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Introduction

Nonlinear optimization has increasingly become relevant in the resolution of problems arising

from several domains of applied science. Indeed many phenomena occurring in applications

involve the minimization of a nonlinear objective function which typically depends on a large

number of unknown variables. Most of the times, such minimization problem is not solvable

exactly, which makes necessary to compute a numerical approximation of the solution via

an iterative algorithm. The main challenge of nonlinear optimization consists then in devising

algorithms which are able to provide accurate estimations of the optimal solution in a reasonable

amount of time.

First order methods have gained much popularity in the optimization framework. When

the objective function is differentiable, these algorithms are denominated gradient methods and

involve the iterative evaluation of only the function and its gradient until convergence to the

solution is achieved. Projection of the iterates onto a convex set may be required whenever

constraints are imposed on the unknown variables, thus leading to the rise of gradient projection

methods. The natural extension of these algorithms to nondifferentiable problems is represented

by the so-called proximal–gradient methods, which are applicable when the objective function

is given by the sum of a differentiable term and a convex term.

What makes first order methods so attractive is their simplicity of use and low computa-

tional cost per iteration. The downside is that they often exhibit a slow rate of convergence to

the solution of the optimization problem. Therefore, acceleration strategies have been devised

in the literature in order to turn first order methods into competitive and efficient tools. Several

of them are related to the adaptive choice of the parameters involved in the definition of the

algorithm, such as the steplength parameter or the scaling matrix defining the descent direction.

In particular, steplength selection rules are usually based on the information available at the

previous iterations, whereas the scaling matrix is chosen according to the features and shape

of the objective function. Together, these parameters define the variable metric with respect

to which the iterate is computed.

Another major difficulty in devising effective algorithms is nonconvexity. When convexity is

lost, the objective function presents multiple local minima and possibly saddle points. Further-

more, in this case only global convergence (in the sense of subsequences) to stationary points

is usually guaranteed for first order methods. These theoretical remarks lead to an overall
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4 Introduction

uncertainty in numerical experience on whether the algorithm of interest is actually converging

and, in this case, if it converges to a sensible estimate of the solution.

The aim of this thesis is to propose efficient first order methods tailored for a wide class of

nonconvex nondifferentiable optimization problems, in which the objective function is given by

the sum of a differentiable, possibly nonconvex function and a convex, possibly nondifferentiable

term. Our approach is twofold: on one hand, we accelerate the proposed methods by making

use of suitable adaptive strategies to choose the involved parameters; on the other hand, we

ensure convergence by imposing a sufficient decrease condition on the objective function.

Our first contribution is the development of a novel proximal–gradient method denominated

Variable Metric Inexact Line–search based Algorithm (VMILA). The proposed approach is

innovative from several points of view. First of all, VMILA allows to adopt a variable metric

in the computation of the proximal point with a relative freedom of choice. Indeed the only

assumption that we make is that the parameters involved belong to bounded sets. This is

unusual with respect to the state-of-the-art proximal–gradient methods, where the parameters

are usually chosen by means of a fixed rule or tightly related to the Lipschitz constant of

the problem. Second, we introduce an inexactness criterion for computing the proximal point

which can be practically implemented in some cases of interest. This aspect assumes a relevant

importance whenever the proximal operator is not available in a closed form, which is often

the case. Third, the VMILA iterates are computed by performing a line–search along the

feasible direction and according to a specific Armijo-like condition. This last one can be indeed

considered as an extension of the classical Armijo rule proposed in the context of differentiable

optimization.

The VMILA method has been originally proposed in [32], in which the convergence and

the numerical experience are shown only in the convex case. In this thesis, we propose a suit-

able modification of this method, denominate VMILAn, for which the convergence analysis

can be extended to the nonconvex case. As a first result, we prove that each limit point of

the VMILAn sequence is stationary for the objective function, provided that the gradient of

the differentiable part is Lipschitz continuous. In the second place, we show that the sequence

converges to a stationary point by assuming that the objective function satisfies a very general

analytical property, the so-called Kurdyka– Lojasiewicz inequality (KL). This condition is sat-

isfied by a large variety of functions and requires a certain regular behaviour of the function in

a neighbourhood of its critical points. The proof of this result is essentially obtained by com-

bining the properties of the Armijo line–search with the KL property. Finally, we also prove

some convergence rate results for the VMILAn sequence, according to the degree of regularity

specified by the KL property.

The numerical efficiency of the proposed approach is then shown on a collection of nonconvex

problems arising in image processing. In particular, we observe how VMILAn is able to provide

accurate reconstruction of the unknown image in a lower computational time, in some cases
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of several order of magnitudes, with respect to other accelerated proximal–gradient methods

known in the literature. In the related comments, we conjecture that this accelerated rate

of convergence may be due more to the variable choice of the parameters involved than the

sufficient decrease condition imposed by the Armijo-like condition.

The effectiveness of VMILAn is further demonstrated by treating in details the problem of

phase estimation arising in differential-interference-contrast (DIC) microscopy. Such problem

consists in recovering information on the phase shifts of the light induced by the specimen

from a set of images acquired with a DIC microscope. The resulting optimization problem is

highly nonconvex and, thus, can be perfectly addressed by means of VMILAn. Unlike previous

works on DIC, we decide to adopt an edge-preserving approach to this problem and propose

to regularize it by means of the Hypersurface (HS) potential, which is a possibly smoothed

version of the Total Variation (TV) functional. The DIC problem is then tackled in two ways:

in the case of HS regularization, a gradient method equipped with an Armijo line–search and

a non standard selection rule for the steplength is adopted; in the case of TV regularization,

a non-scaled version of VMILAn is considered. Numerical simulations with simulated datasets

show that the two proposed line–search based techniques are able to provide accurate recon-

structions of the phase in a lower computational time than several nonlinear conjugate gradient

methods, including the state-of-the-art method for DIC imaging.

In our second contribution we treat a special instance of the previously considered optimiza-

tion problem, where the convex term is assumed to be a finite sum of the indicator functions

of closed, convex sets. In other words, we consider a problem of constrained differentiable

optimization in which the constraints have a separable structure. The most suited method

to deal with this problem is undoubtedly the nonlinear Gauss-Seidel (GS) or block coordinate

descent method, where the minimization of the objective function is cyclically alternated on

each block of variables of the problem. In this thesis, we propose an inexact version of the

GS scheme, denominated Cyclic Block Generalized Gradient Projection (CBGGP) method, in

which the partial minimization over each block of variables is performed inexactly by means

of a fixed number of gradient projection steps. The novelty of the proposed approach consists

in the introduction of non Euclidean metrics in the computation of the gradient projection.

The general result that we provide for CBGGP is the stationarity of the limit points of the

sequence, without any convexity assumption on the objective function. Furthermore, we ex-

tensively apply CBGGP in large-scale image blind deconvolution, when the data are corrupted

by either Gaussian or Poisson noise. Finally, we deepen the numerical study of CBGGP on

a series of realistic simulations in blind deconvolution problems for ground-based telescopes

equipped with Fizeau interferometers, in which successes and failures in the reconstruction of

stellar fields are shown.

The thesis is organized as follows.

In Chapter 1, we introduce the reader to the main concepts of differentiable optimization
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and provide an insightful overview of gradient methods. In particular, we discuss the choice

of both the steplength and the scaling matrix, in both the unconstrained and constrained

setting, and provide a comparison between several adaptive strategies known in the literature

to compute these parameters.

In Chapter 2, we make a step further into the nondifferentiable case. First, we introduce

the mathematical notions of Convex and Variational Analysis required for the subsequent

discussion, including a summary of the main subdifferential calculus rules. Then we define

the concept of proximity operator of a convex function and consider its main properties and

examples. Afterwards, we provide a self-contained overview of proximal–gradient methods,

which constitute the natural extension of gradient methods to the nondifferentiable setting and

are suited for problems with a specific structure, i.e. when the objective function is given by the

sum of a convex and a differentiable term. We also highlight strengths and possible limitations

of these approaches. Finally, we discuss the convergence of inexact proximal–gradient methods

under the assumption that the objective function satisfies the Kurdyka– Lojasiewicz property.

In Chapter 3, we focus on the description, convergence analysis and application of the

VMILAn method. In the first part of the chapter, we introduce a wide class of forward–

backward algorithms developed in [32], in which the notion of proximal operator is replaced

by a more general tool, in order to allow the use of non Euclidean distance in the metric. In

the second part, we present VMILAn as a special instance of the previous framework, detail

its key features and develop the related convergence analysis. The final section of this chapter

is then devoted to some numerical illustrations on three image processing applications: image

deconvolution in presence of signal dependent Gaussian noise, image deblurring in presence of

Cauchy noise and linear diffusion based image compression. We remark that, in these numerical

experiments, we apply several of the steplength and scaling matrix selection rules discussed in

Chapter 1 and 2.

In Chapter 4, we exploit the line–search based methods developed in the previous chapter

for the problem of phase estimation from color images arising in DIC microscopy. We start by

devising an extension of the DIC imaging model proposed in [118] to the case of RGB images.

On the basis of this model, we derive the corresponding maximum likelihood function, which is

highly nonconvex, and propose to regularize it by means of the HS regularizer. We study the

analytical properties of the resulting objective function and prove the existence of minimum

points. The two proposed line–search based algorithms are then presented. Finally, numerical

comparison of the proposed algorithms with several nonlinear conjugate gradient methods is

reported.

In Chapter 5, the CBGGP algorithm for differentiable optimization problems with separable

constraints is proposed. The first section is concerned with the introduction of a generalized

projection operator, which is slightly different from the one introduced in Chapter 3 (indeed

the latter one is a special instance of the former if the functions involved are differentiable),

and on which the proposed algorithm relies on. In the following section, CBGGP is introduced

together with the proof of global convergence towards stationary points. The final section is



Introduction 7

devoted to the numerical application of CBGGP to blind deconvolution.

In Appendix A, a summary of the basic notions of image restoration is presented for the

reader’s convenience. Indeed several of the concepts introduced here are extensively used

throughout the entire thesis.
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Notations

• R≥0 = {x ∈ R : x ≥ 0} and R>0 = {x ∈ R : x > 0} are the sets of nonnegative and

positive real numbers, respectively.

• R̄ = R ∪ {−∞,+∞} is the extended real numbers set.

• e and 0 denote a vector with all entries equal to 1 and 0, respectively.

• If x, y ∈ Rn, then xT y =
∑n

i=1 xiyi denotes the scalar product.

• If x, y ∈ Rn, then x
y and x·y denote the component-wise division and product, respectively.

• If x ∈ Rn, x ≥ 0 ⇔ xi ≥ 0, i = 1, . . . , n. An analogous notation holds for >, ≤, <.

• D ∈ Rm×n denotes a matrix of m rows and n columns.

• In ∈ Rn×n denotes the n× n identity matrix.

• ‖ · ‖ will denote the Euclidean norm: ‖x‖ = ‖x‖2 =
√
xTx.

• ‖ · ‖D will denote the norm induced by a symmetric positive definite matrix D ∈ Rn×n:

‖x‖D =
√
xTDx.

• Given µ ≥ 1, Mµ is the set of all symmetric positive definite matrices with eigenvalues

contained in the interval [ 1µ , µ].

• Given ρ ∈ R>0, B(x, ρ) = {y ∈ Rn : ‖y−x‖ ≤ ρ} is the closed ball of center x and radius

ρ.

• Given f : Rn → R̄ and α ∈ R, [f = α] = {x ∈ Rn : f(x) = α} denotes the level set of

f at height α. Analogous notations are used for the lower and upper level sets [f ≤ α],

[f < α], [f ≥ α], [f > α].

• Given −∞ < α1 < α2 ≤ +∞, [α1 < f < α2] = {x ∈ Rn : α1 < f(x) < α2} is the

sublevel set of f at levels α1 and α2.
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Chapter 1

Gradient methods for differentiable

optimization

The purpose of this chapter is to provide an insight into one of the most studied class of

numerical algorithms designed to address the following optimization problem

min
x∈Ω

f(x) (1.1)

where Ω ⊂ Rn is a nonempty, closed and convex set and f : Ω → R is a continuously differen-

tiable function over Ω. When Ω = Rn and therefore no restrictions on the unknown variable x

are imposed, one speaks of unconstrained optimization, otherwise of constrained optimization.

Gradient methods are by far the most standard and popular iterative schemes aimed at

solving problem (1.1). These methods are characterized by a simple implementation and a low

computational cost per iteration, since they only exploit first-order information of the objective

function to define each iterate. Furthermore, many of these algorithms lean on the so-called

iterative descent idea, which consists in generating a sequence of iterates {x(k)}k∈N ⊆ Ω in

such a way that f is decreased at each iteration. The legitimate hope is that the iterates

will eventually approach a global minimum or, at least, a stationary point of f . The decrease

in the objective function is imposed by moving along a descent direction with a sufficiently

small positive steplength, which may vary at each iteration. Strategies based on an adaptive

choice of the steplength and the parameters involved in the definition of the descent direction

allow to practically improve the convergence rate of gradient methods without increasing their

computational costs. When constrained optimization is considered, the additional cost of pro-

jecting the iterates on the feasible set Ω in order to preserve feasibility must be taken into

account; however, if the constraints are simple, the projection can be performed by linear-time

algorithms and thus without significant computational effort.

The chapter is organized as follows. Section 1.1 is devoted to the analysis of gradient

methods for unconstrained optimization, with related discussions on the choice of their param-

eters and convergence results, whereas Section 1.2 focuses on gradient projection methods for

11



12 Chapter 1 Gradient methods for differentiable optimization

constrained optimization, including a similar analysis to the one of Section 1.1.

1.1 Unconstrained case: gradient methods

In this section the unconstrained version of problem (1.1) is considered, where f is assumed to

be continuously differentiable on Rn and Ω = Rn. We recall the following definitions and basic

results.

Definition 1.1. A point x∗ is an unconstrained global minimum of f if

f(x∗) ≤ f(x), ∀ x ∈ Rn.

A point x∗ is an unconstrained local minimum of f if there exists ǫ > 0 such that

f(x∗) ≤ f(x), ∀ x : ‖x− x∗‖ ≤ ǫ.

Theorem 1.1. [22, Proposition 1.1.1] Let x∗ be an unconstrained local minimum of f . Then

∇f(x∗) = 0. (1.2)

If, in addition, f is twice continuously differentiable over an open set U containing x∗, then

also the following holds

∇2f(x∗) is positive semidefinite. (1.3)

Equations (1.2) and (1.3) are the first and second order necessary optimality conditions,

respectively, for a point x∗ to be a (local) minimum of f .

Theorem 1.2. [22, Proposition 1.1.2] Let f : Ω → R be a convex function over the convex set

Ω.

(i) A local minimum of f over Ω is also a global minimum over Ω. If, in addition, f is

strictly convex, then f admits at most one global minimum.

(ii) If f is differentiable and Ω is an open set, then ∇f(x∗) = 0 is a necessary and sufficient

condition for a vector x∗ ∈ Ω to be a global minimum of f over Ω.

Definition 1.2. A point x∗ ∈ Rn is stationary for f if ∇f(x∗) = 0.

Definition 1.3. A vector d ∈ Rn is a descent direction for f at the point x ∈ Rn if

∇f(x)Td < 0.

A gradient method is an iterative algorithm which, starting from an initial guess x(0) ∈ Rn,

generates a sequence of the form

x(k+1) = x(k) + αkd
(k), k = 0, 1, 2, . . . (1.4)
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where d(k) is a descent direction at x(k) and αk is a positive parameter denominated steplength.

The majority of gradient methods are also descent algorithms. Indeed if one considers the half

line of points

xα = x(k) + αd(k), ∀ α ≥ 0,

from the first order Taylor series expansion around x(k) we have

f(xα) = f(x(k)) + α∇f(x(k))Td(k) + o(α).

For α sufficiently small, the negative term α∇f(x(k))Td(k) dominates on o(α) and thus f(xα) is

smaller than f(x(k)). Many gradient methods are then equipped with steplength rules aimed at

imposing a decrease in the objective function. However there are some exceptions; see Section

1.1.2 for an insightful discussion.

In the following we will discuss some of the most commonly known choices for the descent

direction d(k) and the steplength αk.

1.1.1 Choice of the descent direction

The descent direction in (1.4) is usually of the form

d(k) = −D−1
k ∇f(x(k)) (1.5)

where Dk is a positive definite symmetric matrix called scaling matrix. Indeed any d(k) defined

as in (1.5) is a descent direction, since

∇f(x(k))Td(k) = ∇f(x(k))T (−D−1
k ∇f(x(k))) = −∇f(x(k))TD−1

k ∇f(x(k)) < 0

where the inequality follows from the positive definiteness of the matrix D−1
k . We now give

some classical examples of choices of the matrix Dk.

Identity matrix

Dk = In, k = 0, 1, 2, . . . (1.6)

In this case d(k) = −∇f(x(k)). The resulting method is the popular steepest descent. The name

is derived from the fact that the (normalized) negative gradient direction p(k) = − ∇f(x(k))

‖∇f(x(k))‖ is

the one that, among all normalized directions d ∈ Rn, minimizes the slope ∇f(x(k))T d of the

function f(x(k) + αd) at α = 0. In fact, by the Cauchy-Schwartz inequality, we have

∇f(x(k))T d ≥ −‖∇f(x(k))‖ · ‖d‖ = −‖∇f(x(k))‖, ∀ d ∈ Rn, ‖d‖ = 1

and the inequality above is attained with d = p(k).

As we will see in Section 1.1.2, the steepest descent often leads to slow convergence when the

problem is ill-conditioned. In particular, when the level sets of the objective f are “elongated”,
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the method typically zig-zags without making fast progress towards the solution.

Hessian matrix

The Newton’s method corresponds to the following choice

Dk = ∇2f(x(k)), k = 0, 1, 2, . . . (1.7)

provided that ∇2f(x(k)) is positive definite. When αk = 1, the iterate x(k+1) given by Newton’s

method is exactly the minimum point of the quadratic approximation of f around the current

point x(k), that is

q(k)(x) = f(x(k)) + ∇f(x(k))T (x− x(k)) +
1

2
(x− x(k))T∇2f(x(k))(x− x(k)).

Indeed the general Newton iteration is easily obtained by setting ∇q(k)(x(k+1)) = 0. In contrast

with the steepest descent, Newton’s method converges Q-superlinearly and does not show a zig-

zagging behaviour. However, fast convergence comes with the price of evaluating the Hessian

of f at each iteration, which can be computationally expensive or sometimes even impracticable.

Diagonal matrix

A convenient alternative to the previous approaches is to adopt a diagonal scaling matrix

Dk =




d
(k)
1 0 0 · · · 0

0 d
(k)
2 0 · · · 0

...
...

...
. . .

...

0 0 0 · · · d
(k)
n



, k = 0, 1, 2, . . . (1.8)

where d
(k)
i > 0, i = 1, . . . , n, in order to ensure the positive definiteness of Dk, and d

(k)
i

approximates the i-th second partial derivative of f

d
(k)
i ≈ ∂2f(x(k))

∂x2i
, i = 1, . . . , n. (1.9)

The resulting method is denominated diagonally scaled steepest descent and can be seen as a

diagonal approximation of the Newton’s method. It is evident that an appropriate choice of a

diagonal scaling matrix is closely connected to the structure of the objective function f .

1.1.2 Choice of the steplength

Classical rules

The most classical steplength selection rule was first considered in [40] and consists in mini-

mizing the objective function along the descent direction d(k), that is

αSD
k = argmin

α≥0
f(x(k) + αd(k)). (1.10)
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Equation (1.10) is called the minimization rule and guarantees the monotonicity of the sequence

{f(x(k))}k∈N. When d(k) = −∇f(x(k)) and αk is chosen as in (1.10), we obtain the Cauchy

steepest descent method, which sometimes is simply denominated steepest descent.

A more easily implementable variant of rule (1.10) is the limited minimization rule, accord-

ing to which the steplength αk is chosen by minimizing f(x(k)+αd(k)) on a closed and bounded

interval, i.e.

αSD
k = argmin

α∈[0,s]
f(x(k) + αd(k)) (1.11)

where s > 0 is a fixed scalar. Both rules (1.10) and (1.11) are implemented with the aid

of one-dimensional linesearch algorithms (see e.g. [22, Appendix C]), which often require a

considerable computational effort. For that reason, it is usually preferred to successively reduce

the steplength until a certain sufficient decrease condition is satisfied. This is the case of the

well-known Armijo rule [22, 104], which is reported in Algorithm 1.

Algorithm 1 Armijo linesearch algorithm

Let {x(k)}k∈N be a sequence of points in Rn. Choose some δ, β ∈ (0, 1), α > 0.

1. Set αk = α. Let d(k) be a descent direction at x(k).

2. If

f(x(k) + αkd
(k)) ≤ f(x(k)) + βαk∇f(x(k))Td(k) (1.12)

Then go to step 3.

Else set αk = δαk and go to step 2.

3. End

According to Algorithm 1, the steplength is set equal to αk = δmkα, where mk is the first

nonnegative integer such that (1.12) is satisfied.

The main convergence result for the three previously described rules is the stationarity of

the limit points of the sequence {x(k)}k∈N, provided that the directions d(k) tend not to be

asymptotically orthogonal to the gradient ∇f(x(k)).

Theorem 1.3. [22, Proposition 1.2.1] Let {x(k)}k∈N be a sequence generated by a gradient

method x(k+1) = x(k) + αkd
(k) and suppose that {d(k)}k∈N is gradient related to {x(k)}k∈N, i.e.

for any K ⊆ N such that {x(k)}k∈K converges to a nonstationary point, the corresponding

subsequence {d(k)}k∈K is bounded and satisfies

lim sup
k→∞, k∈K

∇f(x(k))T d(k) < 0. (1.13)

If αk is chosen according to one of the rules (1.10), (1.11) or (1.12), then every limit point of

{x(k)}k∈N is stationary for f .
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Remark 1.1. Condition (1.13) is rather technical and difficult to verify in practice. However,

such a condition is satisfied when the eigenvalues of the matrices (Dk)−1 are bounded above

and away from zero, namely if there are two positive scalars m and M such that

m‖x‖2 ≤ ‖x‖D−1
k

≤M‖x‖2. (1.14)

If the scaling matrices are diagonal, the boundedness of the eigenvalues can be easily enforced

by setting (Dk)−1
ii = max{min{d(k)i , µ}, 1µ}, where µ > 0 is a prefixed scalar.

Although Theorem 1.3 is quite general and applies to a certain number of gradient methods,

it does not reveal much about their speed of convergence. To this purpose, it may be convenient

to assume that the objective function is strictly convex quadratic, i.e. of the form

f(x) =
1

2
xTAx− bTx (1.15)

where A ∈ Rn×n is a symmetric positive definite matrix. In this case, since ∇f(x) = Ax−b and

Theorem 1.2 holds, there exists a unique global minimum x∗ = A−1b and any of the gradient

methods previously described converges to x∗, as stated in the following result.

Theorem 1.4. Suppose that f : Rn → R is of the form (1.15) with A symmetric positive defi-

nite, denote with x∗ the unique minimum point of f and let {x(k)}k∈N be a sequence satisfying

the hypotheses of Theorem 1.3. Then x(k) converges to x∗.

Proof. Since f is convex quadratic, it is coercive, namely lim‖x‖→+∞ f(x) = +∞. This implies

that the set Ω0 = {x ∈ Rn : f(x) ≤ f(x(0))} is bounded since, otherwise, there would be a

sequence {z(k)}k∈N such that ‖z(k)‖ → +∞ and f(z(k)) ≤ f(x(0)) for all k, which is absurd

given the coercivity of f . By observing that the sequence {f(x(k))}k∈N is nonincreasing when

αk is computed by means of one of the formulae (1.10)-(1.12), we obtain that {x(k)}k∈N ⊆ Ω0

and thus {x(k)}k∈N admits at least one limit point x̄. Theorem 1.3 ensures that x̄ is stationary

for f and, because of Theorem 1.2, that means x̄ is the unique limit point and x̄ = x∗.

In the quadratic case, it is then reasonable to question whether a gradient method converges

fast or not to the solution. We now report an important result concerning the convergence rate

of the Cauchy steepest descent method.

Theorem 1.5. Suppose that f : Rn → R is of the form (1.15) with A symmetric positive

definite, and let {x(k)}k∈N be generated by the Cauchy steepest descent method. If λ1 and λn
are the smallest and biggest eigenvalue of A, respectively, then the following inequality holds

f(x(k+1)) − f(x∗) ≤
(
λn − λ1
λn + λ1

)2 (
f(x(k)) − f(x∗)

)
(1.16)

or equivalently

‖x(k+1) − x∗‖A ≤
(
λn − λ1
λn + λ1

)
‖x(k) − x∗‖A. (1.17)
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The proof of Theorem 1.5 can be found in [22, Proposition 1.3.1] or in [96]. Inequalities

(1.16)-(1.17) show that the function values and the iterates converge Q-linearly to the opti-

mal value and the minimum point of f , respectively. On one hand, those inequalities imply

that, if all eigenvalues of the matrix A are equal, i.e. A is a multiple of the identity matrix,

then convergence is achieved in one iteration. On the other hand, as the condition number

κ(A) = λn/λ1 of the Hessian matrix increases, the factor (λn − λ1)/(λn + λ1) gets close to 1,

thus suggesting that the algorithm may converge slowly. Furthermore, it can be shown that

inequalities (1.16)-(1.17) are sharp, in the sense that, given any quadratic objective function,

there is an initial guess x(0) such that those inequalities hold as an equation for all k [22, Figure

1.3.2]. In other words, there is no chance to obtain a better convergence rate result for the

Cauchy steepest descent. Finally, we remark that a similar result to Theorem 1.5 is obtained

also for the non-quadratic case, by assuming that the method converges to a minimum point

in which the Hessian is positive definite [104, Theorem 3.4].

Another meaningful result about the asymptotic behaviour of the steepest descent is the

following.

Theorem 1.6. [3, Theorem 4], [103, Proposition 3.1] Suppose that f : Rn → R is of the form

(1.15) with A symmetric positive definite, and let {x(k)}k∈N be generated by the Cauchy steepest

descent method. Let {di}ni=1 be a basis of eigenvectors of A, and assume that the corresponding

eigenvalues 0 < λ1 ≤ λ2 ≤ . . . ≤ λn−1 ≤ λn are such that λ1 < λ2 and λn−1 < λn. For all k,

define µ
(k)
i ∈ R, i = 1, . . . , n as the components of g(k) = ∇f(x(k)) w.r.t. the eigenvectors di,

namely

g(k) =

n∑

i=1

µ
(k)
i di. (1.18)

and suppose that µ
(0)
1 6= 0 and µ

(0)
n 6= 0. Then

(i) the following limits hold

lim
k→∞

(µ
(2k)
i )2

∑n
j=1(µ

(2k)
j )2

=





1
1+c2

, if i = 1

0, if i = 2, . . . , n− 1
c2

1+c2
, if i = n

lim
k→∞

(µ
(2k+1)
i )2

∑n
j=1(µ

(2k+1)
j )2

=





c2

1+c2
, if i = 1

0, if i = 2, . . . , n− 1
1

1+c2
, if i = n

where c = limk→+∞ µ
(2k)
n /µ

(2k)
1 = − limk→+∞ µ

(2k+1)
1 /µ

(2k+1)
n ;

(ii) the components µ
(2k)
1 , µ

(2k)
n , µ

(2k+1)
1 , µ

(2k+1)
n have fixed signs for large k.
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In other words, the even and odd normalized gradients converge to two distinct points

lim
k→+∞

g(2k)

‖g(2k)‖ = d̄ lim
k→+∞

g(2k+1)

‖g(2k+1)‖ = d̂,

and the steepest descent eventually performs its search in the 2D space spanned by d1 and dn,

which explains the well-known zigzagging behaviour of the method.

Barzilai-Borwein rules

The steplength rules described so far rely on the monotonicity of the function values in order to

ensure global convergence of the algorithm. A totally different approach is adopted by the two

well-known Barzilai-Borwein (BB) rules [11]. In particular the BB steplengths arise from the

approximation of the Hessian ∇2f(x(k)) with the diagonal matrix B(αk) = (αkIn)−1, which is

forced to assume one of the following quasi-Newton properties:

αBB1
k = argmin

α∈R
‖B(α)s(k−1) − y(k−1)‖ (1.19)

αBB2
k = argmin

α∈R
‖s(k−1) −B(α)−1y(k−1)‖, (1.20)

where s(k−1) = x(k) − x(k−1) and y(k−1) = ∇f(x(k)) −∇f(x(k−1)). The resulting values are

αBB1
k =

s(k−1)T s(k−1)

s(k−1)T y(k−1)
; αBB2

k =
s(k−1)T y(k−1)

y(k−1)T y(k−1)
. (1.21)

We remark that the BB rules were first given in the context of quadratic objective functions.

In this case, by observing again that ∇f(x) = Ax− b, it is true that

As(k−1) = y(k−1) ⇒ ‖As(k−1) − y(k−1)‖ = ‖s(k−1) −A−1y(k−1)‖ = 0. (1.22)

Since A is the Hessian of (1.15), relation (1.22) clarifies why formulae (1.19)-(1.20) are used to

obtain an approximation of the Hessian matrix.

Numerical experience shows that the BB rules and their modifications are able to greatly

speed up the slow convergence exhibited by the Cauchy steepest descent method, both in

the quadratic [11, 67] and non-quadratic case [120]. Indeed, Barzilai and Borwein [11] were

able to prove the R-superlinear convergence of the steepest descent method equipped with

one of the steplength rule in (1.21) for two-dimensional strictly convex quadratic functions.

Furthermore, Raydan [120] established global convergence of the BB methods for the strictly

convex quadratic case with any number of variables and, in the same setting, Dai and Liao

[56] showed the expected R-linear convergence result. However, these two last results hold

also for the Cauchy steepest descent and do not explain why the BB methods are much more

effective in practice. It would be nice to extend the R-superlinear convergence result proved in

two dimensions to the n−dimensional case, but that seems unlikely to occur in the presence of

round-off errors [62].
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An explanation of the good behaviour of the BB methods is given in [62, 64] for a quadratic

objective function; in this case, if a steepest descent method is considered, we can rewrite the

gradient g(k) = ∇f(x(k)) as follows

g(k) = Ax(k) − b = Ax(k−1) − b− αk−1Ag
(k−1)

= (In − αk−1A)g(k−1). (1.23)

Applying iteratively (1.23) yields the following relation

g(k) =




k−1∏

j=0

(In − αjA)


 g(0). (1.24)

Let {di}ni=1 be a basis of eigenvectors of A and 0 < λ1 < λ2 ≤ . . . ≤ λn−1 < λn the correspond-

ing eigenvalues. Then the vector g(0) may be represented in the form g(0) =
∑n

i=1 µ
(0)
i di with

µ
(0)
i ∈ R, i = 1, . . . , n, and equation (1.24) becomes

g(k) =

n∑

i=1

µ
(0)
i




k−1∏

j=0

(In − αjA)


 di. (1.25)

Finally, by comparing (1.18) with (1.25), we deduce the following relation

µ
(k)
i = µ

(0)
i




k−1∏

j=0

(1 − αjλi)


 = µ

(k−1)
i (1 − αk−1λi) . (1.26)

From the recurrence (1.26), two fundamental facts may be deduced:

• if at the (k − 1)-th iteration µ
(k−1)
i = 0, then µ

(h)
i = 0 for all h ≥ k;

• if at the (k − 1)-th iteration αk−1 = 1/λi, then µ
(k)
i = 0.

This means that if the first n steps of the steepest descent method are defined by setting

αk =
1

λk
, k = 1, . . . , n

then g(n) = 0 and the method converges in (at most) n steps. Therefore, it seems desirable

that the steplength αk approximates the reciprocal of some eigenvalue of the Hessian matrix

at each iteration. Since the eigenvalues of A are usually not available, one might approximate

them with the Rayleigh quotients of the matrix A, which are defined as

RA(x) =
xTAx

‖x‖2 , ∀ x ∈ Rn \ {0}. (1.27)
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Such an approximation is reasonable, since any eigenvalue of A is a Rayleigh quotient in which

x is the corresponding eigenvector and, in addition, the minimum and maximum value of RA(x)

over x coincide with the minimum and maximum eigenvalue of A, respectively:

λ1 = min
x∈Rn

x 6=0

RA(x) = RA(d1) (1.28)

λn = max
x∈Rn

x 6=0

RA(x) = RA(dn) (1.29)

The next result shows that both BB steplengths can be seen as approximations of the

reciprocals of the eigenvalues of A of the form (1.27).

Proposition 1.1. Suppose that f : Rn → R is defined as in (1.15) and let {x(k)}k∈N be

generated by a gradient method of the form x(k+1) = x(k)−αk∇f(x(k)). Then the BB rules can

be rewritten as follows

αBB1
k =

g(k−1)T g(k−1)

g(k−1)TAg(k−1)
= R−1

A (g(k−1)) (1.30)

αBB2
k =

g(k−1)TAg(k−1)

g(k−1)TA2g(k−1)
= R−1

A (A
1
2 g(k−1)) (1.31)

where g(k−1) = ∇f(x(k−1)). Furthermore, if λ1 and λn are the smallest and biggest eigenvalue

of A, respectively, then the following property holds

1

λn
≤ αBB2

k ≤ αBB1
k ≤ 1

λ1
. (1.32)

Proof. Combining (1.22) with relation s(k−1) = −αkg
(k−1) yields y(k−1) = −αkAg

(k−1). By

replacing these two relations in αBB1
k we obtain

αBB1
k =

(
−αkg

(k−1)
)T (−αkg

(k−1)
)

(
−αkg(k−1)

)T (−αkAg(k−1)
) =

g(k−1)T g(k−1)

g(k−1)TAg(k−1)
. (1.33)

A similar reasoning can be done for αBB2
k , thus proving (1.31). Direct use of the Cauchy-

Schwartz implies the following inequality

g(k−1)TAg(k−1) ≤
√
g(k−1)T g(k−1)

√
g(k−1)TA2g(k−1). (1.34)

Taking squares of both sides of (1.34) and dividing it by (g(k−1)TAg(k−1)) · (g(k−1)TA2g(k−1))

yields the inequality αBB2
k ≤ αBB1

k in (1.32). Finally, the inequalities αBB2
k ≥ 1/λn and

αBB1
k ≤ 1/λ1 follow from the extremal properties of the Rayleigh quotient (1.28)-(1.29).
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Remark 1.2. If f is non-quadratic and s(k−1)T y(k−1) > 0, the property αBB2
k ≤ αBB1

k still

holds. Furthermore, by the mean-value theorem of integral calculus it follows that

y(k−1) =

(∫ 1

0
∇2f(x(k−1) + ts(k−1))dt

)
s(k−1)

and hence both steplengths (1.21) define the inverse of a Rayleigh quotient relative to the

average Hessian matrix
∫ 1
0 ∇2f(x(k−1) + ts(k−1))dt.

It should be noted that also the Cauchy steplength (1.10) can be seen as the reciprocal of

a Rayleigh quotient. In fact, by computing the derivative of the quadratic function w.r.t. α

d

dα
f(x(k) − αg(k)) = −g(k)T

(
A(x(k) − αg(k)) − b

)
= −g(k)T g(k) + αg(k)

T
Ag(k).

and setting it to 0, we obtain

αSD
k =

g(k)
T
g(k)

g(k)
T
Ag(k)

= R−1
A (g(k)). (1.35)

Nevertheless, there is some evidence that the eigenvalues approximations provided by the se-

quence {1/αBB1
k }k∈N are much better than the ones given by the Cauchy optimal choice [64, 72].

In fact, from the recurrence (1.26), we observe that

αk ≈ 1

λi
⇒





|µ(k)i | ≪ |µ(k−1)
i |

|µ(k)j | < |µ(k−1)
j |, if j < i

|µ(k)j | > |µ(k−1)
j |, if j > i, λj > 2λi.

(1.36)

Thus, small steplengths αk (close to 1/λn) tend to decrease a large number of eigencomponents,

with negligible reduction of those corresponding to small eigenvalues. These latter ones can be

significantly reduced by using large steplengths, which however may cause an increase in the

eigencomponents corresponding to the dominating eigenvalues and thus foster non-monotonic

behaviour, both for the gradient norm and the function value. For that reason, it is likely

that the Cauchy steplengths αSD
k tend to be small in order to ensure the expected monotonic

behaviour, whereas the reciprocals of the BB steplengths 1/αBB1
k are allowed to sweep the

spectrum of A, with the result of forcing each component µ
(k)
i to go to zero.

Another consideration that can be deduced from (1.36) is that some balance between large

and small steplengths is essential in order to devise effective gradient methods. This basic

idea has given rise to novel steplength selection rules, based on the alternation of the Cauchy

and/or BB steplengths. Several of these methods belong to the class of Gradient Methods with

Retards (GMR) [68] which, given positive integers m and qi, i = 1, . . . ,m, set the steplength

as follows

αGMR
k =

gTν(k)A
ρ(k)−1gν(k)

gTν(k)A
ρ(k)gν(k)

(1.37)
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where ν(k) ∈ {k, k − 1, . . . ,max{0, k −m}} and ρ(k) ∈ {q1, q2, . . . , qm}. Clearly, steplengths

(1.30)-(1.31)-(1.35) are all special cases of (1.37). Remarkable members of the GMR class are

the Alternate Step (AS) gradient method [122, 53], in which the Cauchy and BB1 steplengths

are used in turns, or the Alternate Minimization (AM) method [57], where the minimization of

the objective function along the line provided by (1.10) is alternated with the one-dimensional

minimization of the gradient norm. These approaches, which all rely on a prefixed alternation

of the selected rules, seem to be overcome by methods where the steplengths are adaptively

alternated on the basis of some switching criterion, such as the Adaptive Steepest Descent

(ASD) method, the Adaptive Barzilai Borwein (ABB) method [145] and its generalizations

ABBmin1 and ABBmin2 [67]. In particular, the ABBmin1 method alternates the two BB rules

in the following way

αABBmin 1
k =





min
{
αBB2
j : j = max{1, k −m}, . . . , k

}
, if

αBB2
k

αBB1
k

< τ

αBB1
k , otherwise

(1.38)

where m is a nonnegative integer and τ ∈ (0, 1). Notice that, when m = 0, the former ABB rule

is recovered. The ABBmin 1 strategy aims at generating a sequence of small steplengths with the

BB2 rule so that the subsequent value generated by the BB1 rule is a suitable approximation of

the reciprocal of some small eigenvalue. The switching criterion in (1.38) is based on the relation

αBB2
k /αBB1

k = cos2 θk−1, where θk−1 is the angle between Ag(k−1) and g(k−1), and allows to

select the steplength αBB1
k , which is the inverse of the Rayleigh quotient of g(k−1), only when

g(k−1) itself is a sufficiently good approximation of an eigenvector. From the theoretical point of

view, since ABB, ABBmin1 and ABBmin2 belong to the GMR class, their R-linear convergence

can be proved exactly as in [53], whereas Q-linear convergence for the error norm of the ASD

method is established in [145]. From the practical side, these methods have been shown to

further accelerate the convergence of the standard BB method [67].

When the non-quadratic case is considered, the BB method needs be equipped with a

linesearch strategy that allows the objective function to increase at some iterations, in order to

comply with the non-monotonic behaviour of the sequence {f(x(k))}k∈N, while still guaranteeing

global convergence of the sequence. In [121] Raydan suggested to make use of the nonmonotone

linesearch technique devised by Grippo, Lampariello and Lucidi in [75], which is based on a

generalization of the Armijo rule (1.12). In particular, for given scalars β, δ ∈ (0, 1), ǫ > 1,

γ > 0, and by setting

α
(0)
k =

{
αBB1
k , if αBB1

k ∈ [1ǫ , ǫ]

γ, otherwise

as initial guess, then the steplength αk is chosen as δmkα
(0)
k , where mk is the first nonnegative

integer for which

f(x(k) + δmkα
(0)
k d(k)) ≤ fmax + βδmkα

(0)
k ∇f(x(k))T d(k), (1.39)
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is satisfied, where fmax = max
0≤j≤min(k,M−1)

f(x(k−j)) is the maximum value of the objective func-

tion over the last M iterations, being M a prefixed positive integer. Notice that, if M is set

equal to 1, the standard Armijo rule (1.12) is recovered. The resulting scheme, which is de-

nominated Global Barzilai and Borwein (GBB) algorithm, is globally convergent, in the sense

that each limit point of its sequence is stationary for the objective function [121, Theorem 2.1].

Ritz values based rule

We conclude this section by presenting a limited-memory steplength selection rule recently

proposed by Fletcher [65] in the context of steepest descent methods. The new method was

first devised for the quadratic objective function (1.15) and makes use of the most recent m

back gradients

G =
[
g(k−m) . . . g(k−2) g(k−1)

]
(1.40)

to define the next m steplengths αk+i−1, i = 1, . . . ,m. If we apply iteratively (1.23) to the

vector g(k−i) for m− i times, we obtain

g(k−i) =




k−i−1∏

j=k−m

(In − αjA)


 g(k−m), i = 1, . . . ,m− 1,

that is, the gradient vectors g(k−i), i = 1, . . . ,m, belong to the span of the so-called Krylov

sequence generated from g(k−m)

{
g(k−m), Ag(k−m), A2g(k−m), . . . , A(m−1)g(k−m)

}
. (1.41)

A remarkable property of this sequence is that it provides m distinct approximations of the

eigenvalues of A, denominated Ritz values, by means of a Lanczos iterative process [73] applied

to the matrix A. Such a method starts with q1 = g(k−m)/‖g(k−m)‖ and generates an orthonor-

mal basis {q1, q2, . . . , qm} for the Krylov sequence (1.41). Since the columns of G belong to the

Krylov sequence, we can write G = QR, where Q is the n×m orthogonal matrix with columns

q1, q2, . . . , qm and R is a m×m upper triangular matrix which is non singular, provided that

the columns of G are linearly independent. The Ritz values are then given by the eigenvalues

of the matrix

Φ = QTAQ,

which is tridiagonal. If m = n, the Ritz values θi, i = 1, . . . ,m, coincide with the eigenvalues

of A while, if m = 1, then Q = q1 = g(k−m)/‖g(k−m)‖ and there is a unique Ritz value, i.e. the

Rayleigh quotient of g(k−1) on which the BB method is based. For a general m, the Ritz values

are contained in the spectrum of A, since each one of them can be seen as the Rayleigh quotient

θi = RA(Qyi) in which yi is an eigenvector associated to θi and, in addition, the smallest and

biggest Ritz values converge to the minimum and maximum eigenvalue of A, respectively, as

m→ ∞ [80].
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The idea suggested by Fletcher is to divide the sequence of the steepest descent method into

groups of m iterations denominated sweeps, and select the next m steplengths for the current

sweep as the reciprocals of the m Ritz values available from the previous sweep, namely

x(k+i) = x(k+i−1) − αk+i−1g
(k+i−1), i = 1, . . . ,m (1.42)

where αk+i−1 = (θk+i−1)
−1. The resulting method is called Limited Memory Steepest Descent

(LMSD), which is proved to be convergent in the quadratic case [65] by following the same line

of proof exploited in [120] for the BB method.

We remark that the Ritz values can be computed without explicitly using the matrices A

and Q. This is important not only to reduce the computational time of the LMSD method, but

also to further extend the rule to the non-quadratic case, where the matrix A is not available.

Indeed, by rewriting equation (1.23) as follows

g(k+1) = g(k) − αkAg
(k)

then it can be rearranged in the matrix form

AG = [G g(k)]Γ (1.43)

where Γ is a (m + 1) × m matrix containing the reciprocals of the corresponding last m

steplengths

Γ =




α−1
k−m

−α−1
k−m

. . .

. . . α−1
k−2

−α−1
k−2 α−1

k−1

−α−1
k−1




.

Combining (1.43) with relation Q = GR−1 yields

Φ = QTAGR−1 = [R QTg(k)]ΓR−1.

By introducing the vector r = QT g(k), that is the vector which solves the linear system RT r =

GT g(k), we obtain

Φ = [R r]ΓR−1. (1.44)

Then one needs to determine the Cholesky factorization GTG = RTR and solve the upper

triangular linear system RT r = GT g(k) before computing the tridiagonal matrix Φ via equation

(1.44), in which Q does not appear.

For a general objective function, Φ is upper Hessenberg and the Ritz-like values are obtained

by computing the eigenvalues of a symmetric and tridiagonal approximation Φ̃ of Φ defined as

Φ̃ = diag(Φ) + tril(Φ,−1) + tril(Φ,−1)T , (1.45)
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where diag(·) and tril(·,−1) denote the diagonal and the strictly lower triangular parts of a

matrix, respectively. Possible negative eigenvalues of the resulting matrix are discarded before

using this set of steplengths for the next iterations. Several numerical experiments [65], for both

quadratic and nonquadratic test problems, demonstrate that the LMSD method outperforms

the standard Barzilai Borwein scheme, as well as being competitive with other state-of-the-art

methods, such as the BFGS method or the nonlinear Conjugate Gradient (CG) methods.

1.2 Constrained case: gradient projection methods

We now turn to the original constrained minimization problem (1.1) and recall the following

basic definitions.

Definition 1.4. A vector x∗ ∈ Ω is a stationary point of f over Ω if

∇f(x∗)T (y − x∗) ≥ 0, ∀ y ∈ Ω. (1.46)

Definition 1.5. Let D be a symmetric positive definite n× n matrix. The projection operator

PΩ,D : Rn → Ω is defined as

PΩ,D(x) = arg min
y∈Ω

‖y − x‖D = argmin
y∈Ω

(
φ(y) ≡ 1

2
yTDy − yTDx

)
. (1.47)

From Definition 1.4 and the strict convexity of the function φ introduced in (1.47), we

deduce that an equivalent definition of PΩ,D is the following

(PΩ,D(x) − x)T D (PΩ,D(x) − y) ≤ 0, ∀ y ∈ Ω. (1.48)

Lemma 1.1. Let x∗ ∈ Ω and, for any positive scalar α and symmetric positive definite matrix

D, define d∗ = PΩ,D(x∗ − αD−1∇f(x∗)) − x∗.

(i) x∗ is a stationary point of f if and only if d∗ = 0;

(ii) if d∗ 6= 0, then d∗ is a descent direction for f at x∗, that is ∇f(x∗)Td∗ < 0.

Proof. (i) Assume that x∗ = PΩ,D(x∗ − αD−1∇f(x∗)). From (1.48) we have

(x∗ − x∗ + αD−1∇f(x∗))TD(x∗ − x) ≤ 0, ∀ x ∈ Ω

which implies the stationarity condition (1.46).

Conversely, let x∗ ∈ Ω be a stationary point for f and, by contradiction, suppose that x̄ =

PΩ,D(x∗ − αD−1∇f(x∗)) with x̄ 6= x∗. It follows again from (1.48) that

(x̄− x∗ + αD−1∇f(x∗))TD(x̄− x∗) ≤ 0

or equivalently

‖x̄− x∗‖2D + α∇f(x∗)T (x̄− x∗) ≤ 0.
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The previous inequality yields

∇f(x∗)T (x̄− x∗) ≤ −‖x̄− x∗‖2D
α

< 0

which is contrast with the stationarity assumption on x∗.
(ii) From inequality (1.48) with x = x∗ − αD−1∇f(x∗) and y = x∗, it follows that

(d∗ + αD−1∇f(x∗))TDd∗ ≤ 0

which implies that

∇f(x∗)Td∗ ≤ −‖d∗‖2D
α

< 0.

1.2.1 Classical gradient projection approaches

A simple and well studied algorithm for the solution of the constrained optimization problem

(1.1) is the Gradient Projection (GP) method, whose general iteration is given by

x(k+1) = x(k) + λkd
(k) =

= x(k) + λk

(
PΩ(x(k) − αk∇f(x(k))) − x(k)

)
, (1.49)

where λk ∈ (0, 1] is the linesearch parameter, αk is a positive steplength and PΩ = PΩ,In

is the projection operator induced by the matrix In, i.e. the standard Euclidean projection.

Note that, because of Lemma 1.1, d(k) is a descent direction at point x(k) whenever d(k) 6= 0,

otherwise x(k) is a stationary point for f .

Two fundamental approaches arise in the context of gradient projection methods. On one

hand, there is the class of the gradient projection methods with linesearch performed along the

arc [22, 21], in which λk ≡ 1 and the steplength αk is determined by successive reductions until

an Armijo-like inequality is satisfied. In other words, if we define the projection arc as the set

{x(k)(α) : α > 0}

where x(k)(α) = PΩ(x(k) − α∇f(x(k))), and we fix scalars β, δ ∈ (0, 1), ᾱ > 0, then the next

iterate is chosen as x(k+1) = x(k)(αk) with αk = δmk ᾱ, where mk is the first nonnegative integer

for which

f(x(k)(δmk ᾱ)) ≤ f(x(k)) + β∇f(x(k))T (x(k)(δmk ᾱ) − x(k)). (1.50)

One main disadvantage of this strategy is that a projection onto the feasible set Ω must be

performed for each trial point x(k)(δmk ᾱ), which could become computationally too expensive

if the linesearch requires many successive reductions. On the other hand, the along the feasible

direction approach determines the next iterate as x(k+1) = x(k)+λkd
(k), where λk is determined

by means of a backtracking loop where the Armijo rule (1.12) or its nonmonotone version (1.39)
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Algorithm 2 Scaled Gradient Projection (SGP) method

Choose the starting point x(0) ∈ Ω, set the parameters β, δ ∈ (0, 1), 0 < αmin < αmax, µ ≥ 1

and fix a positive integer M = 1.

FOR k = 0, 1, 2, . . .

STEP 1. Choose αk ∈ [αmin, αmax], µk ≤ µ and the scaling matrix Dk ∈ Mµk
.

STEP 2. Compute the projection y(k) = PΩ,Dk
(x(k) − αkD

−1
k ∇f(x(k)));

if y(k) = x(k), then x(k) is a stationary point and SGP stops.

STEP 3. Define the descent direction d(k) = y(k) − x(k).

STEP 4. Set λk = 1 and fmax = max0≤j≤min(k,M−1) f(x(k−j)).

STEP 5. Backtracking loop:

IF f(x(k) + λkd
(k)) ≤ fmax + βλk∇f(x(k))Td(k) THEN

go to STEP 6

ELSE

set λk = δλk and go to STEP 5.

ENDIF

STEP 6. Set x(k+1) = x(k) + λkd
(k).

END

is imposed. Unlike the along the arc methods, here the projection is computed only once at

each iteration.

The stationarity of the limit points of the sequences generated by both approaches is proved

in [22, Proposition 2.3.1, Proposition 2.3.3]. Furthermore, when the objective function is convex

and admits at least one minimum point, convergence of the whole sequence to a solution of

problem (1.1) is established for both classes of methods in [86]. However, the GP method is

known for being quite slow in practice, which is why several variants of such methods have

been proposed in the last years [24, 25, 54, 37] in order to accelerate its convergence. In the

following, we will deepen the analysis of one of these variants [37].

1.2.2 The Scaled Gradient Projection (SGP) method

The Scaled Gradient Projection (SGP) method [37] can be considered as an extension of the

GP method (1.49) and is based on the following iteration

x(k+1) = x(k) + λkd
(k) =

= x(k) + λk

(
PΩ,Dk

(x(k) − αkD
−1
k ∇f(x(k))) − x(k)

)
, (1.51)
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where

• αk is a positive steplength chosen in the bounded interval [αmin, αmax];

• Dk is a symmetric positive definite matrix whose eigenvalues lie in the bounded interval

[ 1µ , µ] with µ ≥ 1;

• the linesearch parameter λk ∈ (0, 1] is determined along the feasible direction by imposing

the nonmonotone Armijo rule (1.39).

The SGP method is described in its entireness in Algorithm 2 and its main convergence result

is reported in Theorem 1.7.

Theorem 1.7. [37, Theorem 2.1] Assume that the level set Ω0 = {x ∈ Ω : f(x) ≤ f(x(0))}
is bounded. Every limit point of the sequence {x(k)}k∈N generated by the SGP algorithm is a

stationary point of (1.1).

Recently, convergence of the SGP sequence to a minimum point of f was proved in the

convex case [35] by extending the result in [86] under the assumption that the scaling matrices

Dk asymptotically reduce to the identity matrix. Such a requirement is expressed in terms of

the bounds of the eigenvalues {µk}k∈N, as better specified in the following result.

Theorem 1.8. [35, Theorem 3.1] Assume that the objective function in (1.1) is convex and

that a minimum point x∗ over Ω exists. Let {x(k)}k∈N be the sequence generated by SGP where

Dk ∈ Mµk
and µk is such that

µ2k = 1 + ζk, ζk ≥ 0,
∞∑

k=0

ζk <∞.

Then the following facts hold:

(i) the sequence {x(k)}k∈N converges to a solution of (1.1);

(ii) if f has a Lipschitz continuous gradient on Ω, then

f(x(k+1)) − f(x∗) = O
(

1

k

)
.

The strength of SGP lies in its variable parameters αk and Dk, which can be appropriately

chosen, by means of adaptive strategies, in order to improve the algorithmic performances.

Indeed, numerical experience in several image reconstruction problems arising in microscopy

and astronomy [16, 31, 34, 94, 107, 112] has demonstrated the validity of SGP when both

parameters αk and Dk are selected in a variable and adaptive way at each iteration. In the

following, we will devise some convenient updating rules for the SGP framework.
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Scaling matrix choice

A clever way to determine the scaling matrix Dk, which has been extensively exploited in the

aforementioned works, is provided in [89, 90] when the solution of problem (1.1) is forced to be

nonnegative in each component, namely Ω ⊆ {x ∈ Rn : x ≥ 0}. Such a technique is based on

the following decomposition of the gradient

∇f(x) = V (x) − U(x), V (x) > 0, U(x) ≥ 0. (1.52)

Note that this approach is widely applicable in the field of image reconstruction, in which a

natural decomposition of the gradient of the form (1.52) can be found for the majority of the

adopted models (see Chapter 4 for examples).

Let x∗ ∈ Ω be a solution of problem (1.1), then x∗ must comply with the Karush-Kuhn-

Tucker (KKT) conditions

∇f(x∗) − λ = 0, x∗ ≥ 0, λ ≥ 0, x∗i λi = 0, i = 1, . . . , n (1.53)

where λ ∈ Rn are the Lagrange multipliers. This implies that

x∗i∇f(x∗i ) = 0, i = 1, . . . , n. (1.54)

On the basis of the decomposition (1.52), the n nonlinear equations (1.54) can also be rewritten

as the vectorial fixed point equation

x∗ = x∗ · U(x∗)

V (x∗)
.

By applying the method of successive approximations, fixed an initial guess x(0) > 0, we get

the following iterative algorithm

x(k+1) = x(k) · U(x(k))

V (x(k))

which, by recalling that U(x(k)) = V (x(k)) −∇f(x(k)), is equivalent to

x(k+1) = x(k) − x(k)

V (x(k))
· ∇f(x(k)) = x(k) −D−1

k ∇f(x(k))

where D−1
k is a symmetric positive definite matrix of the form

D−1
k = diag

(
x
(k)
1

V1(x(k))
, . . . ,

x
(k)
n

Vn(x(k))

)
. (1.55)

Therefore it is reasonable to address problem (1.1) by means of a scaled gradient method with

steplength equal to 1. In the light of this, the idea proposed in [37] and subsequent works is to
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adopt the matrix (1.55) into Algorithm 2, with the further request of forcing its eigenvalues to

belong to the bounded interval [1/µ, µ], in order to comply with STEP 2:

(D−1
k )ii = max

{
min

{
x
(k)
i

Vi(x(k))
, µ

}
,

1

µ

}
, i = 1, . . . , n. (1.56)

Note that such a matrix is diagonal, which avoids to introduce significant computational costs

in the scheme and, in particular, in the computation of the projection PΩ,Dk
(·).

Steplength choice

Once the scaling matrix is computed, the choice of the steplength αk has to be considered.

Due to the large success of the Barzilai-Borwein rules (1.21) in the context of unconstrained

optimization, it is rather natural to extend the various BB-like schemes described in Section 1.1

to the SGP method. A similar extension was first devised for (nonscaled) gradient projection

methods in [24], where the authors propose two GP schemes denominated Spectral Projected

Gradient (SPG) methods, one performing the linesearch on λk along the arc and the other

along the feasible direction, which are both equipped with the choice αk = αBB1
k for the

steplength. The theory is extended to scaled gradient projection methods in [25], however the

related numerical experience is just concerned with the nonscaled case. In [37] an adaptation

of the two BB rules that takes into account the presence of a scaling matrix is devised, by

imposing the secant equations (1.19)-(1.20) to the matrix B(αk) = (αkD
−1
k )−1, thus obtaining

the following rules

αBB1S
k =

s(k−1)TDkDks
(k−1)

s(k−1)TDky(k−1)
; αBB2S

k =
s(k−1)TD−1

k y(k−1)

y(k−1)TD−1
k D−1

k y(k−1)
. (1.57)

At this point, inspired by the alternation strategy (1.38) implemented in the framework of

nonscaled gradient methods, the authors in [37] propose a steplength updating rule for SGP

which adaptively alternates the values provided in (1.57), as detailed in Algorithm 3.

Indeed Algorithm 3 is a modification of rule (1.38) in which the alternation of the two

steplengths is determined by means of variable threshold τk, instead of the constant parameter

τ in (1.38). This trick makes the choice of τ0 less important for the SGP performance and,

in the authors’ experience, seems able to avoid the drawbacks due to the use of the same

steplength rule in too many consecutive iterations.

In the same spirit, the limited-memory steplength rule devised in [65] and based on the

Ritz-like values of the tridiagonal matrix (1.45) can also be exploited in the SGP framework

when Ω is the non-negativity constraint set, as suggested in [107]. In the extension of the

original scheme to the SGP method, the main change is the definition of a new matrix G̃

that generalizes the matrix G in (1.40) by taking into account two fundamental elements: the

presence of a scaling matrix and the projection onto the feasible set. As concerns the former

issue, we recall that applying a scaled gradient method x(k+1) = x(k)−αkD
−1
k ∇f(x(k)), with Dk
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Algorithm 3 Steplength Selection (SS) rule

IF k = 0

set α0 ∈ [αmin, αmax], τ1 ∈ (0, 1) and a nonnegative integer Mα;

ELSE

IF s(k−1)TDky
(k−1) ≤ 0 THEN

α
(1)
k = αmax;

ELSE

α
(1)
k = min

{
αmax,max{αmin, α

BB1S
k }

}
;

ENDIF

IF s(k−1)TD−1
k y(k−1) ≤ 0 THEN

α
(2)
k = αmax;

ELSE

α
(2)
k = min

{
αmax,max{αmin, α

BB2S
k }

}
;

ENDIF

IF α
(2)
k /α

(1)
k ≤ τk THEN

αk = min
{
α
(2)
j , j = max{1, k −Mα}, . . . , k

}
; τk+1 = τk · 0.9;

ELSE

αk = α
(1)
k ; τk+1 = τk · 1.1.

ENDIF

ENDIF

symmetric and positive definite, to the minimization of a function f is equivalent to performing

the change of variables x = D
−1/2
k y and addressing the following scaled problem

min
y∈Rn

f̃(y) ≡ f(D
−1/2
k y)

by means of a steepest descent method

y(k+1) = y(k) − αk∇f̃(y(k)) (1.58)

with respect to the variable y [22]. The previous remark naturally leads to the idea of applying

the limited-memory scheme to the method (1.58) instead of the scaled version of it and, since

∇f̃(y(k)) = D
−1/2
k ∇f(x(k)), this suggests to store at each iteration the scaled gradient D

−1/2
k g(k)

instead of g(k). Concerning the second issue, the non-negativity constraint is addressed by

looking at the complementarity condition (1.54) satisfied by the solution of problem (1.1), for

which the components of the gradient related to inactive constraints in the solution have to
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vanish. A way to force the minimization over these components is to store the vectors g̃(k)

whose j-th entry is given by

g̃
(k)
j =

{
0 if x

(k)
j = 0,

(
∇f(x(k))

)
j

if x
(k)
j > 0.

(1.59)

The implementation of Fletcher’s rule for the constrained case is then based on the storage of

the following matrix G̃

G̃ =
[
D

−1/2
k−m g̃

(k−m), . . . ,D
−1/2
k−1 g̃

(k−1)
]
.

The next m Ritz-like values θi, i = 1, . . . ,m, are then computed by following the same passages

included in equations (1.43)-(1.45) with G and g(k) replaced by G̃ and D
−1/2
k g̃(k). We remark

that, for small m, this generalized limited-memory approach is not much more expensive than

any of the BB-like schemes previously described. Indeed, if we assume that Dk is diagonal,

each sweep requires

• the computation of m scaled gradients D
−1/2
j g̃(j) and the m×m symmetric matrix G̃T G̃,

which can be performed with m+ (m+ 1)m/2 = (m+ 3)m/2 vector-vector products;

• the Cholesky factorization of G̃T G̃ and the solution of the linear system RT r = G̃TD
−1/2
k g̃(k),

which are computationally inexpensive if m is a very small number (between 3 and 5).

By contrast, the computation of either the BB1S or BB2S steplengths (1.57) for m itera-

tions needs 3m vector-vector products. Therefore, if we assume for example m = 3, the

limited-memory approach has a computational cost of O(9n) products exactly as the two BB

steplengths.

1.2.3 Computation of the projection

Let us assume that the scaling matrix Dk in the SGP method (1.51) is diagonal, that is

D−1
k = diag

(
d
(k)
1 , d

(k)
2 , . . . , d

(k)
n

)
. When the feasible set is given by Ω = {x ∈ Rn : x ≥ 0}, the

projection onto Ω induced by the norm of the matrix Dk is trivial and does not require further

investigation. One case of particular interest in this thesis is the following

Ω =

{
x ∈ Rn : x ≥ 0,

n∑

i=1

xi = c

}
(1.60)

where c is a positive constant. When SGP is applied to problem (1.1) subject to (1.60), the

projection PΩ,Dk
(x(k)−αkD

−1
k ∇f(x(k))) must be computed at each iteration which, by relation

(1.48), is equivalent to solve the constrained strictly convex quadratic problem

min
y∈Ω

1

2
yTDky − yT z (1.61)
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where z = Dk(x(k) − αkD
−1
k ∇f(x(k))).

If now we indicate with x∗ a solution of (1.1), then the KKT optimality conditions hold, namely

there exist Lagrange multipliers λ∗ ∈ R and µ∗ ∈ Rn for which

Dkx
∗ − z − λ∗e− µ∗ = 0

x∗ ≥ 0

µ∗ ≥ 0

µ∗Tx∗ = 0
n∑

i=1

x∗i − c = 0.

From the first four KKT conditions, we easily obtain x∗ and µ∗ as functions of λ∗:

x∗i (λ
∗) = max

{
0, d

(k)
i (zi + λ∗)

}
, µi(λ

∗) = max {0,−(zi + λ∗)} , i = 1, . . . , n.

Therefore, in order to completely solve the KKT conditions, x∗i (λ
∗) must satisfy the fifth KKT

condition, i.e. λ∗ must be determined as the solution of

n∑

i=1

x∗i (λ
∗) − c = 0.

In other words, the computation of the PΩ,Dk
(x(k) − αkD

−1
k ∇f(x(k))) reduces to the solution

of a root-finding problem for a piecewise linear monotonically non-decreasing function, which

can be addressed by several linear time algorithms available in the literature (see e.g. [55]).





Chapter 2

Proximal–gradient methods for

nondifferentiable optimization

Several applications in signal and image processing are typically reformulated as an optimiza-

tion problem, in which the objective function is given by the sum of a fit-to-data term, describ-

ing the relation between the desired object and the measured data, and possible regularization

terms aimed at restricting the search of the object itself to those satisfying specific properties.

In other words, one is interested in addressing the following problem

min
x∈Rn

f(x) ≡ f0(x) + f1(x) (2.1)

where, typically, the involved functions satisfy the following properties:

• f1 : Rn −→ R̄ is an extended value function which is proper, convex and lower semicon-

tinuous;

• f0 : Rn −→ R is a continuously differentiable function on an open set Ω0 ⊇ dom(f1).

Clearly, formulation (2.1) reduces to the differentiable constrained problem (1.1) of Chapter 1

when the term f1 is chosen as the indicator function of a non empty, closed and convex subset

of Rn, i.e.

f1(x) = ιΩ(x) =

{
0, if x ∈ Ω

+∞, if x /∈ Ω.

When the function f1 is nondifferentiable, the optimization techniques analysed in Chapter

1 become inadequate for problem (2.1). Among the several numerical strategies designed to

address (2.1), proximal–gradient methods [48, 51] have earned a great popularity in the last years

for their simplicity and low computational cost per iteration, which make them particularly

suited for large-scale optimization problems. Such algorithms deal with the functions f0 and

f1 separately, by alternating a forward gradient step on the differentiable (possibly nonconvex)

35
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term f0 with a backward proximal step onto the convex (possibly nondifferentiable) term f1.

In particular, the backward step requires the evaluation of the proximal operator, which is

nothing else than the generalization of the notion of projection onto a convex set to a general

convex function. In this light, the proximal–gradient method can be interpreted as the natural

extension of the gradient projection method, tailored for problem (1.1), to the more general

problem (2.1).

The chapter starts with a self-contained summary of the main notions concerning subdiffer-

ential calculus and the proximity operator in Section 2.1, followed by an overview of proximal–

gradient methods and related convergence results for the convex case in Section 2.2. Finally,

convergence for inexact proximal–gradient methods under the hypothesis that the objective

function satisfies the Kurdyka- Lojasiewicz property is discussed in Section 2.3.

2.1 Mathematical background

This section introduces some useful definitions and properties of convex and variational analysis

that will be fundamental for the subsequent discussion. A more exhaustive overview of these

topics can be found in [130, 131, 143].

2.1.1 Subdifferential calculus

Definition 2.1. The domain of a function f : Rn −→ R̄ is the set dom(f) given by

dom(f) := {x ∈ Rn : f(x) < +∞}.

Definition 2.2. A function f : Rn → R̄ is said to be proper if there exists x̄ ∈ Rn such that

f(x̄) < +∞ and f(x) > −∞ for all x ∈ Rn, namely if dom(f) 6= ∅ and f is finite on dom(f).

Definition 2.3. The epigraph of a function f : Rn −→ R̄ is the set epi(f) given by

epi(f) := {(x, t) ∈ Rn × R : f(x) ≤ t}.

Definition 2.4. [131, Definition 1.5] A function f : Rn → R̄ is lower semicontinuous (lsc) at

x if

f(x) = lim inf
y→x

f(y) = sup
δ>0

(
inf

y∈B(x,δ)
f(y)

)
. (2.2)

Similarly, f is upper semicontinuous at x if

f(x) = lim sup
y→x

f(x) = inf
δ>0

(
sup

y∈B(x,δ)
f(y)

)
. (2.3)

Remark 2.1. The function f is continuous at x if and only if f is both lower and upper

semicontinuous at x.
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Proposition 2.1. Consider a function f : Rn → R̄. The following conditions are equivalent:

(i) f is lower semicontinuous on Rn;

(ii) the epigraph epi(f) is a closed subset of Rn × R;

(iii) for every α ∈ R̄, the level set [f ≤ α] is a closed subset of Rn.

Proof. Before proving the equivalence of items (i), (ii) and (iii), we recall that the lower limit

of a function can be characterized in the following way [131, Lemma 1.7]

lim inf
y→x

f(y) = min{α ∈ R̄ : ∃ {x(k)}k∈N ⊆ Rn such that x(k) → x, f(x(k)) → α}. (2.4)

(i)⇒(ii). Suppose (x(k), α(k)) ∈ epi(f) and (x(k), α(k)) → (x, α) with α ∈ R. We have

x(k) → x, α(k) → α with α(k) ≥ f(x(k)) and must prove that α ≥ f(x), so that (x, α) ∈ epi(f).

Let β ∈ R̄ be a limit point of the sequence {f(x(k))}k∈N, then there is {kj}j∈N ⊆ N such that

f(xkj) → β. Since α(k) ≥ f(x(k)) for all k, it follows that α ≥ β and, because of (2.4), it is also

β ≥ lim infy→x f(y). Then the lower semicontinuity of f allows to conclude that α ≥ f(x).

(ii)⇒(iii). If epi(f) is a closed subset of Rn × R, then for any α ∈ R the set

epi(f) ∩ (Rn × {α}) = {(x, α) ∈ Rn × R : f(x) ≤ α} = [f ≤ α] × {α}

is closed as well. Therefore, the level set [f ≤ α] must be closed. If α = −∞, the corresponding

level set is [f ≤ −∞] = [f = −∞] = ∩α∈R[f ≤ α], namely an intersection of closed sets and

thus itself closed. Finally, if α = +∞, the level set is the whole space Rn.

(iii)⇒(i) In order to establish that f is lsc at any point x ∈ Rn, it suffices to prove that

ᾱ = lim infy→x f(y) ≥ f(x), since the opposite inequality is always satisfied. Since the case

ᾱ = ∞ is trivial, suppose ᾱ < ∞. Relation (2.4) guarantees the existence of a sequence

{x(k)}k∈N ⊆ Rn such that x(k) → x and f(x(k)) → ᾱ. Hence, for any α > ᾱ and for all

sufficiently large k, it will be true that f(x(k)) ≤ α or, equivalently, that x(k) ∈ [f ≤ α]. Since

x(k) → x and [f ≤ α] is closed by assumption, it follows that x ∈ [f ≤ α] for all α > ᾱ, that is

f(x) ≤ α for all α > ᾱ. Then this implies f(x) ≤ ᾱ.

Proposition 2.2. Let f : Rn → R̄ be a proper function. The following facts are equivalent:

(i) f is convex, i.e.

f((1 − λ)x+ λy) ≤ (1 − λ)f(x) + λf(y), ∀ x, y ∈ Rn, ∀ λ ∈ (0, 1).

(ii) (Jensen’s inequality) For any x1, . . . , xn ∈ dom(f) and λ1, . . . , λn ∈ R such that λi ≥ 0,∑n
i=1 λi = 1, we have

f

(
n∑

i=1

λixi

)
≤

n∑

i=1

λif(xi).
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(iii) The epigraph epi(f) is a convex subset of Rn × R.

Proof. See [131, Theorem 2.2, Proposition 2.4].

Definition 2.5. The conjugate function f∗ : Rn −→ R̄ of a convex function f : Rn −→ R̄ is

defined as

f∗(y) = sup
x∈Rn

yTx− f(x).

The biconjugate function f∗∗ : Rn −→ R̄ of f is defined as f∗∗ := (f∗)∗, i.e.

f∗∗(y) = sup
x∈Rn

yTx− f∗(x).

Example 2.1. The conjugate of the indicator function ιΩ of a non empty set Ω ⊆ Rn is

ι∗Ω(y) = sup
x∈Ω

yTx, ∀ y ∈ Rn

namely the support function of Ω. In particular:

• if Ω is the nonnegative orthant, then ι∗Rn
≥0

= ιRn
≤0

;

• if Ω is a linear subspace, then ι∗Ω = ιΩ⊥ .

Example 2.2. Consider f(x) = λ‖x‖ where λ ∈ R>0. Then

f∗(y) = sup
x∈Rn

yTx− λ‖x‖

= sup
t∈R≥0

(
sup
‖x‖=1

yT (tx) − tλ‖x‖
)

= sup
t∈R≥0

t(‖y‖ − λ)

where the last equality is obtained by recalling that ‖y‖ = sup‖x‖=1 y
Tx. Therefore

f∗(y) =

{
0, if ‖y‖ ≤ λ

∞, otherwise
= ιB(0,λ)(y).

Example 2.3. Let f(x) = 1
2x

TAx + bTx, where A ∈ Rn×n is a symmetric positive definite

matrix and b ∈ Rn. Then the conjugate function of f is

f∗(y) = sup
x∈Rn

yTx− f(x) = sup
x∈Rn

[
−1

2
xTAx+ (y − b)Tx

]
≡ ϕ(x).

Since ϕ is concave and differentiable, its maximum is attained in the unique point x∗ ∈ Rn

such that ∇ϕ(x∗) = 0, that is x∗ = A−1(y − b). Then

f∗(y) = ϕ(x∗) =
1

2
(y − b)TA−1(y − b). (2.5)
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Proposition 2.3. Suppose that f : Rn → R̄ is given by a separable sum of convex functions,

i.e.

f(x) =

r∑

i=1

fi(xi),

where fi : Rni → R̄ is convex for i = 1, . . . , r and
∑r

i=1 ni = n. Then

f∗(y) =

r∑

i=1

f∗i (yi), ∀ y ∈ Rn.

Proof. From the definition of conjugate function we have

f∗(y) = sup
x∈Rn

(
yTx−

r∑

i=1

fi(xi)

)
= sup

x∈Rn

(
r∑

i=1

yTi xi − fi(xi)

)

=
r∑

i=1

(
sup

xi∈Rn

yTi xi − fi(xi)

)
=

r∑

i=1

f∗i (yi).

Lemma 2.1. Let f : Rn −→ R̄ be a convex function and f∗ : Rn −→ R̄ its conjugate function.

Then the following inequalities hold true:

(i) (Fenchel’s inequality) f∗(y) + f(x) ≥ yTx, ∀x, y ∈ Rn.

(ii) f(x) ≥ f∗∗(x), ∀ x ∈ Rn.

Proof. (i) It is an immediate consequence of the definition of conjugate function.

(ii) The Fenchel’s inequality and the definition of biconjugate function lead to the following

relations:

f(x) ≥ yTx− f∗(y) ∀x, y ∈ Rn ⇐⇒ f(x) ≥ sup
y∈Rn

yTx− f∗(y) ∀x ∈ Rn

⇐⇒ f(x) ≥ f∗∗(x) ∀x ∈ Rn.

Theorem 2.1 (Biconjugate theorem). If f : Rn −→ R̄ is a lower semicontinuous and convex

function then f∗∗ = f .

Proof. In the light of item (ii) of Lemma 2.1, it suffices to prove that f(x) ≤ f∗∗(x) for all

x ∈ Rn. Let us suppose by contradiction that there exists x ∈ Rn such that f(x) > f∗∗(x) or,

equivalently, (x, f∗∗(x)) /∈ epi(f). Since f is lsc and convex on Rn and in virtue of Proposition

2.1 and 2.2, epi(f) is closed and convex and consequently, by the hyperplane separation theorem

[131, Theorem 2.39], it is possible to find a strict separating hyperplane verifying the following

inequality:

(a, b)T (z − x, s− f∗∗(x)) ≤ c < 0, ∀ (z, s) ∈ epi(f) (2.6)
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for some a ∈ Rn, b, c ∈ R. We observe that b must be nonpositive, since (z, s + n) ∈ epi(f) for

every n ∈ N and b > 0 gives a contradiction as n→ +∞. Thus we have two possible cases:

(i) if b < 0, we define y = −a/b and, if we divide by −b and maximize the left hand-side of

(2.6) over (z, s) ∈ epi(f), we obtain:

f∗(y) − yTx+ f∗∗(x) ≤ −c
b
< 0.

This is in contrast with the Fenchel’s inequality;

(ii) if b = 0, we let ŷ ∈ dom f∗ and add a sufficient small multiple of (ŷ,−1) to (a, b) thus

obtaining

(a+ ǫŷ,−ǫ)T (z − x, s− f∗∗(x)) ≤ c+ ǫ(f∗(ŷ) − ŷTx+ f∗∗(x)) < 0, ∀ (z, s) ∈ epi(f).

By applying the same argument used for b < 0, the contradiction is reached.

Definition 2.6. [131, Definition 8.3] Let f : Rn → R̄ and x ∈ dom(f). The Fréchet subdif-

ferential of f at x is the set

∂̂f(x) =

{
v ∈ Rn : lim inf

y→x,y 6=x

1

‖x− y‖(f(y) − f(x) − (y − x)T v) ≥ 0

}
.

The limiting-subdifferential (or simply subdifferential) of f at x is defined as

∂f(x) = {v ∈ Rn : ∃ {y(k)}k∈N ⊆ Rn, v(k) ∈ ∂̂f(y(k)) ∀k ∈ N such that

y(k) → x, f(y(k)) → f(x) and v(k) → v}.

Finally, we define dom(∂f) = {x ∈ dom(f) : ∂f(x) 6= ∅}.

Remark 2.2. The above definition implies that ∂̂f(x) ⊆ ∂f(x) for all x ∈ Rn, where the first

set is convex and closed while the second one is closed [131, Theorem 8.6].

Lemma 2.2. Let f : Rn → R be as in problem (2.1), where f0 is a continuously differentiable

function on an open set Ω0 ⊇ dom(f1). Then:

(i) ∂̂f0(x) = ∂f0(x) = {∇f0(x)}, ∀ x ∈ Ω0;

(ii) ∂f(x) = {∇f0(x)} + ∂f1(x), ∀ x ∈ dom(f1).

Proof. See [131, Exercise 8.8].

Lemma 2.3. Let f : Rn → R̄ be a proper, convex function. Then for any x ∈ dom(f)

∂̂f(x) = ∂f(x) = {v ∈ Rn : f(y) ≥ f(x) + (y − x)T v ∀y ∈ Rn}. (2.7)
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x

f(x)

x0

v =1/2
x

f(x)

x0

Figure 2.1: Subgradients of the function f(x) = |x| at x0 = 0. Left: the value v = 1/2

identifies a supporting line at (0, 0) and thus v ∈ ∂f(0). Right: graphical representation of the

set ∂f(0) = [−1, 1].

Proof. See [131, Proposition 8.12].

Remark 2.3. Lemma 2.3 asserts that, when the function is convex, both the Fréchet and

limiting-subdifferential of Definition 2.6 coincides with the usual subdifferential of convex anal-

ysis [130, p. 214], also known as Fenchel subdifferential. In this special case, the set ∂f(x) has

a simple geometric interpretation, which is the following: v ∈ ∂f(x) if and only if the graph

of the affine function h(y) = f(x) + (y − x)T v is a non-vertical supporting hyperplane to the

convex set epi(f) at the point (x, f(x)), as depicted in Figure 2.1.

Example 2.4. Let f(x) = |x|. By using item (i) of Lemma 2.2 and Lemma 2.3, it is easy to

see that

∂f(x) =

{
[−1, 1], if x = 0

{x/|x|}, if x 6= 0.

Note that the subgradient of f is an interval at the origin (see Figure 2.1).

Example 2.5. Consider the indicator function ιΩ of a non empty, convex set Ω ⊆ Rn. By

directly using equation (2.7), we have

∂ιΩ(x) = {v ∈ Rn : vT (y − x) ≤ 0} = NΩ(x),

where NΩ(x) denotes the normal cone to the convex set Ω at the point x ∈ Ω [130, p. 15].

We now define the so-called ǫ−subdifferential, which represents an approximation of the

subdifferential (2.7) for convex functions.

Definition 2.7. [143, p. 82] Let f : Rn → R̄ be a proper, convex function and ǫ ∈ R≥0. The

ǫ-subdifferential of f at x ∈ dom(f) is the set

∂ǫf(x) = {v ∈ Rn : f(y) ≥ f(x) + (y − x)T v − ǫ ∀y ∈ Rn}. (2.8)
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x

f(x)

x0 x

f(x)

x0

ε

Figure 2.2: Exact and approximate subdifferential of the function f(x) = x2/2 at the point x0.

Left: the set ∂f(x0) = {x0} contains a unique point. Right: the set ∂ǫf(x0) = [x0 −
√

2ǫ, x0 +√
2ǫ] is an interval.

Remark 2.4. (i) If x /∈ dom(f), then ∂ǫf(x) := ∅ for any ǫ ∈ R≥0.

(ii) If ǫ = 0, then ∂ǫf(x) = ∂f(x) (see Lemma 2.3).

(iii) If 0 ≤ ǫ1 ≤ ǫ2, then ∂ǫ1f(x) ⊆ ∂ǫ2f(x), ∀ x ∈ dom(f).

The previous remark leads us to ask whether, for a given point x ∈ dom(f), the ǫ−subdifferential

∂ǫf(x) is a greater set than the exact subdifferential ∂f(x). Indeed this is often the case, as

suggested by the following elementary examples.

Example 2.6. Let f(x) = x2/2. Since f is continuously differentiable on R, by item (i) of

Lemma 2.2 we have ∂f(x) = {∇f(x)} = {x}. However, it is easy to show that

∂ǫf(x) =
[
x−

√
2ǫ, x+

√
2ǫ
]

= ∂f(x) +
[√

2ǫ,
√

2ǫ
]
.

A graphical representation of both sets is provided in Figure 2.2.

Example 2.7. Let f(x) = |x|. Then

∂ǫf(x) =





[−1,−1 − ǫ/x], if x < −ǫ/2,
[−1, 1], if − ǫ/2 ≤ x ≤ ǫ/2,

[1 − ǫ/x, 1], if x > ǫ/2.

In this case, ∂ǫf(x) = ∂f(x) ⇐⇒ x = 0.

Proposition 2.4. Let f : Rn → R̄ be a proper, convex, lsc function and ǫ ∈ R≥0. Then we

have:

v ∈ ∂ǫf(x) ⇐⇒ x ∈ ∂ǫf
∗(v). (2.9)
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Proof. We observe that

v ∈ ∂ǫf(x) ⇐⇒ (y − x)T v ≤ f(y) − f(x) + ǫ ∀y ∈ Rn

⇐⇒ yTv − f(y) ≤ xT v − f(x) + ǫ ∀y ∈ Rn

⇐⇒ f∗(v) ≤ xT v − f(x) + ǫ

⇐⇒ f(x) + f∗(v) ≤ xT v + ǫ. (2.10)

Since f is lsc, Theorem 2.1 holds and thus it is true that

f∗∗(x) + f∗(v) = f(x) + f∗(v).

The thesis follows by combining the relation above with (2.10).

Example 2.8. Let f(x) = 1
2x

TAx+bTx as in Example 2.3. Equivalence (2.10) can be rewritten

as

v ∈ ∂ǫf(x) ⇐⇒ 1

2
(v − b)TA−1(v − b) + f(x) ≤ vTx+ ǫ.

By setting v = Ax+ b+ e, with e ∈ Rn, in the above equation and applying some algebra, we

obtain

∂ǫf(x) = {∇f(x)} +

{
e ∈ Rn :

‖e‖2A−1

2
≤ ǫ

}
=

{
Ax+ b+ e :

‖e‖2A−1

2
≤ ǫ

}
. (2.11)

Proposition 2.5. Let f : Rn → R̄ be a proper, convex function. Then

f is lower semicontinuous at x ∈ dom(f) ⇐⇒ ∂ǫf(x) 6= ∅, ∀ ǫ ∈ R>0.

Proof. See [143, Theorem 2.4.4].

Proposition 2.6. [143, Theorem 2.4.2(ix)] Let f : Rn → R̄ be a proper, convex, lsc function,

{ǫk}k∈N ⊆ R≥0, ǫ ∈ R≥0, and {(x(k), v(k))}k∈N ⊆ Rn × Rn such that

(x(k), v(k)) ∈ graph ∂ǫkf = {(x, x∗) ∈ Rn × Rn : x∗ ∈ ∂ǫkf(x)}.

If (x(k), v(k)) → (x, v) and ǫk → ǫ as k → +∞, then (x, v) ∈ graph ∂ǫf .

Proof. Since v(k) ∈ ∂ǫkf(x(k)), by Definition 2.7 we have

f(y) ≥ f(x(k)) + (y − x(k))T v(k) − ǫk, ∀ y ∈ Rn.

The thesis follows by taking the lower limit over k and from the lower semicontinuity of f .

Proposition 2.7. Let f, g : Rn → R̄, h : Rm → R̄ be proper, convex, lower semicontinuous

functions and ǫ ∈ R≥0. Then, we have the following properties:

(i) if g(x) = f(x) + c with c ∈ R, then ∂ǫg(x) = ∂ǫf(x), ∀ x ∈ dom(f);
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(ii) if g(x) = f(x) + cTx with c ∈ R, then ∂ǫg(x) = ∂ǫf(x) + {c}, ∀ x ∈ dom(f);

(iii) if g(x) = αf(x) with α ∈ R>0, then ∂ǫg(x) = α∂ǫ/αf(x), ∀ x ∈ dom(f);

(iv) if g(x) = f(αx) with α ∈ R \ {0}, then ∂ǫg(x) = α∂ǫf(αx), ∀ x ∈ dom(f);

(v) if h(x) = f(Ax) with A ∈ Rn×m and Im(A) ∩ int(dom(f)) 6= ∅, then

∂ǫh(x) = AT∂ǫf(Ax), ∀ x ∈ Rm : Ax ∈ dom(f);

(vi) if ri(dom(f)) ∩ ri(dom(g)) 6= ∅, then

∂ǫ(f + g)(x) =
⋃

0≤ǫ1+ǫ2≤ǫ

∂ǫ1f(x) + ∂ǫ2g(x), ∀ x ∈ dom(f) ∩ dom(g);

(vii) if ri(dom(f)) ∩ ri(dom(g)) 6= ∅, where ri(·) indicates the relative interior of a set, and

α1, α2 ≥ 0, then

∂(α1f + α2g)(x) = α1∂f(x) + α2∂g(x), ∀ x ∈ dom(f) ∩ dom(g).

(viii) If f(x) =
∑r

i=1 fi(xi), with fi : Rni → R̄ proper, convex for i = 1, . . . , r and
∑r

i=1 ni = n,

then

∂f(x) =

r∏

i=1

∂fi(xi) = (∂f1(x1), . . . , ∂fr(xr)) , ∀ x ∈ dom(f).

Proof. Items (i)-(iv) follow by directly applying Definition 2.7 of ǫ−subdifferential. The proof

of item (v) can be found in [84, Theorem 3.2.1] and the one of item (vi) in [84, Theorem 3.1.1].

Item (vii) is obtained by combining items (vi) and (iii). Finally, item (viii) is proved in [143,

Corollary 2.4.5]

2.1.2 Optimality conditions

In the nondifferentiable case, it is possible to formulate the necessary optimality condition for

a point to be a minimum of a function f in terms of its subdifferential. The following result is

the analogous of Theorem 1.1 and 1.2 given in the differentiable case.

Proposition 2.8. Let f : Rn → R̄ be a proper function.

(i) If x ∈ Rn is a local minimizer of f , then 0 ∈ ∂f(x).

(ii) If f is also convex, x ∈ Rn is a global minimizer if and only if 0 ∈ ∂f(x).

Proof. (i) If x is a local minimizer, then there exists ρ > 0 such that f(y) ≥ f(x) for all

y ∈ B(x, ρ), which implies that 0 ∈ ∂̂f(x). Remark 2.2 allows to conclude the proof.

(ii) The implication from left to right follows from item (i), while the converse is obtained by

substituting v = 0 in Lemma 2.3.
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Definition 2.8. A point x ∈ Rn is stationary for a function f : Rn → R̄ if x ∈ dom(f) and

0 ∈ ∂f(x).

Definition 2.8 may be equivalently reformulated in terms of the directional derivative of f .

Definition 2.9. [130, p.213] Let f : Rn → R̄. The one sided directional derivative of f at x

with respect to a vector d ∈ Rn is defined as

f ′(x; d) = lim
λ↓0

f(x+ λd) − f(x)

λ
(2.12)

if the limit on the right-hand side exists in R̄.

Remark 2.5. (i) When f is continuously differentiable in a neighbourhood of x, f ′(x; d) =

∇f(x)Td.

(ii) When f is convex and x ∈ dom(f), the limit at the right-hand side of (2.12) exists for

any d ∈ Rn and f ′(x; d) = infλ>0(f(x+ λd) − f(x))/λ [130, Theorem 23.1]. As a consequence,

f(x; d) ≤ f(x+ d) − f(x).

Proposition 2.9. Let f : Rn → R̄ be as in problem (2.1), where f0 is a continuously differen-

tiable function on an open set Ω0 ⊇ dom(f1) and f1 is convex. Then

x ∈ dom(f) is a stationary point for f ⇐⇒ f ′(x; d) ≥ 0, ∀ d ∈ Rn.

Proof. From Remark 2.5 and the linearity of limit, the function f admits directional derivative

on its domain and

f ′(x, d) = f ′0(x, d) + f ′1(x, d), ∀ x ∈ dom(f), ∀ d ∈ Rn.

The following relations hold:

0 ∈ ∂f(x) ⇐⇒ 0 ∈ {∇f0(x)} + ∂f1(x) (Lemma 2.2)

⇐⇒ −∇f0(x) ∈ ∂f1(x)

⇐⇒ f1(y) ≥ f1(x) −∇f0(x)T (y − x), ∀ y ∈ Rn

⇐⇒ f1(x+ λd) ≥ f1(x) − λf ′0(x; d), ∀ d ∈ Rn, ∀ λ ∈ (0, 1)

⇐⇒ f1(x+ λd) − f1(x)

λ
+ f ′0(x; d) ≥ 0, ∀ d ∈ Rn, ∀ λ ∈ (0, 1)

⇐⇒ f ′(x; d) ≥ 0,∀ d ∈ Rn

where the last equivalence is obtained by taking the infimum on the left-hand side of the

inequality.

Definition 2.10. A vector d ∈ Rn is a descent direction for f at x ∈ dom(f) if f ′(x; d) < 0.

In the light of Proposition 2.9, when f1 = ιΩ with Ω ⊆ Rn non empty, closed and convex

set, Definition 2.8 coincides with the stationarity condition (1.46) given in the differentiable

case and, in the same setting, we have f ′(x; d) = ∇f(x)Td (see item (i) of Remark 2.5), hence

also the classical definition of descent direction is recovered.
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2.1.3 The proximal operator

The notion of proximal (or proximity) operator was first introduced by Moreau in [99]. Here

we give its most general definition with respect to a symmetric positive definite matrix.

Definition 2.11. [66, §2.3] The proximity operator associated to a function f : Rn → R̄ in

the metric induced by a symmetric positive definite matrix D is defined as

proxD
f (x) = arg min

z∈Rn
f(z) +

1

2
‖z − x‖2D, ∀x ∈ Rn. (2.13)

Remark 2.6. When D = In, we write proxIn
f = proxf .

Note that, in general, proxD
f : Rn ⇒ Rn is a multi-valued map, and it might also happen

that proxD
f (x) = ∅ at some point x. However, existence and uniqueness of the proximal point

may be guaranteed under convexity and lower semicontinuity assumptions.

Proposition 2.10. If f : Rn → R̄ is proper, convex and lower semicontinuous, then proxD
f (x)

exists and is unique for all x ∈ Rn and

y = proxD
f (x) ⇐⇒ D(x− y) ∈ ∂f(y). (2.14)

Proof. The function ϕ(z) = f(z) + 1
2‖z − x‖2D is strictly convex and, thus, it admits at most

one minimum point. Furthermore, since ϕ is also strongly convex, it is coercive and therefore

the minimum point exists and is unique. By applying the first order optimality condition to

the convex function ϕ we have

y = proxD
f (x) ⇐⇒ 0 ∈ ∂ϕ(y) (item (ii) of Proposition 2.8)

⇐⇒ 0 ∈ ∂f(y) +D(y − x) (item (vii) of Proposition 2.7)

⇐⇒ D(x− y) ∈ ∂f(y).

Remark 2.7. By setting w = D(x − y) in equation (2.14), it follows that w ∈ ∂f(y) if and

only if y = proxD
f (y +D−1w).

Example 2.9. The proximal operator of the indicator function ιΩ with Ω ⊆ Rn non empty,

closed and convex set, coincides with the projection operator (1.47):

proxD
ιΩ(x) = PΩ,D(x) = argmin

z∈Ω
‖z − x‖2D.

Proximity operators are therefore a generalization of projection operators.

The proximal operator allows to give a further equivalent definition of stationary point for

problem (2.1), in analogy with what already seen for the differentiable case in Lemma 1.1.
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Proposition 2.11. Let f : Rn → R̄ be as in problem (2.1), where f0 is a continuously differen-

tiable function on an open set Ω0 ⊇ dom(f1) and f1 is proper, convex and lower semicontinuous.

Fix α ∈ R>0 and D symmetric positive definite matrix. Then

x∗ is stationary for f ⇐⇒ x∗ = proxD
αf1

(x∗ − αD−1∇f0(x∗)).

Proof. By item (ii) of Lemma 2.2, we have ∂f(x∗) = {∇f0(x∗)} + ∂f1(x
∗). Therefore, the

following equivalences hold:

0 ∈ ∂f(x∗) ⇐⇒ 0 ∈ α ({∇f0(x∗)} + ∂f1(x∗))

⇐⇒ −α∇f0(x∗) ∈ ∂(αf1)(x∗).

The thesis now follows by recalling Remark 2.7.

Definition 2.12. Let f : Rn −→ R̄ be a proper, convex function. The resolvent of the

subdifferential ∂f with respect to the symmetric positive definite matrix D is the mapping

(In +D−1∂f)−1 : Rn ⇒ Rn defined as

(In +D−1∂f)−1(x) =
{
y ∈ Rn : x ∈ (In +D−1∂f)(y)

}
, ∀ x ∈ Rn.

Proposition 2.12. Let f : Rn −→ R̄ be a proper, convex and lowersemicontinuous function

and D a symmetric positive definite matrix. Then

(In +D−1∂f)−1(x) = proxD
f (x), ∀ x ∈ Rn

and thus (In +D−1∂f)−1 is single-valued.

Proof. By Definition 2.12 of resolvent, we have

y ∈ (In +D−1∂f)−1(x) ⇐⇒ x ∈ (In +D−1∂f)(y) = y +D−1∂f(y)

⇐⇒ (x− y) ∈ D−1∂f(y)

⇐⇒ D(x− y) ∈ ∂f(y)

⇐⇒ y = proxD
f (x)

where the last equivalence follows from (2.14).

Lemma 2.4. Let f : Rn −→ R̄ be a proper, convex and lower semicontinuous function and

D ∈ Mµ. Then the proximal operator proxD
f is Lipschitz continuous with constant µ2, i.e.

‖proxD
f (x) − proxD

f (x̃)‖ ≤ µ2‖x− x̃‖, ∀x, x̃ ∈ Rn. (2.15)

Proof. Setting y = proxD
f (x) and ỹ = proxD

f (x̃), the following relations are obtained by applying

(2.14) to y and ỹ, respectively:

f(z) ≥ f(y) + (z − y)TD(x− y) ∀ z ∈ Rn

f(z̃) ≥ f(ỹ) + (z̃ − ỹ)TD(z̃ − ỹ) ∀ z̃ ∈ Rn.
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Choosing z = ỹ, z̃ = y and combining the two inequalities yields

(
x− proxD

f (x) − x̃+ proxD
f (x̃)

)T
D
(
proxD

f (x) − proxD
f (x̃)

)
≥ 0,

or equivalently

∥∥proxD
f (x) − proxD

f (x̃)
∥∥2
D
≤ (x− x̃)T D

(
proxD

f (x) − proxD
f (x̃)

)
.

Since D ∈ Mµ and by using the Cauchy-Schwarz inequality, we obtain

∥∥proxD
f (x) − proxD

f (x̃)
∥∥2 ≤ µ2

∥∥proxD
f (x) − proxD

f (x̃)
∥∥ ‖x− x̃‖

and thus the thesis holds.

Proposition 2.13. Suppose that f : Rn → R̄ is given by a separable sum of convex functions,

i.e.

f(x) =

r∑

i=1

fi(xi),

where fi : Rni → R̄ is proper, convex and lsc for i = 1, . . . , r and
∑r

i=1 ni = n. Then

proxf (x) =
n∏

i=1

proxfi(xi) =
(
proxf1(x1), . . . ,proxfr(xr)

)
, ∀ x ∈ Rn.

Proof. It follows from (2.14) combined with item (vii) of Proposition 2.7.

Example 2.10 (ℓ1−norm). Consider f(x) = λ‖x‖1 with λ ∈ R>0, where ‖x‖1 =
∑n

i=1 |xi| is

the ℓ1−norm. Since f is a separable function in x = (x1, . . . , xn), the proximal operator of f

can be computed component-wise:

(proxf (x))i = proxλ|·|(xi), i = 1, . . . , n.

From the equivalence (2.14) we have

yi = proxλ|·|(xi) ⇐⇒ xi − yi ∈ ∂(λ| · |)(yi)
⇐⇒ yi = xi − wi, wi ∈ ∂(λ| · |)(yi)

and by computing the subdifferential ∂(λ| · |) we obtain

(proxf (x))i =





xi − λ, if xi > λ

0, if xi ∈ [−λ, λ]

xi + λ, if xi < −λ
= sign(xi) max{|xi| − λ, 0}, i = 1, . . . , n.

This is the so-called soft-thresholding (or shrinkage) operator.
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Proposition 2.14 (Moreau decomposition). Given a proper, convex, lsc function f : Rn −→ R̄,

its conjugate f∗ : Rn −→ R̄, α ∈ R>0 and D a symmetric positive definite matrix, the following

identity holds:

proxD
αf (x) + αD−1 proxD−1

α−1f∗(α−1Dx) = x, ∀x ∈ Rn.

Proof. The Moreau decomposition follows from the properties characterizing the subdifferential

and the conjugate of a function. Indeed, given x ∈ Rn, let y = proxD
αf (x). In the light of

equation (2.14) and Proposition 2.4, we obtain

y = proxD
αf (x) ⇐⇒ α−1D(x− y) ∈ ∂f(y)

⇐⇒ y ∈ ∂f∗(α−1D(x− y)).

By setting w = α−1D(x− y), the last differential inclusion becomes

x− αD−1w ∈ ∂f∗(w)

or, equivalently

D−1
(
α−1Dx− w

)
∈ ∂(α−1f∗)(w).

Applying again equation (2.14) yields

x− y = αD−1 proxD−1

α−1f∗(α−1Dx)

and this concludes the proof.

Example 2.11 (ℓ2−norm). Let f(x) = λ‖x‖ with λ ∈ R>0. By the Moreau decomposition we

have

proxf (x) = x− proxf∗(x), ∀ x ∈ Rn.

From Example 2.2, it is known that f∗ = ιB(0,λ). Thus proxf∗(x) = PB(0,λ)(x) = λx/‖x‖ and

in conclusion

proxf (x) =





(
1 − λ

‖x‖

)
x, if ‖x‖ > λ

0, if ‖x‖ ≤ λ.

Note that, when n = 1, the above formula reduces to the scalar soft-thresholding operation

seen in Example 2.10.

Example 2.12 (Composite functions). Let f(x) = g(Ax), where A ∈ Rm×n is a semi-

orthogonal matrix, i.e.

ATA = νIn, ν > 0

and g : Rm → R̄ is a proper, convex, lsc function. A simple application of equation (2.14)

shows that

proxD
f (x) = ν−1AT proxD

νg(Ax).

Hence, in this special case, when proxD
g has a simple closed-form expression, so does proxD

f .

As an example, any function f(x) = ‖Ax‖ with A semi-orthogonal has an explicit formula for

its proximal operator. However, it is important to note that, for a general matrix A, there is

no explicit expression of proxD
f in terms of proxD

g and A.
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2.2 Proximal–gradient methods

The structure of the objective function in (2.1) can be successfully exploited by the class of

proximal–gradient or forward–backward (FB) algorithms [14, 15, 51, 48], whose general iteration

is given by

x(k+1) = x(k) + λk

(
proxαkf1

(x(k) − αk∇f0(x(k))) − x(k)
)
, k = 0, 1, 2, . . . (2.16)

where αk ∈ R>0 is a scalar steplength parameter and λk ∈ R≥0 is the so-called relaxation (or

line–search) parameter. At each iteration, the FB method alternates a forward gradient step on

the differentiable part f0, followed by a backward proximal step on the convex term f1. Special

instances of (2.16) are the following:

• the proximal point algorithm [129] for minimizing a nondifferentiable function f1, when

f0 ≡ 0 and λk ≡ 1:

x(k+1) = proxαkf1
(x(k));

• the steepest descent method, when f1 ≡ 0 and λk ≡ 1;

• the gradient projection method (1.49), when f1 = ιΩ (see Example 2.9).

Let us remark that any proximal–gradient method involves, at each iteration (2.16), the solution

of the convex subproblem related to the evaluation of the proximal operator at the gradient

point. Therefore, what happens with the FB method is that the original problem (2.1) is

replaced by a sequence of convex subproblems, whose solution needs be known in closed-form

or, at least, within a certain accuracy, in order for the method to be effective. In the subsequent

discussion and related convergence results, the proximal operator will be always assumed to be

known in its exact form.

Before starting with our overview of proximal–gradient methods, we state a fundamental

key property for the subsequent convergence analysis and that will be assumed hereafter:

Assumption 2.1. ∇f0 : Rn → Rn is L−Lipschitz continuous with L ∈ R>0, i.e.

‖∇f0(x) −∇f0(y)‖ ≤ L‖x− y‖, ∀x, y ∈ Rn. (2.17)

As done in the framework of gradient projection methods, we now distinguish between two

possible approaches, in which the linesearch is performed along the arc and along the feasible

direction, respectively.

2.2.1 Along the arc approach

The along the arc approach is obtained by setting λk ≡ 1 in (2.16):

x(k+1) = proxαkf1

(
x(k) − αk∇f(x(k))

)
. (2.18)

There are two straightforward interpretations of algorithm (2.18) that are now reported:
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• Fixed point algorithm: from Proposition 2.11, we know that a necessary condition for

x∗ ∈ Rn to be a solution of (2.1) is

x∗ = proxαf1(x∗ − α∇f0(x∗))

= (In + α∂f1)−1(In − α∇f0)(x∗) (Proposition 2.12).

Hence x∗ is a stationary point of (2.1) if and only x∗ is a fixed point for the forward–

backward operator (In + α∂f1)−1(In − α∇f0). Then (2.18) can be seen as the sequence

generated by the fixed point algorithm applied to (In + α∂f1)
−1(In − α∇f0).

• Quadratic approximation: the FB iteration (2.18) can also be interpreted as the

minimization of a reasonable local approximation of the objective function. Indeed, some

algebra shows that

x(k+1) = proxαkf1

(
x(k) − αk∇f0(x(k))

)

= argmin
x∈Rn

1

2αk
‖x− (x(k) − αk∇f0(x(k)))‖2 + f1(x)

= argmin
x∈Rn

f0(x
(k)) + ∇f0(x(k))T (x− x(k)) +

1

2αk
‖x− x(k)‖2

︸ ︷︷ ︸
:=qαk

(x)

+f1(x) (2.19)

= argmin
x∈Rn

hαk
(x). (2.20)

Thus, at each iteration, we see that the function f0 is being replaced by the local quadratic

approximation qαk
, i.e. the linearized part of f0 regularized by a quadratic proximal term,

which measures the local error in the approximation.

Two important istances of the along the arc approach are illustrated by Beck and Teboulle in

[14, 15]. As explained by the authors in [15, Section 1.4.2-1.4.3], when the objective function

f is convex, the convergence analysis of the along the arc scheme (2.18) is strictly related to

the fundamental key property stated below:

f(x(k+1)) ≤ hαk
(x(k+1)), ∀ k ∈ N. (2.21)

In other words, the steplength αk must be chosen in such a way that the local approximation

hαk
majorizes the approximated function f at the proximal point x(k+1). A simple way to

have that is relating the steplength αk to the Lipschitz constant L of ∇f0, as suggested by the

following Lemma.

Lemma 2.5 (Descent lemma). Let f0 : Rn −→ R be a continuously differentiable function

satisfying Assumption 2.1. Then

f0(y) ≤ f0(x) + ∇f0(x)T (y − x) +
L

2
‖x− y‖2, ∀ x, y ∈ Rn.
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Proof. Let h : R → R be such that h(t) = f0
(
x+ t(y − x)

)
, for all t ∈ R. The chain rule yields

dh(t)

dt
= ∇f0

(
x+ t(y − x)

)T
(y − x). Moreover, we have

f0(y) − f0(x) = h(1) − h(0) =

∫ 1

0

dh(t)

dt
dt =

∫ 1

0
(y − x)T∇f0

(
x+ t(y − x)

)
dt

≤
∫ 1

0
(y − x)T∇f0

(
x) dt+

∣∣∣∣
∫ 1

0
(y − x)T

(
∇f0

(
x+ t(y − x)

)
−∇f0(x)

)
dt

∣∣∣∣

≤
∫ 1

0
(y − x)T∇f0

(
x) dt+

∫ 1

0
‖x− y‖ · ‖∇f0

(
x+ t(y − x)

)
−∇f0(x)‖ dt

≤ (y − x)T∇f0
(
x) + ‖x− y‖

∫ 1

0
Lt‖x− y‖ dt

= (y − x)T∇f0
(
x) +

L

2
‖x− y‖2.

A direct consequence of Lemma 2.5 is that condition (2.21) is automatically guaranteed

whenever αk ∈ (0, 1/L]. Then one could decide upon one of the following two strategies:

• if the Lipschitz constant L is known, then

αk =
1

L
, ∀ k ∈ N. (2.22)

The corresponding method is reported in Algorithm 4 and is sometimes referred to as the

Iterative Soft Thresholding Algorithm (ISTA), where the name is borrowed from a special

instance of Algorithm 4, which is recovered when f1 = λ‖ · ‖1 and the proximal operator

consequently reduces to the soft-thresholding operator [41, 58].

• if the Lipschitz constant L is not known or cannot be easily computed, such a difficulty

may be overcome by performing a linesearch ensuring condition (2.21). In particular,

once fixed the values L0 ∈ R>0, η > 1, the parameter αk is selected as:

αk =
1

Lk
, (2.23)

where Lk = ηikLk−1 and ik is the smallest nonnegative integer such that

f0(x
(k+1)) ≤ f0(x

(k)) + (x(k+1) − x(k))T∇f0(x(k)) +
Lk

2
‖x(k+1) − x(k)‖2, (2.24)

where x(k+1) is computed by means of (2.18) combined with (2.23). It should be noted

that the above linesearch is well-defined since, thanks to Lemma 2.5, condition (2.24) is

always satisfied for Lk ≥ L. The resulting method, denominated ISTA with backtracking,

is resumed in Algorithm 5.



Proximal–gradient methods 53

For the sake of simplicity, the following notation is used to indicate the proximal operator in

Algorithm 4 and 5:

pL(x) = prox 1
L
f1

(
x− 1

L
∇f0(x)

)
.

Algorithm 4 ISTA with constant steplengths

Choose the starting point x(0) ∈ dom(f1) and let L ∈ R>0 be the Lipschitz constant of ∇f0.
FOR k = 0, 1, 2, . . .

x(k+1) = pL(x(k)).

END

Algorithm 5 ISTA with backtracking

Choose the starting point x(0) ∈ dom(f1) and let L−1 ∈ R>0, η > 1.

FOR k = 0, 1, 2, . . .

STEP 1. Compute the smallest nonnegative integer ik such that Lk = ηikLk−1 satisfies

f0(pLk
(x(k))) ≤ f0(x

(k)) + (pLk
(x(k)) − x(k))T∇f0(x(k)) +

Lk

2
‖pLk

(x(k)) − x(k)‖2.

STEP 2. Compute x(k+1) = pLk
(x(k)).

END

Remark 2.8. The sequence of function values {f(x(k))}k∈N produced both by ISTA and ISTA

with backtracking is nonincreasing. In fact, by choosing Lk with the backtracking rule (2.24)

or Lk ≡ L, we have:

f(x(k+1)) ≤ h1/Lk
(x(k+1)) ≤ h1/Lk

(x(k)) = f(x(k))

where the first inequality follows from STEP 1 of Algorithm 5 and the second one is a conse-

quence of the definition of proximal point (see the quadratic approximation interpretation).

Remark 2.9. Since (2.24) holds for Lk ≥ L, then for the ISTA with backtracking it holds that

Lk ≤ ηL for every k ≥ 1, so that overall

βL ≤ Lk ≤ γL,

where β = γ = 1 for the constant steplength setting and β =
L−1

L
, γ = η for the backtracking

case.
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Remark 2.10. The linesearch procedure (2.24) avoids the difficulty of knowing the Lipschitz

constant only partially. Indeed, even if not explicitly, the parameter L depends on the value of

the initial guess L−1 by relation Lk = (
∏k

j=1 η
ij )L−1. Therefore, a wrong choice of the initial

guess L−1 might negatively affect the convergence rate of the whole algorithm. For instance, if

L−1 is fixed very far from the unknown Lipschitz value, this could lead to either a very small

steplength (if L−1 is too large) or a great number of successive linesearch reductions (if it is

too small).

More in general, a major critical issue of any backtracking procedure applied to the scheme

(2.18) is that a new evaluation of the proximal operator is required at any iteration of the

backtracking loop. For that reason, the along the arc approach becomes computationally too

expensive if the proximal point cannot be computed in a reasonable time.

The following Theorem states, under the assumption that f0 is convex, the convergence of

the sequence {x(k)}k∈N generated by the two ISTA methods to a solution of problem (2.1), and

a sublinear rate of convergence for their function values.

Theorem 2.2. Let f : Rn −→ R̄ be as in problem (2.1), where f0 is convex, continuously

differentiable and satisfies Assumption 2.1, and f1 is proper, convex and lower semicontinuous.

Suppose that (2.1) admits at least one solution. Let {x(k)}k∈N be the sequence generated by

Algorithm 4 or 5. Then

(i) the sequence {x(k)}k∈N converges to a solution of problem (2.1).

(ii) For every k ≥ 1:

f(x(k)) − f(x∗) ≤ γL‖x(0) − x∗‖2
2k

for any optimal solution x∗.

Proof. See [15, Theorem 1.1-1.2].

We now report a convergence result for ISTA when f is nonconvex, which is of course

weaker than the one presented in Theorem 2.2 for the convex case.

Theorem 2.3. Let f : Rn −→ R̄ be as in problem (2.1), where f0 is continuously differentiable

and satisfies Assumption 2.1, and f1 is proper, convex and lower semicontinuous. Let {x(k)}k∈N
be the sequence generated by Algorithm 4 or 5. Then

lim
k→+∞

‖x(k) − x(k+1)‖ = 0.

Proof. See [15, Theorem 1.3].

Remark 2.11. If we observe that ‖x(k) − x(k+1)‖ = ‖x(k) − prox1/Lk
(x(k) − 1/Lk∇f0(x(k)))‖

and that a point x∗ is stationary for f if and only x∗ = prox1/L(x∗ − 1/L∇f0(x∗)) for any

fixed L ∈ R>0 (Proposition 2.11), then ‖x(k) − x(k+1)‖ can be considered as a measure of the

proximity of the sequence to a stationary point which, by Theorem 2.3, is converging to zero.
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2.2.2 Along the feasible direction approach

We now explore the case in which a relaxation parameter λk is introduced in the scheme (2.16).

In this case, the steplength αk is usually chosen either by an adaptive selection rule or a prefixed

formula, while the parameter λk is determined via a backtracking procedure of some sort.

The seminal work by Combettes [51] suggested a scheme in which the steplengths are

variable but strictly depending on the value of the Lipschitz constant in accordance with the

following condition:

0 < inf
k∈N

αk ≤ sup
k∈N

αk <
2

L
, (2.25)

whereas the relaxation parameter is bounded above by 1 and bounded away from zero

0 < inf
k∈N

λk ≤ sup
k∈N

λk ≤ 1. (2.26)

A special instance of this scheme has been proposed by Combettes and Pesquet in [48] and is

reported in Algorithm 6.

Algorithm 6 Forward-backward method with relaxation parameters and variable steplengths

Choose the starting point x(0) ∈ dom(f1), let L ∈ R>0 be the Lipschitz constant of ∇f0 and

fix ǫ ∈ (0,min{1, 1/L}).

FOR k = 0, 1, 2, . . .

STEP 1. Choose αk ∈ [ǫ, 2
L − ǫ].

STEP 2. Compute y(k) = proxαkf1

(
x(k) − αk∇f0(x(k))

)
.

STEP 3. Choose λk ∈ [ǫ, 1].

STEP 4. Compute x(k+1) = x(k) + λk(y(k) − x(k)).

END

Convergence may be proved in the convex case, as stated by the following result.

Theorem 2.4. [51, Theorem 3.4] Suppose that f0 in problem (2.1) is convex, continuously

differentiable and satisfies Assumption 2.1, and f1 is proper, convex and lower semicontinuous.

Every sequence {x(k)}k∈N generated by Algorithm 6 or, more generally, by any method of type

(2.16) satisfying conditions (2.25)-(2.26), converges to a solution of problem (2.1).

Algorithm 6 features variable steplengths, but its relaxation parameters {λk}k∈N are not

allowed to exceed 1. The variant proposed in [12] and resumed in Algorithm 7 allows for larger

relaxation parameters, at the price of keeping fixed the steplength parameter.

Theorem 2.5. [12] Suppose that f0 in problem (2.1) is convex, continuously differentiable and

satisfies Assumption 2.1, and f1 is proper, convex and lower semicontinuous. Every sequence

{x(k)}k∈N generated by Algorithm 7 converges to a solution of problem (2.1).
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Algorithm 7 Forward-backward method with relaxation parameters and constant steplengths

Choose the starting point x(0) ∈ dom(f1), let L ∈ R>0 be the Lipschitz constant of ∇f0 and

fix ǫ ∈ (0, 3/4).

FOR k = 0, 1, 2, . . .

STEP 1. Compute y(k) = prox 1
L
f1

(
x(k) − 1

L∇f0(x(k))
)
.

STEP 2. Choose λk ∈ [ǫ, 32 − ǫ].

STEP 3. Compute x(k+1) = x(k) + λk(y(k) − x(k)).

END

Remark 2.12. The applicability of Algorithm 6 and 7 is limited to the cases in which the

Lipschitz constant is explicitly computable. However, there is a number of problems, arising

from signal and image processing, in which the knowledge of the Lipschitz constant is out of

reach. For instance, the Kullback-Leibler divergence with positive background (see Chapter

5), which arises in the context of image denoising with data corrupted by Poisson noise, has

a Lipschitz continuous gradient, but only an above estimation of the Lipschitz parameter is

available [82]. Furthermore, to the best of my knowledge, no practical selection rule or line–

search to determine the relaxation parameter according to STEP 3 of Algorithm 6 or STEP 2

of Algorithm 7 has been proposed in the literature yet.

2.2.3 Acceleration strategies

Though appealing for their simplicity, proximal–gradient methods often exhibit a slow speed

of convergence. This is a common problem shared by all first order methods, both in the dif-

ferentiable and nondifferentiable setting. In the literature, two significant strategies have been

devised to accelerate forward–backward schemes: adding an extrapolation step and adopting

a variable metric in the computation of the proximal operator.

Inertial/Extrapolation techniques

Extrapolation in gradient methods was first introduced by Polyak in [106], where he studied

the well-known Heavy-Ball method for minimizing strongly convex functions with Lipschitz

continuous gradient:

x(k+1) = x(k) − α∇f(x(k)) + β(x(k) − x(k−1))

with α ∈ R>0, β ∈ [0, 1). This iterative scheme can be seen as an explicit finite differences

discretization of the so-called Heavy-ball with friction dynamical system

ẍ(t) + γẋ(t) + ∇f(x(t)) = 0
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which arises when Newton’s law is applied to a point subject to a constant friction γ ∈ R>0

and a gravity potential f . The term β(x(k) − x(k−1)) is usually referred to as the inertial force

or extrapolation step, and introduces information about the two previous iterates. Note that

setting β = 0 returns the usual gradient method. The surprising fact about the Heavy-Ball

method is that, with a negligible additional overhead due to the extrapolation step, it provides

an optimal O(1/k2) rate for strongly convex functions [106].

The extrapolation idea can be easily transposed in the context of forward–backward al-

gorithms. Ochs et al [105] recently proposed a generalization of the Heavy-Ball method to

problem (2.1), denominated inertial Proximal algorithm for Nonconvex Optimization (iPiano),

of the following type

x(k+1) = proxαkf1

(
x(k) − αk∇f0(x(k)) + βk(x(k) − x(k−1))

)
(2.27)

where the variable parameters αk and βk must be appropriately chosen in order to make the

algorithm convergent. To have an idea of what could be an appropriate choice for the iPiano

parameters, we report, in Algorithm 8, one of the several versions of iPiano delineated by the

authors, which keeps fixed β while determining αk by means of a backtracking procedure.

Algorithm 8 Nonmonotone iPiano

Choose x(0) ∈ dom(f1), L−1 ∈ R>0, η ≥ 1, β ∈ [0, 1) and set x(−1) = x(0).

FOR k = 0, 1, 2, . . .

STEP 1. Set Lk = Lk−1.

STEP 2. Backtracking loop:

Choose αk < 2(1 − β)/Lk and compute

x(k,Lk) = proxαkf1

(
x(k) − αk∇f0(x(k)) + β(x(k) − x(k−1))

)
.

IF f0(x
(k,Lk)) ≤ f0(x

(k)) + (x(k,Lk) − x(k))T∇f0(x(k)) + Lk

2 ‖x(k,Lk) − x(k)‖2 THEN

go to STEP 3

ELSE

set Lk = ηLk and go to STEP 2.

ENDIF

STEP 3. Compute x(k+1) = x(k,Lk).

END

The convergence of iPiano can be proved in the nonconvex case, under the assumption that

the function f satisfies the so-called Kurdyka– Lojasiewicz inequality (see Section 2.3 for an

overview of this property).
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Algorithm 9 FISTA with backtracking

Choose x(0) ∈ dom(f1), L−1 ∈ R>0, η > 1, a > 2. Set y(0) = x(0), t0 = 1.

FOR k = 0, 1, 2, . . .

STEP 1. Compute the smallest nonnegative integer ik such that Lk = ηikLk−1 satisfies

f0(pLk
(y(k))) ≤ f0(y

(k)) + (pLk
(y(k)) − y(k))T∇f0(y(k)) +

Lk

2
‖pLk

(y(k)) − y(k)‖2.

STEP 2. Compute x(k+1) = pLk
(y(k)).

STEP 3. Compute tk+1 =
k + a

a
.

STEP 4. Compute y(k+1) = x(k) +

(
tk − 1

tk+1

)
(x(k) − x(k−1)).

END

An ingenious variant of the Heavy-Ball method, that was initially treated by Nesterov in

[102] for gradient methods and subsequently extended to proximal–gradient methods, is the

following

y(k) = x(k) + βk(x(k) − x(k−1))

x(k+1) = x(k) − α∇f(y(k)).

Here we highlight two main changes with respect to the Heavy-Ball method: the extrapolation

factor βk is variable and computed according to a prefixed formula and, at each iteration, the

gradient is evaluated at the extrapolated point y(k) instead of x(k). The resulting algorithm is

still optimal, showing an O(1/k2) complexity result.

It is then natural to extend the aforementioned extrapolated scheme to proximal–gradient

methods:

y(k) = x(k) + βk(x(k) − x(k−1))

x(k+1) = proxαkf1
(x(k) − α∇f0(y(k))).

The combination of Nesterov acceleration technique with the proximal–gradient method ISTA

led to the rise of the popular Fast Iterative Soft Thresholding Algorithm (FISTA) [14, 42] for

solving problem (2.1) (see Algorithm 9). In FISTA, the parameter βk is chosen as

βk =
tk − 1

tk+1

where tk ≥ 1, for all k ∈ N. The original choice of Beck and Teboulle in [14], namely tk+1 =(
1 +

√
1 + 4t2k

)
/2, ensures an O(1/k2) convergence rate for FISTA, which improves the result
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contained in Theorem 2.2 for ISTA. However, such a choice for tk does not guarantee the

convergence of the iterates {x(k)}k∈N. For this reason, in Algorithm 9 the parameter tk is

computed following the rule suggested by Chambolle and Dossal in [42], which allows to prove

the weak convergence of the algorithm in general Hilbert spaces (which in Rn is equivalent

to the strong convergence of the sequence) while at the same time preserving the O(1/k2)

complexity result. The result is reported below in the finite dimensional case.

Theorem 2.6. Let f : Rn −→ R̄ be as in problem (2.1), where f0 is convex, continuously

differentiable and satisfies Assumption 2.1, and f1 is proper, convex and lower semicontinuous.

Suppose that (2.1) admits at least one solution. Let {x(k)}k∈N be the sequence generated by

Algorithm 9. Then

(i) the sequence {x(k)}k∈N converges to an optimal solution of problem (2.1).

(ii) For every k ≥ 1:

f(x(k)) − f(x∗) ≤ 2γL‖x(0) − x∗‖2
(k + 1)2

for any optimal solution x∗.

Proof. See [42, Theorem 3].

Variable metric techniques

If a variable metric in the computation of the proximity operator is introduced in (2.16), the

general iteration of the FB scheme becomes

x(k+1) = x(k) + λk

(
proxDk

αkf1
(x(k) − αkD

−1
k ∇f0(x(k))) − x(k)

)
, k = 0, 1, 2, . . . (2.28)

where Dk is a symmetric positive definite matrix. We call this modified scheme the Variable

Metric Forward Backward algorithm. The role of the scaling matrix Dk is better appreciated

if, as already done in Section 2.2.1 for the case Dk = In, we interpret the variable metric

forward–backward step as the minimization of a local approximation of f at the iterate x(k):

y(k) = proxDk

αkf1

(
x(k) − αkD

−1
k ∇f0(x(k))

)

= argmin
y∈Rn

1

2αk

∥∥∥y − (x(k) − αkD
−1
k ∇f0(x(k)))

∥∥∥
2

Dk

+ f1(y)

= argmin
y∈Rn

∇f0(x(k))T (y − x(k)) +
1

2αk
‖y − x(k)‖2Dk

+
αk

2
‖∇f0(x(k))‖2D−1

k

+ f1(y)

= argmin
x∈Rn

f0(x
(k)) + ∇f0(x(k))T (y − x(k)) +

1

2αk
‖y − x(k)‖2Dk

︸ ︷︷ ︸
:=q(x,x(k))

+f1(y)

= argmin
x∈Rn

h(k)(x, x(k)).
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Therefore, in order for VMFB to be an effective tool, the matrix Dk has to be chosen in such a

way that the quadratic model q(x, x(k)) represents a better approximation than the one defined

by the FB method in (2.19) without variable metric. For instance, this is the case when f0 is

twice continuously differentiable and Dk approximates the Hessian matrix ∇2f0(x
(k)), so that

the quadratic term q(x, x(k)) is close to the second order Taylor expansion of the function f0 at

point x(k). Then the issue of devising practical techniques to compute the matrix Dk arises. In

this regard, a couple of choices proposed in the literature for the matrix Dk are now reported:

• Convergent variable metric: in [50], weak convergence of the sequence generated by

the VMFB method in a general Hilbert space, under the hypothesis that the differentiable

term f0 is convex, is provided when the sequence {Dk}k∈N satisfies the following two

conditions

Dk ∈ Mµ,

(1 + ξk)Dk+1 < Dk, ξk ∈ R≥0,
∞∑

i=1

ξk < +∞ (2.29)

where “ <” denotes the Loewner partial ordering on the set of all symmetric matrices,

i.e.

A < B ⇐⇒ xTAx ≥ xTBx, ∀ x ∈ Rn.

According to Lemma 2.3 in [49], condition (2.29) implies that the sequence {Dk}k∈N is

converging to a certain symmetric positive definite matrix D, namely

Dkx −→ Dx, ∀ x ∈ Rn.

• Majorize-Minimize metric: another possible choice for the matrix Dk is given by the

Majorize-Minimize (MM) strategy [47], according to which the matrix Dk is chosen in

such a way that the local quadratic model

q(x, x(k)) = f0(x
(k)) + ∇f0(x(k))T (x− x(k)) +

1

2
‖x− x(k)‖2Dk

is a majorant function for f0 at x(k), i.e.

f0(x) ≤ q(x, x(k)), ∀x ∈ Rn. (2.30)

2.3 Inexact proximal–gradient methods under the Kurdyka–

 Lojasiewicz property

Recent works [9, 27, 28, 66] have shed light on an interesting analytical property shared by

a large variety of functions, namely the so-called Kurdyka- Lojasiewicz (KL) inequality. The

interest in this property is twofold: on one hand, it is possible to link the convergence of
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inexact descent methods (thus, in particular, of proximal–gradient algorithms) to this prop-

erty, provided that the aforementioned methods comply with some specific conditions [9, 66];

on the other hand, many problems frequently addressed in signal and image processing in-

volve functions satisfying the KL inequality [8, 27], which highlights the general validity of the

convergence result under this property.

2.3.1 Kurdyka– Lojasiewicz (KL) functions

The following definition of KL property is the one employed also in [8, 9, 105], but we remark

that other versions of this property have been considered in the literature [7, 29, 47].

Definition 2.13. Let f : Rn −→ R̄ be a proper, lower semicontinuous function. The function

f is said to have the Kurdyka– Lojasiewicz (KL) property at z ∈ dom(∂f) if there exist υ ∈
(0,+∞], a neighborhood U of z and a continuous concave function φ : [0, υ) −→ [0,+∞) such

that:

• φ(0) = 0;

• φ is C1 on (0, υ);

• φ′(s) > 0 for all s ∈ (0, υ);

• the KL inequality

φ′(f(z) − f(z))dist(0, ∂f(z)) ≥ 1

holds for all z ∈ U ∩ [f(z) < f < f(z) + υ].

If f satisfies the KL property at each point of dom(∂f), then f is called a Kurdyka– Lojasiewicz

(KL) function.

Remark 2.13. The KL property holds for any non stationary point z, i.e. such that 0 /∈ ∂f(z).

Indeed, as explained in [8], in this case there exist ǫ, η ∈ R>0 and c such that

dist(0,∇f(z)) ≥ c > 0

for all z ∈ B(z, ǫ) ∩ [−η < f < η], that is, f has the Kurdyka- Lojasiewicz property at z with

φ(t) = c−1t. Thus, the KL property becomes relevant and non trivial only when it is satisfied

at stationary points.

Remark 2.14. When f is differentiable, finite-valued and f(z) = 0, then the KL property can

be rewritten as

‖∇(φ ◦ f)(z)‖ ≥ 1

for each convenient z ∈ Rn. In other words, the function f is “sharp” up to a reparametrization

of the values f via φ. The function φ is called desingularizing, since it is used to turn a singular

region, namely a region in which the gradients are arbitrarily small, into a regular region, i.e.

a neighbourhood of z where the gradients are bounded away from zero.



62 Chapter 2 Proximal–gradient methods for nondifferentiable optimization

Some examples of functions for which the KL property either holds everywhere or fails at

certain stationary points are now reported.

Example 2.13 (Real analytic functions). In [93],  Lojasiewicz proved that any real analytic

function f : Ω → R defined on a nonempty open subset Ω of Rn satisfies Definition 2.13 at any

point z ∈ Ω with φ(t) = cs1−θ, where θ ∈ [1/2, 1) and c ∈ R>0. In this case, the KL inequality

reduces to
|f(z) − f(z)|θ

‖∇f(z)‖ ≤ c

on a neighbourhood of z.

Example 2.14 (C∞ counterexample). Consider the function f : R → R such that

f(x) =

{
x2 sin( 1x), if x 6= 0

0, if x = 0.

This function is C∞(R), however it does not satisfy the KL inequality at the stationary point

x = 0. Indeed, there exists a sequence {x(k)}k∈N ⊆ R such that x(k) → 0 and f ′(x(k)) = 0 for

all k ∈ N, hence there is no φ nor U such that the KL inequality holds.

More in general, the KL property fails whenever the considered stationary point is not

isolated. See [27, 29] for other examples of the same kind.

Example 2.15 (Locally strongly convex functions). Consider a function f : Rn → R which is

strongly convex with modulus µ on K convex subset of Rn, i.e.

f(y) ≥ f(x) + vT (y − x) +
µ

2
‖y − x‖2, ∀ v ∈ ∂f(x), ∀ x, y ∈ K.

Rearranging the definition, we have

f(y) − f(x) ≥ vT (y − x) +
µ

2
‖x− y‖2

≥ − 1

µ
‖v‖2, ∀ v ∈ ∂f(x)

where the last inequality follows by minimizing the middle term over y. Thus

µ(f(x) − f(y)) ≤ (dist(0, ∂f(x)))2

and f satisfies the KL inequality at any point y ∈ K with φ(t) = 2
µ

√
t and U = K ∩ {x ∈ Rn :

f(x) ≥ f(y)}.

Example 2.16 (Convex counterexample). There exists a C2 convex function f : R2 → R such

that min f = 0 which is not a KL function. More precisely, for each υ > 0 and φ satisfying the

properties in Definition 2.13, it holds

inf{‖∇(φ ◦ f(x))‖ : x ∈ [0 < f < υ]} = 0.

Such counterexample can be found in [29]. Note that the considered convex function exhibits

a wildly oscillatory collection of level sets that are unlikely to appear in most convex functions.
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Let us report a few wide classes of functions that satisfy the KL property in each point of

their domain.

Sub-analytic and semi-algebraic functions

Definition 2.14. (i) A subset S ⊆ Rn is called sub-analytic if each point of S admits a

neighborhood V and m ≥ 1 such that A ∩ V = {v ∈ Rn : (x, y) ∈ B, ∀ y ∈ Rm}, where

B is bounded and

B =

p⋃

i=1

q⋂

j=1

{v ∈ Rn : gij(v) = 0, hij(v) < 0}

where the functions gij , hij : Rn → R are real analytic for all 1 ≤ i ≤ p, 1 ≤ j ≤ q.

(ii) A function f : Rn → R̄ is called sub-analytic if its graph is a sub-analytic subset of

Rn × R.

Bolte [27] was able to show that the KL property holds for any sub-analytic continuous

function defined on a closed domain, as reported in the following theorem.

Theorem 2.7. [27, Theorem 3.1] Let f : Rn → R̄ be a proper and lower semicontinuous

function. If dom(f1) is closed and f is sub-analytic and continuous on dom(f1), then it satisfies

the KL property at any point of dom(f) with φ(t) = ct1−θ, where c ∈ R>0 and θ ∈ [0, 1).

Examples of sub-analytic functions are real analytic functions, for which Theorem 2.7 re-

covers the same result obtained by  Lojasiewicz in [93], and semi-algebraic functions, whose

definition is reported below.

Definition 2.15. (i) A subset S ⊆ Rn is a real semi-algebraic set if

S =

p⋃

i=1

q⋂

j=1

{v ∈ Rn : gij(v) = 0, hij(v) < 0} .

where the functions gij , hij : Rn → R are real polynomials for all 1 ≤ i ≤ p, 1 ≤ j ≤ q.

(ii) A function f : Rn → R̄ is called semi-algebraic if its graph graph(f) = {(v, t) ∈ Rn+1 :

h(v) = t} is a semi-algebraic subset of Rn+1.

In other words, a function is semi-algebraic whenever its graph is given by finite unions and

intersections of polynomial equalities and inequalities.

Example 2.17. The following functions are all semi-algebraic [26]:

• real polynomial functions;
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• indicator functions of semi-algebraic sets (such as polyhedral sets);

• finite sums and products or compositions of semi-algebraic functions.

Example 2.18 (p−norms). Given p > 0, the p−norm is defined as

‖x‖p =

(
n∑

i=1

|xi|p
) 1

p

, ∀ x ∈ Rn.

If p is rational, i.e. p = p1
p2

where p1 and p2 are positive integers, then ‖ · ‖p is semi-algebraic.

Since the sum and composition of semi-algebraic functions is itself semi-algebraic, we just need

to prove the statement for the function g(s) = sp1/p2 , for all s > 0. Its graph in R2 can be

written as {
(s, t) ∈ R2

>0 : t = s
p1
p2

}
=
{

(s, t) ∈ R2 : tp2 − sp1 = 0
}
∩ R2

>0.

This last set is semi-algebraic by Definition 2.15.

On the other hand, ‖ · ‖p fails to be semi-algebraic whenever p is irrational.

Example 2.19. The last example, combined with the fact that compositions, sums and prod-

ucts of semi-algebraic functions are still semi-algebraic, implies that the following regularized

least squares term

f(x) = ‖Ax− b‖2 + λ

r∑

i=1

‖Lix‖pp + ιΩ(x) (2.31)

with A ∈ Rn×n, b ∈ Rn, λ ∈ R>0, p ∈ Q>0, Li ∈ Rmi×n and Ω ⊆ Rn a semi-algebraic set,

is itself a semi-algebraic function. Hence, thanks to Theorem 2.7, the following optimization

problems arising in signal and image processing may be included in the KL framework:

• Tiknonov regularization: min
x∈Rn

‖Ax− b‖2 + λ‖Lx‖2, with L ∈ Rn×n.

• ℓ1 regularization: min
x∈Rn

‖Ax− b‖2 + λ‖x‖1.

• Wavelet-based regularization: min
x∈Rn

‖Ax−b‖2+λ‖Wx‖1, whereW ∈ Rn×n is a wavelet

transform matrix.

• TV-based regularization: min
x∈Rn

‖Ax−b‖2 +λ
∑n

i=1 ‖∇ix‖, where ∇i ∈ R2×n represents

the discrete gradient of the two dimensional object x at pixel i.

• Constrained regularization: min
x∈Ω

‖Ax − b‖2, where Ω may be either the nonnegative

orthant, a linear equality constraint or the intersection of the two previous constraints.

Sum of real analytic and semi-algebraic functions

According to [26], if a function f is given by f = f0 + f1 where

• f0 and f1 are both sub-analytic,
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• f0 maps bounded sets into bounded sets,

then f is sub-analytic and, by Theorem 2.7, this means that f satisfies the KL property at each

point of its domain. For instance, the above conditions are satisfied when f0 is real analytic and

f1 is semi-algebraic. This latter case is of particular interest, since several nonconvex objective

functions arising in image processing are given by the sum of a real analytic function and a

semi-algebraic term. The reader may consult Chapter 4 and 5 for several examples of objective

functions included in this class.

2.3.2 An abstract convergence result for inexact descent methods

Let f : Rn → R be a proper, lower semicontinuous function that satisfies the Kurdyka-

 Lojasiewicz property at each point of its domain. In [9], the authors prove an abstract conver-

gence result for any sequence {x(k)}k∈N ⊆ Rn satisfying the following assumptions:

(C1) (Sufficient decrease condition) For some a ∈ R>0, for all k ∈ N

f(x(k+1)) + a‖x(k+1) − x(k)‖2 ≤ f(x(k));

(C2) (Relative error condition) For some b ∈ R>0, for all k ∈ N, there exists v(k+1) ∈ ∂f(x(k+1))

such that

‖v(k+1)‖ ≤ b‖x(k+1) − x(k)‖;

(C3) (Continuity condition) There exists a subsequence {xkj}j∈N and x̃ such that

xkj → x̃ and f(xkj) → f(x̃).

Condition (C1) models a sufficient descent property in the function values, while (C2)

originates from the fact that most algorithms in optimization, including gradient and proximal–

gradient methods, generate an infinite sequence of minimization subproblems which often need

to be solved inexactly; thus (C2) expresses an inexactness condition for such subproblems. Note

also that (C3) is trivial only when f is continuous on its domain.

Theorem 2.8. [8, Theorem 2.9] Let f : Rn → R̄ be a proper, lower semicontinuous function,

and consider a sequence {x(k)}k∈N satisfying (C1)-(C3). If f has the KL property at the limit

point x̃ specified in (C3), then the sequence {x(k)}k∈N converges to x̃ and x̃ is stationary for f .

Furthermore, the sequence has finite length, i.e.

∞∑

k=0

‖x(k+1) − x(k)‖ < +∞.

Conditions (C1)-(C3) provide a general scheme for proving the convergence of inexact de-

scent methods in the nonconvex case. In particular, recent works [9, 47] have devised new

proximal–gradient algorithms which fit into this framework:
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• in [9], under the assumption that the gradient of the differentiable part f0 is L−Lipschitz

continuous and without asking for the convexity of f1, the authors propose an inexact

version of the classical forward–backward algorithm, in which both the descent condition

and the optimality conditions for the proximal point are relaxed. This inexact version

must comply with the following requirements:

f1(x
(k+1)) + ∇f0(x(k))T (x(k+1) − x(k)) +

a

2
‖x(k+1) − x(k)‖2 ≤ f1(x

(k)) (2.32)

v(k+1) ∈ ∂f1(x(k+1)) (2.33)

‖v(k+1) + ∇f0(x(k))‖ ≤ b‖x(k+1) − x(k)‖ (2.34)

where a, b ∈ R>0 with a > L. Note that the classical forward–backward method described

in Algorithm 6, i.e.

x(k+1) ∈ proxαkf1
(x(k) − αk∇f0(x(k)))

with 0 < αmin < αk < αmax < 1/L is recovered into the above general algorithm. In

fact, the definition of the proximal operator, together with the boundedness from above

of αk, implies

f1(x
(k+1)) + ∇f0(x(k))T (x(k+1) − x(k)) +

1

2αmax
‖x(k+1) − x(k)‖2 ≤ f1(x

(k))

which is condition (2.32), while the optimality condition

αkv
(k+1) + αk∇f0(x(k)) + x(k+1) − x(k) = 0

in combination with the boundedness from below of αk leads to

‖v(k+1) + ∇f0(x(k))‖ ≤ 1

αmin
‖x(k+1) − x(k)‖

namely conditions (2.33)-(2.34). Convergence of this inexact algorithm is proved in [9,

Theorem 5.1]. It is clear that (2.32)-(2.34) have the role of stopping criteria for an

ideal algorithm; however, no practical implementation of these criteria is provided by the

authors in [9];

• inspired by the previous inexact algorithm, Chozenoux et al [47] study a variable metric

forward–backward algorithm with relaxation parameters, which exploits a similar inex-

actness condition to (2.33)-(2.34), but evaluated at the inexact proximal point ỹ(k) instead

of the relaxed iterate x(k+1). Unlike the previous abstract scheme, the proximal step is

computed w.r.t to a variable metric Dk which satisfies the majorization condition (2.30),

while the steplength αk is not related in any way with the Lipschitz constant of the prob-

lem, although the Lipschitz continuity of the gradient of the differentiable part is still

required for convergence. The corresponding approach, denominated VMFB, is detailed

in Algorithm 10. The convergence of the VMFB sequence to a stationary point is proved
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Algorithm 10 inexact Variable Metric Forward-Backward (VMFB) method

Choose the starting point x(0) ∈ dom(f1) and fix τ ∈ R>0, ν, ν ∈ R>0.

FOR k = 0, 1, 2, . . .

STEP 1. Choose Dk symmetric positive definite matrix such that,

given Q(x, x(k)) = f0(x
(k)) + ∇f0(x(k))T (x− x(k)) + 1

2‖x− x(k)‖2Dk
, we have

νIn 4 Dk 4 νIn

f0(x) ≤ Q(x, x(k)), ∀x ∈ dom(f1).

STEP 2. Choose αk ∈ R>0 and λk ∈ [0, 1] according to (2.37)-(2.39).

STEP 3. Compute ỹ(k) ∈ Rn, v(k) ∈ ∂f1(ỹ
(k)) such that

f1(x
(k)) + ∇f0(x(k))T (ỹ(k) − x(k)) +

1

αk
‖ỹ(k) − x(k)‖2Dk

≤ f1(x
(k)) (2.35)

‖v(k) + ∇f0(x(k))‖ ≤ τ‖ỹ(k) − x(k)‖Dk
. (2.36)

STEP 4. Compute x(k+1) = x(k) + λk(ỹ(k) − x(k)).

END

assuming that f is a KL function and that the parameters αk and λk are linked by means

of the following relations [47, Theorem 4.1]:

η ≤ αkλk ≤ 2 − η (2.37)

λmin ≤ λk ≤ 1 (2.38)

f((1 − λk)x(k) + λky
(k)) ≤ (1 − α)f(x(k)) + αf(y(k)) (2.39)

for all k ∈ N and for some η, η ∈ R>0, λmin ∈ R>0 and α ∈ (0, 1]. Similarly to what

has been said for the previously described abstract algorithm, it is unclear whether and

how STEP 3. and, in particular, condition (2.36), is practically ensured by some internal

procedure in the numerical experience shown in [47].





Chapter 3

A novel proximal–gradient

line–search based method

A certain number of issues concerning proximal–gradient methods emerges from the overview

of the previous chapter. First, proximal–gradient methods often exhibit a slow rate of conver-

gence to the solution of the optimization problem (2.1). This may be due to the fact that most

approaches relate the choice of the steplength and/or relaxation parameter to the Lipschitz

constant of the problem, which might be too costly to compute or lead to extremely small

steplengths. Therefore, acceleration strategies, such as the adoption of a variable metric or ex-

trapolation steps, seem unavoidable in order to turn these methods into effective tools. Second,

there is a lack of convergence results in the nonconvex case, i.e. when the differentiable part f0
in problem (2.1) is not convex. Indeed, whenever convexity is denied, the only results available

for proximal–gradient methods are either the stationarity of limit points or even weaker results

(see for instance Theorem 2.3). In this sense, some advances have been recently done in the

literature with the introduction of the Kurdyka- Lojasiewicz assumption on the objective func-

tion; however, even in this case, most of the resulting algorithms still relate their convergence

to the Lipschitz constant. Finally, classical proximal–gradient methods usually assume that a

closed-form expression for the proximal operator is available whereas, in many practical cases

(see Example 2.12), the proximal operator has to be computed inexactly by means of an inner

iterative loop.

On the basis of these premises, we present a novel proximal–gradient algorithm, denom-

inated VMILAn, which tackles all of the previously considered issues. First of all, VMILAn

allows the possibility to adopt a variable metric in the computation of the proximal step at

each iteration, that is, a scaling matrix Dk and a steplength αk which can be both computed

adaptively in an almost complete freedom, without necessarily relating them to the Lipschitz

constant of the gradient. Indeed, the only requirement is that both αk and Dk must be cho-

sen in bounded sets. Secondly, the proximal operator in VMILAn is computed via a specific

inexactness criterion, which can be practically implemented in some cases of interests for the

69
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applications. Such an inexact proximal point identifies a descent direction for the objective

function. Finally, a relaxation parameter λk is determined along the descent direction by

means of an Armijo-like rule, on which the entire convergence analysis of VMILAn relies. We

would like to draw the attention on the fact that VMILAn has its roots in the Scaled Gradient

Projection (SGP) method presented in Chapter 1 for differentiable optimization. Indeed, when

the convex term of problem (2.1) reduces to the indicator function of a convex set and the

projection operator is computed exactly, VMILAn reduces to a slightly modified version of

SGP.

The following statements will be proved for the VMILAn sequences of iterates and function

values:

• every limit point of the sequence, if any exists, are stationary for the objective function

f ; the proof of this fact is essentially based on the properties of the Armijo-like condition

adopted for computing the relaxation parameter;

• if f also satisfies the Kurdyka- Lojasiewicz property, then the sequence converges to a

stationary point, provided that a certain relative error condition on the subdifferential of

f is satisfied at the proximal point; this condition automatically holds when the proximal

point is computed exactly;

• under the same hypotheses of the previous point, it is possible to prove either finite,

exponential or polynomial convergence of both the iterates and function values, according

to the specific structure of the desingularizing function in the KL property.

The chapter is organized according to the following outline. In Section 3.1, a wide class

of variable metric inexact descent algorithms based on an Armijo-like rule is presented. This

framework also includes the proposed algorithm VMILAn, whose steps and convergence analysis

is presented in section 3.2. Numerical experience on a collection of nonconvex problems is then

reported in Section 3.3.

3.1 Variable metric line–search based methods

Throughout this section, the following optimization problem is addressed:

Problem 3.1. Solve

min
x∈Rn

f(x) ≡ f0(x) + f1(x) (3.1)

where f0 and f1 satisfy the following assumptions:

(i) f1 : Rn → R̄ is proper, convex and lower semicontinuous.
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(ii) f0 : Rn → R is continuously differentiable on an open set Ω0 ⊇ dom(f1).

(iii) f is bounded from below.

The proposed inexact proximal–gradient method is an instance of a more general framework

developed by Bonettini et al [32] to address the nonsmooth nonconvex problem 3.1, in which

the notion of proximity operator is replaced by a more general tool, in order to allow the use

of non Euclidean distance in the metric.

3.1.1 A generalized forward–backward operator

Definition 3.1. Let Ω ⊆ Rn be a convex set. A family of distance–like functions on Ω is any

set of the form D(Ω, S) = {dσ}σ∈S , where S ⊆ Rq is a set of parameters, dσ : Rn × Rn →
R≥0 ∪ {+∞} for all σ ∈ S and the following conditions are satisfied for all z, x ∈ Ω:

(D1) dσ(z, x) is continuous in (σ, z, x);

(D2) dσ(z, x) is continuously differentiable w.r.t. z ∈ Ω;

(D3) dσ(z, x) is strongly convex w.r.t. z:

dσ(z2, x) ≥ dσ(z1, x) + ∇1dσ(z1, x)T (z2 − z1) +
m

2
‖z2 − z1‖2 ∀z1, z2 ∈ Ω,

where m > 0 does not depend on σ or x (here ∇1 denotes the gradient with respect to the

first argument of a function);

(D4) dσ(z, x) = 0 if and only if z = x (which implies that ∇1dσ(x, x) = 0 for all x ∈ Ω).

Example 3.1. The above definition encompasses the following functions:

• the scaled Euclidean distance

dσ(x, y) =
1

2α
‖x− y‖2D (3.2)

with σ = (α,D), where α > 0 and D ∈ Rn×n is a symmetric positive definite matrix, is

an interesting example of a distance–like function in D(Rn, S);

• the Bregman distance associated to a strongly convex function ψ : Ω → R, which is

defined as

dσ(x, y) =
1

σ
(ψ(x) − ψ(y) −∇ψ(y)T (x− y)), σ > 0. (3.3)
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When ∇f0 is Lipschitz continuous, a simple application of the descent lemma (Lemma 2.5)

shows that, when α is sufficiently small, the following upper bound exists for f :

f(z) ≤ f(x) + ∇f0(x)T (z − x) +
1

2α
‖z − x‖2 + f1(z) − f1(x)

(equality when z = x). In other words, a negative sign of

∇f0(x)T (z − x) +
1

2α
‖z − x‖2 + f1(z) − f1(x) (3.4)

corresponds to a descent of the function f . Our aim now is to drop the Lipschitz assumptions

on f0 and to generalize the expression (3.4) for an arbitrary distance function dσ replacing the

squared Euclidean distance.

Definition 3.2. Given a set of parameters S ⊆ Rq and Ω = dom(f1), let D(Ω, S) be a set of

distance-like functions and dσ ∈ D(Ω, S). The metric function hσ : Rn×Rn → R̄ associated to

dσ is defined as

hσ(z, x) = ∇f0(x)T (z − x) + dσ(z, x) + f1(z) − f1(x) ∀z, x ∈ Rn. (3.5)

Remark 3.1. We remark that hσ depends continuously on σ, as dσ does. Moreover, since

dσ(·, x) and f1 are convex, proper and lower semicontinuous, hσ(·, x) is also convex, proper and

lower semicontinuous for all x ∈ Ω0. Finally, for any point x ∈ Ω and for any d ∈ Rn we have

h′σ(x, x; d) = f ′(x; d), (3.6)

where h′σ(z, x; d) denotes the directional derivative of hσ(·, x) at the point z with respect to d.

From assumption (D3), it follows that hσ(·, x) is strongly convex and, for that reason,

admits a unique minimum point for any x ∈ Ω. Hence the following definition is well-defined.

Definition 3.3. The generalized forward–backward operator p : Ω0 → Ω associated to any

function hσ of the form (3.5) is defined as

p(x;hσ) = arg min
z∈Rn

hσ(z, x). (3.7)

Remark 3.2. When dσ is chosen as in (3.2), the operator (3.7) becomes

p(x;hσ) = proxD
αf1(x− αD−1∇f0(x)),

which makes p(·;hσ) a generalization of the proximal forward–backward operator.

Under assumption (D3), one can show that p(x;hσ) depends continuously on (x, σ).

Proposition 3.1. Let dσ ∈ D(Ω, S) and hσ be defined as in (3.5). Then p(x;hσ) depends

continuously on (x, σ).
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Proof. Let y = arg minz∈Rn hσ(z, x). Then y is characterized by the equation ∇f0(x) +

∇1dσ(y, x) + w = 0, where w ∈ ∂f1(y). It follows that f1(u) ≥ f1(y) + wT (u − y) for all

u ∈ Rn or:

f1(u) ≥ f1(y) − (∇f0(x) + ∇1dσ(y, x))T (u− y) ∀u ∈ Rn.

Assumption (D3) expressed in y and u gives:

dσ(u, x) ≥ dσ(y, x) + ∇1dσ(y, x)T (u− y) +
m

2
‖y − u‖2 ∀u ∈ Rn.

Together, these two inequalities yield:

m

2
‖y − u‖2 ≤ f1(u) − f1(y) + dσ(u, x) − dσ(y, x) + ∇f0(x)T (u− y) ∀u ∈ Rn.

Let y1 = p(x1;hσ1) and y2 = p(x2;hσ2). Adding the previous inequality for y = y1 (resp.

y = y2) and choosing u = y2 (resp. u = y1), one finds:

m‖y1−y2‖2 ≤ dσ1(y2, x1)−dσ1(y1, x1)+dσ2(y1, x2)−dσ2(y2, x2)+(∇f0(x1)−∇f0(x2))T (y2−y1)

and hence:

m‖y1−y2‖2 ≤ dσ2(y1, x2)−dσ1(y1, x1)+dσ1(y2, x1)−dσ2(y2, x2)+‖∇f0(x1)−∇f0(x2)‖ ‖y2−y1‖.

It follows that 0 ≤ ‖y1 − y2‖ ≤ (b +
√
b2 + 4cm)/2m where b = ‖∇f0(x1) − ∇f0(x2)‖ and

c = dσ2(y1, x2) − dσ1(y1, x1) + dσ1(y2, x1) − dσ2(y2, x2). As f0 is C1, one has limx2→x1 b = 0.

As dσ(z, x) is continuous in (σ, z, x), one also has that limx2→x1 c = 0. This shows then that

limx2→x1 ‖y2 − y1‖ = 0, in other words p(x1;hσ1) is continuous in (σ1, x1).

Definition 3.4. Given a distance–like function dσ ∈ D(Ω, S) and a parameter γ ∈ [0, 1], the

modified metric function h̃σ,γ : Rn × Rn → R̄ is defined as

h̃σ,γ(z, x) = ∇f0(x)T (z − x) + γdσ(z, x) + f1(z) − f1(x) ∀z, x ∈ Rn. (3.8)

Remark 3.3. We have

h̃σ,γ(y, x) ≤ hσ(y, x) ∀x, y ∈ Rn (3.9)

and h̃σ,γ = hσ when γ = 1.

In the following, we will show that

• Definition 2.8 of stationary point of problem 3.1 can be reformulated in terms of the fixed

points of the operator p(·;hσ), similarly to the case of the proximal forward–backward

operator (see Proposition 2.11);

• the negative sign of h̃σ,γ detects a descent direction.

To this purpose, we collect in the following proposition some properties of the function hσ and

the associated operator p(·;hσ).
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Proposition 3.2. Let σ ∈ S ⊆ Rq, γ ∈ [0, 1], and hσ, h̃σ,γ be defined as in (3.5), (3.8), where

dσ ∈ D(Ω, S). If x ∈ Ω and y = p(x;hσ), then:

(a) h̃σ,γ(x, x) = 0;

(b) if z ∈ Rn and h̃σ,γ(z, x) < 0, then f ′(x; z − x) < 0;

(c) h̃σ,γ(y, x) ≤ 0 (h̃σ,γ(y, x) = 0 ⇔ y = x);

(d) f ′(x; y − x) ≤ 0 and the equality holds if and only if h̃σ,γ(y, x) = 0 (if and only if y = x).

Proof. (a) is a direct consequence of definition (3.8) and condition (D4) on dσ.

(b) If h̃σ,γ(z, x) < 0, we have

0 ≥ −γdσ(z, x) > ∇f0(x)T (z−x)+f1(z)−f1(x) ≥ ∇f0(x)T (z−x)+f ′1(x; z−x) = f ′(x; z−x),

where the second inequality follows from definition (3.8) of h̃σ,γ and the third one from item

(ii) of Remark 2.5.

(c) Since y is the minimum point of hσ(·, x), part (a) with γ = 1 yields hσ(y, x) ≤ 0 which,

in view of (3.9), gives h̃σ,γ(y, x) ≤ 0. If y = x, part (a) implies h̃σ,γ(y, x) = 0. Conversely,

assume h̃σ,γ(y, x) = 0. From inequality (3.9) we have hσ(y, x) ≥ 0. On the other side, since y

is the minimum point of hσ(·, x), part (a) with γ = 1 implies hσ(y, x) ≤ 0. Thus hσ(y, x) = 0

and since y is the unique minimizer of hσ(·, x), we can conclude that x = y.

(d) From (c) we have h̃σ,γ(y, x) ≤ 0. When h̃σ,γ(y, x) < 0 then part (b) implies f ′(x; y−x) <

0. When h̃σ,γ(y, x) = 0, from (c) we obtain y = x and, therefore, f ′(x; y − x) = 0. Conversely,

assume f ′(x; y − x) = 0. Using the linearity of the directional derivative and Remark 2.5, we

have

0 = ∇f0(x)T (y − x) + f ′1(x; y − x) ≤ ∇f0(x)T (y − x) + f1(y) − f1(x) ≤ h̃σ,γ(y, x).

Since h̃σ,γ(y, x) ≤ 0, we necessarily have h̃σ,γ(y, x) = 0.

The following proposition completely characterizes the stationary points of problem (3.1)

in two equivalent ways, as fixed points of the operator p(·;hσ), i.e. the solutions of the equation

x = p(x;hσ), or as roots of the composite function rσ,γ(x) = h̃σ,γ(p(x;hσ), x).

Proposition 3.3. Let S ⊆ Rq, σ ∈ S, γ ∈ [0, 1], hσ, h̃σ,γ be defined as in (3.5) and (3.8),

x ∈ Ω and y = p(x;hσ). The following statements are equivalent:

(a) x is stationary for problem (3.1);

(b) x = y;

(c) h̃σ,γ(y, x) = 0.
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Proof. (a) ⇐⇒ (b) Assume that x = y. Then, hσ(·, x) achieves its minimum at x which, by

Proposition 2.9 applied to the function hσ(·, x), yields h′σ(x, x; z − x) ≥ 0 ∀z ∈ Rn. Recalling

(3.6) we have h′σ(x, x; z − x) = f ′(x; z − x), hence x is a stationary point for problem (3.1).

Conversely, let x ∈ Ω be a stationary point of problem (3.1) and assume by contradiction

that x 6= y. Then, by Proposition 3.2 (d) we obtain f ′(x, y − x) < 0, which contradicts the

stationarity assumption on x.

(b) ⇐⇒ (c) See Proposition 3.2 (c).

The knowledge that the negative sign of h̃σ,γ(y, x) indicates a descent direction at x is

fundamental to derive the general iterative optimization algorithm of the following section.

3.1.2 A general class of line–search based algorithms

In this section we will consider a general iterative optimization algorithm which is based on

the modified Armijo rule described in Algorithm LS. From now on, at each iterate x(k), the

symbol y(k) will be used to indicate the minimizer of hσ(k)(·, x(k)), i.e. y(k) = p(x(k);hσ(k)). This

minimizer may be difficult to compute. We therefore introduce the symbol ỹ(k) to indicate an

approximation of y(k) of which, initially, we only ask h̃σ(k),γ(ỹ(k), x(k)) < 0. Furthermore, for

the sake of simplicity, we will denote Ω = dom(f1).

Algorithm LS Modified Armijo linesearch algorithm

Let {x(k)}k∈N, {ỹ(k)}k∈N be two sequences of points in Ω, and {σ(k)}k∈N be a sequence of

parameters in S ⊆ Rq. Choose some δ, β ∈ (0, 1), γ ∈ [0, 1]. For all k ∈ N compute λ(k) as

follows:

1. Set λk = 1 and d(k) = ỹ(k) − x(k).

2. If
f(x(k) + λkd

(k)) ≤ f(x(k)) + βλkh̃σ(k),γ(ỹ(k), x(k)) (3.10)

Then go to step 3.

Else set λk = δλk and go to step 2.

3. End

Algorithm LS generalizes the linesearch procedure proposed by Tseng and Yun in [140],

which is recovered when dσ is chosen as in (3.2) and γ ∈ [0, 1) (the case γ = 1 is not treated in

[140]). Furthermore, when γ = 0 and f1 = ιΩ, inequality (3.10) reduces to the classical Armijo

condition (1.12) for differentiable optimization. For that reason, (3.10) may be considered as

a generalization of the Armijo rule to the nondifferentiable case.

The following result guarantees that the well-posedness of Algorithm LS only depends on

the negative sign of the quantity h̃σ(k),γ(ỹ(k), x(k)).
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Proposition 3.4. Let {x(k)}k∈N, {ỹ(k)}k∈N be two sequences of points in Ω, {σ(k)}k∈N a se-

quence of parameters in S ⊆ Rq and γ ∈ [0, 1]. Assume that Ω is a closed subset of Rn and S

a compact subset of Rq. Then the following facts hold:

(i) if we assume that

h̃σ(k),γ(ỹ(k), x(k)) < 0 (3.11)

for all k, then Algorithm LS is well defined, i.e. for each k ∈ N the loop at step 2

terminates in a finite number of steps;

(ii) if, in addition, we assume that {x(k)}k∈N and {ỹ(k)}k ∈ N are bounded sequences and

f(x(k+1)) ≤ f(x(k)), then we have that {h̃σ(k) ,γ(ỹ(k), x(k))}k∈N is bounded;

(iii) assuming also that

lim
k→∞

f(x(k)) − f(x(k) + λkd
(k)) = 0, (3.12)

where λk and d(k) are computed with Algorithm LS, then we have

lim
k→∞

h̃σ(k) ,γ(ỹ(k), x(k)) = 0.

Proof. (i) Assume by contradiction that there exists a k ∈ N such that Algorithm LS performs

an infinite number of reductions, thus, for any j ∈ N, we have

βh̃σ(k),γ(ỹ(k), x(k)) <
f(x(k) + δjd(k)) − f(x(k))

δj

=
f0(x

(k) + δjd(k)) − f0(x
(k))

δj
+
f1(x

(k) + δjd(k)) − f1(x
(k))

δj

≤ f0(x
(k) + δjd(k)) − f0(x

(k))

δj
+
δjf1(x

(k) + d(k)) + (1 − δj)f1(x
(k)) − f1(x

(k))

δj

=
f0(x

(k) + δjd(k)) − f0(x
(k))

δj
+ f1(ỹ

(k)) − f1(x
(k)),

where the second inequality is obtained by means of the Jensen inequality applied to the convex

function f1. Taking limits on the right hand side for j → ∞ we obtain

βh̃σ(k),γ(ỹ(k), x(k)) ≤ ∇f0(x(k))Td(k) + f1(ỹ
(k)) − f1(x

(k))

≤ ∇f0(x(k))Td(k) + f1(ỹ
(k)) − f1(x

(k)) + γdσ(k)(ỹ(k), x(k))

= h̃σ(k),γ(ỹ(k), x(k)) < 0,

where the second inequality follows from the non–negativity of dσ ∈ D(Ω, S) and the last one

from (3.11). Since 0 < β < 1, this is an absurdum.

(ii) Assume now that {x(k)}k∈N, {ỹ(k)}k∈N are bounded sequences and that f(x(k+1)) ≤
f(x(k)). We show that {h̃σ(k) ,γ(ỹ(k), x(k))}k∈N is bounded. By assumption (3.11), h̃σ(k),γ(ỹ(k), x(k))
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is bounded from above. We show that it is also bounded from below. Indeed we have

h̃σ(k),γ(ỹ(k), x(k)) = ∇f0(x(k))T (ỹ(k) − x(k)) + γdσ(k)(ỹ(k), x(k)) + f1(ỹ
(k)) − f1(x

(k))

≥ ∇f0(x(k))T (ỹ(k) − x(k)) + f1(ỹ
(k)) − f1(x

(k))

= ∇f0(x(k))T (ỹ(k) − x(k)) + f1(ỹ
(k)) − f(x(k)) + f0(x

(k))

≥ ∇f0(x(k))T (ỹ(k) − x(k)) + f1(ỹ
(k)) − f(x(0)) + f0(x

(k)),

where the first inequality follows from the non–negativity of dσ, the next line is obtained by

adding and subtracting f0(x
(k)) and the last one is a consequence of f(x(k+1)) ≤ f(x(k)).

As f1 is proper and convex, there exists a supporting hyperplane, i.e. ∃a, b ∈ Rn such that

f1(u) ≥ aTu+ b for all u ∈ Rn. Thus:

h̃σ(k),γ(ỹ(k), x(k)) ≥ ∇f0(x(k))T (ỹ(k) − x(k)) + aT ỹ(k) + b− f(x(0)) + f0(x
(k)).

The right hand side is a continuous function of x(k) and ỹ(k). As these are assumed to lie on a

closed and bounded set, the left hand side is bounded (from below) as well.

(iii) Let us show that the only limit point of {h̃σ(k),γ(ỹ(k), x(k))}k∈N is zero. To this purpose,

set ∆(k) = h̃σ(k) ,γ(ỹ(k), x(k)) for all k ∈ N. We observe that from (3.11) and (3.12) we obtain

0 = lim
k→∞

f(x(k)) − f(x(k) + λ(k)d(k)) = β lim
k→∞

∆(k)λk. (3.13)

Assume that there exists a subset of indices K ⊆ N such that limk∈K,k→∞ ∆(k) = ∆̄ ∈ R, with

∆̄ < 0. By (3.13), this implies that

lim
k∈K,k→∞

λk = 0. (3.14)

Denote by K̄ ⊆ K a set of indices such that limk∈K̄,k→∞ σ(k) = σ̄, limk∈K̄,k→∞ x(k) = x̄ and

limk∈K̄,k→∞ ỹ(k) = ỹ for some σ̄ ∈ S, x̄, ỹ ∈ Ω. From (3.14) we have that for any sufficiently

large index k ∈ K̄, Algorithm LS makes at least a reduction: this means that

β(λk/δ)∆
(k) < f(x(k) + (λk/δ)d

(k)) − f(x(k)),

for all sufficiently large k ∈ K̄. Repeating the same arguments employed in the first part of

the proof, we obtain

β∆(k) <
f0(x

(k) + (λk/δ)d
(k)) − f0(x

(k))

λk/δ
+ f1(ỹ

(k)) − f1(x
(k))

≤ f0(x
(k) + (λk/δ)d

(k)) − f0(x
(k))

λk/δ
+ f1(ỹ

(k)) − f1(x
(k)) + γdσ(ỹ(k), x(k)).

Taking limits on both sides for k ∈ K̄, k → ∞, since {d(k) = ỹ(k)− x(k)}k∈N is bounded and by

(3.14) we obtain β∆̄ ≤ ∆̄ < 0, which is an absurdum, being 0 < β < 1.



78 Chapter 3 A novel proximal–gradient line–search based method

It is now possible to impose some general requirements on the sequences {x(k)}k∈N and

{y(k)}k∈N, in order to guarantee the global convergence of the sequence {x(k)}k∈N.

Theorem 3.1. Let {x(k)}k∈N, {ỹ(k)}k∈N be two sequences of points in Ω, {σ(k)}k∈N ⊆ S ⊆ Rq

and γ ∈ [0, 1]. Assume that the following conditions hold:

(A1) Ω is a closed subset of Rn;

(A2) S is a compact subset of Rq;

(A3) there exists a limit point x̄ of {x(k)}k∈N, with K ′ ⊆ N being a subset of indices such that

limk∈K ′,k→∞ x(k) = x̄ ∈ Ω;

(A4) ỹ(k) satisfies (3.11) and there exists K ′′ ⊆ K ′ such that

lim
k∈K ′′,k→∞

hσ(k)(ỹ(k), x(k)) − hσ(k)(y(k), x(k)) = 0, with y(k) = p(x(k);hσ(k)); (3.15)

(A5) for any k ∈ N we have

f(x(k+1)) ≤ f(x(k) + λkd
(k)), d(k) = ỹ(k) − x(k) (3.16)

where λk is computed by Algorithm LS.

Then x̄ is a stationary point for problem (3.1).

Proof. First, we notice that Algorithm LS is well defined, since (3.11) holds. We observe that,

since hσ(k) is strongly convex with modulus of convexity m and y(k) is its minimum point, we

have
m

2
‖z − y(k)‖2 ≤ hσ(z, x(k)) − hσ(k)(y(k), x(k)) ∀z ∈ Rn. (3.17)

Setting z = ỹ(k) in the previous inequality and using (3.15) gives

lim
k∈K ′′,k→∞

‖ỹ(k) − y(k)‖ = 0. (3.18)

By continuity of the operator p(x;hσ), since {x(k)}k∈K ′ is bounded, {y(k)}k∈K ′ is bounded as

well. Thus, (3.18) implies that {ỹ(k)}k∈K ′′ is also bounded and there exists a limit point ȳ

of {ỹ(k)}k∈N. We define K ⊆ K ′′ such that limk∈K,k→∞ ỹ(k) = ȳ and limk∈K,k→∞ σ(k) = σ̄.

By continuity of the operator p(x;hσ) with respect to all its arguments, (3.18) implies that

ȳ = p(x̄;hσ̄).

Consider now the sequence {f(x(k))}k∈N. From assumption (3.16) it follows that

f(x(k+1)) ≤ f(x(k) + λkd
(k)) ≤ f(x(k)). (3.19)

Thus, the sequence {f(x(k))}k∈N is monotone nonincreasing and, therefore, it converges to some

f̄ ∈ R̄. Since f is lower semicontinuous and x̄ is a limit point of {x(k)}k∈N, we have

f̄ = lim
k→∞

f(x(k)) = lim
k→∞

f(x(k+1)) ≥ f(x̄).
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The previous inequality implies that f̄ ∈ R and this fact, together with inequality (3.19), gives

lim
k→∞

f(x(k)) − f(x(k) + λkd
(k)) = 0.

Thus we can apply Proposition 3.4 and obtain

lim
k→∞,k∈K

h̃σ(k),γ(ỹ(k), x(k)) = 0.

Combining the previous equality with (3.9) and (3.15) yields

0 = lim
k→∞,k∈K

h̃σ(k) ,γ(ỹ(k), x(k)) ≤ lim
k→∞,k∈K

hσ(k)(ỹ(k), x(k)) = lim
k→∞,k∈K

hσ(k)(y(k), x(k)).

Since hσ(k)(y(k), x(k)) ≤ 0, this implies limk→∞,k∈K hσ(k)(y(k), x(k)) = 0. Expressing inequality

(3.17) for z = x(k), we can write

m

2
‖x(k) − y(k)‖2 ≤ hσ(k)(x(k), x(k)) − hσ(k)(y(k), x(k)) = −hσ(k)(y(k), x(k))

k→∞,k∈K−→ 0.

Thus, we proved that ȳ = x̄ and, by Proposition 3.3 we have that x̄ is stationary.

Remark 3.4. Condition (3.11) alone is not sufficient to ensure that the limit points are

stationary, but we need also to assume that (3.15) holds. As counterexample, consider the

case n = 1, f0(x) = x2/2, f1(x) = 0, dσ(x, y) = (x − y)2/2, β = δ = 1/2. The sequence

x(k+1) = x(k) + λk(ỹ(k) − x(k)) with λk = 1, ỹ(k) = x(k) − (1/2)k+1 satisfies all the assump-

tions of Theorem 3.1 except (3.15). However, starting from x(0) = 2, the sequence writes as

x(k) = 1 + (1/2)k
k→∞→ 1, while the only stationary point is 0.

Conditions (A2) − (A5) implicitly define a wide class of descent methods based on the Armijo

condition (3.10), which are ensured to be globally convergent provided that (A1) holds. The

crucial ingredients of these methods are

• a descent direction d(k) = ỹ(k) − x(k), where ỹ(k) is a suitable approximation of the point

p(x(k);hσ);

• the sufficient decrease of the objective function between two successive iterations, which

has to amount at least to λkh̃σ,γ(ỹ(k), x(k)), where λk is determined by the backtracking

procedure given in Algorithm LS.

Novel algorithms may be derived from this general scheme, in which the forward–backward

operator is computed inexactly and/or with respect to non Euclidean variable metrics.
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3.2 Algorithm and convergence analysis

This section is devoted to the analysis of a novel inexact proximal–gradient algorithm, denomi-

nated Variable Metric Inexact Line–search based Algorithm - new version (VMILAn) [33, 111].

The caption “new version” stands for the fact that VMILAn is a modification of the method

VMILA, which has been recently proposed in [32] as an instance of the general framework estab-

lished in the previous section. Our aim is twofold: on one hand, we present the novel algorithm

and highlight the main changes with respect to its counterpart VMILA; on the other hand,

we provide a new convergence result for VMILAn under the assumption that the objective

function satisfies the Kurdyka– Lojasiewicz inequality.

For the sake of convenience, we restate here the addressed optimization problem in which,

unlike problem (3.1), the gradient of the differentiable part needs be Lipschitz continuous for

the related convergence analysis.

Problem 3.2. Solve

min
x∈Rn

f(x) ≡ f0(x) + f1(x) (3.20)

where f0 and f1 satisfy the following assumptions:

(i) f1 : Rn → R̄ is proper, convex and lower semicontinuous.

(ii) f0 : Rn → R is continuously differentiable on an open set Ω0 ⊇ dom(f1).

(iii) f0 has an L−Lipschitz continuous gradient on dom(f1) with L > 0, i.e.

‖∇f0(x) −∇f0(y)‖ ≤ L‖x− y‖, ∀ x, y ∈ dom(f1).

(iv) f is bounded from below.

3.2.1 The proposed algorithm: VMILAn

From now on, we will assume that dσ has the form (3.2). Therefore, given the iterate x(k) ∈ Rn,

we will abbreviate the notation for the metric function associated to dσ as follows

h(k)γ (y) := h̃σ,γ(y, x(k)) = ∇f0(x(k))T (x− x(k)) +
γ

2αk
‖x− x(k)‖2Dk

+ f1(x) − f1(x
(k)), (3.21)

with αk ∈ R>0 and Dk symmetric positive definite matrix. By also setting h(k) := h
(k)
1 , the

proximal–gradient evaluation y(k) at point x(k) can be rewritten as

y(k) = arg min
y∈Rn

h(k)(y) = proxDk

αkf1

(
x(k) − αkD

−1
k ∇f0(x(k))

)
. (3.22)
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Algorithm VMILAn Variable Metric Inexact Line–search based Algorithm - new version

Choose 0 < αmin ≤ αmax, µ ≥ 1, δ, β ∈ (0, 1), γ ∈ [0, 1], τ ∈ R>0, x
(0) ∈ dom(f1).

FOR k = 0, 1, 2, ...

Step 1 Choose αk ∈ [αmin, αmax], Dk ∈ Mµ.

Step 2 Let y(k) = arg miny∈Rn h(k)(y) = proxDk

αkf1

(
x(k) − αkD

−1
k ∇f0(x(k))

)
.

Compute ỹ(k) such that

h(k)(ỹ(k)) − h(k)(y(k)) ≤ −τ
2
h(k)γ (ỹ(k)), (3.23)

where h
(k)
γ (ỹ(k)) = ∇f0(x(k))T (ỹ(k) − x(k)) + γ

2αk
‖ỹ(k) − x(k)‖2Dk

+ f1(ỹ
(k)) − f1(x

(k)).

Step 3 Set d(k) = ỹ(k) − x(k).

Step 4 Compute λk = δik , where ik is the smallest nonnegative integer such that

f(x(k) + δikd(k)) ≤ f(x(k)) + βδikh(k)γ (ỹ(k)). (3.24)

Step 5 Compute the new point as

x(k+1) =

{
ỹ(k) if f(ỹ(k)) < f(x(k) + λkd

(k))

x(k) + λkd
(k) otherwise

. (3.25)

Let us describe the main features of Algorithm VMILAn.

Step 1 - Variable metric.

In our approach, the steplength parameter αk and the scaling matrix Dk should be considered

as almost free parameters, which can be tuned to better capture the local features of the ob-

jective function and constraints, with the aim to accelerate the progress towards the solution.

Indeed, in the following convergence analysis, we will make the only assumption that they are

bounded as required at Step 1. Concerning the practical choice of the steplength parameter αk,

the general updating rules proposed in Section 1.1.2 and 1.2.2 in the context of differentiable

optimization, such as the scaled Barzilai-Borwein rules (1.57) or the more recent strategies

based on the Ritz values, may be applied to the differentiable part f0 of the objective function.

Unlike the steplength selection, choosing an appropriate scaling matrix Dk is strictly related to

the problem features, i.e. the specific shape of the objective function to be minimized and the

constraints. Some guidelines about this choice have been provided in the previous chapters, for

example the Majorize-Minimize (MM) principle, based on the majorization condition (2.30) or

the Split Gradient (SG) strategy, which relies upon the gradient decomposition (1.52). We refer
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to Section 3.3 for an extensive application of these techniques in the context of image processing.

Step 2 - Inexact computation of the proximal point

Condition (3.23) at Step 2 expresses an inexact computation of the proximal point. Let us

show that such an inexactness criterion is well-posed. Since h
(k)
γ (y) ≤ h(k)(y) for all y ∈ Rn,

condition (3.23) implies (
1 +

τ

2

)
h(k)γ (ỹ(k)) ≤ h(k)(y(k)) ≤ 0

where the second inequality follows from the fact that y(k) is the minimum point of h(k) and

h(k)(x(k)) = 0. Hence

h(k)γ (ỹ(k)) ≤ 0 (3.26)

with the equality holding if and only if ỹ(k) is stationary (Proposition 3.3). The upper bound

(3.26) on h
(k)
γ (ỹ(k)) implies that f1(ỹ

(k)) < +∞ and, since f1 is proper, this is equivalent to say

that

ỹ(k) ∈ dom(f1), ∀ k ∈ N.

We point out that condition (3.23) is equivalent to

0 ∈ ∂ǫkh
(k)(ỹ(k)), where ǫk = −τ

2
h(k)γ (ỹ(k)), (3.27)

which is a relaxed version of the inclusion characterizing the exact proximal point, i.e. 0 ∈
∂h(k)(y(k)). This equivalent formulation allows to compare (3.23) with other notions of inex-

actness recently introduced in the literature:

• (3.27) resembles the criterion proposed in [133, Definition 2.1] in the context of proximal

point algorithms, in which ǫk is replaced by ǫ2k/(2αk) and no variable metric is assumed,

i.e. Dk = In;

• (3.27) is weaker than the condition previously opted for VMILA in [32, Equation 31],

which is
1

αk
Dk(z(k) − ỹ(k)) ∈ ∂ǫkf1(ỹ

(k)), (3.28)

where z(k) = x(k) − αkD
−1
k ∇f0(x(k)) and {ǫk}k∈N ⊆ R≥0 is either a prefixed sequence

of nonnegative numbers or chosen as in (3.27). Indeed, the implication (3.28)=⇒(3.27)

follows from
{

1

αk
Dk(y(k) − z(k)) + w : w ∈ ∂ǫkf1(y

(k))

}
⊂ ∂ǫkh

(k)(ỹ(k)),

where the inclusion is strict in general (see item (vi) of Proposition 2.7).

The value ǫk measures the error that we make in replacing y(k) with ỹ(k) at iteration k. In the

next section, we will prove in Proposition 3.6 that the errors ǫk defined in (3.23) are summable
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and thus limk→∞ ǫk = limk→∞ h
(k)
γ (ỹ(k)) = 0. This means that the approximate computation

of the proximal point through inequality (3.23) becomes automatically more accurate as the

iterations proceed.

Step 4 - Armijo-like backtracking loop

The steplength (or relaxation) parameter λk is adaptively computed by means of a backtracking

loop at Step 4, which is the same presented in the previous section in Algorithm LS. The

Armijo-like condition (3.24) accepts only steplengths which produces a sufficient decrease of

the objective function and this is crucial for the convergence of the whole method. Setting

γ = 0 allows to recover the standard Armijo condition and, indeed, γ can be considered as an

on/off parameter to include or not the quadratic term ‖ỹ(k) − x(k)‖2Dk
on the right-hand-side

of (3.24); in general, taking γ = 1 may produce larger steplengths (see Figure 3.1).

Thanks to (3.26), we are guaranteed that

• condition (3.24) is well-defined: in fact, since (3.26) implies that ỹ(k) belongs to the

domain of f1, f1 is convex and x(k) ∈ dom(f1), then any point on the line x(k) + λ(ỹ(k) −
x(k)), λ ∈ [0, 1] belongs to dom(f1). Being dom(f1) = dom(f), this means that f(x(k) +

λd(k)) < +∞ for all λ ∈ [0, 1] and, as a consequence, the two sides of (3.24) only involve

finite quantities;

• the linesearch procedure at Step 4 terminates in a finite number of steps, i.e., for all k ∈ N

there exists ik <∞ such that (3.24) holds: this follows from item (i) of Proposition 3.4.

Step 5 - Overrelaxation

We observe that (3.24) does not necessarily imply that f(x(k) + λkd
(k)) ≤ f(ỹ(k)) (see Figure

3.1). This inequality is then forced to hold by Step 5, which guarantees that f(x(k+1)) ≤ f(ỹ(k))

and f(x(k+1)) ≤ f(x(k) + λkd
(k)), where λk is computed via the backtracking loop at Step 4.

This could also allow, in principle, to take a point corresponding to a smaller value of the

objective function than the one obtained by simply setting x(k+1) = x(k) + λkd
(k). Step 5 is

the main difference between VMILA [32] and Algorithm VMILAn and it is crucial for proving

the convergence of the sequence {x(k)}k∈N in Theorem 3.3.

As a final note, we remark that VMILAn reduces to a special version of the Scaled Gradient

Projection (SGP) method, presented in Algorithm 2, when f1 = ιΩ, ỹ(k) = y(k) and γ = 0 in

Step 4. In this case, the only difference with SGP is Step 5, which can be considered as an

extra step to be included in the originary version of SGP.

3.2.2 Convergence analysis

We start by collecting some properties of Algorithm VMILAn, which will be fundamental for

the subsequent analysis. Here and in the following we denote by {x(k)}k∈N, {ỹ(k)}k∈N and

{λk}k∈N the sequences generated by Algorithm VMILAn.
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1

f(y(k))

accepted

λ

γ = 0

1

f(y(k))

accepted

λ

γ = 1

f(x(k) + λd(k))

f(x(k)) + βλh
(k)
γ (y(k))

Figure 3.1: Linesearch example: f0(x) = 2
x+1 , f1(x) = ι[0,10](x), x(k) = 0, β = 1

2 , αk = 1,

Dk = 1. In general, the points satisfying the Armijo condition could not improve the function

value at y(k).

Lemma 3.1. For all k ∈ N, the following inequality holds

1

4αmaxµ
‖ỹ(k) − x(k)‖2 ≤ −(1 + τ)h(k)γ (ỹ(k)). (3.29)

Proof. We recall that h(k) is 1
αk

strongly convex with respect to the norm induced by Dk, i.e.

h(k)(x) ≥ h(k)(y) + wT (x− y) +
1

2αk
‖x− y‖2Dk

, ∀w ∈ ∂h(k)(y). (3.30)

Since y(k) is the solution of (3.22) and, thus, 0 ∈ ∂h(k)(y(k)), from the previous inequality with

x = ỹ(k) and y = y(k) we have 1
2αk

‖ỹ(k) − y(k)‖2Dk
≤ h(k)(ỹ(k)) − h(k)(y(k)) which, in view of

(3.23), gives
1

2αk
‖ỹ(k) − y(k)‖2Dk

≤ −τ
2
h(k)γ (ỹ(k)). (3.31)

Exploiting again (3.30) with x = x(k) and y = y(k), recalling that h(k)(x(k)) = 0, we obtain

h(k)(y(k)) ≤ − 1

2αk
‖x(k) − y(k)‖2Dk

.

Combining the last inequality with (3.23) and using h
(k)
γ (ỹ(k)) ≤ h(k)(ỹ(k)) we obtain

1

2αk
‖x(k) − y(k)‖2Dk

≤ −
(

1 +
τ

2

)
h(k)γ (ỹ(k)).

By combining the triangle inequality with the previous one we obtain

‖x(k) − ỹ(k)‖Dk
≤ ‖x(k) − y(k)‖Dk

+ ‖y(k) − ỹ(k)‖Dk

≤
√

−(2 + τ)αkh
(k)
γ (ỹ(k)) + ‖y(k) − ỹ(k)‖Dk
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which yields

‖x(k) − ỹ(k)‖2Dk
≤ −(2 + τ)αkh

(k)
γ (ỹ(k)) + ‖y(k) − ỹ(k)‖2Dk

+

+2‖y(k) − ỹ(k)‖Dk

√
−(2 + τ)αkh

(k)
γ (ỹ(k))

≤ −2(2 + τ)αkh
(k)
γ (ỹ(k)) + 2‖y(k) − ỹ(k)‖2Dk

,

where the last inequality follows from 2
√
uv ≤ u+ v. Combining it with (3.31) gives

1

4αk
‖x(k) − ỹ(k)‖2Dk

≤ −(1 +
τ

2
)h(k)γ (ỹ(k)) +

1

2αk
‖y(k) − ỹ(k)‖2Dk

≤ −(1 + τ)h(k)γ (ỹ(k)).

Finally, (3.29) follows from 1
4αk

‖x(k) − ỹ(k)‖2Dk
≥ 1

4αmaxµ
‖x(k) − ỹ(k)‖2.

The following proposition asserts that the relaxation parameters {λk}k∈N are bounded from

below.

Proposition 3.5. There exists c ∈ R>0 and λmin ∈ (0, 1] such that the following two inequali-

ties hold:

f(x(k) + λd(k)) ≤ f(x(k)) + λ (1 − cL(1 + τ)λ) h(k)γ (ỹ(k)), ∀ λ ∈ [0, 1] (3.32)

λk ≥ λmin, ∀ k ∈ N. (3.33)

Proof. In view of (3.29), setting c = 2αmaxµ, one obtains

‖d(k)‖2 ≤ −2c(1 + τ)h(k)γ (ỹ(k)). (3.34)

Since ∇f0 is Lipschitz continuous on dom(f1) with Lipschitz constant L, then from the descent

lemma (Lemma 2.5) we have

f0(x
(k) + λd(k)) ≤ f0(x

(k)) + λ∇f0(x(k))Td(k) +
L

2
λ2‖d(k)‖2, (3.35)

where λ ∈ [0, 1]. By combining inequalities (3.34) and (3.35) we further obtain

f0(x
(k) + λd(k)) ≤ f0(x

(k)) + λ∇f0(x(k))T d(k) − c(1 + τ)Lλ2h(k)γ (ỹ(k)).

Summing f1(x
(k) + λd(k)) on both sides of the previous relation and applying the Jensen in-

equality f1(x
(k) + λd(k)) ≤ (1 − λ)f1(x(k)) + λf1(ỹ

(k)) to the r.h.s. yields

f(x(k) + λd(k)) ≤ f(x(k)) − λf1(x
(k)) + λf1(ỹ

(k)) + λ∇f0(x(k))T d(k)

−cLλ2(1 + τ)h(k)γ (ỹ(k))

≤ f(x(k)) − λf1(x
(k)) + λf1(ỹ

(k)) + λ∇f0(x(k))T d(k)

−cLλ2(1 + τ)h(k)γ (ỹ(k)) +
λγ

2
‖d(k)‖2Dk

= f(x(k)) + λh(k)γ (ỹ(k)) − cLλ2(1 + τ)h(k)γ (ỹ(k))

= f(x(k)) + λ (1 − cL(1 + τ)λ)h(k)γ (ỹ(k))
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and this proves (3.32).

The previous inequality ensures that the Armijo condition

f(x(k) + λd(k)) ≤ f(x(k)) + λβh(k)γ (ỹ(k)) (3.36)

is satisfied, for all k ∈ N, when 1−cL(1+τ)λ ≥ β, that is for all λ such that λ ≤ (1−β)/(cL(1+

τ)). If λk is the steplength computed by Step 5 of Algorithm VMILAn and the backtracking

loop is performed at least once, then λ = λk/δ does not satisfy inequality (3.36), which means

λk > (1 − β)δ/(cL(1 + τ)). Thus, the steplength sequence {λk}k∈N satisfies inequality (3.33)

with λmin = (1 − β)δ/(cL(1 + τ)).

Proposition 3.6. The sequence {h(k)γ (ỹ(k))}k∈N is summable, i.e.

0 ≤ −
∞∑

k=0

h(k)γ (ỹ(k)) < +∞. (3.37)

Proof. Denote by ℓ ∈ R a lower bound for f , i.e. ℓ ≤ f(x) ∀x ∈ Rn. From Step 5 of Algorithm

VMILAn we have f(x(k+1)) ≤ f(x(k) + λkd
(k)) and this fact, combined with (3.24) leads to

−βλkh(k)γ (ỹ(k)) ≤ f(x(k)) − f(x(k+1)).

Summing the previous inequality for k = 0, ..., j gives

−β
j∑

k=0

λkh
(k)
γ (ỹ(k)) ≤

j∑

k=0

(f(x(k)) − f(x(k+1))) = f(x(0)) − f(x(j+1)) ≤ f(x(0)) − ℓ

from which we have

−
∞∑

k=0

λkh
(k)
γ (ỹ(k)) <∞.

The thesis follows by applying (3.33) to the previous series.

Remark 3.5. An immediate consequence of Proposition 3.6 is that limk→+∞ h
(k)
γ (y(k)) = 0

which, combined with (3.23), implies

lim
k→+∞

h(k)(ỹ(k)) − h(k)(y(k)) = 0.

Furthermore, thanks to Step 5, we have

f(x(k+1)) ≤ f(x(k) + λkd
(k)), ∀ k ∈ N.

The two previous relations are exactly conditions (A4) and (A5) of Theorem 3.1. Thus, Al-

gorithm VMILAn is a special instance of the general framework devised in Section 3.1 and, if

we assumed that dom(f1) is closed, we could conclude that each limit point of this sequence is

stationary by means of Theorem 3.1. However, we prefer to drop the assumption of closedness

of the domain and prove the global convergence of the algorithm in a more general setting.
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Lemma 3.2. The following conditions hold.

(H1) There exists a ∈ R>0 such that, for all k ∈ N

f(x(k+1)) + a‖x(k+1) − x(k)‖2 ≤ f(x(k)). (H1)

(H2) There exists {ηk}k∈N ⊆ R≥0 such that, for all k ∈ N

f(x(k+1)) ≤ f(ỹ(k)) ≤ f(x(k)) + ηk, lim
k→+∞

ηk = 0. (H2)

(H3) There exist b ∈ R>0, ǭk, ǫ̂k ∈ R≥0 with 0 ≤ ǭk + ǫ̂k ≤ − τ
2h

(k)
γ (ỹ(k)), ζk ∈ R≥0, v(k) ∈

{∇f0(ỹ(k))} + ∂ǭkf1(ỹ
(k)) such that, for all k ∈ N

‖v(k)‖ ≤ b‖x(k+1) − x(k)‖ + ζk+1, lim
k→+∞

ζk = 0. (H3)

Proof. (H1) Combining (3.29) with the backtracking rule (3.24) immediately yields

f(x(k) + λkd
(k)) ≤ f(x(k)) − βλk

4αmaxµ(1 + τ)
‖ỹ(k) − x(k)‖2. (3.38)

Because of (3.25), it is either x(k+1) = ỹ(k) or x(k+1) = x(k) + λkd
(k). In both cases, since

λk ∈ [λmin, 1], we have

‖x(k+1) − x(k)‖ ≤ ‖ỹ(k) − x(k)‖ (3.39)

which leads to

f(x(k) + λkd
(k)) ≤ f(x(k)) − βλmin

4αmaxµ(1 + τ)
‖x(k+1) − x(k)‖2.

Then, (H1) follows by taking a = βλmin

4αmaxµ(1+τ) and using Step 5 of Algorithm VMILAn which

implies f(x(k+1)) ≤ f(x(k) + λkd
(k)).

(H2) In order to show that (H2) holds, consider the right inequality in (3.32) with λ = 1. If

1 − cL(1 + τ) ≥ 0, then the right inequality of condition (H2) follows with ηk ≡ 0, while if

1− cL(1 + τ) < 0, then the inequality is satisfied by setting ηk = (1 − cL(1 + τ)) h
(k)
γ (ỹ(k)) and

observing that (3.37) guarantees that limk→∞ ηk = 0. The left inequality of (H2) follows from

the definition of x(k+1) at Step 5 of Algorithm VMILAn.

(H3) By rewriting function h(k) as

h(k)(y) = f1(y) +
1

2αk
‖y − z(k)‖2Dk

− αk

2
‖∇f0(x(k))‖2D−1

k

− f1(x
(k)),
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where z(k) = x(k) − αkD
−1
k ∇f0(x(k)), we can apply item (vi) of Proposition 2.7 and equation

(2.11) to compute the ǫk-subdifferential of h(k):

∂ǫkh
(k)(y) =

⋃

0≤ǭk+ǫ̂k≤ǫk

∂ǭkf1(y) + ∂ǫ̂k

(
1

2αk
‖y − z(k)‖2Dk

)

=
⋃

0≤ǭk+ǫ̂k≤ǫk

∂ǭkf1(y) +

{
1

αk
Dk(y − z(k) + e) :

‖e‖2Dk

2αk
≤ ǫ̂k

}
. (3.40)

The point ỹ(k) satisfies condition (3.23) if and only if 0 ∈ ∂ǫkh
(k)(ỹ(k)), where ǫk = − τ

2h
(k)
γ (ỹ(k)).

Thanks to (3.40), this ensures that there exist ǭk, ǫ̂k as above, e(k) ∈ Rn satisfying ‖e(k)‖Dk
≤√

2αk ǫ̂k and w(k) ∈ ∂ǭkf1(ỹ
(k)) such that

w(k) =
1

αk
Dk(z(k) − ỹ(k) + e(k)). (3.41)

Set v(k) = ∇f0(ỹ(k)) + w(k). By using the Lipschitz continuity of ∇f0, the fact that αk ∈
[αmin, αmax] and Dk ∈ Mµ, we have:

‖v(k)‖ = ‖∇f0(ỹ(k)) +
1

αk
Dk(x(k) − αkD

−1
k ∇f0(x(k)) − ỹ(k) + e(k))‖ =

= ‖∇f0(ỹ(k)) −∇f0(x(k)) +
1

αk
Dk(x(k) − ỹ(k) + e(k))‖

≤ L‖x(k) − ỹ(k)‖ +
µ

αk
(‖x(k) − ỹ(k)‖ + ‖e(k)‖)

≤
(
L+

µ

αmin

)
‖x(k) − ỹ(k)‖ +

µ

αmin

√
µ‖e(k)‖Dk

≤ 1

λmin

(
L+

µ

αmin

)
‖x(k+1) − x(k)‖ +

(√
2µ3αmax

αmin

)
√
ǫ̂k.

The thesis follows by choosing b = 1
λmin

(
L+ µ

αmin

)
, ζk =

(√
2µ3αmax

αmin

)√
ǫ̂k for all k ∈ N and

by observing that, since

0 ≤ ζk ≤
(√

2µ3αmax

αmin

)
√
ǫk =

(√
2µ3αmax

αmin

)√
−τ

2
h
(k)
γ (ỹ(k))

and, because of (3.37), lim
k→∞

h
(k)
γ (ỹ(k)) = 0, then also lim

k→∞
ζk = 0.

Properties (H1)–(H3) are similar to conditions (C1)-(C2) proposed in [9] and discussed in

Section 2.3.2. More precisely:

• (H1) coincides with (C1);
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• (H2) was not contemplated in [9] and takes into account the presence of the inexact

proximal point ỹ(k) and the subsequent relaxation step;

• (H3) differs from the analogous (C2), since the vector v(k) here is not an exact subgradient

of f and the condition also features the converging errors {ζk}k∈N, which did not appear

in [9]; a similar condition to (H3) but with exact subgradients is considered in [66].

Based on these properties, we state the following result, which claims that each limit point

of the VMILAn sequence is stationary, and that the objective function f is continuous with

respect to the sequence {x(k)}k∈N and its limit points (if f1 is continuous on its domain, the

conclusion is straightforward).

Theorem 3.2. Suppose that the sequence {x(k)}k∈N admits a limit point x̄. Then,

lim
k→∞

f(x(k)) = f(x̄). (3.42)

Moreover, x̄ is stationary for problem (3.2).

Proof. Since f is lower semicontinuous and bounded from below, and {f(x(k))}k∈N, from (H1),

is monotone nonincreasing, we have that limk→∞ f(x(k)) exists and f(x̄) ≤ limk→∞ f(x(k)).

Let us show that also the opposite inequality holds. By summing inequality (H1) from k = 0

to N we obtain

a
N∑

k=0

‖x(k+1) − x(k)‖2 ≤
N∑

k=0

f(x(k)) − f(x(k+1)) = f(x(0)) − f(x(N+1)).

Taking limits for N → ∞ on both sides gives

a

∞∑

k=0

‖x(k+1) − x(k)‖2 ≤ f(x(0)) − f(x̄) <∞ ⇒ lim
k→∞

‖x(k+1) − x(k)‖ = 0. (3.43)

Let v(k) = ∇f0(ỹ(k)) + w(k), with w(k) ∈ ∂ǭkf1(ỹ
(k)), ǭk ≤ − τ

2h
(k)
γ (ỹ(k)) satisfying inequality

(H3). Then, by combining (H3) and (3.43) we obtain

lim
k→∞

∇f0(ỹ(k)) + w(k) = lim
k→∞

v(k) = 0. (3.44)

Let {x(kj)}j∈N be a subsequence of {x(k)}k∈N such that limj→∞ x(kj) = x̄. Using Step 5 of

Algorithm VMILAn and recalling that λk ∈ [λmin, 1], we have

λ2min‖ỹ(k) − x(k)‖2 ≤ λ2k‖ỹ(k) − x(k)‖2 ≤ ‖x(k+1) − x(k)‖2. (3.45)

Inequality (3.45), combined with (3.43), gives limk→∞ ‖ỹ(k) − x(k)‖ = 0. Then, we also have

limj→∞ ỹ(kj) = x̄. Thus, by (3.44) and by continuity of ∇f0, we can write

lim
j→∞

w(kj) = −∇f0(x̄). (3.46)
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Since w(kj ) ∈ ∂ǭkf1(ỹ
(kj)), we have

f1(x̄) ≥ f1(ỹ
(kj)) + (x̄− ỹ(kj))Tw(kj) − ǭkj

≥ f(x(kj+1)) − f0(ỹ
(kj)) + (x̄− ỹ(kj))Tw(kj) − ǭkj , (3.47)

where the second inequality follows from f(x(kj+1)) ≤ f(ỹ(kj)) = f0(ỹ
(kj)) + f1(ỹ

(kj)). Taking

the limit of the right-hand-side for j → ∞, and recalling (3.37) which implies limj→∞ ǭkj = 0,

we obtain

f1(x̄) ≥ lim
j→∞

f(x(kj+1)) − f0(x̄) = lim
k→∞

f(x(k)) − f0(x̄)

which reads also as f(x̄) ≥ limk→∞ f(x(k)) and completes the first part of the proof.

As for the second part, since limj→∞ ỹ(kj) = x̄, limj→∞ ǭkj = 0 and (3.46) holds, we can apply

Proposition 2.6 and thus obtain

−∇f0(x̄) ∈ ∂f1(x̄) (3.48)

which is equivalent to 0 ∈ ∂f(x̄).

We have now set the basis for our main convergence result, which will be stated in the fol-

lowing. The proof relies on the assumption that the objective function f satisfies the Kurdyka-

 Lojasiewicz (KL) property (see Definition 2.13), and is similar but not identical to Lemma 2.6

in [9] (see also [66]), since here we have to take into account of the overrelaxation at Step 5.

Theorem 3.3. Suppose that f is a KL function and assume that the sequence {x(k)}k∈N gen-

erated by Algorithm VMILAn satisfies the following condition

∃ v(k) ∈ ∂f(ỹ(k)) : ‖v(k)‖ ≤ b‖x(k+1) − x(k)‖ + ζk+1,

∞∑

k=1

ζk <∞, (H4)

for some b > 0, ζk ∈ R≥0, and admits a limit point x̄. Then,

+∞∑

k=0

‖x(k+1) − x(k)‖ < +∞ (3.49)

and, therefore, the sequence {x(k)}k∈N converges to x̄, which is stationary for problem (3.2).

Proof. The stationarity of the limit points of {x(k)}k∈N is ensured by Proposition 3.2. It

remains to show that the sequence has finite length and, thus, converges. Let υ, φ and U

be as in Definition 2.13. These objects exist since the KL inequality holds, in particular, at

x̄. From Proposition 3.2 we have limk→∞ f(x(k)) = f(x̄) and, from (H2), it also follows that

limk→∞ f(ỹ(k)) = f(x̄). Consequently, the following inequality

f(x̄) ≤ f(x(k)) ≤ f(ỹ(k−1)) < f(x̄) + υ (3.50)

holds for all sufficiently large k. Furthermore, let ρ > 0 be such that B(x̄, ρ) ⊂ U . Then, using

the continuity of φ, the fact that x̄ is a limit point of {x(k)}k∈N and
∑

k ζk <∞, one can choose
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k0 ∈ N sufficiently large such that (3.50) holds for all k > k0 and the following inequalities are

satisfied:

‖x̄− x(k0)‖ ≤ ρ

4
; 3

√
f(x(k0)) − f(x̄)

aλ2min

≤ ρ

4

b

a
φ(f(x(k0)) − f(x̄)) ≤ ρ

4
;

1

b

∞∑

i=k0+1

ζi ≤
ρ

4
,

a, b being the positive constants in inequalities (H1) and (H4). With a little abuse of nota-

tion, we will now use {x(k)}k∈N to denote the sequence {x(k+k0)}k∈N and {ζk}k∈N instead of

{ζk+k0}k∈N, so that (3.50) and the following inequality hold

‖x̄− x(0)‖ + 3

√
f(x(0)) − f(x̄)

aλ2min

+
b

a
φ(f(x(0)) − f(x̄)) +

1

b

∞∑

i=1

ζi ≤ ρ, (3.51)

for all k ≥ 1. Before we proceed with the core of the proof, let us rewrite (H1) as

‖x(k+1) − x(k)‖ ≤
√
f(x(k)) − f(x(k+1))

a
, (3.52)

which, by using Step 5 of Algorithm VMILAn and (3.33), writes also as

‖ỹ(k) − x(k)‖ ≤
√
f(x(k)) − f(x(k+1))

aλ2min

. (3.53)

Fix k ≥ 1. We show that if x(k), ỹ(k−1) ∈ B(x̄, ρ), then

2‖x(k+1) − x(k)‖ ≤ ‖x(k) − x(k−1)‖ + φk +
1

b
ζk, (3.54)

where φk = b
a [φ(f(x(k))−f(x̄))−φ(f(x(k+1))−f(x̄))]. First we observe that, because of (3.50),

the quantity φ(f(x(k)) − f(x̄)) makes sense for all k ∈ N, and thus φk is well defined.

If x(k+1) = x(k), inequality (3.54) holds trivially. Then we assume x(k+1) 6= x(k) which,

thanks to (3.52), implies f(x(k)) > f(x(k+1)) ≥ f(x̄). Hence, from (H2) we obtain f(x̄) <

f(x(k)) ≤ f(ỹ(k−1)) which together with (3.50), gives

x(k), ỹ(k−1) ∈ B(x̄, ρ) ∩ [f(x̄) < f < f(x̄) + υ].

Therefore, we can use the KL inequality in both x(k) and ỹ(k−1).

Combining the KL inequality at ỹ(k−1) with (H4) shows that v(k−1) 6= 0 and b‖x(k) −
x(k−1)‖+ ζk 6= 0. Since v(k−1) ∈ ∂f(ỹ(k−1)), using again the KL inequality with (H4) we obtain

φ′(f(ỹ(k−1)) − f(x̄)) ≥ 1

‖v(k−1)‖ ≥ 1

b‖x(k) − x(k−1)‖ + ζk
. (3.55)
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Since φ is concave, its derivative is non increasing, thus f(ỹ(k−1)) − f(x̄) ≥ f(x(k)) − f(x̄)

implies

φ′(f(x(k)) − f(x̄)) ≥ φ′(f(ỹ(k−1)) − f(x̄)).

Applying this fact to inequality (3.55) leads to

φ′(f(x(k)) − f(x̄)) ≥ 1

b‖x(k) − x(k−1)‖ + ζk
. (3.56)

Using the concavity of φ, (H1) and (3.56), we obtain

φ(f(x(k)) − f(x̄)) − φ(f(x(k+1)) − f(x̄)) ≥ φ′(f(x(k)) − f(x̄))(f(x(k)) − f(x(k+1)))

≥ φ′(f(x(k)) − f(x̄))a‖x(k+1) − x(k)‖2

≥ a‖x(k+1) − x(k)‖2
b‖x(k) − x(k−1)‖ + ζk

.

Rearranging terms in the last inequality yields

‖x(k+1) − x(k)‖2 ≤ φk

(
‖x(k) − x(k−1)‖ +

1

b
ζk

)
,

which, by applying the inequality 2
√
uv ≤ u+ v, gives relation (3.54).

We are now going to establish that for k = 1, 2, . . .

x(k), ỹ(k−1) ∈ B(x̄, ρ), (3.57)
k∑

i=1

‖x(i+1) − x(i)‖ + ‖x(k+1) − x(k)‖ ≤ ‖x(1) − x(0)‖ + χk +
1

b

k∑

i=1

ζi, (3.58)

where χk = b
a [φ(f(x(1)) − f(x̄)) − φ(f(x(k+1)) − f(x̄))].

Let us prove (3.57) and (3.58) by induction. Using (3.52) with k = 0 we have

‖x(1) − x(0)‖ ≤
√
f(x(0)) − f(x(1))

a
≤
√
f(x(0)) − f(x̄)

a
. (3.59)

Combining the above equation with (3.51) and using the triangle inequality, we obtain

‖x̄− x(1)‖ ≤ ‖x̄− x(0)‖ + ‖x(0) − x(1)‖

≤ ‖x̄− x(0)‖ +

√
f(x(0)) − f(x̄)

a
< ρ,

namely x(1) ∈ B(x̄, ρ). Using (3.53) with k = 0 and applying the same arguments as before,

we also have ỹ(0) ∈ B(x̄, ρ). Finally, direct use of (3.54) shows that (3.58) holds with k = 1.
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By induction, suppose that (3.57) and (3.58) hold for some k = j ≥ 1. First we prove that

x(j+1) ∈ B(x̄, ρ). We have

‖x(j+1) − x̄‖ ≤ ‖x(0) − x̄‖ + ‖x(0) − x(1)‖ +

j∑

i=1

‖x(i+1) − x(i)‖

≤ ‖x(0) − x̄‖ + 2‖x(0) − x(1)‖ + χj +
1

b

j∑

i=1

ζi

≤ ‖x(0) − x̄‖ + 2

√
f(x(0)) − f(x̄)

a
+
b

a
φ(f(x(0)) − f(x̄)) +

1

b

j∑

i=1

ζi

< ρ,

where the first inequality follows from the triangle inequality, the second one from (3.58)

with k = j, the third one from (3.59) and the monotonicity of φ and the last one from (3.51).

Similarly, we can prove that y(j) ∈ B(x̄, ρ). Noticing that f(x̄) ≤ f(x(k+1)) ≤ f(x(k)) ≤ f(x(0)),

(3.53) yields

‖ỹ(j) − x(j)‖ ≤
√
f(x(0)) − f(x̄)

aλ2min

.

By using the above relation, the triangle inequality, (3.58) with k = j, the monotonicity of φ

and (3.51), we have

‖x̄− ỹ(j)‖ ≤ ‖x̄− x(0)‖ + ‖x(0) − x(1)‖ +

j∑

i=1

‖x(i+1) − x(i)‖ + ‖x(j+1) − x(j)‖ + ‖x(j) − ỹ(j)‖

≤ ‖x̄− x(0)‖ + 2‖x(0) − x(1)‖ + χj +
1

b

j∑

i=1

ζi + ‖x(j) − ỹ(j)‖

≤ ‖x̄− x(0)‖ + 3

√
f(x(0)) − f(x̄)

aλ2min

+
b

a
φ(f(x(0)) − f(x̄)) +

1

b

j∑

i=1

ζi

≤ ρ,

or equivalently ỹ(j) ∈ B(x̄, ρ). Now we observe that (3.54) with k = j + 1 writes as

2‖x(j+2) − x(j+1)‖ ≤ ‖x(j+1) − x(j)‖ + φj+1 +
1

b
ζj+1.

Adding the above inequality with (3.58) (with k = j) yields (3.58) with k = j + 1, which

completes the induction proof.

By directly using (3.58), we get

k∑

i=1

‖x(i+1) − x(i)‖ ≤ ‖x(1) − x(0)‖ +
b

a
φ(f(x(1)) − f(x̄)) +

1

b

k∑

i=1

ζi
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and (on account of (H4)) therefore

+∞∑

i=1

‖x(i+1) − x(i)‖ < +∞,

which implies that the sequence {x(k)}k∈N converges to some x∗. Considering that x̄ is a limit

point of the sequence, it must be x∗ = x̄.

When ỹ(k) = y(k) = proxDk

αkf1
(z(k)), we have 0 ∈ ∂h(k)(y(k)) and, by remaking the same

passages in Lemma 3.2 with ǫk = 0, it follows that (H4) is automatically guaranteed with

ζk ≡ 0. When this choice is made, Algorithm VMILAn becomes an exact proximal–gradient

method, whose convergence properties are stated in the following corollary, which is a direct

consequence of Lemma 3.2 and Theorem 3.3.

Corollary 3.1. Suppose that f is a KL function. Let {x(k)}k∈N and {λk}k∈N be the sequences

generated by Algorithm VMILAn with ỹ(k) = y(k) for all k ≥ 0. If there exists a limit point x̄

of {x(k)}k∈N, then

(i) lim
k→∞

f(x(k)) = f(x̄);

(ii) x̄ is a stationary point for problem 3.2;

(iii) the sequence {x(k)}k∈N converges to x̄ and has finite length.

3.2.3 Convergence rates

We now investigate the convergence rate of Algorithm VMILAn. In particular, we follow the

same outline given in [66], in which three convergence results are proved for a similar abstract

descent method when the desingularizing function φ in Definition 2.13 is of the form φ(t) = C
θ t

θ,

with C > 0 and θ ∈ (0, 1]. In Section 2.3.1, we have seen that this assumption on φ holds for

continuous sub-analytic functions on a closed domain, real analytic functions, semi-algebraic

functions and the sum of a real analytic function and a semi-algebraic function. Unlike in [66],

we do not restrict to the case where ζk ≡ 0, but we only require that the convergence of the

sequence {ζk}k∈N is controlled by the quantity h
(k)
γ (ỹ(k)).

The following theorem expresses the distance of the sequence {x(k)}k∈N to the limit in terms

of the function gap and is an adaption of [66, Theorem 3].

Theorem 3.4. Suppose that f is a KL function and that the sequence {x(k)}k∈N satisfies (H4)

with

ζk = O(h(k)γ (ỹ(k))). (3.60)

Assume in addition that {x(k)} admits a limit point x̄. Let φ be as in Definition 2.13 for the

point x̄ and set φ̄(t) = max{φ(t),
√
t}. Then, there exists M ∈ R>0 such that

‖x(k) − x̄‖ ≤
(

1√
a

+
M

b
+
b

a

)(
φ̄(f(x(k−1)) − f(x̄))

)
. (3.61)
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Proof. By combining (3.24), (3.23) and (3.33), one can show that

−τ
2
h(k−1)
γ (ỹ(k−1)) ≤ τ

2

(
f(x(k−1)) − f(x(k))

βλk−1

)

≤ τ

2βλmin

(
f(x(k−1)) − f(x(k))

)
.

From (3.60) and the above inequality, there exists M ∈ R>0 such that

ζk ≤M
(
f(x(k−1)) − f(x(k))

)
, (3.62)

for all k ∈ N.

Let s(k) := f(x(k)) − f(x̄) ≥ 0. If there exists k ∈ N such that s(k) = 0, then the algorithm

terminates in a finite number of steps. Then we assume that s(k) > 0 for all k ∈ N. As

previously shown in the proof of Theorem 3.3, there exists k0 ∈ N such that (3.54) holds for

all k ≥ k0. Summing (3.54) for k = k0, . . . , N , we get

N∑

k=k0

‖x(k+1) − x(k)‖ ≤ ‖x(k0) − x(k0−1)‖ +
b

a
φ(s(k0)) +

1

b

N∑

k=k0

ζk. (3.63)

By using (3.62), summing it for k = k0, . . . , N and observing that f(x(N)) ≥ f(x̄), (3.63) yields

the following inequality

N∑

k=k0

‖x(k+1) − x(k)‖ ≤ ‖x(k0) − x(k0−1)‖ +
b

a
φ(s(k0)) +

M

b
s(k0−1). (3.64)

Applying the triangle inequality and passing to the limit, we obtain

‖x(k0) − x̄‖ ≤
∞∑

k=k0

‖x(k+1) − x(k)‖ ≤ ‖x(k0) − x(k0−1)‖ +
b

a
φ(s(k0)) +

M

b
s(k0−1)

≤ 1√
a

√
f(x(k0−1)) − f(x(k0)) +

b

a
φ(s(k0)) +

M

b
s(k0−1),

where the last inequality follows from (3.52). Finally, recalling that f(x(k0)) ≥ f(x̄), φ is an

increasing function and {s(k)}k∈N is nonincreasing, we can write

‖x(k0) − x̄‖ ≤ 1√
a

√
s(k0−1) +

b

a
φ(s(k0−1)) +

M

b
s(k0−1). (3.65)

Since s(k0−1) ≤
√
s(k0−1) for a sufficiently large k0 ∈ N, we conclude that ‖x(k0) − x̄‖ ≤(

1√
a

+ M
b + b

a

)
φ̄(s(k0−1)).

The next result directly follows from the previous theorem and provides explicit rates of

convergence, for both the function values and the iterates.
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Theorem 3.5. Suppose that f satisfies the KL property in x̄ (a limit point of {x(k)}k∈N) with

φ(t) = C
θ t

θ, where C > 0 and θ ∈ (0, 1], and that conditions (H4) and (3.60) hold.

(i) If θ = 1, then {x(k)}k∈N converges in a finite number of steps.

(ii) If θ ∈ [12 , 1), then there exist d > 0 and k̄ ∈ N such that

1. f(x(k)) − f(x̄) = O
(
e−d(k−k̄)

)

2. ‖x(k) − x̄‖ = O
(
e−

d
2(k−k̄+1)

)
.

(iii) If θ ∈ (0, 12), then there exists k̄ ∈ N such that

1. f(x(k)) − f(x̄) = O
((
k − k̄

)− 1
1−2θ

)

2. ‖x(k) − x̄‖ = O
((
k − k̄ + 1

)− θ
1−2θ

)
.

Proof. First we can assume that s(k) = f(x(k)) − f(x̄) > 0 for all k ∈ N, since otherwise the

algorithm would terminate in a finite number of steps.

Let U be as in Definition 2.13 for the point x̄. From Theorem 1 we know that {x(k)}k∈N
converges to x̄ and, because of (3.45), also {ỹ(k)}k∈N does. Therefore there exists k̄ ∈ N such

that

x(k+1), ỹ(k) ∈ U ∩ [f(x̄) < f < f(x̄) + v]

for all k ≥ k̄, thus allowing to apply the KL inequality in ỹ(k).

Let us take the squares of both sides of condition (H4), divide and multiply them by b2 and a

respectively, thus obtaining

a

b2
‖v(k)‖2 ≤ a‖x(k+1) − x(k)‖2 +

a

b2
ζ2k+1 +

2a

b
ζk+1‖x(k+1) − x(k)‖.

By applying condition (H1) to the previous inequality, we get the following relation

a

b2
‖v(k)‖2 ≤ (s(k) − s(k+1)) +

a

b2
ζ2k+1 +

2
√
a

b
ζk+1

√
s(k) − s(k+1).

Since limk→∞ ζk = 0, it is possible to choose k̄ ∈ N such that ζ2k+1 ≤ ζk+1 ≤
√
ζk+1 holds for

all k ≥ k̄. Recalling that thanks to (3.60) there exists M > 0 such that ζk+1 ≤M(s(k)−s(k+1))

(see (3.62)), we obtain
a

b2
‖v(k)‖2 ≤ m(s(k) − s(k+1)),

where m = 1 + a
b2
M + 2

√
aM
b .

Set t(k) = f(ỹ(k))− f(x̄). Then, by multiplying each side of the inequality by φ′(t(k))2, we have

mφ′(s(k+1))2(s(k) − s(k+1)) ≥ mφ′(t(k))2(s(k) − s(k+1)) ≥ a

b2
φ′(t(k))2‖v(k)‖2 ≥ a

b2
,
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where the extreme left inequality has been derived using condition (H2), whereas the extreme

right one has been obtained by applying the KL inequality in ỹ(k). Therefore, we have come

to the following relation

φ′(s(k+1))2(s(k) − s(k+1)) ≥ a

mb2
. (3.66)

Equation (3.66) is identical to [66, Theorem 3.4, Equation 6], from which (i), the rates on the

function values in part 1 of (ii) and in part 1 of (iii) follow immediately, whereas the rates on

the iterates contained in part 2 of (ii) and part 2 of (iii) are obtained by combining the rates

on the function values and Theorem 3.4.

Since choosing ỹ(k) = y(k) at Step 2 implies that (H4) is satisfied with ζk ≡ 0, the conver-

gence rates of Theorem 3.4 and 3.5 hold for the exact version of Algorithm VMILAn.

3.2.4 Practical computation of the inexact proximal point

We will now explain how to address the computation of the inexact proximal point in VMILAn.

At a first glance, Step 2 of Algorithm VMILAn might seem impracticable, since it still requires

the knowledge of the exact proximal point y(k). However, computing a point ỹ(k) satisfying

(3.23) is possible, even when y(k) is not known, whenever the function f1 has the form

f1(x) = g(Ax) (3.67)

where g : Rm → R is a proper, convex, lower semicontinuous function with proxg easily

computable in closed form, and A ∈ Rm×n. In this case, the Fenchel-Moreau-Rockafellar

duality formula [143, Corollary 2.8.5] states that, if g is continuous at Ax0 for some x0 ∈ Rn,

then

min
y∈Rn

h(k)(y) = min
y∈Rn

max
v∈Rm

F (k)(y, v) = max
v∈Rm

Ψ(k)(v) (3.68)

where F (k) and Ψ(k) are the primal–dual and dual functions associated to (3.22), respectively.

The primal-dual function can be obtained from the primal one by applying the equality g(Ax) =

maxv∈Rm vTAx − g∗(v), which holds because of the biconjugation theorem (Theorem 2.1), to

the primal function h(k), yielding

F (k)(y, v) =
1

2αk
‖y − z(k)‖2Dk

+ yTAT v − g∗(v) − f1(x
(k)) − αk

2
‖∇f0(x(k))‖2D−1

k

(3.69)

with z(k) = x(k) − αkD
−1
k ∇f0(x(k)). The dual function is then obtained by computing the

minimum point of the primal–dual function with respect to y and replacing it into (3.69).

Since F (k)(·, v) is differentiable and convex for all v ∈ Rm, the requested y is the solution of

∇yF
(k)(y, v) = 0, which gives y(v) = z(k) − αkD

−1
k AT v. Then the following passages lead to
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the explicit expression of the dual function:

Ψ(k)(v) =F (k)(y(v), v)

=
1

2αk
‖z(k) − αkD

−1
k AT v − z(k)‖2Dk

+ (z(k) − αkD
−1
k AT v)TAT v − g∗(v) − f1(x

(k)) − αk

2
‖∇f0(x(k))‖2

D−1
k

=
1

2αk
‖αkD

−1
k AT v‖2Dk

+ vTAz(k)

− 1

αk
‖αkD

−1
k AT v‖2Dk

− g∗(v) − f1(x
(k)) − αk

2
‖∇f0(x(k))‖2D−1

k

= − 1

2αk
‖αkD

−1
k AT v − z(k)‖2Dk

− g∗(v) − f1(x
(k)) − αk

2
‖∇f0(x(k))‖2

D−1
k

+
1

2αk
‖z(k)‖2Dk

.

(3.70)

By definition of the primal–dual and dual functions, the following inequalities hold

h(k)(y) ≥ F (k)(y, v) ≥ Ψ(k)(v) ∀y ∈ Rn, v ∈ Rm. (3.71)

We now provide a sufficient condition to determine a point ỹ(k) satisfying (3.23), which is

expressed in terms of the primal and dual functions (3.68).

Lemma 3.3. Let h(k), Ψ(k) be the primal and dual functions defined in (3.68). If there exist

ỹ(k) ∈ Rn, v(k) ∈ dom(Ψ(k)) such that

h(k)(ỹ(k)) ≤ ηΨ(k)(v(k)), (3.72)

with η = 2/(2 + τ), then the point ỹ(k) satisfies (3.23).

Proof. If inequality (3.72) holds we have

h(k)(ỹ(k)) − h(k)(y(k)) ≤ h(k)(ỹ(k)) − Ψ(k)(v(k)) ≤ −τ
2
h(k)(ỹ(k)) ≤ −τ

2
h(k)γ (ỹ(k)), (3.73)

where the leftmost inequality follows from (3.71), while the last inequality is a consequence of

0 ≤ γ ≤ 1.

Unlike (3.23), in condition (3.72) the dependence on the exact proximal point y(k) has

disappeared. This allows to compute the inexact point ỹ(k) by applying an iterative method to

the dual problem (3.68), as stated in the following result.

Proposition 3.7. Suppose that g is continuous on its domain and η ∈ (0, 1]. For all k ∈ N, let

Ψ(k) be the dual function defined in (3.68) and {v(k,ℓ)}ℓ∈N ⊆ dom(Ψ(k)) a sequence such that

lim
ℓ→+∞

v(k,ℓ) = argmax
v∈Rm

Ψ(k)(v) (3.74)

lim
ℓ→+∞

Ψ(k)(v(k,ℓ)) = max
v∈Rm

Ψ(k)(v). (3.75)
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Set ỹ(k,ℓ) = z(k) − αkD
−1
k AT v(k,ℓ). Then there exists ℓ̃ ∈ N such that

h(k)(ỹ(k,ℓ)) ≤ ηΨ(k)(v(k,ℓ)), ∀ ℓ ≥ ℓ̃. (3.76)

Proof. Set aℓ = Ψ(k)(v(k,ℓ)). Since inequalities (3.71) are satisfied, in particular, for y = y(k), it

follows that aℓ ≤ h(k)(y(k)) and, by hypothesis, it also holds limℓ aℓ = maxv Ψ(k)(v) = h(k)(y(k)).

Combining these two facts and noting that η ∈ (0, 1], we have

h(k)(y(k)) < ηaℓ (3.77)

for all sufficiently large ℓ. We observe that

y(k) = argmin
y

h(k)(y) ⇐⇒ 1

αk
Dk(z(k) − y(k)) ∈ AT∂g(Ay(k))

⇐⇒ y(k) = z(k) − αkD
−1
k AT v

where

v ∈ ∂g(Ay(k)) ⇐⇒ Ay(k) ∈ ∂g∗(v) ⇐⇒ 0 ∈ ∂Ψ(k)(v).

Hence v = v∗ = argmax v∈RmΨ(k)(v) and y(k) = z(k)−αkD
−1
k AT v∗. Condition (3.74) guarantees

that

lim
ℓ→+∞

ỹ(k,ℓ) = y(k).

Since g is continuous, so does h(k), and therefore

lim
ℓ→+∞

h(k)(ỹ(k,ℓ)) = h(k)(y(k)).

The above limit, in combination with (3.77) and the inequality h(k)(y(k)) ≤ h(k)(ỹ(k,ℓ)), allows

to conclude that (3.76) is eventually satisfied for ℓ sufficiently large.

Remark 3.6. Since v(k,ℓ) ∈ dom(Ψ(k)) for all ℓ ∈ N, any point ỹ(k,ℓ) satisfying (3.76) belongs

to dom(f1). However, we are not guaranteed that this is the case for any point of the primal

sequence, i.e. that ỹ(k,ℓ) ∈ dom(f1) for all ℓ ∈ N. Therefore, a practical issue arises in

implementing (3.76), since such a condition might involve infinite quantities in the process.

If dom(f1) is closed, this issue may be fixed by considering the sequence ȳ(k,ℓ) = Pdom(f1)(ỹ
(k,ℓ)),

where Pdom(f1) denotes the Euclidean projection onto dom(f1), and stopping the iterative

procedure when the inequality

h(k)(ȳ(k,ℓ)) ≤ ηΨ(k)(v(k,ℓ)) (3.78)

is satisfied. This condition is well-posed, since the continuity of Pdom(f1) and the fact that

y(k) ∈ dom(f1) guarantee again that ȳ(k,ℓ) → y(k) and thus that the procedure terminates in a

finite number of steps.
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In a nutshell, an inexact proximal point ỹ(k) satisfying (3.23) can be computed by implementing

the following steps:

1. generate a sequence {v(k,ℓ)}ℓ∈N where the iterates and function values converge to the

solution of the dual problem (3.68) and its optimal value, respectively. For instance,

an algorithm complying with these two properties is FISTA in the variant proposed by

Chambolle and Dossal [42] (see Algorithm 9);

2. compute the sequence {ȳ(k,ℓ)}ℓ∈N where ȳ(k,ℓ) = Pdom(f1)(z
(k) − αkD

−1
k AT v(k,ℓ));

3. set ỹ(k) = ȳ(k,ℓ), where ℓ is the first nonnegative integer such that the stopping criterion

(3.78) is satisfied.

Then, at each iteration of VMILAn, an inner loop is required in order to compute ỹ(k). Clearly,

the entire procedure depends on the value of the parameter η, which measures the quality of

the inexact proximal point we are computing: the closer η is to 1, the more precise the approx-

imation gets, but at the cost of a larger number of inner iterations, and viceversa when η is

approaching 0. However, numerical experience shows that a good balance between convergence

speed and computational cost in VMILAn can be achieved, as remarked in [32].

Finally, let us observe that (3.67) includes also the case where f1(x) is defined as

f1(x) =
r∑

i=1

gi(Aix),

where Ai ∈ Rmi×n, gi : Rmi → R. Indeed, formulation (3.67) is recovered by setting A =

[AT
1 A

T
2 ... A

T
r ]T ∈ Rm×n with m =

∑r
i=1mi and g(t) =

∑r
i=1 gi(ti) for all t = (t1, . . . , tr) ∈ Rm,

with ti ∈ Rmi . In this case the dual variable v can be partitioned as v = [vT1 vT2 ... v
T
r ]T , where

vi ∈ Rmi and g∗(v) =
∑r

i=1 g
∗
i (vi) (see Proposition 2.3).

3.3 Applications in image processing

In order to confirm the efficiency of the proposed algorithm, we carry out different numerical

experiments on realistic nonconvex optimization problems arising in image processing. We

compare the obtained results with those provided by some recent methods already applied in

such a framework. All the numerical results in the following sections have been obtained on a

PC equipped with an INTEL Core i7 processor 2.70GHz with 8GB of RAM running Matlab

ver 7 R2010b.
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3.3.1 Image deconvolution in presence of signal dependent Gaussian noise

In this section we consider the image restoration problem described in [47], where the observed

data g ∈ Rn are assumed to be acquired according to the model

gi = (Hxtrue)i + σi((Hxtrue)i)wi,

where xtrue ∈ Rn denotes the original image to be reconstructed, H ∈ Rn×n is a matrix with

non-negative entries representing the acquisition system, w = (w1, · · · , wn)T is a realization of

Gaussian random vector with zero mean and covariance matrix In and σi : R → R>0 is defined

as

σi(u) =
√
aiu+ bi,

with ai ∈ R≥0, bi ∈ R>0, for all i = 1, ..., n.

The problem of recovering the unknown xtrue from the knowledge of g can be addressed by

means of the Bayesian paradigm, for which an overview can be found by the reader in Appendix

A. According to this approach, an estimate of the true image xtrue can be computed by solving

the minimization problem (3.2), where f0 is a data discrepancy function corresponding to the

negative log–likelihood of the data, and f1 is a regularization term chosen to induce some

desired properties on the computed solution.

In this case, the negative log-likelihood function is given by

f0(x) =
1

2

n∑

i=1

((Hx)i − gi)
2

ai(Hx)i + bi
+ log(ai(Hx)i + bi), (3.79)

which is continuously differentiable and nonconvex on dom(f0) = {x ∈ Rn : ai(Hx)i + bi >

0 ∀i = 1, ..., n}.

If one wants to preserve the edges in the reconstruction and also the non-negativity of the

pixel values, the regularization term can be chosen as the sum of the total variation functional

(see [132] or Appendix A) and the indicator function of the set Rn
≥0, i.e.

f1(x) = ρ
n∑

i=1

‖∇ix‖ + ιRn
≥0

(x), (3.80)

where ρ ∈ R>0 is a regularization parameter and ∇i ∈ R2×n represents the discrete gradient of

the two dimensional object x at pixel i.

We remark that the assumptions of problem (3.2) are satisfied for f0 and f1. Indeed, f1 is

convex and continuous on dom(f1) and, since bi > 0 for all i = 1, . . . , n and H has non–negative

entries, we have dom(f0) ⊃ dom(f1). Furthermore, ∇f0 is Lipschitz continuous on dom(f1), in

fact f0 can be expressed as

f0(x) =
n∑

i=1

ν
(i)
1 ((Hx)i) + ν

(i)
2 ((Hx)i),
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where

ν
(i)
1 (u) =

1

2

(u− gi)
2

aiu+ bi
, ν

(i)
2 (u) =

1

2
log(aiu+ bi)

have bounded second derivatives on dom(f0). Finally observe that, since f is given by sums,

products and compositions of analytic functions on dom(f0), then f itself is analytic [88] and,

as we have seen in Section 2.3.1, this is sufficient to conclude that f is a KL function.

In order to validate the effectiveness of the proposed method, we consider the test problem

“jetplane”, which can be downloaded from [127] (see Figure 3.2). Here, the operator H corre-

sponds to a convolution with a truncated Gaussian function of size 7 × 7, ai = bi = 1 for all

i = 1, ..., n and ρ = 0.03.

Algorithm VMILAn has been implemented in Matlab environment with the following set-

tings:

Step 1 - metric selection: we consider three different choices for Dk, all leading to a diagonal

matrix whose entries are defined as follows:

MM (Dk)−1
ii = max{min{(Ak)ii, µ}, 1µ}, where Ak is defined in [47, formula (36)] with ε = 0.

This matrix Ak is introduced in [47], following the Majorization-Minimization (MM)

approach, where the authors show that the quadratic function Q(x, x(k)) = f0(x
(k)) +

∇f0(x(k))T (x−x(k)) + 1
2‖x−x(k)‖2Ak

is a majorant function for f0, i.e. f0(x) ≤ Q(x, x(k))

for all x ∈ dom(f1).

SG (Dk)−1
ii = max{min{ x

(k)
i

Vi(x(k))+ǫ
, µ}, 1µ}, where ǫ is set to the machine precision and V (x(k))

is determined on the basis of the Split Gradient (SG) idea [89], i.e. in such a way that

∇f0(x(k)) = V (x(k)) − U(x(k)),

where V (x(k)) is a vector with positive entries and U(x(k)) has nonnegative entries. In

this case, a feasible choice for the positive part is V (x(k)) = HT s(k) with

s
(k)
i = (Hx)i

ai((Hx)i + gi) + 2bi
2(ai(Hx)i + bi)2

+
ai

2(ai(Hx)i + bi)
.

I Dk = In.

The parameter µ bounding the diagonal entries of Dk is set to 1010.

Step 1 - steplength selection: once computed the matrix Dk, the stepsize parameter αk is

chosen using the adaptive strategy proposed in [108] and based on the approximation of the

eigenvalues of the Hessian matrix of the objective function by means of a Lanczos–like process

(see also Section 1.2.2). The idea is to apply this rule to the differentiable part f0. In our

problem, for a fixed positive integer m (in our experiments we consider m = 3), one has to:
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a) Define the matrices

G̃ =
[
D

−1/2
k−m g̃

(k−m), . . . ,D
−1/2
k−1 g̃

(k−1)
]
, Γ =




α−1
k−m

−α−1
k−m

. . .

. . . α−1
k−1

−α−1
k−1



,

by collecting m consecutive steplengths and reduced gradients

g̃
(k)
j =

{
0 if x

(k)
j = 0,

[
∇f0(x(k))

]
j

if x
(k)
j > 0

. (3.81)

b) Compute the Cholesky factorization RTR of the m ×m matrix G̃T G̃, the solution r of

the linear system RT r = G̃TD
−1/2
k g̃(k) and the m×m matrix Φ = [R r]ΓR−1.

c) Compute the eigenvalues of the symmetric and tridiagonal approximation Φ̃ of Φ defined

as

Φ̃ = diag(Φ) + tril(Φ,−1) + tril(Φ,−1)T ,

being diag(·) and tril(·,−1) the diagonal and the strictly lower triangular parts of a

matrix, and use the reciprocal of the positive eigenvalues obtained as steplengths for the

next iterations.

Finally, the steplengths αk are constrained in the interval [αmin, αmax], where αmin = 10−5,

αmax = 102.

Step 2 - inexact computation of the proximal point: since the proximal operator of

f1 is not available in a closed form, it has to be approximated via an iterative solution. We

observe that the nonsmooth regularization term has the form f1(x) = g(Ax) where AT =

(∇T
1 , . . . ,∇T

n , In) ∈ Rn×3n and g : R3n → R̄ is defined as

g(t) =

n∑

i=1

∥∥∥∥∥

(
t2i−1

t2i

)∥∥∥∥∥+ ιRn
≥0




t2n+1
...

t3n


 .

We implement an inexact version of Algorithm VMILAn, where the approximate proximal point

ỹ(k) satisfying (3.23) is computed as described in Section 3.2.4 with η = 10−6 or, equivalently,

with τ = 2(106 − 1). In this case, in virtue of Example 2.1-2.2 and Proposition 2.3, we have

that g∗ is the indicator function of the set C = B2(0, ρ)×· · ·×B2(0, ρ)×Rn
≤0, where B2(0, ρ) is

the 2-dimensional ball with center 0 and radius ρ. Thus the dual problem (3.68) can be written

as the following constrained least squares problem

max
v∈C

− 1

2αk
‖αkD

−1
k AT v − z(k)‖2Dk

− f1(x
(k)) − αk

2
‖∇f0(x(k))‖2D−1

k

+
1

2αk
‖z(k)‖2Dk

. (3.82)
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Figure 3.2: Jetplane test problem: original object (left), blurred and noisy image (middle), and

VMILAn reconstruction (right).

As inner solver for the subproblem (3.82), we adopt algorithm FISTA in the variant proposed

in [42] and reported in Algorithm 9 of Section 2.2.3, where we set a = 2.1. We remark that, if

condition (H4) is not ensured on the point ỹ(k), we could not invoke Theorem 3.3 to guarantee

the convergence of the whole sequence. However, the stationarity of the limit points is guar-

anteed by Proposition 3.2, which holds independently of (H4).

Other parameters setting: the line–search parameters have been chosen as δ = 0.5, β =

10−4, γ = 1. These are standard choices for the Armijo parameters in the constrained opti-

mization framework [37, 113, 112], where it has been remarked that the performance of the

Armijo line–search is usually not sensitive to the choice of these parameters.

We compare the performances of our method with the variable metric forward backward

(VMFB) algorithm [47] (see Algorithm 10 of Section 2.2.3) in the implementation provided

by the authors which can be downloaded from [127]. We observed that both methods achieve

the same value of the objective function in the limit, denoted by f∗, which is in general

not guaranteed for nonconvex problems. Thus in this case we can compare the optimization

properties of the algorithms by measuring the progress toward this value, which has been

numerically approximated first by running 5000 iterations of all methods and retaining the

smallest value.

Figure 3.3 reports the relative decrease of the objective function with respect to the min-

imum value f∗ as a function of the iteration number and of the computational time. We can

observe a faster decrease of the objective function for Algorithm VMILAn. The best perfor-

mances are achieved by choosing Dk = In which means that, for this specific application, the

most significant benefits in Algorithm VMILAn come from the variable choice of the steplength

αk. The inner solver for computing an approximation of the proximal point requires about 2–3

iterations per outer iteration, except for the choice SG of the matrix Dk. In all experiments

the first option in (3.25) never occurred. The reconstructed image obtained with VMILAn is

shown in the right panel of figure 3.2.
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Figure 3.3: Image deconvolution in presence of signal dependent Gaussian noise. Relative

decrease of the objective function toward the minimum value with respect to the iteration

number (left) and computational time in seconds (right).

3.3.2 Image deblurring in presence of Cauchy noise

As a second test, we take into account the problem of recovering a blurred image corrupted by

Cauchy noise. In [134] the authors propose a novel variational model aimed at facing Cauchy

noise image restoration based on total variation regularization. More in detail, they suppose

the degraded image g ∈ Rn can be written as g = Hx + v, where x ∈ Rn is the true object,

H ∈ Rn×n is the discretization of the blurring operator and v ∈ Rn represents the random

noise which is modelled by a Cauchy probability distribution corresponding to a density of the

form

f(v) =
1

π

γ

γ2 + v2
, γ > 0.

The discrete version of the optimization problem they suggest can be formulated as follows

min
x∈Rn

λ

2

n∑

i=1

log
(
γ2 + ((Hx)i − gi)

2
)

+
n∑

i=1

‖∇ix‖, (3.83)

where λ is the regularization parameter. We decide to force the solution of being nonnegative

and therefore we add to the objective function in (3.83) the indicator function of the nonnegative

orthant. In these settings, the nondifferentiable part of the function to minimize becomes as

in (3.80) (with ρ = 1), while f0 reduces to the logarithmic discrepancy. The corresponding

optimization problem fits into the framework of problem (3.2). Indeed, f0 is a real analytic

function on the entire space Rn and thus dom(f0) ⊃ dom(f1). Furthermore, by writing the
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Figure 3.4: Cauchy noise image deblurring datasets: original objects (left), blurred and noisy

images (middle) and VMILAn reconstructions (right).

gradient of f0

∇f0(x) = λHT (Hx− g)

γ2 + (Hx− g)2
,

we deduce that ∇f0 is Lipschitz continuous with L(f0) ≤ γ−2‖H‖‖HT ‖ as upper bound for

the smallest Lipschitz constant.

We consider two datasets borrowed by [134, Section 5.2]. In particular the operator H is

associated to a Gaussian blur with a window size 9 × 9 and standard deviation equal to 1,

while γ has been set equal to 0.02. We report the true images and the distorted ones in figure

3.4. The regularization parameter λ has been fixed equal to 0.35. We applied VMILAn by

computing the proximal point ỹ(k) inexactly by means of the FISTA algorithm as in Section

3.3.1. As in the previous test, we consider three different choices for the scaling matrix, i.e. the

Euclidean metric and two further nontrivial metrics. Again, all the matrices considered here

are diagonal:

MM (Dk)−1
ii = max{min{(Ak)ii, µ}, 1µ} where the matrix Ak is borrowed by the MM approach

and it is given by formula (36) in [47] where ε = 0 and the function ω is set equal to the

function ν in the tenth row of Table 1 in [46].
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SG (Dk)−1
ii = max

{
min

{
x
(k)
i

Vi(x(k))
, µ

}
, 1µ

}
, where V (x(k)) = λHT s(k) with s

(k)
i = (Hx(k))i

γ2+(Hx(k)−g)2i

is again chosen by means of the gradient splitting idea already mentioned in Section 3.3.1.

Note that the positivity of V (x(k)) is ensured by the non-negative constraints and the

properties of the blurring operator.

I Dk = In.

The other parameters are set exactly as in Section 3.3.1.

In figure 3.5 we show the relative distance between the objective function values and the

limit value f∗ computed by 5000 iterations of VMILAn with the MM metric. The benefits

gained by using a variable metric are quite evident in terms of both number of iterations and

computational time.

As further benchmark we include in our comparison also the method VMFB where the

majorant function is computed according to Lemma 5.1 in [47] and [46, Table 1].

Finally, to appreciate the validity of VMILAn as restoration method, in table 3.1 we report

the values of the peak signal-to-noise ratio (PSNR) related to the approximated solutions

compared to the values shown in [134] corresponding to the same two datasets. The PSNR is

widely used in the literature to measure the image quality and is defined as

PSNR(x) = 10 log10
n|max(x) − min(x)|2

‖xtrue − x‖2 ,

where xtrue ∈ Rn is the true object.

Data VMILAn(I) VMILAn(SG) VMILAn(MM) VMFB [134]

Parrot 18.23 26.67 26.70 26.71 26.62 26.79

Cameraman 18.29 25.90 26.41 26.52 25.82 26.72

Table 3.1: PSNR values obtained by VMILAn in solving the Cauchy noise image restoration

problems.

The PSNR values presented in Table 3.1 allow to say that the performances of VMILAn

are comparable to those of the reference approach [134]. The reconstructed images obtained

with VMILAn (scal = MM) and related to the PSNR reported in Table 3.1 are shown in the

right panel of figure 3.4.

3.3.3 Linear diffusion based image compression

For the next numerical experience, we address the problem of linear diffusion based image

compression considered in [105], which consists in finding the optimal interpolation points for

the compression procedure (see also [69, 85]). In particular, the problem has been reformulated
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Figure 3.5: Relative decrease of the objective function toward the minimum value with respect

to the iteration number (left) and computational time in seconds (right) for the Cauchy noise

image restoration datasets: parrot (first row) and cameraman (second row).

in [85, 105] as follows

min
u,c

1

2
‖u− u(0)‖22 + λ‖c‖1 (3.84)

s.t. C(u− u(0)) − (In − C)Lnu = 0,

where u(0) ∈ Rn denotes the original image, c ∈ Rn is the so-called inpainting mask and

represents the unknown weights to be assigned to each pixel in the compression step, C =

diag(c) ∈ Rn×n, u ∈ Rn is the image to be reconstructed and Ln ∈ Rn×n is the Laplacian

operator. Such a problem is nonconvex due to the nonconvexity of the equality constraint,
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from which the image u can be rewritten as

u = A−1Cu(0)

with A = C + (C − In)Ln. If we substitute the above equation into (3.84), we obtain an

equivalent optimization problem which depends only on the inpainting mask c. Unlike in [105],

we also force the object c to satisfy a certain set of constraints, by adding the indicator function

ιC to the objective function:

min
c∈Rn

1

2
‖A−1Cu(0) − u(0)‖22 + λ‖c‖1 + ιC(c). (3.85)

As concerns the choice of the feasible set C, although the natural choice would be the cartesian

product [0, 1]n, in our experiments we observed that better results can be obtained by allowing

the inpainting mask to assume values greater than 1, and therefore we chose C = [0, 1.5]n.

The presence of the non-negativity constraint allows to apply VMILAn by including the term

λ‖c‖1 in the differentiable part f0 and setting f1(c) = ιC(c). The proximal operator of f1
reduces to the projection over the set C and thus it is computed exactly. Moreover, f is a KL

function, being the sum of semi-algebraic functions, and ∇f0 is Lipschitz continuous. Finally,

the boundedness of the feasible set C guarantees the existence of a limit point. All these

facts allow to apply Corollary 3.1 and to state the convergence of the VMILAn sequence to a

stationary point of f . Furthermore, since the objective function is overall semi-algebraic, the

desingularizing function φ at the limit point is of the special form φ(t) = (ctθ)/θ with θ ∈ (0, 1]

(see Section 2.3.1) and thus, on account of Theorem 3.5, the expected convergence rate of both

iterates and function values is at least O(1/kp), with p > 1.

Since the gradient of f0 does not suggest any natural decomposition, we consider the nonscaled

version of VMILAn by setting Dk = In for all k. As concerns the steplength parameter αk, we

used the same strategy described in the previous section by replacing (3.81) with

g̃
(k)
j =

{
0 if c

(k)
j ∈ {0, 1.5},

[
∇f0(c(k))

]
j

if c
(k)
j ∈ (0, 1.5)

and setting αmax = 105.

We compare VMILAn with the iPiano algorithm, originally devised in [105] and detailed in

Algorithm 8 of Section 2.2.3, which is a forward–backward method with extrapolation whose

generated sequence converges to a critical point of (3.85) thanks to the KL property of the

objective function. Unlike the choice made for VMILAn, here we followed the implementation

of the authors and left the term λ‖c‖1 in the f1 part of the objective function (we tried also

the other splitting but we always obtained worse results). All the other parameters defining

iPiano have been chosen as suggested in [105]. The test problems are the same used in [105,

§5.2.2] and named “trui”, “peppers” and “walter” (see Figure 3.6). In Table 3.2 we report the

iteration numbers performed by the two methods together with the corresponding values of the
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Test image Algorithm Iterations Obj. func. Density MSE

trui
iPiano 1000 21.58 4.97% 17.27

VMILAn 599 21.50 4.80% 17.95

peppers
iPiano 1000 23.10 5.95% 19.64

VMILAn 655 23.01 5.81% 19.99

walter
iPiano 1000 10.32 5.10% 8.27

VMILAn 699 10.23 4.66% 8.55

Table 3.2: Summary of two algorithms for three test images.

objective function, density and mean squared error (MSE) computed by

MSE(u, u(0)) =
1

n

n∑

i=1

(ui − u0i )2,

where u = A−1Cu(0) is the reconstructed image. Moreover, since in this case it seems that the

two algorithms do not converge to the same minima, in Figure 3.7 we do not plot the relative

distance between the objective function and the minimum but we show the decrease of the

objective function with respect to the iteration number and the computational time in seconds.

The behaviour of the steplength αk and the linesearch parameter λk is also shown in Figure

3.8. Concerning the former parameter, it can be seen that the value αk varies of several order

of magnitudes; this is typical of any steplength selection rule which aims at approximating the

spectrum of the Hessian of the function, as it is the case of the rule we adopted for VMILAn.

Indeed, it looks like the red plots in Figure 3.8 are oscillating between two extreme values,

which might be considered as approximations of the reciprocals of some eigenvalues of the

Hessian matrix ∇2f0(x
(k)).

Finally, in the right column of figure 3.6 the reconstructions obtained with VMILAn are

given. As remarked in the previous numerical tests, also in this application VMILAn seems to

be competitive if compared to other forward–backward approaches, since it is able to provide

comparable reconstructions by performing a lower number of iterations and allowing a reduction

of the computational time. In all the experiments described in this section, the first option in

(3.25) never occurred.

3.3.4 Student-t regularized image denoising

In this final section, we consider again an application in imaging used in [105] and consisting

in an image denoising problem addressed by means of the Markov random field (MRF) model

min
x∈Rn

Nf∑

i=1

θi




n∑

p=1

log(1 + (ki ⊗ x)2p)


 +

ρ

2
‖x− g‖22 + ιX (x).
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Figure 3.6: Trui (top row), peppers (central row) and walter (bottom row) datasets. Original

image (left), inpainting mask (middle) and VMILAn reconstruction (right).
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Figure 3.7: Linear diffusion based image compression for the trui (top row), peppers (central

row) and walter (bottom row) datasets. Decrease of the objective function with respect to the

iteration number (left) and computational time in seconds (right).
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Figure 3.8: Behaviour of the parameters αk and λk with respect to the iteration number for

the trui (left column), peppers (central column) and walter (right column) datasets.

Here x and g denote the target and the (Gaussian) noisy images, respectively, θi are positive

weights, ⊗ denotes the two-dimensional convolution and ki are 7×7 filter kernels learned in [45]

by using a bilevel learning approach (weights and filters can be downloaded from [44], together

with the instructions to produce the noisy image). As concerns the feasible set X , we force the

reconstructed image to belong to the non-negative orthant Rn
≥0.

The image used for this experiment is the so–called watercastle, and it is shown in Figure 3.8,

together with the one obtained by the true image by adding Gaussian noise with standard

deviation σ = 25. The regularization parameter ρ has been fixed equal to 1 as suggested in

[105]. We applied VMILAn by choosing f1 equal to ιX and f0 equal to the remaining part. As

reference method we used as in the previous section the iPiano algorithm, in the same settings

described by the authors in [105]. Since both algorithms converge to the same solution, as done

in Section 3.3.1 we computed the relative distance between the objective function during the

iterations and its minimum value, obtained by performing 1000 iterations with iPiano. The

corresponding plots with respect to the iteration number and the computational time are shown

in Figure 3.10, while the denoised image provided by VMILAn after 250 iterations is given in

figure 3.9.

This last experiment confirms the conclusions previously drawn for VMILAn in the image

compression application, since also in this case our method behaves similarly to iPiano in

terms of both number of iterations required to minimize the objective function and average

cost per iteration.
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Figure 3.9: Watercastle test problem: original object (left), blurred and noisy image (middle),

and VMILAn reconstruction (right).
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Figure 3.10: Student-t regularized image denoising for the watercastle dataset. Decrease of

the objective function with respect to the iteration number (left) and computational time in

seconds (right).



Chapter 4

Phase estimation in differential

interference contrast (DIC)

microscopy

In this chapter we are interested in a specific application in the field of optical microscopy,

which can be suitably addressed by the line–search based methods devised in the previous

chapter. In particular, we consider the problem of phase estimation from color images acquired

in difference interference contrast (DIC) microscopy. In the last forty years, DIC microscopy

has gained popularity in biomedical research as an effective optical microscopy technique used

to observe unstained transparent specimens under a transmitted-light configuration. DIC mi-

croscopes are able to provide contrast to images by exploiting the phase shifts in light induced

by the transparent specimens (also called phase objects) while passing through them. One

disadvantage of DIC microscopy is that the observed images cannot be easily used for topo-

graphical and morphological interpretation, because the changes in phase of the light are hidden

in the intensity image. It is then of vital importance to recover the specimen’s phase function

from the observed DIC images. The problem can be reformulated in mathematical terms as

an optimization problem which, unfortunately, is highly nonconvex and presents multiple local

minima. For that reason, there is the need of efficient computational methods aimed at recov-

ering quantitative information on the DIC phase function. So far, only few works have dealt

with this problem in the literature [117, 118, 115, 116].

Our aim is to exploit the line–search based methods developed in the previous chapter

in the context of DIC imaging. In particular, we address the DIC phase estimation problem

with a gradient method, equipped with an Armijo line–search and a non standard selection

rule for the steplength, and a non-scaled version of Algorithm VMILAn presented in Chapter

3. Furthermore, we revisit the state-of-the-art optimization method for phase estimation in

DIC microscopy providing implementation details, showing possible pitfalls and comparing its

performances with standard conjugate gradient algorithms. Finally, we show that, in numeri-

115
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cal simulations with simulated datasets, the two proposed optimization strategies are able to

provide accurate reconstructions of the phase in a lower computational time.

The chapter is organized as follows. In Section 4.1, we provide the details concerning the

DIC model and we consider the minimization problem of the functional given by the sum of

the maximum likelihood term and a (possibly smoothed version of) total variation regularizer,

studying its analytical properties and proving the existence of minimum points. In Section 4.2,

we present the proposed methods and revisit the state-of-the-art optimization method for phase

estimation in DIC microscopy. In Section 4.3, numerical experience on simulated datasets is

presented.

4.1 Model and problem formulation

The technique of interest in this chapter is Differential Interference Contrast (DIC) microscopy,

designed by Allen, David and Nomarski [4] to overcome the inability to image unstained trans-

parent biological specimens, which is typical of bright-field microscopes, while avoiding at the

same time the halo artifacts of other techniques designed for the same purpose, such as phase

contrast.

4.1.1 The DIC model

DIC microscopy works under the principle of dual-beam interference of polarized light, as de-

picted in Figure 4.1. Coherent light coming from a source is passed through a polarizer lens.

Every incident ray of polarized light is splitted by a Nomarski prism placed at the front focal

plane of the condenser. This splitting produces two wave components – ordinary and extraor-

dinary – such that their corresponding electromagnetic fields are orthogonal and separated at a

fixed shear distance 2∆x along a specific shear direction, whose angle τk formed with the x-axis

is denominated shear angle. The specimen is sampled by the pair of waves; if they pass through

a region where there is a gradient in the refractive index, the waves will be differentially shifted

in phase. After this, they will reach a second Normarski prism placed at the back focal plane of

the objective lens. This prism introduces an additional phase shift, called the bias retardation

and indicated with 2∆θ, which helps to improve the contrast of the observed image and to

give the shadow-cast effect characteristic of DIC images (see Figure 4.2). The interference of

the two sheared and phase shifted waves occurs inside this prism and, thus, the two waves are

recombined into a single beam that goes through a second polarizer lens called the analyzer.

Further details on the DIC working principle can be found in the work of Murphy [100] and

Mehta et al [98].

The observed images will have a uniform gray background on regions where there are no

changes in the optical path, whereas they will have dark shadows and bright highlights where

there are phase gradients in the direction of shear, having a 3-D relief-like appearance (see
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Figure 4.1: Transmitted-light Nomarski DIC microscope. The difference of colors of the ordi-

nary and extraordinary waves indicates that their electromagnetic fields are orthogonal to each

other.

Figure 4.2). It is important to note that the shadows and highlights indicate the signs and

slope of phase gradients in the specimen, and not necessarily indicate high or low spots [4].

In this paper we consider the polychromatic rotational-diversity model [13], which is an

extension of the model presented in [115] to color image acquisition. This model assumes that

K color images are acquired by rotating the specimen K times with respect to the shear axis,

which results in K rotations of the amplitude point spread function. Typically K equals 2 and

the difference between the two angles is π/2. Actually, for a given shear angle τk, the acquired

image k is related to the directional derivative of the object along the direction τk [118]. Then

the 2D image can be reconstructed from two orthogonal directional derivatives [115]. In this

configuration, the relation between the acquired images and the unknown true phase φ is given

by

(ok,λℓ
)j = a1

∣∣∣(hk,λℓ
⊗ e−iφ/λℓ)j

∣∣∣
2

+ (ηk,λℓ
)j , (4.1)

for k = 1, . . . ,K, ℓ = 1, 2, 3, j ∈ χ, where

• k is the index of the angles τk that the shear direction makes with the horizontal axis
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[115], ℓ is the index denoting one of the three RGB channels and j = (j1, j2) is a 2D–index

varying in the set χ = {1, . . . ,M}×{1, . . . , P}, M and P meaning the size of the acquired

image, which is determined by the resolution of the CCD detector of the microscope, with

typical value of 1388 × 1040 pixels;

• λℓ is the ℓ−th illumination wavelength, which is assumed to be rational. The object is

illuminated with white light, whose wavelengths range from 400 nm to 700 nm. The digital

acquisition system of the microscope comprises a color bandpass filter which isolates the

RGB wavelengths, acquired separately by the CCD detector [100]. Since it is selected a

narrow band for each color, we use the mean wavelength at each band. Without loss of

generality, this mean value can be considered as a rational number. In particular, in our

experiments we will set λ1 = 0.65, λ2 = 0.55 and λ3 = 0.45 as values for the red, green

and blue wavelengths, respectively;

• ok,λℓ
∈ RMP is the ℓ−th color component of the k−th discrete observed image ok =

(ok,λ1 , ok,λ2 , ok,λ3) ∈ RMP×3;

• φ ∈ RMP is the unknown phase vector and e−iφ/λℓ ∈ CMP stands for the vector defined

by (e−iφ/λℓ)j = e−iφj/λℓ ;

• hk,λℓ
∈ CMP is the discretization of the continuous DIC point spread function [118, 74]

corresponding to the illumination wavelength λℓ and rotated by the angle τk , i.e.,

hk,λℓ
(x, y) =

1

2

[
e−i∆θpλℓ

(
Rk · (x− ∆x, y)T

)
− ei∆θpλℓ

(
Rk · (x+ ∆x, y)T

)]
, (4.2)

where pλℓ
(x, y) is the coherent PSF of the microscope’s objective lens for the wavelength

λℓ, which is given by the inverse Fourier transform of the disk support function of am-

plitude 1 and radius equal to the cutoff frequency fc = NA/λℓ [118], being NA the

numerical aperture of the objective lens, and Rk is the rotation matrix which rotates the

coordinates according to the shear angle τk;

• h1⊗h2 denotes the 2D convolution between the two M ×P images h1, h2, extended with

periodic boundary conditions;

• ηk,λℓ
∈ RMP is the noise corrupting the data, which is assumed to be a realization of

a Gaussian random vector with mean 0 ∈ RMP and covariance matrix σ2I(MP )2 , where

I(MP )2 is the identity matrix of size (MP )2;

• a1 ∈ R is a constant which corresponds to closing the condenser aperture down to a single

point.

The problem with the acquired DIC images is their high sensitivity to the shear direction

and the chosen value of the bias, as we see in Figure 4.1.2 and 4.1.2. Thus, topological and

morphological information might be hidden or difficult to interpret in the final acquired image.
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(a) (b) (c) (d)

Figure 4.2: Phase functions of two phantom specimens and corresponding noiseless DIC color

images: (a) phase function of the “cone” object, (b) DIC image of the cone, (c) phase function

of the “cross” object, (d) DIC image of the cross. The images have been computed by using

model (4.1) and setting the shear to 2∆x = 0.6 µm, the bias to 2∆θ = π/2 rad and the shear

angle to τ = π/4 rad.

On account of that, one is more interested in the approximation of the phase φ, which is

independent of the acquisition direction and the bias value.

4.1.2 Optimization problem

The phase reconstruction problem consists in finding an approximation of the unknown phase

vector φ from the observed RGB images o1, . . . , oK . Let us first address this problem by means

of the maximum likelihood (ML) approach (see Appendix A). Since the 3K images ok,λℓ
are

corrupted by Gaussian noise, then the negative log likelihood of each image is a least-squares

measure, which is nonlinear due to the presence of the exponential in (4.1). If we assume

white Gaussian noise, statistically independent of the data, the negative log likelihood of the

problem is the sum of the negative log likelihoods of the different images, namely the following

fit-to-data term

J0(φ) =

3∑

ℓ=1

K∑

k=1

∑

j∈χ

[
(ok,λℓ

)j − a1

∣∣∣(hk,λℓ
⊗ e−iφ/λℓ)j

∣∣∣
2
]2
. (4.3)

Then the ML approach to the phase reconstruction inverse problem consists in the minimization

of the function in (4.3):

min
φ∈RMP

J0(φ). (4.4)

In the next result, we collect some properties of J0 that will be useful hereafter.

Lemma 4.1. Let J0 : RMP → R be defined as in (4.3). Then the following facts hold.

(i) There exists T > 0 such that J0 is periodic of period T with respect to each variable, i.e.

for any j ∈ χ, defining ej = (δj,r)r∈χ = (0, . . . , 0, 1, 0, . . . , 0) ∈ RMP , where δj,r is the
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Figure 4.3: DIC images are direction-sensitive. From left to right: cross object computed as in

Figure 4.2 acquired at shear angles τ = 0, π/4, π/2 rad respectively. According to the direction,

the information on one of the two crossing bars might be lost.

Figure 4.4: DIC images are bias-sensitive. From left to right: cone object computed as in

Figure 4.2 acquired at bias value 2∆θ = 0, π/6, π/2 rad respectively. According to the bias

value, the shape of the cone might be unrecognizable.

Kronecker delta, it holds

J0(φ+ Tej) = J0(φ), ∀ φ ∈ RMP . (4.5)

(ii) J0(φ+ ce) = J0(φ), ∀ c ∈ R, where e ∈ RMP is the vector of all ones.

(iii) J0 is an analytic function on RMP and therefore J0 ∈ C∞(RMP ).

Proof. (i) Fix j ∈ χ, ℓ ∈ {1, 2, 3} and consider the exponential in (4.3). Then for all r ∈ χ

(
e−i(φ+2πλℓej)/λℓ

)
r

=

{
e−iφr/λℓ , r 6= j

e−i[(φj/λℓ)+2π] = e−iφr/λℓ , r = j
= (e−iφ/λℓ)r, (4.6)

where the equality inside the curly bracket is due to the periodicity of the complex exponential.

Then, for a fixed ℓ ∈ {1, 2, 3}, the expression given in (4.3) without the sum in ℓ is 2πλℓ periodic

w.r.t. the variable φj. This means that J0 is the sum of three periodic functions of variable φj
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whose periods are 2πλ1, 2πλ2 and 2πλ3 respectively. By recalling that the sum of two periodic

functions is periodic if the ratio of the periods is a rational number, we can conclude that J0
is periodic, as we have λℓ

λℓ′
rational for all ℓ, ℓ′ ∈ {1, 2, 3}.

(ii) Set Jℓ,k,j(φ) =
∣∣(hk,λℓ

⊗ e−iφ/λℓ)j
∣∣2 =

∣∣∣∣∣
∑
r∈χ

(hk,λℓ
)re

−i(φj−r)/λℓ

∣∣∣∣∣

2

. If the thesis holds for Jℓ,k,j,

then it holds also for J0. We have

Jℓ,k,j(φ+ ce) =

∣∣∣∣∣
∑

r∈χ
(hk,λℓ

)re
−i(φj−r+c)/λℓ

∣∣∣∣∣

2

=

∣∣∣∣∣e
−ic/λℓ

∑

r∈χ
(hk,λℓ

)re
−i(φj−r)/λℓ

∣∣∣∣∣

2

=
∣∣∣e−ic/λℓ

∣∣∣
2
∣∣∣∣∣
∑

r∈χ
(hk,λℓ

)re
−i(φj−r)/λℓ

∣∣∣∣∣

2

= Jℓ,k,j(φ). (4.7)

(iii) If Jℓ,k,j is an analytic function on RMP , then J0 is given by sums and compositions of

analytic functions and thus it is itself analytic [88, Propositions 1.6.2 and 1.6.7]. Hence we focus

on Jℓ,k,j. Since (hk,λℓ
)r ∈ C, it can be expressed in its trigonometric form (hk,λℓ

)r = ρre
iθr ,

with ρr ∈ R≥0, θr ∈ [0, 2π). Then we can rewrite Jℓ,k,j as follows

Jℓ,k,j(φ) =

∣∣∣∣∣
∑

r∈χ
ρre

i[θr−(φj−r/λℓ)]

∣∣∣∣∣

2

=

=

∣∣∣∣∣
∑

r∈χ
ρr cos(θr − (φj−r/λℓ)) + i

∑

r∈χ
ρr sin(θr − (φj−r/λℓ))

∣∣∣∣∣

2

=

=

(
∑

r∈χ
ρr cos(θr − (φj−r/λℓ))

)2

+

(
∑

r∈χ
ρr sin(θr − (φj−r/λℓ))

)2

.

We now observe that the function Jℓ,k,j contains sin(θr − (φj−r/λℓ)) and cos(θr − (φj−r/λℓ)),

which are both analytic functions with respect to the single variable φj−r and thus also with

respect to φ, and the square function (·)2, which is also analytic. Since Jℓ,k,j is given by sums

and compositions of these functions, it is analytic.

Problem (4.4) admits infinitely many solutions, as stated in the following theorem.

Theorem 4.1. J0 admits at least one global minimum point. Furthermore, if ψ ∈ RMP is a

global minimizer of J0, then also {ψ + ce : c ∈ R} ∪ {ψ + mTej : j ∈ χ, m ∈ Z} are global

minimizers of J0.

Proof. Let Ω = [0, T ]MP ⊂ RMP . Point (iii) of Lemma 4.1 ensures that J0 is continuous on

Ω, thus from the extreme value theorem J0 admits at least one minimum point ψ on Ω. By

contradiction, assume that there exists φ ∈ RMP \ Ω such that J0(φ) < J0(ψ). Let I ⊂ χ

be the subset of indices such that {φs}s∈I is the set of all components of φ which belong to
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R \ [0, T ] and {ms}s∈I ⊂ Z \ {1} is the set of integers such that φs ∈ [(ms − 1)T,msT ]. Define

φ̄ = φ−∑s∈I(ms − 1)Tes ∈ Ω. By periodicity of J0 w.r.t. the variables φs, s ∈ I, we obtain

J0(φ̄) = J0(φ) < J0(ψ). (4.8)

Therefore, we have found a point φ̄ ∈ Ω such that J0(φ̄) < J0(ψ), where ψ is a minimum point

on Ω. This is absurd, hence ψ is a global minimizer for J0. The second part of the thesis

follows from points (i)-(ii) of Lemma 4.1.

Theorem 4.1 asserts that the solution to problem (4.4) is not unique and it may be deter-

mined only up to an unknown real constant or to multiples of the period T w.r.t. any variable

φj . Furthermore, since J0 is periodic, it is a nonconvex function of the phase φ, thus it may

admit several local minima as well as saddle points. In the light of these considerations, we

can conclude that (4.4) is a severely ill-posed problem, which requires regularization in order

to impose some a priori knowledge on the unknown phase. In particular, we propose to solve

the following regularized optimization problem

min
φ∈RMP

J(φ) ≡ J0(φ) + JTV (φ), (4.9)

where J0 is the least-squares distance defined in (4.3) and JTV is the smooth total variation

functional (also known as hypersurface potential - HS) defined as [2, 19]

JTV (φ) = µ
∑

j∈χ

√
((Dφ)j)21 + ((Dφ)j)22 + δ2, (4.10)

where µ > 0 is a regularization parameter, the discrete gradient operator D : RMP −→ R2MP

is set through the standard finite difference with periodic boundary conditions

(Dφ)j1,j2 =

(
((Dφ)j1,j2)1
((Dφ)j1,j2)2

)
=

(
φj1+1,j2 − φj1,j2
φj1,j2+1 − φj1,j2

)
, φM+1,j2 = φ1,j2 , φj1,P+1 = φj1,1

and the additional parameter δ ≥ 0 plays the role of a threshold for the gradient of the phase.

Obviously JTV reduces to the standard TV functional [132] by setting δ = 0. The choice of this

kind of regularization term instead of the first-order Tikhonov one used e.g. in [115, 116] lies in

the capability of the HS regularizer to behave both as a Tikhonov-like regularization in regions

where the gradient assumes small values (w.r.t. δ), and as an edge-preserving regularizer in

regions where the gradient is very large, as it happens in the neighborhood of jumps in the

values of the phase.

Problem (4.9) is still a difficult nonconvex optimization problem and, when δ = 0, it is also

nondifferentiable. Some properties of the objective function J are now reported.

Lemma 4.2. Let J : RMP → R be defined as in (4.9). Then:
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(i) J(φ+ ce) = J(φ), ∀ c ∈ R.

(ii) If δ > 0, then J ∈ C∞(RMP ) and ∇J is Lipschitz continuous, namely there exists L > 0

such that

‖∇J(φ) −∇J(ψ)‖2 ≤ L‖φ− ψ‖2, ∀φ,ψ ∈ RMP . (4.11)

Proof. (i) We have already proved in point (ii) of Lemma 4.1 that the property holds for J0.

Since it is immediate to check that (D(φ + ce))j1,j2 = (Dφ)j1,j2 , the property is true also for

JTV and thus for J .

(ii) Point (iii) of Lemma 4.1 states that J0 ∈ C∞(RMP ) and the same property holds for JTV ,

hence J is the sum of two C∞(RMP ) functions.

It is known that ∇JTV is LTV −Lipschitz continuous with LTV = 8µ/δ2 [52]. We prove that also

∇J0 is Lipschitz continuous. If we introduce the residual image rk,λℓ
=
∣∣∣(hk,λℓ

⊗e−iφ/λℓ)
∣∣∣
2
−ok,λℓ

and fix s ∈ χ, the partial derivative of J0 with respect to φs is given by

∂J0(φ)

∂φs
=

3∑

ℓ=1

K∑

k=1

∑

j∈χ

4

λℓ
(rk,λℓ

)j Im
{
e−iφs/λℓ(hk,λℓ

)j−s(hk,λℓ
⊗ e−iφ/λℓ)j

}
, (4.12)

where Im(·) denotes the imaginary part of a complex number. As concerns the entries of the

Hessian ∇2J0, the second derivative w.r.t. φs, φt (s, t ∈ χ) is given by

∂2J0(φ)

∂φt∂φs
= 4

3∑

ℓ=1

K∑

k=1

∑

j∈χ

2

λ2ℓ
Im{ϑs} Im{ϑt}+

(rk,λℓ
)j

λ2ℓ
Re
{
ei(φt−φs)/λℓ(hk,λℓ

)j−s(hk,λℓ
)j−t − δs,tϑs

}
, (4.13)

where ϑp = e−iφp/λℓ(hk,λℓ
)j−p(hk,λℓ

⊗ e−iφ/λℓ)j (p ∈ χ), Re(·) denotes the real part of a complex

number and δs,t is the Kronecker delta. By using the triangle inequality and the fact that

|e−iφr/λℓ | = 1, the following inequality hold:

|ϑp| ≤ |(hk,λℓ
)j−p|

∑

r∈χ
|(hk,λℓ

)r|. (4.14)

By applying the triangle inequality, the fact that |e−iφr/λℓ | = 1, | Im(z)| ≤ |z| and |Re(z)| ≤ |z|
for any z ∈ C and inequality (4.14) to (4.13), we obtain the following bound on the second

derivative of J0:

∣∣∣∣
∂2J0(φ)

∂φt∂φs

∣∣∣∣ ≤ 4

3∑

ℓ=1

K∑

k=1

∑

j∈χ

2

λ2ℓ
|(hk,λℓ

)j−s||(hk,λℓ
)j−t|

(
∑

r∈χ
|(hk,λℓ

)r|
)2

+

|(rk,λℓ
)j |

λ2ℓ

{
|(hk,λℓ

)j−s||(hk,λℓ
)j−t| + |(hk,λℓ

)j−s|
∑

r∈χ
|(hk,λℓ

)r|
}
. (4.15)
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Set Hk,ℓ =
∑

r∈χ |(hk,λℓ
)r|. Taking the sum of (4.15) over s ∈ χ and picking the maximum over

t ∈ χ, a bound on the ℓ∞−norm of the Hessian ∇2J0 is obtained:

‖∇2J0(φ)‖∞ = max
t∈χ

∑

s∈χ

∣∣∣∣
∂2J0(φ)

∂φt∂φs

∣∣∣∣

≤ 4
3∑

ℓ=1

K∑

k=1

∑

j∈χ

Hk,ℓ

λ2ℓ

{
2 max

t∈χ
|(hk,λℓ

)j−t|H2
k,ℓ +

(
H2

k,ℓ + |(ok,λℓ
)j |
) [

max
t∈χ

|(hk,λℓ
)j−t| +Hk,ℓ

]}

= L0, ∀ φ ∈ RMP .

From relation ‖A‖2 ≤
√

‖A‖1‖A‖∞ and the fact that ‖∇2J(φ)‖1 = ‖∇2J(φ)‖∞ (∇2J0(φ) is a

symmetric matrix), it follows that ‖∇2J0(φ)‖2 ≤ L0 for all φ ∈ RMP . Fix φ,ψ ∈ RMP . By the

mean value theorem for vector-valued functions, we have

‖∇J0(φ) −∇J0(ψ)‖2 ≤ sup
θ∈(0,1)

‖∇2J0(ψ + θ(φ− ψ))‖2‖φ− ψ‖2 ≤ L0‖φ− ψ‖2. (4.16)

Then ∇J0 is L0−Lipschitz continuous and consequently also ∇J is Lipschitz continuous with

constant L = L0 + LTV .

Point (i) of Lemma 4.2 makes clear that, if a solution to problem (4.9) exists, then it is not

unique and it can be determined only up to a real constant. This is a common feature shared

with the unregularized problem (4.4). However, unlike in (4.4), the objective function J is not

periodic and, in addition, none of the two terms J0 and JTV are coercive, therefore we can not

prove the existence of a minimum point of J neither as in Theorem 4.1 nor by coercivity. A

specific proof of existence of the solution for problem (4.9) is now presented.

Theorem 4.2. The objective function J admits at least one global minimum point. Further-

more, if ψ ∈ RMP is a global minimizer of J , then also {ψ+ ce : c ∈ R} are global minimizers

of J .

Proof. Let S = {φ ∈ RMP : φ = ce, c ∈ R} be the line in RMP of all constant images and Π

any hyperplane intersecting S in one point φS , i.e.

Π = {φ ∈ RMP :
∑

r∈χ
arφr + b = 0},

∑

r∈χ
ar 6= 0, b ∈ R. (4.17)

Thanks to part (i) of Lemma 4.2, for any φ ∈ RMP the point φΠ = φ −
(∑

r arφr+b∑
r ar

)
e ∈ Π is

such that J(φΠ) = J(φ). Consequently, if ψ is a minimum point of J on Π, then it is also a

minimum point on RMP , because J(ψ) ≤ J(φΠ) = J(φ) for all φ ∈ RMP . Hence we restrict

the search of the minimum point on Π and we denote with J |Π the restriction of J to Π. Since

S = arg minφ∈RMP JTV (φ) and Π intersects S only in φS , JTV is a convex function with a

unique minimum point on Π, which implies that JTV is coercive on Π. Furthermore, being J0
periodic and continuous, it is a bounded function on Π. Then J |Π is the sum of a coercive
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term and a bounded one, therefore it is itself coercive. This allows to conclude that J admits a

minimum point on Π and thus also on RMP . The second part of the thesis follows from Lemma

4.2, part (i).

Note that the above proof of existence holds also for the regularized DIC problem proposed

in [115, 116], in which the first-order Tikhonov regularizer used instead of the TV functional

is also noncoercive.

4.2 Optimization methods

In previous works [115, 116, 117], the problem of DIC phase reconstruction had been addressed

with the nonlinear conjugate gradient method [104]. However, these methods require in practice

several evaluations of the objective function and possibly its gradient in order to compute the

linesearch parameter. What we propose instead is to tackle problem (4.9) with a gradient

descent algorithm in the differentiable case (δ > 0) and a non scaled version of the proximal-

gradient method VMILAn, analysed in Chapter 3, in the nondifferentiable case (δ = 0). The

key ingredients of both methods are the use of an Armijo linesearch at each iteration, which

ensures convergence to a stationary point of problem (4.9), and a clever adaptive choice of the

steplength in order to improve the speed of convergence.

For the sake of simplicity, from now on we assume that each monochromatic image is treated

as a vector in RN (being N = MP ) obtained by a lexicographic reordering of its pixels.

4.2.1 Gradient and proximal–gradient methods: LMSD and ILA

In this subsection we describe the two proposed algorithms to address problem (4.9) for both

cases δ > 0 and δ = 0.

In the former case the problem is unconstrained and differentiable, therefore a gradient de-

scent method can be used. In particular, we exploit the limited memory steepest descent

(LMSD) method proposed by Fletcher in [65] and outlined in Algorithm LMSD. The LMSD

method is a standard gradient method equipped with a monotone Armijo linesearch and vari-

able steplengths, which are computed as the reciprocals of some suitable approximations of

the eigenvalues of the Hessian matrix of the objective function denominated Ritz values. This

steplength selection rule has already been discussed in Section 1.1.2 and applied in a variety of

image processing applications in the previous chapter. Note that the required Ritz values can

be practically computed without the explicit knowledge of the Hessian itself, but exploiting

only a set of back gradients and steplengths (see steps 6–10 of Algorithm LMSD).

Some practical issues have to be addressed in the implementation of Algorithm LMSD:

• The first loop (step 1 to 5) builds a matrix

G =
[
∇J(φ(n−m)) ∇J(φ(n−m+1)) . . .∇J(φ(n−1))

]
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Algorithm LMSD Limited memory steepest descent (LMSD) method

Choose ρ, ω ∈ (0, 1), m ∈ N>0, α
(0)
0 , . . . , α

(0)
m−1 > 0, 0 < αmin ≤ αmax, φ(0) ∈ RN and set n = 0.

While True

For l = 1, . . . ,m

1. Define G(:, l) = ∇J(φ(n)).

2. Compute the smallest non-negative integer in such that αn = α
(0)
n ρin satisfies

J(φ(n) − αn∇J(φ(n))) ≤ J(φ(n)) − ωαn‖∇J(φ(n))‖2. (4.18)

3. Compute φ(n+1) = φ(n) − αn∇J(φ(n)).

If “Stopping Criterion” is satisfied

4. Return

Else

5. Set n = n+ 1.

EndIf

EndFor

6. Define the (m + 1) ×m matrix Γ =




α−1
n−m

−α−1
n−m

. . .

. . . α−1
n−1

−α−1
n−1




.

7. Compute the Cholesky factorization RTR of the m×m matrix GTG.

8. Solve the linear system RT r = GT∇J(φ(n)).

9. Define the m×m matrix Φ = [R, r]ΓR−1.

10. Compute the eigenvalues θ1, . . . , θm of the symmetric and tridiagonal approximation Φ̃

of Φ defined as

Φ̃ = diag(Φ) + tril(Φ,−1) + tril(Φ,−1)T ,

being diag(·) and tril(·,−1) the diagonal and the strictly lower triangular parts of a

matrix.

11. Define α
(0)
n+i−1 = max {min{1/θi, αmax}, αmin}, i = 1, . . . ,m.

EndWhile
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of size MP × m. The initial values for the first m steplengths can be provided by

the user (e.g. by computing the BB ones) or can be chosen with the same approach

described in steps 6–10 but with smaller matrices. For example, one can fix α
(0)
0 ,

compute G = ∇J(φ(0)) and use steps 6–10 to compute α
(0)
1 . At this point, defining

G = [∇J(φ(0)) ∇J(φ(1))] one can compute α
(0)
2 and α

(0)
3 and repeat the procedure until

a whole set of m back gradients is available.

• The same procedure can be adopted when step 10 provides only m′ < m positive eigen-

values. In this case, all columns of G are discarded, G becomes the empty matrix and

the algorithm proceeds with m′ instead of m until a whole set of m back gradients is

computed. If m′ = 0, a set of m “safeguard” steplengths, corresponding to the last set of

m positive steplengths values provided by step 10, is exploited for the next m iterations.

• If GTG in step 7 is not positive definite, then the oldest gradient of G is discarded and a

new matrix GTG is computed. This step is repeated until GTG becomes positive definite.

• The stopping criterion can be chosen by the user and be related to the decrease of J

or to the distance between two successive iterates. In our tests we decided to arrest the

iterations when the norm of the gradient ∇J goes below a given threshold κ:

‖∇J(φ(n))‖ ≤ κ. (4.19)

Concerning the computational costs of LMSD, the heaviest tasks at each iteration are the

computation of ∇J(φ(n)) at step 1 and J(φ(n)−αn∇J(φ(n))) at step 2. Considering step 1, we

focus on ∇J0. As it is written in (4.12), due to the product between e−iφs/λℓ and (hk,λℓ
)j−s,

∇J0 can be performed with O(N2) complexity; this is how the gradient is computed in [115].

However, if we take the sum over j of the residuals into the argument of Im(·), then we can

conveniently rewrite (4.12) as

∂J0(φ)

∂φs
=

3∑

ℓ=1

K∑

k=1

4

λℓ
Im
{(

(rk,λℓ
. ∗ (hk,λℓ

⊗ eiφ/λℓ)) ⊗ h̃k,λℓ

)
s
e−iφs/λℓ

}
, (4.20)

where h1. ∗ h2 denotes the componentwise product between two images h1, h2 and (h̃k,λℓ
)j =

(hk,λℓ
)−j for all j ∈ χ. Then the heaviest operations in (4.20) are the two convolutions which,

thanks to the assumption of periodic boundary conditions, can be performed with a FFT/IFFT

pair (O(N logN) complexity). Hence, since ∇JTV has O(N) complexity, we can conclude that

step 1 has an overall complexity of O(N logN). Similarly, the function at step 2 is computed

with complexity O(N logN), due to the presence of one convolution inside the triple sum in

(4.3).

From a practical point of view, the LMSD method has proven to be an effective tool for

DIC imaging, especially if compared to more standard gradient methods equipped with the BB

rules [13]. From a theoretical point of view, let us remark that LMSD can be seen as a special
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Algorithm ILA Inexact Linesearch based Algorithm (ILA)

Choose 0 < αmin ≤ αmax, ρ, ω ∈ (0, 1), γ ∈ [0, 1], τ > 0, φ(0) ∈ RN and set n = 0.

While True

1. Set αn = max
{

min
{
α
(0)
n , αmax

}
, αmin

}
, where α

(0)
n is chosen as in Algorithm LMSD.

2. Let ψ(n) = arg minφ∈Rn h(n)(φ) = proxαkJTV

(
φ(n) − αk∇J0(φ(n))

)
.

Compute ψ̃(n) such that

h(n)(ψ̃(n)) − h(n)(ψ(n)) ≤ −τ
2
h(n)γ (ψ̃(n)). (4.21)

where h
(n)
γ (ψ̃(n)) = ∇J0(φ(n))T (ψ̃(n)−φ(n)) + γ

2αk
‖ψ̃(n) −φ(n)‖2 + JTV (ψ̃(n))− JTV (φ(n)).

3. Set d(n) = ψ̃(n) − φ(n).

4. Compute the smallest non-negative integer in such that λn = ρin satisfies

J(φ(n) + λnd
(n)) ≤ J(φ(n)) + ωλnh

(n)
γ (ψ̃(n)). (4.22)

5. Compute the new point as φ(n+1) = φ(n) + λnd
(n).

If “Stopping Criterion” is satisfied

6. Return

Else

7. Set n = n+ 1.

EndIf

EndWhile

instance of Algorithm VMILAn in Chapter 3, if we set f1 = ιRn , Dk = In and γ = 0. This

allows to state that the sequence {φ(n)}n∈N converges to a limit point (if any exists) which is

stationary for J . In fact, ∇J is Lipschitz continuous (Lemma 4.2) and, in addition, J also

satisfies the Kurdyka– Lojasiewicz (KL) property. Indeed J0 is an analytic function (Lemma

4.1, part (iii)) and JTV is a semialgebraic function, which means that its graph is defined by

a finite sequence of polynomial equations and inequalities (see Definition 2.15 and Example

2.18 in Chapter 2). Since J is the sum of an analytic function and a semialgebraic one, this

is sufficient to conclude that it satisfies the KL property on RN . At this point, we invoke

Corollary 3.1, which states the convergence of the method.
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We now turn to the nonsmooth case δ = 0, which has been addressed by means of a sim-

plified version of VMILAn. In its general form, VMILAn exploits a variable metric in the

(possibly inexact) computation of the proximal point at each iteration, and a backtracking

loop to satisfy an Armijo–like inequality. Effective variable metrics can be designed for specific

objective functions either by exploiting the splitting gradient idea or the majorize-minimize

technique (see Section 3.3). However, since in the DIC problem the gradient of J0 does not

lead to a natural decomposition in the required form, in our tests we used the standard Eu-

clidean distance (we will denote with ILA this simplified version of VMILAn).

The main steps of ILA are detailed in Algorithm ILA. We recall that, at each iteration n,

given the point φ(n) ∈ RN and the parameters αn > 0, γ ∈ [0, 1], the metric function h
(n)
γ is

defined as

h(n)γ (φ) = ∇J0(φ(n))T (φ− φ(n)) +
γ

2αn
‖φ− φ(n)‖2 + JTV (φ) − JTV (φ(n)). (4.23)

By setting h(n) = h
(n)
1 and z(n) = φ(n) − αn∇J0(φ(n)), the proximal-gradient point is then

computed as

ψ(n) := proxαnJTV
(z(n)) = arg min

φ∈RN
h(n)(φ). (4.24)

In step 2 of Algorithm ILA, an approximation ψ̃(n) of the proximal point ψ(n) is defined by

means of condition (4.21). As already seen in Section 3.2.4, such a point can be practically

computed by remarking that JTV can be written as

JTV (φ) = g(Dφ), g(t) = µ
N∑

j=1

∥∥∥∥∥

(
t2j−1

t2j

)∥∥∥∥∥ , t ∈ R2N .

Then considering the dual problem of (4.24)

max
v∈R2N

Γ(n)(v), (4.25)

the dual function Γ(n) has the following form

Γ(n)(v) = −‖αnDT v − z(n)‖2
2αn

− g∗(v) − JTV (φ(n)) − αn

2
‖∇J0(φ(n))‖2 +

‖z(n)‖2
2αn

(4.26)

where the convex conjugate g∗ is the indicator function of the set
(
B2(0, µ)

)N
, being B2(0, µ) ⊂

R2 the 2-dimensional Euclidean ball centered in 0 with radius µ.

Condition (4.21) is fulfilled by any point ψ̃(n) = z(n) − αnA
T v(n) with v(n) ∈ R2N satisfying

h(n)(ψ̃(n)) ≤ ηΓ(n)(v(n)), η = 2/(2 + τ). (4.27)

If an iterative method is applied to the dual problem, generating a sequence {v(n,ℓ)}ℓ∈N such

that convergence is guaranteed for both the iterates and function values, and setting ψ̃(n,ℓ) =
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z(n) − αnA
T v(n,ℓ) for all ℓ, then (4.27) will be satisfied for all sufficiently large ℓ.

Since the gradient of f0 is Lipschitz continuous, Theorem 3.2 ensures that each limit point

of the ILA sequence is stationary.

4.2.2 Nonlinear conjugate gradient methods

We compare the performances of LMSD and ILA with several nonlinear conjugate gradient

methods, including some standard CG methods [104, 63] and the heuristic CG method pre-

viously used for DIC problems [117, 115]. The general scheme for a CG method is recalled

in Algorithm CG and some classical choices for the parameter βn+1 are shown in Table 4.1,

namely the Fletcher-Reeves (FR), Polak-Ribière (PR), PR with nonnegative values (PR+) and

PR constrained by the FR values (FR-PR) strategies [71].

Algorithm CG Conjugate gradient (CG) method

Choose φ(0) ∈ RN and set n = 0, p(0) = −∇J(φ(0)).

While True

1. Compute αn and set φ(n+1) = φ(n) + αnp
(n).

2. Choose the scalar parameter βn+1 according to the CG strategy used.

3. Define p(n+1) = −∇J(φ(n+1)) + βn+1p
(n).

If “Stopping Criterion” is satisfied

4. Return

Else

5. Set n = n+ 1.

EndIf

EndWhile

In order to ensure the global convergence of the FR and FR-PR methods, the steplength

parameter αn in step 1 must comply with the strong Wolfe conditions [71, 104]

J(φ(n) + αnp
(n)) ≤ J(φ(n)) + c1αn∇J(φ(n))T p(n)

|∇J(φ(n) + αnp
(n))T p(n)| ≤ c2|∇J(φ(n))T p(n)| (4.28)

where 0 < c1 < c2 <
1
2 . Concerning the PR methods, one can prove convergence if βn+1 is

chosen according to the PR+ rule and αn satisfies both (4.28) and the following additional
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CG algorithm βn+1

FR βFRn+1 =
∇J(φ(n+1))T∇J(φ(n+1))

∇J(φ(n))T∇J(φ(n))

PR βPRn+1 =
∇J(φ(n+1))T (∇J(φ(n+1)) −∇J(φ(n)))

∇J(φ(n))T∇J(φ(n))

PR+ βPR
+

n+1 = max(βPRn+1, 0)

FR-PR βFRPR
n+1 =

{
βPRn+1 if |βPRn+1| ≤ βFRn+1

βFRn+1 otherwise

Table 4.1: Choice of the parameter βn+1 in CG methods. From top to bottom: Fletcher-

Reeves (FR), Polak-Ribière (PR), Polak-Ribière with nonnegative βn+1 (PR+), Polak-Ribière

constrained by the FR method (FR-PR).

condition [71, 104]

∇J(φ(n))T p(n) ≤ −c3‖∇J(φ(n))‖2, 0 < c3 ≤ 1. (4.29)

For a practical implementation of a backtracking method to satisfy (4.28) see e.g. [104, Section

3.5], while for the addition of condition (4.29) see [71, Section 6]. In Section 4.3, the CG meth-

ods equipped with the FR, FR-PR, PR+ rules for the parameter βn+1, together with conditions

(4.28) for the linesearch parameter αn, will be denominated FR-SW, FR-PR-SW and PR+-SW

respectively, where SW stands for Strong Wolfe conditions.

Since in the DIC problem the evaluation of the gradient ∇J is computational demanding

and its nonlinearity w.r.t. α requires a new computation for each step of the backtracking loop,

in [117, 115] a heuristic version of the FR and PR methods is used exploiting a linesearch based

on a polynomial approximation method. The resulting scheme for the choice of αn is detailed in

Algorithm PA, even if we recognize that our routines might differ from those used in [117, 115]

due to the lack of several details crucial for reproducing their practical implementation. As we

will see in the next Section, this linesearch is quite sensitive to the choice of the parameter t.

Moreover, since the strong Wolfe conditions are not imposed, there is no guarantee that the FR

or PR methods endowed with this choice for αn converges, nor that p(n+1) is a descent direction

for all n. In the following, the CG methods equipped with the FR and PR rule, together with

the linesearch described in Algorithm PA, will be indicated as FR-PA and PR-PA respectively,

where PA stands for polynomial approximation.

4.3 Numerical experiments

In this section we test the effectiveness of the algorithms previously described in some synthetic

problems. All the numerical results have been obtained on a PC equipped with an INTEL Core
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Algorithm PA Linesearch based on polynomial approximation

Let ψ(α) := J(φ(n) + αp(n)) and set t > 0, a = 0, b = t.

Compute ψ(a) and ψ(b).

1. Find a point c ∈ [a, b] such that ψ(a) > ψ(c) < ψ(b) as follows

If ψ(b) < ψ(a)

Set c = 2b and compute ψ(c).

While ψ(c) ≤ ψ(b)

Set a = b, b = c, c = 2c and compute ψ(c).

EndWhile

Else

Set c = b
2 and compute ψ(c).

While ψ(c) ≥ ψ(a)

Set b = c, c = c
2 and compute ψ(c).

EndWhile

EndIf

2. Compute αn as the minimum point of the parabola interpolating the points

(a, ψ(a)), (b, ψ(b)), (c, ψ(c)).

i7 processor 2.60GHz with 8GB of RAM running Matlab R2013a with its standard settings.

The LMSD and ILA routines for the DIC problem together with an illustrative example can

be downloaded from [124].

4.3.1 Comparison between LMSD and CG methods

The evaluations of the various optimization methods discussed in Section 4.2 have been carried

out on two phantom objects (see Figure 4.5), which have been computed by using the formula

for the phase difference between two waves travelling through two different media

φs = 2π(n1 − n2)ts, (4.30)

where n1 and n2 are the refractive indices of the object structure and the surrounding medium,

respectively, and ts is the thickness of the object at pixel s ∈ χ. The first phantom, denominated

“cone” and reported at the top row of Figure 4.5, is a 64 × 64 phase function representing a

truncated cone of radius r = 3.2 µm with n1 = 1.33, n2 = 1 and maximum value φmax =
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1.57 rad attained at the cone vertex. The “cross” phantom, shown at the bottom row of Figure

4.5, is another 64× 64 phase function of two crossing bars, each one of width 5 µm, measuring

0.114 rad inside the bars and 0 in the background. For both simulations, the DIC microscope

parameters were set as follows:

• shear: 2∆x = 0.6 µm;

• bias: 2∆θ = π/2 rad;

• numerical aperture of the objective: NA = 0.9.

For each phantom, a dataset consisting of K = 2 polychromatic DIC images acquired at shear

angles τ1 = −π/4 rad and τ2 = π/4 rad was created, as in model (4.1), by convolving the true

phase function with the accordingly rotated DIC PSFs and then by corrupting the result with

white Gaussian noise at different values of the signal-to-noise ratio

SNR = 10 log10

(
φ∗

σ

)
(4.31)

where φ∗ is the mean value of the true object and σ is the standard deviation of noise. The

SNR values chosen in the simulations were 9 dB and 4.5 dB.

As far as the regularization parameter µ and the threshold δ in (4.10) are concerned,

these have been manually chosen from a fixed range in order to obtain a visually satisfactory

reconstruction. Note that the parameters were first set in the differentiable case (δ > 0) for

the LMSD and the nonlinear CG methods and then the same value of the parameter µ was

used also in the nondifferentiable case (δ = 0) for the ILA method. The values reported below

have been used for each simulation presented in this section. The resulting values have been

µ = 10−2, δ = 10−2 for the cone and µ = 4 · 10−2, δ = 10−3 for the cross.

Some details regarding the choice of the parameters involved in the optimization methods of

Section 4.2 are now provided. The linesearch parameters ρ, ω of the LMSD and ILA methods

have been respectively set to 0.5, 10−4. These are the standard choices for the Armijo param-

eters, however it is known that the linesearch algorithm is not so sensible to modifications of

these values [37, 112]. The parameter γ in the Armijo–like rule (3.24) has been fixed equal to

1, which corresponds to the mildest choice in terms of decrease of the objective function J .

The parameter m in Algorithm LMSD is typically a small value (m = 3, 4, 5), in order to avoid

a significant computational cost in the calculation of the steplengths α
(0)
n ; here we let m = 4.

The same choice for m is done in Algorithm ILA, where the values α
(0)
n are constrained in the

interval [αmin, αmax] with αmin = 10−5 and αmax = 102. As done in the experiments of the

previous chapter, the dual problem (4.25) is addressed, at each iteration of ILA, by means of

algorithm FISTA [14] which is stopped by using criterion (3.72) with η = 10−6. This value
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Figure 4.5: Data and results for the cone (top row) and cross (bottom row) objects. From left

to right: true object, noisy DIC color image taken at shear angle π
4 rad and corrupted with

white Gaussian noise at SNR = 4.5 dB, and reconstructed phase with the LMSD method from

observations at shear angles equal to −π/4 rad and π/4 rad.

represents a good balance between convergence speed and computational time per iteration

[32]. Concerning the nonlinear CG methods equipped with the strong Wolfe conditions, we

set c1 = 10−4 and c2 = 0.1 in (4.28) as done in [71] and we initialize the related backtracking

procedure as suggested in [104, p. 59]. Regarding the CG methods endowed with the polyno-

mial approximation detailed in Algorithm PA, a restart of the method is performed by setting

βn+1 = 0, hence by taking a steepest descent step, whenever the vector p(n+1) fails to be a

descent direction. Finally, the constant phase object φ(0) = 0 is chosen as initial guess for all

methods.

In order to evaluate the performance of the phase reconstruction methods proposed in

Section 4.2, we will make use of the following error distance

E(φ(n), φ∗) = min
c∈R

‖φ(n) − φ∗ − ce‖
‖φ∗‖ =

‖φ(n) − φ∗ − c̄e‖
‖φ∗‖ (4.32)

where φ∗ is the phase to be reconstructed and c̄ =
∑
j∈χ

(φ
(n)
j −φ∗

j )

N . Unlike the usual root mean

squared error, which is recovered by setting c = 0 in (4.32), the error distance defined in (4.32)
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Figure 4.6: Error versus computational time plots for the cone (top row) and cross (bottom

row) objects. From left to right: noise-free data, SNR = 9 dB and SNR = 4.5 dB.

is invariant with respect to phase shifts, i.e.

E(φ + ce, φ∗) = E(φ, φ∗), ∀φ ∈ RN , ∀c ∈ R. (4.33)

That makes the choice of (4.32) well-suited for problem (4.9), whose solution might be recov-

ered only up to a real constant.

The methods have been run for the cone and cross phantoms with the parameter setting

outlined in the previous subsection. The iterations of the LMSD and the CG methods have

been arrested when the stopping criterion (4.19) was met with κ = 10−3, while the ILA method

has been stopped when the error up-to-a-constant between two successive iterates was lower

than a prefixed κ > 0, that is
∥∥∥φ(n+1) − φ(n) −

(
φ(n+1) − φ(n)

)
e

∥∥∥
‖φ(n+1)‖ ≤ κ, (4.34)

where φ(n+1) − φ(n) is the mean value of the difference between the two objects. The tolerance

κ in (4.34) was set equal to 5 · 10−5 for the cone and 10−4 for the cross.

In Figure 4.6 we show the reconstruction error provided by the different methods as a func-

tion of the computational time. We start by comparing LMSD with the CG methods equipped
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with Algorithm PA (FR-PA, PR-PA) and the CG methods equipped with the Strong Wolfe

conditions (FR-SW, FR-PR-SW, PR+-SW). From the plots of Figure 4.6, it can be drawn that

each method is quite stable with respect to the noise level on the DIC images. However, in

terms of time efficiency, LMSD outperforms all the CG methods in the cone tests, showing

a time reduction of nearly 50% to achieve the smallest error. Furthermore, what emerges by

looking at Tables 4.2 and 4.3 is that the CG methods are much more computationally de-

manding than LMSD. For instance, in the case of the cone (Table 4.1), LMSD evaluates the

function on average less than 2 times per iteration. By contrast, the backtracking procedure

exploited in the FR, FR-PR and PR+ methods requires an average of 4 − 5 evaluations per

iteration of both the function and gradient to satisfy the strong Wolfe conditions, whereas the

FR-PA and PR-PA methods, despite evaluating the gradient only once, need on average 10−12

evaluations of the function before detecting the three-points-interval described in Algorithm

PA. One could reduce the number of evaluations in FR-PA and PR-PA by properly tuning

the parameter t in Algorithm PA. However, as it is evident from Table 4.4, these methods

are quite sensitive to the choice of t, as little variations of this parameter might result in a

great increase of the number of restarts and, eventually, in the divergence of the algorithm. In

addition, it seems that the optimal value of t strictly depends on the object to be reconstructed.

4.3.2 Comparison between LMSD and ILA

We now compare the performances of LMSD and ILA. On one hand, ILA reconstructs the

cross object slightly better than LMSD. Indeed, ILA provides the lowest reconstruction error

in Table 4.3 for each SNR value and the corresponding phase estimates have better preserved

edges, as clearly depicted in Figure 4.7, where we consider the following “up-to-a-constant”

residual

Rj =
∣∣φj − φ∗j − φ− φ∗

∣∣ , ∀j ∈ χ (4.35)

to measure the quality of the reconstructions provided by the two methods. This result was

expected, since ILA addresses problem (4.9) with the standard TV functional (δ = 0 in (4.10)),

which is more suited than HS regularization (δ > 0) when the object to be reconstructed is

piecewise-constant. On the other hand, ILA may be computationally more expensive since, un-

like LMSD, it requires to iteratively solve the inner subproblem (4.25) at each outer iteration.

Indeed, looking at Table 4.3 we notice that, although the number of function evaluations per

iteration in LMSD and ILA is quite similar (on average around 1.4 for LMSD and 1.8 for ILA)

and the ILA iterations are stopped way before the LMSD ones, the computational time in ILA

is always higher. For instance, in the case SNR = 9 dB, the methods require approximately

the same time, although the number of iterations of ILA is more than halved. This fact is

explained if we look at the average number of inner iterations required by ILA to compute

the approximate proximal point: 21.3, 10.11 and 13.43 for SNR = ∞, 9, 4.5 dB respectively.

Analogous conclusions can be drawn by considering the results on the cone object (see Table
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SNR (dB) Algorithm Iterations # f # g Time (s) Obj fun Error

∞

FR–PA 280 3016 280 14.60 0.89 2.72 %

PR–PA 168 2137 168 10.10 0.89 2.66 %

FR–SW 183 770 770 11.08 0.89 2.73 %

FR-PR–SW 127 514 514 7.41 0.89 2.71 %

PR+–SW 129 504 504 7.32 0.89 2.71 %

LMSD 153 212 153 2.77 0.89 2.60 %

ILA 66 119 66 1.77 0.52 1.76 %

9

FR–PA 306 3245 306 15.79 1.65 2.85 %

PR–PA 188 2393 188 11.41 1.65 2.80 %

FR–SW 194 804 804 11.60 1.65 2.85 %

FR-PR–SW 134 520 520 7.61 1.65 2.84 %

PR+–SW 144 734 734 10.61 1.65 2.84 %

LMSD 149 197 149 2.61 1.65 2.75 %

ILA 60 91 60 1.56 1.29 1.91 %

4.5

FR–PA 347 3696 347 18.08 6.88 3.26 %

PR–PA 146 1858 146 8.84 6.88 3.24 %

FR–SW 204 867 867 12.58 6.88 3.26 %

FR-PR–SW 152 492 492 7.24 6.88 3.26 %

PR+–SW 144 701 701 10.22 6.88 3.26 %

LMSD 163 228 163 2.90 6.88 3.17 %

ILA 61 104 61 1.56 6.80 2.50 %

Table 4.2: Cone tests. From left to right: number of iterations required to meet the stopping

criteria, number of function and gradient evaluations, execution time, objective function value

and error achieved at the last iteration.

4.2).

In order to deepen the analysis between the differentiable TV approximation and the orig-

inal nondifferentiable one, we compared the LMSD and ILA methods in one further realistic

simulation. In particular, we considered the “grid” object in Figure 4.8, which is a 1388× 1040

image emulating the phase function of a multi-area calibration artifact [119, 125], which mea-

sures 1.212 rad inside the black regions and 2.187 rad inside the white ones. The setup of

the two methods is identical to that of the previous tests (with the exception of the numeri-

cal aperture of the objective NA which has been set equal to 0.8), and the parameters µ (for

both models) and δ (for the smooth TV functional) have been set equal to 2 · 10−1 and 10−1,

respectively. Instead of three levels of noise, here we only considered a SNR equal to 9 dB. In

Figure 4.9 we report the behaviour of the error (4.32) as a function of time and the number of

inner iterations needed by ILA to address problem (4.25)–(3.72).
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SNR (dB) Algorithm Iterations # f # g Time (s) Obj fun Error

∞

FR–PA 412 2618 412 14.75 1.01 1.98 %

PR–PA 138 1373 138 6.73 1.01 1.98 %

FR–SW 411 2768 2768 39.27 1.01 1.98 %

FR-PR–SW 109 423 423 6.14 1.01 1.98 %

PR+–SW 116 438 438 6.32 1.01 1.98 %

LMSD 168 231 168 3.09 1.01 2.00 %

ILA 100 176 100 7.18 0.87 1.66 %

9

FR–PA 391 2490 391 13.77 1.96 2.25 %

PR–PA 121 1209 121 5.97 1.96 2.26 %

FR–SW 388 2417 2417 34.18 1.96 2.25 %

FR-PR–SW 106 323 323 4.69 1.96 2.25 %

PR+–SW 109 375 375 5.41 1.96 2.25 %

LMSD 140 190 140 2.52 1.96 2.27 %

ILA 57 106 57 2.60 1.82 1.94 %

4.5

FR–PA 303 2164 303 11.74 8.57 3.63 %

PR–PA 98 997 98 4.97 8.57 3.63 %

FR–SW 299 1705 1705 24.28 8.57 3.63 %

FR-PR–SW 96 300 300 4.41 8.57 3.63 %

PR+–SW 98 326 326 4.74 8.57 3.63 %

LMSD 152 221 152 2.75 8.57 3.64 %

ILA 97 179 97 5.26 8.47 3.46 %

Table 4.3: Cross tests. From left to right: number of iterations required to meet the stopping

criteria, number of function and gradient evaluations, execution time, objective function value

and error achieved at the last iteration.

The grid dataset confirms the remarks previously done, since ILA takes almost twice the

time than LMSD to provide an estimate of the phase. This is again due to the number of

inner iterations, which starts to oscillatory increase after the first 20 iterations (see Figure 4.9).

To conclude, we reckon that the LMSD method is generally preferable since, unlike ILA, it

does not require any inner subproblem to be solved and thus it is generally less expensive from

the computational point of view. However, the ILA method should be considered as a valid

alternative when the object to be reconstructed is piecewise-constant.
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Dataset t Iterations # f Time (s) Obj fun Error Restarts

10−4 500 4272 24.57 8.57 3.63 % 8

Cross 10−3 500 2911 19.66 8.57 3.63 % 6

- 5 · 10−3 500 3073 19.63 8.57 3.63 % 1

SNR 10−2 500 5337 28.97 8.57 3.63 % 21

4.5 dB 5 · 10−2 500 2023 15.22 8.59 3.91 % 424

10−1 500 2032 15.44 8.88 5.05 % 365

10−3 500 4788 26.13 6.88 3.27 % 0

Cone 10−2 500 3260 19.84 6.88 3.27 % 0

- 10−1 500 2126 15.86 6.88 3.27 % 3

SNR 2 · 10−1 500 2427 16.78 6.88 3.27 % 0

4.5 dB 2.25 · 10−1 500 1610 13.39 1507.4 130.94 % 41

2.5 · 10−1 500 1713 13.67 2373.4 315.50 % 87

Table 4.4: Setting the parameter t in the PR-PA algorithm.
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Figure 4.7: Cross test. The residuals defined in (4.35) for the reconstructions provided by

LMSD and ILA, respectively, when the acquired images are corrupted with SNR = 9 dB.

4.3.3 Influence of color and bias retardation on phase reconstruction

Another analysis of our interest was to observe how color information and bias retardation in the

observations affect the behavior of phase reconstruction. We set four scenarios for comparison:

independent monochromatic observations with red, green, and blue light, and polychromatic

observation where all wavelengths are combined. For each of these scenarios we used the cross

object to generate 100 observations at different realizations of noise, for both SNR = 4.5 dB

and SNR = 9 dB, and bias retardation of 0 rad and π/2 rad, at shear angles equal to −π/4 rad

and π/4 rad. We tested the LMSD method to perform the reconstructions; results for SNR =
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Figure 4.8: Data and results for the grid object. From left to right: true object, noisy DIC

color image taken at shear angle π
4 rad and corrupted with white Gaussian noise at SNR = 9

dB, and reconstructed phase with the LMSD method from observations at shear angles equal

to −π/4 rad and π/4 rad.
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Figure 4.9: Grid test. From left to right: error versus time plots for LMSD and ILA and

number of inner iterations versus number of outer iterations for ILA.

4.5 dB are shown in Figure 4.10 and for SNR = 9 dB in Figure 4.11.

The lines show the average error over the 100 observations. It is noticed that for 0 rad

bias retardation, the reconstruction for polychromatic observations behave better than for the

monochromatic ones, even though the amount of error is not promising of a good reconstruction.

For π/2 rad bias retardation the algorithm stops before the maximum number of iterations (500)

is reached. In this case, for both levels of noise, the performance of the reconstruction with

polychromatic light is quite comparable with monochromatic light. Another interesting finding

about the convergence for monochromatic light, is that for all cases, it happens in the order

red-green-blue; this is due to the fact that the amplitude PSF for blue light has the bigger

frequency support, thus provides more information for reconstruction.
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Figure 4.10: Average error comparison between monochromatic and polychromatic reconstruc-

tions. SNR = 4.5 dB. Left: bias 0 rad; right: bias π/2 rad.
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Figure 4.11: Average error comparison between monochromatic and polychromatic reconstruc-

tions. SNR = 9 dB. Left: bias 0 rad; right: bias π/2 rad.





Chapter 5

A cyclic block generalized gradient

projection method

This chapter deals with the following optimization problem

min
x∈Ω

f(x) (5.1)

where Ω = Ω1 × . . .Ωm, with Ωi ⊆ Rni closed and convex subset,
∑m

i=1 ni = n, so that any

x ∈ Ω can be block partitioned as x = (xT1 , . . . , x
T
m)T , xi ∈ Rni , and f : Ω → R is a continuously

differentiable function.

Problem (5.1) is typically tackled by using the nonlinear Gauss-Seidel (GS) method [22,

p. 267], also known as nonlinear block coordinate descent or alternating optimization method,

which is based on the idea of performing successive minimizations over each block of the function

f . In particular, at each iteration k ∈ N, the iterate x(k+1) = (x
(k+1)
1 , . . . , x

(k+1)
m ) is computed

such that each component x
(k+1)
i , i = 1, . . . ,m, is a solution of the subproblem

x
(k+1)
i ∈ argmin

x∈Ωi

f(x
(k+1)
1 , . . . , x

(k+1)
i−1 , x, x

(k)
i+1, . . . , x

(k)
m ). (5.2)

The GS method is often useful in applications where the objective function and the constraints

have a partially decomposable structure, such as nonnegative matrix factorization [87, 92] or

blind deconvolution [113, 114].

The convergence of the GS scheme has been studied in several works [109, 76, 77, 139, 23]

and is guaranteed in the following cases:

• if m = 2, then each limit point of the sequence {x(k)}k∈N generated by the GS method

is stationary, without further assumptions nor on the subproblem (5.2) or the objective

function [77];

• if m ≥ 3, one has either to ask that each subproblem (5.2) has a unique solution for i =

1, . . . ,m, or impose some additional convexity assumptions (i.e. that f is pseudoconvex

143
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or f is componentwise strictly quasi convex with respect to m − 2 blocks of variables)

in order to guarantee the stationarity of the limit points [77, 139]; without one of these

assumptions holding, the GS method may fail to locate stationary points, as the famous

Powell’s counterexample shows [109].

Note that the aforementioned requirements on the objective function and the subproblems (5.2)

are quite restrictive and, in addition, computing an exact minimum of f , even if restricted to

a single block, can be impractical. To overcome these limitations, effective methods capable of

handling general nonconvex problems and with global convergence properties have been devised

by performing inexactly the partial minimization over each block of variables [30, 39, 76].

In this light, we further develop the cyclic block gradient projection method proposed in

[30], allowing for generalized projections based on non Euclidean distances. In particular, we

propose a block coordinate gradient projection method which, at each outer iteration k, applies

a finite number of inner iterations of the form

x(k+1) = x(k) + λk(y(k) − x(k))

to each subproblem of type (5.2), where λk ∈ (0, 1] is the Armijo line–search parameter and

y(k) is defined as

y(k) = argmin
y∈Rn

hσ(k)(y, x(k))

where hσ is a suitable convex function depending on the array of parameters σ ∈ Rq. We show

that any limit point of the generated sequence is stationary without any convexity assumption.

Our general framework includes, but it is not limited to, several state-of-the-art methods, such

as the scaled gradient projection method [37], the spectral projected gradient method [25], the

cyclic block gradient projection method [30] and the successive convex approximation algorithm

[123].

The outline of the chapter is now detailed. Section 5.1 is concerned with the analysis of

the proposed block coordinate descent algorithm: in particular, in Section 5.1.1 we devise the

properties of the operator hσ, which allow to define a class of generalized projection operators,

whereas in Section 5.1.2 we present the algorithm and develop the related convergence analysis.

Section 5.2 is devoted to some illustrative numerical examples in image blind deconvolution

from a single image. Finally, in Section 5.3 we apply our method to the problem of Poisson

blind deconvolution from multiple images.

5.1 The proposed algorithm

5.1.1 Generalized gradient projections

In this section we give the definition of a generalized projection operator, providing some

examples of well-known functions belonging to this category.
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Definition 5.1. Let S ⊆ Rq. A family of metric functions associated to f on Ω is any set

of the form H(f,Ω, S) = {hσ}σ∈S where, for any choice of the parameter σ ∈ S, the function

hσ : Ω × Ω → R satisfies the following properties:

(H1) hσ is continuously differentiable;

(H2) hσ is convex with respect to its first argument, i.e.

hσ(y, z) ≥ hσ(x, z) + ∇1hσ(x, z)T (y − x) ∀x, y, z ∈ Ω (5.3)

where ∇1hσ(x, z) is the gradient of hσ(·, z) at the point x and, for any z ∈ Ω, hσ(·, z)
admits a unique minimum point;

(H3) for any point x ∈ Ω and for any feasible direction d ∈ Rn we have

∇1hσ(x, x)T d = ∇f(x)Td; (5.4)

(H4) hσ continuously depends on the parameter σ.

Furthermore, the associated generalized gradient projection operator p( · ;hσ) : Ω → Ω is

defined as

p(x;hσ) = arg min
z∈Ω

hσ(z, x) ∀x ∈ Ω. (5.5)

Example 5.1. Properties (5.3)–(5.4) are satisfied when the function hσ is defined as

hσ(x, y) = ∇f(y)T (x− y) + dσ(x, y), (5.6)

where dσ ∈ D(Ω, S) is a distance-like function Ω in the sense of Definition 3.1. In these settings

we can find:

a) the standard Euclidean projection p(x;hσ) = PΩ(x− σ∇f(x)), obtained by choosing

dσ(x, y) =
1

2σ
‖x− y‖2, σ > 0; (5.7)

b) the scaled Euclidean projection p(x;hσ) = PΩ,D(x − αD−1∇f(x)) corresponding to the

choice

d(α,D)(x, y) =
1

2α
(x− y)TD(x− y). (5.8)

In this case the array of parameters σ is given by the pair (α,D), where α > 0 and

D ∈ Rn×n is a symmetric positive definite matrix;

c) the Bregman distance associated to a strongly convex function ψ : Ω → R, which is

defined as

dσ(x, y) =
1

σ
(ψ(x) − ψ(y) −∇ψ(y)T (x− y)), σ > 0. (5.9)
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Example 5.2. If f is convex, a further class of functions satisfying the properties of Definition

5.1 is given by

hσ(x, y) = f(x) + dσ(x, y), (5.10)

where again dσ ∈ D(Ω, S). If dσ is chosen as in (5.7), the resulting p(·, hσ) is the proximal

operator of f .

Example 5.3. Let f = f0 + f1, where f0, f1 : Ω → R are both continuously differentiable and

f1 is convex. The metric function given in Definition (3.5), i.e.

hσ(x, y) = ∇f0(y)T (x− y) + dσ(x, y) + f1(x) − f1(y) ∀x, y ∈ Ω, (5.11)

with dσ ∈ D(Ω, S), belongs to H(f,Ω, S). The associated operator p(·, hσ) is the generalized

forward–backward operator defined in Chapter 3. If dσ reduces to (5.7), one recovers the

proximal–gradient operator.

Any function hσ ∈ H(f,Ω, S) can be exploited to define a descent direction for problem

(5.1), as stated in the following proposition.

Proposition 5.1. Let x ∈ Ω, σ ∈ S ⊆ Rq, hσ ∈ H(f,Ω, S) and

y = p(x;hσ). (5.12)

Then we have that

∇f(x)T (y − x) ≤ 0 (5.13)

and the equality holds if and only if y = x.

Proof. Inequality (5.3) with z = x yields

∇1hσ(x, x)T (y − x) ≤ hσ(y, x) − hσ(x, x) ≤ 0,

where the rightmost inequality follows from (5.5) and, since the minimum point of hσ(·, x) is

unique, the equality holds if and only if x = y. Then, the thesis follows recalling (5.4).

In the following proposition, we show that the stationary points of (5.1) can be characterized

as fixed points of the generalized projection operator (5.5).

Proposition 5.2. Let S ⊆ Rq, σ ∈ S and hσ ∈ H(f,Ω, S). A point x ∈ Ω is a stationary

point for problem (5.1) if and only if x = p(x;hσ).

Proof. Assume that for a point x∗ ∈ Ω the following equality holds:

x∗ = arg min
x∈Ω

hσ(x, x∗).
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Then, the stationarity of x∗ yields

∇1hσ(x∗, x∗)T (x− x∗) ≥ 0 ∀x ∈ Ω.

Since by assumption (5.4) we have ∇1hσ(x∗, x∗)T (x − x∗) = ∇f(x∗)T (x − x∗), it follows that

x∗ is a stationary point for problem (5.1).

Conversely, let x∗ ∈ Ω be a stationary point of (5.1) and define

x̄ = arg min
x∈Ω

hσ(x, x∗).

Assume by contradiction that x∗ 6= x̄. Then, combining (5.3) with x = z = x∗, y = x̄ and (5.4)

we obtain

∇f(x∗)T (x̄− x∗) ≤ hσ(x̄, x∗) − hσ(x∗, x∗) < 0,

where the last inequality follows from the fact that x̄ is the unique minimum point of hσ(·, x∗)

and x∗ 6= x̄. This contradicts the stationarity assumption on x∗.

5.1.2 Algorithm and convergence analysis

In this section we consider problem (5.1) where the constraint set has the following separable

structure

Ω = Ω1 × . . .Ωm, Ωi ⊆ Rni ,

m∑

i=1

ni = n (5.14)

so that any x ∈ Ω can be block partitioned as x = (xT1 , . . . , x
T
m)T , xi ∈ Rni .

Algorithm BLS Block Armijo linesearch algorithm

Let {z(k)}k∈N be a sequence of points in Ω and {d(k)i }k∈N a sequence of descent directions, for

a given i ∈ {1, ...,m}. Fix δi, β ∈ (0, 1) and compute λ
(k)
i as follows:

1. Set λ
(k)
i = 1;

2. If

f(z
(k)
1 , ..., z

(k)
i + λ

(k)
i d

(k)
i , ..., z(k)m ) ≤ f(z(k)) + βλ

(k)
i ∇if(z(k))Td

(k)
i (5.15)

Then go to step 3.

Else set λ
(k)
i = δiλ

(k)
i and go to step 2.

3. End

The key ingredients of our approach are the sufficient decrease of the objective function

enforced by a block version of the classical Armijo backtracking procedure (1.12), which is
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reported in Algorithm BLS, and a suitable metric function hσ ∈ H(f,Ω, S) defined so that it

is separable with respect to the partition in (5.14).

In the following proposition we give conditions which guarantee that Algorithm BLS is well

defined, and can be considered as a special case of Proposition 3.4, from which its proof can

be derived.

Proposition 5.3. Let {z(k)}k∈N be a sequence of points in Ω. Assume that z(k) converges to

some z̄ and for i ∈ {1, ...,m} let {d(k)i }k∈N be a sequence of feasible directions such that

(A1) there exists a number M > 0 such that ‖d(k)i ‖ ≤M for all k ∈ N;

(A2) we have ∇if(z(k))Td
(k)
i < 0 for all k ∈ N, where ∇if(z(k)) denotes the partial gradient of

f w.r.t. the i−th block of variables at the point z(k);

(A3) we have lim
k→∞

f(z(k)) − f(z
(k)
1 , ..., z

(k)
i + λ

(k)
i d

(k)
i , ..., z(k)m ) = 0, where λ

(k)
i is computed with

Algorithm BLS.

Then, for each k ∈ N the LS procedure terminates in a finite number of steps and, furthermore,

limk→∞∇if(z(k))Td
(k)
i = 0.

In order to formally introduce the proposed method, we choose the metric function hσ ∈
H(f,Ω, S), where S = S1× ...×Sm, Si ⊂ Rqi, such that the parameter σ can be partitioned as

σ = (σ1, . . . , σm). Moreover, we define hσ so that it is separable over the m blocks with respect

to its first variable, i.e.

hσ(x, y) =

m∑

i=1

hiσi
(xi, y), (5.16)

where the functions hiσi
: Ωi × Ω → R satisfy the following conditions:

(BH1) hiσi
is continuously differentiable;

(BH2) hiσi
is convex with respect to its first argument and admits a unique minimum point;

(BH3) for any point x ∈ Ω and for any vector d ∈ Rni such that xi + d ∈ Ωi we have

∇1h
i
σi

(xi, x)Td = ∇if(x)Td, (5.17)

where ∇if(x) denotes the gradient of f with respect to the i–th block of variables;

(BH4) hiσi
continuously depends on the parameter σi ∈ Rqi.

It is easy to see that the metric function hσ defined in (5.16), thanks to the assumptions (BH1)–

(BH4), belongs to H(f,Ω, S) and the associated generalized gradient projection can be also

partitioned by blocks as

p(x;hσ) =



p1(x;h1σ1

)
...

pm(x;hmσm
)


 , where pi(x;hiσi

) = arg min
zi∈Ωi

hiσi
(zi, x). (5.18)
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Lemma 5.1. Let x ∈ Ω and σ ∈ S ⊆ Rq. Then,

(i) x is stationary for problem (5.1) if and only if pi(x;hiσi
) = xi ∀i = 1, . . . ,m;

(ii) ∇if(x)T (pi(x;hiσi
) − xi) ≤ 0 ∀i = 1, . . . ,m and the equality holds if and only if xi =

pi(x;hiσi
).

Proof. Part (i) of the previous Lemma directly follows from (5.18) and from Proposition 5.2,

while part (ii) can be easily proved by employing the same arguments as in the proof of

Proposition 5.1.

Algorithm CBGGP Cyclic Block Generalized Gradient Projection Method

Define a compact set S and a metric hσ ∈ H(f,Ω, S) as in (5.16). Choose β, δ ∈ (0, 1).

Choose x(0) ∈ Ω and the upper bounds for the inner iterations numbers L1, . . . , Lm.

For k = 0, 1, 2, ...

1 Set z(k, 0) = x(k)

2 For i = 1, ...,m

2.1 Set x
(k,0)
i = x

(k)
i

2.2 Choose the inner iterations number L
(k)
i ≤ Li

2.3 For ℓ = 0, ..., L
(k)
i − 1

2.3.0 Set x̃(k,ℓ) = (x
(k+1)
1 , . . . , x

(k+1)
i−1 , x

(k,ℓ)
i , x

(k)
i+1, . . . , x

(k)
m )

2.3.1 Choose the parameter σ
(k,ℓ)
i ∈ Si

2.3.2 Compute the descent direction d
(k,ℓ)
i = pi(x̃

(k,ℓ);hi
σ
(k,ℓ)
i

) − x
(k,ℓ)
i and set d̃(k,ℓ) =

(0, . . . , 0, d
(k,ℓ)
i , 0, . . . , 0)

2.3.3 Compute with Algorithm BLS the Armijo steplength λ
(k,ℓ)
i such that

f(x̃(k,ℓ) + λ
(k,ℓ)
i d̃(k,ℓ)) ≤ f(x̃(k,ℓ)) + βλ

(k,ℓ)
i ∇if(x̃(k,ℓ))Td

(k,ℓ)
i

2.3.4 Set x
(k,ℓ+1)
i = x

(k,ℓ)
i + λ

(k,ℓ)
i d

(k,ℓ)
i

End

2.4 Set x
(k+1)
i = x

(k,L
(k)
i

)
i

2.5 Set z(k, i) = (x
(k+1)
1 , ..., x

(k+1)
i , x

(k)
i+1, ..., x

(k)
m )

End

3 Set x(k+1) = z(k,m)

End
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The previous results can be exploited to design a cyclic block generalized gradient projection

(CBGGP) method [36, 126], whose steps are outlined in Algorithm CBGGP. Before analysing

the convergence properties of this approach, we observe that it is a descent method and, in

particular, the objective function is nonincreasing over the partial updates z(k, i), i = 0, ...,m,

k = 1, 2, ... defined at step 2.5. Indeed, the following inequalities hold

f(z(k, i+ 1)) ≤ f(z(k, i)) + βλ
(k,0)
i+1 ∇i+1f(z(k, i))T d

(k,0)
i+1 ≤ f(z(k, i))

which also implies

f(z(k + 1, 0)) = f(z(k,m)) ≤ f(z(k, i + 1)) (5.19)

≤ f(z(k, i)) ≤ f(z(k, 0)) = f(z(k − 1,m)).

We are now ready to give the first result about Algorithm CBGGP.

Proposition 5.4. Let {x(k)}k∈N be the sequence generated by Algorithm CBGGP. Suppose that

for some i ∈ {0, ...,m} the sequence {z(k, i)}k∈N admits a limit point z̄. Then pi+1(z̄;hi+1
σi+1

) =

z̄i+1 ∀σi+1 ∈ Si+1 if i < m, while p1(z̄;h1σ1
) = z̄1 ∀σ1 ∈ S1 if i = m.

Proof. Suppose first that i < m. From Lemma 5.1, we only need to show that there exists

σ̄i+1 ∈ Si+1 such that equality pi+1(z̄;hi+1
σ̄i+1

) = z̄i+1 holds.

Assume by contradiction that pi+1(z̄;hi+1
σi+1

) 6= z̄i+1 for all σi+1 ∈ Si+1. Let K be the set of

indices such that {z(k, i)}k∈K converges to z̄ and {σ(k,0)i+1 }k∈K converges to some σ̄i+1 ∈ Si+1.

If ‖pi+1(z̄;hi+1
σi+1

) − z̄i+1‖ = 2ǫ > 0, the continuity of the generalized projection operator with

respect to all its arguments guarantees that, for k ∈ K being sufficiently large, we have

‖d(k,0)i+1 ‖ > ǫ > 0,

where d
(k,0)
i+1 = pi+1(z(k, i);h

i+1

σ
(k,0)
i+1

)− x
(k)
i+1 (see also Step 2.3.2 of Algorithm CBGGP). Then, by

applying Lemma 5.1 (ii) we have

∇i+1f(z(k, i))T d
(k,0)
i+1 ≤ −η < 0, (5.20)

where η is some positive scalar. On the other hand, inequalities (5.19) guarantee that, for all

i, we have limk→∞ f(z(k, i)) = f(z̄), thus we obtain that

lim
k→∞

f(z(k, i)) − f(x
(k+1)
1 , ..., x

(k+1)
i , x

(k)
i+1 + λ

(k,0)
i+1 d

(k,0)
i+1 , ..., x

(k)
m ) = 0.

Moreover, since {z(k, i)}k∈K is a convergent sequence, it is also bounded. Therefore the se-

quence {d(k,0)i+1 }k∈K is bounded and Proposition 5.3 implies that

lim
k→∞,k∈K

∇i+1f(z(k, i))T d
(k,0)
i+1 = 0,

which contradicts (5.20).

The same arguments can be applied also when i = m, since z(k,m) = z(k + 1, 0).
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The previous proposition is crucial for proving the main convergence result for Algorithm

CBGGP, given below.

Theorem 5.1. Let {x(k)}k∈N be the sequence generated by Algorithm CBGGP and assume that

x̄ is a limit point of {x(k)}k∈N. Then x̄ is a limit point also for the sequences {z(k, i)}k∈N for

any i = 1, ...,m − 1 and it is a stationary point for problem (5.1).

Proof. The proof runs by induction on the block index i and on the inner iteration number ℓ and

it is similar to that of Theorem 4.2 in [30]. Since x̄ is a limit point for {x(k)}k∈N = {z(k, 0)}k∈N,

from Proposition 5.4 it follows that, denoting by K0 a set of indices such that {x(k)}k∈K0

converges to x̄ and {σ(k,0)1 }k∈K0 converges to some σ̄01 ∈ S1, we have p1(x̄;h1
σ̄0
1
) = x̄1 and

limk→∞,k∈K0 ‖d
(k,0)
1 ‖ = 0.

From step 2.3.4 of Algorithm CBGGP, it follows that limk→∞,k∈K0 ‖x
(k,1)
1 − x

(k)
1 ‖ = 0, i.e., x̄1

is a limit point also for the sequence {x(k,1)1 }k∈N.

Introducing a subset of indices K1 ⊆ K0 such that the sequence {x(k,1)1 }k∈K1 converges to x̄1
and {σ(k,1)1 }k∈K1 converges to some σ̄11, we have

lim
k→∞,k∈K1

d
(k,1)
1 = lim

k→∞,k∈K1

p1((x
(k,1)
1 , x

(k)
2 , ..., x(k)m );h1

σ
(k,1)
1

) − x
(k,1)
1

= p1(x̄;h1σ̄1
1
) − x̄1 = 0,

where the second equality follows from the continuity of the generalized projection operator

and the third one is a consequence of Proposition 5.4.

Using the same arguments, by induction on ℓ we can conclude that, for each ℓ = 0, ..., L1 − 1,

there exists a suitable subset of indices Kℓ such that limk→∞,k∈Kℓ
d
(k,ℓ)
1 = 0 and we obtain

‖x(k+1)
1 − x

(k)
1 ‖ ≤

L
(k)
1∑

ℓ=0

λ
(k,ℓ)
1 ‖d(k,ℓ)1 ‖ ≤

L1∑

ℓ=0

λ
(k,ℓ)
1 ‖d(k,ℓ)1 ‖ k→∞,k∈K̄1−−−−−−−→ 0,

where K̄1 = ∩L1−1
ℓ=0 Kℓ. Thus, the point x̄ is a limit point also for the sequence {z(k, 1)}k∈N =

{(x
(k+1)
1 , x

(k)
2 , ..., x

(k)
m )}k∈N, and Proposition 5.4 ensures that p2(x̄;h2

σ̄0
2

) = x̄2 for some σ̄02 ∈ S2.

Proceeding by induction on i and employing the same arguments used for i = 1, we prove that

x̄ is a limit point of the sequences {z(k, i)}k∈N for any i = 1, ...,m − 1. As a result of this,

invoking again Proposition 5.4, we can conclude that for any i = 1, ...,m there exist σi ∈ Si
such that pi(x̄;hiσi

) = x̄i. Therefore, by Lemma 5.1 (i) we can conclude that x̄ is a stationary

point of problem (5.1).

5.2 Application in image blind deconvolution from a single im-

age

In this section we consider a relevant application and we show that it can be effectively solved

by algorithms which can be framed in the analysis of the previous sections. We give also some
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guidelines on how to choose the parameter σ at each iteration. The application we consider is

the image blind deconvolution problem in presence of either Gaussian or Poisson noise. Our

basic assumption is that the available data g ∈ Rp2 is a realization of a Gaussian/Poisson

random variable whose mean is ω⊗f + be, where ω ∈ Rp2 is an unknown point spread function

(PSF), ⊗ denotes the convolution operator (periodic boundary conditions are assumed), b is a

positive parameter representing the background radiation, e ∈ Rp2 is the vector of all ones and

f ∈ Rp2 is the image we would like to recover. In the following, we will assume that the PSF

ω is normalized to one.

5.2.1 Gaussian noise

For the Gaussian noise tests we follow a maximum a posteriori approach [20] and consider the

optimization problem

min
f∈Ωf ,ω∈Ωω

J(f, ω) ≡ LS(f, ω) + ρ1R1(f) + ρ2R2(ω), (5.21)

where LS is the least-squares distance

LS(f, ω) =
1

2
‖ω ⊗ f + be− g‖22, (5.22)

ρ1, ρ2 are positive regularization parameters and R1, R2 are differentiable and convex regu-

larization terms. The feasible sets Ωf and Ωω have been chosen according to the physical

features of the imaging problem, since we restricted the analysis to non-negative images f and

non-negative and normalized PSFs:

Ωf = {f ∈ Rp2 | f ≥ 0},

Ωω = {ω ∈ Rp2 | ω ≥ 0,

p2∑

i=1

ωi = 1}.

We considered two images, called “satellite” and “crab”, the former one being the satellite

image frequently used in several papers on image deblurring [5, 38, 137] and the latter one

being the Hubble Space Telescope (HST) image of the crab nebula NGC 1952, exploited in

astronomical image deconvolution tests [18, 19, 52, 112]. The 256 × 256 satellite image has

values in the range [0, 2.52 · 10−4] and has been artificially blurred with an out-of-focus PSF

with radius equal to 4. A constant background equal to one tenth of max(f) has been added

to the resulting image before corrupting it with 5% Gaussian noise. For this dataset, we chose

the two regularization terms R1 and R2 equal to the hypersurface potential [2, 19]

RHS(x) =

p∑

i,j=1

√
((Dx)i,j)

2
1 + ((Dx)i,j)

2
2 + ν2, (5.23)



Application in image blind deconvolution from a single image 153

where ν is a positive parameter and the discrete gradient operator D : Rp2 −→ R2p2 is set

through the standard finite difference with periodic boundary conditions

(Dx)i,j =

(
((Dx)i,j)1
((Dx)i,j)2

)
=

(
xi+1,j − xi,j
xi,j+1 − xi,j

)
, xp+1,j = x1,j , xi,p+1 = xi,1. (5.24)

As concerns the crab dataset, the target image is still sized 256 × 256 and has values in the

range [0, 3.58 · 105]. The procedure used to produce the noisy crab image is that exploited

for the satellite, but in this case the original image has been blurred with an Airy function

[1] mimicking the ideal acquisition of one mirror of the Large Binocular Telescope (LBT –

http://www.lbto.org). Due to the smoother content of the image to be restored, for the crab

dataset we used as regularization terms R1 and R2 the Tikhonov functional [138]

RT (x) = ‖x‖22. (5.25)

The original and noisy images for both the satellite and the crab datasets are shown in Figure

5.1.

Figure 5.1: Satellite (top) and crab (bottom) test problems: original target (left) and blurred

and noisy image (right).
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As for the reconstruction algorithms, thanks to the separability of the constraints on f and

ω, we used the approach described in Algorithm CBGGP. We remark that, at each iteration,

one has to sequentially address two minimization subproblems of the kind

min
u∈Ω

J(u) (5.26)

where u ∈ Rp2 represents, alternately, the astronomical object f or the PSF ω, Ω indicates

either Ωf or Ωω and J(u) is the objective function of (5.21) with respect to one of the two

unknown block of variables only, keeping the other one fixed. Each of these subproblems will

solved by a fixed number of iterations of the form

u(k+1) = u(k) + λk(p(u(k);hσ(k)) − u(k))

where hσ is one of the three metric functions detailed in Example 5.1, λk is the Armijo parameter

and σ(k) is a steplength parameter adaptively computed (here k denotes the index of the inner

iterations).

The main features of the three gradient projection operators are detailed below.

Scaled gradient projection (SGP): in this case we pick p(u(k);hσ(k)) = PΩ,Dk
(u(k) −

αkD
−1
k ∇f(u(k))), where Dk ∈ Rp2×p2 is a symmetric positive definite matrix and αk > 0. As

concerns the scaling matrix Dk, we exploit the gradient decomposition technique (see Section

1.2.2 and 3.3) applied to the least squares term in (5.21). The resulting diagonal scaling matrix

is

[Dk]−1
ii = max

{
1

µ
,min

{
µ,

u
(k)
i(

AT (Au(k) + be)
)
i

}}
,

where µ is a prefixed threshold, and A is the block circulant with circulant blocks matrix

computed on the fixed unknown (i.e., in the minimization step over the image f , we have

Af = ω(k) ⊗ f , while in the minimization step over the PSF ω we have Aω = ω ⊗ f (k)). The

steplength parameter αk is then computed by the adaptive alternation of the scaled Barzilai–

Borwein (BB) rules as proposed in Algorithm 3 (see Chapter 1 and [37]):

αBB1S
k =

s(k−1)TDkDks
(k−1)

s(k−1)TDky(k−1)
; αBB2S

k =
s(k−1)TD−1

k y(k−1)

y(k−1)TD−1
k D−1

k y(k−1)
. (5.27)

where s(k−1) = u(k)−u(k−1) and z(k−1) = ∇J(u(k))−∇J(u(k−1)). Finally, the chosen steplength

αk is constrained in an interval [αmin, αmax] with 0 < αmin ≤ αmax.

Gradient projection (GP): this corresponds to set Dk = In in the previous settings. The

parameter αk is again computed by alternating the scaled BB rules.
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Gradient Bregman projection (GBP): a further instance of projections belonging to the

family in Example 5.1 corresponds to the choice of the metric (5.6) with related distance-like

function dσ defined in (5.9), where

ψ(u) =

p2∑

i=1

(ui + γ) log(ui + γ),

with γ > 0 is the “regularized entropy” [101]. The resulting projection operator (5.5) is given

by

[p(u, hσ)]i = max
{

(ui + γ)e−σ∇iJ(u) − γ, 0
}
.

The steplength parameter σ is adaptively computed at each iteration in the following way.

First, we observe that, by the Taylor expansion of the exponential function, we have

(ui + γ)e−σ∇iJ(u) = (ui + γ) − qi(σ)(ui + γ)∇iJ(u),

where qi(σ) =
∑∞

j=0(−1)j σj+1

(j+1)!∇iJ(u)j . The term qi(σ) can be explicitly expressed also as

qi(σ) = (1 − e−σ∇iJ(u))/∇iJ(u) when ∇iJ(u) 6= 0, qi(σ) = σ when ∇iJ(u) = 0. Then, the

GBP method can be considered also an approximated scaled gradient method employing the

following scaling matrix

[Dk]ii(σ) = (u
(k)
i + γ)qi(σ).

Thus, it is reasonable to determine the steplength parameter according to the quasi-Newton

approach

min
σ∈[σmin,σmax]

‖Dk(σ)−1s(k) − w(k)‖2, min
σ∈[σmin,σmax]

‖s(k) −Dk(σ)w(k)‖2,

where s(k) = u(k) − u(k−1) and w(k) = ∇J(u(k)) − ∇J(u(k−1)). The previous one-dimensional

minimum problems can be easily solved (for example by means of the fminbnd Matlab func-

tion), giving two possible values for the steplength σk. These values are then alternated by

means of the adaptive strategy used for the two Barzilai-Borwein rules in [37] and in the pre-

vious two projections.

The initialization f (0) for the image has been set equal to the measured image g for both

datasets, while for the PSF we used as ω(0) an out-of-focus PSF with radius equal to 5.5 for the

satellite and a Lorentzian function with half-width at half-maximum equal to 6 for the crab.

The regularization parameters (ρ1, ρ2) have been arbitrarily fixed equal to (10−3, 10−6) for the

satellite and (2 ·10−2, 10−6) for the crab. The strategy we adopted to arrest the inner iterations

in the two minimization subproblems of type (5.26) is that proposed in [30] for the cyclic block

gradient projection method, which has been already applied with good outcomes in Gaussian

blind deconvolution [52, Section 3.1], as well as in the Poisson case [110]. This rule is based on
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Proposition 5.2 and Theorem 5.1, which tell us that any limit point of the CBGGP sequence

is a point in which the generalized projected gradient

∇PJ(f, ω) = (pf ((f, ω);hσ) − f, pω((f, ω);hσ) − ω)

=
(
∇P

f J(f, ω),∇P
ω J(f, ω)

)

is equal to zero. It follows that a possible stopping rule for the inner iterations applied, for

instance, to the subproblem w.r.t. to the block f , can be designed by choosing the first inner

iteration ℓ for which f (k−1,ℓ) satisfies

‖∇P
f J(f (k−1,ℓ), ω(k−1))‖ ≤ η

(k)
f

where the sequence {η(k)f }k∈N is initialized as η
(0)
f = ǫ · ‖∇P

f J(f (0), ω(0))‖ where ǫ is a tolerance

parameter, and defined by

η
(k)
f =

{
0.1 · η(k−1)

f , if η
(k−1)
f ≥ ‖∇P

f J(f (k−1,1), ω(k−1))‖,
η
(k−1)
f , otherwise.

An analogous rule can be defined for the subproblem referred to the block ω. In few words, the

rationale behind the choice of the adaptive parameters η
(k)
f and η

(k)
ω is to decrease the tolerance

for the stopping criterion if satisfied at the first inner iteration, thus forcing the inner algorithm

to perform at least two steps in each subproblem.

Finally, the outer iterations have been arrested when the relative difference between two

successive values of the objective function decreases below 10−6 (a maximum number of 200

outer iterations is also imposed).

In Figure 5.2 we show the plots of the relative root mean square errors (RMSEs) ‖f (k) −
f‖2/‖f‖2 and ‖ω(k) − ω‖2/‖ω‖2 for the three approaches as functions of the outer iterations

k, and we can observe that the choice of the projection strongly affect the behaviour of the

minimization algorithm, with better performances remarked when a non Euclidean projection

is considered. We have to remark that, while the GP and SGP algorithms are computationally

almost equivalent (few additional scalar products are needed if a nontrivial scaling matrix Dk

is included), the GBP iteration is heavier due to the call of the fminbnd Matlab function in

the computation of the steplength parameter.

5.2.2 Poisson noise

Although several Poisson blind deconvolution problems have been addressed by a maximum a

posteriori approach as done in the previous section (see e.g. [79, 91]), we follow the approach

in [113, 114] and consider the nonregularized optimization problem

min
f∈Ωf ,ω∈Ωω

KL(f, ω), (5.28)
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Figure 5.2: Blind deconvolution with the satellite (top) and crab (bottom) test problems:

RMSE on image (left) and PSF (right) versus the iterations number.

where KL is the generalized Kullback–Leibler divergence

KL(f, ω) =

p2∑

i=1

{
gi log

(
gi

(ω ⊗ f)i + b

)
+ (ω ⊗ f)i + b− gi

}
. (5.29)

The choice of avoiding regularization terms is motivated by the fact that, in the following

experiments, we will only consider the case of stellar fields or, in other words, of sparse objects,

and it is known that the minimizers of the KL divergence already satisfy a sparsity property

[18]. In these settings, a regularized solution can be achieved by solving the optimization

problem (5.28) approximately through the early stopping of an iterative procedure.

As concerns the feasible sets, we consider non-negativity and flux conservation for the image

f , the latter added to further enforce the sparsity of the object, while for the PSF ω we impose

non-negativity, normalization to 1 and an upper bound s which can be estimated in the case of

adaptive optics devices from the knowledge of the so-called Strehl ratio (SR), i.e. the ratio of

peak diffraction intensity of an aberrated versus perfect waveform (see e.g. [97]). The resulting
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Figure 5.3: Star cluster test problem: original PSF (left) and blurred and noisy image (right).

Both images are in log scale.

sets are then given by

Ωf = {f ∈ Rp2 | f ≥ 0,

p2∑

i=1

fi =

p2∑

i=1

gi − p2b},

Ωω = {ω ∈ Rp2 | 0 ≤ ω ≤ s,

p2∑

i=1

ωi = 1}.

These constraints in a blind deconvolution framework have been used e.g. in [59, 113, 114] and

allow good reconstructions even in presence of a large scale and nonconvex problem as (5.28).

We consider a realistic simulation in the astronomical field by a) generating a 512 × 512

image f of a cluster of 100 stars with different magnitudes (brightest value ≈ 3.2 ·107, dimmest

value ≈ 4.2 · 106); b) convolving it with a PSF ω (SR = 0.81) mimicking the response of a

single mirror of the large binocular telescope (LBT) and its first light adaptive optics (FLAO)

system [60]; c) adding a realistic background radiation (b ≈ 2.6 · 104); and d) corrupting the

resulting blurred image with Poisson noise. In Figure 5.3 we reported both the PSF used in

this experiment and the simulated measured image.

As done for the Gaussian case, we analyzed the performances of the alternating scheme

defined in Algorithm CBGGP with the same three choices for the projection operator described

in the previous section. The only change is in the SGP case, for which the scaling matrix used

for this test is the one borrowed from the Lucy-Richardson method [95, 128]

[Dk]−1
ii = max

{
1

µ
,min

{
µ, u

(k)
i

}}
, (5.30)

suitably thresholded to ensure convergence.
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Following the suggestion in [113], we used L
(k)
1 = L1 = 50 (k = 1, 2, . . .) inner iterations for

the image step, L
(k)
2 = L2 = 1 (k = 1, 2, . . .) iteration for the PSF step, a constant image as

f (0) and the autocorrelation of the ideal PSF of LBT as ω(0). The outer iterations have been

arbitrarily stopped at 3000.

In Figure 5.4 we show the reconstruction of the PSF provided by the three approaches together

with the horizontal and vertical central cuts of the pictures compared with those of the target

PSF. Moreover, in Figure 5.5 we plotted the reconstruction errors and the decrease of the

objective function versus the number of iterations, where for the PSF we used the standard

RMSE ‖ω(k)−ω‖2/‖ω‖2 while for the image we computed the RMSE for each star |f (k)i −f i|/|f i|
(i = 1, . . . , 100) and then calculated the mean of the 100 resulting values. The results obtained

in this test problem lead to conclusions quite similar to those drawn up in the previous section,

since again different choices for the projection lead to different reconstructions. The SGP and

GBP choices seems to be attracted by the same limit point, even if going through different

paths. With these approaches the reconstructions are very satisfactory, since both the image

and the PSF are restored with an error below 1%. On the contrary, the standard projection in

Euclidean norm lead to a significantly different pair (f, ω), with a higher precision in recovering

the correct magnitude of the stars coupled with a worse reconstruction of the PSF (RMSE >

20%), as clearly attested also by the plots shown in the second row of Figure 5.4.

5.3 Application in Poisson blind deconvolution from multiple

images

We now make a step further from the previous section and assume that the unknown object

and PSF(s) must be recovered from a set of multiple images acquired at different rotations of

the detection system. In particular, we show numerical experience in which images of binary

systems and starts clusters are simulated by adopting the PSF model of the Large Binocular

Telescope (LBT).

5.3.1 Problem formulation

Let us assume that K ≥ 1 different images {gj}Kj=1 of the scientific object, with K correspond-

ing expected values of the background emission {bj}Kj=1 and K different PSFs {ωj}Kj=1, are

available in the Poisson noise model. Since it is quite natural to assume that the K images are

statistically independent, the likelihood of the problem is the product of the likelihoods of the

different images (see Appendix A). Then, by taking the negative logarithm of the likelihood we

obtain the following data-fidelity function which is the sum of K Kullback-Leibler generalized

divergences, one for each image, i.e.

J0(f, ω1, ..., ωK ; g, b) =

K∑

j=1

p2∑

i=1

{
gj(i)ln

gj(i)

(wj ⊗ f)(i) + bj(i)
+(ωj⊗f)(i)+bj(i)−gj(i)

}
, (5.31)
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Figure 5.4: PSF for the star cluster test problem. First row: reconstructions with GP (left),

SGP (middle) and GBP (right) in log scale. Second row: horizontal and vertical central cuts

of original and restored PSFs.
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Figure 5.5: Blind deconvolution with the star cluster test problem: RMSE on image (left) and

RMSE on PSF (right) in log scale versus the iterations number.
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where (g, b) = {(gj , bj)}Kj=1 and the notation gj(i) denotes the i−th component of gj (the same

holds for the other vectors involved). The problem of blind deconvolution consists then in the

minimization of (5.31) with respect to K+ 1 blocks of unknown variables, namely the object f

and the K PSFs {ωj}Kj=1. The function (5.31) is convex with respect to each block of variables

for fixed values of the others, but is not convex with respect to the full set of variables. On

our side we have the CBGGP algorithm which, in the light of Theorem 5.1, globally converges

also in the nonconvex case, and thus is perfectly suited for this problem.

As for the single image case, some constraints on the unknown object and PSFs must

be imposed. As far as the object is concerned, besides non-negativity, we also introduce a

constraint on its flux; more precisely we require that the object flux coincides with the average

flux of the p detected images (after background subtraction), which is given by

c =
1

K

K∑

j=1

p2∑

i=1

{gj(i) − bj(i)} . (5.32)

We remark that this constraint is further enforcing sparsity; in the case of deconvolution and

zero value of the backgrounds, it is automatically satisfied by the minimizers of the KL diver-

gence. As concerns the PSFs, as also explained in the previous section, an important constraint

is the upper bound derived from the knowledge of the Strehl ratio sj characterizing the AO

correction of the atmospheric blur during the observation. Moreover, nonnegativity and nor-

malization provide additional constraints. In conclusion, the nonconvex optimization problem

we are considering can be formulated as follows

min
f∈Ωf ,ωj∈Ωωj

J0(f, ω1, . . . , ωK ; g, b) (5.33)

where

Ωf = {f ∈ Rp2 | f ≥ 0,

p2∑

i=1

fi = c},

Ωωj
= {ω ∈ Rp2 | 0 ≤ ωj ≤ sj,

p2∑

i=1

ωj(i) = 1}, j = 1, . . . ,K.

We address this problem by means of the CBGGP algorithm equipped with the scaled

gradient projection operator. In other words, each iteration of the CBGGP consists in solving
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inexactly the following K + 1 constrained minimization problems:

f (k+1) = argmin
f∈Ωf

J0(f, ω
(k)
1 , ..., ω

(k)
K ; g, b) (5.34)

ω
(k+1)
1 = argmin

ω∈Ωω1

J0(f (k+1), ω, ..., ω
(k)
K ; g, b)

...

ω
(k+1)
K = argmin

ω∈ΩωK

J0(f (k+1), ω
(k+1)
1 , ..., ω

(k+1)
K−1 , ω; g, b) ,

by means of a given number of SGP iterations. Since each of these subproblems has the form

min
u∈Ω

J0(u)

where Ω is one of the above closed and convex sets, the general iteration of SGP will be

u(k+1) = u(k) + λkd
(k)

where

d(k) = PΩ,Dk
(u(k) − αkD

−1
k ∇J0(u(k))) − u(k).

As in the previous section, the scaling matrix Dk is the one computed in (5.30) and borrowed

from the Lucy-Richardson method, and the steplength αk is chosen by alternating the two scaled

BB rules (5.27). Since the projection operator PΩ,Dk
involves a given number of inequalities

plus an equality constraint, it can be computed by using the secant-based routine developed

in [55], which is able to compute the projection with a computational cost growing linearly in

time with respect to the image size.

The problem of blind deconvolution from multiple images finds one of its main application in

Fizeau interferometry. As it is known this is a special feature of the Large Binocular Telescope

(LBT), which consists of two 8.4 m mirrors situated on a common mount with a center to center

distance of 14.4 m. Indeed, this structure is suitable for Fizeau interferometry which should

provide images with the resolution of a 22.8 m telescope in the direction of the baseline joining

the center of the two mirrors and that of a 8.4 m telescope in the orthogonal direction. It

follows that LBT images are characterized by an anisotropic resolution and therefore, in order

to get the maximum resolution in all directions, it is necessary to acquire different images of

the same scientific object with different orientations of the baseline and to combine them into a

unique high-resolution image by means of suitable image reconstruction methods. We remark

that two interferometers are planned for LBT: the forthcoming LINC-NIRVANA (LN) [83], in

advanced realization stage by a German-Italian consortium leaded by MPIA, Heidelberg, and

the NASA funded LBTI [142, 10] already operating on Mount Graham.

We now apply Algorithm CBGGP to realistic simulations of imaging both by single mirrors

and Fizeau interferometers. On one hand, we consider single image simulations where the PSF
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is the one of the LBT acquisition system. On the other hand, we generate multiple images by

means of the PSFs computed for the interferometer LINC-NIRVANA.

5.3.2 Image simulation

We model the images according to the model proposed in [136] for images acquired with a

CCD camera, i.e. each pixel is affected by background (due to sky emission, dark current,

etc.), photon counting noise (described by a Poisson distribution) and additive read-out noise

(RON) described by a Gaussian distribution.

If the RON variance is σ2, in the deconvolution process it can be approximated by a

Poisson distribution with parameter σ2 if σ2 is added both to the detected images and the

corresponding backgrounds [136]. Therefore all the pixel values of the detected images can be

viewed as realizations of suitable Poisson random variables if in 5.31 we intend that gj , bj have

been modified according to this approach. Therefore, in our numerical simulations we perturb

the images with Poisson and additive Gaussian noise but in the deconvolution algorithms we

use the images and backgrounds modified as above.

All the images and the PSFs considered in our numerical experiments are sized 256 × 256

pixels in the single image case, with a pixel size of 15 mas, and 512× 512 pixels in the multiple

image case, with a pixel size of 5 mas. Moreover all images, except one indicated in the sequel,

are obtained by adding 10 frames in order to avoid saturation of the detector, as we discuss in

the following, so that the variance of the RON will be 10 σ2.

Single image simulation:

In this case we use two PSFs in K-band with SR = 0.81 and 0.62 respectively, modeling the

optics of a single mirror of LBT, with diameter 8.4 m, and the effect of the adaptive optics

system FLAO using the power spectrum of the wavefront residual of the AO correction as

measured at the telescope [61]. To the noise-free image, obtained by convolving the object

with one of these PSFs, a background in K-band is added and the result is corrupted with

Poisson and additive Gaussian noise. In order to avoid saturation of the detector (a maximum

number of 5 × 104 photons per pixel is assumed in a single frame) the image is obtained by

co-adding n frames. More precisely, in the case of a stellar system the procedure for image

generation is the following.

• We establish the coordinates of the stars and we fix their magnitudes in K-band.

• We compute the integration time which does not produce saturation of the detector

by taking into account the collection area of the telescope, the overall efficiency of the

acquisition system (assumed equal to 30%), and the flux of the brightest star multiplied

by the peak value of the PSF. This is the integration time of a single frame and is used
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for computing the number of frames n required for obtaining an acceptable SNR for all

the stars of the system.

• We generate noise-free images by shifting, with sub-pixel precision, the PSF to the po-

sitions of the stars and adding these shifted PSFs, each one weighted with a weight

corresponding to the magnitude and the total observation time.

• These images are perturbed by adding a background in K-band, corresponding to about

13.5 mag arcsec−2, and by corrupting the results with Poisson and additive Gaussian noise

(RON); the variance of the RON is nσ2, thus corresponding to the RON of n frames; we

take σ = 10 e−/px.

Multiple image simulation

As concerns the simulation of LN images, we recall that the instrument combines in a Fizeau

mode the beams coming from the two mirrors of LBT whose center-to-center distance is about

14.4 m. Therefore the maximum baseline available is 22.8 m and the resolution achievable by

a single LN image is that of a 22.8 m telescope in the direction of the baseline and that of a

8.4 m telescope in the orthogonal direction. For a given orientation the PSF of LN looks as

that of a 8.4 m telescope, modulated by the interference fringes, orthogonal to the direction of

the baseline. In order to get a more uniform resolution one must acquire and combine different

images with different orientations of the baseline.

It is important to remark that the orientation of the fringes does not depend on the orien-

tation of the baseline because the camera is rotating with the baseline and therefore the fringes

have always the same direction (for instance the vertical one) in the image array. In other

words two images of the same scientific object with two different orientations of the baseline

correspond to two rotated versions of that object. This specific feature implies that one should

introduce rotation matrices in the formulation of the problem. However we verified that the

computation of hundreds or thousands of rotations in hundreds or thousands of inner iterations

introduces large computational errors. Therefore we considered the approach which consists in

derotating the images in such a way that they correspond to aligned versions of the object f .

The price to be payed is that the derotation of discrete images modifies their statistical prop-

erties. In order to estimate this effect we considered the rotation of a constant array perturbed

by Poisson noise. We found the following results:

• before rotation the histogram of the array is a Gaussian with the same mean and variance;

after a rotation based on spline interpolation the histogram is still a Gaussian with the

correct mean but a smaller variance;

• the support of the autocorrelation of the rotated image is a 3 × 3 square;

• if we use a different rotation approach which consists in attributing the value of a pixel

before rotation to the pixel with maximum overlapping after rotation (nearest neighbor

approximation), the statistics is preserved but the quality of the image is degraded.
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As a consequence of this analysis we decided to use in the approach derotated images.

The procedure adopted in our numerical experiments is similar to that used in the case

of a single image. We consider two sets of PSFs in K-band with SR respectively 0.77 and

0.46, corresponding to orientation angles of the baseline indicated as 0◦, 60◦ and 120◦, all with

vertical fringes (for simplicity we take the same SR for the three orientations). The first PSF

of each set has been generated by means of the software package LOST [6], the second by

reflecting the first one with respect to the central line and the third by taking the arithmetic

mean of the first two. In this way the three PSF of each set have exactly the same SR. Then

the generation of the corresponding LN images is similar to that of the single image case by

modifying the first item as follows.

• We establish the coordinates of the stars corresponding to the observation at 0◦ and we

compute, with sub-pixel precision, their coordinates if the system is rotated by 60◦ and

120◦ respectively.

The rest of the procedure is unchanged and applied to the three images but at the end we must

add the following item.

• The images corresponding to 60◦ and 120◦ are derotated in order to align the object

in the three images and three arrays containing the object are extracted from the full

images.

The derotated images are used in the definition of the objective function and in the blind al-

gorithm, which therefore will produce derotated PSFs.

5.3.3 Numerical results

In order to evaluate the quality of the reconstructions obtained with our blind method we need

some figures of merit.

As concerns the reconstruction of a binary we consider the relative absolute error on the

magnitudes of both stars while in the case of a stellar system we consider a magnitude average

relative error (MARE) defined by

MARE =
1

q

q∑

i=1

|mi − m̃i|
m̃i

, (5.35)

where q is the number of stars and mi, m̃i are respectively the reconstructed and the true

magnitudes.

As concerns PSF reconstruction, in the case of single image we consider the root-mean-

square error with respect to the true one, defined as usual in terms of the ℓ2 norm of their

difference. In the case of LN images generated according to the previous procedure, since the

blind algorithm produces a set of three PSFs, two of them being derotated with respect to the
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ones used for generating the images, for comparison we must derotate the original ones. If we

denote as ω̃j the derotated original PSF, then we measure the quality of the reconstruction by

means of the root-mean-square error (RMSE)

ρj =
‖ωj − ω̃j‖

‖ω̃j‖
, (5.36)

where ωj is the reconstructed PSF and ‖ · ‖ denotes the usual ℓ2-norm.

Binary systems

We first consider the simple case of binary systems. More precisely we consider nine cases

by varying both separation and magnitude of the stars. By keeping fixed the magnitude of

the primary, i.e. m1 = 15, we take for the magnitude of the secondary m2 = 15, 16 and 17.

Moreover for each choice we consider three possible angular separations: d = 60, 120 and 240

mas in the single image case and d = 20, 40 and 80 mas in the LN case. In both cases the first

separation corresponds to the resolution limit of the instrument while the last is four times

larger. In all cases, as described in the previous section, we compute the integration time of a

frame in such a way that the number of counts in the image pixel corresponding to the position

of the primary does not exceed 5×104. As stated in the previous section, we consider 10 frames

per image, both in the single and in the multiple image case, so that the peak value of the

photons is about 5 × 105 for all images. Since in the case of LN we have three images, in this

case the SNR is higher than in the single image case.

In Figure 5.6 we show the images of the binaries with m1 = m2 = 15 and different angular

separations; in the first row those of the single image case and in the second row those of

the multiple image case corresponding to the 0◦ baseline, all obtained with the PSF with the

highest SR. The difficulty in reconstructing the binary with separation d = 20 mas is obvious.

Single image

For the convenience of the reader we give the computed integration time avoiding saturation

in a single frame: 40 sec for SR = 0.81 and 52 sec for SR = 0.62. As already stated the images

are obtained by adding 10 frames. These are the input images of the blind algorithm together

with the value of the background.

In a first attempt we use the initialization already used in [113] and in other papers, namely

a constant array for the object and the autocorrelation of the diffraction-limited PSF for the

PSF. Indeed, this initialization has produced very promising results in our previous paper,

where a much higher SNR was assumed. We use 1000 outer iterations in the case SR = 0.81

and 2000 outer iterations in the case SR = 0.62. Indeed in the case of a lower SR we have

a lower quality of the images and, presumably, a larger number of iterations is required. As

concerns the inner iterations, as in [113] we use 50 SGP iterations for the object and one SGP

iteration for the PSF.

In Table 5.3.3 we give the results obtained with the previous choice. As a first remark, the

binaries and the PSFs are reconstructed satisfactorily in all cases except the closest binaries
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Figure 5.6: Examples of input images of binaries with magnitudes m1 = m2 = 15. In the first

row those of the single image case, corresponding to PSF with SR = 0.81: from left to right,

angular separation of 60, 120 and 240 mas. In the second row those of the multiple image

case, corresponding to the PSF with SR = 0.77: from left to right, angular separation of 20,

40 and 80 mas. These images correspond to the first orientation of the baseline and only the

central part of the images 256 × 256 is displayed. In the two other orientations the binaries

appear rotated by 60 and 120 degrees respectively. Images are displayed in log scale. The

length corresponding to 0.5 arcsec is also indicated.

Figure 5.7: Behaviour, as a function of the number of iterations, of the normalized objective

function (left panel) and of the RMSE on the PSF (right panel). The parameters of the binary

are indicated in the figure. The plots refer to the PSF with SR = 0.81.

(d = 60 mas) with different magnitudes. Indeed, the indication 100% in the column for ∆m2/m2

means that the method reconstructs only one star, which sometimes is not exactly in the

position of the primary but slightly shifted in the direction of the secondary. Since its magnitude
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SR d (mas) m2 ∆m1/m1 ∆m2/m2 RMSE J0 norm. IT

0.81

60

15 0.05% 0.03% 0.94% 0.6071 1000

16 2.37% 100% 40.41% 0.5549 1000

17 0.99% 100% 16.77% 0.5964 1000

120

15 <0.01% <0.01% 0.76% 0.6047 1000

16 0.03% <0.01% 1.11% 0.6296 1000

17 0.03% 0.17% 1.40% 0.6254 1000

240

15 <0.01% <0.01% 0.79% 0.5999 1000

16 0.02% 0.03% 0.83% 0.6273 1000

17 <0.01% 0.04% 1.17% 0.6229 1000

0.62

60

15 0.18% <0.01% 1.08% 0.5338 2000

16 2.31% 100% 34.37% 0.4635 2000

17 1.05% 100% 16.87% 0.4983 2000

120

15 0.15% 0.14% 1.04% 0.5261 2000

16 0.02% 0.01% 1.28% 0.5419 2000

17 0.04% 0.25% 1.59% 0.5329 2000

240

15 0.04% 0.04% 1.00% 0.5309 2000

16 <0.01% 0.06% 1.13% 0.5537 2000

17 0.05% 0.36% 1.80% 0.5361 2000

Table 5.1: Single image case - Binary reconstructions provided by the algorithm initialized with

the autocorrelation of the diffraction-limited PSF. In the first column the value of the SR, in

the second the angular separation, in the third the magnitude of the secondary, in the fourth

and fifth the errors on the magnitudes of the two stars. In the subsequent column we give

the RMSE for the reconstructed PSF. Finally in the last two columns we give the value of the

normalized objective function, defined by 2J0/N
2, as computed at the end of the iterations,

and the number of outer iterations.

is computed using a 3×3 square centered on the true position of the primary, the error on its

magnitude is, in general, not too large. On the other hand the error on the PSFs is very large,

as one should expect since the secondary is missed. This point deserves further investigation.

In Figure 5.7 we show, in a particular case, the behaviour of the normalized objective

function, defined by 2J0/N
2 with J0 given in 5.31 (with K = 1), and of the RMSE on the PSF

as functions of the number of iterations. Similar behaviors are obtained in all cases where a

sensible result is obtained. This result suggests that presumably convergence is reached after

1000 iterations even if it is difficult to establish numerically the convergence of a sequence.

A second remark is that, according to statistical properties of Poisson random variables, if

we compute the value of the normalized objective function by inserting in 5.31 the noisy and the

noise-free images we should obtain a value very close to 1 [19, 144]. This is just what we obtain

using our simulated images (this result also demonstrates the accuracy of the approximation
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of the RON with a Poisson random variable). However the limiting values of the normalized

objective function obtained in our experiments are definitely smaller than 1.

Coming back to the problem of the unresolved binaries, we point out that, if we deconvolve

the images using the PSF used for their generation (inverse crime) all the binaries are correctly

reconstructed with small errors on their magnitudes. Therefore the failure of our experiment

may be due to a failure of the method or to an inappropriate initialization or to inappropriate

choices of the internal iterations.

Several attempts with different numbers of internal iterations did not improve the results.

Therefore we searched for an initial PSF with a SR value closer to the correct one and with the

property of being band-limited with the band of the LBT mirror. A possible choice is obtained

by means of the diffraction-limited PSF of LBT, let us say ω̃, by looking for an initial guess

ω(0) of the following form

ω(0) =
1

1 + ν N2
(ω̃ + ν) (5.37)

which is band-limited and satisfies the normalization condition. The constant ν should be

selected in such a way that ω(0) has the correct SR value, i.e. max (ω(0)) = SR max (ω̃). We

obtain (
SR N2 max(ω̃) − 1

)
ν = (SR − 1) max(ω̃) (5.38)

and, by neglecting 1 with respect to the first term in the l.h.s. of this equation, we obtain

ν = (1 − SR)/(SR N2).

The results obtained with this initialization, using again 50 SGP iterations for the object

and one for the PSF, are reported in Table 5.3.3. Since the convergence is slower than in the

previous case we use 2000 outer iterations for SR = 0.81 and 3000 iterations for SR = 0.62.

By comparing the results reported in the two tables we remark that the two different

initializations provide very similar results in all cases where they succeed or they fail; in other

words they provide sequences of iterations which presumably converge, even if with a different

rate, to the same point, which is a stationary point of the objective function. Obviously we

believe that it is also a minimizer. In the case of separation 60 mas and m2 = 16 the algorithm,

equipped with the new initialization, is able to reconstruct the binary and the PSF with a

satisfactory accuracy for both values of SR. We remark that the value of the objective function

is higher than that corresponding to the result provided by the first initialization, which is

not correct. This fact clearly indicates the existence of several stationary points or minimizers

or both. Of course it should be nice to establish that the result of the first initialization is a

stationary point and that of the second a minimizer; but, as already remarked such a verification

is practically impossible. Finally, in the case m2 = 17 also the new initialization is unable to

provide the correct results.

The results obtained in the multiple image case and described in the next section suggest

that this negative result may be due to an insufficient value of the SNR. Therefore, in the

case m2 = 17 we generated an image which is the sum of 30 frames (we point out that, as

already remarked, in the considered multiple image case we have three times the photons of
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SR d (mas) m2 ∆m1/m1 ∆m2/m2 RMSE J0 norm. IT

0.81

60

15 0.02% 0.04% 0.82% 0.6067 2000

16 0.09% 0.16% 2.05% 0.6237 2000

17 1.01% 100% 17.08% 0.5956 2000

120

15 <0.01% <0.01% 0.77% 0.6046 2000

16 0.02% <0.01% 1.09% 0.6294 2000

17 0.02% 0.15% 1.35% 0.6253 2000

240

15 <0.01% <0.01% 0.80% 0.5989 2000

16 0.02% 0.02% 0.82% 0.6271 2000

17 <0.01% 0.02% 1.12% 0.6227 2000

0.62

60

15 0.02% <0.01% 1.11% 0.5333 3000

16 0.12% 0.25% 2.64% 0.5354 3000

17 1.05% 100% 16.87% 0.4983 3000

120

15 0.01% 0.01% 1.06% 0.5258 3000

16 0.02% <0.01% 1.26% 0.5419 3000

17 0.04% 0.25% 1.58% 0.5329 3000

240

15 0.03% 0.03% 0.99% 0.5304 3000

16 <0.01% 0.06% 1.12% 0.5537 3000

17 0.05% 0.36% 1.80% 0.5361 3000

Table 5.2: Single image case - Binary reconstructions provided by the algorithm initialized with

the diffraction-limited PSF plus a constant selected for satisfying the SR constraint (see the

text). The structure of the Table is the same of Table 5.3.3.

the single image case). Using again 2000 iterations, we find that the algorithm, with the second

initialization, can resolve the binary in the case SR = 0.81 (even if with a large reconstruction

error, about 9 %, on the PSF) but not in the case SR = 0.62.

However in these difficult cases we observe a new phenomenon: even if in the limit the results

are not satisfactory, the PSF reconstruction error exhibits a minimum before convergence. If

we consider the reconstructions corresponding to these minima, then, in the case of the first

initialization, the minima do not correspond to a situation where the binary is resolved. On the

other hand, in the case of the second initialization, the binary is resolved for both SR values,

with a 2.03 % PSF error in the case SR = 0.81 (574 iterations) and a 7.13 % error in the

case SR = 0.62 (1739 iterations). Such a result presumably indicates the need of introducing

a regularization of the PSF in the objective function, at least for treating the most difficult

cases. In Figure 5.8 we show the reconstructions of the PSF corresponding to the minimum

reconstruction errors. Artifacts due to the missed secondary are visible in the case of the first

initialization and also in the case SR = 0.62, since the reconstructed secondary is fainter than

the true one.

Multiple images
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Figure 5.8: Single image case - PSF reconstruction in the case of the binary with d = 60 mas

and m2 = 17. The input image is the sum of 30 frames (see text). These PSFs correspond to the

minima of the reconstruction error. First column: the true PSF with SR = 0.81 (top) and SR =

0.62 (bottom). Second column: PSF reconstruction provided by the algorithm initialized with

the autocorrelation of the diffraction-limited PSF. Last column: PSF reconstruction provided

by the algorithm initialized with the diffraction-limited PSF plus a constant. In each panel we

also show a zoom of the core of the PSF which makes evident artifacts due to the secondary.

All images are displayed in log scale.

In this case the integration time of a nonsaturated frame is 95 sec for SR = 0.77 and 167 sec

for SR = 0.46. For each binary and orientation angle we consider again 10 frames, so that we

have approximately the same number of photons in all images.

We preliminarily remark that, if we compute the value of the normalized objective function

(which is now given by 2J0/3N
2) by inserting in 5.31 the noisy and the noise-free images before

derotation, we expect to obtain a value very close to 1 and this is just what we obtain. But this

is not true if we compute the same quantity using the derotated images. Indeed, for the nine

binaries as well as for the other objects, we always obtain a smaller value, namely 0.63. Since

this value is independent of the object and PSFs, this effect is clearly due to the modification

of the statistical properties of the data introduced by the derotation, as briefly discussed in

Section 5.3.2. In any case the limiting values of the normalized objective function obtained in

our experiments are definitely smaller than the values corresponding to the input objects and

images, an effect already remarked in the previous case.

As in the single image case we first use as initialization a constant array for the object and

the autocorrelations of the ideal PSFs for the three PSFs. The results of the reconstructions

obtained with this initialization are reported in Table 5.3.3. We obtain that only when both

stars have the same magnitude the method is able to reconstruct both the binary and the PSFs
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SR d (mas) m2 ∆m1/m1 ∆m2/m2 RMSE0◦ RMSE60◦ RMSE120◦ J0 norm. IT

0.77

20

15 0.28% 0.23% 1.52% 2.50% 1.87% 0.2241 1000

16 2.12% 100% 30.00% 31.14% 21.79% 0.1706 1000

17 0.87% 100% 14.93% 15.38% 11.00% 0.1890 1000

40

15 0.30% 0.28% 1.66% 1.84% 2.56% 0.2647 1000

16 2.20% 100% 41.65% 33.98% 33.80% 0.2049 1000

17 0.58% 100% 14.78% 14.48% 15.90% 0.1954 1000

80

15 0.20% 0.21% 1.09% 0.83% 0.83% 0.2180 1000

16 0.18% 0.23% 1.27% 0.96% 0.99% 0.2164 1000

17 0.87% 100% 19.28% 19.06% 19.04% 0.1893 1000

0.46

20

15 1.27% 1.19% 9.67% 9.69% 11.39% 0.1335 1000

16 0.29% 100% 32.61% 33.10% 29.37% 0.0836 1000

17 0.18% 100% 13.91% 14.12% 12.54% 0.0795 1000

40

15 0.89% 0.88% 5.15% 5.62% 5.64% 0.1516 1000

16 0.27% 100% 47.22% 41.54% 36.75% 0.1360 1000

17 0.33% 100% 13.91% 14.67% 14.31% 0.0944 1000

80

15 0.68% 0.68% 3.05% 2.60% 2.58% 0.1042 1000

16 0.52% 0.60% 1.87% 1.43% 1.44% 0.0850 1000

17 0.55% 100% 15.99% 15.97% 15.98% 0.0883 1000

Table 5.3: Multiple image case - Binary reconstructions provided by the algorithm initialized

with the autocorrelations of the ideal PSFs. In the first column the value of the SR, in the

second the angular separation, in the third the magnitude of the secondary, in the fourth and

fifth the errors on the magnitudes of the primary and the secondary star. In the subsequent

three columns we give the RMSE for the three PSFs. Finally in the last two columns we give

the value of the normalized objective function, defined by 2J0/3N
2, as computed at the end of

the iterations, and the number of outer iterations.

with sufficient accuracy. When we have different magnitudes for the two stars the method is in

general failing to reproduce the secondary, except in the case of separation d = 80 mas; in this

case a binary with difference of magnitude ∆m = 1 is also reconstructed. As in the single image

case, the indication 100% in the column for ∆m2/m2 means that the method reconstructs an

object which contains only one bright star (in one case the centroid is shifted one pixel in the

direction of the secondary. These results show that, even if we have a higher SNR as already

discussed, the multiple image case is more difficult than the single one.

If we deconvolve the derotated images using the derotated PSFs (this is not exactly an

inverse crime because the images were generated with non derotated PSFs) all the binaries

are correctly reconstructed with small errors on the magnitudes. Therefore the failure of our

experiment may be due again to an inappropriate initialization (the autocorrelations of the

ideal PSFs have a SR value of about 0.35, much smaller than the SR of the PSFs used in image
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SR d (mas) m2 ∆m1/m1 ∆m2/m2 RMSE0◦ RMSE60◦ RMSE120◦ J0 norm. IT

0.77

20

15 0.44% 0.34% 2.86% 4.23% 3.42% 0.2277 2000

16 0.27% 0.21% 1.56% 1.82% 1.74% 0.2209 2000

17 0.07% 1.10% 2.53% 2.70% 1.78% 0.2095 2000

40

15 0.45% 1.03% 5.47% 4.61% 6.73% 0.2670 2000

16 0.25% 0.39% 1.63% 2.85% 2.76% 0.2220 2000

17 0.11% 0.73% 2.05% 2.78% 2.86% 0.2102 2000

80

15 0.35% 0.35% 2.28% 1.51% 2.23% 0.2204 2000

16 0.25% 0.26% 1.32% 1.06% 1.14% 0.2179 2000

17 0.19% 0.40% 1.32% 1.02% 0.99% 0.2125 2000

0.46

20

15 0.80% 0.57% 4.02% 4.51% 6.83% 0.1037 2000

16 0.38% 0.95% 3.76% 3.95% 2.52% 0.0811 2000

17 0.07% 6.32% 9.05% 10.33% 6.29% 0.0697 2000

40

15 0.64% 2.18% 11.23% 6.72% 8.73% 0.1409 2000

16 0.49% 0.81% 2.21% 3.20% 2.99% 0.0837 2000

17 0.02% 5.89% 8.70% 7.68% 8.84% 0.0716 2000

80

15 0.56% 0.55% 8.54% 4.66% 4.64% 0.1100 2000

16 0.57% 0.53% 1.99% 1.48% 1.49% 0.0846 2000

17 0.48% 0.92% 2.36% 1.95% 1.96% 0.0785 2000

Table 5.4: Multiple image case - Binary reconstructions provided by the algorithm initialized

with the ideal PSFs plus a constant selected for satisfying the SR constraint (see the text).

The structure of the Table is the same of Table 5.3.3.

generation) or to inappropriate choices of the internal iterations. Also in this case, as in [113]

and in the single image case, we use 50 SGP iterations for the object and one SGP iteration

for each PSF. However several attempts with different numbers of internal iterations did not

improve the results. Therefore, as in the single image case, we use as a new initialization of

the PSFs the ideal PSFs of LN with the addition of a small constant selected in such a way to

satisfy normalization and SR value. The results obtained with this initialization, using again

50 SGP iterations for the object and one for the PSFs, are reported in Table 5.3.3. Since the

convergence is slower than in the previous case we use 2000 outer iterations.

With the new initialization the blind method succeeds in reconstructing all the binaries with

sufficient accuracy as well as the PSFs. We can add that in most cases both the normalized

objective function and the RMSE on the PSFs have a convergent behaviour while, in a few

cases, the errors are still decreasing after 2000 iterations, thus indicating that a larger number of

iterations could still improve the solution. A comparison of the values of the objective function

reported in the two tables shows that, in some of the cases where the first initialization is

failing, the values in Table 5.3.3 are smaller than the corresponding values in Table 5.3.3. This

phenomenon was already observed in the single image case and means that different stationary
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Figure 5.9: Multiple image case - PSF reconstruction in the case of the binary with d =

80 mas and m2 = 17. First column: the true PSF with SR = 0.77 (top) and SR = 0.46

(bottom). Second column: PSF reconstruction provided by the algorithm initialized with

the autocorrelations of the ideal PSFs. Last column: PSF reconstruction if the algorithm is

initialized with the ideal PSFs plus a constant. All images (only the central part 256×256 is

shown) are displayed in log scale and correspond to the first orientation of the baseline.

points or minimizers are present.

A few more comments on the two tables. If one looks carefully at the reported results one

can remark that, even if the results obtained with the second initialization are globally better

than those obtained with the first one, this may not be true for particular cases (compare, for

instance, the results for d = 40 mas and ∆m = 0). Moreover, the errors obtained with the

second initialization do not vary in a regular way with the variation of angular distance and

difference of magnitude. These behaviors can be due to the fact that 2000 iterations may not be

sufficient for assuring convergence of the method in the case of the second initialization. We did

not push further the iterations because in the case of three 512×512 images the computation

time is considerable. By assuming possible fluctuations due to insufficient number of iterations,

a reasonable conclusion seems to be that, as in the single image case, the two initializations

lead to the same limit point when the first one is successful.

In Figure 5.9 we show an example of reconstructions of the PSF at 0◦, for both SR values,

when the unknown object is a binary with d = 80 mas and m2 = 17. From the reconstructions

displayed in the second column and obtained by initializing with the autocorrelations of the

ideal PSFs, it is evident that they contain a contribution coming from the secondary, while this

contribution is practically absent in the reconstructions obtained with the other initialization

and displayed in the third column.

Star clusters
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Figure 5.10: Top panels: the input images of the “open star cluster” (left) and of the “globular

star cluster” (right) in the single image case with SR = 0.81. Bottom panels: the input images

of the two clusters in the case of SR = 0.77 and with 0◦ of the baseline (only the central part

256×256 is shown). All images are displayed in log scale. The length corresponding to 0.5

arcsec is also indicated.

In a second experiment we consider two models of star cluster. The first is already considered

in [113] and is based on an image of the brightest stars of the Pleiades open cluster; for this

reason, we call it “open star cluster”. It consists of nine stars that we take, in this paper, with

magnitudes ranging from 14.4 to 17.1. In the single image case, the minimum distance between

two stars is 120 mas, while the maximum distance is 1434 mas, with a mean distance of about

690 mas. In the multiple image case, considering the different pixel scale, we reduce of one

third all the distances.

As a second example we consider a model that we call “globular star cluster”. For sim-

plicity, only 150 stars are considered within the field of view, representing a very low crowding

condition. The positions of the stars are randomly computed following a Gaussian distribution

around the center of the image (with a standard deviation of about 450 mas in the single image

case and of about 150 mas in the multiple image case); similarly the magnitudes of the stars

are randomly distributed around m = 16 with a standard deviation of about 0.4. It turns out

that the brightest star of the cluster has m = 14.8.

Again, we limit the maximum number of counts in each frame to 5 × 104, keeping fixed to

10 the number of frames. In Figure 5.10 we show the images of the two star clusters provided

by the PSFs with the highest SR.

Single image

In the case of the “open star cluster”, the integration time of a single frame is 22 sec for SR =

0.81 and 29 sec for SR = 0.62 while in the case of the “globular star cluster” these times are



176 Chapter 5 A cyclic block generalized gradient projection method

Star Cluster SR Init. MARE RMSE J0 norm. IT

OC

0.81
A 0.06% 0.84% 0.5993 2000

C 0.06% 0.85% 0.5991 5000

0.62
A 0.09% 1.22% 0.5165 4000

C 0.09% 1.22% 0.5165 10000

GC

0.81
A 0.06% 0.87% 0.5123 3000

C 0.06% 0.82% 0.4989 5000

0.62
A 0.07% 1.07% 0.4622 6000

C 0.07% 15.82% 0.5698 10000

Table 5.5: Single image case - The reconstruction errors in the case of the two star cluster

models. In the first column the “open cluster” is labelled by OC, while the “globular cluster”

is GC. In the second column, we give the value of SR, while in the third column we give the

initialization of the algorithm, denoting by A the autocorrelation of the diffraction-limited PSF

and by C the diffraction-limited PSF plus a constant selected for satisfying the SR constraint

(see the text). In the subsequent columns, we give the value of the magnitude average recon-

struction error (MARE) defined in 5.35, and the RMSE for the reconstructed PSF. Finally in

the last two columns we give the value of the normalized objective function, defined by 2J0/N
2,

as computed at the end of the iterations, and the number of outer iterations.

respectively 32 and 42 sec.

We applied to the four images our blind algorithm using both initializations introduced in

the case of the binaries. The results are reported in Table 5.3.3. In the case of the “open star

cluster” and both values of SR the two initializations seem to provide sequences of iterations

converging to the same point. If we look at the image shown in the upper left panel of Figure

5.10 we can observe that it contains sufficiently well-separated star images which can allow a

good estimation of the PSF by the blind algorithm.

The situation is a bit different in the case of the “globular star cluster” and we can under-

stand this fact if we look at the upper right panel of Figure 5.10. In the case of the higher SR

value both initializations lead essentially to the same result. The small differences may be due

to different convergence rates and could be removed by a more accurate tuning of the number of

iterations. On the other hand in the case of the lower SR ratio the first initialization, based on

the autocorrelation of the diffraction-limited PSF, provides the best PSF reconstruction (also

corresponding to a lower value of the objective function). It seems that the two initializations

lead to two different stationary points. In conclusion, for this particular object one can state

that the first initialization may provide a better result than the second one.

Multiple images

In the case of the “open cluster” model, the integration time is 53 sec for SR = 0.77 and 93

sec for SR = 0.46. On the other hand the integration time for the “globular cluster” images is

78 sec for SR = 0.77 and 136.5 sec for SR = 0.46.
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Star Cluster SR Init. MARE RMSE0◦ RMSE60◦ RMSE120◦ J0 norm. IT

OC

0.77
A 0.35% 2.14% 4.28% 4.19% 0.3049 1000

C 0.59% 4.16% 7.67% 7.62% 0.2997 5000

0.46
A 0.81% 3.43% 6.07% 6.00% 0.1321 2000

C 0.89% 3.74% 7.77% 7.81% 0.1237 10000

GC

0.77
A 0.38% 1.98% 3.46% 3.38% 0.7597 3000

C 0.71% 11.00% 11.06% 12.97% 0.7459 5000

0.46
A 1.04% 5.63% 9.69% 9.38% 0.3557 6000

C 0.90% 25.81% 16.37% 17.94% 0.3043 10000

Table 5.6: Multiple image case - The reconstruction errors in the case of the two models of star

cluster. The structure is similar to that of Table 5.3.3 but now we give the errors on the three

PSFs and the normalized objective function is defined by 2J0/3N
2.

In both cases we apply our blind algorithm using the two initializations already used in the

previous sections, with 50 inner SGP iterations for the object and one iteration for each PSF.

The results obtained for the “open cluster” with the two initializations are given in the first

two rows of Table 5.3.3 in the case SR = 0.77 and in the following two rows those obtained in

the case SR = 0.46. Similarly the results obtained for the “globular cluster” are given in the

second half of the same table.

In the multiple image case the situation is more complex than in the single one, and this

is not surprising since now we must reconstruct four blocks of variables. By looking at the

results reported in Table 5.3.3, we see that the two initializations produce in all cases two

sequences of iterations converging to distinct results. Even if, in some cases, the two values

of the objective function are very close, the corresponding points are definitely different, thus

implying the existence of several minimizers or stationary points with very close values of the

objective functions.

It is interesting to remark that, while in the case of the binaries the best results are provided

by the second initialization, now they are provided by the first one, based on the autocorrela-

tions of the ideal PSFs. The highest reconstruction errors are obtained in the case of the lowest

SR, as one should expect. We also remark that in the case of the second initialization we used

a larger number of iterations because the convergence is slower than in the case of the first

initialization. From the comparison of the results obtained for the binaries with those obtained

for the star clusters we deduce that the problem of the initial PSFs is essentially open; there-

fore, in the case of practical applications, one should try with different initializations, using

also physical intuition in their choice.

As a final comment, all the values of the objective function corresponding to the best

solutions are higher than those corresponding to the other ones.





Conclusions

The development of efficient first order methods for nonlinear optimization is of great interest

in several scientific applications, thanks to their simplicity and low computational cost per

iteration. However, these methods need acceleration strategies in order to be computationally

efficient and competitive with other non-iterative approaches. This thesis gave a contribution to

this issue by presenting variable metric line–search based methods suited for a particular class

of optimization problems, in which the objective function is given by the sum of a differentiable,

possibly nonconvex term and a convex, possibly nondifferentiable term.

First, we proposed the proximal–gradient method VMILAn, in which the free choice of

the parameters defining the metric of the proximal operator is combined with an Armijo-like

condition to ensure the convergence of the scheme. Notably, the general VMILAn algorithm

defines the proximal step with an inexactness criterion, in order to take into account the case

in which the proximal operator cannot be computed explicitly. This criterion is practically

implementable when the convex part is given by the composition of a proper, convex and

continuous term with a linear operator, which allows to include the almost totality of the

regularization terms adopted, for instance, in the context of image processing.

Second, we devised an inexact version of the nonlinear Gauss-Seidel scheme for the mini-

mization of a differentiable objective function subject to separable constraints, which is recov-

ered in the general class of problems above mentioned by choosing as the convex term the sum

of indicators of closed, convex sets. More in detail, we address this problem by performing

inexactly the minimization by means of a fixed number of the gradient projection steps, where

the projection may be computed with respect to non Euclidean metrics. Special instances of

these metric are the scaled Euclidean and Bregman distances.

For both methods, the general result of the stationarity of the limit points is proved with-

out convexity assumptions. In the case of VMILAn, strong convergence of the iterates to a

stationary point is also proved when the objective function satisfies the Kurdyka– Lojasiewicz

property. As we have seen in Section 2.3.1 of Chapter 2, this is a rather general and not restric-

tive assumption, satisfied by the majority of data fidelity functions and regularization terms

used in signal and image processing.

Extensive numerical experience in image processing applications, such as image deblur-

ring and denoising in presence of non-Gaussian noise, image compression, phase estimation in
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DIC microscopy and image blind deconvolution, has shown the flexibility of our methods in

addressing different nonconvex problems, as well as their ability to effectively accelerate the

progress towards the solution of the treated problem with respect to other comparable ap-

proaches proposed in the literature. We remark that the parameters involved are chosen by

adaptive strategies well known in the literature, such as the alternation of the Barzilai Bor-

wein rules for the steplengths, and the Split Gradient or Majorize-Minimize techniques for the

scaling matrices. In our opinion, the variable choice of both parameters is what triggers off the

acceleration behaviour shown by our methods. Indeed, the combination of adaptive strategies

for both the steplength and scaling matrix seems to lead to the best improvement in terms of

numerical efficiency in the majority of cases. There are of course exceptions: as an example, the

best choice in the image reconstruction test in Section 3.3.1 is provided by coupling the identity

matrix with an adaptive steplength selection based on a Lanczos-like process. In general, we

can say that the proposed methods always benefit from the variable choice of at least one of

the involved parameters. Another major strength of the methods is robustness with respect to

the noise level on the data: this is observed in Section 4.3 of Chapter 4, where the non scaled

version of VMILAn recovers good reconstructions of the phase function even for high values of

the signal-to-noise ratio.

Future work will concern a systematic and rigorous treatment of the selection of the param-

eters in the proposed methods, with a particular attention for VMILAn. In this case, we will

investigate on how the parameters selection affects the inner subproblem for the computation

of the inexact proximal point, as well as understanding how the approximation level of the

proximal point influences the algorithmic performances. Another subject of future research

will be the combination of VMILAn to the inexact Gauss-Seidel scheme proposed in Chapter

5, with the consequent application of the resulting scheme in the context of image blind de-

convolution in astronomical imaging, by adding nondifferentiable regularization terms suited

to the reconstruction of diffuse objects.



Appendix A

Basics on image restoration

The goal of image restoration is to restore the original image x from a degraded acquired image

y. Usually, one can roughly distinguish between two kinds of degradation:

• the degradation due to the process of image formation, which is denominated blurring;

• the degradation introduced by the recording process of the image, which is called noise

and is triggered off by measurement or counting errors.

Mathematical modeling of image acquisition

Image reconstruction techniques are based on an image formation model, which describes the

propagation of the radiation used in the imaging process. If we denote with x(s) a function of

the space variables describing the unknown object and with ȳ(s) the acquired noise-free image,

then the optical image formation is frequently modelled by the following continuous linear

model [17]

ȳ(s) =

∫
H(s, s′)x(s′)ds′ (A.1)

where H(s, s′) is the Point Spread Function (PSF). The term comes from the fact that H(·, s′)
is the image of a point source located at the point s′. Indeed, if the object is given by u(s′′) =

δ(s′′ − s′), where δ(·) indicates the Delta distribution, then according to (A.1), one obtains

ȳ(s) = H(s, s′). The effect of the PSF is called blurring and ȳ is the blurred image.

In several acquisition systems, the PSF is assumed to be space-invariant, i.e. invariant with

respect to translations; in this case, the function H(s, s′) depends only on the difference s− s′

and model (A.1) reduces to

ȳ(s) =

∫
H(s− s′)x(s′)ds′ = (H⊗ x) (s) (A.2)

where ⊗ denotes the convolution product.

Furthermore, when images are treated as digital signals, a discrete version of model (A.2)

is required. In this case, the unknown object and the PSF will be two vectors x, h ∈ Rn, and
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the convolution product can be seen as the product matrix-vector Hx, where H ∈ Rm×n is the

convolution matrix obtained by imposing some specific boundary conditions on the discretized

PSF h [81]. Finally, taking into account the presence of noise in the recording process and

adding also a nonnegative constant background term b to the model, we can write

y = Hx+ be + v (A.3)

where y ∈ Rm is the blurred and noisy image and v ∈ Rm represents the additive noise

contribution.

Concerning the matrix H, standard assumptions are the following:

Hi,j ≥ 0, ∀ i, j, HT
e = e, He > 0.

Let us also remark that, if periodic boundary conditions are employed in model (A.3), i.e. if

the two-dimensional PSF h = {hi,j}j=1,...,n
i=1,...,m is such that

hm+1,j = h1,j, hi,m+1 = hi,1, ∀ i, j (A.4)

then H is block circulant with circulant blocks and the matrix-vector products Hx and HTx

can be efficiently computed by making use of the Discrete Fourier Transform (DFT) and its

inverse (IDFT) [17, 81]. Indeed, by means of the convolution theorem, we have

Hx = IDFT (DFT(h) · DFT(x))

HTx = IDFT
(

DFT(h) · DFT(x)
)
,

where α denotes the complex conjugate of α ∈ C. Hence, the above matrix-vector products

may be performed with a O(mn log(mn)) complexity. This efficient computation is guaranteed

also with other boundary conditions, such as zero or reflexive conditions, which imply the use

of other discrete transforms apart from the DFT [81].

The noise vector v in model (A.3) can be seen as a realization of a random variable and,

as a consequence, each pixel yi of the acquired image can be seen as a realization of a random

variable Yi. By setting Y = (Y1, . . . , Ym), the modelling of the system is then related to the

probability density of the multivariate random variable Y . This density depends on the object

x and therefore we denote it as pY (y;x). The following assumptions on Yi and Y are usually

accepted as reasonable ones [17, 20]:

• the random variables Yi are statistically independent, that is

pY (y;x) =
m∏

i=1

pYi
(yi;x);

• the expected value of Yi is given by the i−th pixel of the noise-free image, hence

E(Y ) =

∫
ypY (y;x)dy = Hx+ be.
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There are then two classical examples of noise modelling:

• White Gaussian noise: each component vi of the noise vector v is a realization of a

random variable with Gaussian distribution of zero mean and standard deviation σ > 0.

Then the vector v is a realization of the multivariate random variable V , whose probability

density is

pV (v) =
1

(2πσ2)m/2
exp

(
− 1

2σ2
‖v‖2

)
.

Therefore the statistical model for the detected image is

pY (y;x) =
1

(2πσ2)m/2
exp

(
− 1

2σ2
‖y − (Hx + b)‖2

)
. (A.5)

• Poisson noise: each Yi is a Poisson random variable with expected value given by

(Hx+ be)i. By invoking the statistical independence of the random variables Yi, we have

pY (y;x) =
m∏

i=1

e−(Hx+be)i(Hx+ be)yii
yi!

. (A.6)

Maximum likelihood (ML) approach

In image restoration, one wants to recover the object x corresponding to the image y: this is an

example of inverse problem [78, 17]. A naive approach to address this problem is to compute

x = H−1(y − be)

as the solution of the linear system Hx = y − be. However, this approach is not suitable

when the matrix H is not invertible, i.e. when the problem is ill posed, or when H has a high

condition number, i.e. when the problem is ill-conditioned. Of course there are cases in which

direct inversion of the linear model (A.3) is practicable, such as computed tomography, but

these are only exceptions.

Since we assume that the probability density pY (y;x) is known, it is then natural to look

for statistical formulations of the image restoration problem. The standard approach is the so-

called maximum likelihood (ML) estimation [135], in which an estimate of the unknown object

x is any x∗ that maximizes the probability density of y, denominated the likelihood function of

the problem:

x∗ = argmax
x∈Rn

pY (y;x).

Clearly, this is equivalent to minimize the negative logarithm of the probability density. There-

fore, the ML problem may be reformulated in the following alternative way:

x∗ = argmin
x∈Rn

f0(x; y) ≡ −A ln(p(y;x)) +B (A.7)
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where A and B are suitable real constants. The function f0 is referred to as the fit-to-data

term, since it measures the distance between the observed data and the one predicted by the

linear model.

Different noise models lead to different functionals f0. In particular:

• Gaussian noise: setting A = σ2 and B = A/(2πσ2)m/2, we have

f0(x; y) =
1

2
‖Hx + be− y‖2 (A.8)

which leads to the classical Least Squares (LS) minimization problem.

• Poisson noise: using Stirling’s formula to approximate the factorial and neglecting some

constants, we obtain

f0(x; y) = KL(Hx + be; y) (A.9)

where

KL(x; y) =
∑

xi>0

yi log

(
yi
xi

)
+ xi − yi

is the Kullback–Leibler functional.

For both types of noise, it can be seen that problem (A.7) is still affected by the possible

ill-conditioning of the matrix H [17]. This means that one should not aim at computing the

minimum points of the functional f0, since they do not provide sensible estimates of the un-

known object. In this sense, very efficient methods, such as second order methods, pointing

directly to the minima, can be dangerous. On the other hand, first order methods can provide

acceptable (regularized) solutions by early stopping.

Maximum A Posteriori (MAP) approach

A more complete statistical framework is provided by the Bayesian approach [70], in which we

assume that the unknown object x is also a realization of a multivariate random variable X.

The probability density of X is the so-called prior and will be denoted by pX(x). Introducing

also the marginal probability pY (y), we can compute, by means of the Bayes theorem, the

conditional probability of X with respect to the given value y of Y :

pX(x|y) =
pY (y|x)pX(x)

pY (y)
.

In this manner, some properties of the object (such as smoothness, sharp edges etc) can be

incorporated in the a priori probability pX(x). The most frequently used priors are of the

Gibbs type:

pX(x) = c exp (−λf1(x))

where c ∈ R, λ ∈ R>0, and f1 is a functional which is usually convex.
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Then, a maximum a posteriori (MAP) estimate of the unknown object is any x∗ that

maximizes the a posteriori probability pX(x|y):

x∗ = argmax
x∈Rn

pX(x|y).

By consider the equivalent formulation with the negative logarithm of pX(x|y) and assuming

that pX(x) is a Gibbs prior, we have:

x∗ = argmin
x∈Rn

− ln pX(x|y) = argmin
x∈Rn

(− ln(pY (y|x)) − ln(pX(x)) + ln(pY (y)))

= argmin
x∈Rn

f(x; y) ≡ f0(x; y) + λf1(x)

The function f1 is called regularization functional, and has the role of imposing some properties

on the desired solution, whereas λ is the regularization parameter, which balances the trade-off

between f0 and f1. In presence of Gaussian or Poisson noise, the function f0 is differentiable,

coercive and convex; hence, if f1 is also a convex function, then f admits global minimizers

for any positive value of λ. However, it is worth noting that the quality of the reconstructions

obtained via a MAP approach hugely depends on the choice of the parameter λ.

Regularization functionals

In the following, the symbol ∇ denotes the discrete gradient operator, i.e. ∇ = (∇T
1 , . . . ,∇T

n )T

where ∇i ∈ R2×n operates the forward finite differences at the i−th pixel of the image:

∇ix =

(
xi+1 − xi
xi+m − xi

)

where x ∈ Rn represents a vectorized 2D image. A similar definition is given for the Laplacian

operator ∇2.

Let us recall some of the most classical regularizers used in image deblurring and denoising.

• Tikhonov regularization: given A ∈ Rn×n, the choice

f1(x) =
1

2
‖Ax‖2

is known as Tikhonov regularization [138], and its aim is to emphasize smooth details in

the object. According to the choice of A, we distinguish between zero-order, first-order

and second-order Tikhonov regularization:

– A = I (zero-order);

– A = ∇ (first-order);

– A = ∇2 (second-order).

All these functionals are continuously differentiable and convex.
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• Edge-preserving regularization: in contrast with the Tikhonov regularizers, the Total

Variation (TV) functional [132] preserves discontinuities and edges in the image. The

discrete version of Total Variation can be written as

TV (x) =
n∑

i=1

‖∇ix‖ =
√

(xi+1 − xi)2 + (xi+m − xi)2.

Note that the functional TV (x) is convex; however, it is nondifferentiable at any point

x such that ∇ix = 0 for some i ∈ {1, . . . , n}. To avoid such points and recover differen-

tiability, one can introduce a positive threshold δ ∈ R>0 and consider the Hypersurface

Potential (HS) functional [141, 43]:

HS(x) =
n∑

i=1

√
‖∇ix‖2 + δ2 =

√
(xi+1 − xi)2 + (xi+m − xi)2 + δ2.

Constraints

In some applications, a priori information comes also from the physics underlying the acquisition

process. Additional information of this kind may be added by restricting the search of the object

x onto a convex set Ω:

x∗ = argmin
x∈Rn

f0(x; y) + f1(x) + ιΩ(x).

Among the most typical examples of constraint sets, we recall:

• the nonnegative orthant: Ω = Rn
≥0, used to impose the nonnegativity on the image pixels;

• conservation of the flux: Ω = {x ∈ Rn :
∑n

i=1 xi = c};

• box constraint: Ω = {x ∈ Rn : ai ≤ xi ≤ bi, i = 1, . . . , n}, when some physical bounds

on the object are imposed.
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[18] M. Bertero, P. Boccacci, G. Desiderà, and G. Vicidomini. Image deblurring with Poisson

data: from cells to galaxies. Inverse Problems, 25(12), Dec. 2009.

[19] M. Bertero, P. Boccacci, G. Talenti, R. Zanella, and L. Zanni. A discrepancy principle

for Poisson data. Inverse Problems, 26(10), Oct. 2010.

[20] M. Bertero, H. Lantéri, and L. Zanni. Iterative image reconstruction: a point of view.

In Y. Censor, M. Jiang, and A. K. Louis, editors, Mathematical Methods in Biomedical

Imaging and Intensity-Modulated Radiation Therapy (IMRT), pages 37–63. Birkhauser-

Verlag, Pisa, Italy, 2008.

[21] D. Bertsekas. On the Goldstein-Levitin-Polyak gradient projection method. IEEE Trans-

actions on Automatic Control, 21:174–184, 1976.

[22] D. Bertsekas. Nonlinear programming. Athena Scientific, Belmont, 1999.



Bibliography 189

[23] J. C. Bezdek and R. J. Hathaway. Convergence of alternating optimization. Neural,

Parallel and Scientific Computing, 11(4):351–368, 2003.

[24] E. G. Birgin, J. M. Martinez, and M. Raydan. Nonmonotone spectral projected gradient

methods on convex sets. SIAM Journal on Optimization, 10:1196–1211, 2000.

[25] E. G. Birgin, J. M. Martinez, and M. Raydan. Inexact spectral projected gradient meth-

ods on convex sets. IMA Journal of Numerical Analysis, 23(4):539–559, Oct. 2003.

[26] J. Bochnak, M. Coste, and M.-F. Roy. Real Algebraic Geometry. Springer-Verlag, Berlin,

1998.

[27] J. Bolte, A. Daniilidis, and A. Lewis. The  Lojasiewicz inequality for nonsmooth suban-

alytic functions with applications to subgradient dynamical systems. SIAM Journal on

Optimization, 17:1205–1223, 2007.

[28] J. Bolte, A. Daniilidis, A. Lewis, and M. Shiota. Clarke subgradients of stratifiable

functions. SIAM Journal on Optimization, 18:556–572, 2007.

[29] J. Bolte, A. Daniilidis, O. Ley, and L. Mazet. Characterizations of  Lojasiewicz inequal-

ities: Subgradient flows, talweg, convexity. Transactions of the American Mathematical

Society, 362(6), 2010.

[30] S. Bonettini. Inexact block coordinate descent methods with application to the nonneg-

ative matrix factorization. IMA Journal of Numerical Analysis, 31(4):1431–1452, Oct.

2011.

[31] S. Bonettini, A. Cornelio, and M. Prato. A new semiblind deconvolution approach for

Fourier-based image restoration: an application in astronomy. SIAM Journal on Imaging

Science, 6(3):1736–1757, 2013.

[32] S. Bonettini, I. Loris, F. Porta, and M. Prato. Variable metric inexact line–search based

methods for nonsmooth optimization. SIAM Journal on Optimization, 26(2):891–921,

2016.

[33] S. Bonettini, I. Loris, F. Porta, M. Prato, and S. Rebegoldi. On the convergence of a line-

search based proximal-gradient method for nonconvex optimization. Inverse Problems,

33:055005, 2017.

[34] S. Bonettini and M. Prato. Nonnegative image reconstruction from sparse Fourier data:

a new deconvolution algorithm. Inverse Problems, 26(9), Sept. 2010.

[35] S. Bonettini and M. Prato. New convergence results for the scaled gradient projection

method. Inverse Problems, 31(9):095008, Sept. 2015.



190 Bibliography

[36] S. Bonettini, M. Prato, and S. Rebegoldi. A cyclic block coordinate descent method with

generalized gradient projections. Applied Mathematics and Computation, 286:288–300,

2016.

[37] S. Bonettini, R. Zanella, and L. Zanni. A scaled gradient projection method for con-

strained image deblurring. Inverse Problems, 25(1), Jan. 2009.

[38] P. Brianzi, F. Di Benedetto, and C. Estatico. Preconditioned iterative regularization in

Banach spaces. Computational Optimization and Applications, 54(2):263–282, Mar. 2013.

[39] A. Cassioli, D. Di Lorenzo, and M. Sciandrone. On the convergence of inexact block co-

ordinate descent methods for constrained optimization. European Journal of Operational

Research, 231(2):274–281, Dec. 2013.
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L. Blanc-Féraud and P.-Y. Joubert, editors, 3rd International Workshop on New Com-

putational Methods for Inverse Problems, volume 464 of Journal of Physics: Conference

Series, page 012003, 2013.

[92] C. J. Lin. Projected gradient methods for nonnegative matrix factorization. Neural

Computation, 19(10):2756–2779, Oct. 2007.
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