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ABSTRACT

The definition of sound intensity as a complex quantity, where the real
part coincides with the active intensity vector known from classic textbooks
and the imaginary part is related to local oscillatory transport of energy, is
still a controversial problem.

To overcome this impasse, this work exposes a solid physical foundation
to the concept of complex sound intensity and proposes a device for measur-
ing the complex sound intensity in 3-D from the wave impedance.

Furthermore, the concepts and methods have been validated by simula-
tion results and measurements in real environments, and their application in
the field of clinical audiometry has been addressed.
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ABSTRACT

La definizione dell’intensità acustica come una grandezza complessa avente
la parte reale coincidente con il vettore di intensità attiva già noto in let-
teratura e la parte immaginaria legata alle oscillazioni locali dell’energia, è
ancora un problema controverso.

Per superare questo problema, il presente lavoro fornisce una solida base
fisica al concetto di intensità acustica complessa e propone lo schema di un
dispositivo per la misura dell’intensità complessa in tre dimensioni a partire
dagli spettri dell’impedenza acustica.

Inoltre, i concetti e i metodi qui formulati sono stati convalidati per mezzo
di simulazioni analitiche e numeriche, e, sperimentalmente, con misure in
ambienti reali e applicazioni nel campo dell’audiometria clinica.
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ABSTRACT

La definición de intensidad acústica como una cantidad compleja, donde
la parte real coincide con el vector de intensidad activa ya conocido en liter-
atura, y la parte imaginaria está relacionada con las oscilaciones locales de
energía, es todavía un problema controversial.

Para superar este impasse, el presente trabajo brinda una solida base física
al concepto de intensidad acústica compleja y propone el esquema de un
dispositivo para la medición de la intensidad compleja en tres dimensiones
a partir de la impedancia acústica.

Además, los conceptos y métodos formulados aquí han sido convalida-
dos a través de simulaciones analíticas y numéricas, y experimentalmente
verificados por medio de mediciones en ambientes reales y aplicaciones en
el campo de la audiometría clínica.
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calculated from the acoustic power factor ξ is shown. . . . . . . . . . . . . 26

2.8 Active (blue) and Reactive (red) intensities in a Quasi-stationaryWave Field
in 1-D for Monochromatic Case (left) and Three-frequency Case (right) . . 27

2.9 Quasi-stationary Wave Model in 2-D. . . . . . . . . . . . . . . . . . . . . 28

vii



Measuring complex sound intensity from wave impedance

2.10 Active (blue) and Reactive (red) Intensity in a Quasi-stationary Wave Field
in 2-D for Monochromatic Case. . . . . . . . . . . . . . . . . . . . . . . . 28

2.11 Active (blue) and Reactive (red) Intensity in a Quasi-stationary Wave Field
in 2-D for Three-frequency Case. . . . . . . . . . . . . . . . . . . . . . . . 29

3.1 Example of Axial p-p Intensity Probe: Microphones are in Face to Face
Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Scanning ElectronMicroscope (SEM) Photo of theUltra-thin PlatinumWires
of a Microflown Probe [1] . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Wheatstone Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4 Microflown: Polar Patterns at Different Frequencies (Linear scale, Only

Half the Response is Shown) [1] . . . . . . . . . . . . . . . . . . . . . . . 34
3.5 Calibration Setup: (a) Active Calibration, (b,c) Reactive Calibration. . . . 36
3.6 Electrical analogy. Open tube (red) and Closed tube (blue) . . . . . . . . . 37
3.7 Comparison of correction functionsK, Γ̂A, Γ̂R and Γ̂ (ω) =

(
Γ̂A (ω) + Γ̂R (ω)

)/
2

obtained for an axial pressure-velocity probes, using the active (red curves)
and reactive (blue curves) calibration methods. . . . . . . . . . . . . . . . 37

4.1 Flowchart of a precision device for measuring the 3D complex intensity
from wave admittance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Waveguide Measurement Setup. . . . . . . . . . . . . . . . . . . . . . . . 45
4.3 Anechoic Waveguide (anechoic calibration): a) c-normalized speed of the

energy particle, b) active intensity, c) total reactivity. Low frequencies in
red, medium frequencies in green, high frequencies in blue. . . . . . . . . 46

4.4 Anechoic Waveguide (reactive calibration): a) c-normalized speed of the
energy particle, b) active intensity, c) total reactivity. Low frequencies in
red, medium frequencies in green, high frequencies in blue. . . . . . . . . 46

4.5 Closed Waveguide (anechoic calibration): a) c-normalized speed of the en-
ergy particle, b) active intensity, c) total reactivity. Low frequencies in red,
medium frequencies in green, high frequencies in blue. . . . . . . . . . . . 47

4.6 Closed Waveguide (reactive calibration): a) c-normalized speed of the en-
ergy particle, b) active intensity, c) total reactivity. Low frequencies in red,
medium frequencies in green, high frequencies in blue. . . . . . . . . . . . 48

4.7 Open Waveguide (anechoic calibration): a) c-normalized speed of the en-
ergy particle, b) active intensity, c) total reactivity. Low frequencies in red,
medium frequencies in green, high frequencies in blue. . . . . . . . . . . . 48

4.8 Open Waveguide (reactive calibration): a) c-normalized speed of the en-
ergy particle, b) active intensity, c) total reactivity. Low frequencies in red,
medium frequencies in green, high frequencies in blue. . . . . . . . . . . . 49

4.9 Square Tube Measurement Setup . . . . . . . . . . . . . . . . . . . . . . 49
4.10 Spread Effect. Low Cluster on the Left. High Cluster on the Right . . . . . 49

UNIFE, CNR, UNDEC viii



Measuring complex sound intensity from wave impedance

4.11 Foam Rubber Case. Spectral complex sound intensity: active intensity
(dashed) and reactive intensity (solid). Low frequencies in red, medium
frequencies in green, high frequencies in blue. . . . . . . . . . . . . . . . 50

4.12 Plaster Case. Spectral complex sound intensity: active intensity (dashed)
and reactive intensity (solid). Low frequencies in red, medium frequencies
in green, high frequencies in blue. . . . . . . . . . . . . . . . . . . . . . . 50

5.1 General Diagram of the Complete System. . . . . . . . . . . . . . . . . . . 52
5.2 Working Principle of the Helmholtz Resonator.[2] . . . . . . . . . . . . . . 53
5.3 Frequency Response Curve of an Inertance-compliance System Oscillating

at the Angular Frequency ω0.[3] . . . . . . . . . . . . . . . . . . . . . . . 54
5.4 Analogy of the of the Ear Canal-probe Model. . . . . . . . . . . . . . . . . 55
5.5 Standard Tympanometry Curve.[3] . . . . . . . . . . . . . . . . . . . . . 56
5.6 Calibration Setup for a Fixed Frequency. . . . . . . . . . . . . . . . . . . . 57
5.7 Calibration Setup in a Reactive Field. . . . . . . . . . . . . . . . . . . . . 57
5.8 Typical Calibration Curve Γ̂ for a intensimetric probe. . . . . . . . . . . . 58
5.9 Calibration Setup to Obtain the Equivalent Frequency-volume Calibration

Function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.10 Typical Curve of the Equivalent Frequency-volume Function. . . . . . . . 59

A.1 Measuring Device Hardware. . . . . . . . . . . . . . . . . . . . . . . . . 65
A.2 Sound Card and Probe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
A.3 Graphical User Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . 69
A.4 Select Device Menu. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
A.5 Load Calibration File. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
A.6 Excitation Signal Menu. . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
A.7 Measuring Menu. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
A.8 Load Measurements Dialog. . . . . . . . . . . . . . . . . . . . . . . . . . 71
A.9 Active and Reactive Intensity Spectra. . . . . . . . . . . . . . . . . . . . . 72
A.10 Active and Reactive Intensity Field. . . . . . . . . . . . . . . . . . . . . . 73

UNIFE, CNR, UNDEC ix



List of Tables

5.1 Comparison between Standard Tympanometry and Audiometric Device . . 55

x



INTRODUCTION

The definition of sound intensity as a complex quantity, where the real part coincides with
the active intensity vector known from classic textbooks [4],[5] and the imaginary part (the
so called reactive intensity) is related to local oscillatory transport of energy, is still a con-
troversial problem.

In a recent publication, [6] two definitions of complex intensity have been reviewed
and compared by both numerical simulations and experimental measurements. The authors
concluded that “the potential application of complex intensity as a diagnostic tool is limited
by difficulties in measuring reactive intensity in complex sound fields.”

To overcome this impasse, this work will show a solid physical foundation to the concept
of complex sound intensity from the impedance calculation as considered by other branches
of study such as electronics, where the intensity concepts are clearer due to the variables
are one-dimensional. In this regard, the connection between the complex sound intensity
and the impedance of sound waves is established through an equation named the acoustic
energy-mass equation, according to the physical dimensions of its connected quantities. A
similar approach was faced in [7] for one dimension.

A device for measuring the complex sound intensity from the wave impedance will be
developed in order to give an experimental support by applying these new definitions and
concepts in real environments. The measuring process will be completely described, start-
ing from the acoustic theoretical fundamentals, and verified with symbolic and numerical
simulation. The measuring hardware available will be examined by focusing on two inten-
simetric probes which have a different operating principle. Special attention has been given
to the probe calibration process which will be described, and two calibration methodologies
and a measuring algorithm will be proposed. Some measurements will be taken in different
acoustic fields, in order to verify the whole measuring process.

Finally, a realmedical applicationwill be shown, where the newmeasuringmethodology
is used in an audiometric clinical investigation.

OUTLINE OF THE REPORT

The research has been organized in six chapters and one reference. The
framework of the report is as follows:

Chapter 1 gives the theoretical bases and acoustic fundamentals of the
research, and a new definition of the complex sound intensity is presented
which is connectedwith thewave impedance from the energy-mass equation.

1



Measuring complex sound intensity from wave impedance

Chapter 2 discusses how numerical and symbolic simulation is used for
three canonical case-studies.

Chapter 3 describes the operation principle of the intensimetric probes
and the calibration methods.

Chapter 4 explains the measuring algorithm proposed and some mea-
surements are shown.

Chapter 5 shows a real application for an audiometric clinical investiga-
tion.

Chapter 6 presents some of the conclusions drawn.

Appendix shows a prototype to measure the complex sound intensity.

UNIFE, CNR, UNDEC 2



Chapter 1

BASIC LINEAR ACOUSTICS AND
THE RELATIONSHIP BETWEEN
WAVE IMPEDANCE AND COMPLEX
SOUND INTENSITY

In this chapter the theoretical bases and acoustic fundamentals of the research will be
exposed [8][4], and a new definition of the complex sound intensity connected with the
wave impedance from the energy-mass equation is presented.

1.1 Sound Propagation and Linear Acoustics

The study of acoustics is the study of vibrations [9] and the wave propagation in a
medium, which can be solid, liquid or gas. In this work, we will study mainly waves travel-
ing in a gaseous medium. However, the theory here presented can be applied in any linear
acoustic field.

A soundwave involves space and time variations of threemain parameters in themedium:
density ρ, pressure p and particle velocity v [8]. These parameters can be written as in Eq.
1.1, where the first terms ρ−, p−, and v−are constants and their values correspond to the
parameters in stationary state (when there is not any sound wave present). The second terms
are the variable sound-field quantities density ρ∼, sound pressure p∼, and particle velocity
v∼. Thus, a sound field can be described by two of these sound field quantity functions:
p(x, t) and particle velocity vector v(x, t). These functions describe the position and time
dependence of the pressure and the particle velocity respectively.

ρ = ρ− + ρ∼

p = p− + p∼ (1.1)
v = v− + v∼

3



Measuring complex sound intensity from wave impedance

Notice that two velocities can be considered in a sound field: the velocity of the particles
of the medium and the propagation speed of the sound wave. For this reason, v∼ is called
the particle velocity.

In this regard, the acoustic particle does not have a strict size, it must be a volume so
small that pressure, velocity and density can be consider constant within it. So, we consider
a cubical element of the medium dx = [dx, dy, dz] with these properties that we called
acoustic particle.

Let us start by the equations of hydrodynamics 1.4 and 1.6, and the equation of state of
the medium Eq.1.8.

The variation of the acoustic particle velocity and its acceleration are given by Eq. 1.2
and 1.3.

dv(x, t) =
∂v(x, t)

∂t
dt+ dx · ∇v(x, t) (1.2)

The first term in Eq. 1.2 represents the fact that the velocity field varies with time, while
the second term expresses the fact that the position of the acoustic particle changes due of
its motion.

The acoustic particle acceleration is given by the quotient of the velocity change and the
time increment as it is shown in Eq. 1.3

dv(x, t)

dt
=

∂v(x, t)

∂t
+ v(x, t) · ∇v(x, t) (1.3)

The acceleration of the mass contained in the volume of the acoustic particle is produced
by a force that is proportional to the difference between the pressures acting on the boundary
surfaces of this acoustic particle. Applying the Newton’s equation of motion, we can write
the first fundamental equation of hydrodynamics as follows:

ρ(x, t)

[
∂v(x, t)

∂t
+ v(x, t) · ∇v(x, t)

]
= −∇p(x, t) (1.4)

On the other hand, the second fundamental equation of the hydrodynamics comes from
the law of conservation of mass, where a mass flowing out of volume V through the surface
A in time interval dt is equal to the decrease of the mass contained in volume V . When
transforming the surface integral bymeans of the divergence theorem into a volume integral,
the Eq. 1.5 can be written as

˛
A

ρ(x, t)v(x, t) · dA = − ∂

∂t

ˆ
V

ρ(x, t) · dV =

ˆ
V

∇ · (ρ(x, t)v(x, t)) · dV (1.5)

Since Eq. 1.5 is valid for arbitrary elements, the integrands are equal:

∇ · (ρ(x, t)v(x, t)) = −∂ρ(x, t)

∂t
(1.6)

UNIFE, CNR, UNDEC 4



Measuring complex sound intensity from wave impedance

Now, in order to find a relationship between pressure p and density ρ, the equation of
the state of the medium is invoked.

In a sound wave, the changes of state normally happen so rapidly that there is no time
for the temperature to equalize with the surrounding medium, so the changes of state are
not isothermal but adiabatic.

Thus, the Eq.1.7 represents the adiabatic law for gases, where γ is the adiabatic index
equal to the ratio of the specific heats, p and V are the pressure and the Volume respectively.

pV γ = const. (1.7)

For small amplitudes, where p∼ (x, t) ≪ p−, the Eq. 1.7 can be written as in Eq. 1.8,
where c is the speed of sound and can be calculated as c2 = γp−

ρ−
.

p∼ (x, t) = c2ρ∼ (x, t) (1.8)

In “linear” acoustics, the alternating quantities can be considered small in comparison
with the static quantities, so the basic hydrodynamic equations 1.4 and 1.6 can be simplified.

The density ρ is set equal to the static density ρ−. The spatial variation of the velocity,
is given by v(x, t) · ∇v(x, t), so the equation 1.3 can be written directly as:

dv(x, t)

dt
∼=

∂v(x, t)

∂t
(1.9)

1.2 Wave Equation for a Plane Wave

The plane wave is the most important canonical case and the simplest wave field, whose
model is given by a source placed at minus infinite and the waves are traveling to plus
infinite along the propagation direction. Therefore the sound field quantities are functions
of only one position coordinate, for example x. In this way, the velocity vector has only
one component v∼ = [v∼x, 0, 0] or v~ = v∼x, and the Eq. 1.4 and 1.6 can be written like a
system of partial differential equations by the Eq.1.10 and 1.11 respectively with the Eq.1.8.

ρ
∂v∼ (x, t)

∂t
= −∂p∼ (x, t)

∂x
(1.10)

ρ
∂v∼ (x, t)

∂x
= −∂ρ∼ (x, t)

∂t
= − 1

c2
∂p∼ (x, t)

∂t
(1.11)

In order to solve the system of partial differential equations, the particle velocity quantity
can be eliminated by taking the partial derivative of Eq. 1.10 with respect to x and taking
the partial derivative of Eq. 1.11 with respect to time.

The result is the wave equation for the sound pressure p∼in the plane wave case:

∂2p∼ (x, t)

∂x2
=

1

c2
∂2p∼ (x, t)

∂t2
(1.12)
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In general, the wave equation is

∇2p∼ (x, t) =
∂2p∼ (x, t)

∂x2
+

∂2p∼ (x, t)

∂y2
+

∂2p∼ (x, t)

∂z2
=

1

c2
∂2p∼ (x, t)

∂t2
(1.13)

The wave equation can be written in terms of the so-called velocity potential function
Φ (x, t) instead of one of the sound field quantities, which the sound pressure p∼ (x, t) and
the particle velocity vector v∼ (x, t) can be obtained as follows:

p∼ (x, t) = ρ · ∂Φ (x, t)

∂t
(1.14)

v∼ (x, t) = −∇Φ (x, t) (1.15)

A solution of the wave equation is a plane wave traveling in the positive x-direction:

p∼ (x, t) = p0f
(
t− x

c

)
(1.16)

where p0 is a constant pressure and f (u) is an arbitrary functionwhose second derivative
respect to the argument u exists. The spatial distribution is given by the function f

(
t− x

c

)
,

while the pressure distribution moves with the time parallel to the positive x-axis.
The particle velocity v∼ (x, t) can be obtained by substitution Eq.1.16 in the Eq.1.10,

resulting in:

v∼ (x, t) =
p0
ρc

f
(
t− x

c

)
= v0f

(
t− x

c

)
(1.17)

where v0 is a constant velocity.
Looking at equations 1.16 and 1.17, sound pressure and particle velocity have the same

time distribution at a fixed point x and the same spatial distribution at a particular instant of
time t. Therefore, in a plane wave, sound pressure and particle velocity are always in phase.

In order to simplify the notation of the sound field quantity functions, variable sound
pressure and variable particle velocity vector will be directly called p(x, t) and v(x, t) re-
spectively.

1.2.1 The Characteristic and Specific Acoustic Impedance
Continuing with the solution of the wave equation, a particular solution is a sinusoidal wave:

p (x, t) = p0sin
(
ω
(
t− x

c

)
+ ϕ
)

(1.18)
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where p0 is a constant pressure equal to the peak value of the pressure signal, ω is the
angular frequency, and ϕ is the phase of the wave. Using the Eq. 1.10 once more, the
particle velocity for a sinusoidal wave is:

v (x, t) =
p0
ρc

sin
(
ω
(
t− x

c

)
+ ϕ
)

(1.19)

The acoustic field quantities p (x, t) and v (x, t) can be written in a complex represen-
tation as follows:

p̂ (x, t) = p0e
iωte−iωx

c eiϕ; p = ℜ{p̂ (x, t)} (1.20)

v̂ (x, t) = v0e
iωte−iωx

c eiϕ =
p0
ρc

eiωte−iωx
c eiϕ; v = ℜ{v̂ (x, t)} (1.21)

If the quotient of the complex sound pressure Eq.1.20 and the complex particle velocity
Eq.1.21 is taken, the result is a constant equal to ρc, i.e.:

Z0 =
p̂ (x, t)

v̂ (x, t)
= ρc (1.22)

which is called the acoustic characteristic impedance, or the wave impedance of the
medium.

In fact, the characteristic impedance is a special case of the specific acoustic impedance
Zs, which is defined for each component frequency f = ω/(2π) of any general plane wave
by the time independent quotient of the complex sound pressure and complex particle ve-
locity.

Zs :=
p̂

v̂
(1.23)

The units of the specific impedance in the SI base units are the raylMKS and the raylCGS ,
which are equal to:

1 raylMKS = 1
Kg

m2s
; 1 raylCGS = 1

g

cm2s
; (1.24)

1.2.2 Instantaneous Sound Intensity, Energy Density and Continuity
Equation

If a particle of matter is considered where a force F acts upon it and the particle moves in
space from point A to B following the trajectory s, the work done on the particle is:

W =

ˆ B

A

F · ds (1.25)
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W (t) = m

ˆ B

A

v (t)

dt
· ds (t) = m

ˆ B

A

v (t) · dv (t) =
1

2
mv2 (t) (1.26)

Notice that the scalar product between F and ds in Eq.1.25 gives the work done only
by the component of the force in the direction of the particle displacement.

The substitution of Newton’s Law of Motion in Eq.1.25 shows that in Eq.1.26 the work
done on a particle is equal to the change in a quantity defined to be the “kinetic energy” of
the particle. If the mass m is replaced for the volumetric mass density ρ, we can write the
Eq.1.27 which is the “kinetic energy density.”

wk (t) =
1

2
ρv2 (t) (1.27)

On the other hand, forces which act on and within material media without energy lost
by friction produce negative work, which can be interpreted as “stored” energy that can be
recoverable by reversal of the work path. Negative work done by an internal conservative
force is defined as “potential energy”. The most common examples of this kind of force are
those due to gravity, and the linear elastic forces produced by material strain. In acoustics,
the potential energy is associated with volumetric strain of an elemental fluid volume that is
equal to the negative work done by the internal fluid pressure, acting on the surface of the
elemental volume during strain. Therefore the potential energy per unit volume is given by:

dwk (t) = −p (t)

(
dV (t)

V (t)

)
(1.28)

By the statement of conservation of mass, the expression dV /V can be substituted by
−dρ/ρ, and by using Eq. 1.8, Eq.1.28 can be written as follows:

dwk (t) = p (t)
dp (t)

ρc2
(1.29)

Hence, the potential energy density wp is obtained by integration of Eq.1.29:

wp (t) =
p2 (t)

2ρc2
(1.30)

The total energy density associated with an acoustic disturbance is:

w(t) = wp(t) + wx(t) =
1

2
ρv2 (t) +

p2 (t)

2ρc2
(1.31)

The work rate per unit area may be written as
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dW/dt

dS
= p (t) · vn (t) (1.32)

where vn = v · n is the component of particle velocity normal to a surface S.
As a result, we define the instantaneous sound intensity in the following vector quantity:

j(t) = p (t) · v (t) (1.33)

which represents the instantaneous work rate per unit area in the direction of v.

1.2.3 Time-average Operator and its Application to Energetic Quan-
tities

Now, let us start by defining the stationary time-average operator Eq.1.34, which will be
used in the time independent analysis of the acoustic energetic quantities

⟨·⟩ := lim
T→∞

1

2T

ˆ +T

−T

(·) dt (1.34)

where T is the period of the signal (·), which is in a general case T → ∞.
The active sound intensity I (x) is obtained by definition [4] using the time-average

operator with the instantaneous sound intensity vector j (x, t) (Eq.1.33:

I (x) = ⟨p (x, t) · v (x, t)⟩ (1.35)

The time-average can also be used also to find the mean of the kinetic, potential and
total energy densities:

Wk (x) = ⟨wk (x, t)⟩ =
1

2
ρ
⟨
v2 (x, t)

⟩
(1.36)

Wp (x) = ⟨wp (x, t)⟩ =
⟨p2 (x, t)⟩

2ρc2
(1.37)

W (x) = ⟨wk (x, t)⟩+ ⟨wp (x, t)⟩ = Wk (x) +Wp (x) (1.38)

In the same way, as the continuity equation was used in section 1.2 in the law of con-
servation of mass to find the wave equation, we can also use it here in terms of the flow of
sound energy:

∇ · j(x, t) = −∂w(x, t)

∂t
(1.39)
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Using the time-average operator in Eq.1.39 the following result is obtained:

∇ · I(x) = 0 (1.40)

The physical meaning of Eq.1.40 is that in a volume where there are no sources or sinks,
all the energy that goes into the volume gets out of it. Furthermore, this condition implies
that the energy streamlines never cross each other.

1.3 In-phase and Quadrature-Phase Decomposition of Air
Particle Velocity

As it was explained in subsection 1.1, an acoustic sound field can be described by two
sound field quantity functions: sound pressure p(x, t)which is a scalar quantity, and particle
velocity vector v(x, t).

Following the theory explained in [10], the particle velocity vector can be decomposed
in the time domain as the sum of two mutually orthogonal vectors vp(x, t) and vq(x, t) in
the Hilbert space where the scalar product < .|. > is defined by the time-average operator
Eq.1.41.

⟨vp(x, t) · vq(x, t)⟩ = 0 (1.41)

The first component vector vp is defined, at each point x of any general sound field,
as a very special projection of the instantaneous particle velocity v (x, t) along the spatial
direction of the active intensity I (x) = ⟨p(x, t)v(x, t)⟩, i.e.

vp (x, t) :=
I (x)

⟨p2 (x, t)⟩
p (x, t) . (1.42)

To complete the definition of the vector vp, in addition to its time-independent direction
at x, its instantaneous phase and amplitude have to be specified. According to equation
1.42, these are respectively given in terms of the pressure p (x, t) and of its normalization
factor ⟨p2(x, t)⟩ /I(x) , in such a way that |vp| becomes a signal with the same phase spec-
trum of p (t), but, with an amplitude spectrum re-scaled by the time-independent quantity
M (x) = I/ ⟨p2⟩. Of course vp is a very special vector, it has the same direction of I (x)
and components [vp (x, t) , vp (y, t) , vp (z, t)], each of which has the same phase spectrum
of p (t) but with different normalization factors given respectively by ⟨p2⟩ /Ii.1

We can say that this strange vector vp (x, t) gathers its space-directional information
from past and future through the ⟨·⟩ (x) operator while getting its instantaneous properties
from the pressure signal at x. In this regard it can be called a “syntropic” quantity.

The quantity pvp should be called radiating intensity and for that reason the identity
⟨pvp⟩ ≡ ⟨pv⟩ always holds by definition.

1It is worth to note here that the normalization factor
⟨
p2
⟩
/I of the modulus |vp| is known, from classic

textbooks, as the pressure-intensity index (Ref.[4]).
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Once determined vp as in equation 1.42, the second component vector vq is simply
defined as the complementary vector:

vq (x, t) := v − vp (1.43)

that is the instantaneous difference between the particle velocity v and vp itself. This def-
inition of vq gives rise to a second syntropic quantity which now has an important prop-
erty: each of its component signals are always in phase quadrature with the pressure so
that ⟨pvq⟩ ≡ 0. This property will be explained in more detailed in the following subsec-
tion, where the concept of “reactivity” arising from the oscillating intensity pvq will be also
illustrated.

To conclude, it can be said that at any point x of any general (monochromatic and non-
monochromatic) field, the particle velocity can always be decomposed as the sum of two
syntropic component vectors, the first one always being in phase and the second one always
in quadrature phase with the pressure. These vectors are respectively defined in equations
1.42 and 1.43 and their sum results in the instantaneous particle velocity vector:

v (x, t) = vp (x, t) + vq (x, t) (1.44)

1.4 Active and Reactive Intensity
Let us start with the usual definition of active sound intensity:

I (x) = ⟨p (x, t)v(x, t)⟩ (1.45)

that is a time-independent 3D spatial vector, whose components are the time-average
products of the pressure signal with the three particle velocity components.

As it was explained in the previous subsection, the particle velocity vector can be de-
composed as the sum in the time-domain of two components vp and vq as it is shown in Eq.
1.44. Therefore, the Eq. 1.45 can be written using the new definition of v as follows:

I (x) = ⟨p (x, t)vp(x, t)⟩+ ⟨p (x, t)vq(x, t)⟩ (1.46)

In Eq. 1.46, we can see that the second term is identically equal to zero. This is because
vq was defined orthogonal to p in the Hilbert’s space of signals. Hence, in practice, the
active intensity is equal to the time average of the product between the pressure and the
particle velocity component which is in phase with the pressure.

So now the question is, what can we say about the phase-quadrature part?
In this sense, the phase-quadrature part is related with the reactive intensity which repre-

sents energy locally oscillating into the acoustic system. Since its average always vanishes,
the only way to calculate it is going to the second order statistical analysis. As a result, the
square of the particle velocity vector can bewritten as in Eq.1.47, where the term ⟨2 · vp · vq⟩
is not present because it is identically equal to zero due to orthogonality in the Hilbert space
of signals. ⟨

v2(x, t)
⟩
=
⟨
v2
p(x, t)

⟩
+
⟨
v2
q(x, t)

⟩
(1.47)
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Figure 1.1: Square Root Process in Matrix

If the Eq. 1.47 is multiplied by ⟨p2 (x, t)⟩ the following equations can be written as:

S2 (x) =
⟨
p2 (x, t)

⟩
⟨v(x, t) · v(x, t)⟩ =

⟨
p2 (x, t)

⟩
(⟨vp(x, t) · vp(x, t)⟩+ ⟨vq(x, t) · vq(x, t)⟩)

(1.48)

I2 (x) =
⟨
p2 (x, t)

⟩
⟨vp(x, t) · vp(x, t)⟩ (1.49)

Q2 (x) =
⟨
p2 (x, t)

⟩
⟨vq(x, t) · vq(x, t)⟩ (1.50)

where S(x) and I(x) are the apparent and active intensity modulus, and Q(x) is the
reactivity.

Using the equations 1.36 and 1.37, the apparent intensity modulus can also be written
in terms of the kinetic and potential energy densities as follows:

S(x) = 2c
√

Wk (x)Wp (x) (1.51)

Comparing the Eq.1.47 with the equations 1.48, 1.49 and 1.50, the following expression
can be written as:

S2 (x) = I2 (x) +Q2 (x) (1.52)

In practice, active and apparent intensity can be easily calculated from the usual defini-
tion Eq. 1.45, and the Eq.1.48 respectively, while the total reactivity can be found using the
Eq.1.52 as:

Q (x) =
√

S2 (x)− I2 (x) (1.53)

UNIFE, CNR, UNDEC 12



Measuring complex sound intensity from wave impedance

1.4.1 Definition of the Reactivity Tensor
The mathematical real nature of the reactivity is that of a tensorial quantity [10], in this way
the Eq. 1.50 can be formulated as follows:

Q (x) =
√

⟨p2 (x, t)⟩ ⟨vq(x, t)⊗ vq(x, t)⟩ =
√
⟨p2 (x, t)⟩·

√√√√√√√√

⟨
vqxx

⟩ ⟨
vqxy

⟩ ⟨
vqxz

⟩⟨
vqyx

⟩ ⟨
vqyy

⟩ ⟨
vqyz

⟩⟨
vqzx

⟩ ⟨
vqzy

⟩ ⟨
vqzz

⟩


where Q (x) is the reactivity tensor, obtained as the product between the root mean
square of p and the square root of the mean of the matrix obtained from the tensorial prod-
uct of the particle velocity in phase quadrature with the pressure, whose elements are rep-
resented by vqij . Subscripts i and j represent the spatial dimensions x, y, and z.

Notice that the square root is not a trivial operation when it is applied to a matrix [11].
A singular case where the square root operation in matrix is simpler happens in diagonal
matrices, where the square root is directly applied to each (positive) element of the diagonal.

Therefore, we can implement the algorithm schematized in Fig.1.1, where F represents
the squared matrix of C whose elements are Fij and Cij respectively, λi are the eigenvalues
of the matrix F , E3x3 is a matrix whose columns are the corresponding eigenvectors of
F , and D is a diagonal matrix whose trace is formed by the square root of the positive
eigenvalues (the negative eigenvalues are replaced by zero).

As a result, the square root of matrix C is obtained by calculating the eigenvalues and
eigenvectors, building the diagonal matrix from the square root of the positive eigenvalues,
and finally calculating the matrix C using the following equation:

C3x3 = E3x3 ·D3x3 · E−1
3x3

1.4.2 Definition of the Complex Sound Intensity
Next, we will see how complex sound intensity can be defined.

Looking at the usual definition of the active intensity Eq. 1.45, which is a time inde-
pendent spatial vector, complex sound intensity can be accordingly defined as a complex
spatial vector, where the real part is the active intensity vector and the imaginary part is a
vector that we call the reactive intensity vector, defined as a time-independent real vector
field QT (x) which results from the application of the reactivity tensor Q (x) to the unit
vector T (x) := II−1 tangent to any power streamline in general sound fields.

This reactive intensity vector represents the local action of the reactivity tensor on the
active intensity due to average oscillating intensity across an oriented surface element T dS
normal to the active intensity.

Hence, the reactive and complex sound intensity vectors, S̄ (x) and QT (x) can be
defined as:

QT (x) := Q (x) · T ; T =
I (x)∣∣∣I (x)

∣∣∣ (1.54)

UNIFE, CNR, UNDEC 13



Measuring complex sound intensity from wave impedance

Ŝ (x) := I (x) + iQT (x) . (1.55)

1.5 Relationship Between Wave Impedance and Complex
Sound Intensity

In order to shed light on physical connection between the stationary time average defi-
nition given in the previous subsection and the spectral analysis of the complex sound inten-
sity, an approach based on some energetic indicators is proposed in this work [12]. In this
way, the natural and general relationship between wave impedance and complex intensity
will be also formulated.

Let us start by writing down the formula for the c-normalized speed of the energy par-
ticle, η(x), as it can be easily inferred from the general definition given in Eq.5, p. 932 of
Ref.[13]:

η(x) :=
I(x)

c ·W (x)
=

I(x)

c · (Wp(x) +Wk(x))
(1.56)

where I(x) is the active intensity modulus, c is the sound speed, andW (x) is the time-
stationary energy density given by the sum of potential and kinetic energy densities,Wp(x)
andWk(x) respectively, given by the next Eq.:

Wp(x) =

⟨
p2(x, t)

2 · ρ · c2

⟩
(1.57)

Wk(x) =

⟨
1

2
· ρ · v2(x, t)

⟩
(1.58)

As shown in Ref.[10], the Eq.1.56, once multiplied by the characteristic impedance ρc,
can be also interpreted as the energy conductance of any general sound field with complex
intensity as in Eq.1.55. In the same way, energy susceptance µ and energy admittance σ can
be defined as follows:

µ(x) :=
QT (x)

c ·W (x)
=

QT (x)

c · (Wp(x) +Wk(x))

σ(x) :=
S(x)

c ·W (x)
=

S(x)

c · (Wp(x) +Wk(x))
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where QT (x) and S(x) are the modules of the reactive and complex intensity vectors
respectively.

Now, the question is: how this new vision of sound intensity theory can be linked to the
concept of wave impedance as usually modeled and calculated in classical literature?

The answer to this question can be obtained simply by analyzing the behavior of the
energetic indicators graphically regarding Wk and Wp separately:

ηp(x) =
I(x)

c ·Wp(x)
; ηk(x) =

I(x)

c ·Wk(x)

µp(x) =
QT (x)

c ·Wp(x)
; µk(x) =

QT (x)

c ·Wk(x)

σp(x) =
S(x)

c ·Wp(x)
; σk(x) =

S(x)

c ·Wk(x)

This analysis will be carried out in chapter 2, where all versions of the energetic indica-
tors and the wave impedance are plotted together for two canonical model fields: divergent
spherical wave (DSW) and quasi stationary wave in one dimension (QSW-1D).

The results show that in the monochromatic cases, only those indicators related with the
kinetic energy density are directly connected with the wave impedance (Eq.1.59)[14].

Ẑ(x, ω) := R(x, ω) + iX(x, ω) = (ηk(x) + iµk(x)) ρc =

(
I(x)

2cWk(x)
+ i

Q(x)

2cWk(x)

)
ρc

(1.59)

In general, the wave impedance can be evaluated along the i-th axis as usual, from the
complex ratio of Fourier transforms of pressure and the corresponding velocity signal:

Ẑi (x, ω) :=
F [p (x, t)]

F [vi (x, t)]
≡ P̂ (x, ω)

V̂i (x, ω)
= Ri (x, ω) + iXi (x, ω) (1.60)

where Ri (x, ω) = ℜ
(
Ẑi

)
is the resistance, Xi (x, ω) = ℑ

(
Ẑi

)
is the reactance of the

sound energy current along the i-th axis at x, and i =
√
−1.

So, the Eq. 1.59 links the wave impedance to the frequency distribution of the complex
sound intensity defined in Eq. 1.55 by the following spectral equation:

Ŝi(x, ω) = Ẑi (x, ω) |Vi (x, ω)|2 (1.61)

The same analysis can be made in a more handling form in terms of thewave admittance
vector [15]. In this way, admittance can be defined directly as a complex vector quantity as
follows:

Ŷ (x, ω) :=
F [v (x, t)]

F [p (x, t)]
≡ V̂ (x, ω)

P̂ (x, ω)
= G (x, ω) + iB (x, ω) (1.62)
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The energy-mass equation then becomes:

Ŝ(x, ω) := I(x, ω) + iQT (x, ω) = Ŷ (x, ω)
∣∣∣P̂ (x, ω)

∣∣∣2 (1.63)

In fact, Eq. 1.63 is valid when the impedance is calculated in the bases where the tensor
Q (x, ω) is a diagonal matrix. Otherwise, a general solution is found by using the Eq.1.54,
where the reactivity spectral tensor is obtained from the admittance as follows:

Q (x, ω) =
∣∣∣P̂ (x, ω)

∣∣∣2 ·
√√√√√
 BxBx BxBy BxBz

ByBx ByBy ByBz

BzBx BzBy BzBz

 (1.64)

The Eq. 1.63 is a general and powerful relationship giving the spectral components of
both active and reactive intensities I and QT , and can be used as the practical tools for
measuring the complex intensity.

In fact:
1. It allows to recover the active intensity vector I (x) = ⟨pv⟩ = ⟨pvp⟩ =

√
⟨p2⟩

⟨
v2
p

⟩
T (x)

from the overall value of the frequency distribution of active intensity components
Ii (x, ω) defined as the real part of equation 1.63 i.e.

I (x, ω) := ℜ
(
Ŷ (x, ω)

) ∣∣∣P̂ (x, ω)
∣∣∣2 = G (x, ω)

∣∣∣P̂ (x, ω)
∣∣∣2 (1.65)

I (x) = [Ix (x) , Iy (x) , Iz (x)] , Ii (x) =
∑
ω

Ii (x, ω) ; (1.66)

2. It allows to calculate the frequency distribution of reactive intensity vectorQT (x, ω)
by applying the spectral reactivity tensor Q (x, ω) to the tangent vector T (x, ω) =
I(x, ω) · I−1(x, ω):

QT (x, ω) = Q (x, ω) · T (x, ω) (1.67)

It must be emphasized here that unlike Eq. 1.66 which gives de facto an alternative complete
measure of the active intensity, the frequency-overall vector quantity coming from the com-
ponents 1.67 it is not coincident with the time-independent reactive intensity defined in 1.54,

that is QiT (x) ̸=
[∑

ω

QiT (x, ω)

]
i=x,y,z

. The reactive intensity can be measured from 1.67

only in monochromatic fields of fixed frequency ω0, that is QT (x) = [QiT (x, ω0)]i=x,y,z.
This means that, while the spectral components of active intensity add-on like vectorial
quantities in space, the reactive intensity components do not.

A final remark takes into consideration the frequency distribution of the norm Q (x) =
∥Q∥. According to Eq. 1.53, it can be shown that:

Q (x, ω) =

√ ∑
i=x,y,z

(
|P (x, ω)|2 |Vi (x, ω)|2 − Ii (x, ω)

2) (1.68)
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However only when the correct frequency-overall procedure is applied, the normQ (x) can
be recovered as:

Q (x) =
√

⟨p2⟩ ⟨v2⟩ − I2 =

√√√√√ ∑
i=x,y,z

∑
ω

|P (x, ω)|2 ·
∑
ω

|Vi (x, ω)|2 −

(∑
ω

Ii (x, ω)

)2
 .

(1.69)

To conclude, the Eq. 1.63 establishes a fundamental relationship between the energy and
the mass flows in any general sound field, and should be called the acoustic energy-mass
equation in agreement with the physical dimensions of its left and right side respectively.

Graphic evidence that the energy-mass equation is verified both in monochromatic and
non-monochromatic fields is shown in the next section, where the magnitudes of active and
reactive intensity have been explicitly calculated from their constitutive averaging process
in time-domain (i.e. |⟨pv⟩|and |Q (x)T (x)|), and from their respective frequency distri-
butions given by Ŝi(x, ω), and rendered on the same plot for easy comparison. Simulations
informed in the next section regard quasi-stationary plane-waves fields in 1-D and 2-D, and
divergent spherical waves as a model of a 3-D field.

1.6 Recovering the Sign of Susceptance
In the previous section, the connection between the wave impedance and the spectral com-
plex sound intensity was exposed. Now, we will examine a methodology developed in order
to keep all information from the susceptance.

When observing Eq. 1.64, where the spectral reactivity tensorQ (x, ω) is obtained from
the power spectrum of pressure and the square root of the tensorial product of the suscep-
tance vector, the sign of the suceptance is lost.

The solution is to find the spectral reactivity tensor by avoiding the square and square
root operations. This is possible only when the impedance is calculated in the bases where
the reactivity tensor is a diagonal matrix.

Therefore, the algorithm is shown in Fig.1.2 and can be written as follows:

1. Calculate the reactivity tensor from admittance in the basis x, y, z using the Eq.1.64:
Qxyz (x, ω)

2. Calculate the eigenvectors E3x3 of the Qxyz (x, ω) in order to know the new basis
a, b, c where the reactivity tensor is represented in diagonal form.

3. Transform the particle velocity spectrum to basis a, b, c obtaining V̂ abc (x, ω)

4. Calculate the admittance in the basis a, b, c as Ŷ abc (x, ω) =
V̂ abc(x,ω)

P̂ (x,ω)

5. Calculate the spectral reactivity tensor directly from the susceptance vector in the
basis a, b, c as: Qabc (x, ω) =

∣∣∣P̂ (x, ω)
∣∣∣2 · diag(Ba, Bb, Bc)

6. Transform the reactivity tensorQabc (x, ω) to the original basis x, y, z using the eigen-
vectors as: Qxyz (x, ω) = Ev3x3 ·Qxyz (x, ω) · Ev−1

3x3
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Figure 1.2: Alternative Square Root Process to Obtain The Spectral Reactivity Tensor with-
out Lost of Signum

7. Finally, the reactive intensity can be obtained through the Eq.1.67 using the spectral
reactivity tensor obtained in 6.

Notice that this process has to be made for each frequency component.
To conclude, the frequency distribution of each reactive intensity componentQiT (x, ω)

represented in the basis x, y, z provides new information about its origin: whether it comes
from mass or compliant reactance, depending on the conventional signum (Xi (x, ω)) as
Beranek already addressed in Ref. [16].
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Chapter 2

SYMBOLIC AND NUMERICAL
SIMULATION

In this chapter, three canonical case-studies are described in order to analyze and visu-
alize the sound fields in different situations.

In this way, the new definitions and concepts shown in chapter 1 will be used in each
simulation case to verify them and to clarify the theoretical fundamentals.

The case-studies reviewed here are the divergent spherical wave in 3-D and the quasi-
stationary wave in 1-D and 2-D.

The symbolic computation engine, provided by the Maple(TM) software, is used for the
quasi-stationary wave in one dimension and the divergent spherical wave cases, while for
the quasi-stationary wave model in two dimensions, numerical simulation is used in order
to decrease the running time.

2.1 Divergent Spherical Wave (3-D)

The model chosen for the divergent spherical wave field is the pulsating sphere with
less radius than the wavelength a0 ≪ λ(Fig.2.1). All the relevant quantities used for the
graphical demonstration of Eq.1.59 in this case-study are reported below.

2.1.1 Model

The free field velocity potential ϕ (r, t) for a sphere centered at r = 0, whose radius
a varies like a sinusoid of circular frequency ω from the equilibrium position a0, can be
written as:

ϕ (r, t) =
Âei(ωt−kr)

r
; Â =

a20bωeika0
1 + ika0

; (2.1)

where the complex amplitude Â depends on the amplitude of the vibration b ≪ a0, and
k = ω/c is the propagation constant in radians per meter. Clearly, the field has a spherical
symmetry and our analysis will be focused only on r > a0 to disregard the singularity at
r = 0.

The observable quantities (i.e. the pressure and velocity perturbation fields) are derived
from ϕ as:
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Figure 2.1: Divergent Spherical Wave Model. Spherical coordinates are used in order to
reduce to one only spatial variable “r”.

p̂ (r, t) = −ρ
∂ϕ(r, t)

∂t
= −iρa20bω

2ei(ka0+ωt−kr)

(1 + ika0) r
; p (r, t) := ℜ{p̂ (r, t)} ; (2.2)

v̂ (r, t) =
∂ϕ(r, t)

∂r
= −a20bωei(ka0+ωt−kr) (ikr + 1)

(1 + ika0) r2
; v (r, t) := ℜ{v̂(r, t)} ; (2.3)

where of course the direction of the air particle velocity (2.3) is always coincident with the
radial direction [17]. In this situation, the rank of the reactivity tensor is degraded to one,
thus the reactivityQ coincides with the modulus of the reactive intensity vectorQT , which
has the same direction of the active intensity vector I .

2.1.2 Impedance Calculation

Thewave impedance is a time-independent complex quantity obtained from the relation-
ship between the complex pressure and the complex particle velocity amplitudes to obtain:

Ẑ(r, ω) :=
p̂

v̂
=

iρcωr

c+ iωr
(2.4)

R := ℜ
{
Ẑ(r, ω)

}
=

ρc2ωr2k

c2 + ω2r2
; X := ℑ

{
Ẑ(r, ω)

}
=

ρc2ωr

c2 + ω2r2
;

δ := arctan
(
X(r, ω)

R(r, ω)

)
= arctan

( c

ωr

) (2.5)

where R is the acoustic resistance,X is the reactance and δ is the phase difference between
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pressure and velocity for any circular frequency ω.

2.1.3 Calculation of Energetic Quantities and Indicators

The energetic quantities are calculated directly fromEqs. 2.2 and 2.3 using the stationary
time-average functional ⟨·⟩ := lim

T→∞
1
2T

´ +T

−T
(·) dt . In this way the following results can be

obtained as a function of r :

I := ⟨pv⟩ = 1

2

k4a40b
2ρc3

r2 (1 + k2a20)
; (2.6)

Wk :=
1

2
ρ
⟨
v2
⟩
=

1

4

(kc)2 a40b
2ρ (1 + k2r2)

(1 + k2a20) r
4

; Wp :=
1

2ρc2
⟨
p2
⟩
=

1

4

ρa40b
2k4c2

(1 + k2a20) r
2
;

W := Wk +Wp =
1

4

(kc)2 b2a40ρ
(
1 + 2 (kr)2

)
r4 (1 + k2a20)

;

(2.7)

S := 2 c
√

WkWp; Q :=
√
S2 − I2; (2.8)

where I is the active intensity, Wk, Wp and W are respectively the kinetic, potential and
total energy densities, S is the apparent intensity and Q is the reactivity[10].

From Eqs. 2.6, 2.7 and 2.8, all sound intensity indicators described in section 1.5 of
interest are then derived:

η :=
I

cW
=

2 (kr)2

1 + 2(kr)2
;

ηk :=
I

2cWk
=

(kr)2

1 + (kr)2
; ηp :=

I

2cWp
= 1 ;

(2.9)

µ :=
Q

cW
=

2kr

1 + 2(kr)2
;

µk :=
Q

2cWk
=

kr

1 + (kr)2
; µp :=

Q

2cWp
=

1

kr
;

(2.10)

σ :=
S

cW
= 2

√
WkWp

W
=

2kr
√
1 + (kr)2

1 + 2(kr)2
;

σk :=
S

2cWk
=

√
WkWp

Wk
=

kr√
1 + (kr)2

; σp :=
S

2cWp
=

√
WkWp

Wp
=

√
1 + (kr)2

kr
;

(2.11)

ξ :=
η

σ
=

kr√
1 + (kr)2

; δξ := arccos (ξ) (2.12)
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Figure 2.2: Graphical comparison of wave impedance and energy indicators for the diver-
gent spherical wave. Resistance R is plotted on the left and reactance X is on the right.
A perfect match is found only between R and X (in cyan) with ηkρc and µkρc (in black)
proving the WiSi connection.

Figure 2.3: Graphical comparison of modulus and phase of wave impedance with energy
indicators for the divergent spherical wave. As it was expected, a perfect match is found
only between

∣∣∣Ẑ∣∣∣ (in cyan) with σkρc (in black) on the left plot. In the right plot the perfect
match between the phase δ calculated from the wave impedance Ẑ (in cyan) and the phase
δξ calculated from the acoustic power factor ξ is shown.

With all these indicators in our hands, plots of Figures 2.2 and 2.3 are obtained, show-
ing a perfect coincidence only for the quantities ηk, µk, and σk appearing in Eq.1.59 whose
validity is thus graphically proven.

2.1.4 Monochromatic and Three-frequency Cases
In order to analyze the validity of Eq.1.59 in a general multi-frequency case, active and
reactive intensities and the total reactivity are calculated for a monochromatic case and a
three-frequency case, each from the time-averaging definition and spectral analysis.

The mathematical model of the three-frequency case is given by adding three tones in
the time domain.

Results are plotted in Figure 2.4, where active and reactive intensity calculated from
time averaging and spectral analysis are shown.

As it is shown in the plot, both active and reactive intensity have a perfect match using
the two calculation methods for both cases. Furthermore, the reactivity coincides with the
reactive intensity as explained before.
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Figure 2.4: Active (blue) and Reactive (red) Intensity in a Divergent Spherical Wave Field
for Monochromatic Case (left) and Three-frequency Case (right).

2.2 Quasi-Stationary Wave 1-D

Quasi-stationary plane wave model (QSW) is given by the superposition of two plane waves
with the same frequency, traveling in opposite directions: progressive and regressive waves.
The first one represents the wave generated by the source which is supposedly to be placed
at minus infinite, while the second one represents the same wave reflected on a reflective
surface, which is supposed to be placed at plus infinite as it is shown in figure 2.5.

2.2.1 Model

The mathematical model of the QSW is described by the velocity potential function ϕ (x, t)
as it is shown in the equation 2.13, where A is the amplitude of the progressive wave while
the amplitude of the regressive wave is a proportion ofA given byR,whose value is between
0 and 1. Progressive and regressive waves have a difference of phase given by ϑ.

The complex pressure is obtained by deriving the velocity potential function in relation
to time (2.14), while the complex velocity is obtained by deriving in relation to the space
(2.15). Finally, the pressure and velocity signals with physical mean is obtained by taking
the real part of each complex quantity.

ϕ (x, t) = Ac
(
ei(kx−ωt) + R ei(kx+ωt+ϑ)

)
(2.13)

p̂ (x, t) = −1

ρ

∂ϕ (x, t)

∂t
= −i ρA cω

(
e−ikx + R ei(kx+ϑ)

)
eiωt (2.14)

p (x, t) = ℜ{p̂ (x, t)}

v̂ (x, t) = ∇ϕ (x, t) = −iA c k
(
e−ikx − R ei(kx+ϑ)

)
eiωt (2.15)

v (x, t) = ℜ{v̂ (x, t)}
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Figure 2.5: Quasi-stationary Wave Model in 1-D.

2.2.2 Impedance Calculation

By replacing k = ω/c in the equations 2.14 and 2.15, the wave impedance is obtained
from the quotient of the complex pressure and the complex particle velocity:

Ẑ (x, ω) = ρc
(e−ixω/c+R ei(xω/c+ϑ))
(e−ixω/c−R ei(xω/c+ϑ))

R (x, ω) = ℜ{Z (x, ω)} ; I (x, ω) = ℑ{Z (x, ω)}

δ := arctan
(
X(x, ω)

R(x, ω)

) (2.16)

where R is the acoustic resistance, X is the reactance and δ is the phase difference
between pressure and velocity for any circular frequency ω.

Notice that whenR = 0, thewave impedance coincideswith the characteristic impedance
as it was shown in subsection 1.2.1.

2.2.3 Calculation of Energetic Quantities and Indicators

The energetic quantities and their derived indicators are calculated in this subsection.
Explicit results are described only when they are of reasonable length and they indicate
their inert form when necessary.

The first quantity is the time-independent active intensity obtained from the usual defi-
nition Eq.1.35. The expression for the QSW model is shown in equation 2.17. Notice that
the space variable x is not present here, so the active intensity is always constant in the
space.

I(x) =
1

2
ρA2ω2c

(
1− R2

)
; (2.17)

In the equation 2.18 shown below, the kinetic, potential and total energy densities are
formulated. For kinetic and potential energy equations, x is only present in the cosine term.
In the particular situation when R = 0, the energy densities remain constant, otherwise,Wk

andWp have an oscillatory behavior respect x. Besides, the total energy densityW remains
always constant in the space.
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Wk(x) =
1

4
ρA2ω2

(
1− 2R cos (2kx+ ϑ) + R2

)
;

Wp(x) =
1

4
ρA2ω2

(
1 + 2R cos (2kx+ ϑ) + R2

)
;

W (x) = Wk(x) +Wp(x) =
1

2
ρA2ω2

(
1 + R2

)
;

(2.18)

As shown in section 1.4, the apparent intensity modulus can be calculated in terms of
energy densities Wk and Wp respectively, as shown in equation 2.19. The reactivity is
obtained from the apparent and active intensity modulus as follows:

S = 2 c
√
WkWp; Q =

√
S2 − I2 (2.19)

As explained in section 1.5, the energetic indicators η, µ, and σ are written in three at-
tempts using the total, kinetic and potential energy densities, in order to find the relationship
between sound intensity and wave impedance. The expression for the quasi-stationary wave
are shown below:

η :=
I

cW
=

(1− R2)

(1 + R2)
;

ηk :=
I

2cWk
=

(1− R2)

1− 2R cos (2kx+ ϑ) + R2
;

ηp :=
I

2cWp
=

(1− R2)

1 + 2R cos (2kx+ ϑ) + R2
;

(2.20)

µ :=
Q

cW
; µk :=

Q

2cWk
; µp :=

Q

2cWp
; (2.21)

σ :=
S

cW
; σk :=

S

2cWk
; σp :=

S

2cWp
; (2.22)

ξ :=
η

σ
=

(1− R2)√
1 + 2R2 − 4R2cos2(2kx+ ϑ) + R4

;

δξ := arccos(ξ)

(2.23)
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Figure 2.6: Graphical comparison of wave impedance and energy indicators for one-
dimensional quasi-stationary waves. Resistance R is plotted on the left and reactance X
is on the right. Again, the perfect match is found only betweenR andX (in cyan) with ηkρc
and µkρc (in black) proving also in this case, the wisi connection.

Figure 2.7: Graphical comparison of modulus and phase of wave impedance with energy
indicators for one-dimensional quasi-stationary waves. As expected, a perfect correspon-
dence is found only between

∣∣∣Ẑ∣∣∣ (in cyan) with σkρc (in black) on the left plot. In the right
plot, the perfect match between the phase δ calculated from the wave impedance Ẑ (in cyan)
and the phase δξ calculated from the acoustic power factor ξ is shown.

The curves plotted in Figures 2.6 and 2.7 show the results obtained. Also here there is
a perfect match between the quantities related with impedance and the energetic indicators
associated onlywith the kinetic energy. Therefore, this is the proof of the validity of Eq.1.59.

2.2.4 Monochromatic and Three-frequency Cases

In the same way as in the previous case, active and reactive intensities and total reac-
tivity are calculated for a monochromatic case and a three-frequency case, using the two
calculation methods (time-averaging definition and spectral analysis), in order to analyze
the validity of Eq.1.59 in a general multi frequency case.

In Figure 2.8, active and reactive intensities from time averaging and spectral analysis
are plotted.

Looking at the left plot in Figure 2.8, active intensity and reactivity have a perfect match
between the two calculation methods, while the spectral analysis in the reactive intensity
calculation only coincides for positive values. This is because the spectral analysis allows
to keep the sign of the reactance as explained in section 1.6.

On the other hand, in the three-frequency case (right plot), the active intensity and re-
activity also have a perfect match using the time averaging and spectral analysis methods,
but here, the reactive intensity calculated from the spectral analysis is completely different.
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Figure 2.8: Active (blue) and Reactive (red) intensities in a Quasi-stationary Wave Field in
1-D for Monochromatic Case (left) and Three-frequency Case (right)

Hence, we can conclude that the spectral analysis allows to keep the sign of the reactive
intensity, but in the multi-frequency cases, the overall frequency is valid only for the active
intensity and the reactivity but not for reactive intensity.

2.3 Quasi-stationary Wave 2-D

Let us now see an interesting case in two dimensions when the circulation of energy is
present in the sound field i.e. ∇× I ̸= 0. The model is represented in Fig.2.9.

As it was said in the introduction of this chapter, numerical simulations have been exe-
cuted with Matlab (TM) over synthesized signals and using its standard algebraic and signal
processing routines in order to decrease the running time. Therefore, no symbolic expres-
sions are reported in here, and the calculation of the impedance and the energetic quantities
are obtained by the usual definitions.

2.3.1 Model

This case study is easily modeled generally by superposing two quasi-stationary waves
along the orthogonal axes x and y and by choosing appropriate values for the real reflection
coefficients Bx,By with time lags ϑx and ϑy respectively.

The velocity potential function can be written by extending the velocity potential func-
tion of the quasi-stationary wave case in 1-D (2.13):

ϕ (x, y, t) = Ac
(
ei(ωt−kx) +Bx e

i(ωt+kx+ϑx) + ei(ωt−ky) +By e
i(ωt+ky+ϑy)

)
; (2.24)

Therefore, as usual, the 2-D pressure and velocity fields are obtained from the velocity
potential function as follows:

p̂ (x, y, t) = −ρ
∂ϕ(x, y, t)

∂t
p (x, y, t) = ℜ{p̂ (x, y, t)} ;

(2.25)

v̂ (x, y, t) = ∇ϕ(x, y, t)
v (x, y, t) = ℜ{v̂(x, y, t)} . (2.26)
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Figure 2.9: Quasi-stationary Wave Model in 2-D.

Figure 2.10: Active (blue) and Reactive (red) Intensity in a Quasi-stationary Wave Field in
2-D for Monochromatic Case.

2.3.2 Monochromatic and Three-frequency Cases

The graphical results obtained are reported in figure 2.10 for a monochromatic field and
in figure 2.11 for a non-monochromatic one.

On the left side of figure 2.10, active and reactive intensity fields calculated directly
from their defining equation 1.55 (i.e. using time-averaging processes) are compared to
the same fields (on the right side) calculated from Eqs. 1.65 and 1.67 instead (i.e. using
spectral processes). As shown, active and reactive intensity fields coincide in the two sides
but their spatial directions, as expected, are generally different. An interesting observation
regards the reversal of the reactive intensity direction in certain areas of the right-side field.
This is due to the sign information provided by the reactance, which is not present in the
time-independent reactive intensity field depicted on the left-side.

In the non-monochromatic case of figure 2.11, where the same comparison as formonochro-
matic fields is shown, the reactive intensity field QT has been calculated using only the
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Figure 2.11: Active (blue) and Reactive (red) Intensity in a Quasi-stationary Wave Field in
2-D for Three-frequency Case.

time-averaging process. This is due to the inequality QiT (x) ̸=
[∑

ω

QiT (x, ω)

]
i=x,y,z

al-

ways holds in non-monochromatic cases, and thus reactive intensity can only be calculated
as a time-average.

This completes the graphical validation of the acoustic energy-mass equation also for
curved sound fields.
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Chapter 3

MEASUREMENT INSTRUMENTS
AND CALIBRATION METHODS

3.1 Intensimetric Probes

As it was explained in chapter 1, a sound field can be described by two sound field
quantities: sound pressure and particle velocity, p and v respectively. The sound intensity
is calculated by the product of these two signals, so this is why the probes that measure
simultaneously pressure and velocity signals are simultaneously called intensimetric probes.
Therefore, in a general case two transducers are required [5].

The transducers for measuring the sound pressure are already highly developed. There
are many techniques to obtain the variation of pressure in the medium, but, in general, the
concept is always the same: to detect the movement of a membrane that closes a cavity
within which the pressure is equal to static pressure, and the pressure variations outside the
cavity cause a movement of the membrane [18].

The most used transducers are the dynamic and condenser microphones. The principle
operation of the first one is based in the electromagnetic fundamentals. It consists of a coil
fixed to the membrane, which the movement of the membrane causes the coil to move in
a magnetic field resulting in an electrical signal. On the other hand, the condenser micro-
phones are based on electrical field fundamentals. In practice, a condenser microphone is a
capacitor where one of its two plats acts as a flexible membrane, which is deflected due to
the pressure variations. These deflections modify the capacitance, which produces a voltage
variation when it is polarized by a constant electric voltage.

The development of the transducers to measure particle velocity, however, started many
years after the development of pressure transducers. The first consolidated technique was an
indirect method which obtains the particle velocity signal from the gradient of the pressure.
Therefore, at least two pressure microphones are required. This methodology was the main
technique to measure particle velocity and it is used until now. In the last few years, a
transducer to measure particle velocity has been developed. It consists of a couple of very
thin wires that vary their temperature with the movement of the particles.

This work focuses on these two methods for measuring sound intensity: p-p (pressure-
pressure) and p-v (pressure-velocity) intensimetric probes.
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3.1.1 P-p technique
This probe is based on measuring the gradient of the pressure to sense the particle velocity
signal. As explained in the section 1.1, in linear acoustic fields, the Newton’s equation of
motion can be simplified as shown in Eq.3.1. Thus, particle velocity can be obtained from
the gradient of pressure (Eq.3.2), where the partial derivative is taken with respect to each
spatial component (Eq.3.3).

ρ
dv (x, t)

dt
= −∇p (x, t) (3.1)

v (x, t) = −1

ρ

ˆ
∇p (x, t) dt (3.2)

vx (x, t) = −1

ρ

ˆ
∂p (x, t)

∂x
dt (3.3)

In practice, the gradient of the pressure is approximated by a finite difference and vx (x, t)
can be calculated as:

vx (x, t) ≃ − 1

ρ∆x

ˆ
(p2 (x2, t)− p1 (x1, t)) dt

where p1 and p2 represent the signals of the two microphones separated by a distance
equal to ∆x.

Clearly, the measuring point of this array is between the two microphones∆x/2, which
is not coincident with the pressure signal of the microphones. So, the pressure signal of this
probe is obtained directly as the arithmetic mean of two pressure signals:

p (x, t) =
p1 (x1, t) + p2 (x2, t)

2
(3.4)

3.1.2 P-v technique
In the last few years, a new generation of particle velocity sensors has been developed based
on the measurement of the temperature changes which are proportional to the velocity of
the air particles. In fact, the change of temperature in the wires produces a change in its
resistivity.

In practice, the probe consists of two ultra-thin platinum wires in parallel, placed very
close to each other, which are heated up about 200 °C to 400 °C due to a constant current
circulation. Each wire works like a resistance changing its value with the temperature. In
this way, the micro air flow modifies the temperature of the wires and the signal is given by
the change of its resistivity. The wires are connected in a Wheatstone bridge (see Fig.3.3)
in order to convert the resistivity changes into an electrical signal. The bridge is called
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Figure 3.1: Example of Axial p-p Intensity Probe: Microphones are in Face to Face Con-
figuration

balanced when the potential difference between B and D is equal to zero. This occurs in
the following condition:

R3

R4

=
R1

R2

=
RW1

RW2

(3.5)

In this way, if the resistances R1 and R2 are replaced withthe sensor wires RW1 and
RW2, and R3 and R4 are chosen in order to balance the bridge (Eq.3.5), the signal v(t) is
equal to zero when the air flow is not present and vice versa, when the air particles are
moving across the wires, the temperature changes, the resistivity varies and the bridge is
unbalanced producing a potential difference which is the output signal of particle velocity.

Let us now analyze three situations of particle velocity:

• Nomoving air particles: here, the temperature of the wires remains constant due to no
perturbations. Therefore the bridge remains balanced and the signal output is equal
to zero.

• Air particles move along the wires: in this situation, the wires change their tempera-
ture to the same extent, so, again the bridge remains balanced because the proportion
in the condition (Eq.3.5) does not change.

• Air particles move orthogonally across the wires: this is the favorable direction to
sense the air flow. Here, the air flow changes the temperature of the wires asymmet-
rically producing a signal due to the unbalance of the measuring bridge.

The effect of the last two items can be better seen in the polar patterns of Fig.3.4, where the
directionality of sensitivity of the probe has been measured [1].

3.2 Calibration of Intensimetric Probes

The processes currently used to calibrate the intensimetric probes require the preliminary
knowledge of the acoustic impedance from model fields, which are experimentally made to
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Figure 3.2: Scanning Electron Microscope (SEM) Photo of the Ultra-thin Platinum Wires
of a Microflown Probe [1]

Figure 3.3: Wheatstone Bridge
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Figure 3.4: Microflown: Polar Patterns at Different Frequencies (Linear scale, Only Half
the Response is Shown) [1]

serve as reference fields. Among the most used reference fields, we can mention spherical
wave fields generated in an anechoic chamber, stationary wave fields generated into a Kundt
tube, etc., [19]. All of these model fields, however, have the disadvantage of including the
position of themeasuring point in the calculation of the reference acoustic impedance, which
can be a possible cause of calibration error.

Two methodologies in which it is not necessary to know the exact position of the mea-
suring point are proposed in this work. The first one is a field generated into an anechoic
waveguide where the measuring point is placed in the far field. While in the second case,
the reference impedance is obtained as the geometric mean of the impedance in two extreme
conditions: closed tube and open tube.

The calibration process consists in finding the scale factors α and β for the pressure and
velocity transducers respectively for a fixed frequency, and the calibration functionsK and
Γ̂ defined in the frequency domain.

The scale factors transform the values measured in arbitrary units (AU ) with the A/D
converter, in physical units (Pa and m/s,respectively for p and v), while the calibration
function extend the scale factor to the wide spectrum.

The calibration process has been summarized in the following steps [20][21]:
1. Obtain the scale factor of the reference microphone αref :

αref =
p(PF )[Pa]

sref(PF )[AU ]

where p(PF ) is the rms value of the pressure given by a pistonphone, and sref(PF ) is
the value registered by the sound card with the reference microphone measuring the
sound generated by the pistonphone.

2. Fix a reference tone into the wave guide pcal(W ): generate a tone at the same frequency
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of the pistonphone and save the value measured with the reference microphone.

pcal(W ) = αref

[
Pa

AU

]
sref(W )[AU ]

sref(W ) is the value of the reference tone measured with the reference microphone in
AU of the sound card.

3. Measure the pressure spectrum with the reference microphone P̂ref

4. Obtain the scale factors of the pressure and the velocity transducers:

αprobe =
pcal(W )[Pa]

sp(W )[AU ]

βprobe =
pcal(W )[Pa]

sv(W )[AU ]
· 1

ρc

[
m · s−1

Pa

]
where sp(W ) and sv(W ) are the calibration tone measured with the pressure and the
velocity transducers respectively.

5. Measure the pressure and the velocity spectra with the pressure and the velocity trans-
ducers of the probe P̂probe and V̂probe

6. Calculate the calibration functions:

K (ω) =

∣∣∣∣∣ P̂ref

ˆPprobe

∣∣∣∣∣ ∈ R (3.6)

Γ̂ (ω) =
P̂probe

V̂probe

1

Ẑ0

∈ C (3.7)

where Ẑ0 is the reference impedance.

The general process sketched above can be executed in different field conditions, each mod-
eled by the corresponding reference impedance Ẑ0 (see for instance [22][19]). Yet in par-
ticular, wishing to improve the calibration precision, the acoustic wave guide methodology
introduced in [20] can be used with different terminations (a), (b) and (c) whose setup is
shown in figure 3.5, therefore to create purely active and reactive field conditions quickly
and easily..

As a matter of fact, using the setup 3.5, the measures are taken into a waveguide with
three boundary conditions: anechoic (a), closed (b) and open (c). The tube, which is 38.5m
long when in anechoic configuration, is instead cut to 11m in the open and closed con-
figuration. In each configuration, the distance of the calibration point from the source is
fixed to 10.8m. The sound field inside the wave guide is generated through an acoustic
impedance adapter (trombone) linked to the tube, with a loudspeaker excited, for instance,
with a white-noise voltage signal.
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Figure 3.5: Calibration Setup: (a) Active Calibration, (b,c) Reactive Calibration.

3.2.1 Anechoic Calibration
The calibration function Γ̂A (ω) using the anechoic setup is obtained by measuring the pres-
sure and velocity inside the wave guide in a purely active configuration. In this case, a
progressive plane wave is present within the tube and, accordingly, the reference wave
impedance Ẑ0 is supposed to be equal to the characteristic impedance ρc (case (a) of figure
3.5). From equations 3.6 and 3.7, the anechoic calibration function Γ̂A (ω) is then obtained
as:

Γ̂A (ω) =
P̂

V̂
· 1

ρc
(3.8)

and, together with K, can be applied to get the corrections to pressure and velocity in the
frequency domain, especially in active fields.

3.2.2 Reactive Calibration
The reactive calibration method is based on the transmission line theory [8] where the refer-
ence impedance Ẑ0 is modeled as the geometric mean between the theoretical closed-tube
impedance Ẑ0

oc and the open-tube impedance Ẑ0
sc, using respectively the setups shown as

case (b) and (c) in figure 3.5[23]. Here, we take full advantage of the electrical analogy
(Fig.3.6) where a closed tube corresponds to an open circuit, while an open one is analo-
gous to a short circuit. In fact, as it can be demonstrated that, the geometric mean

√
Ẑ0

ocẐ
0
sc

of these two reactive impedances is equal to the characteristic impedance ρc,(see [8, Eq.
1.07, p. 36]), i.e.

√
Ẑ0

ocẐ
0
sc = ρc. Thus, using this interesting energetic property of plane

waves, the reactive calibration function Γ̂R (ω) can be calculated from equations 3.6 and 3.7
in a very similar way as in the first step, as follows :

Γ̂R (ω) =

√√√√ Ẑm
oc[

V̂oc

] · P̂sc[
V̂sc

] · 1

ρc
(3.9)

Clearly Γ̂R is expected to operate the optimal correction to pressure and velocity in the
frequency domain, when measures are executed in highly reactive field conditions.
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Figure 3.6: Electrical analogy. Open tube (red) and Closed tube (blue)

In general field conditions, anyway, a simple arithmetic average of Γ̂A (ω) and Γ̂R (ω)
can be expected to work optimally. This expectation is confirmed in figure 3.7 where
the comparison among correction functions K, Γ̂A, Γ̂R and the average function Γ̂ (ω) =(
Γ̂A (ω) + Γ̂R (ω)

)/
2 obtained for an axial intensity probe under calibration in the facility

of figure 3.5 is shown.

Figure 3.7: Comparison of correction functions K, Γ̂A, Γ̂R and Γ̂ (ω) =(
Γ̂A (ω) + Γ̂R (ω)

)/
2 obtained for an axial pressure-velocity probes, using the ac-

tive (red curves) and reactive (blue curves) calibration methods.
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Chapter 4

MEASURING DEVICE AND
MEASUREMENTS IN REAL
ENVIRONMENTS

This chapter is devoted to the formulation of acoustic signal processing algorithms for
measuring complex sound intensity [24], following the methodology defined in chapter 1.
As it has been demonstrated in the first chapter, complex intensity can be calculated from
a spectral equation (Eq.1.59) linking the active and reactive intensity, respectively, to the
real and imaginary part of wave impedance, through a frequency dependent common factor
given by the particle velocity auto-spectrum (energy-mass equation).

From the metrological and instrumental point of view, this means that complex sound
intensity can be measured by means of usual dual-channel signal processing analyzers but
finalized with appropriate algebraic operations in the frequency domain. The outline of a
precision device able to measure both the active and reactive sound intensity will be reported
in section 4.1. The calibration process described in section 3.2 is also included in the layout
so as to make it immediately usable. A prototype implemented in a stand-alone hardware is
shown in the appendix.

Finally, some measures made in a waveguide and in the squared tube will be shown in
sections 4.2 and 4.3 respectively.

4.1 Algorithm forMeasuringComplex Sound Intensity and
its Flowchart

Now, the measuring device algorithm for calculating complex sound intensity from wave
impedance and velocity autospectrum will be herein reported, based on fundamentals ex-
posed in chapter 1.

As shown in section 1.5, the acoustic energy-mass equation (Eq.1.59) at any point x of
a general field can be expressed in terms of components

Ŝi(x, ω) = Ẑi (x, ω)
∣∣∣V̂i (x, ω)

∣∣∣2 (4.1)

where the three wave impedances Ẑi(ω) and the particle velocity autospectra
∣∣∣V̂i(ω)

∣∣∣2 =

V̂i

(
V̂i

)∗
are measured in the orthonormal basis ei=x,y,z spanning the active intensity vector
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field 1.
The same equation can be written in a simpler manner, in terms of the wave admittance

vector ([15, footnote on p. 153]). This can be defined as a complex vector quantity

Ŷ (ω) :=
F [vi (x, t)]

F [p (x, t)]
≡ V̂i (x, ω)

P̂ (x, ω)
= Gi (x, ω) + i Bi (x, ω)

obtained from the complex ratio of the Fourier-transformed components V̂i (x, ω) of vi (t) =
v · ei at x, to the common pressure P̂ (x, ω). The energy-mass equation then becomes:

Ŝi(ω) := Ii(ω) + i [QT ]i (ω) = Ȳi(ω)
∣∣P̄ (ω)

∣∣2 (4.2)

where the complex intensity spectrum Ŝ(ω), defined in terms of the spectral components
of active and reactive intensities Ii (ω) and [QT ]i (ω), is now obtained from the pressure au-
tospectrum

∣∣P̄ (ω)
∣∣2 and the real and imaginary partsGi (ω) and Bi (ω) (respectively called

conductance and susceptance) of the wave admittance vector components, measured at the
same point x.

However, a lot of care must be taken when calculating the reactive intensity spectral
components [QT ]i (ω). In fact, these components result from the application of the reac-
tivity tensor Q (x,ω) to the unit vector T (x, ωn) = I(x, ωn) · |I(x, ωn)|−1 defining the
direction of the spectral active intensity I (x, ωn) and, to make matters worse, a diagonal-
ization process is required for computing the reactivity tensor as Q (x,ω) =

√
Q2 (x, ω)

for each frequency. Fortunately enough, the diagonalization process of Q (x, ω) is embed-
ded in the matrix square root routines [25] implemented in the Matlab code, used here for
developing the complete measuring device algorithm.

To be operational since the beginning, the expression ofQ2 (x, ω) can be written down,
in agreement with 4.2, as[

Q2 (ω)
]
ij
:= Bi (ω)

∣∣∣P̂ (ω)
∣∣∣2 ·Bj (ω)

∣∣P̄ (ω)
∣∣2 (4.3)

whereB (ω) is the susceptance and
∣∣∣P̂ (ω)

∣∣∣2 is the pressure autospectrum. Then, the matrix
square root

√
Q2 (ω) is calculated for each frequency component, to obtain the spectral

reactivity tensor Q (x,ω) =
√

Q2 (x, ω). Once Q (x,ω) has been calculated, the spectral
reactive intensity vectorQT (ω) is readily obtained as

QT (ω) := Q (ω)T (ω) . (4.4)

After this operative preamble, the complete verbal algorithm for a possible measuring
device of the 3D complex intensity can be stated as follows:

1. Capture the rough pressure and velocity signals pm(t) and vmi (t) respectively, using
a 3D intensimetric probe at point x in an arbitrary orthonormal basis ei=x,y,z.

2. Transform these four signals into the frequency domain to obtain P̂m(ω) and V̂ m
i (ω)

.

3. Obtain the correct spectra P̂ (ω) and V̂i(ω) by applying the calibration functionsK(ω)
and Γ̂i (ω) in the frequency domain.

1The subscript i-th must not be confused with i =
√
−1, which represents the imaginary part component
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4. Calculate the complex admittance vector Ŷi(ω).

5. Calculate the pressure and velocity autospectra
∣∣∣P̂ (ω)

∣∣∣2 and ∣∣∣V̂k(ω)
∣∣∣2.

6. Calculate the spectral components of active intensity Ii(x, ω) from equation 4.2.

7. Calculate the frequency overall magnitude of active Intensity Ii (x) =
∑
ω

Ii (x, ω).

8. Calculate the spectral reactivity tensor Qij (x, ω).

9. Calculate the spectral components of reactive intensity [QT (x, ω)]i.

10. Calculate the total reactivity Q (x).

Q (x) =
√

⟨p2⟩ ⟨v2⟩ − I2 =

√√√√√ ∑
i=x,y,z

∑
ω

∣∣∣P̂ (x, ω)
∣∣∣2 ·∑

ω

∣∣∣V̂i (x, ω)
∣∣∣2 −(∑

ω

Ii (x, ω)

)2
 .

The flowchart of the algorithm above is shown in figure 4.1.

4.1.1 Flowchart
The diagram is separated in four sectors: I, II, III, IV. The first one is the device input and
consists in the acquisition and conditioning of the signals captured by the 3D sound intensity
probe. The output from this sector is made up by four spectral arrays calibrated inmagnitude
and phase. The spectrum of complex intensity is calculated in the second sector, while the
third sector implements the device displayed output. The special sector IV is devoted to
execute calibration tasks before starting the measurement session. Each of these sectors
will be detailed below.

4.1.1.1 Flowchart: Sector I

As shown in figure 4.1, the signals are captured by a 3D sound intensity probe using an
analog-to-digital converter and then processed through the FFT algorithm with spectral res-
olution ∆n. The four spectral arrays (n = 1, .., N ) are then calibrated in the calibration
block implementing the following equations:

P̂ (ωn) = P̂m(ωn) ·K(ωn)

V̂i (ωn) = V̂ m
i (ωn) ·K(ωn) · Γ̂i(ωn) .

(4.5)

The calibration functions K and Γ̂ in equations 4.5 are retrieved from the Memory CAL
block where the linear combiner is used to combine Γ̂A and Γ̂R depending on the field
conditions according the equation Γ̂ = Γ̂A · r + Γ̂R · (1− r) ; 0 6 r 6 1, where r = 0 is
used in the anechoic field situations and r = 1 stands for purely reactive fields.

The calibration operations to obtainK and Γ̂ will be detailed in subsection 4.1.1.4.
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Figure 4.1: Flowchart of a precision device for measuring the 3D complex intensity from
wave admittance.
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4.1.1.2 Flowchart: Sector II

On the left side of sector II, three main blocks are shown.
In the first block from the top, the power spectra of the pressure and the velocity com-

ponents are calculated as shown below:∣∣∣P̂ (ωn)
∣∣∣2 = P̂ (ωn)P̂

∗(ωn);
∣∣∣V̂i(ωn)

∣∣∣2 = V̂i(ωn)V̂
∗
i (ωn); (4.6)

In the second and third block from the top, the vector wave admittance Ŷ (ωn) is com-
puted using the auto and cross spectra of pressure and velocity following the two different
procedures [26] shown in formulas 4.7 and 4.8. The switch SwY is used to choose the
mode in which the admittance calculation is made, according to signal/noise ratio levels
between pressure and velocity signals. The expression 4.7 is used when the SNR level of
velocity signal is higher than the one of the pressure signal, however, when vice-versa, the
expression 4.8 is used [27].

Ŷ 1(ωn) =
V̂iV̂

∗
i

P̂ V̂ ∗
i

; (4.7)

Ŷ 2(ωn) =
V̂iP̂

∗

P̂ P̂ ∗
. (4.8)

The output from switch SwY is in any case the optimized admittance Ŷ (ωn) ready for the
next calculations based on energy-mass expression 1.63.

The spectrum of the active intensity and spectral reactivity tensor are then calculated
in the the two blocks on the right side of sector II. The first one is calculated using the
following expression, where G(ωn) is the real part of the admittance (conductance):

Ii(ωn) = Gi (ωn)
∣∣∣P̂ (ωn)

∣∣∣2 . (4.9)

The spectral reactivity tensor is calculated from the susceptance B (ωn) and the au-
tospectrum of pressure

∣∣∣P̂ (ωn)
∣∣∣2where each element of the squared tensor is obtained by

using the expression shown in 4.3, and then the matrix square root process has to be applied
to obtain Q (ωn).

On the top-right of sector II, the apparent intensity SA is defined in terms of its compo-
nents [SA]i :=

√
⟨p2(t)⟩ ⟨v2i (t)⟩. This definition, can be calculated in the frequency domain

using the energy relationship ⟨x2(t)⟩ =
´
|X|2 (ω) · dω (see ref. [28, eq. 2.74, p. 46]), so

the apparent intensity components can be calculated from pressure and velocity spectra as:

SA :=
√

⟨p2⟩ ⟨v2⟩ =
√
S2
x + S2

y + S2
z (4.10)

[SA]i :=
√
⟨p2(t)⟩ ⟨v2i (t)⟩ ≡

√√√√N/2∑
n=0

∣∣∣P̂ (ωn)
∣∣∣2 · N/2∑

n=0

∣∣∣V̂i(ωn)
∣∣∣2 . (4.11)
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4.1.1.3 Flowchart: Sector III

The device display output is implemented in the third sector.
The magnitude of the time-independent apparent intensity is computed from its compo-

nents given in equation 4.11 so to obtain SA :=
√

⟨p2⟩ ⟨v2⟩ from Eq. 4.10.
The frequency distribution of the active intensity I(ωn) has been already calculated in

the sector II through equation 4.9, while the frequency distribution of the reactive intensity
QT (ωn) is obtained simply by applying, frequency by frequency, the spectral reactivity
tensor Q (x, ω) to the unit vector T (x, ωn) = I(x, ωn) · |I(x, ωn)|−1 as shown in equation
4.4.

The time-independent active intensity vector and its magnitude are computed directly
from the spectral components:

Ii =

N/2∑
n=0

Ii(ωn); |I| =
√

I2x + I2y + I2z , (4.12)

and the time independent reactive intensity magnitude is calculated from the following ex-
pression:

Q =
√
S2
A − I2 . (4.13)

4.1.1.4 Flowchart: Sector IV

Sector IV of figure 4.1 shows how to implement a possible calibration mode for the device.
A sequence of tasks and measures have to be carried out by the device’s operator in

order to obtain the calibration functions Γ̂A and Γ̂R.
Sector IV is mainly composed by two memory blocks and two calibration blocks called

active and reactive calibration. The output from sector IV is connected to the memory CAL
block in sector I.

When the device is not yet calibrated, functions K, Γ̂A and Γ̂R are initialized to 1, and
the following sequence has to be processed for each component:

1. Put the wave-guide in anechoic configuration while the device is standing for the
confirmation that setup is ready.

2. The process starts by calculating the correction functionK of Eq.3.6 from signals pref
and pm captured respectively by a reference microphone and the microphone of the
probe under calibration in the anechoic wave-guide which is excited for instance with
white noise. Computations are executed through the Admittance Calculator blocks in
sector II simply by feeding the V̂x channel with Pref .

3. Calculate the functions Γ̂A of equation 1 from signals pm, vmx , vmy , and vmz captured
with configuration of step 1, using the 3D Admittance Calculator blocks.

4. SaveK and Γ̂A in the Memory CAL block of sector I, for later use as optimal identity
calibration of the probe in active field conditions.
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5. Put the wave-guide in closed tube configuration while the device is standing for the
confirmation that setup is ready;

6. When ready, measure the closed tube (Open Circuit) admittance components
[
Ŷ m
oc

]
i

and store them for later use in step 9, to calculate the second (reactive) calibration
Γ̂R.

7. Put the waveguide in open tube configuration while the device is standing for the
confirmation that setup is ready.

8. When ready, measure the open tube (Short Circuit) admittance components
[
Ŷ m
sc

]
k

and stack them for later use in step 9 together with
[
Ŷ m
oc

]
k
as supplement data to

calculate Γ̂R.

9. Calculate the functions Γ̂R of equation 3.9 from 1
/[

Ŷ m
oc

]
k
and 1

/[
Ŷ m
sc

]
k
previously

stored in steps 6 and 8 and save them for later use as optimal identity calibration of
the probe in reactive field conditions.

10. Calculate the average correction function Γ̂ from a linear combination of Γ̂A and Γ̂R

to optimize the calibration error in general fields.

4.2 Measurements in a Waveguide
In order to test the algorithm shown above and to verify the fundamentals described in
chapter 1 in real fields, some measurements taken into the waveguide in three different con-
ditions will be exposed in this section. Furthermore, the two calibration methods obtained
in anechoic and reactive fields will be used in order to compare both in different situations.

The measuring setup is shown in Fig.4.2 and consists of a waveguide of forty meters
long, which is excited with a loudspeaker. The junction between the loudspeaker and the
waveguide is made through a trombone which acts as an impedance adapter. The waveguide
has a segment of five meters long with twenty-four measuring points separated by twenty
centimeters each, where the first hole is at six meters from the source. After the measuring
segment, the waveguide can be opened or closed at eleven meters of the source, with the
purpose of changing the acoustic field into the tube.

The loudspeaker is excited by a power amplifier which receives the audio signal from the
computer through an A/D converter (National Instruments). In the three cases, the waveg-
uide is excited with white noise and the signal processing is made in octave bands .

The measurements are taken with a Microflown probe PTN0-700649, which is con-
nected to the sound card through the signal conditioner. For each case, active and reactive
calibrations are used.

The measurement software was programmed in Matlab(TM) following the algorithm
described in section 4.1.

4.2.1 Anechoic Waveguide
In the anechoic setup, the waveguide is forty meters long to avoid the regressive waves
influence. In this situation, the sound field approximates to a plane progressive wave, where
the energy speed and the active intensity are maximum and the reactivity is ideally equal to
zero.
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Figure 4.2: Waveguide Measurement Setup.

As shown in Fig.4.3 a similar situation occurs in the plots: η is constant and near to 1,
and active intensity is 10 dB biggest than total reactivity, and both have a negative slope
due to the attenuation.

In fact, in this case, the measurement setup is very similar to the calibration setup, there-
fore, clearly the results should be good, because this was an imposed condition in the cali-
bration process.

If we look carefully at the energy speed plot, the frequencies where the energy flows
more quickly are the middle frequencies (in green).

This behavior is not expected because the high frequencies must be quicker than the low
frequencies.

Let us now see what happens when the reactive calibration is used in the anechoic
waveguide.

Looking at Fig.4.4, the energy speeds for each frequency band are correctly sorted (low
frequencies are slower than high frequencies), which means that the field is more reactive
for the low frequency.

Also here, the active and reactive intensities have a negative slope for each octave band
due to the attenuation, but now the reactivity has been increased for the low frequencies.

If we observe the simulation results for the spherical divergent wave in Fig.2.4, we find
that in the near field, active and reactive intensities have similar values, but the reactive
intensity decreases more rapidly than the active intensity.

Comparing the simulation and the real results, we find that behavior also happens in
the experimental situation, where the difference between active and reactive intensities in-
creases with the frequency.

Therefore, we can say that the anechoic waveguide is more similar to a radius of a sphere
and the most suitable model for the anechoic waveguide is the divergent spherical wave.

We can thus state that the most precise calibration method is the reactive method.

4.2.2 Open and Closed Waveguide
Now the measures are made in two extreme conditions of the wave guide: open tube and
closed tube. Also, active and reactive calibration are used, and the plots show the speed of
energy normalized to c, active intensity and total reactivity.

The Fig.4.5 and 4.6 show the results for the closed waveguide using the anechoic and
reactive calibration respectively, while the Fig.4.7 and 4.8 show the results for the open
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Figure 4.3: Anechoic Waveguide (anechoic calibration): a) c-normalized speed of the en-
ergy particle, b) active intensity, c) total reactivity. Low frequencies in red, medium fre-
quencies in green, high frequencies in blue.

Figure 4.4: AnechoicWaveguide (reactive calibration): a) c-normalized speed of the energy
particle, b) active intensity, c) total reactivity. Low frequencies in red, medium frequencies
in green, high frequencies in blue.
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Figure 4.5: Closed Waveguide (anechoic calibration): a) c-normalized speed of the energy
particle, b) active intensity, c) total reactivity. Low frequencies in red, medium frequencies
in green, high frequencies in blue.

waveguide for the two calibrations.
There are no significant differences in the four figures. Here, the speed of energy de-

creases when the energy is arriving to the end of the tube. Also, the active intensity has a
negative slope due to the attenuation, while the total reactivity is approximately constant.

When comparing the measurement results with the simulation results for the quasi-
stationary wave (Fig.2.8), it is possible to see a similar behavior; the only difference is
that in the model the attenuation is not considered.

4.3 Measurements in a Square Tube

In this section, measurements made into a square tube of section equal to 28 cm are
taken in order to test the algorithm in a 3-D environment.

The measurement setup is shown in Fig.4.9 which is composed by a four-meter-long
squared rigid tube and the side equals to twenty eight centimeters. The frequency cut-off
is equal to 600Hz. The sound field is generated by a loudspeaker placed in one of the
extremes of the tube and a reflective surface is positioned in the opposite extreme. The
sound field is measured with a 3-D p-v probe placed at 1.5m from the source.

The first test consists of examining the directionality of a 3-D sound intensity probe by
measuring the direction of the active intensity.

Thus, two clusters are used as an excitation signal: below and above cut-off frequency.
The results are shown in Fig.4.10, the active intensity is plotted on the left for the low

cluster and on the right for the high cluster. As it is clearly shown, in the low cluster, the
arrows for each frequency are oriented in the same direction along the tube, while for the
high cluster, the arrows have different directions. This is due to the transversal components
that appear upon the cut-off frequency. Therefore, it is possible to measure the spread effect
of the active intensity for each frequency component.

The second test is to measure the active and reactive intensity spectra in two different
reflective surfaces: foam rubber and plaster.
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Figure 4.6: Closed Waveguide (reactive calibration): a) c-normalized speed of the energy
particle, b) active intensity, c) total reactivity. Low frequencies in red, medium frequencies
in green, high frequencies in blue.

Figure 4.7: Open Waveguide (anechoic calibration): a) c-normalized speed of the energy
particle, b) active intensity, c) total reactivity. Low frequencies in red, medium frequencies
in green, high frequencies in blue.
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Figure 4.8: Open Waveguide (reactive calibration): a) c-normalized speed of the energy
particle, b) active intensity, c) total reactivity. Low frequencies in red, medium frequencies
in green, high frequencies in blue.

Figure 4.9: Square Tube Measurement Setup

Figure 4.10: Spread Effect. Low Cluster on the Left. High Cluster on the Right
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Figure 4.11: Foam Rubber Case. Spectral complex sound intensity: active intensity
(dashed) and reactive intensity (solid). Low frequencies in red, medium frequencies in
green, high frequencies in blue.

Figure 4.12: Plaster Case. Spectral complex sound intensity: active intensity (dashed) and
reactive intensity (solid). Low frequencies in red, medium frequencies in green, high fre-
quencies in blue.

The sound field is generated by one cluster composed of four frequencies below and
above the cut-off frequency.

In the foam rubber case (Fig.4.11), the active intensity (dashed arrows) is predominant
for all frequencies in the direction of the reflective surface. This is due to the foam rubber
being a good energy absorber, so the energy flows from the loudspeaker to the foam rubber
easily.

In the plaster case (Fig.4.12), the reactive intensity is bigger than the active intensity.
This is due to the plaster reflecting more energy than the foam rubber, therefore, the active
intensity is weaker than reactive intensity.

Thus, we can conclude that the algorithm proposed here allows measuring the complex
sound intensity in different acoustic fields for each frequency component.
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Chapter 5

TYMPANOMETRIC APPLICATION

The purpose of this chapter is to describe the methods used for the execution of a proto-
type probe for measuring the acoustic admittance into the human ear canal in the frequency
range 100− 5000Hz.

This chapter describes the acoustic fundamentals to develop an electroacoustic system
for clinical audiological uses based on an acoustic impedance probe.

The measurement process, performed with the previously calibrated probe, involves the
synthesis of a sound stimulus sent to the patient’s external ear canal and the simultaneous
recording of the two acoustic signals coming from the probe. This process is run by a com-
puter (through an A/D converter) which processes all algorithms necessary for the acoustic
identification of the system under analysis. The results are visualized in standard plots of
acoustic impedance/admittance in the complex forms. In Fig.5.1 a general diagram of the
complete system is shown.

5.1 Physical Fundamentals

In this section, the physicals bases for the clinical audiometric device are explained in
order to understand the working principle described in the next section [29].
5.1.1 Wave Impedance: Acoustic Resistance, Inertance and Compli-

ance
As it was defined in the subsection 1.2.1 the acoustic impedance is the time independent
quotient of the complex sound pressure and complex particle velocity. This relationship
also represents the transfer function of the acoustic system, which describes the behavior of
the acoustic field when the system is perturbed.

The acoustic system into the ear canal can be simplified bymeasuring just a single spatial
component of the particle velocity, since the vibrations occur only along the ear canal. This
simplification allows to introduce the concept of acoustic impedance to study the vibration
mechanism of air inside a "compact" cylinder, which is a tube with a lengthL ≪ λmin where
λmin indicates the shorter wavelength of the sound that causes the air particle vibration.

There are three physical causes that contribute to oppose the motion of the air particle:
friction, inertia and elasticity of the air. These three properties of air are respectively referred
in acoustics as: resistance, inertance and compliance. The first one constitutes the real part
of the impedance, while the algebraic sum of the other two constitutes its imaginary part
also called reactance.

The acoustic impedance is therefore the complex quantity that, for each single frequency,
regulates the vibratory motion of the any compact air particle when it is crossed by a sound
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Figure 5.1: General Diagram of the Complete System.

wave.

5.1.2 Helmholtz Resonator
We now study an acoustic phenomenon of easy practical experimentation: the Helmholtz
resonator [15].

As shown in the Fig.5.2, its operating principle is analogous to the mass-spring system,
which translates into acoustics with the inertance and compliance parameters. The action of
blowing in the "bottle neck" generates the sound pressure necessary to excite the resonance.

This virtuous mechanism is established only when the force that accelerates the mass of
air contained in the neck of the bottle is exactly balanced, in every instant of the cycle of
oscillation, by the elastic restoring force of the volume of air contained within it.

In practice, among all the possible circular frequencies ω by which the inertance and
compliance system can oscillate, there is only one frequency that allows this perfect coop-
eration of forces: the natural frequency of the system. This circular frequency which will be
shown in the following equation with ω0 characterizes the vibration mode of the system and
it is easily quantifiable in terms of the parameters of inertanceM and acoustic compliance
C with the following equation:

ω0 =
1√
MC

. (5.1)
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Figure 5.2: Working Principle of the Helmholtz Resonator.[2]

5.1.3 Quality Factor and Acoustic Resistance
The mass-spring resonance model described in the previous paragraph provides that, once
activated the oscillating motion at the natural frequency ω0 , it never stops, i.e. that the
mechanism is able to self-feed even in the absence of an external force. This is clearly an
ideal behavior that, when in the absence of external force, the amplitude of the oscillation
would remain constant over time.

This behavior can be quantified by introducing the concept of damping into the analysis
of the oscillatory motion. The damping is physically represented by a force which (unlike
those related to inertance and compliance) is always opposed to the oscillatory motion in
every moment of the cycle, with the effect of continuously subtracting energy from the
oscillating system. In fact, if the stationary average acoustic energy density of the oscillating
system is indicated with ⟨w⟩ , the damping parameter (energy decay constant) is defined by

Ω ≈ − 1

⟨w⟩
d ⟨w⟩
dt

(5.2)

which indicates that the energy density ⟨w⟩ decays by a factor of 1 /exp (1) ≈ 37%
each time that the duration of the oscillation increases by a factor of 1 /Ω . Thus, in an ideal
case when Ω = 0 the energy never decays.

The dimensional analysis of the energy decay constantΩ allows to determine its physical
meaning as the bandwidth of the energy decay. The Fig.5.3 shows the relation of the energy
decay constant with the bandwidth of the acoustic power absorbed by the external forces
interacting with a inertance-compliance system oscillating with natural frequencyω0 (2π)

−1

forced to vibrate at the circular frequency ω by interactions with its boundary conditions.
The bandwidth is calculated as the difference between the frequencies where the ab-

sorbed power is equal to 50%, which is called the "half-power bandwidth" and it is given
by Ω = ω2 − ω1.

Finally, the quality factor or Q-factor is defined as

Q =
ω0

Ω

which indicates how efficient an oscillator or resonator is. Low values of Q mean that
the resonator is not efficient and loses a lot of energy, whileQ → ∞ corresponds to an ideal
resonator.
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Figure 5.3: Frequency Response Curve of an Inertance-compliance System Oscillating at
the Angular Frequency ω0.[3]

5.1.4 Energy Absorbance
The energy absorbance is a quantity that indicates the proportion of energy that is absorbed
into the system, i.e. the energy that is going out from the inertance-compliance oscillating
system. In general, there are two possibilities: the energy is absorbed by the friction into
the system itself or it is transferred to another system. This is a very important indicator in
the audiometric evaluation because it allows us to know how much energy is transferred to
the tympanometric membrane.

The energy absorbance is obtained from the reflection coefficient ϱ:

EA = 1− ϱ2

which is calculated in terms of the c-normalized speed of energy η (Eq.1.56) as follows:

ϱ =

√
1− η

1 + η

The spectrum of the energy absorbanceEA(ω) can be also obtained using the algorithms
described in section 4.1 to calculate the spectral active intensity.

5.2 Working Principle of theAudiometricDevice andCom-
parison with Standard Tympanometry

The audiometric device consists of an intensimetric probe which is used to measure the
acoustic impedance into the ear canal.

The acoustic variables are measure into a small tube, which is inserted in the ear canal
as it is shown in the Fig.5.4 The model that fits better is the Helmholtz resonator which was
described in subsection 5.1.2. The junction of the ear canal with the probe forms a system
like a bottle, where the ear canal represents the volume and the probe represents the neck.
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Figure 5.4: Analogy of the of the Ear Canal-probe Model.

In this way, an inertance-compliance oscillating system is composed, where the natural
frequency is linked to the volume of the ear canal, which can be calculated from the resonant
frequency as:

V = f(ω0) (5.3)

where f is a function with the form of the Eq.5.1.
As it was described in the previous section, the impedancemeasurement allows knowing

the energetic behavior into the ear canal. This is very important in the audiometric study
because it serves as an indicator about the mobility of the tympanometric membrane.

The two indicators Q-factor and EA can be used for this analysis, however, the spec-
tral energy absorbance allows to obtain more information than the Q-factor, but implies
additional calculation.

The standard tympanometry is a methodology based on measuring the vibration of the
reflected tone at 226Hz, while the static pressure into the ear canal varies from −300 daPa
to +200 daPa. A typical tympanogramic curve is shown in Fig.5.5. The main variables
given by the standard method [30] are shown in the first column of the Table 5.1

Clearly, while it is not possible to find a direct connection between the two methods,
due to the audiometric device working only at a static pressure, a correlation based on the
functionality of the ear is still possible and it is described in the following table:

Standard Tympanometry Audiometric Device
Vea: Volume of the Ear Canal It is calculated from ω0 (Eq.5.3)

Ytm: Admittance Peak It is obtained from the admittance curve.
Symmetry of Y : Mobility of the Tympanic Membrane Can be known from the Q and EA

Table 5.1: Comparison between Standard Tympanometry and Audiometric Device
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Figure 5.5: Standard Tympanometry Curve.[3]
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Figure 5.6: Calibration Setup for a Fixed Frequency.

Figure 5.7: Calibration Setup in a Reactive Field.

5.3 Calibration of the Probe
The calibration process of the clinical audiometric device consists in three parts: calibra-
tion of the sensors of the probe, calibration of the output level of the A/D converter and
calibration the equivalent volume. The first step is already described in section 3.2 where
the scale factors α and β are obtained by using the calibration setup shown in Fig.5.6 Here,
the reference tone is directly generated by a pistonphone.

The function Γ̂ is obtained by using the setup shown in Fig.5.7 where the waveguide is
excited with the same speaker of the probe. A typical calibration curve of Γ is shown in
Fig.5.8.

The output level of the A/D converter is calibrated, measuring the sound pressure level
generated by the probe speaker which has to be equal to 94 dB_SPL.

Finally, the calibration of the equivalent volume curve consists inmeasuring the resonant
frequency in at least 3 different reference volumes with the probe (for example 4 cc, 2 cc,
and 0.2 cc). The values measured are marked in a plot frequency-volume. The volume
calibration curve is found by fitting the plotted points. The Fig.5.9 shows the calibration
setup, while Fig.5.10 shows a typical calibration curve for the equivalent volume.
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Figure 5.8: Typical Calibration Curve Γ̂ for a intensimetric probe.

Figure 5.9: Calibration Setup to Obtain the Equivalent Frequency-volumeCalibration Func-
tion.
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Figure 5.10: Typical Curve of the Equivalent Frequency-volume Function.
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Chapter 6

CONCLUSIONS

In this work, the complete process to develop a device to measure the complex sound
intensity from the wave impedance has been exposed. Starting from the known fundamen-
tals in acoustics, new concepts and definitions have been introduced. Rigorous definitions
of Active and Reactive sound intensities have been given on the basis of the decomposition
of particle velocity through the orthogonalization process of pressure and velocity signals
in the Hilbert space. Thus, the complex sound intensity has been accordingly defined as an
element of the complex vector space, where the active intensity vector is the real part and
the imaginary part is given by the application of the reactivity tensor to the versor in the
direction of the active intensity.

One of the main aims of this work was to find a relationship between the complex sound
intensity defined as a time-independent quantity and its “spectrum” in the frequency domain,
which has been possible to reach by finding the fundamental relationship between Wave
Impedance and Sound Intensity. Three different acoustic fields (DSW, QSW-1D, and QSW-
2D) were simulated in order to validate the relationship between the graphical matching of
the acoustic resistance with the kinetic energy conductance and that of the reactance with
the kinetic energy susceptance.

This measurement method based on the wave impedance provides more information,
given by the signum of the reactance/susceptance, which usually is lost in the square and
square root operations. In the section 1.6 a particular method to keep all information from
the susceptance has been described. Also, this contribution was verified by simulation.

The simulated fields were the divergent spherical wave (3-D) and quasi-stationary wave
in 1-D and 2-D, where symbolic simulation provided by Maple(TM) was used in the two
firsts, while in the last case, numerical simulation provided by Matlab(TM) was necessary
to reduce the computation time. In each case, the impedance and other important quantities
were calculated from the velocity potential function in order to obtain graphical results. The
analysis was made for one single tone (monochromatic case) and three-tones cases, and it
was verified that the frequency overall active intensity can be obtained directly from the
sum of each of its frequency components, while for the reactive intensity it is not possible,
only the total reactivity can be obtained as the square root of the difference between squared
overall apparent intensity and squared overall active intensity 1.69.

Probes for measuring the sound intensity based on two different principles (pressure-
pressure and pressure-velocity) have been evaluated.

The general calibration process described consists of finding the scale factors α and β,
and the calibration functionsK and Γ̂ from a known reference impedance. Two calibration
methodologies have been presented for two different fields: anechoic and reactive.

An algorithm for measuring the complex sound intensity from the wave impedance has
been proposed, and the process has been shown in a flow chart.
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Measurements in real environments, in one and three dimensions, have allowed to verify
the algorithm and acoustic fundamentals by comparing it with the simulation results.

The acoustic fields chosen for the execution of the measurements were a waveguide
with three different terminations: anechoic, closed and open; and a squared tube with a
section equal to 28 cm. The two calibration functions (anechoic and reactive) were used
in each measurement in the waveguide, concluding that the reactive calibration fits better
with the simulation results because, in fact, the anechoic setup is more similar to a divergent
spherical wave model than the plane progressive wave model.

Finally, the algorithms of the measuring device of the complex sound intensity were
used in a real case for an audiometric clinical investigation, where the traditional technique
was satisfactorily replaced for a non invasive test, and additional information was given by
the energy absorbance quantity.
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Appendix A

Implementing the Algorithm in a Device

This section describes how it would be possible to implement the algorithms described in
section 4.1 in a stand-alone hardware.

A.1 Hardware
Raspberry Pi (R) is chosen as main hardware. This hardware consists in a credit-card sized
computer [31] which is attached to a 7-inch touchscreen display that allows the interaction
with the user (see Fig. A.1). Some specifications from the official website [31] are the
following:

• Broadcom BCM2837B0, Cortex-A53 (ARMv8) 64-bit SoC @ 1.4GHz

• 1GB LPDDR2 SDRAM

• 2.4GHz and 5GHz IEEE 802.11.b/g/n/ac wireless LAN, Bluetooth 4.2, BLE

• Gigabit Ethernet over USB 2.0 (maximum throughput 300 Mbps)

• 4 USB 2.0 ports

• 7 inch Raspberry Pi touchscreen display

• Micro SD port for loading your operating system and storing data

• 5V/2.5A DC power input

The input and output signals are converted through an external sound card which is con-
nected to the micro-PC.

In our first prototype, the sound card used is a Focusrite Scarlett 18i8, which has four
balanced microphone inputs and two stereo unbalanced outputs. This sound card is com-
patible with Windows, MacOS, and Linux.

A.2 Software
On the Raspberry Pi it is possible to run a lot versions of operating systems (mainly Linux
versions). Here we use the official Linux version made for Raspberry named “Raspbian”,
which is a based on Debian and it is available online in the official Raspberry website ([31]).

The code was written in Python, which is a an open source and general purpose pro-
gramming language. Some advantages are that it is readable and clean code based and it
is designed with features to facilitate data analysis and visualization. Furthermore, Python
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Figure A.1: Measuring Device Hardware.

Figure A.2: Sound Card and Probe.
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is compatible with many platforms and systems given that it has many open source frame-
works and libraries.

This section will show the main libraries used to program our application in Python.
Some code lines will be included in order to show the main routines about play and acqui-
sition signal, signal processing, and plotting curves.

A.2.1 Numpy and SciPy Python Library
These libraries contains the fundamental package for scientific computing in Python [32] .
Some functionalities used in the application are:

• A powerful N-dimensional array object

• Useful linear algebra, Fourier transform, and random number capabilities

• Tools for integrating C/C++

The installation of the libraries is very easy using the package manager “pip”. The installa-
tion commands using pip for Python 3 in Linux are the following:

sudo pip3 install numpy
sudo pip3 install scipy

Some functions of these libraries used in the program are shown below:

• Defining array: here x, y, z are numbers (integers, float, complex, etc.) that conform
the elements of the array A.

A = numpy.array([x,y,z])

• Module: here Z is a complex number and Z_mod is the module of Z.

Z_mod = numpy.abs(Z)

• Phase: here Z is a complex number and Z_phase is the phase of Z in rad.

Z_phase = numpy.angle(Z)

• Real part: here Z is a complex number and R is the real part of Z.

R = numpy.real(Z)

• Imaginary part: here Z is a complex number and X is the imaginary part of Z.

X = numpy.imag(Z)

• Conjugate: here Z is a complex number and Z_conj is the conjugate of Z.

Z_conj = numpy.conjugate(Z)

• Transpose: here A is a matrix and B is the transpose matrix of A.

B = numpy.transpose(A)
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• Cross Spectrum: here p and v are signals in the time domain sampled at frequency
Fs. GPV is the cross spectrum of p and v, and F is the frequency vector of GPV .

F,GPV = scipyi.signal.csd(p, v, fs = 44100, window="hann",...
...,nfft = 8192, return_onesided = True, scaling = "spectrum")

• Power Spectrum (Welch algorithm): here p is a signal in the time domain sampled at
frequency Fs, while P is the power spectrum of p, and F is the frequency vector of
P .

F,GPV = scipyi.signal.welch(p, fs = 44100, window="hann",...
...,nfft = 8192, return_onesided = True, scaling = "spectrum")

A.2.2 Sounddevice Python Library
Sounddevice is a Python library [33] used to play and record signals through a sound card
installed in the host operating system.

Also here, the installation process is made through the package manager pip. The com-
mand in Linux is the following:

sudo pip3 install sounddevice

Below a basic routing to play and rec a signal is shown:

• List the available sound devices:

sounddevice.query_devices()

• Define the default parameters:

sounddevice.default.samplerate = 44100
sounddevice.default.device=[dev_in_id,dev_out_id]
sounddevice.default.channels = [4,1]

• Play and rec sentence:

rec_data = sounddevice.playrec(play_data)

A.2.3 Matplotlib Python Library
Matplotlib [34] is a powerful Python library which allows to plot any kind of graph. Fur-
thermore with matplotlib, it is possible to have full control of line styles, font properties,
axes properties, etc.

The installation command in Linux is:

sudo pip3 install matplotlib

The typical plot routine is shown below:

• Define plot area: figure and canvas objects are created, “fig” and “canvas” respec-
tively. The canvas object links the figure object with the frame where the plots will
be shown.
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fig = plt.Figure()
canvas = FigureCanvasTkAgg(fig, plot_frame)
canvas.get_tk_widget().pack()

• Plot figure: figure object is cleared, a new plot object is created, and data is plotted.

fig.clf()
fig_plt = self.fig.add_subplot(111)
self.fig_plt.semilogx(F, np.abs(Z),color = 'blue')

• Define plot properties: here some plot properties are set, for example, the abscissa
and the ordinate labels, title, legend, limits of the plot and show the grid.

fig_plt.set_xlabel('frequency [Hz]')
fig_plt.set_ylabel('Z')
fig_plt.set_title('Power spectra')
fig_plt.legend(['P','Vx','Vy','Vz'])
fig_plt.set_xlim((fmin,fmax))
fig_plt.grid(ON,axis=BOTH)

• Show plot: finally, the plot is shown invoking the function draw() in the object “can-
vas.”

canvas.draw()

A.3 Graphical User Interface
The graphical user interface (GUI) is composed by three panels: A, B, C. The first one,
A, is where the plots and settings windows will be shown. Panel B is a menu composed
for five buttons, which are used to setup the hardware and to execute, save and load the
measurements. Panel C is a submenu composed for six buttons which are used to plot each
kind of graph.

Next, each button of the menu (panel B) will be describe.

• Select device: In this menu (Fig.A.4) the sound cards connected to the device are
shown. Here, it is possible to choose the input and output hardware (can be different),
and the probe dimensions: one, two or three dimensions.

• LoadCalibration: This button is used to load the calibration file of the probe (Fig.A.5).

• Excitation signal: This menu (Fig.A.6) allows to setup and choose the kind of signal
to excite the field. The kind of signals are: external, single-tone, dual-tone, sweep,
and white noise.

• Start measuring: This button opens the measuring menu (Fig.A.7) which allows to
execute the measuring process for each spatial point. Once the measurements are
made, the measurements are saved using the button “Finish”.
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Figure A.3: Graphical User Interface.

Figure A.4: Select Device Menu.
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Figure A.5: Load Calibration File.

Figure A.6: Excitation Signal Menu.
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Figure A.7: Measuring Menu.

Figure A.8: Load Measurements Dialog.
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Figure A.9: Active and Reactive Intensity Spectra.

• Load measurements: This button allows saved measurements (Fig.A.8). The file
extension is “csi” for “complex sound intensity”.

The six buttons in the submenu in the panel C are used to plot the graphs.
The buttons “Power spectrum”, “Impedance (Mod & Ph)”, “Impedance (R & X)”, and

“Cx Intensity Spectrum” plot the power spectrum of pressure and each velocity component,
impedance in module and phase, real and imaginary part of the impedance, and the spectra
of the active and reactive intensity modules, respectively. Each one of these graphs are
plotted for one single point in the space. Therefore, a second submenu appears to change
the current spatial point (see Fig. A.9).

The buttons “Complex intensity field (single freq.)” and “Overall Active Intensity
Field” plot the fields of the active and reactive intensity for a single frequency and the
overall active intensity field, respectively. Also here, a second submenu appears, but now
to change the current frequency (see Fig. A.10)
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Figure A.10: Active and Reactive Intensity Field.
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