181.55309 -08.79486 M1206 L3 TP TP Bergamini et al. (2019)
181.54490 -08.80259 M1206 L4 TP TP
181.54494 -08.80180 M1206 L5 TP TP
181.54482 -08.80064 M1206 L6 TP TP
181.54460 -08.79928 M1206 L7 TP TP

NTP 26 25
TOTAL NFN 5 6

NqTP 2 2

Table 6.5: Catalogue of known GGSLs processed by both VGG (fifth column) and SC-VGG (six column)
networks, together with a reference to the images shown in Fig. 6.15 and Figs. B.4 - B.7. GGSL
references are quoted in last column, except for the last four objects which are parts of the giant arc
in M1206 (see specifically Fig. B.7). According to the membership probability computed by the CNN
models, classification results are organised as: True positive (TP, Pr > 0.5), quasi True Positive (qTP,
Pr ∈ [0.2, 0.5]), False Negative (FN, Pr < 0.2).
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Figure 6.15: Ensemble of GGSLs processed by both VGG (fourth column) and SC-VGG (fifth column)
models, listed in Tab. 6.5. Cutouts are ∼ 8′′ across. The inner red square (∼ 4′′ across) represents the
actual image processed by the network. RGB cutouts on the last two columns are obtained by combining
F435, F606, F814 bands (shown on the first three column), they are surrounding by a box coloured in
green, orange or grey according to their classification probability: Pr > 0.5, Pr ∈ [0.2, 0.5] or Pr < 0.2,
respectively. Here, images are extracted from 4 clusters: A209, A383, M0329 and M1149; the rest of the
processed GGSLs are shown in Figs. B.4 - B.7 in appendix B.
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VGG SC-VGG Common
Cluster zcluster E[N] N Pr≥ 0.2 Pr> 0.5 Pr≥ 0.2 Pr> 0.5 Pr≥ 0.2 Pr> 0.5 Fig. ref
A383 0.189 77 6 5 12 7 4 4 B.8
A209 0.209 84 8 3 10 3 4 1 B.8
R2129 0.234 0.75 58 11 10 18 9 10 6 B.10
A2744 0.308 140 8 6 15 8 6 3 B.10
MS2137 0.316 54 8 4 13 9 5 1 B.10
R2248 0.346 0.96 206 18 11 27 11 13 6 6.16
M1931 0.352 1.03 37 9 7 10 7 7 5 B.9
M1115 0.352 119 13 12 16 6 11 4 B.9
A370 0.375 203 18 15 26 11 10 6 B.9
M0416 0.397 0.95 147 26 21 33 15 20 10 B.9
M1206 0.439 2.96 234 52 41 65 39 42 27 6.16
M0329 0.450 1.09 89 15 10 19 14 12 7 B.8
R1347 0.451 3.67 53 15 13 14 8 11 7 B.10
M1311 0.494 59 2 1 8 2 2 0 B.8
M1149 0.542 149 19 19 22 8 11 5 B.8
M2129 0.587 1.34 64 16 15 21 11 15 9 B.10

Table 6.6: Summary of the GGSL run process performed on 16 CLASH and HFF clusters. The expected
number of GGSLs is shown in Col. 3 (only for cluster whose lens model is available), estimated by
following Meneghetti et al. (2020). The number of processed cluster galaxies is listed in Col. 4. The
amounts of sources classified as GGSLs with probability ≥ 0.2 and > 0.5 identified by the VGG model are
listed in Col. 5 and Col. 6, identified by the SC-VGG model in Col. 7 and Col. 8, while their intersections
are shown on Col. 9 and Col. 10. Figure reference for each cluster is reported in the last column.

B1, third row in Fig. 6.15), classified by Desprez et al. (2018) through visual inspection, which
should be a faint Einstein cross, partially outside the cutout; and the E1 source in M0416 (first
row in Fig. B.4), named as ID.14 by Vanzella et al. (2017b), spectroscopically confirmed. This
latter misclassification could be imputed to the configuration of the lens composed by two cluster
galaxies, such configurations have not been expressly included in the training set, even if they
occurred by chance (< 0.01% of lenses are composed by two or more members). Other partially
misclassified sources are G2 and G6 images in R2248 (third and last rows in Fig. B.5), H1
image in R1347 (first row in Fig. B.6) and J2 image in M0429 (fifth row in Fig. B.4), whose
classification were affected by the unique morphology of these examples, which have not been
reproduced in the training set.

6.4.2 Searching for GGSLs in CLASH and HFF galaxy clusters
As second step, we perform the run on the 16 involved CLASH and HFF clusters, by extracting a
squared cutout with a side of ∼ 4′′ centred on the cluster member position, selected with a cluster
rest-frame velocity separation of ±5000 km s−1. The number of sources classified as GGSLs
by both the VGG and SC-VGG, together with their common predictions, are listed in Tab. 6.6,
where we have also reported the expected number of GGSLs in galaxy clusters (with available
lens model), computed by following the same approach as the one carried out by Meneghetti
et al. (2020). Based on the redshift distribution of sources extrapolated from COSMOS2015,
we estimate the lensing cross-section at each zs, σ(zs), and the number density of sources, n(zs).
Thus, we determine the number of expected GGSLs for cluster as N =

∫︁
σ(zs)n(zs)dzs; as

previously done, we exclude critical lines with θE ≤ 0.2′′ and θE > 5′′ from the computation of
the lensing cross-section.

The union between VGG and SC-VGG objects classified as GGSLs (with probability ≥ 0.2)
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Figure 6.16: Identified GGSLs by both the models, by searching them around cluster galaxies, related
to M1206 and R2248. Each cutout is surrounding by a coloured square according to the follow scheme
based on the GGSL probability:
(i) Pr(VGG), Pr(S C-VGG) > 0.5 −→green;
(ii) Pr(VGG), Pr(S C-VGG) ∈ [0.2, 0.5] −→orange;
(iii) Pr(VGG) ∈ [0.2, 0.5] ∧ Pr(S C-VGG) > 0.5 −→red;
(iv) Pr(S C-VGG) ∈ [0.2, 0.5] ∧ Pr(VGG) > 0.5 −→yellow;
(v) Pr(VGG) ∈ [0.2, 0.5] ∧ Pr(S C-VGG) < 0.2 −→pink;
(vi) Pr(S C-VGG) ∈ [0.2, 0.5] ∧ Pr(VGG) < 0.2 −→magenta;
(vii) Pr(VGG) > 0.5 ∧ Pr(S C-VGG) < 0.2 −→cyan;
(viii) Pr(S C-VGG) > 0.5 ∧ Pr(VGG) < 0.2 −→blue.
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is listed in Tabs. B.5 - B.7, and shown in Fig. 6.16 and Figs. B.8 - B.10, where, each cutout is
surrounding with a coloured square, according to the probability to be a GGSL measured by
both the networks; based on this colour scheme predictions have been split into:

- Pr(VGG) ∧ Pr(SC-VGG) > 0.5: both models predicts the same membership with higher
probability (green);

- Pr(VGG) ∧ Pr(SC-VGG) ∈ [0.2, 0.5]: for both the models the source has a certain (lower)
probability to be a GGSL (orange);

- Pr(VGG)∈ [0.2, 0.5] ∧ Pr(SC-VGG)> 0.5: the VGG predicts the membership with a
probability lower than that predicted by the SC-VGG, however greater than 0.2 (red);

- Pr(SC-VGG)∈ [0.2, 0.5] ∧ Pr(VGG)> 0.5: the SC-VGG predicts the membership with a
probability lower than that predicted by the VGG, however greater than 0.2 (yellow);

- Pr(VGG)∈ [0.2, 0.5] ∧ Pr(SC-VGG)< 0.2: there is a slight conflict between models
predictions, however both models predict the membership with probability less than 0.5
(pink);

- Pr(SC-VGG)∈ [0.2, 0.5] ∧ Pr(VGG)< 0.2: there is a slight conflict between models
predictions, however both models predict the membership with probability less than 0.5
(magenta).

- Pr(VGG)> 0.5 ∧ Pr(SC-VGG)< 0.2: there is a conflict between models predictions, the
object is classified as GGSL by the VGG and as non-GGSL by the SC-VGG (cyan);

- Pr(SC-VGG)> 0.5 ∧ Pr(VGG)< 0.2: there is a conflict between models predictions, the
object is classified as GGSL by the SC-VGG and as non-GGSL by the VGG (blue);

With this division, we can analyse all the networks predictions (i.e. the union), keeping them
separated and, thus, allowing to compare the models behaviour. Globally, models share 101
classifications with Pr> 0.5 (which represent more than a half of the whole prediction sets)
and 183 with Pr≥ 0.2 (equals to the 75% and 56% of the candidate GGSLs identified by VGG
and SC-VGG, respectively). The medians (referred to prediction with Pr> 0.5) are 11 and 17,
respectively for the VGG and SC-VGG, whereas it is 5.5 by considering only the common
candidate GGSLs. By exploring the intersection between the two candidate sets, both with
Pr> 0.5 (i.e. the green cutouts in Fig. 6.16 and Figs. B.8 - B.10), we find that ∼ 60% of these
cutouts are characterised by the typical strong-lensing morphology, presenting more or less
pronounced arc and ring like structures (some of them have been already processed as true
GGSL in Sec. 6.4.1). By visual inspecting this ensemble of GGSL candidates, we find that it
is contaminated by disc galaxies (∼ 4%) and by isolated elliptical galaxies, which recall the
adversarial examples (∼ 15%). By reducing the probability threshold and the level of agreement
between models, the degree of contaminators increases: by considering Pr(VGG) ∨ Pr(SC-VGG)
≥ 0.2 −{Pr(VGG) ∧ Pr(SC-VGG)>0.5} (i.e. the orange, red and yellow cutouts in Fig. 6.16
and Figs. B.8 - B.10), we find ∼ 5% of disc like galaxies and ∼ 30% of ellipticals, whereas
∼ 20% of cutouts show strong-lensing features. By examining predictions whose probabilities
are less than 0.5 for both models (i.e. pink and magenta cutouts in Fig. 6.16 and Figs. B.8 - B.10,
corresponding to [Pr(VGG) ∈ [0.2, 0.5] ∧ Pr(SC-VGG)< 0.2] ∨ [Pr(SC-VGG) ∈ [0.2, 0.5] ∧
Pr(VGG)< 0.2]) we measure similar percentages respect to ellipticals and late-types (∼ 28%
and ∼ 7%, respectively), while the likely GGSL fraction is significantly decreased (∼ 7%).
These fractions are strictly comparable with that estimated by considering the last two cases,
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Figure 6.17: Distribution of the number of GGSLs for cluster, identified by VGG (top panles), by
SC-VGG (middle panels) and by tacking their common predictions (bottom panels). All diagrams show
the distribution related to the GGSL candidates with Pr≥ 0.2 (in red) and with Pr> 0.5 (in blue). Median
of distributions is labelled in the legend.

when networks predictions are not in agreement ([Pr(VGG)> 0.5 ∧ Pr(SC-VGG)< 0.2] ∨
[Pr(SC-VGG)> 0.5 ∧ Pr(VGG)< 0.2], corresponding to blue and cyan cutouts in Fig. 6.16 and
Figs. B.8 - B.10).

Thus, GGSL candidates appear reliable when they have been classified by both CNNs in
the same way, otherwise their soundness falters. This is evident by looking at Fig. 6.17, where
the distributions of the number of GGSLs for cluster is plotted respect to: (i) the VGG and
SC-VGG classification (top and middle panels) and by taking their common predictions (bottom
panels); (ii) by varying the involved survey, CLASH and HFF clusters (on the first column),
RELICS clusters (on the second one, whose classification is discussed in Sec. 6.4.3), while the
combinations of all the surveys are plotted on the third column. There is a clear excess of GGSL
number for cluster due to the False Positives (disc galaxies and, especially, adversarial like
galaxies), which increases when the probability threshold is reduced. However, by considering
the common predictions with Pr > 0.5, the number of GGSLs per cluster (with a median values
of 6 to 10), is somewhat higher than the expected value based on the cross-section inferred from
the lens model (listed in Tab. 6.6), typically ≲ 3. This confirms the need to perform a visual
inspection of the candidates found by the CNNs to derive a set of GGSLs with high purity.

6.4.3 Searching for GGSLs in RELICS galaxy clusters
As final application of our trained networks, similarly to what has been done for the member
identification (see Sec. 5.5.1), we perform a run on 33 RELICS clusters (Coe et al. 2019), with
central redshift ranging in (0.20, 0.87). A layout of the involved RELICS clusters is shown in
Fig. 4.8 in Chap. 4. With the aim of searching GGSLs around cluster galaxies, we exploit the
members classified by the CNN (see Tab. 5.10). Given this classification, we extract a squared
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Figure 6.18: Identified GGSLs by both the models, by searching them around RELICS cluster galaxies
detected with CNN (see Sec. 5.5.1), related to R0232, A2813, A2537, A295. Each cutout is surrounding
by a coloured square according to the follow scheme based on GGSL probability:
(i) Pr(VGG), Pr(S C-VGG) > 0.5 −→green;
(ii) Pr(VGG), Pr(S C-VGG) ∈ [0.2, 0.5] −→orange;
(iii) Pr(VGG) ∈ [0.2, 0.5] ∧ Pr(S C-VGG) > 0.5 −→red;
(iv) Pr(S C-VGG) ∈ [0.2, 0.5] ∧ Pr(VGG) > 0.5 −→yellow.
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VGG SC-VGG Common
Cluster zcluster N Pr≥ 0.2 Pr> 0.5 Pr≥ 0.2 Pr> 0.5 Pr≥ 0.2 Pr> 0.5 Fig. ref
A665 Abell 665 0.182 46 8 6 15 5 5 1 B.11
A2163 Abell 2163 0.203 251 64 44 105 34 42 16 B.11
A520 Abell 520 0.203 119 38 29 57 23 26 12 B.11
R1514 RXC J1514-15 0.223 113 29 21 40 13 16 6 B.11
A1763 Abell 1763 0.228 158 41 31 58 16 21 9 B.12
P171 PLCK G171-40 0.270 176 28 17 60 14 14 1 B.12
A1758 Abell 1758 0.280 278 61 46 99 36 38 17 B.12
A697 Abell 697 0.282 152 39 22 49 12 19 4 B.12
R0232 RXC J0232-44 0.284 156 31 27 61 21 21 10 6.18
A2813 Abell 2813 0.292 163 35 26 57 11 17 5 6.18
A2537 Abell 2537 0.297 170 44 38 52 16 22 10 6.18
AS295 Abell s295 0.300 180 39 29 83 32 29 12 6.18
A1300 Abell 1300 0.308 141 32 23 51 17 22 8 B.13
R0142 RXC J0142+44 0.341 167 31 20 61 12 13 4 B.13
M0035 MACS 0035-20 0.352 144 27 19 46 11 15 4 B.13
M0308 MACS 0308+26 0.356 218 33 22 68 12 19 6 B.13
R0949 RXC J0949+17 0.383 195 42 33 72 22 29 12 B.13
P287 PLCK G287+32 0.390 246 57 44 104 36 37 14 B.14
SM0723 SMACS 0723-73 0.390 142 35 26 57 11 26 8 B.14
R0032 RXC J0032+18 0.396 239 52 39 101 32 29 10 B.14
R2211 RXC J2211-03 0.397 222 59 38 92 27 33 16 B.15
M0159 MACS 0159-08 0.405 187 49 33 64 16 28 10 B.15
A3192 Abell 3192 0.425 210 56 34 99 37 35 15 B.15
M0553 MACS 0553-33 0.430 193 34 28 64 29 23 10 B.16
S0254 SPT-CLJ0254-58 0.438 157 43 29 74 21 31 8 B.16
R0600 RXC J0600-20 0.460 254 61 46 106 38 37 15 B.19
P308 PLCK G308-20 0.480 205 63 54 92 19 36 10 B.17
P004 PLCK G004-19 0.540 205 77 66 126 61 61 36 B.17
R0018 RXC J0018+16 0.546 222 152 129 86 20 64 14 B.18
W0137 WHL J0137-08 0.566 172 35 28 63 12 23 7 B.19
P209 PLCK G209+10 0.677 150 44 37 67 17 28 8 B.19
P138 PLCK G138-10 0.702 56 23 13 20 6 13 6 B.14
A0102 ACT-CLJ0102-49 0.870 190 58 44 94 23 42 13 B.18
S0615 SPT-CLJ0615-57 0.972 47 17 11 22 11 12 7 B.16

Table 6.7: Summary of the GGSL run process performed on 33 RELICS clusters. The number of
processed cluster galaxies is listed in Col. 4. The amounts of sources classified as GGSLs with probability
≥ 0.2 and > 0.5 identified by the VGG model are listed in Col. 5 and Col. 6, identified by the SC-VGG
model in Col. 7 and Col. 8, while their intersections are shown on Col. 9 and Col. 10. Figure reference for
each cluster is reported in the last column.

cutout with a side of ∼ 4′′ centred on the candidate member position (using HST images with
a sampling of 0.030′′/pixel). The number of GGSLs for cluster identified by both VGG and
SC-VGG, together with their common predictions, is listed in Tab. 6.7; while all the candidate
GGSLs with Pr(VGG) ∧ Pr(SC-VGG)> 0.2 are shown in Fig. 6.18 and Figs. B.11 - B.19, and
listed in Tabs. B.8 - B.15. We restrict the analysis to this subset of cutouts, using the same colour
scheme adopted for CLASH and HFF (only for Pr(VGG) ∧ Pr(SC-VGG)> 0.2, i.e. the first four
items in Sec. 6.4.2), based on which, we found:

- by considering predictions with Pr> 0.5 shared by both models (i.e. green cutouts in
Fig. 6.18 and Figs. B.11 - B.19), we identify a fraction ∼ 25% of candidate GGSL with
evident strong-lensing features, ∼ 17% of ellipticals and ∼ 8% of disc like galaxies;

- for all the other examples (i.e. orange, yellow and red cutouts in Fig. 6.18 and Figs. B.11 -
B.19), there is a large fraction of isolated elliptical galaxies (∼ 45%), a negligible fraction
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of late-types (∼ 2%), whereas the cutouts, showing visible arc and ring like features, are
just ∼ 4%.

These considerations can be also deduced by comparing plots in Fig. 6.17: the number of GGSLs
for RELICS cluster is too high to be reliable, but this False Positive excess is strongly softened
by exploiting common predictions between models, with a decreasing factor ≳ 2: by considering
probability thresholds of 0.5 and by taking the intersection between models candidate GGSLs,
we measure a median value for all the HST clusters ∼ 8.

6.5 Conclusions
In this chapter, we presented an approach for the galaxy-galaxy strong-lenses identification
in galaxy clusters by training CNNs with realistic simulations embedded in the complexity of
observed data. Simulated examples have been produced by exploiting robust and accurate cluster
lens models, allowing to introduce the contribution of the overall cluster mass density distribution,
while the non-lenses have been selected by using MUSE and CLASH-VLT spectroscopic
observations, combined with a visual selection performed by expert astronomers. We performed
several experiments, involving several CNNs and focusing on the results achieved by the two
best models (VGG and SC-VGG), exploring the CNNs dependence on: (i) the cutout sizes
and measuring the impact of the adversarial examples (Sec. 6.3.1), (ii) on the source redshift,
magnitude, effective radius and on lens colours, magnitude and Einstein radius, by studying the
False Positive and False Negative distributions (Sec. 6.3.2). We tested the CNNs capabilities to
recognise at least the known GGSL and to find candidate strong-lenses in galaxy clusters, by
processing hundreds of cutouts centred on spectroscopic confirmed members (CLASH and HFF
clusters) or candidate members (selected by CNN in RELICS clusters). The main results can be
summarised as follows:

- we develop of a methodology able to simulate truthful GGSLs, by sampling parameters
(e.g., source magnitude, redshift and effective radius) from observed data (Sec. 6.2);

- CNNs are able to identify simulated GGSLs with a F1-score ranging in 84% − 92%, with
purity typically higher than completeness; although adversarial examples increase the False
Negative rate, their presence ensures the prevention from model overfitting (Sec. 6.3.1);

- False Negatives typically gather at high redshift, in magnitude faint-end and for small-
scaled lenses, while False Positive rate increase for bluer region of the parameter space
(Sec. 6.3.2);

- Networks are able to identify ≳ 80% of the processed real GGSLs (Sec. 6.4.1), and to
produce a reliable selection of candidate GGSLs, that, however, have to be post-processed
by visually inspecting the cutouts in order to remove False Positives and extract a purer set
of candidates (Secs. 6.4.3 and 6.4.2);

With the analysis carried out in this chapter, we tried to explore all the networks predictions,
enlarging as possible as the set of candidate GGSLs, even if with this approach we included a
large fraction of False Positives. We also underlined that classifications are more reliable when
we consider the intersection between models predictions with higher probabilities; although
we measured a significant purity rate increased, in this way several strong-lenses have been
misclassified, resulting into a higher False Negative rate. There is not an always corrected way,
it is dependent on the specific goal of the work. Here, we tried to explore both the solutions,
studying strengths and weaknesses of these complementary strategies.
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In the next future, we are planning to improve the the GGSL simulation, for example,
by injecting background galaxies with substructures (blobs generated with small-scale Sérsic
profiles), as has been done by Petrillo et al. (2019a,b) and Gentile et al. (2022), or by injecting
real high-z galaxies extracted from the Hubble Ultra-Deep Field (Rafelski et al. 2015). We also
plan to extend our analysis to other clusters whose lens model has been recently constructed,
e.g. PSZ1 G311.65-18.48 (Pignataro et al. 2021), or SDSS J1029+2623 (Acebron et al. 2021).
Moreover, given the expected impressive number of galaxy clusters which will be observed
with upcoming surveys, we intend to explore other neural network architectures, such as Faster
Region CNN (Ren et al. 2015) and Masked Region CNN (He et al. 2017) to automatically detect
GGSLs by processing directly the whole cluster FoVs.
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Chapter 7

Cross-correlation tool for 3D spectroscopy

In this chapter, I present the implementation and the application of a GPU-optimised cross-
correlation tool (XC-tool), built to measure redshifts in an automated fashion from the MUSE
(Multi Unit Spectroscopic Explorer) data cubes (see Sec. 4.2), which is an essential information
for the applications described in the previous chapters. The GPU-based approach allows us
to complete all the cross-correlation operations, at the pixel level, in few tens of seconds (to
compare with other MPI strategies which require ∼ 50 minutes), which makes this approach
suitable for the upcoming surveys, characterised by huge volume of data. This method has been
validated with simulations and tested by comparing its performance with conventional methods
which heavily rely on manual analysis. Such a tool is an important component of the work flow
at the basis of this thesis, specifically it can be used to automatically measure redshifts of cluster
galaxies and multiple images which are essential to build the lens models. In addition, a large
sample of spectroscopic member galaxies is critical for training CNN in identifying clusters
members. The latter allow the input cutouts to be selected for the CNN-based search for GGSL
described in the previous chapter. As an additional application of this new cross-correlation
tool, we show how we can efficiently and automatically reconstruct velocity maps of lensed disk
galaxies. This information can be used to model the effect of perturbers on the cluster mass
distribution and is interesting in itself since one can derive rotation curves out to z ∼ 2.

7.1 Introduction
The usage of cross-correlation to estimate radial velocities by cross-correlating the source
spectrum with a target template spectrum has long been employed (e.g., Griffin 1967; Simkin
1974; Tonry & Davis 1979). Over the time, many different approaches have been developed:
employing Fast Fourier Transform (e.g., Tonry & Davis 1979; Heavens 1993; Statler 1995; Torres
et al. 2007), or by decomposing galaxy spectra into several orthogonal template (e.g., Glazebrook
et al. 1998), however the computational resources available to the modern astronomy has made
Fourier techniques no longer essential and cross-correlation can be performed in the Real domain
(e.g., Zucker 2003; Garilli et al. 2010) avoiding the significant limitation which characterised
Fourier-based approaches: the equal weight of each pixel, regardless for the signal-to-noise ratio,
which turns out into a method without flexibility (Kelson et al. 2003). However, several issues
continue to be not completely solved: the selection of templates (e.g., observed vs. synthetic),
the combination of measurements coming from different templates, the determination of the
“true” peak of the cross-correlation function (peaks detection and relevance of secondary peaks),
the reliability of the metrics used to evaluate the similarity between spectra and template.

Typically, spectroscopic samples are composed by galaxies pre-selected on photometric
criteria (Noll et al. 2004; Balestra et al. 2010; Le Fèvre et al. 2013), however this selection acts as
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a sort of bias on the resulting spectroscopic sample. Moreover, multi-object spectrographs have a
limited degree of freedom in choosing sources in simultaneous observation and the prefigured slit
mask significant reduce source fluxes (Herenz et al. 2017). Integral field spectroscopy (IFS) can
overcame these problems: instead of individual targets, this instrument maps a contiguous area
in the sky, providing spectral information for the whole FoV. The IFS MUSE at ESO Very Large
Telescope (described in Sec. 4.2) is a powerful instrument able to perform a blind survey for
faint and high-redshfit galaxies (Bacon et al. 2014; Caillier et al. 2014), allowing measurements
for hundreds of galaxies inside a single MUSE FoV of 1 arcmin2 (Bacon et al. 2015).

In this work, we present a GPU-based implementation of the cross-correlation between
the whole MUSE data cube and a set of reference templates. The tool has been developed in
python exploiting the open source library tensorflow, which allows a significant computing
time improvement (∼ 100 times faster). We validated the cross-correlation tool by processing a
simulated galaxy (Sec. 7.3.1) and by estimating velocity maps of Refsdal host, which supports a
direct comparison with the analysis carried by Grillo et al. (2016) (see Sec. 7.3.2). Finally, we
estimate redshift for 274 sources in the (northern) MUSE FoV of M0416 cluster (Sec. 7.3.3).

7.2 Implementation
In this work, the spectral cross-correlation is implemented as a vectorised convolution (similar to
Das 1991). The cross-correlation (XC) between two function s and t is defined as:

[s ⋆ t](x) =
∫︂ +∞

−∞

s(ξ)t(x + ξ)dξ (7.1)

In signal theory, the function s e t are called signal and impulse response. Here they represent the
spectrum and the reference template as a function of the wavelength λ, which is the integration
variable, while x is the value of z at which the template is redshifted. So, this equation can be
written as:

c(z) ≡ [s ⋆ t](z) =
∫︂ +∞

−∞

s(λ) t(λ · (1 + z))dλ (7.2)

or, by discretising it:
c(zk) =

∑︂
j∈Λ

s j t j(zk) (7.3)

where we have assumed that the cross-correlation is evaluated at several redshift zk, so the result
is denoted as c(zk); s j and t j(zk) are the spectrum and template (redshifted to zk) at the wavelength
“pixel” j, which varies in Λ, representing the integration domain, i.e. the MUSE wavelength
range (4650Å− 9300Å). Another criterion to express similarity between two patterns is the
Pearson product-moment correlation coefficient (Pearson 1895), based on which Eq. 7.3 can be
written as:

c(zk) =
∑︁

j∈Λ
[︁
s j − ⟨s⟩

]︁[︁
t j(zk) − ⟨t(zk)⟩

]︁√︂∑︁
j∈Λ

[︁
s j − ⟨s⟩

]︁2 ∑︁
j∈Λ

[︁
t j(zk) − ⟨t(zk)⟩

]︁2
(7.4)

where we have introduced the spectrum and template mean, ⟨s⟩ and ⟨t(zk)⟩, and a normalisation
factor, used to measure the similarity between unscaled signals. Such expression is also known
as normalised cross-correlation. Finally, we can include in Eq. 7.4 the weights. In the general
case, they act on both spectrum and template; in this work, weights are computed from noise in
data and act only on the spectra. Thus, the normalised weighted cross-correlation is defined as:

c(zk) =
∑︁

j∈Λ w j
[︁
s j − ⟨s⟩

]︁[︁
t j(zk) − ⟨t(zk)⟩

]︁
√︁∑︁

j∈Λ w j

√︂∑︁
j∈Λ w j

[︁
s j − ⟨s⟩

]︁2 ∑︁
j∈Λ

[︁
t j(zk) − ⟨t(zk)⟩

]︁2
(7.5)
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where the spectra mean ⟨s⟩ is computed weighted:

⟨s⟩ =
∑︁

j∈Λ w js j∑︁
j∈Λ w j

(7.6)

This measure can be expressed in a matrix form. Let’s assume that the wavelength range is
composed by M elements, i.e. j = 1, . . . ,M, and the redshift range is sampled with an equal-step
grid of element zk, i.e. k = 1, . . . ,K, thus, the template can be arranged in a matrix T jk with shape
(M,K) whose elements are T jk = t j(zk) − ⟨t(zk)⟩. Correspondingly, the N spectra (i.e. one for
each spatial pixel) can be organised as a matrix S i j with i = 1, . . . ,N and j = 1, . . . ,M, whose
shape is (N,M) and whose elements are S i j = si j − ⟨si⟩. In the same way the weights can be
represented as matrix Wi j with shape (N,M) if each spectrum has its own weight vector, or as a
row vector W j with shape (1,M) if all spectra share the same weights. With these assumptions
Eq. 7.5 can be written as:

Cik =

∑︁M
j=1 Wi jS i jT jk√︂∑︁M

j=1 Wi j

√︂∑︁M
j=1 Wi jS 2

i j

√︂∑︁M
j=1 T 2

jk

(7.7)

Thus, the results of the cross-correlation is represented with a matrix Cik with i = 1, . . . ,N and
k = 1, . . . ,K, i.e. a cross-correlation as a function of z, for each pixel. In the general case,

the three elements in the denominator are three vectors:
√︂∑︁M

j=1 Wi j = W i (with shape (N, 1)),√︂∑︁M
j=1 Wi jS 2

i j = S i (with shape (N, 1)) and
√︂∑︁M

j=1 T 2
jk = T k (with shape (1,K)), so Eq. 7.7 can

be expressed in a matrix form:

C = (W ⊙ S ) · T ⊘
[︁(︁

W ⊙ S
)︁
· T

]︁
(7.8)

where ⊙ and ⊘ denote the element-wise product and division.
Since we are interested in finding and saving an arbitrary number of solutions, instead of just

the maximum of the XC-function, we implement a fast peak-detection algorithm based on a max
pooling sub-sampling. Given N cross-correlation function Ci(z) and the number of peaks to save
nz, the algorithm performs a sub-sampling with a fixed window of size ∆z = 0.002, the resulting
ensemble of vectors, Zi with i = 1, . . . ,N, is compared with Ci: indices n corresponding to values
for which Zi(n) = Ci(n) are the desired maxima. To sort these indices, the method computes the
corresponding peaks and returns the first nz. The algorithm can be summarised as follow:

Zi =← max_pool(Ci,∆z)
maximai ← Ci == Zi

maximai ← cast(maximai,float)
peaksi ← Ci ⊙maximai

maximai ← argsort(peaksi, nz)

(7.9)

where the index i labels the i-est spatial pixel, cast is the type conversion operation from integer to
floating values, and argsort indicates the process used to sort peaks (in descending order), which
currently selects only the first nz peak. Although the previous algorithmic steps are described
separately for each i, operations are computed with matrices, optimising the GPU computing
(computational costs are listed in Tab. 7.1).

The complete procedure with which the tool processes the data cube is summarised as follow:

0. Input: MUSE data cube (with shape (M,H,W), i.e. wavelength range, height and width),
reference template, redshift range (∆z = [zmin, zmax)), redshift sampling (dz), weights (it
can be a single “spectrum” shared for all pixels, or it can be computed from the variance
map as W = 1/σ2);
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N spectra dz ∆z z size (K) time [sec]
(484,522) = 252648 10−3 (0.000, 3.000) 3 · 103 20
(484,522) = 252648 10−4 (0.000, 3.000) 3 · 104 85
(484,522) = 252648 10−5 (3.200, 3.300) 104 45
(484,522) = 252648 5 · 10−6 (6.130, 6.168) 7.6 · 103 30

Table 7.1: Cross-correlation computing times by varying the z sampling. Times refer to the amount of
seconds required by the tool to compute the XC-functions, i.e. to solve Eq. 7.8 for all the involved pixels.
The computing has been performed on a NVIDIA GPU Titan Xp.

1. Applying a “running mean” on the whole cube, independently of each wavelength step,
which consists in a spatial smoothing, performed as an average pooling with a window
size of 0.6′′ (i.e. 3 pixels);

2. defining the wavelength grid Λ = {λ} j with j = 1, . . . ,M, deduced from the cube header,
and a redshift grid zk with k = 1, . . . ,K such that K · dz = ∆z;

3. optionally, the cube is continuum subtracted by fitting a 5th degree Chebyshev polynomial;

4. cube flattening: the cube is reshaped into a matrix with shape (N = H ·W,M), so the i-est
row corresponds to the spatial pixel h = floor(i/W), w = mod(i, h);

5. computing the template matrix T jk: the k-est column is the redshifted template at zk =

zmin+k ·dz, estimated by interpolating fluxes on a shifted wavelength grid λ(zk) = λ′ ·(1+zk),
where λ′ is the original wavelength grid on which the template is defined; fluxes are then
evaluated on the defined wavelength grid Λ = {λ}Mj=1, i.e. the redshifted template has the
same spectral resolution as the data cube;

6. cross-correlation is performed according to Eq. 7.8, by extracting a batch of spectra B < N,
to avoid memory loss. The resulting redshfit map is built by taking the first peak of
the XC-function, evaluated with the peak detection algorithm (Eqs. 7.9). Optionally, nz

solutions are saved, corresponding to the first nz peaks. Peaks at the edge of the z range
are discarded;

7. Optionally: if a catalogue of sources (composed by position and an aperture) is provided,
the XC-tool estimates the redshift for each source by computing an average of the spectra
within the given aperture and by extracting the first nz peaks, producing a catalogue with
nz solutions for each source.

The tool has been optimised to be processed on GPU. Respect to the same version, always
implemented in python exploiting multiprocessing library (McKerns et al. 2012) to handle
the CPU-parallelisation, which required ∼ 50 minutes, our tool completes the computation in
just ∼ 20 seconds (using the same hyper-parameters), which means a boost of 150.

7.3 Cross-correlation applications
In this work, we use the implemented XC-tool to estimate redshift of galaxies in the MUSE
FoV. However, before carrying out these measurements we validate the tool capacity using a
simulated galaxy (Sec. 7.3.1) and comparing with Grillo et al. (2016) the velocity maps estimated
for ‘Refsdal’ host, a lensed galaxies at z = 1.4888 (Sec. 7.3.2).

Concerning the templates used in this work, we cross-correlate MUSE data cube with 3
different templates (listed in Fig. 7.1):
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- Early-type galaxy (ETG) template: it has been generated by stacking spectra of 63 cluster
galaxies belonging to 7 clusters (R2129, R2248, M0416, M1206, M1311, M1149 and
M2129) spanning a redshift range (0.23, 0.59), with 2 magnitude fainter than the BCG,
F814 > F814BCG + 2, and with normalised colour (F606 − F814)norm > −0.2mag. The
spectra stacking is weighted according to their S/N ratio (as described in Gobat et al. 2008;
Nantais et al. 2013);

- Irregular template (Im): it is taken from VANDELS template ensemble (Le Fèvre et al.
2013);

- Emitter template: it has been generated by stacking spectra of line emitter galaxies (used
to in the lens model of Bergamini et al. 2021b), spanning a redshift range (1.7, 3.9), whose
main features have been studied and outlined by Vanzella et al. (2021). Each main line
has been independently staked and fitted with a Gaussian curve (with a bimdal Gaussian
curve for double lines or couple of emission and absorption lines, or with an asymmetric
Gaussian for the Lyman-α).

We use only these three templates, even if they are not representative of all galaxy types,
because we are mostly interested in searching for cluster members and emitter galaxies. Clearly
using a larger set of templates should improve the tool performance, however one needs to deal
with the difficult task of separating degenerate solutions in an automated fashion. For this reason,
a small template set was used in this preliminary development phase.

7.3.1 Performance with simulation
As first step, we are interested in evaluating the tool performance by using a simulated galaxy
dominated by [OII]λ3726.2, 3729.1 emission doublet, like system-12 (as named and studied by
Bergamini et al. 2021b) and ‘Refsdal’ host (studied by Grillo et al. 2016).

In order to simulate this galaxy, we start by cross-correlating two sub-cubes, extracted on the
two images1 of system-12 (RA = 4:16:080.75, DEC = − 24:04:02.18; RA = 4:16:09.91, DEC
= − 24:04:16.81), with a template simply constituted by a bimodal Gauassian with peaks centred
on (3726.2, 3729.1) Å and a FWHM of 1.5Å. To determine a work area, we select pixels with
velocity separation within ±100 km s−1 and split them into 6 velocity bins (see central panels of
Fig. 7.2). We extract a spectrum in each bin by averaging all the belonging pixels; spectra are
shifted at rest-frame, stacked by averaging and used to fit a bimodal Gaussian (see right panel in
Fig. 7.2). As results, we obtain an empirical [OII] template.

Such empirical template is used to modulate a simulated galaxy spectrum. By assuming a
PIEMD mass density profile (see Eq. 2.10 described in Sec. 2.1.4), galaxy rotational velocity
can be expressed as:

v(R) = v0

[︄
1 −

arctan (R/Rc)
R/Rc

]︄1/2

(7.10)

where Rc is a core radius, and v0 is the circular velocity, imposed to be 100 km s−1. These
velocities are computed by assuming a galaxy size R = 10 · Rc (i.e. R/Rc ≤ 10), then they are
projected along the line of sight v(R) cos θ, where θ is angle between the 3D galaxy radius and
the projected radius. So, a spectrum is assigned to each R by shifting the [OII] empirical template
according to the radial velocity v(R) cos θ and redshifted at z0 = 1.4888 (i.e. Refsdal redshift).

1Actually, these are three multiple images, two of them are merging speculatively at the turn of the critical line,
resulting as single image, top panels in Fig. 7.2 (see Bergamini et al. 2021b).
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Figure 7.1: Reference templates used for the cross-correlation with the main absorption or emission
lines. The early-type galaxy template (ETG, top panel) has been generated by stacking spectra of cluster
galaxies spanning a redshift range (0.23 − 0.59). The irregular galaxy template (Im, middle panel) has
been taken from VANDELS template ensemble (Le Fèvre et al. 2013). The template for emitters has been
obtained by stacking spectra of galaxies with redshift ∈ (1.6 − 6.1) from Bergamini et al. (2021b), guided
by the analysis carried out by Vanzella et al. (2021).

The cube, describing the simulated galaxy, is computed as:

cube(R, θ) = template[OII]

(︄
z = z0 +

v(R) cos θ
c

(1 + z0)
)︄

(7.11)

We finally add a Gaussian noise estimated in 50 circular apertures (0.8′′ diameter) in the
surrounding of Refsdal, by preserving the dependence on wavelengths (i.e. mean and standard
deviation are estimated for wavelength step). A comparison between the simulated galaxy and
Refsdal spectra is depicted in Fig. 7.3, in terms of [OII]λ3726.2, 3729.1 double lines, which
shows the S/N similarity between real spectra (randomly extracted from Refsdal host) and
simulated spectra.

The simulated cube is cross-correlated with the empirical [OII] template, and the resulting
redshift map is converted into a (rest-frame) velocity map, which is compared with the velocity
map obtained from the simulated cube. A summary of this comparison is displayed in Fig. 7.4,
in terms of: difference between velocity maps (top panels), pixel-by-pixel difference distribution
(bottom left panel) and velocity profiles as a function of distance from the center, i.e. velocities
averaged within circular annuli (bottom right panel). These figures show that differences are
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Figure 7.2: In the central panels we show the velocity maps of two multiply lensed galaxies in M0416
(system-12) (left column) obtained via our cross-correlation tool. On the right panel, we plot the
[OII]λ3726.2, 3729.1 doublet used as a cross-correlation template. This was derived by stacking and
shifting in rest-frame the MUSE spectra in six velocity bins of both galaxies, and then by fitting a bimodal
Gaussian (in red).

small, with a σ ∼ 3 km s−1, and not-biased (µ = −0.1 ± 0.2 km s−1), while larger discrepancies
characterise the inner region with ∆v ∈ (5, 10) km s−1 for R ≤ 0.5′′, although the discrepancies
are constrained in 1.3σ.

7.3.2 Velocity estimation comparison
As a second step, we perform a comparison between the velocities estimated in ‘Refsdal’ host
for 62 knots, belonging to 18 families, identified by Treu et al. (2016) and used by Grillo
et al. (2016), together with other multiple images, to constrain the lens model of M1149. The
redshift map is computed by cross-correlating two sub-cubes (whose centres are: RA, DEC
= (177.40343, 22.40239), and RA, DEC = 177.39916, 22.39606, with sides: 10′′ and 16.8′′,
respectively for the North-East and the South-West image) with the empirical [OII] template,
using the variance map associated to the MUSE data cube as weights. The velocity maps are
shown in top panels of Fig. 7.5, together with the 64 knots, that can be compared with those
estimated by Grillo et al. (2016), showed in the middle panels of Fig. 7.5. Note that we are
not using a Boolean mask to select the galaxy contour, instead it is automatically determined
by selecting pixels with velocity separation in ±100 km s−1, which results in some pixels that
scattered out of the galaxy image.

For each family, we estimate:

- the rest-frame velocity difference between all cross-compared couple of knots belonging
to same family:

∆vn = vi − v j ∀i ≠ j = 1, . . . ,Nk (7.12)

where Nk is number of knots belonging the k-est family and n labels the entries. The
resulting distribution is displayed in left bottom panel of Fig. 7.5;
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Figure 7.4: Top panel: comparison of simulated velocity maps (“input”) with those obtained with the
cross-correlation tool (“output”). The rightmost panel shows the difference between these two. Bottom
panel: the pixel-by-pixel velocity difference is shown to the left, while the velocity profiles as a function
of the distance from the center are plotted in the right panel, for both input (green) and output (red),
together with their difference (bottom axes).

- the standard deviation of rest-frame velocities computed for each of the 18 families:

∆vk = RMS ({vi}
Nk
i=1) k = 1, . . . ,NF (7.13)

where NF in the number of families, and, again, Nk is the number of knots belonging the
k-est family. The resulting distribution is plotted in right panel of Fig. 7.5 (and can be
directly compared with Fig. 9 in Grillo et al. 2016).

The cross-compared velocity distribution (left bottom panel in Fig. 7.5) shows that the
cross-correlation is actually able to measure velocities, at the pixel level, with a good degree
of accuracy without biases, since the distribution is centred around zero, with a σ = 7.6 km s−1

and with maximum variation constrained in ±20 km s−1. The RMS distribution for each family
(right bottom panel in Fig. 7.5) confirms this level of accuracy, since all the standard deviations
are with 10 km s−1, with two peaks, the first around 2 km s−1, the second around ∼ 4 km s−1. By
comparing this distribution with the same provided by Grillo et al. (2016) (see their Fig. 9), we
find an improvement of a factor ∼ 3, since their estimated velocity dispersions increase up to
30 km s−1, with a mean of 10.5 km s−1.

As final example, to underline the XC-tool capabilities to estimate velocity map for large FoVs
in few seconds, we measure the velocity map of the snake arc and its counterpart image, in M1206
cluster. As done before, we extract two sub-cubes (centred in RA, DEC = (181.54491,−8.80130)
and in RA, DEC = 181.54656,−8.79553, respectively with shape of 21′′ × 7′′) and 10′′ × 10′′),
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Figure 7.5: Rest-frame velocities of Refsdal host, together with the 62 knots (marked as crosses), are
plotted on top panels, fully comparable with velocity maps estimated by Grillo et al. (2016), plotted
in the middle panels. Bottom left panel shows the distribution of the velocity difference between all
cross-compared couple of knots belonging to same family, while the distribution of the velocity RMS,
computed for each family, is displayed in the bottom right panel (to compare with Fig. 9 in Grillo et al.
2016).
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Figure 7.6: Rest-frame velocity maps for snake arc and its counterpart image in M1206, together with
the corresponding HST cutouts. The snake arc velocity map and its corresponding HST imaging are
shown in middle and left panels (image center is RA, DEC = (181.54491,−8.80130). The counterpart
image and the estimated velocity map are shown in bottom and top right panels (image center is RA, DEC
= 181.54656,−8.79553).

which were cross-correlated with the [OII] empirical template, using the MUSE variance map as
weight. The estimated velocity maps, together with the corresponding HST imaging, are shown
in Fig. 7.6. We measure a median redshift of z = 1.03680, which can be compared with the
previous measurement z = 1.0369 (Caminha et al. 2017b).

7.3.3 Redshift measurement
In the previous sections, cross-correlations have been performed with a relatively narrow redshift
range, typically constrained in some tens of thousands of km s−1 from the known redshift target.
Here we evaluate the capabilities to estimate redshift of sources spanning a larger interval 0 − 7.
We restrict the analysis to the North-East MUSE pointing of M0416 galaxy cluster, called as
MUSE Deep Lensed Field (MDLF). We exploited the spectroscopic catalogue (which have
been measured with EZ software developed by Garilli et al. (2010)), whose intersection with the
MDLF consists in 274 sources (by also removing stars); these measurements are assumed as
ground truth.

The cross-correlation is performed between the whole data cube and three reference templates:
early-type galaxy (ETG) template, irregular (Im) template and emitter template (shown in
Fig. 7.1). Even if this ensemble has been set to represent the involved 274 galaxies, we note
that the usage of other templates could help to map lines, however due to the complex handling
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Figure 7.7: Redshift estimated with the cross-correlation. Left panel: catalogue redshift (zcat, assumed as
ground truth) vs. estimated redshift (zestim, automatically with the XC-tool); diagonal represents points
with zcat = zestim. Right panel: ∆z = zestim − zcat distribution for the 189 source ( 70%) with |∆z| ≤ 0.01. In
both panels results are organised into 4 classes according to the catalogue quality flags: likely (QF = 2,
red), secure (QF = 3, blue), single-line (QF = 9, cyan), from literature (QF = 4, green, D. Kelson, priv.
comm.). Numbers for classes are quoted in legends. In the left panel, numbers between brackets represent
the fraction of sources with zestim ≥ 0.01.

of multiple solution combinations, we avoided to introduce other templates. To weight the
cross-correlation we use the noise as a function of wavelength provided by Vanzella et al. (2021),
estimated by averaging fluxes in 600 non-overlapped apertures (of 0.8′′ diameter) extracted on
positions not intercepting evident sources (see Fig. 2 in Vanzella et al. 2021). For each template
we vary the redshift range:

- ETG template: ∆z = [0.1, 1.2];

- Im template: ∆z = [0.1, 2.5];

- Emitter template: ∆z = [0.4, 6.7].

The redshift ranges have been imposed based on the templates wavelength limits. For all the three
cross-correlation, we set a sampling in z of 10−4. Finally, after having cross-correlated the MDLF
data cube with each template, we extract a cross-correlation function for each spectroscopic
source (by averaging spectra within a fixed aperture of 0.8′′ diameter) and measure the tool
capabilities to automatically estimate redshifts. Since we involve three templates, we assume as
solution the redshift corresponding to the higher XC-peak.

Fig. 7.7 outlines the results in terms of zcat vs. zestim, i.e. ground truth vs. estimated (left
panel), and ∆z = zestim − zcat distribution for the 189 source ( 70%) with |∆z| ≥ 0.01 (right panel).
In this figure, results are organised into 4 classes according to the catalogue quality flags: likely
(QF = 2, red), secure (QF = 3, blue), single-line (QF = 9, cyan), from literature (QF = 4, green,
D. Kelson, priv. comm.). Globally, the tool was able to recover the redshift for 189 sources,
these measurements differ from zcat ≤ 0.01, of which: 150 (79%) have QF = 3, i.e. multiple
lines have been detected; 17 (9%) have QF = 2, i.e. 80% reliability, 22 (12%) have QF = 9,
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Figure 7.8: Estimated redshifts with the cross-correlation, represented in terms of |∆z| = |zestim − zcat| as a
function of F814 magnitude (left panel) and Signal-to-Noise Ratio (SNR, right panel). The mean, median
and 1σ deviation of these distributions are represented as black, red lines and grey areas. In the left panel,
only sources with available magnitude are included (119/274 sources).

i.e. just a line has been detected. Thus, the tool was able to recover 76% of sources with QF
= 3, 52% of sources with QF = 2 and 52% of sources with QF = 9. By inspecting these 189
estimations, we found that for 122 (65%) sources |∆z| = |zestim − zcat| ≤ 0.001, while 98 (52%)
sources are measured with |∆z| ≤ 0.0005. Moreover, in Fig. 7.8 we plot the |∆z| dependence on
the F814 magnitude (left panel, only for source with available magnitude, i.e. 119/274) and
on the Signal-to-Noise Ratio (SNR, right panel), showing the mean, median and 1σ deviations.
These plots show that the gap from zcat increases for faint and low-SNR sources. Indeed, by
analysing the magnitude dependence, we find that the median of |∆z| is 5 · 10−4 for F814 ≥ 23,
and 3 · 10−4 for F814 < 23. Conversely, the F814 median values are 24.5 mag for |∆z| ≥ 0.01,
and 22.2 mag for |∆z| < 0.01 . On the other hand, the median of |∆z| is 3.6 · 10−3 for S NR ≤ 2,
and |∆z| = 8 · 10−4 for S NR > 2. Alternatively, the median value of S NR(∆z ≥ 0.01) is 2.16,
whereas S NR(∆z < 0.01) is 2.90.

As example, two sources, whose redshift has been correctly measured, are shown in Fig. 7.9,
where the result of cross-correlation are shown for an elliptical and a lensed emitter galaxy: their
spectrum is overlapped to the main lines, which were redshifted at zestim, and the cross-correlation
function is shown together with the first 10 peaks. Considering that these measurements are
carried out in a completely automatic way, in few tens of seconds, the cross-correlation tool is
promising.

Regarding the incorrect measurements, from the left panel in Fig. 7.7, they seem to split
into two clouds: (i) 33 sources at lower redshift zcat ≲ 2.5, to which an higher redshfit has been
assigned zestim ≳ 4, representing the 44% of the incorrect measurements; (ii) 24 sources with
zcat ∈ (2, 4.5) whose zestim have been estimated in (0.1, 2), they are the 28% of the incorrect
measurements.

Figs. 7.10 - 7.12 show the three examples of incorrect redshfit estimations. These figures
outlines: the spectrum with the main lines redshifted to the corresponding zcat, the XC function
with the first 10 peaks, the spectrum with the main lines redshifted to the corresponding zestim. In
Fig. 7.10 is shown a faint source near to an elliptical: its spectrum is clearly contaminated by
the elliptical halo, the cross-correlation with the emitter template is able to recover a reliable
measure (zestim = 3.295 vs. zcat = 3.291), however the peak with the ETG template prevails. Even
if the redshift measure is incorrect, the tool is actually working, since it recovers all redshifts in
the field: the early-type galaxy (fitted with the ETG template) and the emitter galaxy (fitted with
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sp
ec

tr
u

m
@
z e

st
im CIII]

CII

FeII
[OII]

MgII

1 2 3 4 5 6
z

X
C

E
m

it

zestim = 1.896

−6 −4 −2 0 2 4 6
arcsec from center

−6

−4

−2

0

2

4

6

zcat = 1.895

Figure 7.9: Cross-correlation results related to two correct redshift measurements: an elliptical (RA,
DEC = 64.0375677,−24.0727686) and a lensed emitter galaxy (RA, DEC = 64.0411523,−24.061843).
For both of them: the spectrum is plotted in top panels, overlapped to the main lines (redshifted at
zestim = {0.406, 1.896}), together with the noise (used a weight); the HST cutout (∼ 13′′ across) is
displayed in the right panels; the cross-correlation performed respectively with ETG and emitter template
is plotted in the bottom panels (where the first 10 peaks are marked with vertical blue lines, the first of
which, i.e. the solution, in red).
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Figure 7.10: Cross-correlation results related to an incorrect redshift measurement. Source (at RA, DEC
= 64.038515,−24.065965) spectrum is plotted in top panel, overlapped to the main lines redshifted at
zcat = 3.291, together with the noise (used a weight). An HST cutout (∼ 13′′ across) is displayed in the
top right panel, where the source is surrounded by a red circle. Second, third and fourth raw panels show
the cross-correlation function (on left), with the first 10 peaks marked as vertical blue lines (the first of
which in red), and the spectrum overlapped to the main lines redshifted at zestim = {0.406, 3.295, 1.551}
(on right), i.e. the solutions, respectively for the cross-correlation performed with ETG, Im and Emitter
template.
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Figure 7.11: Same as Fig. 7.10, referred to source at RA, DEC = 64.035187,−24.07099.

the emitter template). A similar example is shown in Fig. 7.11, where the peak corresponding to
the XC with the ETG template determines the redshift, but in contrast to the previous case, the
spectrum is not contaminated despite the proximity with an early-type galaxy. Indeed, the XC
function related to the ETG template (second left panel in Fig. 7.11) is characterised by several
peaks of similar height. Based on a posterior visual analysis of the XC function, this solution will
be undoubtedly discarded, however here we are evaluating the tool capability to automatically
measure redshifts, without any human support. Finally, Fig. 7.12 displays a scenario in which
neither of the first peaks is a reliable measurement, although the solution (z = 2.806) is associated
with the second best peak of the XC-function with the emitter template. We should note, however,
that the redshift in the published catalogue was determined using information from an associated
multiple image source with secure redshift. We analysed all the incorrect estimations, by also
exploring other metrics to evaluate the reliability of the measure (e.g. the χ2 between spectrum
and template), but we have not find a criterion with which is possible to automatically estimate
redshift of all sources. Redshifts for galaxies with higher S/N are typically well estimated, but
faint sources require the knowledge of experts, able to discriminate between false XC-peaks,
helped with RGB images and graphic interfaces which allow to easily explore cross-correlation
solutions.
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Figure 7.12: Same as Fig. 7.10, referred to source at RA, DEC = 64.0446872,−24.0576737.

7.4 Conclusions
In this chapter, we presented a GPU-optimised cross-correlation tool developed to be applied
on the whole MUSE data cubes, whose primary features is the low computing cost (few tens of
seconds), more than 100 times faster than executions times based on conventional multi-thread
CPUs. The XC-tool can be used to measure galaxy velocity maps by processing large region of
MUSE FoV or to automatically measure redshifts of all sources in the data cube.

The main results of this work can be outlined as follows:

- by processing a data cube representing a simulated galaxy (based on MUSE observation
of M0416 and M1149 cluster), we find that the measured velocity map is comparable with
the simulated velocity distributions, σ∆v ∼ 3 km s−1 (Sec. 7.3.1);

- by estimating velocities for the 62 identified knots in Refsdal host, the cross-compared
velocity difference distribution has a σ∆v = 7.6 km s−1 while the RMS evaluated for each
source family has a σ∆vRMS = 2.6 km s−1, with an improvement respect to the work carried
out by Grillo et al. (2016) of a factor ∼ 3 (Sec. 7.3.2);

- the automated redshift measurements, by exploring the range z ∈ (0, 7), allows to recover
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the redshift for the 70% of the involved galaxies; while the estimation for the remaining
part is affected by elliptical halo contamination, faintness of the sources and low S/N ratio
(Sec. 7.3.3).

Despite the difficulties to measure automatically the redshift, the exceptional computing
power allows to explore the MUSE data cube in few tens of seconds, providing a fast and flexible
method that can be re-processed easily by varying the hyper-parameter configuration (e.g. wave-
length domain, redshift range and sampling). However, the presence of false cross-correlation
peaks, the intra-cluster light which contaminates source spectra and the noise characterising a
significant fraction of high-z and/or faint galaxies prevent from a completely automated measur-
ing. So, in order to better estimate redshift in the cluster complex environment, the tool must be
guided by expert astronomers. For these reasons, we are working on a web-application which
combines the computing power of GPUs, the facilities provided by Graphic User Interface and
the know-how of astronomers into a single functional framework. Indeed, given the complexity
of the problem, the usage of graphic interfaces has become standard for an redshift measurements
(e.g., see Garilli et al. 2010; Herenz et al. 2017). The impressive computing time represents
a fundamental advantage of the tool, since it opens the possibility to process future large IFU
datasets.

Finally, as briefly discussed during the visual inspection of the source shown in Fig. 7.10, the
tool is able to measure the redshift of both the contaminant early-type galaxy and the generally
blue emitter galaxy, disentangling background and foreground contributions (at least when strong
emission lines are superimposed onto the absorption spectrum of an early-type galaxy). In
principle, the cross-correlation tool could be suitably modified to search for emitters in the
vicinity of luminous galaxies. With this method, it should also be possible to blindly search
for strong-lenses, or to confirm classification performed with other techniques (e.g. CNNs) by
extracting spectra in the halo of a lens candidate.
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Conclusions and future perspectives

In recent years, dedicated image campaigns, such as CLASH (Postman et al. 2012a), Hubble
Frontier Fields (Lotz et al. 2017) and RELICS (Coe et al. 2019), have provided high quality
panchromatic observations for more than 60 galaxy clusters, which have demonstrated to be
a golden mine for the scientific community. Additionally, intensive spectroscopic programs,
such as CLASH-VLT (Rosati et al. 2014), GLASS (Treu et al. 2015; Schmidt et al. 2014),
and comprehensive VLT/MUSE observations have offered a three-dimensional view of several
clusters, by providing spectra for many thousands of galaxies. These new datasets have driven a
remarkable progress in our ability to exploit strong gravitational lensing to investigate the mass
distribution of galaxy clusters and to unveil distant faint galaxies.

In this PhD thesis, we applied Machine Learning techniques to address three interconnected
issues in gravitational lensing studies of clusters: the identification of cluster members, the
search for galaxy-galaxy strong lenses around cluster galaxies and the development of a novel
cross-correlation technique to extract redshifts from VLT/MUSE data cubes.

We exploited the extensive spectroscopic coverage, the quality of HST multi-band imaging
and new high precision cluster lens models (provided by Bergamini et al. 2019, 2021b; Caminha
et al. 2019) to build a large Knowledge Base, on which convolutional neural networks have been
trained and evaluated by measuring specific performance metrics. Specifically, we explored the
possibility to use deep neural networks (i) to recognise cluster members from background and
foreground objects using a large sample of spectroscopically confirmed sources as training set,
(ii) to identify strong-lenses in galaxy clusters by simulating realistic images of background
sources using the accurate knowledge of their lensing deflection fields. Finally, we developed
a GPU-optimised cross-correlation tool directly processing MUSE data cubes to efficiently
measure galaxy redshifts and velocity maps. This overall methodology can be used to tackle
a number of important issues when studying galaxy clusters and their galaxy populations. For
example: cluster member classification allows one to analyse the cluster assembly history, as
well as, the dependence of galaxy properties (e.g. structural and stellar population parameters)
on the environment; the identification of GGSL candidates provides further constraints on the
galaxy total mass, and on the structure of dark matter sub-halos when combined with velocity
dispersion measurements. Finally, we note that the mining of information from Integral Fields
Units (particularly MUSE) data on clusters remains significantly unexplored in data cubes, so
that a 3D cross-correlation tool, such as the one developed in this work, can be the best method
to discover faint line emitters, and extract redshift and kinematic information across the entire
field.

In detail, the main results of this thesis can be summarised as follows:

- the image-based selection of cluster members, based on an adequate spectroscopic survey
of a limited sample of clusters as a training base, can be considered a valid alternative to
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photometry-based methods, working directly on multi-band imaging data in counts, thus
circumventing the time-consuming process of multi-band magnitude measurements. We
showed that 90% of the galaxy member population can be recovered, with an acceptable
purity-completeness trade-off, down to F814 = 25 mag, and a superior performance when
compared to photometric techniques. Misclassifications are confined in regions of the
parameter space which are not well sampled by the training set (blue faint-end of the galaxy
population). The first application of this method on wide-area ground based observations
of galaxy clusters also showed very promising performances, albeit not as high as in HST
data;

- by injecting thousands of realistic galaxy-galaxy strong lensing events in HST images
utilising high-precision lens models, our deep neural networks are capable to efficiently
identify galaxy-scale lenses in crowded cluster fields, with a favorable trade-off between
false negatives (∼ 10%) and false positives (7%). Such trained networks are then utilised to
systematically search for lenses in archival HST observations of cluster cores, by detecting
more than 400 GGSL candidates in 50 galaxy clusters;

- the GPU-based cross-correlation tool developed to analyse MUSE 3D spectroscopy data
has shown exceptional computing performance: the entire MUSE data cube (90 · 103

spectra) can be cross-correlated with a set of spectral templates in a less than a minute.
Several tests on cluster fields, with redshifts measured with standard non-automated
techniques, have shown a success rate of 70% in recovering galaxy redshifts. The tool
needs to be further developed introducing an appropriate trade-off between automation and
user interaction, specifically in the low S/N regime. In addition, this method is capable to
reconstruct galaxy velocity maps (for example of lensed galaxies) fully automatically with
very a high accuracy as verified with simulations and on real data of spatially extended
lensed late type galaxies.

These three methodologies can be combined in an end-to-end process. Indeed, using already
trained convolutional neural networks we identified cluster galaxies in archival RELICS clusters
(Sec. 5.5.1) and then searched for strong-lensing features around these galaxies (Sec. 6.4.3). We
plan to exploit the cross-correlation tool to spectroscopically confirm these galaxy-scale lens
candidates where MUSE observations are available.

Furthermore, the generalisation capability of convolutional networks makes them both versa-
tile and reusable tools. In fact, the convolution layers of a trained deep network can be reused as
shared layers in larger models, such as the Faster Region CNN (Ren et al. 2015) and Masked
Region CNN (He et al. 2017), which exploit kernel weights to extract multidimensional infor-
mation suitable to perform object detection. Such architectures have already found interesting
astrophysical applications, for example, in the identification of radio sources (Wu et al. 2019a)
and the automatic deblending of astronomical sources (Burke et al. 2019). We are planning to
explore this region-based architectures to automatically detect members and strong-lenses in
galaxy clusters.

In future works, we will also explore other promising deep learning architectures, such as
deep auto-encoders (Goodfellow 2010) and conditional generative adversarial networks (Mirza
& Osindero 2014), to integrate the ground-based lower resolution images with the high quality
of HST images in cluster fields. These generative techniques can be exploited to overcome the
problem of missing data, thus increasing the size of the training set with a more homogeneous
sampling of the entire parameter space, or to deblend the arc and ring features from the lens
galaxy, and, thus, to estimate the lensed galaxy parameters (e.g. effective radius or Sérsic index).

As for the cross-correlation tool, we are working to include the tool within a wider frame-
work, combining observations coming from different surveys, by developing a software which
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incorporates the GPU computing power within a Graphic User Interface and support a larger
level of interaction between the tool and astronomers. Finally, given the tool manageable com-
puting costs, we are planning to implement a sort of “self” cross-correlation, which can be
use to: detect multiple images belonging to same family in MUSE FoVs, source deblending,
identification of line emitting galaxies, and improve redshift measuring by processing spectra
extracting within region with irregular shapes (instead of circular), which often characterise
lensed galaxies. The methodology developed in this thesis can be extended beyond the HST
imaging data with a relatively modest effort and promises to have important applications with
the next generation facilities. These include the analysis of deep high source density fields with
the James Webb Space Telescope (Gardner et al. 2006), and more prominently the exploitation
of the upcoming survey machines such as the Vera Rubin Observatory (Ivezić et al. 2019) and
Euclid (Laureijs et al. 2011). The latter will cover very large sky areas (with Peta-scale data
volume), discovering up to 105 galaxy clusters and groups and will require automated machine
learning based methodologies to exploit their astrophysical and cosmological content.

135



Bibliography

Abadi, M., Agarwal, A., Barham, P., et al. 2015, TensorFlow: Large-Scale Machine Learning on
Heterogeneous Systems, software available from tensorflow.org

Abell, G. O. 1958, ApJS, 3, 211

Abraham, S., Philip, N. S., Kembhavi, A., Wadadekar, Y. G., & Sinha, R. 2012, MNRAS, 419,
80

Acebron, A., Cibirka, N., Zitrin, A., et al. 2018, ApJ, 858, 42

Acebron, A., Grillo, C., Bergamini, P., et al. 2021, arXiv e-prints, arXiv:2111.05871

Acquaviva, V. 2020, in Panchromatic Modelling with Next Generation Facilities, ed. M. Boquien,
E. Lusso, C. Gruppioni, & P. Tissera, Vol. 341, 88–98

Agüera y Arcas, B. 2017, Arts, 6

Aihara, H., Arimoto, N., Armstrong, R., et al. 2018, PASJ, 70, S4

Anderson, J. & King, I. R. 2006, PSFs, Photometry, and Astronomy for the ACS/WFC, Instru-
ment Science Report ACS 2006-01

Angora, G., Brescia, M., Cavuoti, S., et al. 2019, MNRAS, 490, 4080

Angora, G., Rosati, P., Brescia, M., et al. 2020, A&A, 643, A177

Aniyan, A. K. & Thorat, K. 2017, ApJS, 230, 20

Annunziatella, M., Biviano, A., Mercurio, A., et al. 2014, A&A, 571, A80

Annunziatella, M., Bonamigo, M., Grillo, C., et al. 2017, ApJ, 851, 81

Annunziatella, M., Mercurio, A., Biviano, A., et al. 2016, A&A, 585, A160

Arora, S., Bhaskara, A., Ge, R., & Ma, T. 2013, arXiv e-prints, arXiv:1310.6343

Auger, M. W., Treu, T., Gavazzi, R., et al. 2010, ApJ, 721, L163

Bacon, R., Accardo, M., Adjali, L., et al. 2012, The Messenger, 147, 4

Bacon, R., Brinchmann, J., Richard, J., et al. 2015, A&A, 575, A75

Bacon, R., Vernet, J., Borisova, E., et al. 2014, The Messenger, 157, 13

Balestra, I., Mainieri, V., Popesso, P., et al. 2010, A&A, 512, A12

Balestra, I., Mercurio, A., Sartoris, B., et al. 2016, ApJS, 224, 33

136



BIBLIOGRAPHY

Bartelmann, M. & Schneider, P. 2000, Physics Reports, 340

Bashir, D., Montanez, G. D., Sehra, S., Sandoval Segura, P., & Lauw, J. 2020, arXiv e-prints,
arXiv:2010.06076

Batista, G. E. A. P. A. & Monard, M. C. 2003, Applied Artificial Intelligence, 17, 519

Becker, S. & Lecun, Y. 1989, in Proceedings of the 1988 Connectionist Models Summer School,
San Mateo, ed. D. Touretzky, G. Hinton, & T. Sejnowski (Morgan Kaufmann), 29–37

Bekki, K., Couch, W. J., Shioya, Y., & Vazdekis, A. 2005, MNRAS, 359, 949

Bell, E. F., Wolf, C., Meisenheimer, K., et al. 2004, ApJ, 608, 752

Bengio, Y. 2009, Found. Trends Mach. Learn., 2, 1

Bengio, Y. 2012, CoRR, abs/1206.5533

Bengio, Y., Courville, A., & Vincent, P. 2012, arXiv e-prints, arXiv:1206.5538

Benítez, N. 2000, ApJ, 536, 571

Bergamini, P., Agnello, A., & Caminha, G. B. 2021a, A&A, 648, A123

Bergamini, P., Rosati, P., Mercurio, A., et al. 2019, A&A, 631, A130

Bergamini, P., Rosati, P., Vanzella, E., et al. 2021b, A&A, 645, A140

Bertin, E. & Arnouts, S. 1996, Astrophysics and Space Science, 117, 393

Bessell, M. S. 1990, PASP, 102, 1181

Bhatawdekar, R., Conselice, C. J., Margalef-Bentabol, B., & Duncan, K. 2019, MNRAS, 486,
3805

Bickley, R. W., Bottrell, C., Hani, M. H., et al. 2021, MNRAS, 504, 372

Bishop, C. M. 2006, Pattern Recognition and Machine Learning (Information Science and
Statistics) (Secaucus, NJ, USA: Springer-Verlag New York, Inc.)

Biviano, A., Rosati, P., Balestra, I., et al. 2013, A&A, 558, A1

Bleem, L. E., Stalder, B., de Haan, T., et al. 2015, ApJS, 216, 27

Blumenthal, G. R., Faber, S. M., Primack, J. R., & Rees, M. J. 1984, Nature, 311, 517

Blumenthal, G. R., Pagels, H., & Primack, J. R. 1982, Nature, 299, 37

Bonamigo, M., Grillo, C., Ettori, S., et al. 2018, ApJ, 864, 98

Bond, J. R., Szalay, A. S., & Turner, M. S. 1982, Phys. Rev. Lett., 48, 1636

Borgani, S. & Kravtsov, A. 2011, Advanced Science Letters, 4, 204

Borne, K., Accomazzi, A., Bloom, J., et al. 2009, in Astronomy, Vol. 2010, astro2010: The
Astronomy and Astrophysics Decadal Survey

137



BIBLIOGRAPHY

Bottou, L. & Bousquet, O. 2008, in Advances in Neural Information Processing Systems, ed.
J. Platt, D. Koller, Y. Singer, & S. Roweis, Vol. 20 (Curran Associates, Inc.)

Bouwens, R. J., Bradley, L., Zitrin, A., et al. 2014, ApJ, 795, 126

Brady, M., Raghavan, R., & Slawny, J. 1989, IEEE Transactions on Circuits and Systems, 36,
665

Brainerd, T. G., Blandford, R. D., & Smail, I. 1996, ApJ, 466, 623

Breiman, L. 2001, Mach. Learn., 45, 5

Brescia, M., Cavuoti, S., Amaro, V., et al. 2018, in Data Analytics and Management in Data Inten-
sive Domains, ed. L. Kalinichenko, Y. Manolopoulos, O. Malkov, N. Skvortsov, S. Stupnikov,
& V. Sukhomlin (Cham: Springer International Publishing), 61–72

Brescia, M., Cavuoti, S., D’Abrusco, R., Longo, G., & Mercurio, A. 2013, ApJ, 772, 140

Brescia, M., Cavuoti, S., & Longo, G. 2015, MNRAS, 450, 3893

Brescia, M., Cavuoti, S., Paolillo, M., Longo, G., & Puzia, T. 2012, MNRAS, 421, 1155

Buncher, B., Sharma, A. N., & Carrasco Kind, M. 2021, MNRAS, 503, 777

Burke, C. J., Aleo, P. D., Chen, Y.-C., et al. 2019, MNRAS, 490, 3952

Caillier, P., Accardo, M., Adjali, L., et al. 2014, in Society of Photo-Optical Instrumentation
Engineers (SPIE) Conference Series, Vol. 9150, Modeling, Systems Engineering, and Project
Management for Astronomy VI, ed. G. Z. Angeli & P. Dierickx, 91500D

Caminha, G. B., Grillo, C., Rosati, P., et al. 2016, A&A, 587, A80

Caminha, G. B., Grillo, C., Rosati, P., et al. 2017a, A&A, 600, A90

Caminha, G. B., Grillo, C., Rosati, P., et al. 2017b, A&A, 607, A93

Caminha, G. B., Rosati, P., Grillo, C., et al. 2019, A&A, 632, A36

Campbell, M., Hoane, A., & hsiung Hsu, F. 2002, Artificial Intelligence, 134, 57

Capaccioli, M. 1989, in World of Galaxies (Le Monde des Galaxies), ed. J. Corwin, Harold G. &
L. Bottinelli (New York, NY: Springer US), 208–227

Capak, P., Aussel, H., Ajiki, M., et al. 2007, ApJS, 172, 99

Cappellari, M., Scott, N., Alatalo, K., et al. 2013, MNRAS, 432, 1709

Carroll, S., Carroll, S., & Addison-Wesley. 2004, Spacetime and Geometry: An Introduction to
General Relativity (Addison Wesley)

Cavanagh, M. K., Bekki, K., & Groves, B. A. 2021, MNRAS, 506, 659

Cavuoti, S., Brescia, M., De Stefano, V., & Longo, G. 2015, Experimental Astronomy, 39, 45

Cavuoti, S., Brescia, M., Longo, G., & Mercurio, A. 2012, A&A, 546, A13

Cerny, C., Sharon, K., Andrade-Santos, F., et al. 2018, ApJ, 859, 159

138



BIBLIOGRAPHY

Chiang, Y.-K., Overzier, R., & Gebhardt, K. 2013, ApJ, 779, 127

Chinchor, N. 1992, in Proceedings of the 4th Conference on Message Understanding, MUC4 ’92
(USA: Association for Computational Linguistics), 22–29

Chollet, F. et al. 2015, Keras, https://keras.io

Ciotti, L. & Bertin, G. 1999, A&A, 352, 447
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Appendix A

Complementary tables and figures for
cluster member identification

In this appendix I report completing tables and figures, which integrate the work on the cluster
member identification. The following tables are referred to the EXP1 (see Sec. 5.3.1): the
comparison between the involved architectures by varying the band configuration is report in
Tab. A.1; Tab. A.2 shows the VGG performance achieved with the same dataset by varying
the band configuration; CNN results by permuting all the involved bands are listed in Tab. A.3.
Concerning the EXP3 (see Sec. 5.3.3): Fig. A.1 and Fig. A.2 show the comparison between the
CNN and the benchmark methods (outlined in Sec. 3.8), respectively in term of ROC curves and
common predictions; finally, the sky distribution of spectroscopic CLM and candidate members
identified by the CNN (see Sec. 5.5 is shown in Fig. A.3, overlapped to the FoV of four clusters.

mixed* mixed
Class % VGG ResNet Gnet GResNet VGG ResNet Gnet GResNet

AE 89.3 88.7 88.1 88.4 86.7 86.4 87.0 87.1
pur 88.3 85.7 86.8 90.0 83.1 84.2 80.4 81.2

CLM compl 86.7 87.5 85.5 84.4 88.4 87.1 92.0 88.5
F1 87.4 86.9 86.1 87.1 85.6 85.6 86.2 84.8
pur 90.0 85.2 89.2 89.7 90.0 88.6 83.0 89.0

NCLM compl 91.2 95.7 91.0 90.0 85.5 86.1 88.3 84.6
F1 90.6 90.4 90.1 89.8 88.3 87.3 85.7 85.8

ACS ALL
Class % VGG ResNet Gnet GResNet VGG ResNet Gnet GResNet

AE 87.4 85.9 87.1 86.5 87.7 86.9 87.7 87.2
pur 85.0 83.1 85.2 84.7 86.4 86.7 87.1 84.6

CLM compl 88.5 85.4 86.7 85.8 86.4 82.4 85.3 85.9
F1 86.7 84.2 85.9 85.3 86.4 84.5 86.2 85.3
pur 89.9 90.0 91.6 90.1 88.9 88.5 88.7 89.0

NCLM compl 86.7 85.4 84.7 84.8 88.9 89.4 88.5 88.7
F1 88.3 87.0 88.1 87.4 88.9 88.9 88.6 88.8

Table A.1: Performance comparison between the involved architectures (see Sec. 3.7), related to the
four band configurations (see Sec. 5.2) and expressed in terms of the statistical estimators described in
Sec. 3.6.6. The overall best results are highlighted in bold.
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Class % mixed ACS ALL
AE 84.9 86.4 87.7
pur 84.8 86.8 86.4

CLM compl 80.2 81.6 86.4
F1 82.5 84.1 86.4
pur 85.0 86.1 88.9

NCLM compl 90.1 86.7 88.9
F1 87.5 88.1 88.9

Table A.2: CNN percentage performances achieved with the same dataset by varying the filter configu-
ration (EXP1). The performances are related to the band configurations (see Sec. 5.2) and expressed in
terms of the statistical estimators described in Sec. 3.6.6. The overall best results are highlighted in bold.
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Figure A.1: Comparison between the image-based CNN and two photometric catalogue-based approaches,
RF and Bayesian method (EXP3) in term of ROC curves for the four clusters: R2248 (top-left panel),
M0416 (top-right panel), M1206 (bottom left panel), M1149 (bottom right panel).
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CLM
Involved filters AE pur compl F1
F435 43.0 43.0 80.0 50.1
F606 75.8 69.6 77.4 73.3
F814 80.6 74.8 82.8 78.6
F105 79.2 73.8 80.0 76.8
F140 80.0 75.0 80.2 77.5
F435_F606 87.1 83.4 87.3 85.3
F435_F814 86.3 82.3 86.7 84.4
F435_F105 85.6 81.1 86.7 83.8
F435_F140 85.3 81.0 85.8 83.3
F606_F814 85.0 81.0 85.0 83.0
F606_F105 85.2 80.3 86.8 83.4
F606_F140 83.1 78.6 83.4 80.9
F814_F105 80.3 76.0 79.3 77.6
F814_F140 80.1 73.8 83.1 78.2
F105_F140 79.3 73.4 81.4 77.2
F435_F606_F814 89.0 87.0 87.6 87.3
F435_F606_F105 88.7 86.3 87.8 87.0
F435_F606_F140 88.6 85.9 88.0 86.9
F435_F814_F105 85.7 82.2 85.1 83.6
F435_F814_F140 85.8 84.3 82.4 83.3
F435_F105_F140 86.8 83.2 86.7 84.9
F606_F814_F105 84.7 82.0 82.5 82.3
F606_F814_F140 85.0 81.6 84.0 82.8
F814_F105_F140 81.0 75.0 83.7 79.1
F435_F606_F814_F105 88.5 84.9 89.1 87.0
F435_F606_F814_F140 88.6 85.2 88.8 87.0
F606_F814_F105_F140 84.3 80.4 83.9 82.1
F435_F606_F105_F140 88.6 85.6 88.3 86.9
F435_F814_F105_F140 87.3 84.9 85.8 85.3
F435_F606_F814_F105_F140 89.3 88.3 86.7 87.4

Table A.3: CNN percentage performances achieved by exploring all possible filter combinations for the
mixed* band configuration (see Sec. 5.2) related to the EXP1. The performances are expressed in terms of
the statistical estimators described in Sec. 3.6.6; for ease of reading, only statistics related to the CLM
class are reported, together with the average efficiency (AE), which refers to both classes. The overall best
results are highlighted in bold. The last row, referring to the complete usage of all the bands, corresponds
to the results achieved with the mixed* configuration, shown in Tab. 5.2.
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Figure A.2: Venn diagrams reporting the percentages of membership predictions performed by three
different methods (CNN, RF, and BM), measured on the common blind test set, obtained by combining
the four clusters R2248, M0416, M1206, and M1149 (EXP3). On the columns, the common areas refer to
the available shared sources, respectively, 460 CLMs and 519 NCLMs). On the rows, common predictions
are split between correct and incorrect classifications. Global commonalities can be derived by summing
values on the rows.
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RX J2248 z=0.346 MACS J0416 z=0.397

MACS J1206 z=0.439 MACS J1149 z=0.542

spec CLMs run CLMs

Figure A.3: CNN member selection (marked with open magenta squares) obtained with the run set,
together with the spectroscopic CLMs (marked with open green squares), in the core of the four clusters
R2248 (z = 0.346), M0416 (z = 0.397), M1206 (z = 0.439) and M1149 (z = 0.542). All images are 130
arcsec across.
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Appendix B

Complementary tables and figures for
GGSL identification

In this appendix, we report completing tables and figures, which integrate the work on the
galaxy-galaxy strong-lenses identification. Fig. B.1 shows all the available SEDs, marked in
red the starburst template used for the galaxy injection (see Sec. 6.2). Tab. B.1 summarises the
comparison between the different involved deep networks for both cutout configurations (see
Sec. 6.3.1). Tab. B.2 outlines the comparison between VGG and SC-VGG models by evaluating
the distribution of performances evaluated in each fold (discussed in Sec. 6.3.1), while the same
comparison in term of False Positive and False Negatives distribution is displayed in Tab. B.3,
which is graphically shown in as 2D histograms of (i) the False Positive to True Negative ratios
in a normalised colour (F606 − F814)norm vs F814 magnitude diagram (Fig. B.2) and (ii) the
False Negative to True Positive ratios in a two diagrams: θE vs F814 (upper panels in Fig. B.3)
and re vs zsrc (bottom panels in Fig. B.3). Tab. B.4 summarises the results achieved by using a
single band with the EXP-A cutout configuration, together with a comparison with the VGG and
the SC-VGG models.

Figs. B.4-B.7 show the classification performed by the CNNs on a set of known real
galaxy-galaxy strong-lenses (continuing of Fig. 6.15), whose results are discussed in Sec. 6.4.1.
Tabs. B.5-B.7 list all the candidate GGSLs identified by networks with Pr> 0.2, whose cutouts
are shown in Fig. 6.16 and in Figs. B.8- B.10 (discussed in Sec. 6.4.1). Finally, the candidate
GGSLs selected by networks with Pr> 0.2 are listed in Tabs. B.8-B.15 and shown in Fig. 6.18
and Figs.B.11-B.19 (discussed in 6.4.3).

EXP-A (∼ 4′′ cutouts) EXP-B (∼ 8′′ cutouts)
Class % VGG ResNet Gnet GResNet SC-VGG VGG ResNet Gnet GResNet SC-VGG

AE 87.7 76.7 79.1 66.8 89.4 79.4 75.5 78.2 79.5 79.2
pur 93.4 84.5 87.2 83.8 93.1 89.6 88.2 89.5 87.1 90.2

GGSL compl 88.6 81.5 82.1 65.1 91.7 78.4 75.0 76.0 78.8 78.9
F1 91.0 83.0 84.6 73.2 92.4 84.0 81.1 82.7 82.9 84.5
pur 76.7 60.5 63.5 46.7 81.4 72.7 56.7 52.8 67.4 73.1

NGGSL compl 85.4 65.4 72.1 70.9 84.1 81.7 76.7 73.4 81.0 79.3
F1 81.1 62.8 67.5 56.3 82.8 78.0 65.4 63.1 74.2 75.7

Table B.1: Performance comparison between the involved architectures (see section 3.7), related to the
two cutout configurations, EXP-A and EXP-B (see section. 6.2) and expressed in terms of the statistical
estimators described in Section 3.6.6. The overall best results are highlighted in bold.
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Figure B.1: All available SEDs within the Barak package (https://nhmc.github.io/Barak/). The
one used in this work is a starburst template from Kinney et al. (1996), plotted in bottom central panel in
red).

median Q1 Q3

[%] VGG SC-VGG VGG SC-VGG VGG SC-VGG
AE 88.3 89.3 86.2 88.6 88.6 90.3
pur 93.3 93.3 92.5 92.3 94.8 94.2

GGSL compl 89.1 91.9 86.7 91.2 90.4 92.5
F1 91.5 92.3 89.8 91.8 91.5 93.0
pur 77.6 81.9 74.0 79.7 79.0 82.9

NGGSL compl 85.6 84.2 82.3 81.7 88.1 87.2
F1 91.5 92.3 89.8 91.8 91.5 93.0

IQR Q1 − 1.5 · IQR Q3 + 1.5 · IQR
[%] VGG SC-VGG VGG SC-VGG VGG SC-VGG
AE 2.4 1.7 85.3 87.8 89.7 91.4
pur 2.3 1.9 90.7 90.1 95.6 95.7

GGSL compl 3.7 1.4 84.1 90.4 92.5 94.1
F1 1.8 1.2 88.8 91.0 92.6 93.9
pur 5.0 3.2 70.5 76.1 81.8 85.6

NGGSL compl 5.8 5.4 79.7 77.6 90.7 90.7
F1 1.8 1.2 88.8 91.0 92.6 93.9

Table B.2: Comparison between VGG and SC-VGG models, by evaluating performance fluctuations over
the k = 10 folds. Q1 and Q3 are the first and third quartile (i.e. delimit 25th and 75th percentile). The
inter-quartile range (IQR) is the difference Q3 − Q1, while the range (Q1 − 1.5 · IQR, Q3 + 1.5 · IQR)
delimits the data within ±2.698σ. Average efficiency and GGSL estimators are graphically shown in the
bottom panels of Fig. 6.8. Best results are highlighted in bold.
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VGG SC-VGG
GGSL FN FN/TP FN FN/TP

Total Number 2704 307 0.128 224 0.090
F814 ≥ 28.0 31.1% 52.1% 0.235 38.8% 0.115
F814 ≥ 27.0 61.0% 83.1% 0.183 73.2% 0.110
F814 < 27.0 39.0% 17.9% 0.052 26.8% 0.060
θE < 0.5′′ 32.2% 41.4% 0.171 46.9% 0.137
θE ≥ 0.5′′ 67.8% 58.6% 0.109 53.1% 0.069
zsrc ≥ 5 5.9% 11.4% 0.282 4.9% 0.074
zsrc ≥ 4 12.9% 20.8% 0.225 10.7% 0.074
zsrc ≥ 3 25.5% 31.9% 0.166 20.1% 0.070
zsrc < 3 74.5% 68.1% 0.116 70.9% 0.098

VGG SC-VGG
NGGSL FP FP/TN FP FP/TN

Total Number 1037 154 0.174 170 0.196
F814 < 19.5 9.6% 16.8% 0.263 15.3% 0.356
F814 ≥ 19.5 90.4% 83.2% 0.158 84.7% 0.181
(F606 − F814)norm < −0.5 3.9% 6.5% 0.333 7.6% 0.481
(F606 − F814)norm ≥ −0.5 96.1% 93.5% 0.169 92.3% 0.187

Table B.3: Summary of False Positive and False Negative distributions. Fractions of GGSL (Col. 2),
False Negative (FN) (Col. 3) and FN to GGSL ratio (Col. 4) as a function of source magnitude (second to
fourth row), galaxy-lens θE (fifth and sixth row) and source redshift (seventh to eighth row). The total
number of spectroscopic GGLSs and FNs are quoted in the first row. Similar fractions for NGGSLs, FP
(False Positive) and FP/NGGSL ratio are quoted in the bottom half of the table. Classification metrics are
split between VGG and SC-VGG network.

EXP-A (∼ 4′′ cutouts)
Class % VGG SC-VGG F435 F606 F814

AE 87.7 89.4 87.2 86.1 86.8
pur 93.4 93.1 91.8 91.1 91.5

GGSL compl 88.6 91.7 89.8 88.8 89.3
F1 91.0 92.4 90.8 89.9 90.4
pur 76.7 81.4 77.5 75.4 76.6

NGGSL compl 85.4 84.1 81.3 79.9 80.9
F1 81.1 82.8 79.3 77.6 78.7

Table B.4: Performance comparison by also including network trained with a single band, related to the
EXP-A cutout configuration (see section. 6.2) and expressed in terms of the statistical estimators described
in Section 3.6.6. Performances are compared with the ones carried out by the VGG and the SC-VGG
networks.
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Figure B.2: False Positive to True Negative ratios as a function of normalised colour (F606 − F814)norm
and F814 magnitude related to VGG (left panel) and SC-VGG (right panel) performances. Parts of the
parameter space with zero True Negative are left white.
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Figure B.3: False Negative Ratio (FNR) as a function of: (i) galaxy-lens size θE and source F814
magnitude (top panels), (ii) source effective radius re and redshift zsrc (bottom panels). Performances are
related to VGG (left panels) and SC-VGG (right panels). Parts of the parameter space with zero True
Positive are left white.
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Figure B.4: Continuing of Fig. 6.15, related to M0416 galaxy cluster.
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Figure B.5: Continuing of Fig. B.4, related to M1115, R2248 galaxy clusters.

163



APPENDIX B

rxj1347 zcls = 0.451

3”

H1 F435W

3”

F606W

3”

F814W

Pr=0.01 Pr=1.00

3”

H2 F435W

3”

F606W

3”

F814W

Pr=1.00 Pr=1.00

rxj2129 zcls = 0.234

3”

I1 F435W

3”

F606W

3”

F814W

Pr=1.00 Pr=0.82

macs0429 zcls = 0.399

3”

J1 F435W

3”

F606W

3”

F814W

Pr=1.00 Pr=0.65

3”

J2 F435W

3”

F606W

3”

F814W

Pr=0.99 Pr=0.04

macs0744 zcls = 0.698

3”

K1 F435W

3”

F606W

3”

F814W

Pr=1.00 Pr=1.00

Figure B.6: Continuing of Fig. B.4, related to R1347, R2129, M0429, M0744 galaxy clusters.
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Figure B.7: Continuing of Fig. B.6, related to M1206 galaxy clusters.
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RA DEC Cluster PrVGG PrSC-VGG ref Fig. RA DEC Cluster PrVGG PrSC-VGG ref Fig.
181.549205 -8.810293 M1206 0.001 0.549 A1 6.16 181.569892 -8.797327 M1206 0.383 0.205 A65 6.16
181.555360 -8.804530 M1206 0.000 0.224 A2 6.16 181.566006 -8.797562 M1206 0.001 0.330 A66 6.16
181.536011 -8.807485 M1206 0.290 0.567 A3 6.16 181.549147 -8.797627 M1206 0.209 0.234 A67 6.16
181.533720 -8.806617 M1206 0.513 0.023 A4 6.16 181.547794 -8.794433 M1206 1.000 0.655 A68 6.16
181.557092 -8.806018 M1206 0.012 0.206 A5 6.16 181.564275 -8.802208 M1206 1.000 0.006 A69 6.16
181.520680 -8.822387 M1206 1.000 0.711 A6 6.16 181.559851 -8.801577 M1206 0.962 0.313 A70 6.16
181.543662 -8.790532 M1206 0.002 0.621 A7 6.16 181.541915 -8.799983 M1206 0.000 0.331 A71 6.16
181.552620 -8.814487 M1206 0.347 0.339 A8 6.16 181.552532 -8.796535 M1206 0.256 0.399 A72 6.16
181.559438 -8.790606 M1206 0.958 0.696 A9 6.16 181.542348 -8.797811 M1206 0.002 0.653 A73 6.16
181.519260 -8.810741 M1206 0.740 0.459 A10 6.16 342.185399 -44.518624 R2248 0.000 0.204 B1 6.16
181.523813 -8.795791 M1206 0.007 0.201 A11 6.16 342.161400 -44.555896 R2248 0.999 0.003 B2 6.16
181.536463 -8.792662 M1206 0.988 0.792 A12 6.16 342.141917 -44.525964 R2248 0.995 0.959 B3 6.16
181.525265 -8.789044 M1206 0.232 0.313 A13 6.16 342.148934 -44.523247 R2248 0.000 0.339 B4 6.16
181.549753 -8.793907 M1206 0.946 0.366 A14 6.16 342.184490 -44.543188 R2248 0.000 0.322 B5 6.16
181.547707 -8.810972 M1206 0.761 0.028 A15 6.16 342.203796 -44.542198 R2248 0.002 0.978 B6 6.16
181.538071 -8.811822 M1206 0.001 0.741 A16 6.16 342.210759 -44.540675 R2248 0.001 0.649 B7 6.16
181.553472 -8.809823 M1206 0.013 0.240 A17 6.16 342.178906 -44.524710 R2248 0.000 0.328 B8 6.16
181.551389 -8.792406 M1206 0.339 0.002 A18 6.16 342.184434 -44.517662 R2248 0.210 0.001 B9 6.16
181.550373 -8.792018 M1206 0.000 0.334 A19 6.16 342.152487 -44.506223 R2248 0.000 0.294 B10 6.16
181.561787 -8.808694 M1206 0.016 0.601 A20 6.16 342.174439 -44.546221 R2248 0.000 0.276 B11 6.16
181.556131 -8.797638 M1206 0.748 1.000 A21 6.16 342.204449 -44.528966 R2248 0.270 0.336 B12 6.16
181.549053 -8.797094 M1206 0.908 0.555 A22 6.16 342.152796 -44.554330 R2248 0.064 0.403 B13 6.16
181.544433 -8.801504 M1206 1.000 0.778 A23 6.16 342.204135 -44.537097 R2248 0.512 0.316 B14 6.16
181.561526 -8.808836 M1206 0.002 0.231 A24 6.16 342.201799 -44.563313 R2248 0.165 0.543 B15 6.16
181.546796 -8.795032 M1206 0.133 0.335 A25 6.16 342.223745 -44.533249 R2248 0.305 0.492 B16 6.16
181.556286 -8.797781 M1206 0.995 0.821 A26 6.16 342.191888 -44.529672 R2248 0.702 1.000 B17 6.16
181.541007 -8.792347 M1206 1.000 0.023 A27 6.16 342.173658 -44.532778 R2248 0.491 0.000 B18 6.16
181.562070 -8.804915 M1206 0.032 0.906 A28 6.16 342.215863 -44.518431 R2248 0.998 1.000 B19 6.16
181.565468 -8.793209 M1206 0.759 0.667 A29 6.16 342.175508 -44.535471 R2248 0.882 0.399 B20 6.16
181.565257 -8.806081 M1206 0.985 0.924 A30 6.16 342.211458 -44.525615 R2248 0.000 0.434 B21 6.16
181.550620 -8.800939 M1206 0.976 0.002 A31 6.16 342.155753 -44.545904 R2248 0.397 0.380 B22 6.16
181.539516 -8.791749 M1206 0.867 0.799 A32 6.16 342.154672 -44.539330 R2248 0.248 0.507 B23 6.16
181.527058 -8.780598 M1206 0.000 0.273 A33 6.16 342.161945 -44.529975 R2248 0.001 0.892 B24 6.16
181.540476 -8.788438 M1206 0.984 0.683 A34 6.16 342.215524 -44.519505 R2248 0.562 0.564 B25 6.16
181.561870 -8.804334 M1206 0.322 0.003 A35 6.16 342.142738 -44.531344 R2248 1.000 0.666 B26 6.16
181.565419 -8.795550 M1206 0.013 0.838 A36 6.16 342.166626 -44.534812 R2248 0.017 0.419 B27 6.16
181.530345 -8.785732 M1206 0.458 0.511 A37 6.16 342.182025 -44.540375 R2248 1.000 0.989 B28 6.16
181.553034 -8.780057 M1206 1.000 0.072 A38 6.16 342.162678 -44.538171 R2248 1.000 0.400 B29 6.16
181.567840 -8.800822 M1206 0.231 0.415 A39 6.16 342.192743 -44.519772 R2248 0.005 0.237 B30 6.16
181.545168 -8.801791 M1206 1.000 0.971 A40 6.16 342.170862 -44.506796 R2248 0.999 0.021 B31 6.16
181.553098 -8.794855 M1206 1.000 0.977 A41 6.16 64.041046 -24.069426 M0416 0.013 0.307 C1 B.9
181.545643 -8.786723 M1206 0.924 0.666 A42 6.16 64.029739 -24.083373 M0416 0.955 0.338 C2 B.9
181.561485 -8.804095 M1206 0.101 0.352 A43 6.16 64.044409 -24.067011 M0416 0.881 0.201 C3 B.9
181.528202 -8.786448 M1206 0.002 0.329 A44 6.16 64.029518 -24.079546 M0416 0.695 0.000 C4 B.9
181.573679 -8.802283 M1206 0.000 0.697 A45 6.16 64.044856 -24.073521 M0416 0.667 0.772 C5 B.9
181.544327 -8.815659 M1206 1.000 0.912 A46 6.16 64.055655 -24.060280 M0416 0.819 0.722 C6 B.9
181.553805 -8.800057 M1206 0.069 0.336 A47 6.16 64.057109 -24.051496 M0416 0.001 0.385 C7 B.9
181.544916 -8.800652 M1206 0.992 0.999 A48 6.16 64.038517 -24.062071 M0416 0.318 0.263 C8 B.9
181.541230 -8.792218 M1206 0.544 1.000 A49 6.16 64.017648 -24.090606 M0416 0.297 0.631 C9 B.9
181.566661 -8.804784 M1206 1.000 0.993 A50 6.16 64.048703 -24.064571 M0416 0.000 0.246 C10 B.9
181.572924 -8.787941 M1206 0.970 0.713 A51 6.16 64.050218 -24.057200 M0416 0.884 0.329 C11 B.9
181.530203 -8.809179 M1206 1.000 0.323 A52 6.16 64.020895 -24.073343 M0416 0.099 0.824 C12 B.9
181.544783 -8.802598 M1206 1.000 0.657 A53 6.16 64.022290 -24.072602 M0416 0.157 0.389 C13 B.9
181.567096 -8.803197 M1206 1.000 1.000 A54 6.16 64.027765 -24.061003 M0416 0.003 0.668 C14 B.9
181.539554 -8.816781 M1206 0.999 1.000 A55 6.16 64.033839 -24.080561 M0416 0.913 0.912 C15 B.9
181.524215 -8.785849 M1206 0.803 0.384 A56 6.16 64.025874 -24.075780 M0416 0.821 0.663 C16 B.9
181.545579 -8.800887 M1206 0.836 0.030 A57 6.16 64.059507 -24.054116 M0416 0.943 0.333 C17 B.9
181.563979 -8.795352 M1206 1.000 0.990 A58 6.16 64.032249 -24.065751 M0416 0.488 0.283 C18 B.9
181.556528 -8.791484 M1206 0.871 0.000 A59 6.16 64.042450 -24.063194 M0416 1.000 0.712 C19 B.9
181.537685 -8.805377 M1206 1.000 1.000 A60 6.16 64.032458 -24.068488 M0416 1.000 0.722 C20 B.9
181.547738 -8.802707 M1206 0.917 0.999 A61 6.16 64.033000 -24.074319 M0416 0.000 0.333 C21 B.9
181.568355 -8.798285 M1206 0.998 0.246 A62 6.16 64.030996 -24.078539 M0416 1.000 0.000 C22 B.9
181.552373 -8.794385 M1206 0.914 0.871 A63 6.16 64.025719 -24.084333 M0416 0.908 0.002 C23 B.9
181.562071 -8.802550 M1206 0.018 1.000 A64 6.16 64.041305 -24.071338 M0416 1.000 1.000 C24 B.9

Table B.5: List of candidate GGSLs identified by both models, with Pr(VGG) ∨ Pr(SC-VGG) ≥ 0.2.
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RA DEC Cluster PrVGG PrSC-VGG ref Fig. RA DEC Cluster PrVGG PrSC-VGG ref Fig.
64.017085 -24.089554 M0416 1.000 0.673 C25 B.9 168.980906 1.498636 M1115 0.000 0.315 E17 B.9
64.033445 -24.069097 M0416 0.979 0.256 C26 B.9 168.960956 1.514954 M1115 0.974 0.000 E18 B.9
64.032755 -24.068255 M0416 0.999 0.334 C27 B.9 292.964810 -26.580178 M1931 0.363 0.221 F1 B.9
64.042850 -24.062220 M0416 0.263 0.350 C28 B.9 292.973015 -26.557051 M1931 0.843 0.338 F2 B.9
64.032505 -24.078488 M0416 1.000 0.000 C29 B.9 292.941558 -26.599137 M1931 0.836 0.051 F3 B.9
64.050881 -24.060269 M0416 0.987 0.944 C30 B.9 292.947821 -26.576614 M1931 0.242 0.008 F4 B.9
64.024525 -24.081041 M0416 0.000 0.665 C31 B.9 292.963189 -26.571103 M1931 0.000 0.407 F5 B.9
64.041830 -24.062824 M0416 0.071 0.434 C32 B.9 292.956828 -26.575842 M1931 0.083 0.857 F6 B.9
64.050419 -24.061315 M0416 0.468 0.000 C33 B.9 292.946030 -26.568565 M1931 0.953 0.669 F7 B.9
64.046889 -24.075730 M0416 0.841 0.729 C34 B.9 292.949739 -26.582414 M1931 1.000 0.824 F8 B.9
64.023351 -24.076460 M0416 0.000 0.548 C35 B.9 292.950788 -26.577951 M1931 1.000 1.000 F9 B.9
64.024450 -24.080421 M0416 0.019 0.334 C36 B.9 292.954051 -26.584634 M1931 0.023 0.805 F10 B.9
64.047569 -24.069879 M0416 0.023 0.321 C37 B.9 292.962925 -26.572257 M1931 0.990 0.975 F11 B.9
64.027852 -24.079065 M0416 0.038 0.338 C38 B.9 292.966129 -26.580228 M1931 0.634 0.956 F12 B.9
39.973218 -1.599127 A370 0.000 0.666 D1 B.9 52.434135 -2.193304 M0329 0.985 0.908 G1 B.8
39.975147 -1.576869 A370 1.000 0.005 D2 B.9 52.435281 -2.196621 M0329 0.995 0.992 G2 B.8
39.962614 -1.562538 A370 0.147 0.263 D3 B.9 52.440005 -2.219678 M0329 0.000 0.667 G3 B.8
39.964630 -1.580285 A370 0.000 0.253 D4 B.9 52.394249 -2.209243 M0329 0.061 0.586 G4 B.8
39.981797 -1.570870 A370 0.008 0.474 D5 B.9 52.429369 -2.205997 M0329 0.008 0.615 G5 B.8
39.964958 -1.570948 A370 0.003 0.690 D6 B.9 52.405259 -2.218065 M0329 0.345 0.345 G6 B.8
39.980065 -1.582286 A370 0.803 0.302 D7 B.9 52.431373 -2.193189 M0329 0.000 0.335 G7 B.8
39.972213 -1.580356 A370 0.948 0.994 D8 B.9 52.426689 -2.205520 M0329 0.006 0.516 G8 B.8
39.978672 -1.561884 A370 0.005 0.336 D9 B.9 52.423219 -2.196231 M0329 1.000 0.463 G9 B.8
39.962863 -1.578398 A370 0.497 0.000 D10 B.9 52.426735 -2.207306 M0329 0.020 0.548 G10 B.8
39.981980 -1.571269 A370 0.009 0.718 D11 B.9 52.405343 -2.184214 M0329 0.298 0.676 G11 B.8
39.972699 -1.586730 A370 0.002 0.349 D12 B.9 52.428625 -2.193656 M0329 1.000 0.358 G12 B.8
39.971816 -1.583978 A370 0.767 0.000 D13 B.9 52.420547 -2.191693 M0329 1.000 0.610 G13 B.8
39.975173 -1.597391 A370 0.900 0.000 D14 B.9 52.414471 -2.202243 M0329 0.999 0.681 G14 B.8
39.963190 -1.565781 A370 1.000 0.662 D15 B.9 52.424938 -2.172465 M0329 0.393 0.012 G15 B.8
39.970596 -1.569273 A370 0.001 0.333 D16 B.9 52.426019 -2.188714 M0329 0.994 0.932 G16 B.8
39.972445 -1.584585 A370 0.998 0.380 D17 B.9 52.429977 -2.194287 M0329 0.448 0.001 G17 B.8
39.949592 -1.581789 A370 1.000 0.017 D18 B.9 52.438711 -2.199283 M0329 1.000 0.646 G18 B.8
39.959741 -1.573407 A370 0.851 0.802 D19 B.9 52.412965 -2.208764 M0329 0.208 0.017 G19 B.8
39.971814 -1.574785 A370 0.931 0.205 D20 B.9 52.426923 -2.211980 M0329 0.536 0.333 G20 B.8
39.963605 -1.553493 A370 0.379 0.090 D21 B.9 52.444865 -2.185521 M0329 0.999 1.000 G21 B.8
39.972376 -1.584299 A370 0.033 0.333 D22 B.9 52.430995 -2.195969 M0329 0.000 0.585 G22 B.8
39.964048 -1.566449 A370 0.000 0.463 D23 B.9 177.417479 22.399804 M1149 0.780 0.053 H1 B.8
39.970894 -1.584598 A370 0.011 0.401 D24 B.9 177.403577 22.396382 M1149 0.016 0.233 H2 B.8
39.967938 -1.584447 A370 1.000 0.014 D25 B.9 177.381690 22.396987 M1149 0.006 0.201 H3 B.8
39.962167 -1.562983 A370 0.295 0.288 D26 B.9 177.399049 22.422468 M1149 0.956 0.000 H4 B.8
39.961728 -1.560650 A370 0.004 0.503 D27 B.9 177.410707 22.385895 M1149 0.004 0.295 H5 B.8
39.955672 -1.576411 A370 0.951 0.010 D28 B.9 177.391681 22.390617 M1149 0.003 0.417 H6 B.8
39.985276 -1.580475 A370 0.962 0.841 D29 B.9 177.390966 22.401682 M1149 0.001 0.332 H7 B.8
39.978620 -1.591035 A370 1.000 0.667 D30 B.9 177.399004 22.418394 M1149 0.917 0.005 H8 B.8
39.970143 -1.580750 A370 1.000 1.000 D31 B.9 177.390152 22.403889 M1149 0.515 0.191 H9 B.8
39.974087 -1.594507 A370 0.195 0.326 D32 B.9 177.409508 22.392842 M1149 0.997 0.067 H10 B.8
39.968082 -1.577159 A370 0.000 0.331 D33 B.9 177.412881 22.393652 M1149 0.000 0.380 H11 B.8
39.973630 -1.559746 A370 0.038 0.992 D34 B.9 177.381092 22.401135 M1149 0.993 0.105 H12 B.8

168.960621 1.527189 M1115 0.006 0.587 E1 B.9 177.398745 22.398530 M1149 0.845 0.005 H13 B.8
168.944813 1.477052 M1115 0.213 0.669 E2 B.9 177.384125 22.393850 M1149 0.016 0.331 H14 B.8
168.961762 1.508663 M1115 0.601 0.221 E3 B.9 177.399824 22.397257 M1149 1.000 0.349 H15 B.8
168.956298 1.483837 M1115 0.001 0.257 E4 B.9 177.397787 22.395452 M1149 1.000 0.332 H16 B.8
168.957402 1.523481 M1115 0.000 0.327 E5 B.9 177.403692 22.389108 M1149 0.003 0.338 H17 B.8
168.954699 1.517676 M1115 1.000 0.333 E6 B.9 177.392881 22.397102 M1149 0.842 0.572 H18 B.8
168.966242 1.498636 M1115 1.000 0.472 E7 B.9 177.387703 22.393751 M1149 0.990 0.558 H19 B.8
168.956259 1.497409 M1115 1.000 0.613 E8 B.9 177.398603 22.398080 M1149 0.998 0.279 H20 B.8
168.978360 1.504300 M1115 1.000 0.698 E9 B.9 177.386621 22.413649 M1149 0.916 0.610 H21 B.8
168.952017 1.510496 M1115 0.894 0.140 E10 B.9 177.394534 22.400634 M1149 0.940 0.735 H22 B.8
168.980347 1.509714 M1115 0.996 0.362 E11 B.9 177.398456 22.405363 M1149 1.000 0.311 H23 B.8
168.968954 1.472671 M1115 1.000 0.678 E12 B.9 177.386380 22.413708 M1149 0.010 0.699 H24 B.8
168.960031 1.495261 M1115 0.000 0.207 E13 B.9 177.392878 22.418198 M1149 0.985 0.028 H25 B.8
168.992819 1.487158 M1115 0.991 0.629 E14 B.9 177.402882 22.402009 M1149 0.004 0.524 H26 B.8
168.978868 1.480593 M1115 0.942 0.266 E15 B.9 177.395075 22.389852 M1149 0.993 0.362 H27 B.8
168.949297 1.511959 M1115 0.999 0.453 E16 B.9 177.404015 22.402132 M1149 0.999 0.335 H28 B.8

Table B.6: Continuing of Tab. B.5.
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RA DEC Cluster PrVGG PrSC-VGG ref Fig. RA DEC Cluster PrVGG PrSC-VGG ref Fig.
177.382598 22.416507 M1149 1.000 1.000 H29 B.8 322.420801 0.103281 R2129 0.010 0.383 M6 B.10
177.402162 22.382830 M1149 0.000 0.643 H30 B.8 322.417389 0.094434 R2129 0.501 0.382 M7 B.10
41.997696 -3.555797 A383 0.026 0.698 I1 B.8 322.410915 0.092051 R2129 0.392 0.733 M8 B.10
42.004492 -3.550612 A383 0.046 0.288 I2 B.8 322.411309 0.096838 R2129 0.804 0.650 M9 B.10
42.020755 -3.552819 A383 0.992 0.658 I3 B.8 322.415970 0.097734 R2129 0.996 0.680 M10 B.10
42.005684 -3.501878 A383 0.007 0.597 I4 B.8 322.420880 0.098992 R2129 0.998 0.937 M11 B.10
42.014319 -3.559952 A383 0.951 1.000 I5 B.8 322.402667 0.070389 R2129 1.000 0.164 M12 B.10
42.024630 -3.546054 A383 0.003 0.353 I6 B.8 322.398374 0.062152 R2129 0.005 0.245 M13 B.10
42.040794 -3.540184 A383 0.407 0.048 I7 B.8 322.428787 0.108113 R2129 1.000 0.909 M14 B.10
42.002519 -3.534629 A383 0.000 0.439 I8 B.8 322.439126 0.078839 R2129 0.002 0.309 M15 B.10
42.015529 -3.511954 A383 1.000 1.000 I9 B.8 322.437007 0.119642 R2129 0.035 0.648 M16 B.10
42.010044 -3.533805 A383 0.000 0.327 I10 B.8 322.417106 0.083945 R2129 0.935 0.997 M17 B.10
42.020457 -3.522868 A383 0.151 0.811 I11 B.8 322.410033 0.081391 R2129 0.915 0.338 M18 B.10
42.008426 -3.529415 A383 1.000 1.000 I12 B.8 322.420240 0.098401 R2129 0.998 1.000 M19 B.10
42.013228 -3.535131 A383 0.613 0.065 I13 B.8 206.908966 -11.745779 R1347 0.001 0.568 N1 B.10
42.022289 -3.513336 A383 0.001 0.328 I14 B.8 206.883957 -11.731207 R1347 0.984 0.384 N2 B.10
22.963918 -13.615755 A209 0.000 0.243 J1 B.8 206.877701 -11.749572 R1347 0.445 0.298 N3 B.10
22.983180 -13.611237 A209 1.000 0.993 J2 B.8 206.873688 -11.733620 R1347 0.823 0.662 N4 B.10
22.977588 -13.617790 A209 0.214 0.002 J3 B.8 206.879166 -11.761577 R1347 0.389 0.010 N5 B.10
22.996970 -13.620002 A209 0.451 0.011 J4 B.8 206.883957 -11.773227 R1347 0.678 0.067 N6 B.10
22.959937 -13.598104 A209 0.236 0.946 J5 B.8 206.887988 -11.755872 R1347 0.985 0.997 N7 B.10
22.967728 -13.603752 A209 0.245 0.000 J6 B.8 206.884064 -11.760151 R1347 0.645 0.502 N8 B.10
22.988337 -13.590658 A209 0.012 0.279 J7 B.8 206.890745 -11.754540 R1347 0.987 0.843 N9 B.10
22.962118 -13.625705 A209 0.013 0.218 J8 B.8 206.877594 -11.752647 R1347 1.000 0.398 N10 B.10
22.997745 -13.596058 A209 0.868 0.066 J9 B.8 206.894897 -11.750385 R1347 1.000 0.295 N11 B.10
22.964874 -13.585267 A209 0.010 0.215 J10 B.8 206.886490 -11.770810 R1347 1.000 0.812 N12 B.10
22.962026 -13.601133 A209 0.000 0.297 J11 B.8 206.855698 -11.758474 R1347 0.999 0.197 N13 B.10
22.984309 -13.612992 A209 0.349 0.270 J12 B.8 206.878204 -11.774970 R1347 1.000 0.086 N14 B.10
22.957748 -13.603227 A209 0.988 0.367 J13 B.8 206.892150 -11.747934 R1347 1.000 1.000 N15 B.10
22.957086 -13.603233 A209 0.023 0.666 J14 B.8 206.884262 -11.745551 R1347 0.070 0.351 N16 B.10

197.763155 -3.184823 M1311 0.004 0.313 K1 B.8 206.882604 -11.740795 R1347 0.047 0.367 N17 B.10
197.739113 -3.174417 M1311 0.060 0.318 K2 B.8 206.893573 -11.750476 R1347 1.000 0.838 N18 B.10
197.770163 -3.186733 M1311 0.383 0.364 K3 B.8 3.585191 -30.394666 A2744 0.000 0.315 O1 B.10
197.751655 -3.192362 M1311 0.061 0.432 K4 B.8 3.581389 -30.393933 A2744 0.991 0.676 O2 B.10
197.763034 -3.175674 M1311 0.000 0.522 K5 B.8 3.578947 -30.394119 A2744 0.000 0.426 O3 B.10
197.741295 -3.160086 M1311 0.000 0.332 K6 B.8 3.604396 -30.384960 A2744 0.064 0.244 O4 B.10
197.761433 -3.173610 M1311 0.085 1.000 K7 B.8 3.578347 -30.389466 A2744 0.000 0.648 O5 B.10
197.769542 -3.172347 M1311 0.904 0.351 K8 B.8 3.603449 -30.416761 A2744 0.234 0.001 O6 B.10
322.350964 -7.697149 M2129 0.003 0.411 L1 B.10 3.578733 -30.384224 A2744 1.000 0.918 O7 B.10
322.370408 -7.692092 M2129 0.073 0.240 L2 B.10 3.593028 -30.382969 A2744 0.095 0.657 O8 B.10
322.356745 -7.692505 M2129 0.031 0.667 L3 B.10 3.586835 -30.384628 A2744 0.893 0.331 O9 B.10
322.351922 -7.689095 M2129 0.876 0.479 L4 B.10 3.571033 -30.409597 A2744 0.001 0.626 O10 B.10
322.353041 -7.666496 M2129 0.969 0.968 L5 B.10 3.579079 -30.400092 A2744 0.183 0.262 O11 B.10
322.346174 -7.693583 M2129 0.534 0.519 L6 B.10 3.582929 -30.399708 A2744 0.239 0.997 O12 B.10
322.357111 -7.689092 M2129 0.354 0.332 L7 B.10 3.601247 -30.404884 A2744 0.000 0.334 O13 B.10
322.348909 -7.690223 M2129 1.000 0.465 L8 B.10 3.608083 -30.387064 A2744 0.690 0.314 O14 B.10
322.349711 -7.692455 M2129 0.754 0.923 L9 B.10 3.598171 -30.404825 A2744 0.997 0.003 O15 B.10
322.354946 -7.696953 M2129 0.780 0.002 L10 B.10 3.581606 -30.399107 A2744 1.000 0.998 O16 B.10
322.364550 -7.684812 M2129 0.999 0.364 L11 B.10 3.591216 -30.386703 A2744 0.013 0.618 O17 B.10
322.358791 -7.691052 M2129 0.010 0.458 L12 B.10 325.063367 -23.640846 MS2137 0.004 0.268 P1 B.10
322.354951 -7.691770 M2129 1.000 0.518 L13 B.10 325.057296 -23.643997 MS2137 0.390 0.560 P2 B.10
322.359630 -7.690811 M2129 0.616 0.215 L14 B.10 325.046757 -23.666493 MS2137 0.826 0.962 P3 B.10
322.374608 -7.693138 M2129 1.000 0.994 L15 B.10 325.060821 -23.653246 MS2137 0.601 0.026 P4 B.10
322.363898 -7.683846 M2129 1.000 0.844 L16 B.10 325.058598 -23.687639 MS2137 0.008 0.329 P5 B.10
322.354745 -7.700537 M2129 1.000 1.000 L17 B.10 325.055221 -23.647320 MS2137 0.838 0.422 P6 B.10
322.361265 -7.696433 M2129 0.001 0.992 L18 B.10 325.064809 -23.643127 MS2137 0.137 0.667 P7 B.10
322.346094 -7.686202 M2129 1.000 0.671 L19 B.10 325.058077 -23.674354 MS2137 0.466 0.556 P8 B.10
322.374405 -7.688749 M2129 0.998 0.354 L20 B.10 325.045623 -23.661151 MS2137 0.113 0.998 P9 B.10
322.345472 -7.694764 M2129 0.948 0.998 L21 B.10 325.055548 -23.684806 MS2137 0.058 0.642 P10 B.10
322.346402 -7.687102 M2129 0.006 0.314 L22 B.10 325.050656 -23.662811 MS2137 1.000 0.002 P11 B.10
322.430260 0.081579 R2129 0.058 0.501 M1 B.10 325.043977 -23.640896 MS2137 0.120 0.656 P12 B.10
322.430535 0.077667 R2129 0.086 0.463 M2 B.10 325.041368 -23.649098 MS2137 0.001 0.616 P13 B.10
322.403545 0.104669 R2129 0.005 0.287 M3 B.10 325.069874 -23.693262 MS2137 0.221 0.004 P14 B.10
322.431283 0.099556 R2129 0.887 0.210 M4 B.10 325.061574 -23.651216 MS2137 0.013 0.284 P15 B.10
322.419355 0.080291 R2129 0.014 0.391 M5 B.10 325.084015 -23.658056 MS2137 0.312 0.920 P16 B.10

Table B.7: Continuing of Tab. B.6.
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Figure B.8: Continuing of Fig. 6.16. Identified GGSLs by both the models, by searching them around
cluster galaxies, related to M0329, M1149, A383, A209 and M1311. Each cutout is surrounding by a
coloured square according to the follow scheme based on the GGSL probability:
(i) Pr(VGG), Pr(S C-VGG) > 0.5 −→green;
(ii) Pr(VGG), Pr(S C-VGG) ∈ [0.2, 0.5] −→orange;
(iii) Pr(VGG) ∈ [0.2, 0.5] & Pr(S C-VGG) > 0.5 −→red;
(iv) Pr(S C-VGG) ∈ [0.2, 0.5] & Pr(VGG) > 0.5 −→yellow;
(v) Pr(VGG) > 0.5 & Pr(S C-VGG) ≤ 0.2 −→cyan;
(vii) Pr(S C-VGG) > 0.5 & Pr(VGG) ≤ 0.2 −→blue;
(ix) Pr(VGG) ∈ [0.2, 0.5] & Pr(S C-VGG) > 0.5 −→pink;
(ix) Pr(S C-VGG) ∈ [0.2, 0.5] & Pr(VGG) > 0.5 −→magenta.
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Figure B.9: Continuing of Fig. B.8, related to M0416, A370, M1115, M1931.
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Figure B.10: Continuing of Fig. B.9, related to M2129, R2129, R1347, A2744 and MS2137.
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Figure B.11: Continuing of Fig. 6.18. Identified GGSLs by both the models, by searching them around
RELICS cluster galaxies detected with CNN (see Sec. 5.5.1), related to A665, A2163, A520 and R1514.
Each cutout is surrounding by a coloured square according to the follow scheme based on GGSL
probability:
(i) Pr(VGG), Pr(S C-VGG) > 0.5 −→green;
(ii) Pr(VGG), Pr(S C-VGG) ∈ [0.2, 0.5] −→orange;
(iii) Pr(VGG) ∈ [0.2, 0.5] ∧ Pr(S C-VGG) > 0.5 −→red;
(iv) Pr(S C-VGG) ∈ [0.2, 0.5] ∧ Pr(VGG) > 0.5 −→yellow.
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Figure B.12: Continuing of Fig. B.11, related to A1763, P171, A1758 and A697.
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Figure B.13: Continuing of Fig. B.12, related to A1300, R0142, M0035, M0308 and R0949.
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Figure B.14: Continuing of Fig. B.13, related to P287, SM0723, R0032 and P138.

175



APPENDIX B

V1

RXC J2211-03 z = 0.397

V2 V3 V4 V5 V6 V7 V8 V9 V10

V11 V12 V13 V14 V15 V16 V17 V18 V19 V20

V21 V22 V23 V24 V25 V26 V27 V28 V29 V30

V31 V32 V33

W1

MACS 0159-08 z = 0.405

W2 W3 W4 W5 W6 W7 W8 W9 W10

W11 W12 W13 W14 W15 W16 W17 W18 W19 W20

W21 W22 W23 W24 W25 W26 W27 W28

X1

Abell 3192 z = 0.425

X2 X3 X4 X5 X6 X7 X8 X9 X10

X11 X12 X13 X14 X15 X16 X17 X18 X19 X20

X21 X22 X23 X24 X25 X26 X27 X28 X29 X30

X31 X32 X33 X34 X35

Figure B.15: Continuing of Fig. B.14, related to R2211, M0159 and A3192.
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Figure B.16: Continuing of Fig. B.15, related to M0553, S0254, S0615.
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Figure B.17: Continuing of Fig. B.16, related to P308 and P004.
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RXC J0018+16 z = 0.546
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A41 A42 A43 A44 A45 A46 A47 A48 A49 A50

A51 A52 A53 A54 A55 A56 A57 A58 A59 A60

A61 A62 A63 A64

B1
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Figure B.18: Continuing of Fig. B.17, related to R0018 and A0102.
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AF1
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Figure B.19: Continuing of Fig. B.18, related to WHL0137, P209 and R0600.
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RA DEC Cluster PrVGG PrSC-VGG ref Fig. RA DEC Cluster PrVGG PrSC-VGG ref Fig.
38.083543 -44.329022 R0232 0.977 0.230 A1 6.18 41.399409 -53.025286 AS295 0.933 0.328 D5 6.18
38.076415 -44.327149 R0232 0.952 0.597 A2 6.18 41.373087 -53.025589 AS295 0.999 0.396 D6 6.18
38.073241 -44.328398 R0232 0.995 0.350 A3 6.18 41.380877 -53.025005 AS295 0.974 0.665 D7 6.18
38.081053 -44.327592 R0232 0.936 0.332 A4 6.18 41.389771 -53.025044 AS295 0.315 0.294 D8 6.18
38.070998 -44.329991 R0232 0.947 0.665 A5 6.18 41.356002 -53.032220 AS295 0.294 0.333 D9 6.18
38.087439 -44.330440 R0232 0.987 0.651 A6 6.18 41.349989 -53.025540 AS295 0.505 0.687 D10 6.18
38.073960 -44.329866 R0232 0.999 0.654 A7 6.18 41.348735 -53.025400 AS295 0.513 0.404 D11 6.18
38.093396 -44.331208 R0232 0.971 0.338 A8 6.18 41.377118 -53.028160 AS295 1.000 0.853 D12 6.18
38.089018 -44.332592 R0232 1.000 0.986 A9 6.18 41.403151 -53.026813 AS295 0.868 0.682 D13 6.18
38.080842 -44.333526 R0232 0.999 0.346 A10 6.18 41.405686 -53.027130 AS295 1.000 0.849 D14 6.18
38.079770 -44.333807 R0232 1.000 0.820 A11 6.18 41.361073 -53.026270 AS295 0.999 0.335 D15 6.18
38.085996 -44.333707 R0232 0.996 0.693 A12 6.18 41.364551 -53.025670 AS295 0.921 0.756 D16 6.18
38.062041 -44.333774 R0232 0.821 0.711 A13 6.18 41.353387 -53.029324 AS295 0.212 0.269 D17 6.18
38.077651 -44.334615 R0232 0.674 0.599 A14 6.18 41.371924 -53.028152 AS295 0.744 0.332 D18 6.18
38.088500 -44.333941 R0232 0.453 0.335 A15 6.18 41.366768 -53.029584 AS295 0.859 0.625 D19 6.18
38.096277 -44.333996 R0232 0.272 0.376 A16 6.18 41.367887 -53.028023 AS295 1.000 1.000 D20 6.18
38.096880 -44.334218 R0232 0.570 0.304 A17 6.18 41.399633 -53.028507 AS295 0.935 0.338 D21 6.18
38.078660 -44.334681 R0232 1.000 0.666 A18 6.18 41.394021 -53.029050 AS295 0.987 0.633 D22 6.18
38.091609 -44.336589 R0232 0.996 0.396 A19 6.18 41.369750 -53.029485 AS295 0.308 0.385 D23 6.18
38.063360 -44.334814 R0232 0.741 0.330 A20 6.18 41.363116 -53.029203 AS295 0.992 0.999 D24 6.18
38.106702 -44.335152 R0232 0.994 0.221 A21 6.18 41.383817 -53.029615 AS295 0.920 0.286 D25 6.18
10.852736 -20.628240 A2813 0.981 0.201 B1 6.18 41.407159 -53.030058 AS295 0.701 0.331 D26 6.18
10.868791 -20.599029 A2813 1.000 0.546 B2 6.18 41.346021 -53.030689 AS295 0.977 0.323 D27 6.18
10.865267 -20.600064 A2813 0.819 0.367 B3 6.18 41.388060 -53.030980 AS295 0.504 0.333 D28 6.18
10.841784 -20.601531 A2813 1.000 0.581 B4 6.18 41.396259 -53.030953 AS295 0.264 0.617 D29 6.18
10.861113 -20.601913 A2813 0.938 0.345 B5 6.18 127.751205 65.860738 A665 0.723 0.264 E1 B.11
10.865811 -20.602559 A2813 1.000 1.000 B6 6.18 127.737079 65.864931 A665 1.000 0.962 E2 B.11
10.836914 -20.602395 A2813 1.000 0.332 B7 6.18 127.730490 65.860703 A665 0.602 0.329 E3 B.11
10.863904 -20.603331 A2813 0.782 0.348 B8 6.18 127.726286 65.858298 A665 0.985 0.288 E4 B.11
10.845211 -20.603161 A2813 1.000 0.408 B9 6.18 127.725784 65.857161 A665 0.389 0.647 E5 B.11
10.861435 -20.603005 A2813 0.999 0.356 B10 6.18 243.928079 -6.176388 A2163 0.992 0.256 F1 B.11
10.848932 -20.603527 A2813 0.592 0.326 B11 6.18 243.932567 -6.166514 A2163 0.997 0.895 F2 B.11
10.838214 -20.605300 A2813 0.964 0.982 B12 6.18 243.927604 -6.181065 A2163 0.767 0.667 F3 B.11
10.840793 -20.605032 A2813 0.412 0.536 B13 6.18 243.954509 -6.114815 A2163 0.289 0.340 F4 B.11
10.853951 -20.604483 A2813 0.999 0.529 B14 6.18 243.943015 -6.116479 A2163 0.943 0.725 F5 B.11
10.855255 -20.604495 A2813 0.629 0.326 B15 6.18 243.963589 -6.116862 A2163 0.550 0.333 F6 B.11
10.844802 -20.604287 A2813 0.321 0.213 B16 6.18 243.945983 -6.117801 A2163 0.999 0.665 F7 B.11
10.866275 -20.606122 A2813 0.357 0.421 B17 6.18 243.939783 -6.115412 A2163 0.995 0.333 F8 B.11

347.082112 -2.173065 A2537 1.000 0.874 C1 6.18 243.953630 -6.118431 A2163 0.438 0.655 F9 B.11
347.082648 -2.173957 A2537 0.954 0.503 C2 6.18 243.953180 -6.118344 A2163 0.275 0.784 F10 B.11
347.093627 -2.173993 A2537 1.000 1.000 C3 6.18 243.965554 -6.120163 A2163 1.000 0.992 F11 B.11
347.098979 -2.175405 A2537 0.999 0.333 C4 6.18 243.964979 -6.121074 A2163 0.996 0.291 F12 B.11
347.098264 -2.175023 A2537 0.653 0.464 C5 6.18 243.944383 -6.123981 A2163 0.254 0.333 F13 B.11
347.097265 -2.177083 A2537 0.982 0.323 C6 6.18 243.954813 -6.121941 A2163 0.903 0.653 F14 B.11
347.077677 -2.174581 A2537 0.999 1.000 C7 6.18 243.945840 -6.122522 A2163 0.999 0.855 F15 B.11
347.097907 -2.175957 A2537 0.974 0.441 C8 6.18 243.936479 -6.122404 A2163 0.250 0.333 F16 B.11
347.086477 -2.176348 A2537 0.537 0.209 C9 6.18 243.944732 -6.122504 A2163 0.223 0.301 F17 B.11
347.081802 -2.176433 A2537 0.903 0.652 C10 6.18 243.948987 -6.122425 A2163 0.877 0.799 F18 B.11
347.082295 -2.177589 A2537 1.000 0.560 C11 6.18 243.945703 -6.123422 A2163 0.559 0.283 F19 B.11
347.082749 -2.178636 A2537 0.988 0.949 C12 6.18 243.957849 -6.123865 A2163 0.999 0.666 F20 B.11
347.092148 -2.177220 A2537 0.995 0.957 C13 6.18 243.941699 -6.123722 A2163 0.990 0.516 F21 B.11
347.089517 -2.177938 A2537 0.976 0.620 C14 6.18 243.944075 -6.125182 A2163 0.504 0.273 F22 B.11
347.079016 -2.178462 A2537 0.998 0.334 C15 6.18 243.933384 -6.124473 A2163 0.980 0.830 F23 B.11
347.086675 -2.177875 A2537 0.999 0.367 C16 6.18 243.933122 -6.124808 A2163 0.999 0.688 F24 B.11
347.086522 -2.178336 A2537 0.383 0.333 C17 6.18 243.964522 -6.124531 A2163 0.969 0.685 F25 B.11
347.097725 -2.178192 A2537 0.999 0.255 C18 6.18 243.967581 -6.124480 A2163 0.998 0.334 F26 B.11
347.088423 -2.178213 A2537 0.982 0.339 C19 6.18 243.958084 -6.125638 A2163 0.676 0.668 F27 B.11
347.080590 -2.179580 A2537 1.000 0.649 C20 6.18 243.932159 -6.125774 A2163 0.948 0.207 F28 B.11
347.078155 -2.179578 A2537 0.383 0.220 C21 6.18 243.947271 -6.125733 A2163 0.657 0.228 F29 B.11
347.087689 -2.180594 A2537 0.837 0.382 C22 6.18 243.966202 -6.126714 A2163 0.266 0.314 F30 B.11
41.369295 -53.039381 AS295 0.972 0.895 D1 6.18 243.951838 -6.126754 A2163 0.445 0.496 F31 B.11
41.385382 -53.023733 AS295 1.000 0.845 D2 6.18 243.941327 -6.123020 A2163 0.470 0.790 F32 B.11
41.399157 -53.023974 AS295 0.994 0.349 D3 6.18 243.960555 -6.127892 A2163 0.999 0.744 F33 B.11
41.393147 -53.023839 AS295 0.231 0.205 D4 6.18 243.951900 -6.128254 A2163 0.251 0.370 F34 B.11

Table B.8: List of candidate GGSLs identified by both models, with Pr(VGG) ∧ Pr(SC-VGG) ≥ 0.2.
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RA DEC Cluster PrVGG PrSC-VGG ref Fig. RA DEC Cluster PrVGG PrSC-VGG ref Fig.
243.969074 -6.129009 A2163 1.000 0.647 F35 B.11 203.834135 41.011804 A1763 0.335 0.652 I15 B.12
243.963453 -6.129161 A2163 0.688 0.280 F36 B.11 203.809154 41.011884 A1763 1.000 0.327 I16 B.12
243.965468 -6.126715 A2163 0.214 0.246 F37 B.11 203.835735 41.010798 A1763 1.000 0.667 I17 B.12
243.966164 -6.131243 A2163 1.000 0.376 F38 B.11 203.829070 41.011168 A1763 0.651 0.208 I18 B.12
243.965383 -6.130550 A2163 0.263 0.425 F39 B.11 203.829807 41.015022 A1763 0.974 0.403 I19 B.12
243.939866 -6.130051 A2163 0.955 0.332 F40 B.11 203.849334 41.009271 A1763 0.987 0.248 I20 B.12
243.957728 -6.132009 A2163 0.894 0.333 F41 B.11 203.846265 41.009587 A1763 0.997 0.289 I21 B.12
243.961024 -6.131954 A2163 0.595 0.246 F42 B.11 48.237654 8.394189 P171 0.484 0.329 J1 B.12
73.502484 2.892460 A520 1.000 0.998 G1 B.11 48.232350 8.388718 P171 0.986 0.425 J2 B.12
73.515839 2.892225 A520 0.347 0.311 G2 B.11 48.231096 8.387971 P171 0.653 0.274 J3 B.12
73.506102 2.894669 A520 0.999 0.333 G3 B.11 48.241684 8.388159 P171 0.575 0.241 J4 B.12
73.511918 2.872859 A520 0.559 0.934 G4 B.11 48.232614 8.387442 P171 0.902 0.333 J5 B.12
73.516587 2.879256 A520 0.241 0.332 G5 B.11 48.243548 8.386929 P171 0.483 0.976 J6 B.12
73.519485 2.877890 A520 0.833 0.608 G6 B.11 48.242611 8.387193 P171 0.898 0.393 J7 B.12
73.508703 2.882102 A520 0.221 0.472 G7 B.11 48.241917 8.386927 P171 0.896 0.399 J8 B.12
73.518811 2.878598 A520 0.980 0.233 G8 B.11 48.233890 8.386564 P171 0.822 0.403 J9 B.12
73.512245 2.880953 A520 1.000 0.980 G9 B.11 48.232002 8.385988 P171 0.599 0.330 J10 B.12
73.510044 2.879602 A520 1.000 0.570 G10 B.11 48.232394 8.385528 P171 0.993 0.722 J11 B.12
73.522595 2.883650 A520 0.232 0.321 G11 B.11 48.233435 8.385559 P171 0.630 0.304 J12 B.12
73.531135 2.884223 A520 0.451 0.202 G12 B.11 48.233702 8.384986 P171 0.934 0.333 J13 B.12
73.532224 2.884880 A520 0.939 0.261 G13 B.11 48.238218 8.385716 P171 0.365 0.727 J14 B.12
73.508372 2.883982 A520 0.951 0.853 G14 B.11 203.227378 50.507703 A1758 0.714 0.586 K1 B.12
73.528543 2.884857 A520 0.469 0.697 G15 B.11 203.245075 50.506892 A1758 0.998 0.578 K2 B.12
73.503075 2.885970 A520 0.706 0.264 G16 B.11 203.144731 50.574991 A1758 1.000 0.998 K3 B.12
73.518635 2.886463 A520 0.739 0.664 G17 B.11 203.162039 50.575119 A1758 0.994 0.997 K4 B.12
73.517729 2.885292 A520 0.998 0.879 G18 B.11 203.175074 50.576332 A1758 0.994 0.817 K5 B.12
73.515037 2.888292 A520 0.997 0.339 G19 B.11 203.185998 50.571825 A1758 0.865 0.588 K6 B.12
73.531860 2.886364 A520 0.996 0.786 G20 B.11 203.189520 50.569973 A1758 0.633 0.277 K7 B.12
73.525684 2.887077 A520 0.998 0.688 G21 B.11 203.137141 50.569222 A1758 0.992 0.675 K8 B.12
73.513571 2.886791 A520 0.984 0.666 G22 B.11 203.187317 50.568311 A1758 0.996 0.286 K9 B.12
73.520903 2.886179 A520 0.911 0.315 G23 B.11 203.177243 50.568650 A1758 0.209 0.610 K10 B.12
73.537001 2.889209 A520 0.832 0.646 G24 B.11 203.180469 50.568280 A1758 0.465 0.360 K11 B.12
73.527925 2.889526 A520 0.433 0.654 G25 B.11 203.164827 50.566739 A1758 0.817 0.228 K12 B.12
73.521153 2.888601 A520 0.901 0.332 G26 B.11 203.186184 50.567327 A1758 0.875 0.554 K13 B.12

228.765673 -15.360110 R1514 1.000 0.995 H1 B.11 203.161545 50.567085 A1758 0.980 0.668 K14 B.12
228.765944 -15.360266 R1514 0.985 0.513 H2 B.11 203.134210 50.567240 A1758 0.262 0.369 K15 B.12
228.757889 -15.363546 R1514 0.868 0.327 H3 B.11 203.144768 50.567397 A1758 1.000 0.207 K16 B.12
228.761182 -15.361645 R1514 0.479 0.282 H4 B.11 203.191053 50.566101 A1758 0.992 0.627 K17 B.12
228.762870 -15.362066 R1514 0.883 0.292 H5 B.11 203.170178 50.564441 A1758 0.631 0.486 K18 B.12
228.761116 -15.364888 R1514 1.000 0.778 H6 B.11 203.170577 50.562903 A1758 0.563 0.317 K19 B.12
228.763191 -15.363550 R1514 0.299 0.333 H7 B.11 203.134941 50.563609 A1758 0.999 0.204 K20 B.12
228.762808 -15.365690 R1514 1.000 0.668 H8 B.11 203.150043 50.563574 A1758 0.869 0.442 K21 B.12
228.763984 -15.364214 R1514 0.863 0.319 H9 B.11 203.149268 50.564453 A1758 1.000 0.842 K22 B.12
228.762746 -15.364774 R1514 0.812 0.450 H10 B.11 203.164299 50.558240 A1758 0.850 0.585 K23 B.12
228.755525 -15.363511 R1514 0.704 0.451 H11 B.11 203.175381 50.561865 A1758 0.994 0.260 K24 B.12
228.768402 -15.363776 R1514 0.570 0.360 H12 B.11 203.140136 50.562191 A1758 0.300 0.993 K25 B.12
228.756827 -15.363892 R1514 0.997 0.686 H13 B.11 203.164682 50.562525 A1758 1.000 0.781 K26 B.12
228.753447 -15.364636 R1514 0.215 0.366 H14 B.11 203.188410 50.561612 A1758 0.518 0.558 K27 B.12
228.746458 -15.365964 R1514 0.652 0.724 H15 B.11 203.152112 50.561224 A1758 0.418 0.332 K28 B.12
228.743536 -15.367332 R1514 0.717 0.344 H16 B.11 203.150525 50.560493 A1758 0.218 0.207 K29 B.12
203.815783 41.011039 A1763 0.209 0.334 I1 B.12 203.142701 50.560807 A1758 1.000 0.983 K30 B.12
203.823442 41.009372 A1763 0.620 0.992 I2 B.12 203.183297 50.560480 A1758 0.716 0.316 K31 B.12
203.824574 41.007607 A1763 0.999 0.692 I3 B.12 203.169830 50.560359 A1758 0.872 0.614 K32 B.12
203.809801 41.014865 A1763 0.880 0.556 I4 B.12 203.148680 50.560605 A1758 1.000 0.437 K33 B.12
203.808563 41.014640 A1763 1.000 0.667 I5 B.12 203.185150 50.559935 A1758 0.438 0.215 K34 B.12
203.820694 41.009933 A1763 0.977 0.333 I6 B.12 203.143698 50.560142 A1758 0.814 0.346 K35 B.12
203.834272 41.013873 A1763 0.941 0.473 I7 B.12 203.134934 50.559376 A1758 0.992 0.464 K36 B.12
203.837263 41.013997 A1763 0.669 1.000 I8 B.12 203.180912 50.557989 A1758 0.883 0.324 K37 B.12
203.812413 41.013948 A1763 0.998 0.333 I9 B.12 203.175744 50.558895 A1758 0.837 0.895 K38 B.12
203.805959 41.013636 A1763 0.809 0.269 I10 B.12 130.751119 36.383217 A697 0.464 0.346 L1 B.12
203.851870 41.013330 A1763 0.983 0.623 I11 B.12 130.748605 36.381625 A697 0.998 0.796 L2 B.12
203.810994 41.012405 A1763 0.999 0.739 I12 B.12 130.741750 36.379195 A697 0.897 0.299 L3 B.12
203.824297 41.015710 A1763 0.998 0.730 I13 B.12 130.750966 36.379115 A697 0.361 0.501 L4 B.12
203.846413 41.012665 A1763 0.507 0.289 I14 B.12 130.758225 36.379297 A697 0.999 0.332 L5 B.12

Table B.9: Continuing of Tab. B.8.
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RA DEC Cluster PrVGG PrSC-VGG ref Fig. RA DEC Cluster PrVGG PrSC-VGG ref Fig.
130.762025 36.377412 A697 0.260 0.528 L6 B.12 47.238189 26.781248 M0308 1.000 1.000 P1 B.13
130.747593 36.376134 A697 0.452 0.304 L7 B.12 47.245838 26.781023 M0308 0.667 0.450 P2 B.13
130.748646 36.375835 A697 0.240 0.333 L8 B.12 47.235160 26.779966 M0308 0.965 0.332 P3 B.13
130.737197 36.376042 A697 0.602 0.353 L9 B.12 47.243672 26.780568 M0308 0.965 0.289 P4 B.13
130.739249 36.375289 A697 1.000 0.285 L10 B.12 47.234077 26.777638 M0308 0.996 0.344 P5 B.13
130.725808 36.375084 A697 0.833 0.342 L11 B.12 47.245308 26.777551 M0308 0.998 0.250 P6 B.13
130.740900 36.374686 A697 0.988 0.667 L12 B.12 47.240736 26.777097 M0308 0.563 0.667 P7 B.13
130.739241 36.374455 A697 0.976 0.334 L13 B.12 47.242694 26.776556 M0308 0.330 0.252 P8 B.13
130.724229 36.374141 A697 0.950 0.255 L14 B.12 47.241061 26.776545 M0308 0.966 1.000 P9 B.13
130.727404 36.374074 A697 0.225 0.565 L15 B.12 47.240113 26.775889 M0308 1.000 0.322 P10 B.13
130.730753 36.373980 A697 1.000 0.614 L16 B.12 47.231850 26.775639 M0308 0.999 0.335 P11 B.13
130.751409 36.373914 A697 0.704 0.628 L17 B.12 47.242354 26.775036 M0308 0.923 0.665 P12 B.13
130.762202 36.373712 A697 0.969 0.349 L18 B.12 47.228422 26.776195 M0308 0.995 0.727 P13 B.13
130.743802 36.364267 A697 0.494 0.274 L19 B.12 47.231809 26.774892 M0308 0.383 0.294 P14 B.13
172.972198 -19.929100 A1300 0.980 0.438 M1 B.13 47.224539 26.774908 M0308 0.395 0.423 P15 B.13
172.981823 -19.902731 A1300 0.828 0.202 M2 B.13 47.244640 26.774713 M0308 0.321 0.220 P16 B.13
172.974797 -19.906521 A1300 1.000 0.469 M3 B.13 47.238096 26.774197 M0308 0.306 0.333 P17 B.13
172.983333 -19.907735 A1300 0.999 0.270 M4 B.13 47.237336 26.773844 M0308 0.927 0.294 P18 B.13
172.987749 -19.907636 A1300 0.999 0.803 M5 B.13 47.229172 26.773672 M0308 1.000 0.703 P19 B.13
172.970618 -19.907926 A1300 0.625 0.632 M6 B.13 147.472323 17.139095 R0949 0.922 0.674 Q1 B.13
172.987746 -19.908371 A1300 1.000 0.663 M7 B.13 147.468292 17.138444 R0949 0.999 0.549 Q2 B.13
172.971213 -19.910747 A1300 0.538 0.342 M8 B.13 147.474248 17.138188 R0949 0.345 0.227 Q3 B.13
172.967673 -19.912232 A1300 0.997 0.933 M9 B.13 147.466839 17.137507 R0949 0.804 0.667 Q4 B.13
172.987576 -19.910593 A1300 0.882 0.589 M10 B.13 147.462137 17.137186 R0949 1.000 0.429 Q5 B.13
172.975181 -19.911377 A1300 0.978 0.474 M11 B.13 147.469564 17.137098 R0949 0.991 0.366 Q6 B.13
172.982521 -19.912162 A1300 0.312 0.692 M12 B.13 147.469043 17.136818 R0949 0.992 0.973 Q7 B.13
172.961008 -19.912426 A1300 0.993 0.642 M13 B.13 147.464849 17.136532 R0949 0.968 0.605 Q8 B.13
172.972642 -19.909413 A1300 1.000 0.999 M14 B.13 147.456091 17.136123 R0949 0.901 0.252 Q9 B.13
172.991050 -19.912786 A1300 0.915 0.445 M15 B.13 147.463530 17.136079 R0949 0.587 0.523 Q10 B.13
172.965870 -19.912038 A1300 0.999 0.370 M16 B.13 147.468843 17.135241 R0949 0.964 0.333 Q11 B.13
172.979752 -19.913286 A1300 0.726 0.326 M17 B.13 147.452568 17.134959 R0949 0.956 0.535 Q12 B.13
172.962195 -19.913371 A1300 0.932 0.279 M18 B.13 147.467276 17.134854 R0949 0.924 0.347 Q13 B.13
172.977756 -19.913425 A1300 0.415 0.518 M19 B.13 147.453441 17.134149 R0949 0.787 0.439 Q14 B.13
172.973807 -19.914043 A1300 0.998 0.471 M20 B.13 147.459301 17.134340 R0949 1.000 1.000 Q15 B.13
172.974242 -19.912522 A1300 0.852 0.577 M21 B.13 147.450586 17.133682 R0949 0.724 0.259 Q16 B.13
172.960913 -19.914074 A1300 0.245 0.463 M22 B.13 147.467889 17.132991 R0949 0.564 0.332 Q17 B.13
25.733187 44.658451 R0142 0.933 0.561 N1 B.13 147.464238 17.133526 R0949 0.997 0.328 Q18 B.13
25.738049 44.655190 R0142 0.256 0.335 N2 B.13 147.478119 17.132445 R0949 0.994 0.664 Q19 B.13
25.739779 44.655876 R0142 0.998 0.646 N3 B.13 147.461082 17.132416 R0949 0.474 0.468 Q20 B.13
25.729237 44.654171 R0142 0.990 0.417 N4 B.13 147.469684 17.132223 R0949 0.292 0.333 Q21 B.13
25.736988 44.653946 R0142 0.534 0.322 N5 B.13 147.466597 17.132210 R0949 0.962 0.353 Q22 B.13
25.733071 44.652208 R0142 0.309 0.656 N6 B.13 147.465909 17.131664 R0949 0.246 0.335 Q23 B.13
25.741553 44.651228 R0142 1.000 0.224 N7 B.13 147.447388 17.131799 R0949 0.999 0.666 Q24 B.13
25.720645 44.650318 R0142 0.997 0.629 N8 B.13 147.445330 17.131481 R0949 0.999 0.667 Q25 B.13
25.739717 44.650971 R0142 0.415 0.372 N9 B.13 147.457065 17.131177 R0949 0.351 0.350 Q26 B.13
25.741456 44.650383 R0142 0.677 0.360 N10 B.13 147.465073 17.131176 R0949 0.424 0.619 Q27 B.13
25.738044 44.650559 R0142 1.000 0.333 N11 B.13 147.468775 17.130714 R0949 0.738 0.967 Q28 B.13
25.746599 44.649857 R0142 0.298 0.358 N12 B.13 147.473401 17.130036 R0949 0.519 0.361 Q29 B.13
25.727291 44.649652 R0142 1.000 0.674 N13 B.13 177.699693 -28.090042 P287 0.968 0.331 R1 B.14
8.854833 -20.239799 M0035 0.996 0.282 O1 B.13 177.698819 -28.060667 P287 0.965 0.328 R2 B.14
8.855933 -20.243171 M0035 0.897 0.350 O2 B.13 177.704937 -28.061015 P287 1.000 0.926 R3 B.14
8.858709 -20.243636 M0035 0.792 0.705 O3 B.13 177.708342 -28.062141 P287 0.918 0.426 R4 B.14
8.864167 -20.244825 M0035 1.000 0.336 O4 B.13 177.699184 -28.062859 P287 0.993 0.666 R5 B.14
8.852255 -20.245320 M0035 0.999 0.531 O5 B.13 177.705402 -28.063905 P287 1.000 0.480 R6 B.14
8.867574 -20.246947 M0035 1.000 0.333 O6 B.13 177.704149 -28.064528 P287 0.325 0.322 R7 B.14
8.860331 -20.248645 M0035 0.736 0.395 O7 B.13 177.714712 -28.064546 P287 0.569 0.555 R8 B.14
8.884869 -20.248035 M0035 0.492 0.593 O8 B.13 177.707035 -28.062522 P287 1.000 0.982 R9 B.14
8.862643 -20.246181 M0035 0.447 0.231 O9 B.13 177.709675 -28.064669 P287 0.236 0.334 R10 B.14
8.855061 -20.248869 M0035 0.419 0.532 O10 B.13 177.717635 -28.065714 P287 0.996 1.000 R11 B.14
8.852004 -20.249465 M0035 0.435 0.982 O11 B.13 177.701623 -28.065965 P287 0.510 0.934 R12 B.14
8.868308 -20.242858 M0035 0.891 0.638 O12 B.13 177.704161 -28.066537 P287 0.650 0.253 R13 B.14
8.865948 -20.252209 M0035 0.557 0.758 O13 B.13 177.710545 -28.066542 P287 0.444 0.248 R14 B.14
8.856458 -20.252347 M0035 0.825 0.395 O14 B.13 177.704865 -28.066455 P287 0.742 0.985 R15 B.14
8.869537 -20.253199 M0035 0.984 0.355 O15 B.13 177.699844 -28.066534 P287 0.790 0.309 R16 B.14
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177.714458 -28.067332 P287 0.822 0.404 R17 B.14 8.063187 18.145563 R0032 0.983 0.537 T18 B.14
177.703455 -28.067592 P287 1.000 0.890 R18 B.14 8.056441 18.145435 R0032 0.963 0.380 T19 B.14
177.698174 -28.067561 P287 0.973 0.581 R19 B.14 8.051886 18.144986 R0032 0.791 0.588 T20 B.14
177.716704 -28.067598 P287 1.000 0.300 R20 B.14 8.053920 18.145246 R0032 0.638 0.275 T21 B.14
177.702759 -28.067849 P287 1.000 0.858 R21 B.14 8.045466 18.145230 R0032 1.000 0.577 T22 B.14
177.713576 -28.067318 P287 0.963 0.435 R22 B.14 8.048316 18.145290 R0032 0.994 0.646 T23 B.14
177.718427 -28.067836 P287 0.989 0.251 R23 B.14 8.051599 18.142515 R0032 0.800 0.380 T24 B.14
177.706995 -28.068124 P287 1.000 0.236 R24 B.14 8.050777 18.142065 R0032 0.999 0.334 T25 B.14
177.702324 -28.068199 P287 0.947 0.401 R25 B.14 8.033421 18.144492 R0032 0.995 0.667 T26 B.14
177.705192 -28.068764 P287 0.238 0.318 R26 B.14 8.059431 18.145121 R0032 0.918 0.703 T27 B.14
177.715230 -28.068991 P287 0.786 0.970 R27 B.14 8.044874 18.139102 R0032 0.883 0.415 T28 B.14
177.714032 -28.068670 P287 0.669 0.274 R28 B.14 8.065822 18.144855 R0032 0.993 0.378 T29 B.14
177.711964 -28.068809 P287 1.000 0.921 R29 B.14 36.793718 49.028778 P138 0.334 0.305 U1 B.14
177.718060 -28.069205 P287 0.748 0.343 R30 B.14 36.777962 49.028105 P138 0.698 0.321 U2 B.14
177.706413 -28.069512 P287 1.000 0.339 R31 B.14 36.785239 49.027930 P138 0.958 0.613 U3 B.14
177.709392 -28.069886 P287 0.994 0.645 R32 B.14 36.779104 49.026812 P138 0.987 0.593 U4 B.14
177.698591 -28.065546 P287 0.897 0.333 R33 B.14 36.774338 49.023918 P138 0.997 0.569 U5 B.14
177.726546 -28.070000 P287 0.311 0.669 R34 B.14 36.778074 49.024234 P138 0.400 0.361 U6 B.14
177.692986 -28.070934 P287 0.826 0.334 R35 B.14 36.766373 49.020475 P138 0.469 0.323 U7 B.14
177.691826 -28.071195 P287 0.428 0.354 R36 B.14 36.802899 49.019861 P138 0.406 0.333 U8 B.14
177.702485 -28.070230 P287 0.995 0.553 R37 B.14 36.790663 49.019515 P138 1.000 0.309 U9 B.14
110.829775 -73.433967 SM0723 0.986 0.666 S1 B.14 36.777108 49.017547 P138 0.961 0.626 U10 B.14
110.809605 -73.435490 SM0723 0.838 0.254 S2 B.14 36.777036 49.016390 P138 1.000 0.666 U11 B.14
110.838529 -73.435266 SM0723 0.409 0.235 S3 B.14 36.771894 49.016999 P138 0.997 0.286 U12 B.14
110.836723 -73.436255 SM0723 0.825 0.662 S4 B.14 36.760974 49.016506 P138 1.000 0.637 U13 B.14
110.837537 -73.436923 SM0723 0.584 0.295 S5 B.14 332.944317 -3.806315 R2211 0.328 0.213 V1 B.15
110.835860 -73.437334 SM0723 0.957 0.432 S6 B.14 332.947055 -3.806606 R2211 0.961 0.966 V2 B.15
110.853149 -73.437837 SM0723 0.951 0.308 S7 B.14 332.946578 -3.807178 R2211 1.000 0.333 V3 B.15
110.812462 -73.439979 SM0723 0.803 0.293 S8 B.14 332.942118 -3.807942 R2211 1.000 0.673 V4 B.15
110.840551 -73.440620 SM0723 0.991 0.334 S9 B.14 332.944407 -3.808375 R2211 0.954 0.665 V5 B.15
110.806765 -73.440961 SM0723 0.893 0.338 S10 B.14 332.946068 -3.808871 R2211 0.697 0.338 V6 B.15
110.852630 -73.441596 SM0723 0.951 0.658 S11 B.14 332.951242 -3.810859 R2211 0.907 0.522 V7 B.15
110.849733 -73.442273 SM0723 0.797 0.200 S12 B.14 332.939099 -3.810894 R2211 0.788 0.230 V8 B.15
110.805396 -73.442262 SM0723 0.348 0.297 S13 B.14 332.950487 -3.810783 R2211 0.436 0.699 V9 B.15
110.865293 -73.442315 SM0723 1.000 0.971 S14 B.14 332.942567 -3.811655 R2211 0.940 0.250 V10 B.15
110.856499 -73.441232 SM0723 1.000 0.348 S15 B.14 332.942149 -3.811989 R2211 0.892 0.517 V11 B.15
110.886405 -73.442762 SM0723 0.700 0.667 S16 B.14 332.953150 -3.812144 R2211 1.000 0.593 V12 B.15
110.828065 -73.443223 SM0723 0.719 0.335 S17 B.14 332.948313 -3.812906 R2211 1.000 0.667 V13 B.15
110.851143 -73.443188 SM0723 1.000 0.415 S18 B.14 332.947132 -3.813275 R2211 0.748 0.556 V14 B.15
110.849419 -73.443369 SM0723 0.558 0.226 S19 B.14 332.941042 -3.813978 R2211 0.857 0.725 V15 B.15
110.840216 -73.443452 SM0723 0.430 0.325 S20 B.14 332.937471 -3.813614 R2211 0.964 0.514 V16 B.15
110.832129 -73.443359 SM0723 0.919 0.218 S21 B.14 332.935563 -3.813725 R2211 1.000 0.998 V17 B.15
110.829746 -73.443423 SM0723 0.896 0.666 S22 B.14 332.948259 -3.813784 R2211 0.264 0.321 V18 B.15
110.833941 -73.443915 SM0723 0.433 0.333 S23 B.14 332.948100 -3.814232 R2211 0.258 0.476 V19 B.15
110.794150 -73.444223 SM0723 0.605 0.630 S24 B.14 332.939898 -3.814730 R2211 0.392 0.331 V20 B.15
110.810849 -73.444244 SM0723 0.646 0.690 S25 B.14 332.938427 -3.815240 R2211 0.645 1.000 V21 B.15
110.903105 -73.444390 SM0723 0.983 0.399 S26 B.14 332.945707 -3.814471 R2211 0.278 0.225 V22 B.15

8.036738 18.149779 R0032 0.571 0.243 T1 B.14 332.955343 -3.814889 R2211 1.000 0.654 V23 B.15
8.038601 18.149456 R0032 1.000 0.978 T2 B.14 332.933061 -3.815107 R2211 0.992 0.507 V24 B.15
8.046262 18.148888 R0032 0.985 0.318 T3 B.14 332.940491 -3.814992 R2211 0.302 0.666 V25 B.15
8.055383 18.147672 R0032 0.999 0.667 T4 B.14 332.948160 -3.816034 R2211 0.401 0.316 V26 B.15
8.052479 18.147878 R0032 0.399 0.292 T5 B.14 332.941155 -3.815918 R2211 0.414 0.396 V27 B.15
8.050332 18.147844 R0032 0.283 0.772 T6 B.14 332.949352 -3.816439 R2211 0.888 0.667 V28 B.15
8.055651 18.147573 R0032 0.990 0.334 T7 B.14 332.937394 -3.816302 R2211 0.999 0.331 V29 B.15
8.034867 18.147451 R0032 0.995 0.338 T8 B.14 332.934683 -3.817371 R2211 0.988 0.307 V30 B.15
8.053493 18.147262 R0032 0.658 0.894 T9 B.14 332.934958 -3.816604 R2211 1.000 0.367 V31 B.15
8.057944 18.146889 R0032 0.724 0.860 T10 B.14 332.934967 -3.816757 R2211 1.000 0.994 V32 B.15
8.058874 18.147045 R0032 0.374 0.509 T11 B.14 332.950377 -3.816667 R2211 1.000 0.201 V33 B.15
8.059349 18.147042 R0032 0.299 0.301 T12 B.14 29.969893 -8.813222 M0159 0.999 0.671 W1 B.15
8.043436 18.146547 R0032 0.294 0.255 T13 B.14 29.963165 -8.813345 M0159 0.688 0.339 W2 B.15
8.046783 18.146416 R0032 0.981 0.409 T14 B.14 29.944651 -8.813286 M0159 1.000 0.692 W3 B.15
8.039010 18.146019 R0032 0.972 0.296 T15 B.14 29.960498 -8.813415 M0159 1.000 0.928 W4 B.15
8.052291 18.146047 R0032 0.992 0.325 T16 B.14 29.955329 -8.813938 M0159 0.339 0.352 W5 B.15
8.065649 18.145925 R0032 0.994 0.334 T17 B.14 29.961945 -8.814059 M0159 0.391 0.427 W6 B.15
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29.969867 -8.815333 M0159 0.999 0.303 W7 B.15 88.339031 -33.693556 M0553 1.000 0.883 Y8 B.16
29.956619 -8.815032 M0159 0.967 0.669 W8 B.15 88.337511 -33.693345 M0553 0.984 0.981 Y9 B.16
29.963584 -8.814993 M0159 0.999 0.315 W9 B.15 88.332790 -33.694259 M0553 0.544 0.305 Y10 B.16
29.946252 -8.815569 M0159 0.826 0.465 W10 B.15 88.362085 -33.695670 M0553 0.960 0.342 Y11 B.16
29.960936 -8.815975 M0159 1.000 0.668 W11 B.15 88.338518 -33.696419 M0553 0.844 0.299 Y12 B.16
29.950093 -8.816147 M0159 0.297 0.317 W12 B.15 88.342484 -33.696519 M0553 1.000 0.668 Y13 B.16
29.959910 -8.817069 M0159 1.000 0.755 W13 B.15 88.334992 -33.696018 M0553 0.984 0.381 Y14 B.16
29.965087 -8.817241 M0159 0.979 0.676 W14 B.15 88.337029 -33.697135 M0553 0.573 0.300 Y15 B.16
29.955378 -8.818280 M0159 0.214 0.432 W15 B.15 88.357152 -33.697193 M0553 0.576 0.769 Y16 B.16
29.951784 -8.816701 M0159 0.953 0.410 W16 B.15 88.333265 -33.697596 M0553 0.977 0.840 Y17 B.16
29.941304 -8.819185 M0159 0.740 0.524 W17 B.15 88.357210 -33.697889 M0553 0.999 0.828 Y18 B.16
29.972749 -8.818741 M0159 0.362 0.210 W18 B.15 88.362645 -33.698459 M0553 0.878 0.355 Y19 B.16
29.963686 -8.820711 M0159 0.638 0.351 W19 B.15 88.359834 -33.699040 M0553 0.452 0.394 Y20 B.16
29.962907 -8.818324 M0159 1.000 0.347 W20 B.15 88.360638 -33.699873 M0553 0.251 0.509 Y21 B.16
29.963878 -8.818891 M0159 0.661 0.305 W21 B.15 88.324509 -33.699484 M0553 0.992 0.336 Y22 B.16
29.958514 -8.819400 M0159 1.000 1.000 W22 B.15 88.357361 -33.699504 M0553 1.000 0.343 Y23 B.16
29.962156 -8.818672 M0159 0.268 0.299 W23 B.15 43.574005 -58.927629 S0254 1.000 0.208 Z1 B.16
29.951979 -8.820668 M0159 0.619 0.446 W24 B.15 43.575589 -58.930225 S0254 1.000 0.366 Z2 B.16
29.942636 -8.820841 M0159 1.000 0.381 W25 B.15 43.570747 -58.933812 S0254 0.270 0.333 Z3 B.16
29.953744 -8.818570 M0159 0.670 0.551 W26 B.15 43.579072 -58.933953 S0254 1.000 0.916 Z4 B.16
29.972130 -8.822329 M0159 0.458 0.295 W27 B.15 43.578162 -58.933132 S0254 0.251 0.308 Z5 B.16
29.962355 -8.819547 M0159 0.387 0.642 W28 B.15 43.570004 -58.931458 S0254 0.244 0.346 Z6 B.16
59.726259 -29.909934 A3192 0.225 0.347 X1 B.15 43.565137 -58.933097 S0254 0.678 0.366 Z7 B.16
59.728679 -29.912681 A3192 1.000 0.666 X2 B.15 43.555985 -58.933565 S0254 0.904 0.569 Z8 B.16
59.719663 -29.913937 A3192 0.541 0.356 X3 B.15 43.580422 -58.934486 S0254 0.901 0.295 Z9 B.16
59.720985 -29.913443 A3192 0.241 0.656 X4 B.15 43.565955 -58.934592 S0254 0.993 0.646 Z10 B.16
59.723888 -29.915539 A3192 0.604 0.614 X5 B.15 43.564410 -58.935735 S0254 0.947 0.354 Z11 B.16
59.716934 -29.914192 A3192 1.000 0.987 X6 B.15 43.570150 -58.935499 S0254 0.921 0.674 Z12 B.16
59.724025 -29.914276 A3192 0.878 0.620 X7 B.15 43.558560 -58.935629 S0254 0.358 0.360 Z13 B.16
59.732350 -29.913922 A3192 0.262 0.728 X8 B.15 43.578367 -58.935657 S0254 0.705 0.333 Z14 B.16
59.719884 -29.913063 A3192 0.996 0.992 X9 B.15 43.574890 -58.935780 S0254 0.866 0.266 Z15 B.16
59.724292 -29.914442 A3192 0.998 0.268 X10 B.15 43.551766 -58.936129 S0254 0.318 0.372 Z16 B.16
59.718992 -29.915672 A3192 0.866 0.302 X11 B.15 43.556949 -58.939099 S0254 0.973 0.264 Z17 B.16
59.736897 -29.915681 A3192 0.870 0.460 X12 B.15 43.564599 -58.940267 S0254 0.444 0.331 Z18 B.16
59.724900 -29.913664 A3192 0.245 0.844 X13 B.15 43.561956 -58.939889 S0254 0.945 0.239 Z19 B.16
59.718010 -29.915815 A3192 0.386 0.260 X14 B.15 43.561417 -58.939778 S0254 0.991 0.352 Z20 B.16
59.728948 -29.914017 A3192 0.424 0.282 X15 B.15 43.547532 -58.939242 S0254 0.841 0.258 Z21 B.16
59.709115 -29.917094 A3192 1.000 0.999 X16 B.15 43.563404 -58.940977 S0254 0.874 0.380 Z22 B.16
59.725469 -29.917758 A3192 0.985 0.877 X17 B.15 43.548926 -58.939262 S0254 1.000 0.965 Z23 B.16
59.722855 -29.918200 A3192 1.000 0.819 X18 B.15 43.561321 -58.940513 S0254 0.855 0.276 Z24 B.16
59.734213 -29.914696 A3192 0.991 0.573 X19 B.15 43.570944 -58.938469 S0254 0.524 0.331 Z25 B.16
59.727098 -29.919150 A3192 0.720 0.607 X20 B.15 43.580027 -58.937881 S0254 0.990 0.335 Z26 B.16
59.730697 -29.918834 A3192 1.000 0.653 X21 B.15 43.576554 -58.940151 S0254 1.000 1.000 Z27 B.16
59.737041 -29.919278 A3192 0.806 0.666 X22 B.15 43.577089 -58.939562 S0254 0.896 0.495 Z28 B.16
59.738681 -29.919427 A3192 0.337 0.678 X23 B.15 43.571522 -58.937704 S0254 0.944 0.664 Z29 B.16
59.737525 -29.920146 A3192 0.409 0.221 X24 B.15 43.586093 -58.940390 S0254 1.000 0.550 Z30 B.16
59.722413 -29.919727 A3192 0.974 0.316 X25 B.15 43.566343 -58.941888 S0254 0.934 0.427 Z31 B.16
59.721118 -29.920113 A3192 0.378 0.679 X26 B.15 93.986844 -57.803065 S0615 0.202 0.616 AA1 B.16
59.733235 -29.919868 A3192 1.000 0.337 X27 B.15 93.976855 -57.799307 S0615 1.000 0.718 AA2 B.16
59.730215 -29.919435 A3192 0.973 0.659 X28 B.15 93.974158 -57.799626 S0615 0.997 0.576 AA3 B.16
59.728156 -29.919593 A3192 0.289 0.344 X29 B.15 93.977906 -57.797646 S0615 1.000 0.446 AA4 B.16
59.734750 -29.919779 A3192 0.950 0.665 X30 B.15 93.974835 -57.797083 S0615 0.972 0.551 AA5 B.16
59.723670 -29.919979 A3192 0.420 0.557 X31 B.15 93.954261 -57.793606 S0615 0.989 0.326 AA6 B.16
59.731197 -29.920052 A3192 0.721 0.404 X32 B.15 93.953270 -57.793209 S0615 0.872 0.521 AA7 B.16
59.731973 -29.920883 A3192 0.205 0.728 X33 B.15 93.958712 -57.795099 S0615 1.000 1.000 AA8 B.16
59.735798 -29.920785 A3192 0.445 0.283 X34 B.15 93.945177 -57.791392 S0615 1.000 0.361 AA9 B.16
59.725362 -29.921053 A3192 1.000 0.989 X35 B.15 93.991599 -57.790049 S0615 0.202 0.332 AA10 B.16
88.331720 -33.688137 M0553 1.000 0.835 Y1 B.16 93.963460 -57.789227 S0615 1.000 0.986 AA11 B.16
88.345715 -33.690849 M0553 0.985 0.667 Y2 B.16 93.952538 -57.788006 S0615 1.000 0.668 AA12 B.16
88.341234 -33.691706 M0553 1.000 0.835 Y3 B.16 229.688934 -81.514530 P308 0.568 0.216 AB1 B.17
88.329983 -33.693396 M0553 0.990 0.264 Y4 B.16 229.683893 -81.487553 P308 0.998 0.938 AB2 B.17
88.331393 -33.692017 M0553 0.997 0.365 Y5 B.16 229.733949 -81.486810 P308 1.000 0.347 AB3 B.17
88.334965 -33.692342 M0553 1.000 0.830 Y6 B.16 229.697560 -81.488074 P308 1.000 0.366 AB4 B.17
88.328215 -33.692657 M0553 0.911 0.215 Y7 B.16 229.695916 -81.489011 P308 0.761 0.239 AB5 B.17

Table B.12: Continuing of Tab. B.11.
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229.762961 -81.490642 P308 0.999 0.260 AB6 B.17 289.267327 -33.514765 P004 1.000 0.335 AC35 B.17
229.733966 -81.491011 P308 1.000 0.680 AB7 B.17 289.269847 -33.514431 P004 0.965 0.882 AC36 B.17
229.677095 -81.491134 P308 0.816 0.333 AB8 B.17 289.271915 -33.514639 P004 0.998 0.666 AC37 B.17
229.760154 -81.491500 P308 0.263 0.635 AB9 B.17 289.259681 -33.514345 P004 0.896 0.348 AC38 B.17
229.705934 -81.492081 P308 0.879 0.222 AB10 B.17 289.267509 -33.515316 P004 0.541 0.333 AC39 B.17
229.707530 -81.492375 P308 0.377 0.655 AB11 B.17 289.271121 -33.517015 P004 0.804 0.674 AC40 B.17
229.726832 -81.492266 P308 0.283 0.321 AB12 B.17 289.262945 -33.515016 P004 0.778 0.334 AC41 B.17
229.737264 -81.492243 P308 0.916 0.535 AB13 B.17 289.278089 -33.515303 P004 0.895 0.993 AC42 B.17
229.675872 -81.492711 P308 0.534 0.428 AB14 B.17 289.274790 -33.514919 P004 0.985 0.766 AC43 B.17
229.702828 -81.493225 P308 0.986 0.331 AB15 B.17 289.284722 -33.513645 P004 0.933 0.941 AC44 B.17
229.760383 -81.493963 P308 0.840 0.667 AB16 B.17 289.273189 -33.514407 P004 1.000 0.669 AC45 B.17
229.728141 -81.494126 P308 0.779 1.000 AB17 B.17 289.284455 -33.514593 P004 1.000 0.955 AC46 B.17
229.733976 -81.495567 P308 0.903 0.335 AB18 B.17 289.265681 -33.516325 P004 0.439 0.699 AC47 B.17
229.775275 -81.495998 P308 0.942 0.969 AB19 B.17 289.274868 -33.516479 P004 0.997 0.980 AC48 B.17
229.721945 -81.496847 P308 0.999 0.667 AB20 B.17 289.264398 -33.517122 P004 0.965 0.329 AC49 B.17
229.657885 -81.496314 P308 0.996 0.338 AB21 B.17 289.271746 -33.513807 P004 0.890 0.535 AC50 B.17
229.693787 -81.496756 P308 0.300 0.308 AB22 B.17 289.265373 -33.517447 P004 0.987 0.666 AC51 B.17
229.742174 -81.498625 P308 0.986 0.334 AB23 B.17 289.262628 -33.517478 P004 0.667 0.439 AC52 B.17
229.736026 -81.499647 P308 0.966 0.333 AB24 B.17 289.260920 -33.517860 P004 0.786 0.999 AC53 B.17
229.730087 -81.497850 P308 0.456 0.333 AB25 B.17 289.263008 -33.517980 P004 0.955 0.210 AC54 B.17
229.635020 -81.497320 P308 0.977 0.321 AB26 B.17 289.262888 -33.518037 P004 0.660 0.364 AC55 B.17
229.768562 -81.497856 P308 0.926 0.333 AB27 B.17 289.265225 -33.519544 P004 0.999 0.724 AC56 B.17
229.699976 -81.498355 P308 1.000 0.318 AB28 B.17 289.267405 -33.519569 P004 1.000 0.998 AC57 B.17
229.695387 -81.497873 P308 0.946 0.646 AB29 B.17 289.295169 -33.518503 P004 1.000 0.799 AC58 B.17
229.691409 -81.498933 P308 0.983 0.336 AB30 B.17 289.275504 -33.518683 P004 0.228 0.430 AC59 B.17
229.689462 -81.499706 P308 0.986 0.339 AB31 B.17 289.276079 -33.518743 P004 0.991 0.821 AC60 B.17
229.808439 -81.498408 P308 0.677 0.368 AB32 B.17 289.259485 -33.520921 P004 0.356 0.224 AC61 B.17
229.671246 -81.497870 P308 0.988 0.629 AB33 B.17 4.638111 16.417528 R0018 0.800 0.270 AD1 B.18
229.766630 -81.498558 P308 0.942 0.409 AB34 B.17 4.640558 16.416644 R0018 1.000 0.667 AD2 B.18
229.743960 -81.499291 P308 0.847 0.289 AB35 B.17 4.628445 16.418617 R0018 1.000 0.666 AD3 B.18
289.268263 -33.502597 P004 1.000 0.996 AC1 B.17 4.636089 16.418924 R0018 0.539 0.451 AD4 B.18
289.264746 -33.503127 P004 0.877 0.534 AC2 B.17 4.634200 16.418606 R0018 0.987 0.334 AD5 B.18
289.265208 -33.504694 P004 0.683 0.652 AC3 B.17 4.631823 16.449216 R0018 0.999 0.665 AD6 B.18
289.267787 -33.505382 P004 0.766 0.994 AC4 B.17 4.631542 16.448977 R0018 1.000 0.298 AD7 B.18
289.280296 -33.506429 P004 0.883 0.537 AC5 B.17 4.636183 16.448870 R0018 0.999 0.335 AD8 B.18
289.261098 -33.506541 P004 0.843 0.971 AC6 B.17 4.640629 16.448155 R0018 0.999 0.311 AD9 B.18
289.266844 -33.508021 P004 0.973 0.245 AC7 B.17 4.630036 16.448047 R0018 0.451 0.626 AD10 B.18
289.277188 -33.508067 P004 0.911 0.562 AC8 B.17 4.649228 16.448333 R0018 1.000 0.565 AD11 B.18
289.278724 -33.508175 P004 1.000 0.999 AC9 B.17 4.648767 16.448261 R0018 0.997 0.353 AD12 B.18
289.271212 -33.507800 P004 0.247 0.259 AC10 B.17 4.637701 16.448067 R0018 0.319 0.314 AD13 B.18
289.269597 -33.509748 P004 0.683 0.332 AC11 B.17 4.634978 16.448334 R0018 0.997 0.244 AD14 B.18
289.272744 -33.510036 P004 0.947 0.341 AC12 B.17 4.642577 16.448321 R0018 1.000 0.332 AD15 B.18
289.259615 -33.510396 P004 0.314 0.443 AC13 B.17 4.650537 16.447164 R0018 0.997 0.660 AD16 B.18
289.269460 -33.510761 P004 0.759 0.314 AC14 B.17 4.651958 16.448059 R0018 1.000 0.669 AD17 B.18
289.278255 -33.510990 P004 0.209 0.433 AC15 B.17 4.651472 16.447559 R0018 0.283 0.347 AD18 B.18
289.259296 -33.511166 P004 0.935 0.664 AC16 B.17 4.638962 16.447779 R0018 0.997 0.290 AD19 B.18
289.260395 -33.511607 P004 0.468 0.742 AC17 B.17 4.627094 16.447631 R0018 0.865 0.320 AD20 B.18
289.271911 -33.512456 P004 1.000 1.000 AC18 B.17 4.651420 16.447051 R0018 0.988 0.268 AD21 B.18
289.277592 -33.511932 P004 0.558 0.691 AC19 B.17 4.646250 16.446962 R0018 0.999 0.324 AD22 B.18
289.266263 -33.511943 P004 0.312 0.939 AC20 B.17 4.626265 16.446785 R0018 1.000 0.344 AD23 B.18
289.273956 -33.512782 P004 1.000 0.667 AC21 B.17 4.647046 16.446509 R0018 0.849 0.333 AD24 B.18
289.277111 -33.513385 P004 1.000 0.743 AC22 B.17 4.632581 16.446228 R0018 1.000 0.966 AD25 B.18
289.284706 -33.512975 P004 0.388 0.987 AC23 B.17 4.639124 16.445602 R0018 0.992 0.333 AD26 B.18
289.256348 -33.512940 P004 0.848 0.952 AC24 B.17 4.629930 16.446205 R0018 1.000 0.388 AD27 B.18
289.289576 -33.513562 P004 0.761 0.399 AC25 B.17 4.652814 16.446108 R0018 0.775 0.256 AD28 B.18
289.261938 -33.513941 P004 0.587 0.999 AC26 B.17 4.639442 16.445460 R0018 0.941 0.289 AD29 B.18
289.262687 -33.513591 P004 0.997 0.360 AC27 B.17 4.627114 16.445818 R0018 0.937 0.242 AD30 B.18
289.260361 -33.513339 P004 0.927 0.692 AC28 B.17 4.622135 16.445808 R0018 0.984 0.321 AD31 B.18
289.286884 -33.515284 P004 0.650 0.666 AC29 B.17 4.629878 16.443151 R0018 0.591 0.233 AD32 B.18
289.271067 -33.515473 P004 0.986 0.320 AC30 B.17 4.627585 16.445328 R0018 0.321 0.333 AD33 B.18
289.270644 -33.516327 P004 0.980 0.674 AC31 B.17 4.629517 16.444072 R0018 0.998 0.333 AD34 B.18
289.253847 -33.514585 P004 0.692 0.331 AC32 B.17 4.639300 16.450342 R0018 0.961 0.333 AD35 B.18
289.280101 -33.514731 P004 0.887 0.667 AC33 B.17 4.628272 16.445334 R0018 0.881 0.269 AD36 B.18
289.266953 -33.514313 P004 1.000 0.526 AC34 B.17 4.625257 16.444819 R0018 0.496 0.333 AD37 B.18

Table B.13: Continuing of Tab. B.12.
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4.632423 16.444267 R0018 1.000 0.717 AD38 B.18 15.723411 -49.272209 A0102 0.981 0.998 AE38 B.18
4.643235 16.445059 R0018 1.000 0.979 AD39 B.18 15.762875 -49.271909 A0102 0.351 0.357 AE39 B.18
4.624582 16.444181 R0018 0.208 0.281 AD40 B.18 15.727086 -49.271864 A0102 1.000 0.333 AE40 B.18
4.635673 16.445253 R0018 0.476 0.313 AD41 B.18 15.758277 -49.271854 A0102 0.997 0.319 AE41 B.18
4.647043 16.445444 R0018 1.000 0.661 AD42 B.18 15.735657 -49.271786 A0102 1.000 0.202 AE42 B.18
4.641571 16.443584 R0018 1.000 0.333 AD43 B.18 24.346045 -8.437080 W0137 0.611 0.657 AF1 B.19
4.620435 16.443779 R0018 0.749 0.333 AD44 B.18 24.343247 -8.436651 W0137 1.000 0.333 AF2 B.19
4.639015 16.443877 R0018 0.379 0.212 AD45 B.18 24.345894 -8.438249 W0137 0.988 0.999 AF3 B.19
4.646416 16.443746 R0018 0.950 0.321 AD46 B.18 24.341976 -8.439406 W0137 0.734 0.332 AF4 B.19
4.650429 16.443751 R0018 0.996 0.341 AD47 B.18 24.341967 -8.440675 W0137 1.000 0.991 AF5 B.19
4.650545 16.443261 R0018 0.381 0.538 AD48 B.18 24.356057 -8.441498 W0137 0.999 0.342 AF6 B.19
4.646573 16.449744 R0018 0.897 0.400 AD49 B.18 24.355217 -8.441927 W0137 0.270 0.383 AF7 B.19
4.621677 16.443658 R0018 0.856 0.626 AD50 B.18 24.363809 -8.442644 W0137 0.994 0.667 AF8 B.19
4.626820 16.443231 R0018 0.998 0.218 AD51 B.18 24.372027 -8.442642 W0137 0.398 0.355 AF9 B.19
4.630465 16.442819 R0018 0.998 0.222 AD52 B.18 24.357117 -8.442711 W0137 0.325 0.413 AF10 B.19
4.645386 16.443097 R0018 0.748 0.316 AD53 B.18 24.345480 -8.443148 W0137 0.995 1.000 AF11 B.19
4.629645 16.444763 R0018 1.000 0.537 AD54 B.18 24.345509 -8.443452 W0137 0.998 0.670 AF12 B.19
4.646007 16.442448 R0018 0.870 0.281 AD55 B.18 24.344954 -8.443348 W0137 0.993 0.310 AF13 B.19
4.641977 16.442762 R0018 1.000 0.332 AD56 B.18 24.343053 -8.443251 W0137 0.953 0.341 AF14 B.19
4.626080 16.442053 R0018 1.000 0.333 AD57 B.18 24.360774 -8.443541 W0137 0.982 0.333 AF15 B.19
4.638662 16.442014 R0018 1.000 0.339 AD58 B.18 24.363839 -8.444494 W0137 0.731 0.313 AF16 B.19
4.658798 16.442134 R0018 0.968 0.382 AD59 B.18 24.354650 -8.444528 W0137 0.686 0.349 AF17 B.19
4.629318 16.442080 R0018 0.282 0.333 AD60 B.18 24.357497 -8.444641 W0137 0.772 0.332 AF18 B.19
4.652313 16.441750 R0018 0.997 0.215 AD61 B.18 24.344602 -8.445021 W0137 0.232 0.962 AF19 B.19
4.647441 16.442342 R0018 1.000 0.986 AD62 B.18 24.366638 -8.445276 W0137 0.945 0.998 AF20 B.19
4.628606 16.440959 R0018 1.000 0.664 AD63 B.18 24.358397 -8.445070 W0137 0.682 0.309 AF21 B.19
4.628057 16.441327 R0018 1.000 0.239 AD64 B.18 24.372270 -8.445366 W0137 0.662 0.431 AF22 B.19

15.747497 -49.288363 A0102 0.998 0.569 AE1 B.18 24.356285 -8.445614 W0137 0.999 0.334 AF23 B.19
15.751036 -49.283926 A0102 0.790 0.540 AE2 B.18 110.599394 7.429031 P209 0.247 0.556 AG1 B.19
15.756001 -49.285065 A0102 0.505 0.536 AE3 B.18 110.594804 7.429163 P209 0.502 0.668 AG2 B.19
15.754326 -49.283525 A0102 0.997 0.336 AE4 B.18 110.597103 7.426830 P209 0.327 0.390 AG3 B.19
15.741512 -49.283777 A0102 0.996 0.634 AE5 B.18 110.600199 7.426543 P209 0.816 0.263 AG4 B.19
15.748365 -49.282203 A0102 0.663 0.561 AE6 B.18 110.599546 7.423701 P209 0.396 0.498 AG5 B.19
15.749764 -49.287315 A0102 0.983 0.325 AE7 B.18 110.598643 7.423538 P209 1.000 0.672 AG6 B.19
15.757187 -49.283757 A0102 0.987 1.000 AE8 B.18 110.593232 7.423150 P209 0.998 0.502 AG7 B.19
15.736601 -49.281107 A0102 0.992 0.332 AE9 B.18 110.596109 7.422303 P209 1.000 0.669 AG8 B.19
15.758512 -49.280717 A0102 0.820 0.660 AE10 B.18 110.604339 7.422300 P209 0.810 0.333 AG9 B.19
15.728561 -49.281072 A0102 0.252 0.360 AE11 B.18 110.603650 7.420963 P209 0.431 0.298 AG10 B.19
15.749822 -49.280469 A0102 1.000 0.659 AE12 B.18 110.602119 7.420704 P209 0.840 0.667 AG11 B.19
15.757079 -49.280365 A0102 0.439 0.662 AE13 B.18 110.600499 7.419679 P209 0.971 0.334 AG12 B.19
15.729662 -49.280268 A0102 0.251 0.239 AE14 B.18 110.600980 7.417047 P209 0.990 0.420 AG13 B.19
15.750815 -49.279652 A0102 0.987 0.226 AE15 B.18 110.602728 7.419524 P209 0.685 0.496 AG14 B.19
15.736055 -49.281462 A0102 1.000 0.333 AE16 B.18 110.596634 7.420050 P209 0.927 0.351 AG15 B.19
15.727456 -49.278875 A0102 0.204 0.326 AE17 B.18 110.609209 7.418805 P209 0.778 0.216 AG16 B.19
15.750832 -49.277345 A0102 0.446 0.644 AE18 B.18 110.602065 7.416801 P209 1.000 0.331 AG17 B.19
15.746601 -49.277344 A0102 0.391 0.629 AE19 B.18 110.611788 7.416489 P209 1.000 0.491 AG18 B.19
15.750003 -49.277332 A0102 0.447 0.461 AE20 B.18 110.611167 7.416341 P209 0.249 0.719 AG19 B.19
15.741019 -49.278046 A0102 0.879 0.674 AE21 B.18 110.611373 7.415681 P209 1.000 0.545 AG20 B.19
15.730908 -49.277157 A0102 0.964 0.303 AE22 B.18 110.599822 7.414025 P209 0.586 0.309 AG21 B.19
15.732312 -49.276890 A0102 0.216 0.330 AE23 B.18 110.587345 7.414312 P209 1.000 0.428 AG22 B.19
15.722926 -49.276564 A0102 0.821 0.292 AE24 B.18 110.611868 7.413887 P209 0.925 0.456 AG23 B.19
15.741058 -49.276350 A0102 0.996 0.257 AE25 B.18 110.612921 7.412865 P209 0.998 0.362 AG24 B.19
15.761061 -49.275841 A0102 0.997 0.351 AE26 B.18 110.613358 7.411222 P209 0.989 0.308 AG25 B.19
15.752898 -49.281052 A0102 0.906 0.334 AE27 B.18 110.614711 7.412055 P209 0.943 0.321 AG26 B.19
15.736098 -49.275362 A0102 0.925 0.328 AE28 B.18 110.584016 7.417427 P209 1.000 0.942 AG27 B.19
15.747847 -49.275324 A0102 0.625 0.272 AE29 B.18 110.579786 7.412825 P209 1.000 0.778 AG28 B.19
15.746534 -49.274617 A0102 0.601 0.888 AE30 B.18 90.027605 -20.118237 R0600 0.504 0.623 AH1 B.19
15.758474 -49.274466 A0102 0.927 0.352 AE31 B.18 90.049379 -20.115928 R0600 0.986 0.317 AH2 B.19
15.741352 -49.274333 A0102 0.655 0.340 AE32 B.18 90.035957 -20.116439 R0600 0.900 0.667 AH3 B.19
15.755926 -49.274297 A0102 1.000 0.564 AE33 B.18 90.051412 -20.116087 R0600 0.992 0.661 AH4 B.19
15.734411 -49.274219 A0102 1.000 0.649 AE34 B.18 90.037106 -20.117656 R0600 0.592 0.436 AH5 B.19
15.740798 -49.274493 A0102 1.000 0.463 AE35 B.18 90.044546 -20.117673 R0600 0.307 0.221 AH6 B.19
15.719006 -49.274424 A0102 0.870 0.289 AE36 B.18 90.042037 -20.116914 R0600 0.264 0.667 AH7 B.19
15.734381 -49.272584 A0102 0.331 0.333 AE37 B.18 90.042653 -20.117302 R0600 0.357 0.905 AH8 B.19

Table B.14: Continuing of Tab. B.13.
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90.045772 -20.117582 R0600 0.576 0.245 AH9 B.19 90.048186 -20.118354 R0600 0.994 0.627 AH24 B.19
90.044559 -20.116850 R0600 0.255 0.328 AH10 B.19 90.029621 -20.118742 R0600 0.688 0.332 AH25 B.19
90.038981 -20.117781 R0600 0.996 0.330 AH11 B.19 90.057160 -20.118681 R0600 0.424 0.335 AH26 B.19
90.025945 -20.116590 R0600 0.944 0.826 AH12 B.19 90.028746 -20.118705 R0600 0.210 0.373 AH27 B.19
90.039903 -20.116757 R0600 0.972 0.999 AH13 B.19 90.030092 -20.119584 R0600 0.966 0.423 AH28 B.19
90.054457 -20.117200 R0600 0.988 0.390 AH14 B.19 90.051747 -20.121539 R0600 1.000 0.365 AH29 B.19
90.051865 -20.117657 R0600 1.000 0.996 AH15 B.19 90.050168 -20.118739 R0600 0.773 0.335 AH30 B.19
90.056770 -20.119379 R0600 0.963 0.621 AH16 B.19 90.026315 -20.116969 R0600 1.000 0.660 AH31 B.19
90.036921 -20.116975 R0600 0.982 0.579 AH17 B.19 90.026262 -20.116329 R0600 0.894 0.468 AH32 B.19
90.033996 -20.118433 R0600 0.418 0.324 AH18 B.19 90.046736 -20.119705 R0600 0.794 0.216 AH33 B.19
90.034041 -20.119145 R0600 0.946 0.667 AH19 B.19 90.046411 -20.119161 R0600 0.987 0.347 AH34 B.19
90.036136 -20.117680 R0600 0.975 0.243 AH20 B.19 90.043497 -20.119097 R0600 0.866 0.759 AH35 B.19
90.027826 -20.116841 R0600 0.688 0.748 AH21 B.19 90.052706 -20.118990 R0600 1.000 0.342 AH36 B.19
90.039183 -20.117243 R0600 0.593 0.667 AH22 B.19 90.039637 -20.119513 R0600 0.998 0.351 AH37 B.19
90.032899 -20.115873 R0600 0.954 0.507 AH23 B.19

Table B.15: Continuing of Tab. B.14.
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