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Introduction

In this work, we present some new results: their main thread is the bounded variation functions
in abstract Wiener space (which we will usually call Wiener space).

Here, by Wiener space, we mean a separable Banach space with a centered non-degenerate
Gaussian measure γ: the canonical example is the classical Wiener measure on C([0,1]), which
represents the standard Brownian motion (see e.g. [14] for more information); a Wiener space
admits a particular subspace H, the Cameron-Martin space, such that, for every h∈H, the measure
defined as γh := γ(·−h) is absolutely continuous with respect to γ; on H is well defined an inner
product 〈·, ·〉H which gives on H an Hilbert structure. We can define the spaces Lp, the Sobolev
spaces W 1,p with the H-derivatives ∂h and a H-gradient ∇H ; by ∂ ∗h we denote the formal adjoint
of the h-derivative ∂h and, on W 1,p, it is verified an integration by parts formulaˆ

X
∂h f g dγ =−

ˆ
X

f ∂
∗
h g dγ.

By functions of bounded variation (BV), we mean a function f on (X ,γ) which admits a vector
measure Dγ f such that an integration by parts formula is verified for every g regular

ˆ
X

f ∂
∗
h g dγ =−

ˆ
X

g d
〈
Dγ f ,h

〉
H

(we refer to [8, 7] and al.); equivalently, a function f is in BV if there exists a sequence of functions
fn ∈W 1,1 s.t. fn→ f in L1 and

limsup
n→+∞

ˆ
X
|∇H fn|H dγ < ∞.

A set A⊂ X is said of finite perimeter if its characteristic function 1lA is BV.
The topic of BV (bounded variation) functions in Wiener space has been studied for instance

in [42, 45, 7, 8, 18, 17, 51]; we widely use the survey [54].
There are different possible definition of bounded variation on subsets of X ; in this work we

will follow a definition of functions of bounded variation on an open convex O⊂ X for X Wiener
space, given in [17].

In this work, we also deal with the problem of defining Sobolev spaces on open subsets O of
Wiener spaces: following for instance [26], [51], the main idea is to define the weak gradients on
Lipschitz functions, and then to define W 1,p(O) as the completion of the set of Lipschitz functions
with respect to a norm ‖·‖W 1,p(O). In the case of O convex, an equivalent definition is that f is in
W 1,p(O) if it is absolutely continuous along the lines (almost everywhere) and if the weak gradient
defined in this way is Lp. The proof of this fact is in [14] for W 1,2(O); in this work (Proposition
3.2.23, Subsection 3.3.2,) the proof is reconstructed for W 1,p with p generic.
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2 INTRODUCTION

A greater problem is to define W 1,p
0 (O), the functions with zero trace on O: we define a

function in W 1,p
0 (O) as the limit of a sequence of regular functions which are null out of O. In

[26], a particular kind of sets allows to define the trace as an operator from W 1,p(O) to Lp(∂O)
(for a measure on the boundary called Feyel-de La Pradelle), so in this setting a possible definition
of W 1,p

0 (O) is the space of functions with null trace on the boundary; in this work (Chapter 6,
Theorem 6.2.2) we prove, under certain conditions stronger than that of [26], that for p = 2 the
two definitions are equivalent.

The most of Chapter 7 is devoted to the extension in the Wiener spaces setting of a result
(due to H. Brezis) given in the section 8 of the paper [12] by Barbu and Röckner. about the
resolvent of the Laplacian in finite dimension: if O is a convex bounded set with regular boundary
in X = Rd and L is the Laplace operator in O with null Dirichlet boundary conditions, if σ > 0,
y ∈W 1,1

0 (O,L d)∩L2(O,L d) (L d is the Lebesgue measure), and u := (I−σL)−1y, then

(0.0.1)
ˆ

O
|∇u(x)| dx≤

ˆ
O
|∇y(x)| dx.

We give some extensions. (0.0.1) is true also if L is the Laplace operator in O with null
Neumann boundary condition (Section7.4) and y ∈W 1,1(O,L d)∩L2(O,L d). Moreover, if we
replace the Lebesgue measure with a Gaussian measure γ (in Rd or in a infinite dimensional space
X) and we substitute to L the Ornstein-Uhlenbeck operator (which takes the place of Laplace
operator in Wiener spaces in many respects), we can find an equivalent of (0.0.1) both for null
Dirichlet boundary conditions, and for null Neumann boundary conditions.

For Ornstein-Uhlenbeck operator with null Dirichlet boundary conditions (Section 7.2), we
set a particular condition on O (Chapter 6), which we use to get Theorem 6.2.2 on W 1,2

0 (O);
moreover, we impose a condition, that we could name Gaussian convexity; under this hypothesis,
for y ∈W 1,p

0 (O)∩L2(O) for some p > 1, and u := (I−σL)−1y we have Theorem 7.3.7

(0.0.2)
ˆ

O
|∇Hu| dγ ≤

ˆ
O
|∇y| dγ.

For Ornstein-Uhlenbeck operator with null Neumann boundary conditions (Section 7.4), we
can impose that O is convex, and we obtain Theorem 7.4.7 for every y ∈W 1,1(O)∩ L2(O) the
inequality (0.0.2).

We make use of this last result in Section 7.5; in that section, we want to find a characterization
of bounded variation function on O which is equivalent to that in [17]; we get Theorem 7.5.11 that,
under the hypothesis that y ∈ L2(O), it is BV if and only if (for Jσ := (I−σL)−1)

limsup
σ→0

ˆ
O
|∇HJσ (y)|H dγ <+∞

and if and only if there exists a sequence of functions fn ∈W 1,1 s.t. fn→ f in L1 and

limsup
n→+∞

ˆ
O
|∇H fn|H dγ < ∞;

to prove this result, we need the equivalent definitions of W 1,p(O) given in Proposition 3.2.23.

In Chapter 8, we consider X := C([0,1],Rd) and X∗ := C∗([0,1],Rd) (continuous functions
with starting point in 0) with the measure given by the Brownian motion with starting point in
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0 ∈ Rd , hence it is represented by a Gaussian measure. For every Ω ⊆ X , we define Ξ∗
Ω

:= {ω ∈
X∗|ω(t) ∈Ω ∀t ∈ [0,1]}.

In ([46], Thm. 5.1) it is proved that, if d ≥ 2 and Ω ⊂ Rd is an open set which satisfies a
uniform outer ball condition then Ξ∗A has finite perimeter in the sense of Gaussian measure.

In Chapter 8 we give a weaker condition on Ω (in dimension sufficiently large) such that ΞΩ

has finite perimeter: in particular, Ω can be the complement of a symmetric cone.

In the first part of this work, we present the known results which are used to prove the above
described results.

In Chapter 1, we recall some well-known notions about operators, semigroups and forms, and
notions of measure theory, in particular probability (with a great attention for Markov process,
which will be used in Chapter 8).

In Chapter 2, we recall a great part of the theory of Gaussian measures, which allows us to
define Wiener spaces. In Chapter 3 we deal with derivatives and Sobolev spaces in Wiener spaces,
and we also introduce the Ornstein-Uhlenbeck semigroup.

The topic of Sobolev spaces in Wiener spaces is reserved for Chapter 3: this Chapter contains
the treatment about W 1,p(O), and in particular an assertion (Proposition 3.2.23): we present a
more general extension of it; we also introduce W 2,2(X) and the Ornstein-Uhlenbeck semigroup
and operator; it is also recalled the theory of traces contained in [26].

In Chapter 4 we introduce the topic of BV functions, as stated above.
In Chapter 5 we recall a particular kind of convergence of forms, introduced by U. Mosco in

[56], which implies the convergence of the semigroups and of the associated resolvents: we use it
extensively in Chapter 7.

In the second part of the thesis (Chapters 6, 7, 8) we present our results, as described above.
In the Appendix we recall several notations and definitions used through the above chapters,

like: Banach spaces and complexifications (used in Chapter 1), holomorphic functions, convo-
lutions (used especially in the proof of Proposition 3.2.23), a version of Riesz-Thorin theorem,
absolute continuity, Banach-Alaoglu theorem; particularly important is the Hölderianity of the
solution of elliptic problems, used in Chapter 7.

I want to especially thank Michael Röckner, who supervised my work when I was visiting
the the University of Bielefeld in fall 2016 and proposed the problem of the contraction of the
gradients which I afford in Chapter 7.
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Basic notations
argz argument of the complex number z.
Id identity function.
Ac complement of a set A
f+ positive part of a function f .
f− negative part of a function f .
{G = k} {x ∈ X |G(x) = k}, for sets X ,Y a function f : X → Y , and k ∈ Y .
{G ∈ A} {x∈ X |G(x)∈ Ak}, for sets X ,Y a function f : X→Y , and A⊆Y .
I identity.
Ā closure of a set A.
A◦ interior of a set A.
diam diameter of a metric space.
C(X) set of continuous functions from the topological space X in R.
Cb(X) space of continuous bounded functions from the metric space X

in R.
C(X ,Y ) set of continuous functions from the topological space X in the

topological space Y .
Cb(X ,Y ) set of continuous bounded functions from the metric space X in

the metric space Y .
Cc(X) space of continuous functions with compact support from the

metric space X in R.
C1

c (Rd) subspace of Cc(Rd) of functions differentiable, with gradient con-
tinuous in Rd .

∂ ·
∂xi

, ∂xi partial derivative along i.
∂ k·
∂xk

i
k−th partial derivative (if a basis is fixed).

f−1(A) inverse image of a set A with respect to a function f .
R̄ R̄= R∪{−∞,+∞}.
X ′ algebraic dual of the Banach space X , i.e. the set of linear func-

tions l : X → R.
X∗ topological dual of the Banach space X , i.e. the set of continuous

linear functions l : X → R.
L(X ,Y ) given the metric spaces X ,Y , space of bounded linear function

from X in Y .
L (X ,L(X ,Y )) given the metric spaces X ,Y , space of bounded linear function

from X in L(X ,Y ).
supp f the support of a Y valued function (Y vector space) on a topolog-

ical space X , i.e. f−1(Y\0).
L d Lebesgue measure on Rd .
Lp(O,L d) Lp space with respect to L d on O subset of Rd for p ∈ [1,+∞].
Lip(X ,Y ) the set of Y -valued Lipschitz functions on X (where X and Y are

metric spaces).
Lipb(X ,Y ) the set of Y -valued Lipschitz bounded functions on X (where X

and Y are metric spaces).
Lip(X) Lip(X ,R).
Lipb(X) Lipb(X ,R).
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Basics facts





CHAPTER 1

Notations and miscellaneous of basics facts

In this Chapter we recall some basics notions.
The Section 1.1 recalls some standard notions about operators and semigroups, which is used

in Section 3.4 to define the Ornstein-Uhlenbeck operator; moreover, we introduce Proposition
1.1.21, which will be used in Chapter 8.

In Section 1.2 we recall standard notions of measure theory; in particular, Hausdorff measures
are introduced. Moreover, we present the concept of vector measure, in particular a technical
result about their total variation (Lemma 1.2.36): they will be used in Chapters 4 and 7.

In Section 1.3, some notions of probability are introduced, with a great attention for Markov
processes, and their link with symmetric forms; this topics are used in Subsection 1.3.4 to explain
properties of d-dimensional Brownian motion (as a Markov process), and absorbing Brownian
motion; in Subsection 1.3.5 it is introduced the Bessel process; these topics will be used in Chapter
8.

1.1. Closable operators, resolvents, semigroups and symmetric forms

1.1.1. Operators, resolvents, semigroups and generators. For this subsection we refer to
[37], [11], [27] and [41].

We recall the definition of operator, of closable operator, and of the closure of a closable
operator.

In this section we deal with real and complex Banach spaces; in this work, by Banach space
we mean a real Banach space.

DEFINITION 1.1.1. Let E, F be Banach spaces (both real or both complex); a (unbounded)
operator is a couple (D(L),L) where D(L) is a subspace of E and L is a linear operator L : D(L)→
F ; D(L) is said domain of the operator.

If E = F , we say that L is an operator on E.
We say that L is closed if its graph is closed in E×F .

A bounded operator L on E is said contractive, or a contraction, if ‖L(x)‖X ≤ ‖x‖X .
For x ∈ D(L), sometimes we will write Lx instead of L(x).

DEFINITION 1.1.2. Let E, F be (both real or both complex) Banach spaces and let L : D(L)⊂
E → F be a linear operator. L is called closable (in E) if there exists a linear operator L : D(L)⊂
E→ F whose graph is the closure of the graph of L in E×F .

REMARK 1.1.3. An operator L is closable if: for every sequence {xn}n∈N ⊂ D(L) which
satisfies limn→∞ xn = 0, if limn→∞ Lxn = z then z = 0.

If L is closable, the domain of the closure L of L is the set

D(L) =
{

x ∈ E : ∃(xn)⊂ D(L), lim
n→∞

xn = x, Lxn converges in F
}

9
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and for x ∈ D(L) we have
Lx = lim

n→∞
Lxn,

for every sequence (xn) ⊂ D(L) such that limn→∞ xn = x. By the closability of L, we have that
limn→∞ Lxn is independent of the sequence (xn). Since L is a closed operator, its domain is a
Banach space with the graph norm x 7→ ‖x‖E +‖Lx‖F .

A linear operator L on X is said bounded if D(L) = X and

‖L‖ := sup
x∈X

‖Lx‖X
‖x‖X

= sup
x∈X ,‖x‖X≤1

‖Lx‖X < ∞;

the set of bounded operator on X will be denoted with L(X). in this setting, ‖·‖ will be called
operator norm, and we denote it also with ‖·‖L(X).

We recall the concept of complexification of a real Banach space (see Appendix).
If X is a (complex or real) Banach space, then L(X) is a (complex or real) Banach space with

the norm ‖·‖L(X).

REMARK 1.1.4. Let X be a (real) Banach space, and L be an operator; we can define LC as
operator on the complexifixation XC as

D(LC) = {x1 + ix2 ∈ XC|x1,x2 ∈ D(L)},

LC(x1 + ix2) = Lx1 + iLx2,

we have that LC is a linear operator; we have that if L is closed (closable, bounded) then LC is
closed (closable, bounded).

Now we will give some notions of spectral theory; we will do it both for real and complex
Banach spaces.

DEFINITION 1.1.5. Let (D(L),L) be an operator on a real (or complex) Banach space X , and
λ ∈ R (or λ ∈ C); an operator R ∈ L(X) is said a resolvent operator for (L,λ ) if it is the inverse
ofλ I−L as a function; which means, R(X) = D(L) and

(λ I−L)◦R = I

on X , and
R◦ (λ I−L) = I

on D(L).
We have that there exists at most one of this operator; if there exists, we call it also the

resolvent, and we denote it by (λ I−L)−1 or R(λ ,L).
The resolvent set ρ(L) and the spectrum σ(L) of L are defined by

(1.1.1) ρ(L) = {λ ∈K|∃ (λ I−L)−1 ∈ L(X)}, σ(L) =K\ρ(L).

where K= R or K= C.
The numbers λ ∈ σ(L) such that λ I−L is not injective are the eigenvalues, and the vectors

x ∈ D(L) such that Lx = λx are the eigenvectors (or eigenfunctions, when X is a function space).
The set σp(L) whose elements are all the eigenvalues of L is the point spectrum.
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If λ ∈ ρ(L), by definition we have

(λx−Lx)◦R(λ ,L)(x) = x

we have also
R(λ ,L)(λx−Lx) = x

for every x ∈ D(L).
We have that, if the resolvent set ρ(L) is not empty, then L is a closed operator.
We have the following equality, known as the resolvent identity

(1.1.2) R(λ ,L)−R(µ,L) = (µ−λ )R(λ ,L)R(µ,L), ∀ λ , µ ∈ ρ(L).

If X is a (real) Banach space and L is an operator, ρ(L) = ρ(LC)∩R, and, for λ ∈ ρ(L) the
operator R(λ ,L) can be extended to XC as operator and it is R(λ ,LC) (see e.g. [11]).

For the next definition see e.g. ([52], Def. I.1.4).

DEFINITION 1.1.6. A family {Gλ}λ>0 ⊂ L(X) is said strongly continuous contraction resol-
vent if:

i) limλ→0+ λGλ x = x for every x ∈ X ;
i) λGλ is contractive for every λ ;
i) λGλ −µGµ = (µ−λ )Gλ Gµ , ∀ λ , µ > 0.

A semigroup of operators on a (real or complex) Banach space X is a family {Tt}t∈[0,+∞) (we
will write also simply Tt) of linear bounded operators Tt : X → X , s.t. T0 is the identity and for
every t,s≥ 0,

Tt+s(x) = Tt(Ts(x))
for every x ∈ X . A semigroup Tt on X is said strongly continuous if, for every x ∈ X

lim
t→0
‖Ttx− x‖X = 0;

a semigroup Tt on X is said contractive (or contraction semigroup) if, for every x ∈ X , t ≥ 0

‖Ttx‖X ≤ ‖x‖X .

DEFINITION 1.1.7. The infinitesimal generator (or, shortly, the generator) of the strongly
continuous semigroup {Tt}t≥0 is the operator defined by

D(L) =
{

x ∈ X : ∃ lim
t→0+

Tt − I
t

x
}
, Lx = lim

t→0+

Tt − I
t

x.

We have that, if (D(L),L) is the generator of a strongly continuous semigroup Tt , then D(L)
is dense in X , and Tt(D(L))⊆ D(L) for every t ≥ 0. One operator can be the generator of at most
one semigroup.

REMARK 1.1.8. If X is a Banach space and Tt is an semigroup on X , then Tt can clearly be
extended to a semigroup TC

t on the complexification XC as operator, if Tt is strongly continuous
then TC

t is strongly continuous, if the generator of Tt is L then the generator of TC
t is LC.

We recall that if H is a Hilbert space then for x,y ∈ H we have

|x+ iy|HC =
√
|x|2H + |y|2H ;

so if Tt is a contractive semigroup on H, then its extension TC
t is contractive on HC.
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A self-adjoint operator L on a (real or complex) Hilbert space H is said accretive if

ℜ(〈Lh,h〉H)≥ 0

for every h ∈ D(L).
An operator L is said dissipative if −L is accretive.
By the fact that | · |2H = 〈·, ·〉H , the following Lemma follows immediately.

LEMMA 1.1.9. A self-adjoint operator L on H is accretive iff, for every λ > 0, h ∈ D(A)

|λh+Lh|H ≥ λ |h|H .

We have this result.

PROPOSITION 1.1.10. If L is an accretive operator, then λ ∈ ρ(L) for every λ < 0. If L is
dissipative, then λ ∈ ρ(L) for every λ > 0.

An accretive operator L is said m-accretive if, I+L is surjective (here m- stands for maximal).
Clearly, if H is a real Hilbert space and L is an operator on H, we have that if L is accretive

(m-accretive) then LC is accretive (m-accretive).
We have this Proposition (see e.g. [11], Thm. 3.1).

PROPOSITION 1.1.11. (Lumer-Phillips theorem) Let H be a (real or complex) Hilbert space
and L an operator on H; then L is the generator of a strongly continuous contractive semigroup
on H iff −L is m-accretive.

In particular, if L generates a strongly continuous contractive semigroup, then L admits for
every λ > 0 a resolvent Gλ := R(λ ,L), and it is a strongly continuous contraction resolvent (see
e.g. [52] Prop. I.1.10); we call Gλ the strongly continuous contraction resolvent of L.

If θ ∈ [0,+π

2 ), then in C we can define the set Σθ := {z ∈ C||argz|< θ}.
We introduce the concepts of bounded holomorphic semigroup (we follow [57]).

DEFINITION 1.1.12. Let θ ∈ (−π

2 ,+
π

2 ). Let X be a complex Banach space (so L(X) is a
complex Banach space). A strongly continuous semigroup {Tt}t∈(0,+∞) on X is called a bounded
holomorphic semigroup on the sector Σθ if it can be extended to a holomorphic function {Tz}z∈Σθ

on Σθ s.t., for every 0 < θ1 < θ , {Tz}z∈Σθ1
is uniformly bounded on L(X).

1.1.2. Forms and associated operators and semigroups. In the sequel of this subsection, z
denotes the conjugate of z in C.

We recall that a symmetric form on a real (sesquilinear form on a complex) Hilbert space H is
a couple (D(a),a) where D(a), said domain, is a dense linear subspace of H and a is a function
D(a)×D(a)→K for K= R (or K= C) s.t. a(h1,h2) = a(h2,h1) and

a(αh1 +βh2,h3) = αa(h1,h3)+βa(h2,h3)

for every h1,h2,h3 ∈ D(a) and α,β ∈K; we have that on D(a) we can define the norm | · |a1 as

|h|a1 :=
√

a(h,h)+ 〈h,h〉H
for every h ∈ D(a); if D(a) endowed with the norm | · |a1 is a Banach space then a is said closed.

If there exists M s.t.
|a(h1,h2)| ≤M|h1|a1 |h2|a1 ,

for every h1,h2 ∈ D(a), then we say that a is continuous.
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If
ℜ(a(h,h))≥ 0

for every h ∈ H.

REMARK 1.1.13. If H is a real Hilbert space and (D(a),a) is a symmetric form on H, then
there exists an extension (D(aC),aC) on the complexification HC: D(aC) := D(a)+ iD(a),

aC(h1 + ih2,h3 + ih4) := a(h1,h3)+ ia(h2,h3)− ia(h1,h4)+a(h2,h4);
it is sesquilinear, and if a is closed (or continuous) then aC is closed (or continuous).

We have this result (see e.g. [48],VI, Theo 2.1), due to K. Friedrichs.

PROPOSITION 1.1.14. Given a closed symmetric form (D(a),a) on H, there exists exactly one
linear operator A on H associated to a s.t. −A is an m-accretive operator, D(A)⊆ D(a), and, for
every f ∈ D(A),g ∈ D(a), we have

a( f ,g) =−〈A f ,g〉H .

DEFINITION 1.1.15. Given a closed symmetric form (D(a),a) on H, the operator A on H
introduced in Proposition 1.1.14 is said associated to a.

By what we said, given a continuous closed symmetric form (D(a),a) on H, and the operator L
associated to it,−L is m-accretive, so by Lumer-Phillips theorem L generates a strongly continuous
contractive semigroup Tt , and Gλ := R(λ ,L) is a strongly continuous contraction resolvent.

We call the above defined Tt the strongly continuous semigroup associated to a, and Gλ the
strongly continuous contraction resolvent associated to a.

REMARK 1.1.16. Let H be a real Hilbert space, a a closed symmetric form on H and A the
operator associated to a; then, on the complexification HC the operator associated to the extension
aC is the extension AC.

DEFINITION 1.1.17. Let H be a (real or complex) Hilbert space; a semigroup Tt on H is said
symmetric or self-adjoint if , for every t ≥ 0, h1,h2 ∈ H

〈Tth1,h2〉H = 〈h1,Tth2〉H .

We have that a strongly continuous semigroup is self-adjoint if and only if its generator is
self-adjoint.

We have that if a closed symmetric form a Let Tt be a self-adjoint strongly continuous con-
tractive semigroup on H; for every t > 0 we define the form with domain H

a(t)(h1,h2) := t−1 〈h1−Tth1,h2〉H
for h1,h2 ∈ H; we have that (H,a(t)) is a closed symmetric form. We define a form a in this way

D(a) := {h ∈ H| lim
t→0
|a(t)(h,h)|< ∞}

a(h1,h2) := lim
t→0

a(t)(h1,h2)

for h1,h2 ∈ D(a). This is a closed symmetric form.

DEFINITION 1.1.18. The form (a,D(a)) defined above is the form associated to the semigroup
Tt .
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We have this result ([57], Thm. 1.52).

PROPOSITION 1.1.19. If H is a complex Hilbert space, and a is a continuous closed sesquilin-
ear form on H, if Tt is the strongly continuous semigroup associated to a, then Tt is bounded
holomorphic.

1.1.3. Kernel of a semigroup. Let Ω⊆ Rd be an open set; Tt be a semigroup on L2(Ω,L d)
(it is a Hilbert space); following ([57], Sec. 6.1), if there exists a Lebesgue-measurable function
p : Ω×Ω×R→ R s.t.: for some C, |p(x,y, t)| ≤Ct−d/2 for every x,y ∈ Ω, t > 0, and, for every
f ∈ L2(Ω,L d), t > 0 we have

Tt f (x) =
ˆ

Ω

f (y)p(x,y, t) dy

(for L d-almost every x ∈Ω), then we say that p is the kernel of Tt .

REMARK 1.1.20. By the properties of the semigroups we have, for all 0 < s < t,
ˆ

Ω

f (y)p(x,y, t) dy = Tt f (x) = Tt−s(Ts f )(x) =

=

ˆ
Ω

p(x,y, t− s)(
ˆ

Ω

f (z)p(y,z,s) dz) dy

(1.1.3) =

ˆ
Ω

ˆ
Ω

f (z)p(x,y, t− s)p(y,z,s) dz dy

for L d-almost every x, for every f ∈ L2(Ω,L d); from this we can deduce, for every B bounded
Borel subset of Ω ˆ

B
p(x,y, t) dy =

ˆ
Ω

ˆ
B

p(x,y, t− s)p(y,z,s) dz dy

Let X be the complexification of L2(Ω,L d); let Tt be a semigroup on X , if there exists p :
Ω×Ω×R→ C s.t., for every f ∈ X (writing f = f1 + i f2 where f1, f2 ∈ L2(Ω,L d))

(1.1.4) TC
t f (x) =

ˆ
Ω

f1(y)p(x,y, t) dx+ i
ˆ

f2(y)p(x,y, t) dx

(for L d-almost every x ∈Ω), then we say that p is called kernel of Tt
Now, if Tt on L2(Ω,L d) has kernel p, we have that its extension TC

t on X has kernel p.
About kernel of semigroups associated to forms, we have this result (see e.g. [57] Thm. 6.17

for a more general result).

PROPOSITION 1.1.21. Let Ω⊆Rd , X be the complexification of L2(Ω,L d). Let {St}t≥0 be a
bounded holomorphic semigroup on X, and p : Ω×Ω×R→ C be the kernel associated to St; if
there exist C,c > 0 s.t.

|p(x,y, t)| ≤Ct−
d
2 exp

(
−c|x− y|2

t

)
for every x,y ∈Ω and t > 0, then for every k ∈ N we have that p is k-times differentiable in t and

| ∂
k

∂ tk p(x,y, t)| ≤Ct−
d
2−k exp

(
−c|x− y|2

t

)
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1.2. Abstract Measure Theory

We recall some definitions and results about positive measures and vector measures. A com-
plete treatment about real measures can be found in [15], [16]. For vector measures we follow
[30], for further reading see [22] Sec. 4, and [31].

We recall also that positive measures generalizes the well-known case of Lebesgue measure.

1.2.1. Measure spaces.

DEFINITION 1.2.1. [σ -algebras and measure spaces] Let X be a nonempty set and let F be a
collection of subsets of X .

i) We say that F is a an algebra (or also a ring of sets or a clan) if ∅ ∈F , E1∪E2 ∈F
and X \E1 ∈F whenever E1, E2 ∈F .

ii) We say that an algebra F is a σ -algebra if for any sequence Enn ∈ N ⊂ F its union⋃
n∈N En belongs to F .

iii) For any collection G of subsets of X , the σ -algebra generated by G is the smallest σ -
algebra containing G . If (X ,τ) is a topological space, we denote the σ -algebra generated
by the open subsets of X by B(X); an element of B(X) is said a Borel set in X ; the σ -
algebra generated by the set of the form f−1(B) where f ∈C(X) and B∈B(R) is denoted
with Ba(X); an element of Ba(X) is said a Baire set in X . Clearly Ba(X) ⊆B(X). If
X is a metric space, we have Ba(X) =B(X).

iv) If F is a σ -algebra in X , we call the pair (X ,F ) a measurable space.

REMARK 1.2.2. With the De Morgan laws, it is easy to prove that algebras are closed under
finite intersections, and σ -algebras are closed under countable intersections.

If F is a σ -algebra in X , if Y ∈F then we can define the restriction F|Y := {A ∈F |A⊆Y};
we have that F|Y is a σ -algebra in Y ; it can be proved that the restriction of B(X) is always B(Y ).

The intersection of any family of σ -algebras is a σ -algebra; the set of all subsets of X is a
σ -algebra; hence, the definition of generated σ -algebra is well posed.

DEFINITION 1.2.3. [Finite measures] Let (X ,F ) be a measure space and µ : F → [0,+∞)
(positive finite set function). We say that µ is additive if

(1.2.1) µ(A∪B) = µ(A)+µ(B)

for all A,B ∈F , s.t. A∩B =∅.
We say that µ is countably additive if µ(∅) = 0 and µ is σ -additive on F , i.e., for any

sequence (Eh) of pairwise disjoint elements of F the equality

(1.2.2) µ

(
∞⋃

h=0

Eh

)
=

∞

∑
h=0

µ(Eh)

is verified. A positive finite set function that is countably additive is said a positive finite measure;
in this case, (X ,F ,µ) is said a measure space.

If µ is a positive measure on (X ,F ) and there exists a countable sequence of sets {An}n∈N ⊆
F s.t.

⋃+∞

i=1 Ai = X and µ(Ai)< ∞ for every i, then µ is said σ -finite.
We say that µ is a probability measure if µ(X) = 1; in this case (X ,F ,µ) is said a probability

space.
We say that µ : F → R is a (finite) real measure if µ = µ1− µ2, where µ1 and µ2 are positive
finite measures.
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A measure on (X ,B(X)) is said a Borel measure. A measure space (X ,B(X),µ) is said Borel
measure space (Borel probability space if µ is a probability); we denote it also as (X ,µ).

If (X ,B(X),µ) is a probability space, X is said event space.
If (X ,F ,µ) is a measure space, if Y ∈F , then we can define the restriction µ|Y := µ|F|Y

(restriction as set function); we have that (X ,F|Y ,µ|Y ) is a measure space; clearly for what we have
said about restriction of Borel σ -algebras, the restriction of a Borel measure is a Borel measure.

If µ , ν are finite real measures on (X ,F ), we will define the sum µ + ν on (X ,F ) in this
way:

(1.2.3) (µ +ν)(A) := µ(A)+ν(A),

for all A ∈F . It is obvious that µ +ν is a measure.

REMARK 1.2.4. If (X ,F ,µ) is a measure space, if A ∈F , then we can consider F|A = {B ∈
F |B⊆ A}, we have that (X ,F|A) is a σ -algebra and that (A,F|A,µ|FA) is a measure space; in this
case we will use µ to say µ|F|A .

A positive measure µ on (X ,F ) has some properties:
i) µ is increasing, i.e., for all A,B ∈F , we have µ(A)≤ µ(B) if A⊆ B;

ii) µ is continuous along monotone sequences, i.e., if An is an increasing sequence in F
then

(1.2.4) µ
( ∞⋃

i=1

An
)
= lim

n→∞
µ(An) = sup

n∈N
µ(An),

and, if An is a decreasing sequence in F then

(1.2.5) µ
( ∞⋂

i=1

An
)
= lim

n→∞
µ(An) = inf

n∈N
µ(An);

iii) µ is countably subadditive, i.e., if An is a sequence in F then

(1.2.6) µ
( ∞⋃

i=1

An
)
≤

∞

∑
i=1

µ(Ai).

Hereafter, for a topological space X , if not otherwise specified, a positive measure µ is always a
positive measure on (X ,F ) where F is the σ -algebra of Borel subsets of X .

We usually say that µ is a measure on X , meaning that there exists F s.t. µ is a measure on
(X ,F ); in this setting we will say that A is measurable on µ or that it is µ-measurable to mean
that A ∈F .

If µ is a set function on (X ,F ), we define (following [30]) its total variation |µ| for every
E ∈F as follows:

(1.2.7) |µ|(E) := sup

{
∞

∑
h=0
|µ(Eh)| : Eh ∈F pairwise disjoint, E =

∞⋃
h=0

Eh

}
.

Clearly, it is a set function on (X ,F ). If F is a σ -algebra and µ is a measure, then |µ| is a
measure (i.e. is countably additive) (see e.g. [30], Proposition I.3.11).

The measure |µ| is called the total variation measure defined by µ .
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A real measure µ on (X ,F ) with finite total variation is said bounded variation measure .
We will usually consider only bounded variation measure (with the exception of Lebesgue

measure).
If µ is a measure on X ,F , then there exists a couple (X+,X−) of disjoint sets in F s.t.

µ(A∩X+) ≥ 0 and µ(A∩X−) ≤ 0 for all A ∈F . (see e.g. [15] Thm. 3.1.1). We can define µ+

as µ+(A) := µ(A∩X+) and µ−(A) :=−µ(A∩X−), we have that these are positive measures and
µ = µ−− µ− (Jordan decomposition); µ+,µ−, are uniquely defined; we can give an alternative
definition of total variation as |µ| := µ++µ−, this definition coincides with the above.

DEFINITION 1.2.5. [Radon measures] A Borel measure µ on a topological space X is called
a real Radon measure if for every B ∈B(X) and ε > 0 there is a compact set K ⊂ B such that
|µ|(B\K)< ε .

For the following result see e.g. [16], Theo 7.1.7.

PROPOSITION 1.2.6. If (X ,d) is a separable complete metric space then every real measure
on (X ,B(X)) is Radon.

1.2.2. Integrals. In the previous subsections we recalled the main concepts of measure the-
ory; in this subsection we recall some well-known concepts about integration, referring to [15]
and other basic books of measure theory for details and more.

1.2.2.1. Measurable functions and integrals.

DEFINITION 1.2.7. [Measurable functions] Let (X ,F ), (Y,G ) be measurable spaces. A func-
tion f : X →Y is said to be (F −G )-measurable (or simply measurable) if f−1(A) ∈F for every
A∈ G . If Y is a topological space, a function f : X→Y is said to be F -measurable if f−1(A)∈F
for every open set A⊂B(Y ), i.e. f is (F −B(Y ))-measurable.

A function X → Y which is B(X) measurable is also said Borel measurable.
If (X ,F ,µ) is a measure space and (Y,G ) is a measurable space, and f is (F−G )-measurable,

we will also say that it is µ-measurable.
We will say that a function f is F -measurable (or µ-measurable) on A∈F if it is measurable

with respect to (A,FA,µ|FA).

LEMMA 1.2.8. Let X a topological space. If f : X →R is a lower semicontinuous (or contin-
uous) function, then f is B(X)-measurable.

PROOF. Let f be lower semicontinuous: f−1((r,+∞]) is an open set for every r ∈ R, hence
f−1((r1,r2]) ∈B(X) for every r1,r2, and B(R) is generated by the set of the form (r1,r2], hence
f−1(A) ∈B(X) for every A ∈B(R); so f is B(X)-measurable. If f is continuous, then it is lower
semicontinuous, and we can conclude. �

We have that the set of measurable functions is a R-vector space contained in the space of
functions with real values.

In particular, if Y is a topological space and f is F -measurable then f−1(B) ∈F for every
B ∈B(Y ).

Hereafter, we will suppose that (X ,F ,µ) is a measure space, with µ| positive measure.

We say that a property is true for almost every (a.e.) x (or µ-almost every x) if it is true in a
set A where A ∈F and µ(X \A) = 0; in particular, if f ,g are functions, we will write f ≡ g to
say that f = g almost everywhere. Sometimes, we will define classes of functions which are equal
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almost everywhere: to say that a function f is in a class g we usually say f ≡ g, and sometimes
we will call functions these classes of functions.

A set A ∈F is said negligible or µ-negligible if µ(A) = 0.

We say that a sequence of functions { fn}n∈N converges almost everywhere to a function f if
fn(x)→ f (x) for almost every x.

We recall a generalization of a part of Lusin theorem (see e.g. [16] Thm. 7.1.13).

LEMMA 1.2.9. If X is a topological space, if µ is a Radon measure on X, if Y is a Banach
space and f : X → Y is a µ-measurable function, then for every ε > 0 there exists fε : X → Y
continuous s.t. µ({x ∈ X s.t. f (x) 6= fε(x)})< ε .

For E ⊂ X we define the indicator function (or characteristic function) of E, denoted by 1lE ,
by

χE(x) := 1lE(x) :=

{
1 if x ∈ E
0 if x 6∈ E.

We say that f : X → R is a simple function if the image of f is finite, i.e., if f belongs to the
vector space generated by the indicator functions of measurable sets: clearly, the set of simple
functions is a R-linear space, and, if f is a simple function then | f | is a simple function.

We recall the definition of the integral of a simple function f =
n

∑
i=1

ci1lEi (where ci ∈ R and Ei

is µmeasurable for every i) as, for each A measurable set,ˆ
A

f dµ =
∞

∑
i=1

ciµ(A∩Ei);

this is well defined.
In this setting, we say that a sequence of simple functions { fn}n∈N is mean fundamental with

respect to µ if, for each ε > 0 there exists N ∈ N s.t. for all n,m > N,ˆ
X
| fn− fm| dµ ≤ ε.

We have that, if two sequences { fn}n∈N,{gn}n∈N of simple functions are mean fundamental
and they both converges almost everywhere to one function f , then the integrals of fn,gn converges
to the same value (see e.g. [15] Lem. 2.4.2).

DEFINITION 1.2.10. We recall that a function f finite and definite up to a negligible set is
µ-integrable if there exists a sequence { fn}n∈N of simple functions which is mean fundamental
s.t. fn converges a.e. to f . In this case we write, for each A, measurable set, the integral of f on Aˆ

A
f (x) dµ(x) :=

ˆ
A

f dµ := lim
n→∞

ˆ
A

fn dµ;

for what we said, this is a good definition, which does not depend on the sequence fn.
If f|A is µ-measurable on A ∈F (where µ = µ|FA , see Definition 1.2.7) and the integral of f|A

is defined on A then we will writeˆ
A

f (x) dµ(x) :=
ˆ

A
f dµ :=

ˆ
A

f|A(x) dµ(x).
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If A1∩A2 =∅ then ˆ
A1∪A2

f dµ =

ˆ
A1

f dµ +

ˆ
A2

f dµ.

Given a σ -algebra, we have defined the class of measurable functions. Conversely, given a
family of functions, it is possible to define a suitable σ -algebra.

DEFINITION 1.2.11. Given a family F of functions f : X → R, let us define the σ -algebra
E (X ,F) generated by F on X as the smallest σ -algebra such that all the functions f ∈ F are
measurable, i.e., the σ -algebra generated by the sets { f < t}, with f ∈ F and t ∈ R.

DEFINITION 1.2.12. A sequence of measurable functions fn converges in measure µ to a
measurable function f if, for every ε > 0,

lim
n→∞

µ({x ∈ X : | f (x)− fn(x)| ≥ ε}) = 0.

If µ is finite, a sequence of functions which converges µ-a.e. converges in measure µ.

1.2.2.2. Lp Spaces . In this subsection we recall the definition of Lp spaces in a measure
space, and some results about them.

Herefter, X will be always a metric space.
For µ positive, we define the Lp (semi)-norms and spaces as follows,

‖u‖Lp(X ,µ) :=
(ˆ

X
|u|p dµ

)1/p

if 1≤ p < ∞, and

‖u‖L∞(X ,µ) := inf{C ∈ [0,+∞] : |u(x)| ≤C for µ-a.e. x ∈ X} .

DEFINITION 1.2.13. For p∈ [1,+∞] we define the space Lp(X ,µ) as the space of equivalence
classes of measurable functions agreeing µ-a.e. such that ‖u‖Lp(X ,µ) < ∞. If f : X → R is a
function, sometimes we will write f ∈ Lp(X ,µ) to mean that it is in a class in Lp(X ,µ); if A is a
set of functions X → R, sometimes we will write A⊆ Lp(X ,µ) to mean that each element of A is
in a class which is element of Lp(X ,µ).

We define the set of locally Lp functions, Lp
loc(X ,µ), of the equivalence classes of measurable

functions f agreeing µ-a.e. s.t., for every x ∈ X , there is a ball B centered in x s.t. f|B ∈ Lp(B,µ)
(a priori it is a set, not a topological space).

REMARK 1.2.14. We will usually treat the elements of Lp and Lp
loc spaces as functions, and

sometimes we will say that f ∈ Lp(X ,µ) to mean that f is an element of Lp(X ,µ) or that it is a
representative of an element of f ; if f is a function on X and g ∈ Lp(X ,µ), we will say that f = g
almost everywhere to mean that f is an element of the class g; if A is a set of functions on X , we
will say that A⊆ Lp(X ,µ) to mean that each element of A is element of an element of Lp(X ,µ).

All this remains true if we substitute Lp with Lp
loc.

In this space, the operations of sum and product by a scalar are coherent, so Lp(X ,µ) is a real
vector space. We have that, in this space, ‖ ·‖Lp(X ,µ) is a norm and Lp(X ,µ) is a Banach space, see
e.g. [15, Theorem 4.1.3]. When the measure space is obvious by the setting, we will use also the
notation ‖ · ‖p.
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We have that L2(X ,µ) is a Hilbert space with the inner product

〈 f ,g〉 :=
ˆ

X
f g dµ.

We recall that for integral and Lp spaces in a measure space we have many properties and re-
sults, analogously to the case of the Lebesgue measure: linearity of the integral,Hölder inequality,
dominated convergence theorem, monotone convergence theorem.

We write explicitly only a version of the Lebesgue-Vitali theorem (see e.g. [15], Thm. 4.5.4),
and the Jensen theorem (see e.g. [15], Thm. 2.12.19).

THEOREM 1.2.15. Lebesgue-Vitali theorem Let (X ,F ) be a measure space, let µ be a posi-
tive finite measure on it and let ( fk) be a sequence of measurable functions and f be a measurable
function: we have that f ∈ L1(X ,µ) and fn converges to f if and only if

lim
M→∞

sup
k∈N

ˆ
{| fk|>M}

| fk|dµ = 0.

and fk→ f in measure, i.e.,

(1.2.8) lim
k→∞

µ({x ∈ X : | fk(x)− f (x)|> ε}) = 0 for every ε > 0.

THEOREM 1.2.16 (Jensen). (Jensen Inequality) Let (Ω,F ,P) be a probability space, let G ⊂
F be a sub-σ -algebra, let X ∈ L1(Ω,F ,P) be a real random variable, and let ϕ : R→ R be a
convex C1 function such that ϕ(X) ∈ L1(Ω,F ,P).
(1.2.9) E(ϕ ◦X |G )≥ ϕ ◦E(X |G ).

We recall also the next Corollary.

COROLLARY 1.2.17. If µ is a finite measure and p,q ∈ [1,+∞] with q≤ p, then Lp(X ,µ)⊆
Lq(X ,µ) the inclusion is a continuous embedding Lp(X ,µ) ↪→ Lq(X ,µ).

Moreover, we recall that sequence of functions which converges in sense Lp converges in
measure.

We shortly recall also some concepts about Bochner integral (see e.g. [32], Sec. III.2 and also
[31], Sec. III.2).

Let (X ,F ,µ) a measure space, Y a Banach space, therefore a definition of simple functions
from X to Y is possible ([32] Def. III.2.9), hence we can define the integral for these functions;
hence a function is Bochner µ-integrable if it satisfies (in the vector case) a condition expressed
in the same way of the µ-integrability, and we define the µ-integral in the same way. The Lp

spaces of Y -valued functions are defined as in the scalar case (see e.g. [32], Sec. III.3); for every
1 ≤ p < ∞, Lp(X ,µ,Y ) is the space of the equivalence classes of Bochner integrable functions
F :→ Y such that

‖F‖Lp(,µ,Y ) :=
(ˆ

X
‖F(x)‖p

Y µ(dx)
)1/p

< ∞.

Lp(X ,µ,Y ) is a Banach space with the above norm. If p = 2 and Y is a Hilbert space, Lp(X ,µ,Y )
is a Hilbert space with the scalar product

〈F,G〉L2(X ,µ;Y ) :=
ˆ

X
〈F(x),G(x)〉Y µ(dx).
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We define

L∞(X ,µ,Y ) :=
{

F : X → Y measurable s.t. ‖F‖L∞(X ,µ;Y ) < ∞

}
,

where

‖F‖L∞(X ,µ,Y ) := inf
{

M > 0 : µ({x : ‖F(x)‖Y > M}) = 0
}
.

1.2.3. Other properties and definitions about real valued measure.
Weak∗ convergence of measures. Given a topological space X , the set of real Borel measures

µ is a vector space in an obvious way. All continuous and bounded functions are in L1(X ,µ) and
we define the weak∗ convergence of measures by

(1.2.10) µ j ⇀
∗

µ ⇐⇒
ˆ

X
f dµ j→

ˆ
X

f dµ ∀ f ∈Cb(X);

if we consider the set of the measures (or of finite measures), let the weakest topology on it s.t.
the sequence which weak∗ converges converges also in the topology, this is said weak∗ topology
weak∗ topology of measures.

The particular case K compact justifies the term weak∗ convergence, as seen in the next theo-
rem.

THEOREM 1.2.18. (Riesz-Markov or Riesz representation Theorem) If K is a compact Haus-
dorff space, then C(K) is a Banach space, the set M (K) of Radon measures on K can be seen as
(C(K))∗ by the isometry

i : M (K)→ (C(K))∗ µ 7→ ( f 7→
ˆ

K
f dµ);

in this setting, µ j ⇀
∗ µ iff i(µ j)⇀

∗ i(µ) (i.e. we have the convergence in (C(K))∗ with the weak∗

topology).

We have this result by A. D. Alexandroff, sometimes called Portmanteau Theorem (see e.g.
[16] Cor. 8.2.10).

THEOREM 1.2.19. Let X be a metric space; let {µi}i∈N a sequence of probability measures
on (X ,B(X)), and let µ be a measure on (X ,B(X)). The following are equivalent.

i) µ j ⇀
∗ µ;

ii) limsup
j→+∞

µ j(F)≤ µ(F) for every closed set F;

iii) liminf
j→+∞

µ j(Ω)≥ µ(Ω) for every open set Ω.

Absolute continuity and singularity of measures. Let µ be a positive finite measure and ν a
real measure on a measurable space (X ,F ). We say that ν is absolutely continuous with respect
to µ , and write ν � µ , if for every B ∈F s.t. µ(B) = 0 we have |ν |(B) = 0. If µ , ν are real
measures, we say that they are mutually singular, and write ν ⊥ µ , if there exists E ∈F such that
|µ|(E) = 0 and |ν |(X \E) = 0.

If µ,ν are mutually singular measures, the equality |µ +ν | = |µ|+ |ν | holds. If µ � ν and
ν � µ we say that µ and ν are equivalent and write µ ≈ ν . If µ is a positive measure and
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f ∈ L1(X ,µ), then the measure ν := f µ defined below is absolutely continuous with respect to µ

and the following integral representations hold:

(1.2.11) ν(B) =
ˆ

B
f dµ, |ν |(B) =

ˆ
B
| f |dµ ∀B ∈F .

We recall the Radon-Nikodym theorem.

THEOREM 1.2.20 (Radon-Nikodym). Let µ be a positive σ -finite measure and let ν be a real
measure. Then there is a unique pair of real measures νa, νs such that νa � µ , νs ⊥ µ and
ν = νa +νs. Moreover, there is a unique function f ∈ L1(X ,µ) such that νa = f µ . The function
f is called the density (or Radon-Nikodym derivative) of ν with respect to µ and is denoted by
dν/dµ or dν

dµ
.

Since trivially each real measure µ is absolutely continuous with respect to |µ|, from the
Radon-Nikodym theorem the polar decomposition of µ follows: there exists a unique real valued
function f ∈ L1(X , |µ|) such that µ = f |µ| and | f |= 1 |µ|-a.e.

Image measure. We recall the notions of push-forward of a measure (or image measure) and
the constructions and main properties of the product measure. The push-forward of a measure
generalises the classical change of variable formula.

DEFINITION 1.2.21. [Push-forward] Let (X ,F ) and (Y,G ) be measurable spaces, and let
f : X → Y be such that f−1(F) ∈ F whenever F ∈ G . For any positive or real measure µ on
(X ,F ) we define the push-forward measure or the law of µ under f , that is the measure µ ◦ f−1,
sometimes denoted by f#µ , in (Y,G ) by

µ ◦ f−1(F) := µ
(

f−1(F)
)

∀F ∈ G .

By the previous definition we have the change of variables formula. If u ∈ L1(Y,µ ◦ f−1),
then u◦ f ∈ L1(X ,µ) and we have the equality

(1.2.12)
ˆ

Y
ud(µ ◦ f−1) =

ˆ
X
(u◦ f )dµ.

Product measure. We consider now two measure spaces and describe the natural resulting
structure on their Cartesian product.

DEFINITION 1.2.22. [Product σ -algebra] Let (X1,F1) and (X2,F2) be measure spaces. The
product σ -algebra of F1 and F2, denoted by F1×F2, is the σ -algebra generated in X1×X2 by

G = {E1×E2 : E1 ∈F1,E2 ∈F2} .

REMARK 1.2.23. Let E ∈F1×F2; then for every x ∈ X1 the section Ex := {y ∈ X2 : (x,y) ∈
E} belongs to F2, and for every y ∈ X2 the section Ey := {x ∈ X1 : (x,y) ∈ E} belongs to F1. In
fact, the families

Gx := {F ∈F1×F2 : Fx ∈F2} , G y := {F ∈F1×F2 : Fy ∈F1}
are σ -algebras in X1×X2 and contain G .

THEOREM 1.2.24. Let (X1,F1,µ1), (X2,F2,µ2) be measure spaces with µ1, µ2 positive and
finite. Then, there is a unique positive finite measure µ on (X1×X2,F1×F2), denoted also by
µ1⊗µ2, such that

µ(E1×E2) = µ1(E1) ·µ2(E2) ∀E1 ∈F1, ∀E2 ∈F2.
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Furthermore, for any µ-measurable function u : X1×X2→ [0,∞] the functions

x 7→
ˆ

X2

u(x,y)µ2(dy) and y 7→
ˆ

X1

u(x,y)µ1(dx)

are respectively µ1-measurable and µ2-measurable and
ˆ

X1×X2

udµ =

ˆ
X1

(ˆ
X2

u(x,y)µ2(dy)
)

µ1(dx)

=

ˆ
X2

(ˆ
X1

u(x,y)µ1(dx)
)

µ2(dy).

For n ∈N, if, for every i ∈ (1, . . . ,n), (Xi,Fi,µi), is a probability space, the product σ -algebra
F1⊗·· ·⊗Fn is that generated by the family of sets of the form

B1×·· ·×Bn, Bi ∈Fi.

We have that if Xi are all normed vector spaces, the product of the Borel σ -algebras is the
Borel σ -algebra on X1× . . .×Xn.

We have that there exists a unique measure µ on (X1× . . .×Xn,F1⊗ . . .⊗Fn) s.t.

µ(B1× . . .×Bn) = µ1(B1) · . . . ·µn(Bn)

where Bi ∈Fi for every i ∈ N.

DEFINITION 1.2.25. In the above hypothesis, we say that µ is the product measure of µt1 , . . . ,µtn ,
and we denote it with µ1⊗ . . .⊗µn.

Fourier transforms of measures. Another important concept is that of Fourier transform of
measures. Let X be a separable Banach space; given a probability µ on X , we define its Fourier
transform µ̂ : X∗→ C by setting

(1.2.13) µ̂(ξ ) :=
ˆ

X
ei〈x,ξ 〉X ,X∗ µ(dx);

if X is a Hilbert space, we can canonically define µ̂ on X .
We list the main elementary properties of Fourier transforms.

(1) µ̂ is uniformly continuous on X ;
(2) µ̂(0) = µ(X);
(3) if µ̂1 = µ̂2 then µ1 = µ2;
(4) if µ j→ µ in the sense of (1.2.10), then µ̂ j→ µ̂ uniformly on compact sets;
(5) if (µ j) is a sequence of probability measures and there is φ : X →C continuous in ξ = 0

such that µ̂ j→ φ pointwise, then there is a probability measure µ such that µ̂ = φ .

Lebesgue measure.

DEFINITION 1.2.26. For d ∈N there is only a Borel measure L d on Rd s.t. for every x ∈Rd ,
a > 0, we have

L d(x+a([0,1])d) = ad .

This measure is called the Lebesgue measure .
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1.2.4. Hausdorff measures . Let A⊂ Rd ; C the set of the countable coverings of A (i.e. the
set of countable sequences of sets which union contains A), each element of C can be indicated as
{Oi}i∈N; for δ > 0 we denote

Cδ := {{Oi}i∈N ∈ C|diam(O j)< δ}.

DEFINITION 1.2.27. Let A ∈ Rd , n ∈ N e 0 < δ ≤ ∞.
We define the set function

H n
δ
(A) := inf

{Oi}i∈N∈Cδ

{
∞

∑
j=1

α(n)
(

diam(O j)

2

)n
}

where α(n) is the n-Lebesgue measure of a unit ball in Rn.
We define the measure

H n(A) := sup
δ>0

H n
δ
(A) = lim

δ→0
H n

δ
(A).

We have that it is well defined as a positive Borel measure (if restricted to Borel set), and it is
called n-Hausdorff measure.

We have these properties:
(1) if n > d then H n(A) = 0 for every A ∈B(Rd);
(2) if n < d then H n(A) = +∞ for every A open, A 6=∅;
(3) if n = d then H n(A) = L d(A) for every A ∈B(Rd);
(4) if H n(A)<+∞ for some 0≤ n≤ d then for every t ∈ N, t < n we have H n(A) = +∞

and for every t > s we have H t(A) = +∞

We also introduce the spherical Hausdorff measure, Sn: the idea is that we define CS as the set
of the countable open coverings of A made by balls, and similarly to the definition of Hausdorff
measure,

CS
δ

:= {{Oi}i∈N ∈ CS|diam(O j)< δ}.

Sn
δ
(A) := inf

{Oi}i∈N∈Cδ

{
∞

∑
j=1

α(s)
(

diam(O j)

2

)n
}

Sn(A) := sup
δ>0

Sn
δ
(A) = lim

δ→0
Sn

δ
(A).

1.2.5. Vector measures in X . Now, we briefly introduce the vector measures (see e.g. [22]
Sec. 4, [30], [31]).

Hereafter, H is always a separable Hilbert space with a basis {hi}i∈N; for every n ∈ N we
define Fn :=< h1, . . . ,hn >.

DEFINITION 1.2.28. Let (X ,F ) be an algebra and H a Hilbert space. A set function µ from
F in H, is said to be a (finitely additive) vector measure with values in H if, for every E1,E2 ∈F
with E1 ∩E2 = ∅, we have µ(E1 ∪E2) = µ(E1)+ µ(E2). If E ∈F we will also say that E is
µ-measurable.

We will say that µ is a countably additive vector measure with values in H if, for every
sequence {En}n∈N of pairwise disjoint sets in F we haveµ(

⋃+∞

i=1 Ei) = ∑
+∞

i=1 µ(Ei).
If F = B(X) we will say that µ is a Borel countably additive vector measure.
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If µ is a (finitely or countable) additive vector measure on (X ,F ) and A ∈F , we can define
the restriction µ|A := µ|F|A (as restriction of set function), and we have that µ|A is a (finitely or
countable) additive vector measure on (H,F|A).

For a vector measure µ with values in H, for h ∈ H we will write 〈µ,h〉H to mean the real-
valued measure defined as

〈µ,h〉H (A) = 〈µ(A),h〉H
for all A µ−measurable.

DEFINITION 1.2.29. Let H be a Hilbert space, and Ω be a topological space, µ a vector (Borel)
measure on Ω with values in H.

Let A the set of all the finite sequences {A1, . . . ,An} of µ-measurable sets s.t. Ai∩A j = ∅ if
i 6= j. Given A that is µ-measurable,

AA := {{A1, . . . ,An} ∈A|Ai ⊆ A for every i A =
n⋃

i=1

Ai}.

The set function on R+∪{+∞} defined as

|µ|(A) = sup{
n

∑
i=1
|µ(Ai)|H |{Ai}i∈{1,...,n} ∈AA},

for all A that is µ-measurable is a finitely additive (see (see e.g. [22] Sec. 4, [30])), and it is called
variation measure of µ .

We say that µ has bounded variation if |µ|(Ω)<+∞.

PROPOSITION 1.2.30. µ is a countably additive vector measure if and only if |µ| is a (count-
ably additive) positive finite measure.

Clearly, each component of µ is absolutely continuous respect to |µ|.
We have this easy extension of the Radon-Nikodym theorem (see e.g. [22] Theo 4.4, [30]

Thm. 13.4).

LEMMA 1.2.31. If µ is a countably additive vector measure on Ω with values in a Hilbert
space H, then there exists a function σ s.t. |σ |H = 1 |µ|-almost everywhere and µ = σ |µ|, i.e. for
all h ∈ H, A |µ|-measurable set

〈µ(A),h〉H =

ˆ
A
〈σ(x),h〉H |µ|(dx).

Hereafter, µ = σ |µ| will be called the polar decomposition of µ .
We recall a generalization of a part of Lusin Theorem (see e.g. [16] Thm. 7.1.13).

LEMMA 1.2.32. If Ω is a metric space, µ is a Radon measure on Ω, Y is a separable Banach
space and f : Ω→ Y is a µ-measurable function, then for every ε > 0 there exists fε : Ω→ Y
continuous s.t. µ({x ∈Ω s.t. f (x) 6= fε(x)})< ε .

We recall also this known fact (see e.g. [8], 3.1 for a finite dimensional version) and we prove
it.

LEMMA 1.2.33. If Ω is a metric space, µ is a Radon measure on Ωand H is a separable
Hilbert space, then

|µ|(Ω) := sup{
ˆ

X
d 〈 f ,µ〉H | f ∈Cb(Ω,H), | f |H ≤ 1 everywhere}.
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PROOF. Let σ |µ| a polar decomposition of µ (see Lemma 1.2.31). Clearlyˆ
Ω

d 〈 f ,µ〉H =

ˆ
Ω

〈 f ,σ〉H d|µ| ≤ |µ|(Ω)

for all measurable f s.t.| f |H ≤ 1 everywhere.
By Lemma 1.2.32, for each ε > 0 the function σ can be approximated by a continuous function

σε s.t. |µ|({x ∈Ω s.t. σ(x) 6= σε(x)})< ε; now we can define the continuous function

fε :=

{
σε (x)
|σε (x)|H if |σε |H(x)> 1

σε(x) otherwise
;

we have that ‖ fε‖ ≤ 1 |µ|-almost everywhere, and fε(x) 6= σ(x) only if σε 6= σ or if x ∈ A where

A := {x ∈Ω|σ(x) = σε(x) and |σε(x)|H > 1} ⊆ {x ∈Ω|‖σ‖(x)> 1},
A is Borel (σ is measurable and σε is continuous) and |µ|(A) = 0 because ‖σ‖ = 1 |µ|-almost
everywhere. So we have

|µ|({x ∈Ω s.t. σ(x) 6= fε(x)})< ε

and ∣∣∣∣|µ|(Ω)−
ˆ

X
〈 f ,σ〉 d|µ|

∣∣∣∣≤ 2ε

and we can conclude. �

DEFINITION 1.2.34. Given Ω⊆ X open set, for each h ∈ H, the set Lip0,h(Ω) will be the set
of the restrictions to Ω of the measurable functions f on X s.t., there exists c > 0 s.t., for every
x ∈ X , the function fx : t 7→ f (x+ th) is Lipschitz with Lipschitz constant less than c, and f = 0
everywhere out of Ω.

DEFINITION 1.2.35. For each m ∈ N, for Ω ⊂ X open set, we define Lip0,m(Ω,H) as the set
of functions f : Ω→< h1, . . . ,hm >, s.t. fi ∈ Lip0,hi

(Ω) for each i ∈ {1, . . . ,m}.

The next Lemma is inspired by ([51], Lem. 2.3). We recall that, by Lemma 1.2.31, there exists
σ measurable s.t. |σ |H = 1 and µ = σ |µ| (polar decomposition).

LEMMA 1.2.36. If Ω is a open set in X, if µ is a countable additive vector measure on Ω with
values in H and bounded total variation and σ |µ| is the polar decomposition, then

|µ|(Ω) = sup{
ˆ

Ω

〈σ , f 〉H d|µ| : m ∈ N, f ∈ Lip0,m(Ω,H), sup
x∈Ω

| f (x)|H ≤ 1}.

PROOF. It is obvious thatˆ
Ω

〈σ , f 〉H d|µ| ≤
ˆ

Ω

|σ |H d|µ|= |µ|(Ω)

for all m ∈ N, f ∈ Lip0,m(Ω,H), supx∈Ω | f (x)|H ≤ 1.
Let ε > 0.
By the Fatou lemma, there exists m s.t.

|µ|(Ω)−
ˆ

Ω

√
m

∑
i=1
|σi|2 d|µ| ≤ ε;
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so, we can consider µm, a measure with values in Rm s.t., for every i ∈ 1, . . . ,m,

〈µ,hi〉H = 〈µm,ei〉Rd

where ei is the versor in the direction of the i-th axis, and we have 〈µm,ei〉Rd = σi|µ|; we have

|µm| =
√

∑
m
i=1 σ2

i |µ| (so |µm|(A) ≤ |µ|(A) for every A which is µ-measurable) and if σ(m) =

∑
m
i=1
(
∑

m
i=1 σ2

i
)− 1

2 σiei we can rewrite µm = σ(m)|µm| (polar decomposition). By what we said, we
have

(1.2.14) |µ|(Ω)−|µm|(Ω)≤ ε.

Now, we can apply Lemma 1.2.33, so there exists a function l ∈C(Ω,Rm), supx∈Ω(|l(x)|)≤ 1
s.t.

(1.2.15) |µm|(Ω)≤
ˆ

Ω

〈
σ(m), l

〉
Rm d|µm|+ ε.

|µ| is Radon (because X is separable), hence we can suppose that there exists K compact in
Ω s.t. |µ|(Ω\K) ≤ ε , and hence also |µm|(Ω\K) ≤ ε; hereafter a := |µm|(K); now, recalling that
|σ(m)|Rm , |l|Rm ≤ 1 we have

(1.2.16)
ˆ

Ω

〈
σ(m), l

〉
Rm d|µm| ≤

ˆ
K

〈
σ(m), l

〉
Rm d|µm|+ ε.

Now K is compact; we consider Lipb(X) (Lipschitz bounded functions); it is a lattice, and,
if we consider x,y ∈ X (x 6= y and a,b ∈ R, there exists a function ψ ∈ Lipb(X) s.t. ψ(x) = a,
ψ(y) = b; so we can apply the Stone-Weierstrass theorem, for each i there exists gi ∈ Lipb(X) s.t.
gi approximate li on K (where li := 〈l,ei〉Rm) in such a way that

sup{gi(x)− li(x)|x ∈ K} ≤ εa−1m−1,

and we introduce g := ∑
m
i=1 giei, we have that

sup{|(g− l)(x)||x ∈ K} ≤ εa−1

and in particular
sup{|g(x)||x ∈ K} ≤ 1+ εa−1

(because |l|Rm ≤ 1); moreover if we define on Rm the function

F(x) :=

{
x if |x| ≤ 1
x
|x| if |x|> 1,

if |x| ≤ 1+ ε then |F(x)− x| ≤ ε; if G := F ◦g, then we have |G|Rm ≤ 1 everywhere and

sup{|(G− l)(x)||x ∈ K} ≤ sup{|(G−g)(x)||x ∈ K}+ εa−1 ≤ 2εa−1

so by definition of a,

(1.2.17)
ˆ

K

〈
σ(m), l

〉
Rm d|µm| ≤

ˆ
K

〈
σ(m),G

〉
Rm d|µm|+2ε

Now, we have that dist(K,X\Ω)> 0, that K is compact and X\Ω is closed, hence there exists
θ ∈ Lip0,m(Ω,Rm) s.t. it is equal to 1 on K and to 0 on X\Ω, and |θ | ≤ 1 everywhere; hence if
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ψ := Gθ , then ψ ∈ Lip0,m(Ω,Rm), |ψ|Rm ≤ 1 everywhere (because |G|Rm ≤ 1 everywhere) and
we have g|K ≡ ψ|K , so ˆ

K

〈
σ(m),g

〉
Rm d|µm|=

ˆ
K

〈
σ(m),ψ

〉
Rm d|µm|.

So, by (1.2.14), (1.2.15), (1.2.16), (1.2.17), we have

|µ|(Ω)≤
ˆ

K

〈
σ(m),ψ

〉
Rm d|µm|+5ε,

now, if we define fε := ∑
m
i=1 〈ψ,ei〉Rm hi, we have that fε ∈ Lip0,m(Ω,H),

sup{| fε(x)|H |x ∈Ω} ≤ 1

and hence ˆ
Ω\K
〈σ , fε〉H d|µ| ≤ ε

(because |µ|(Ω\K)≤ ε); therefore

|µ|(Ω)≤
ˆ

Ω

〈σ , fε〉H d|µ|+5ε;

and by the arbitrariness of ε we concluded. �

1.3. Notions of probability theory

1.3.1. General probability, random variables and random processes. In this chapter we
refer to [16] (particularly for conditional expectations) and to [27] (particularly for Markov pro-
cesses).

For us, a probability space is a measure space (Ω,F ),µ) where µ is a positive measure with
µ(Ω) = 1.

We recall this definitions.

DEFINITION 1.3.1. A random variable Y on a probability space (Ω,F ,µ) is a F -measurable
function Y : Ω→ R; if Y ∈ L1(Ω,µ) we define the expectation, or mean, of Y

E(Y ) :=
ˆ

Ω

Y dµ;

we will write also Eµ to mean E; if Y ∈ L2(Ω,µ) we define the variance of Y

Var(Y ) := E(Y 2)− (E(Y ))2 ≥ 0.

If Y1,Y2 ∈ L2(Ω,µ), we define their covariance

cov(Y1,Y2) = cov(Y2,Y1) := E(Y1Y2)−E(Y1)E(Y2).

Let E a topological space. A E-valued random variable Y on a probability space (Ω,F ,µ) is
a function Y : Ω→ E which is F -measurable (with respect to B(X)).

For a real valued random variable Y on (Ω,F ,µ) we define its law as the measure µ ◦Y−1

(measure on R).
We remark that, if Y is a E-valued random variable and B ∈B(E), then 1lB ◦Y is a random

variable.
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For simplicity, given a E-valued random variable Y on (Ω,F ,µ) we will write, for B ∈B(E)

µ(Y ∈ B) := µ({ω ∈Ω|Y (ω) ∈ B};
when Y (ω) ∈ B for every ω , we say that Y ∈ B surely; when µ(Y ∈ B) = 1 we say that Y ∈ B
almost surely (a.s.).

We can also consider n topological spaces E1, . . . ,En, and for every i ∈ {1, . . . ,n} a Ei-valued
random variable Yi on (Ω,F ,µ) (it is equivalent to consider a random variable Y = (Y1, . . . ,Yn) in
E1× . . .×En), and we write, if Bi ∈B(Ei) for every i,

µ(Y1 ∈ B1, . . . ,Yn ∈ Bn) := µ({ω ∈Ω|Y1(ω) ∈ B1, . . . ,Yn(ω) ∈ Bn}).
DEFINITION 1.3.2. Let E be a topological space. A (E-valued) stochastic (or random) process

{Yt}t∈I on a probability space (Ω,F ,µ), indexed on the interval I = [a,b] ⊆ R is a function
Y : I×Ω→ E such that for any t ∈ I the function Yt(·) = Y (t, ·) is a random variable; we can also
say that a random process is a quadruplet Y = {Ω,F ,{Yt}t∈I,µ}. A R-valued stochastic process
will be called a real stochastic (or random) process

A d-dimensional random variable Y on a probability space (Ω,F ,µ) is a F -measurable
function Y : Ω→ Rd .

A Rd-valued stochastic process will be called d-dimensional stochastic (or random) process
(Yt)t∈I on a probability space (Ω,F ,µ), indexed on an interval I ⊆ R̄ is a function Y : I×Ω→Rd

such that for any t ∈ I the function Yt(·) =Y (t, ·) is a d-dimensional random variable on (Ω,F ,µ).

DEFINITION 1.3.3. Given two stochastic processes Yt , Zt on a same probability space (Ω,F ,µ),
indexed on the interval I = [a,b]⊆ R, we say that Zt is a version of Yt if, given

A = {ω ∈Ω|Yt(ω) = Zt(ω) for every t ∈ [a,b]}
then A ∈F and µ(A) = 1.

The typical example of stochastic process will be the standard Brownian motion: it is a sto-
chastic process which admits various models, all respecting the above conditions.

DEFINITION 1.3.4. A real valued standard Brownian motion on [0,1] is a stochastic process
Bt t∈[0,1] on a probability space (Ω,F ,µ) such that:

i) B0 = 0 almost surely;
ii) for any t,s ∈ [0,1], s < t, both random variables Bt −Bs and Bt−s have the law

1√
2π(t− s)

exp− |x|
2

t− s
L 1(dx);

iii) for any 0≤ t0 ≤ t1 ≤ . . .≤ tn the random variables Bt0 ,Bt1−Bt0 , . . . ,Btn−Btn−1 are inde-
pendent.

Let us introduce the notion of conditional expectation.

THEOREM 1.3.5. We consider a probability space (Ω,F ,µ), a sub-σ -algebra G ⊂F . Let
X ∈ L1(Ω,F ,µ) a random variable, there exists a random variable Y ∈ L1(Ω,G ,µ) such that

(1.3.1)
ˆ

A
Y dµ =

ˆ
A

X dµ, ∀A ∈ G ;

two random variables with this property are equal almost surely. We denote the class of this Y as
E(X |G ).

In addition, |E(X |G )| ≤ E(|X | |G ) almost surely.
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We call E(X |G ) the expectation of X conditioned by G (when G is obvious for the setting we
call Y also conditional expectation of X); we will indicate it also as Eµ(X |G ).

REMARK 1.3.6. Using approximations by simple functions, we have that (1.3.1) impliesˆ
Ω

gXdµ =

ˆ
Ω

gE(X |G )dµ

for any bounded G –measurable functions g : Ω→ R.

PROPOSITION 1.3.7. The conditional expectation satisfies the following properties.
i) If G = { /0,Ω}, then E(X |G ) = E[X ] almost surely.

ii) E[E(X |G )] = E[X ].
iii) For any X ,Y and α,β ∈ R, E(αX +βY |G ) = αE(X |G )+βE(Y |G ) almost surely.
iv) For any countable sequence {Xi}i∈N, if ∑

∞
i=1E(|Xi||G )<∞ almost surely then ∑

∞
i=1E(Xi|G )=

E(∑∞
i=1 Xi|G ) almost surely.

iv) If X ≤Y , then E(X |G )≤E(Y |G ) almost surely; in particular, if X ≥ 0, then E(X |G )≥ 0
almost surely.

v) If H ⊂ G is a sub-σ -algebra of G , then almost surely

E(E(X |G )|H ) = E(X |H ).

vi) If X is G -measurable, then E(X |G ) = X almost surely.
vii) If X ,Y,X ·Y ∈ L1(Ω,F ,P) and X is G -measurable, then

E(X ·Y |G ) = X ·E(Y |G )

almost surely.

DEFINITION 1.3.8. Let Y be a E-valued variable on (Ω,F ,µ), let B ∈B(E) and G a sub-
σ -algebra of F ; we define the conditional probability of B with respect to G (or probability
conditioned by G ). as the function µ(Y ∈ B|G ): Ω→ R defined by

µ(Y ∈ B|G ) := Eµ(1lB ◦Y |G )(ω);

we have that µ(Y ∈ B|G ) is a random variable on (Ω,G ,µ).

PROPOSITION 1.3.9. The conditional probability satisfies the following properties.
i) If G = {∅,Ω}, then µ(X ∈ B|G ) = µ(X ∈ B) almost surely.

ii) if Y is G measurable, then

µ(Y ∈ B|G ) = 1lB ◦Y

almost surely.
iii) E[µ(X ∈ B|G )] = µ(X ∈ B).
iv) For any countable sequence of F -measurable subsets {Bi}i∈N with mutually null inter-

section, then
∞

∑
i=1

µ(X ∈ Bi|G ) = µ(X ∈
∞⋃

i=1

Bi|G )

almost surely.
v) If H ⊂ G is a sub-σ -algebra of G , then

E(µ(X ∈ B|G )|H ) = µ(X ∈ B|H )

almost surely.
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vi) If Y1, is a E1-valued random variable and Y2 is a E2-valued random variable, if Y1 is
G -measurable then

µ((Y1,Y2) ∈ B1×B2|G ) = (1lB1 ◦Y1) ·µ(Y2 ∈ B2|G )

almost surely.

1.3.2. Markov processes. Let (Ω,F ) be a measurable space; a filtration {Ft}t∈[0,+∞] in
(Ω,F ) is a family of σ -algebras s.t. Ft ⊂F for every t ∈ R+, and, Fs ⊂Ft for 0 ≤ s < t. A
filtration {Ft}t∈[0,+∞] is said adapted to a E-valued stochastic process {Yt}t∈R+ (or Y ) if Yt : Ω→E
is Ft-measurable for every t ∈ I.

DEFINITION 1.3.10. In the above setting, a function τ : Ω→ [0,+∞] is called a stopping time
if it is a random variable on (Ω,F ) s.t. {ω ∈ Ω|τ(ω)≤ t} ∈Ft for every t ∈ R+(hence τ ∧ t is

real variable in (Ω,Ft)).
For a stopping time τ we define the σ -algebra Fτ generated by

{A∩{ω ∈Ω|τ(ω)≤ t}|t ≥ 0,A ∈Ft};

clearly Fτ is a sub-σ -algebra of F .

We give a definition of the Markov processes, which are linked to stochastic processes (we
base on [27]). Hereafter, E is a topological space; we define Eδ as a set given by E and a point
∂ (cemetery point): E∂ = E ∪ ∂ , with a topology s.t. E is a open subspace of E∂ , so the Borel
algebra of E∂ is

B(E∂ ) =B(E)∪{B∪{∂}|B ∈B(E)}.

DEFINITION 1.3.11. We define Markov process on (E,B(E)) is a quintuplet

Y = (Ω,F ,{Yt}t∈[0,+∞],{µx}x∈E∂
,{Ft}t∈[0,+∞])

(where (Ω,F ) is a measurable space, {Ft}t∈[0,+∞] is a filtration on (Ω,F ), Yt is a function Ω→E
for every t ∈ [0,+∞], and µx is a probability on (Ω,F ) for every x) which satisfies these condi-
tions.

i) For each x ∈ E∂ we have that (Ω,F ,{Yt}t∈[0,+∞],µx) is a E∂ -valued stochastic process
of E∂ s.t. Y+∞(ω) = ∂ for every ω ∈Ω.

ii) For each t ≥ 0, B ∈B(E∂ ), the function on E∂ defined as

x 7→ µx({ω ∈Ω|Yt(ω) ∈ B)}

is B(E∂ )-measurable.
iii) Yt is Ft-measurable for every t ∈ [0,+∞] and, for every x ∈ E∂ , s, t ≥ 0, B ∈B(E∂ ) we

have that

µx(Ys+t ∈ B|Ft)(ω) = µ(Yt(ω))(Ys ∈ B) for µx-almost every ω ∈Ω.

iv) µ∂ (Yt = ∂ ) = 1 for every t ≥ 0.
v) µx(Y0 = x) = 1 for every x ∈ E∂ .

In this setting, for every ω ∈ Ω we define the sample path of ω as the map [0,+∞)→ E∂ ,
t 7→ Yt(ω).



32 1. NOTATIONS AND MISCELLANEOUS OF BASICS FACTS

Clearly, a Markov process Y can be seen as a stochastic process, if we don’t consider the
filtration {Ft}t∈[0,+∞].

For a Markov process

Y = (Ω,F ,{Yt}t∈[0,+∞],{µx}x∈E∂
,{Ft}t∈[0,+∞]),

if τ is a stopping time on the filtration {Ft}t∈[0,+∞], and µ is a probability on (Ω,F ), we define
for every t ∈ [0,+∞] the random variable Yτ+t on (Ω,F ,µ) as

Yτ+t(ω) := Yτ(ω)+t(ω);

if ν is a probability on (E∂ ,B(E∂ )), we define µν as the measure on (Ω,F ) defined as

(1.3.2) µν(B) :=
ˆ

E∂

µx(B) dν(x),

we have that µν is a probability.

DEFINITION 1.3.12. Let

Y = (Ω,F ,{Yt}t∈[0,+∞],{µx}x∈E∂
,{Ft}t∈[0,+∞])

be a Markov process on (E,B(E)). We will say that it is a strong Markov process if it satisfies the
strong Markov property, i.e. for every ν probability measure on (E∂ ,B(E∂ )), t ≥ 0, B ∈B(E∂ ),
and for every stopping time τ on {Ft}t∈[0,+∞] we have

µν(Yτ+t ∈ B|Fτ)(ω) = µ(Yτ(ω)(ω))(Yt ∈ B) for µν -almost every ω ∈Ω.

In particular, the strong Markov property implies that for every x ∈ E∂ , t ≥ 0, B ∈B(E∂ ), and
for every stopping time τ on {Ft}t∈[0,+∞] we have

µx(Yτ+t ∈ B|Fτ)(ω) = µ(Yτ(ω)(ω))(Yt ∈ B) for µx-almost every ω ∈Ω.

Hereafter, we will always suppose that E is a separable metric space (in [27] there is a weaker
hypothesis, that E is a Lusin space).

DEFINITION 1.3.13. Let E be a separable metric space. A strong Markov process

Y = (Ω,F ,{Yt}t∈[0,+∞],{µx}x∈E∂
,{Ft}t∈[0,+∞])

on (E,B(E)) is called a Borel right process if it satisfies this properties:
i) for every ω ∈Ω, the set I := {t ∈ [0,+∞]|Yt(ω) = ∂} is a closed interval and +∞ ∈ I;

ii) for every t ≥ 0 there exists a map θt : Ω→Ω s.t. Ys+t = Ys ◦θt for every s≥ 0; this map
is called shift operator;

iii) for every ω ∈Ω, the sample path t 7→ Yt(ω) is right continuous on [0,+∞].

Let Y be a Borel right process on (E,B(E)), let B ∈ B(E), we call exit time from B the
random variable given by

ω 7→ inf{t ∈ [0,+∞]|Yt(ω) /∈ B}
and hitting time in B the random variable given by

ω 7→ inf{t ∈ (0,+∞]|Yt(ω) ∈ B}
We have this proposition (see e.g. [27], Appendix, Theo A.1.19).

PROPOSITION 1.3.14. Let E be a metric separable space, B ∈ B(E); if Y is a Borel right
process on (E,B(E)), the exit time from B and the hitting time B are stopping times with respect
to the filtration of Y .
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1.3.3. Markov processes and symmetric forms. Let Y be a Markov process,

Y = (Ω,F ,{Yt}t∈[0,+∞],{µx}x∈E∂
,{Ft}t∈[0,+∞])

we define for every t ≥ 0 the kernel measure on B(E)×E (or kernel)

Kx
t (B) := µx(Yt ∈ B);

for every t > 0, x ∈ E, the set function Kx
t is a positive bounded measure with Kx

t (E) ≤ 1; it is a
probability if µx(Yt = ∂ ) = 0. Moreover, we can define the transition function Pt , a function on
the set of bounded measurable real functions on E: if f is such a function

(Pt f )(x) =
ˆ

E
f (y) dKx

t (y);

Pt satisfies the Chapman-Kolmogorov condition (see e.g. [27], Def. 1.1.13 (t.1)) i.e. if 0 <
s < t

(1.3.3) Pt f = Pt−s(Ps f )

for every f measurable bounded function.

REMARK 1.3.15. The Chapman-Kolmogorov condition is an equality of functions, not of
class of functions; the equality (1.3.3) is verified in every x, not only almost everywhere.

Now, it can be proved (see [27], Sec. 1.1) that, if there is a positive measure m on E, to such
Pt we can associate the semigroup {Tt}t∈[0,+∞) on L2(E,m) defined as

Tt( f )(x) :=
ˆ

E
f (y) dKx

t (y) :

it is a strongly continuous contractive symmetric semigroup.

If Y is a Markov process on E, and if m is a positive measure on E, then we can associate to Y
a self-adjoint strongly continuous contractive semigroup Tt on L2(E,m), and to Tt we can associate
a closed symmetric form a.

DEFINITION 1.3.16. The form (a,D(a)) defined above is the form associated to the Markov
process Y .

Let Y be a Markov process on E ∈B(Rd), m := L d , to Y is associated the semigroup Tt on
L2(E,L d); we suppose that a kernel p is associated to Tt ; so the kernel measure is

Kx
t (B)(x) = µx(Yt ∈ B) =

ˆ
B

p(x,y, t) dy

for every x ∈ E, B ∈B(E) and t > 0; the transition function is

Pt f (x) =
ˆ

E
f (y)p(x,y, t) dy

for every x ∈ E, t > 0, f bounded measurable real functions on E, and we have also this version
of the Chapman-Kolmogorov property: for every x ∈ E, 0 < s < t, f bounded measurable real
functions on E

(1.3.4)
ˆ

E
f (y)p(x,y, t) dy =

ˆ
E

ˆ
E

f (y)p(z,y, t− s)p(x,z,s) dy dz
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1.3.4. Example: Brownian motion and absorbing Brownian motion. For this subsection
we refer to ([27], Exa. 3.5.9).

For d ≥ 1, there exists a Markov process on (Rd ,L d) such that its semigroup on L2(Rd ,L d)
has kernel

p(x,y, t) := (2πt)−
d
2 exp(−‖x− y‖

2t

2

)

for x,y ∈ Rd and t > 0); it is called heat semigroup (in this subsection we will indicate it as Tt),
and we have that the form associated if (W 1,2(Rd ,L d),D) where, for f ,g ∈W 1,2(Rd ,L d),

(1.3.5) D( f ,g) :=
1
2

ˆ
Rd

∇ f (x) ·∇g(x) dx.

The generator of Tt is the operator associated to (W 1,2(Rd ,L d),D), it is called Laplace oper-
ator, and it is indicated as ∆.

We have that there exists a Borel right process with the above properties (see also [27] Theo
1.5.1); such a Markov semigroup Y is called a d-standard Brownian motion (the stochastic process
associated to Y0 is a d-dimensional centered Brownian motion, which we will define in the sequel).

In particular, such a process has the strong Markov property; we have that the sample path of
such process is almost surely continuous in [0,+∞).

Now, for a d-standard Brownian motion Y on (Rd ,L d)

Y = (Ω,F ,{Yt}t∈[0,+∞],{µx}x∈Rd
∂

,{Ft}t∈[0,+∞])

given D open set in Rd , we can define the exit time τD from D: it is a stopping time by Proposition
1.3.14; we define the absorbing Brownian motion Y D on (D,L d) as

Y D = (Ω,F ,{Y D
t }t∈[0,+∞],{µx}x∈D∂

,{Ft}t∈[0,+∞])

(D∂ = D∪∂ ) where, for every t ≥ 0, ω ∈Ω,

Y D
t (ω) =

{
Yt(ω) if t < τD(ω)

∂ otherwise
.

This process Y D is also associated to a strongly continuous semigroup St on L2(D,L d) and to a
form (W 1,2

0 (D,L d),D), where

W 1,2
0 (D,L d) = { f ∈ L2(Rd ,L d)|∃g ∈W 1,2(Rd ,L d) s.t. g|D ≡ f and g|Rd\D ≡ 0}

and D has the same formula of (1.3.5) on W 1,2
0 (Rd ,L d); it is a closed, continuous and symmetric

form.
The operator associated on L2 to this form and which generates St is called Laplace operator

with Dirichlet boundary condition and is indicated as ∆D (D(∆D)⊂W 1,2
0 (D,L d)).

REMARK 1.3.17. Clearly, for every r ≥ 0 and x ∈ D we have µx(τD ≤ r) = µx(Y D
r = ∂ ).

Now, we consider the transition functions: the kernel measure of Y can be written as

Pt(B)(x) =
ˆ

B
p(x,y, t) dy = µx(Yt ∈ B)

for every x ∈ Rd , B ∈B(Rd) and t > 0.
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Let PD
t the kernel measure of Y D and x ∈ D: we have that for every B ∈B(D)

PD
t (B)(x) = µx(Y D

t ∈ B) = µx(Yt ∈ B,τD ≥ t)≤ µx(Yt ∈ B);

now PD
t (·)(x) is a positive measure absolutely continuous with respect to Pt(·)(x), which is abso-

lutely continuous respect to L d ; so given x ∈Ω and t ≥ 0, there exists qx
t : D→ R, the density of

PD
t |Ω with respect to L|Ω, and we have, for every t > 0, for L d-a.e. x,y ∈ D

(1.3.6) q(x,y, t) := qx
t (y)≤ p(x,y, t) = (2πt)−

d
2 exp(−‖x− y‖

2t

2

)

(so we can suppose that 0≤ q(x,y, t)≤ (2πt)−
d
2 everywhere) and

PD
t (B)(x) =

ˆ
B

q(x,y, t) dy,

for every x ∈Rd , B ∈B(Rd) and t > 0; so in particular we have that the associated semigroup has
the form

St f (x) =
ˆ

Ω

f (y)q(x,y, t) dy

for every f ∈ L2(D,L d), t > 0; hence the q is the kernel associated to this absorbing Brownian
motion.

Now, we have that St can be extended to a semigroup on the complexification Z of L2(D,L d),
and it has the same kernel q; (W 1,2

0 (D,L d),D) can be easily extended to a closed sesquilinear
form (D(b),b) on Z; it is a closed continuous sesquilinear form, so we can apply the Proposition
1.1.19, and we have that St is bounded holomorphic; hence, by (1.3.6) we are in the hypotheses of
Proposition 1.1.21, and we can deduce this result.

PROPOSITION 1.3.18. In this setting, for D⊆Rd , D open, the transition function has a kernel
q which, for every k ∈ N, is k-times differentiable in t and there exists C,c > 0 s.t.

| ∂
k

∂ tk q(x,y, t)| ≤Ct−
d
2−k exp

(
−c|x− y|2

t

)
for every x,y ∈ D and t > 0.

1.3.5. Bessel process. Let

B = (A,F ,{Bt}t∈[0,+∞],{µx}x∈Rd
∂

,{Ft}t∈[0,+∞])

be a d-dimensional standard Brownian motion (as a Markov process). We have that the sample
path is almost surely continuous for every starting point x, so it is not restrictive to suppose that
the sample path are continuous for every ω ∈A.

Fixed x, we can define {Bt}t∈[0,+∞] a Brownian motion (stochastic process) in d dimension
with starting point x ∈ Rd on a probability space (A,F ,µ) (µ = µx). The Bessel process Rt in
dimension d with starting point r = ‖x‖ associated to Bt is the stochastic process on the same
probability space with values in R+ given by Rt(a) = ‖Bt(a)‖ for every a ∈A.

We have this Lemma (see e.g. [47], Prop. 3.21) .

LEMMA 1.3.19. Let d ∈ N, d ≥ 2, r > 0. If Rt is the Bessel process in dimension d on
(Ω,F ,µ) with starting point r, there exists a standard one dimensional Brownian motion St on
(Ω,F ,µ) with starting point 0 s.t. almost surely
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Rt := r+
ˆ t

0

d−1
2Rs

ds+St .

In particular, let M, t > 0, and ω ∈Ω s.t. Rs ≥M, for every s ∈ [0, t], we have

Rt(ω)≤ r+ t
d−1
2M

+St(ω).

We have this result, which proof is a modification of the proof of ([46], Proposition 3.1).

LEMMA 1.3.20. In the above setting, if x is the starting point of the Brownian motion, if A is
a ball of center y ∈ Rd (with |x− y|= r) and radius a < 1, then, for some c > 0 independent of x,
y, a and u,

µ(Eu)≤ c
(

r√
u
+

r
a

)
for every u > 0, where Eu := {ω ∈A|@t ∈ [0,u] s.t. Bt(ω) ∈ A} and r := ‖x− y‖−a.

PROOF. Let τ be the hitting time of A (we consider the Markov process); by 1.3.14, τ is a
stopping time, in particular

Eu = {ω ∈A|τ(ω)< u} ∈F .

If Bt is the Brownian process with starting point in x, if we define Rt = ‖Bt − y‖, it is a d-
dimensional Bessel process with starting point ‖x− y‖; now (by arguing as in [[46], Lemma 3.1]
with ‖x− y‖− a instead of q(x) and a < 1 instead of δ ) we have that Lemma 1.3.19 yields the
existence of a 1-dimensional Brownian process St starting at 0 s.t.

Eu = {ω ∈A| inf
t∈[0,u]

|Rt(ω)| ≥ a]⊆ {ω ∈Ω|Rt(ω)≤ ‖x− y‖+ d−1
2a

t +St(ω) for all t ∈ [0,u]},

hence

{ω ∈A| inf
t∈[0,u]

Rt(ω)≥ a} ⊆ {ω ∈Ω|a≤ ‖x− y‖+ d−1
2a

t +St(ω) for all t ∈ [0,u}=: E1
u .

We have that E1
u =

⋂
Ei∈I Ei where I is the collections of sets s.t., for some {t1, . . . , tn} ⊂Q∩ [0,u]

a≤ ‖x− y‖+ d−1
2a

tn +Stn(ω)

for every n: this because A was chosen s.t. the sample path are always continuous; so I ⊂F and
hence E1

u ∈F .
We have r > 0 because x ∈Ω; we consider the hitting time defined as

τ−r(ω) := inf
t∈(0,∞]

{(
d−1

2a
t +St(ω)

)
≤−r

}
for every ω ∈ Ω; d−1

2a t +St is a process called 1-dimensional Brownian motion with drift; by the
formulas [19], Part II, Section 2,(2.0.2( and (2.0.2)(1) we have

µ(E1
u ) = µ(τ−r ∈ (u,+∞))+µ(τ−r =+∞) =

=

ˆ
∞

u

r√
2πt3

exp

(
−
(
r+ d−1

2a t
)2

2t

)
dt +1− exp

(
−d−1

2a
r−|d−1

2a
r|
)
≤

(by expz≤ 1 for z≤ 0, and by 1− exp(−s)< s for s > 0)
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≤ r√
2π

ˆ
∞

u
t−

3
2 dt +

d−1
a

r ≤

≤ c
(

r√
u
+

r
a

)
for some c > 0 independent on r,u,a. �

LEMMA 1.3.21. In the above setting, if d > 2, if x is the starting point of the Brownian motion,
if A is a ball of center y ∈ Rd (with ‖x− y‖= r) and radius a < 1, then,

µx(E) =
a2−d

r2−d

where E := {ω ∈A|∃t ∈ [0,+∞) s.t. s.t. Zt(ω)) ∈ A} and r := ‖x− y‖−a.

PROOF. It is not restrictive to suppose y = 0; so, ‖Bt(a)− y‖ is, as we said, a Bessel process
with starting point ‖x− y‖. So, let τ the hitting time for R of the ball centered in 0 with radius a.
We have

E = [τ <+∞],

so, we can apply the formula for the hitting time of Bessel process ([19], Appendix 1, Part II, Cap
4, formula 2.0.2 (1)), and we immediately conclude. �





CHAPTER 2

Wiener spaces

In this Chapter 2, we recall a great part of the theory of Gaussian measures, which allows to
define Wiener spaces; knowing the measure theory, this Chapter is self-contained. The topic of
differentiation in Wiener spaces is left to Chapter 3.

The main reference here is [14].
Sections 2.1 and 2.2 define the basic concepts and properties of Gaussian measure; in Section

2.3, we introduce the concept of (abstract) Wiener space which can be seen as a generalization
of the classical Wiener space, and, in this work, it is actually a separable Banach space endowed
with a Gaussian measure; hence we recap the concepts which will be used later; in Section 2.4 we
introduce the cylindrical functions and the cylindrical approximations, in the setting of Gaussian
measures.

Section 2.5 introduce a particular case, that of a Wiener space which is a Hilbert space; it will
be used in Subsection 2.6.3 and later in the Example 2 in Subsection 7.3.2.1.

Section 2.6 introduces the Brownian motion, not as Markov process, but as classical Wiener
space, which is essential in Chapter 8; by analogy we introduce, in Subsection 2.6.3, the concept
of Brownian bridge, which will be used in the Example 2 in Subsection 7.3.2.1.

2.1. Gaussian measures

2.1.1. Gaussian measures in finite dimension. We recall that, for every a ∈ R and σ > 0

(2.1.1)
1

σ
√

2π

ˆ
R

exp
{
−(x−a)2

2σ2

}
dx = 1.

DEFINITION 2.1.1. Gaussian measures on R A probability measure γ on (R,B(R)) is called
Gaussian if it is either a Dirac measure δa at a point a (in this case, we put σ = 0), or a measure
absolutely continuous with respect to the Lebesgue measure λ1 with density

1
σ
√

2π
exp
{
−(x−a)2

2σ2

}
.

In this case we call a the mean, σ > 0 the mean-square deviation and σ2 the variance of γ and we
say that γ is cenetred or symmetric if a = 0 and standard if in addition σ = 1.

By elementary computations we get

a =

ˆ
R

xγ(dx), σ
2 =

ˆ
R
(x−a)2

γ(dx).

REMARK 2.1.1. For every a,σ ∈ R we have γ̂(ξ ) = eiaξ− 1
2 σ2ξ 2

. Conversely, a probability
measure on R is Gaussian iff its Fourier transform has this form.

DEFINITION 2.1.2. Gaussian measures on Rd A probability measure γ on Rd is said to be
Gaussian if for every linear functional l on Rd the measure γ ◦ l−1 is Gaussian on R.

39
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γd := (2π)−d/2e−
|x|2

2 L d is called the standard Gaussian measure. We denote by Gd the func-
tion defined as

Gd(x) := (2π)−d/2e−
|x|2

2

the standard Gaussian density in Rd , i.e., the density of γd with respect to L d .

REMARK 2.1.3. If d = h+ k (d,h,k ∈ N) then γd = γh⊗ γk.

PROPOSITION 2.1.4. A measure γ on Rd is Gaussian if and only if its Fourier transform is

(2.1.2) γ̂(ξ ) = exp
{

ia ·ξ − 1
2

Qξ ·ξ
}

for some a∈Rd and Q a nonnegative symmetric d×d matrix. Moreover, γ is absolutely continuous
with respect to the Lebesgue measure λd if and only if Q is nondegenerate. In this case, the density
of γ is

(2.1.3)
1√

(2π)ddetQ
exp
{
−1

2
(
Q−1(x−a) · (x−a)

)}
.

REMARK 2.1.5. If γ is a Gaussian measure and (2.1.2) holds, we call a the mean and Q
the covariance of γ . If a = 0 we say that γ is centered. If the matrix Q is invertible then the
Gaussian measure is said to be nondegenerate. Its density, given by (2.1.3), is denoted Ga,Q. The
nondegeneracy is equivalent to the fact that γ ◦ l−1�L 1 for every l ∈

(
Rd
)∗.

PROPOSITION 2.1.6. Every centered Gaussian measure γ on Rd is invariant under the rotation
map φ defined, for every θ ∈R, by φ :Rd×Rd→Rd by φ(x,y) := xsinθ +ycosθ ; then, the image
measure (γ⊗ γ)◦φ−1 in Rd is γ .

REMARK 2.1.7. The property stated in Proposition 2.1.6 is not the invariance of γ under
rotations in Rd ; the last is true only if the covariance of γ is λO where λ > 0 and O is an orthogonal
matrix.

2.1.2. Gaussian measures in infinite dimension.

DEFINITION 2.1.8. For X vector normed space, the σ -algebra E (X) is that generated by the
cylindrical sets, i.e., the sets of the form

C =
{

x ∈ X : ( f1(x), . . . , fn(x)) ∈C0

}
,

where f1, . . . , fn ∈ X∗ and C0 ∈B(Rn), called a base of C.

THEOREM 2.1.9. If X is a separable Banach space, then E (X) =B(X). Moreover, there is
a countable family F ⊂ X∗ such that for every pair of points x 6= y ∈ X there is f ∈ F such that
f (x) 6= f (y) and E (X) = E (X ,F).

DEFINITION 2.1.10. [Gaussian measures on X] Let X be a Banach space. A probability
measure γ on (X ,B(X)) is said to be Gaussian if γ ◦ f−1 is a Gaussian measure in R for every
f ∈ X∗. The measure γ is called centred (or symmetric) if all the measures γ ◦ f−1 are centered
and it is called nondegenerate if for any f 6= 0 the measure γ ◦ f−1 is nondegenerate.

REMARK 2.1.11. We will use only separable Banach space in this work, but the definition
of Gaussian measure usually is given for more general spaces, locally convex or Fréchet (see e.g.
[14]).
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Gaussian measures in infinite dimensions can be defined in terms of Fourier transforms, anal-
ogously to the case Rd , (Proposition 2.1.4).

Notice that if f ∈ X∗ then f ∈ Lp(X ,γ) for every p≥ 1: indeed, the integralˆ
X
| f (x)|p γ(dx) =

ˆ
R
|t|p (γ ◦ f−1)(dt)

is finite because γ ◦ f−1 is Gaussian in R. Therefore, we can give the following definition.

DEFINITION 2.1.12. We define the mean aγ and the covariance Bγ of γ by

aγ( f ) :=
ˆ

X
f (x)γ(dx),(2.1.4)

Bγ( f ,g) :=
ˆ

X
[ f (x)−aγ( f )] [g(x)−aγ(g)]γ(dx),(2.1.5)

f ,g ∈ X∗.

Observe that f 7→ aγ( f ) is linear and ( f ,g) 7→ Bγ( f ,g) is bilinear in X∗. Moreover, Bγ( f , f ) =
‖ f −aγ( f )‖2

L2(X ,γ)
≥ 0 for every f ∈ X∗.

THEOREM 2.1.13. A Borel probability measure γ on X is Gaussian if and only if its Fourier
transform is given by

(2.1.6) γ̂( f ) = exp
{

ia( f )− 1
2

B( f , f )
}
, f ∈ X∗,

where a is a linear functional on X∗ and B is a nonnegative symmetric bilinear form on X∗.

As in the finite dimensional case, we say that γ is centered if aγ = 0; in this case, the bilinear
form Bγ is nothing but the restriction of the inner product in L2(X ,γ) to X∗,

(2.1.7) Bγ( f ,g) =
ˆ

X
f (x)g(x)γ(dx), Bγ( f , f ) = ‖ f‖2

L2(X ,γ).

PROPOSITION 2.1.14. Let X be a Banach space and let γ be a Gaussian measure on X.
i) If µ is a Gaussian measure on a locally convex space Y , then γ⊗µ is a Gaussian measure

on X×Y .
ii) If µ is a Gaussian measure on X, then the convolution measure γ ∗µ , defined as the image

measure in X of γ⊗µ on X×X under the map (x,y) 7→ x+y is a Gaussian measure and
is given by

(2.1.8) (γ ∗µ)(B) =
ˆ

X
µ(B− x)γ(dx) =

ˆ
X

γ(B− x)µ(dx).

iii) If γ is centered, then for every θ ∈ R, given Rθ : X ×X → X ×X, Rθ (x,y) := (xcosθ +
ysinθ ,−xsinθ + ycosθ) the image measure (γ⊗ γ)◦R−1

θ
in X×X is γ⊗ γ .

iv) If γ is centred, then for every θ ∈R the image measures (γ⊗γ)◦φ
−1
i , i = 1,2 in X under

the maps φi : X×X → X,

φ1(x,y) := xcosθ + ysinθ , φ2(x,y) :=−xsinθ + ycosθ

are again γ .

We recall that E (X) =B(X); we give a definition of measurable seminorm inspired by ([14],
Def. 2.8.1).
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DEFINITION 2.1.15. If X is a Banach space and γ is a Gaussian measure on X , a E(X)γ -
measurable seminorm is a function f Borel measurable on X s.t. there exists a linear subsets
X0 ∈B(X) s.t. γ(X0) = 1 and f|X0 is a seminorm on X0.

We have this important result, the Fernique Theorem ([14], Thm. 2.8.5; Fernique theorem was
introduced in [40]).

THEOREM 2.1.16. Let γ be a centered Gaussian measure on a Banach space X, and let | · | be
a E(X)γ -measurable seminorm of X. Then there exists α > 0 such thatˆ

X
exp{α|x|2}γ(dx)< ∞.

If X is a Banach space, it is easily seen that the space X∗ is contained in L2(X ,γ) and the
inclusion map j : X∗→ L2(X ,γ),

(2.1.9) j( f ) = f −aγ( f ), f ∈ X∗

is continuous.

DEFINITION 2.1.17. [Reproducing kernel] The reproducing kernel is defined by the closure
of j(X∗) in L2(X ,γ), we denote it by X∗γ .

We have defined the functions aγ in X∗ and the function Bγ in X∗×X∗; the extension of aγ to
X∗γ is trivial, since the mean value of every element of X∗γ is zero. The extension of Bγ to X∗γ ×X∗γ
is continuous (X∗γ ×X∗γ is endowed with the L2(X ,γ)×L2(X ,γ) norm), and since aγ ≡ 0 on X∗γ ,

Bγ( f ,g) =
ˆ

X
f (x)g(x)γ(dx) = 〈 f ,g〉L2(X ,γ), f , g ∈ X∗γ .

If γ is nondegenerate then two different elements of X∗ define two different elements of X∗γ .
We have also this result.

PROPOSITION 2.1.18. If γ is a Gaussian measure on a separable Banach space X, then aγ :
X∗ → R and Bγ : X∗×X∗ → R are continuous. In addition, there exists a ∈ X representing aγ ,
i.e., such that

aγ( f ) = f (a), ∀ f ∈ X∗.
If γ centered then a = 0.

For f ∈ X∗γ , we have that | f | is a E(X)γ -measurable seminorm by e.g. [14] Thm. 2.10.9, so by
the Fernique Theorem (Theorem 2.1.16) we have this Corollary.

COROLLARY 2.1.19. If f ∈ X∗γ , then there exists c > 0 s.t.ˆ
O

exp
(
c|g|2

)
dγ < ∞.

2.2. The Cameron-Martin space

Hereafter, we assume that X is a separable Banach space.
We define the operator Rγ : X∗γ → (X∗)′.

(2.2.1) Rγ f (g) :=
ˆ

X
f (x)(g(x)−aγ(g))γ(dx), f ∈ X∗γ , g ∈ X∗.
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i.e.

(2.2.2) Rγ f (g) = 〈 f ,g−aγ(g)〉L2(X ,γ).

We recall that Rγ maps X∗γ into X (see [14, Theorem 3.2.3]).

PROPOSITION 2.2.1. If X is a separable Banach space, the range of Rγ is contained in X, i.e.,
for every f ∈ X∗γ there is y ∈ X such that Rγ f (g) = g(y) for all g ∈ X∗.

REMARK 2.2.2. By Proposition 2.2.1, we can identify Rγ f with the element y ∈ X represent-
ing it, i.e. we shall write

Rγ f (g) = g(Rγ f ), ∀g ∈ X∗.

DEFINITION 2.2.3. [Cameron-Martin space] For every h ∈ X set

(2.2.3) |h|H := sup
{

f (h) : f ∈ X∗, ‖ j( f )‖L2(X ,γ) ≤ 1
}
,

where j : X∗→ L2(X ,γ) is the inclusion defined in (2.1.9). The Cameron-Martin space is defined
by

(2.2.4) H :=
{

h ∈ X : |h|H < ∞

}
.

If X is a Banach space, calling c the norm of j : X∗→ L2(X ,γ), we have

(2.2.5) ‖h‖X = sup{ f (h) : ‖ f‖X∗ ≤ 1} ≤ sup{ f (h) : ‖ j( f )‖L2(X ,γ) ≤ c}= c|h|H ,

and then H is continuously embedded in X .
This embedding is even compact and the norms ‖ · ‖X and | · |H are not equivalent in H, in

general; they are equivalent only if X is finite dimensional and γ is non-degenerate.
The Cameron-Martin space inherits a natural Hilbert space structure from the space X∗γ through

the L2(X ,γ) Hilbert structure.

PROPOSITION 2.2.4. An element h ∈ X belongs to H if and only if there is ĥ ∈ X∗γ such that
h = Rγ ĥ. In this case,

(2.2.6) |h|H = ‖ĥ‖L2(X ,γ).

Therefore Rγ : X∗γ → H is an isometry and H is a Hilbert space with the inner product

[h,k]H := 〈ĥ, k̂〉L2(X ,γ)

whenever h = Rγ ĥ, k = Rγ k̂.

For every h ∈ Rγ(X∗γ ) there is only one ĥ ∈ X∗γ which satisfies the above condition; hereafter,
we will always use the formalism ·̂ in this way.

The space L2(X ,γ) (hence its subspace X∗γ as well) is separable, because X is separable. There-
fore, H, being isometric to a separable space, is separable.

REMARK 2.2.5. The map Rγ : X∗γ → X can be defined directly using the Bochner integral
through the formula

Rγ f :=
ˆ

X
(x−a) f (x)γ(dx),

where a is the mean of γ .
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Now we describe the finite dimensional case X = Rd . If γ = N (a,Q) then for f ∈ Rd we
have

‖ j( f )‖2
L2(Rd ,γ) =

ˆ
Rd
〈x−a, f 〈 ,N (a,Q)(dx) = 〈Q f , f 〈

and therefore |h|H is finite if and only if h∈Q(Rd) and, as a consequence, H = Q(Rd) is the range
of Q. According to the notation introduced in Proposition 2.2.4, if γ is nondegenerate, namely
Q is invertible, h = Rγ ĥ iff ĥ(x) = 〈Q−1h,x〉Rd . if γ is nondegenerate the measures γh defined by
γh(B) = γ(B−h) are all equivalent to γ , and an elementary computation shows that we have

ρh(x) := exp
{
(Q−1h) · x− 1

2
|h|2
}
= exp

{
ĥ(x)− 1

2
|h|2
}
,

where γh := ρhγ . In the next theorem, we consider the infinite dimensional case.

THEOREM 2.2.6. For h ∈ X, define the measure γh(B) := γ(B−h). If h ∈H the measure γh is
equivalent to γ and γh = ρhγ , with

(2.2.7) ρh(x) := exp
{

ĥ(x)− 1
2
|h|2H

}
,

where ĥ = R−1
γ h. If h /∈ H then γh ⊥ γ . Hence, γh ≈ γ if and only if h ∈ H.

From now on, we denote by BH(x,r) the open ball of center x ∈ H and radius r in H and by
BH

(0,r) its closure in H. We denote by x+BH
(0,r) for x ∈ X ,

BH(x,r) = {y ∈ X ||y− x|H ≤ r}.

THEOREM 2.2.7. Let γ be a Gaussian measure in a separable Banach space X, and let H be
its Cameron-Martin space. The following statements hold.

i) The unit ball BH(0,1) of H is relatively compact in X and hence the embedding H ↪→ X
is compact.

ii) If γ is centered then H is the intersection of all the Borel subspaces of X with measure 1.
iii) If γ is centered and X∗γ is infinite dimensional then γ(H) = 0.
iv) There exists an orthonormal basis of H that is contained in Rγ(X∗).

PROPOSITION 2.2.8. Let γ be a Gaussian measure on a Banach space X. Let us assume that
X is continuously embedded in another Banach space Y , i.e., there exists a continuous injection
i : X →Y . Then the image measure γY := γ ◦ i−1 in Y is Gaussian and the Cameron–Martin space
H associated with the measure γ is isomorphic to the Cameron–Martin space HY associated with
the measure γY in Y .

2.3. Notations about Wiener spaces

Hereafter, we will call abstract Wiener space, or Wiener space, a space (X ,γ) where X is a
Banach space and γ is a centered nondegenerate Gaussian measure.

In the sequel, we will write Lp(X) to mean Lp(X ,γ); if Y is a normed space, we will write
Lp(X ,Y ) to mean Lp(X ,γ,Y ).

By using Theorem 2.2.7 iv) we can consider a basis {hi}i∈N of H s.t. for every j ∈ N we have
ĥ j ∈ X∗, and h j ∈ Rγ(X∗). We define

(2.3.1) πdx :=
d

∑
j=1

ĥ j(x)h j, n ∈ N, x ∈ X .
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Note that every πd is a projection, since by (2.2.1) ĥ j(hi) = δi j. Moreover, if x ∈ H, then ĥ j(x) =
[x,h j]H so πdx is an extension to X of the orthogonal projection of H on < h1, . . . ,hd >.

More in general for every F ⊆ Rγ(X∗) ⊆ H, with dim(F) = d < ∞; for every h ∈ F we can
consider ĥ ∈ X∗; in this setting, we define ĥ as the bounded linear function (defined everywhere,
and non only almost everywhere) which corresponds to h.

If (h1, . . . ,hd) is a an orthonormal basis of F , we define

πF(x) :=
d

∑
j=1

ĥ j(x)h j

function from X to F , and we that this function is linear and continuous and it does not depend on
the orthonormal basis; we can consider it a the extension to X of the projection from H to F .

In this setting, we consider the measure γF := γ ◦π
−1
F ; we have that γF is a centered nondegen-

erate Gaussian measure on F ; if we identify F with Rd , by identifying an orthonormal basis of F
(inner product inherited from H) with the canonical basis of Rd , then γF is the standard Gaussian
measure γd . For such a F we can define

F⊥ := π
−1
F (0) = (I−πF)

−1(X),

it is a closed set (hence it is a Banach space). We remark that F⊥ is a subset of X , not of H; we
remark also that F⊥ is well defined as close linear subset of X for F ⊆ Rγ(X∗, but not in general
for F ⊆ H.

If F ⊂ Rγ(X∗), if we consider I−πF as a linear map from X to XF , then we can define

γ
⊥
F := γ ◦ (I−πF)

−1

as a measure on F⊥; it is a centered nondegenerate Gaussian measure, and the Cameron-Martin
space of (XF ,γ

⊥
F ) is the orthogonal F⊥ to F in H; on F×F⊥, if F×F⊥ corresponds to X through

the function (v,w) 7→ v+w, we have that in this setting γ is given by the product measure γF⊗γF⊥ .
When F =< h >, we will write h⊥ to mean < h >⊥, γh := γ<h>, γh⊥ := γ<h>⊥ .
For h ∈ Rγ(X∗), y ∈ X⊥h , we will usually define Oy := {t ∈ R|y+ th ∈ O}, and the function fy

on Oy defined as fy(t) := f (y+ th).

2.4. Cylindrical approximations in Wiener spaces

DEFINITION 2.4.1. [Cylindrical functions] We say that ϕ : X → R is a cylindrical function if
there are d ∈N, l1, . . . , ld ∈ X∗ and a function ψ : Rn→R such that ϕ(x) = ψ(l1(x), . . . , ld(x)) for
all x ∈ X . For k ∈N, we write ϕ ∈ FCk

b(X) (resp. ϕ ∈ FC∞
b (X)), and we say that ϕ is a cylindrical

k times (resp. infinitely many times) boundedly differentiable function, if, with the above notation,
ψ ∈Ck

b(R
d) (resp. ψ ∈C∞

b (Rd)).

In the notations of 2.3 we have the following theorem, see e.g. [14] Thm. 3.5.1, Cor. 3.5.8.

THEOREM 2.4.2. For every p ∈ [1,+∞),

‖πdx− x‖X
Lp(X)−−−−→

d→+∞

0.

For γ-a.e. x ∈ X, lim
n→∞

πdx = x.



46 2. WIENER SPACES

We define

(Ed f )(x) :=
ˆ

X
f (πdx+(I−πd)y)γ(dy), x ∈ X ,

clearly if f ∈Ck
b(X) then Ed f ∈ FCk

b(X); the functionsEd f is called cylindrical approximation of
f and it is the conditional expectation of f with respect to the σ -algebra π

−1
F (B(F)).

We have this result ( see e.g. [14] Cor. 3.5.2).

PROPOSITION 2.4.3. For every 1≤ p < ∞ and f ∈ Lp(X ,γ) the sequence En f converges to f
in Lp(X ,γ) and γ-a.e. in X.

It has the following corollary.

COROLLARY 2.4.4. For every 1≤ p < ∞ the space FC∞
b (X) is dense in Lp(X ,γ).

Now, if F ⊆ Rγ(X∗), for every h ∈ F the function ĥ ∈ X∗γ in general is not in X∗; we have
that it is not continuous, but it has a (not unique) representative which is measurable and linear
on X (but, in general, not bounded); so, for a sequence Fd generated by an orthonormal basis we
can define πd analogously as a measurable linear functional, and Ed f ; also in this case for γ-a.e.
x ∈ X , lim

d→∞

πdx = x, while Ed f converges to f in Lp(X ,γ) and γ-a.e. in X .

2.5. Hilbert space case

Let X be an infinite dimensional separable Hilbert space, with norm ‖ · ‖X and inner product
〈·, ·〉X . We identify X∗ with X via the Riesz representation.

We say that an operator L ∈ L(X) is nonnegative if 〈Lx,x〉X ≥ 0 for all x ∈ X ; an operator
L ∈ L(X) is compact if the image of every bounded set is relatively compact.

We also recall that an operator L∈L(X) is compact if (and only if) L is the limit in the operator
norm of a sequence of finite rank operators.

Let us recall that if L is a compact self-adjoint operator on X , the spectrum of L is at most
countable and if the spectrum is infinite it consists of a sequence of eigenvalues {λk}k∈N which
converges in 0. If L is compact and self-adjoint, there is an orthonormal basis of eigenvectors of
X . Moreover, L has the representation

(2.5.1) Lx =
∞

∑
k=1

λk〈x,ek〉X , x ∈ X ,

where {ek}k∈N is an orthonormal basis of eigenvectors and Lek = λkek for any k ∈N. If in addition
L is nonnegative, then its eigenvalues are nonnegative.

We may define the square root of L by

L1/2x =
∞

∑
k=1

λ
1/2
k 〈x,ek〉X ek.

The operator L1/2 is obviously self-adjoint, and also compact.
It can be proved that

T :=
∞

∑
k=1
〈Lek,ek〉X =

+∞

∑
k=1

λk <+∞

(where {ek}k∈N is an orthonormal basis of eigenvectors) is well defined for every L compact and
self-adjoint; therefore, we can give the following definition.
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DEFINITION 2.5.1. [Trace-class operators] A nonnegative self-adjoint operator L ∈ L(X) is
of trace-class or nuclear if there is an orthonormal basis {ek : k ∈ N} of X such that

∞

∑
k=1
〈Lek,ek〉X < ∞

and the trace of L is

(2.5.2) tr(L) :=
∞

∑
k=1
〈Lek,ek〉X

for any orthonormal basis {ek : k ∈ N} of X .

For a complete treatment of the present matter we refer e.g. to [32, VI.5], [33, XI.6, XI.9].
Let γ be a Gaussian measure in X . According to Theorem 2.1.13 and (2.1.4), (2.1.5) we have

γ̂( f ) = exp
{

iaγ( f )− 1
2

Bγ( f , f )
}
, f ∈ X∗,

where the linear mapping aγ : X∗→ R and the bilinear symmetric mapping Bγ : X∗×X∗→ R are
continuous by Proposition 2.1.18. Then, there are a ∈ X and a self-adjoint Q ∈ L(X) such that
aγ( f ) = 〈 f ,a〉X and Bγ( f ,g) = 〈Q f ,g〉X for every f , g ∈ X∗ = X . So,

(2.5.3) 〈Q f ,g〉X =

ˆ
X
〈 f ,x−a〉X〈g,x−a〉X γ(dx), f , g ∈ X ,

and

(2.5.4) γ̂( f ) = exp
{

i〈 f ,a〉X −
1
2
〈Q f , f 〉X

}
, f ∈ X .

We denote by N (a,Q) the Gaussian measure γ whose Fourier transform is given by (2.5.4). As
in finite dimension, a is called the mean and Q is called the covariance of γ .

The following theorem is analogous to Theorem 2.1.13, but there is an important difference.
In Theorem 2.1.13 a measure is given and we give a criterion to see if it is Gaussian. Instead, in
Theorem 2.5.2 we characterize all Gaussian measures in X .

THEOREM 2.5.2. If γ is a Gaussian measure on X then its Fourier transform is given by
(2.5.4), where a ∈ X and Q is a self-adjoint nonnegative trace-class operator. Conversely, for
every a∈ X and for every nonnegative self-adjoint trace-class operator Q, the function γ̂ in (2.5.4)
is the Fourier transform of a Gaussian measure with mean a and covariance operator Q.

REMARK 2.5.3. Since in infinite dimensions the identity is not a trace-class operator, the
function x 7→ exp{−1

2‖x‖
2
X} cannot be the Fourier transform of any Gaussian measure on X .

PROPOSITION 2.5.4. Let γ = N (a,Q) be a Gaussian measure on X and let (λk) be the se-
quence of the eigenvalues of Q. If γ is not a Dirac measure, the integralˆ

X
exp{α‖x‖2

X}γ(dx)

is finite if and only if

(2.5.5) α < inf
{

1
2λk

: λk > 0
}
.
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Let us characterize X∗γ and the Cameron-Martin space H. By definition, X∗γ is the closure
of j(X∗) in L2(X ,γ). Hereafter, if γ = N (a,Q) we fix an orthonormal basis {ek : k ∈ N} of
eigenvectors of Q such that Qek = λkek for any k ∈ N and for every x ∈ X , k ∈ N, we set xk :=
〈x,ek〉X .

THEOREM 2.5.5. Let γ = N (a,Q) be a nondegenerate Gaussian measure in X. The space
X∗γ is

(2.5.6) X∗γ =
{

f : X → R : ∃z ∈ X s.t. f (x) =
∞

∑
k=1

(xk−ak)zkλ
−1/2
k

}
and the Cameron-Martin space is the range of Q1/2, i.e.,

(2.5.7) H =
{

x ∈ X :
∞

∑
k=1

x2
kλ
−1
k < ∞

}
.

For h = Q1/2z ∈ H, we have

(2.5.8) ĥ(x) =
∞

∑
k=1

(xk−ak)zkλ
−1/2
k

and

(2.5.9) [h,k]H = 〈Q−1/2h,Q−1/2k〉X ∀ h,k ∈ H.

2.6. Brownian motion and classical Wiener space.

2.6.1. One-dimensional Brownian motion. We consider C([0,1]) as a metric space with the
sup norm. It is possible to prove (see [14], Sec 2.3, and [54]) that there exists a centered Gaussian
probability γW on C([0,1]) s.t. the family of functions Bt : C([0,1])→ R defined by

Bt(ω) = ω(t), t ∈ [0,1]

represents a real valued standard Brownian motion if we consider each Bt as a random variable on
(C([0,1]),γW ).

Clearly γW concentrates on C∗([0,1]) = {ω ∈C([0,1])|ω(0) = 0}.
γW is called classical Wiener measure on C∗([0,1]), it is nondegenerate and centered. The

(Borel) measure space (C∗([0,1]),γW ) is called classical Wiener space.
Every standard Brownian motion Bt on (Ω,F ,µ) has a version B̃t that is γ-Hölder continuous

for every γ < 1
2 ; hence, there exists a set A ∈F with µ(A) = 1 and a version (B̃t)t∈[0,1] such that

the map t 7→ B̃t(ω) is continuous for any ω ∈ A.
γW is a Gaussian measure with mean zero and covariance operator

(2.6.1) BγW (µ,ν) =

ˆ
[0,1]2

min{t,s}(µ⊗ν)(d(t,s)), µ,ν ∈M ([0,1]).

We consider the embedding ι : C([0,1])→ L2(0,1), ι( f ) = f , which is a continuous injection
since

‖ι( f )‖L2(0,1) ≤ ‖ f‖∞.
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We consider the image measure γW := γW ◦ ι−1 on L2(0,1); clearly γW concentrates on the space
Z2 of elements of L2([0,1]) which have a continuous representative; we have that the Cameron-
Martin space on (C([0,1]),γW ), and on (L2(0,1),γw) is the same in the sense of Proposition 2.2.8,
and it is given by

H1
0 ([0,1]) := { f ∈ L2(0,1) : f ′ ∈ L2(0,1) and f (0) = 0}.

L2([0,1]) is a Hilbert space, so we can consider eigenvalues and eigenvectors: the eigenvalues are

(2.6.2) λk =
1

π2
(
k+ 1

2

)2 , k ∈ N

and the eigenvectors are

ek(x) =
√

2sin
( x√

λk

)
=
√

2sin
(2k+1

2
πx
)
.

2.6.2. d-dimensional Brownian motion. Let X := {ω ∈C([0,1],Rd)|ω(0) = 0}, we can see
it as X =C∗([0,1])× . . .×C∗([0,1]) d times, if we define γW,d = γW ⊗ . . .⊗ γW d times (where γW

is the measure of classical Wiener space, associated to the standard Brownian motion), we have
that it is a nondegenerate Gaussian measure (recalling that the product of Borel σ -algebras is the
Borel σ -algebra).

DEFINITION 2.6.1. A d-dimensional Brownian motion on [0,1] is a d-dimensional stochastic
process (Bt)t∈[0,1] on a probability space (Ω,F ,µ) such that, for every i ∈ (1, . . . ,d), the process
(Bt)i is a standard real valued Brownian motion.

It is immediate that given γW,d on X , the family of functions B·(·) : [0,1]×X →Rd defined by

Bt(ω) = ω(t), t ∈ [0,1]

is a d-dimensional Brownian motion on (X ,γW,d).

2.6.3. Brownian bridge. Let Bt a real valued standard Brownian motion t ∈ [0,1] on the
space (Ω,F ,µ); then, the process given by B0

t = Bt − tB1 on the space (Ω,F ,µ) is called Brow-
nian bridge ; we have that B0

0 = 0 and B0
1 = 0 almost surely i.e. if

A = {ω ∈Ω|B0
0(ω) = B0

1(ω) = 0}
then A ∈F and µ(A) = 1. It is well known that, if t ∈ [0,1] then

E(B0
t ) = 0,

and if s, t ∈ [0,1] then
cov(B0

t ,B
0
s ) = (s∧ t)− st.

We consider the case of (C∗([0,1]),γW ), classical Wiener space; we define the bounded linear
function ψ : C([0,1])→C([0,1]),

ψ( f )(t) := f (t)− t f (1),

and we define the pinned Wiener measure γW p := γW ◦ψ−1 that is Gaussian, centered and it
imposes that the values on 0 and 1 are 0: clearly the family of functions B0

t : C([0,1])→R defined
by

B0
t (ω) = ω(t), t ∈ [0,1]
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corresponds a Brownian bridge, and clearly it concentrates on the closed linear subspace C0([0,1])
(so γW p is degenerate as a measure on C([0,1]), because C([0,1]) 6=C0([0,1])).

If Y =C([0,1]) then Y ∗ = M ([0,1]), where M ([0,1]) is the set of real finite Borel measures
on [0,1], with the weak∗ topology (by the Riesz-Markov Theorem 1.2.18).

Now, if s, t ∈ [0,1], if δs,δt are Dirac probabilities concentrated respectively in s and t, then
we have

BγW p(δt ,δs) =

ˆ
X

δt(ω)δs(ω) dγ
W p(ω) =

ˆ
X

ω(t)ω(s) dγ
W p(ω) =

= E(B0
t B0

s ) = E(B0
t B0

s )−E(B0
t )E(B0

s ) = cov(B0
t ,B

0
s ) = (s∧ t)− st.

Hence, by the continuity of BγW p we can write that, if µ,ν are linear combinations of Dirac mea-
sures,

(2.6.3) BγW p(µ,ν) =

ˆ 1

0

ˆ 1

0
((s∧ t)− st)µ(ds)ν(dt);

but these measures are dense in the weak∗ topology (see e.g. [16] Exa. 8.1.6 i), by recalling that
Borel sets and Baire sets are the same in a metric space) and BγW p is continuous, so (2.6.3) is
verified also for generic elements of M ([0,1]).

We remark that two functions f1, f2 ∈ L1([0,1]) can be seen as density of measures (with
respect to Lebesgue measure L 1), and in that case we can write

(2.6.4) BγW p( f1L
1, f2L

1) =

ˆ 1

0

ˆ 1

0
((s∧ t)− st) f1(s) f2(t) dt ds.

As in the above case, we can consider the embedding ι : C([0,1])→ L2(0,1), ι( f ) = f ; we can
define on L2(0,1) the measure γW p = γW p ◦ ι−1 .

Let X = L2([0,1]) (hence a Hilbert space, see Section 2.5). Clearly, γW p is well defined in X
and concentrates on the space Z of elements of L2([0,1]) which have a continuous representative;
we already know that γW is well defined in X (and it concentrates on Z2) and that is a nondegenerate
centered Gaussian measure with Cameron-Martin space

HW = { f ∈W 1,2([1,2])| f has a continuous representative f̂ with f̂ (0) = 0, f̂ (1) = 0},

dense in X (see [14] Lem. 2.3.14); moreover, ψ is well defined in Z2 and γW p = γW ◦ψ−1, so γW p
on X is a centered Gaussian measure with Cameron-Martin space

HW p = ψ(HW ) =W 1,2
0 ((0,1))

(it is clear, because ψ(HW p) = HW p and ψ(HW )⊆ HW p) hence γ is nondegenerate because γW p is
dense in X .

We have that X∗ = L2([0,1]) and we can consider the function i∗ : X∗→ Y ∗ as i∗( f ) = f L 1.
Now, for what we said, by using (2.6.4) we can calculate the covariance BγW p for f1, f2 ∈ X : it is
given by

BγW p( f1, f2) =

ˆ 1

0

ˆ 1

0
((s∧ t)− st) f1(s) f2(t) dt ds;

if λ is an eigenvalue of Q and fλ is an eigenvector, then

BγW p( f ,g) = 〈λ fλ ,g〉L2([0,1])



2.6. BROWNIAN MOTION AND CLASSICAL WIENER SPACE. 51

for every g ∈ L2([0,1]), so

λ fλ (t) = (1− t)
ˆ t

0
s fλ (s) ds+ t

ˆ 1

t
(1− s) fλ (s) ds,

hence

λ f ′
λ
(t) =−

ˆ t

0
s fλ (s) ds+

ˆ 1

t
(1− s) fλ (s) ds

and

(2.6.5) λ f ′′
λ
(t) = fλ (t)

and clearly

(2.6.6) fλ (0) = fλ (1) = 0;

if we take λk = (πk)−2 and ek := fλk =
√

2sin(kπ·), clearly {ek}k∈N is a basis of eigenvectors of
Q: in fact, each solution of the ODE (2.6.5) is of the form

fλ = α sin(λπ·)+β cos(λπ·)
and if we want to satisfy the boundary conditions (2.6.6), we need β = 0, and λ = (πk)−2 for
some k ∈N; this is to prove that only the elements of {ek}k∈N are eigenvectors; now, it is clear that
{ek}k∈N is a basis of HW p, hence that set is the set of eigenvectors of Q.

Now, for each ek, we have
‖e′k‖L2([0,1])
‖ek‖L2([0,1])

=
√

λk; this yields that H =W 1,2
0 ((0,1)) and, for every

h ∈ H, that |h|H = ‖h′‖L2([0,1]).
In particular, a orthogonal basis of eigenvector of H is {

√
2k−1π−1 sin(kπ·)}k∈N.





CHAPTER 3

Sobolev space in Wiener spaces

This long Chapter recalls several topics about differentiation in Wiener space: except Section
3.3, they are all well-known.

(X ,γ) is always a Wiener space: we use the definitions and properties introduced in Chapter
2 (especially Section 2.3).

In Section 3.1 it is presented the notion of Sobolev spaces of the first order in a Wiener space
X (see [14]).

In Section 3.2 we give a definition of Sobolev space W 1,p(O) as completion of Lipschitz
functions (it is one of the possible definitions, it is used in [26]); we define an alternative Sobolev
space W 1,p

∗ (O), and we recall a result in [44] which allows to state that, for O convex, W 1,2(O) =

W 1,2
∗ (O); Proposition 3.2.23 allows to introduce Corollary 3.2.24, which states that each element

of
(

W 1,p
∗ ∩Lq

)
(O) can be approximated by regular functions; Proposition 3.2.23 and Corollary

3.2.24 are used in Chapter 7.
In Section 3.3, Proposition 3.2.23 is proved, following the same steps of the result in [44].
In Section 3.4, we define concepts linked to second derivatives: the space W 2,2 (which is used

in Section 3.5) and the Gaussian divergence divγ . The definition of Ornstein-Uhlenbeck operators
and semigroups (in various settings) is recalled in Subsection 3.4.3 (see Section 1.1 for operators
and semigroups); these concept will be used in Section 4.1, and also in Subsection 7.5.3.

In Section 4.1 we recall the theory of infinite dimensional Hausdorff measures (introduced by
D. Feyel and A. de La Pradelle) following [39]; we recall that, by following [26], a particular kind
of sets (which satisfies Hypotheses 3.5.8 and 3.5.10) allows to define the trace operator on ∂O, so
in this setting a possible definition of W 1,p

0 (O) is the space of functions with null trace; this will be
used in Chapter 6. To define the necessary conditions on the set O, we use the concepts of Section
3.4.

3.1. Sobolev spaces W 1,p(X)

3.1.1. Differentiable functions. For this subsection we refer to [14]. We will use the nota-
tions of 2.3.

In the following, given a Wiener space X ,γ), we denote Lp(X ,γ) with Lp(X) and Lp(X ,γ,H)
with Lp(X ,H).

DEFINITION 3.1.1. Let X , Y be normed spaces. Let x0 ∈ X and let Ω be a neighbourhood of
x0. A function f : Ω→ Y is called Fréchet differentiable (or simply differentiable) at x0 if there
exists l ∈ L(X ,Y ) such that

‖ f (x0 +h)− f (x0)− l(h)‖Y = o(‖h‖X) as h→ 0 in X .

In this case, l is unique, and we set f ′(x0) := l.

53
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C1
b(X) will be the set of all the Fréchet differentiable functions bounded s.t. f ′ is bounded and

continuous as a function X → H.

If f is Fréchet differentiable at x0 it is continuous at x0. Moreover, for every v ∈ X the direc-
tional derivative

∂ f
∂v

(x0) := Y − lim
t→0

f (x0 + tv)− f (x0)

t
exists and is equal to f ′(x0)(v).

If Y = R and f : X → R is differentiable at x0, f ′(x0) is an element of X∗. In particular, if
f ∈ X∗ then f is differentiable at every x0 and f ′ is constant, with f ′(x0)(y) = f (y) for every x0,
y∈ X . If f ∈FC1

b(X), f (x) = ϕ(l1(x), . . . , ln(x)) with lk ∈ X∗ for every k ∈ {1, . . . ,n}, ϕ ∈C1
b(Rn),

f is differentiable at every x0 and

f ′(x0)(y) =
n

∑
k=1

∂ϕ

∂ξk
((l1(x0), . . . , ln(x0))lk(y), x0, y ∈ X .

Let f be differentiable at x for every x in a neighbourhood of x0: if the function X → L(X ,Y ),
x 7→ f ′(x) is differentiable at x0, then the derivative is denoted by f ′′(x0), and it is an element of
L (X ,L(X ,Y )).

The higher order derivatives are defined recursively, in the same way.
If f : X → R is twice differentiable at x0, f ′′(x0) is an element of L (X ,X∗), which is canoni-

cally identified with the space of the continuous bilinear forms L (2)(X): indeed, if v ∈L (X ,X∗),
the function X2→ R, (x,y) 7→ v(x)(y), is linear both with respect to x and with respect to y and it
is continuous, so that it is a continuous bilinear form; conversely every bilinear continuous form
a : X2→ R gives rise to the element v ∈L (X ,X∗) defined by v(x)(y) = a(x,y). Moreover,

‖v‖L (X ,X∗) = sup
x 6=0,y 6=0

|v(x)(y)|
‖x‖X ‖y‖X

= sup
x 6=0,y 6=0

|a(x,y)|
‖x‖X ‖y‖X

= ‖a‖L (2)(X).

Similarly, if f : X → R is k times differentiable at x0, f (k)(x0) is identified with an element of the
space L (k)(X) of the continuous k-linear forms.

DEFINITION 3.1.2. Let k ∈ N. We denote by Ck
b(X) the set of bounded and k times contin-

uously differentiable functions f : X → R, with bounded norm supx∈X ‖ f ( j)(x)‖L ( j)(X) for every
j = 1, . . . ,k. It is normed by

‖ f‖Ck
b(X) =

k

∑
j=0

sup
x∈X
‖ f ( j)(x)‖L ( j)(X),

where we set f (0)(x) = f (x). Moreover we set

C∞
b (X) =

⋂
k∈N

Ck
b(X).

Let X ,Y be Banach spaces. A function F : X→Y is said Gâteaux differentiable in a point x∈X
if there exists a bounded linear mapping from X to Y , called Gâteaux differential and denoted by
DF(x) s.t. for every h ∈ X

lim
t→0

F(x+ th)−F(x)
t

= (DF(x))(h).
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Given a linear subspace Z of X , a function F : X → Y is said Gâteaux differentiable with
respect to Z or Z-Gâteaux differentiable in a point x ∈ X if there exists a bounded linear mapping
from Z to Y , called Z-Gâteaux differential and denoted by DZF(x) s.t. for every h ∈ Z

lim
t→0

F(x+ th)−F(x)
t

= (DZF(x))(h).

From now on, X is a separable Banach space endowed with a norm ‖ ·‖X and with a Gaussian
centered non degenerate measure γ , and H is its Cameron-Martin space.

DEFINITION 3.1.3. A function f : X → R is called H-differentiable at x ∈ X if there exists
l0 ∈ H∗ such that

| f (x+h)− f (x)− l0(h)|= o(|h|H) as h→ 0 in H.

If f is H-differentiable at x, the operator l0 in the definition is called H-derivative of f at x0,
and there exists a unique y ∈ H such that l0(h) = 〈h,y〈H for every h ∈ H. We set

∇H f (x0) := y.

LEMMA 3.1.4. If f is H-Gâteaux differentiable at x0, then it is H-differentiable at x0, with
H-derivative given by h 7→ f ′(x0)(h) for every h ∈ H. Moreover, we have

(3.1.1) ∇H f (x0) = RγDH(x0).

If f is just H-differentiable at x, the directional derivative ∂ f
∂v (x) exists for every v ∈ H, and it

is given by [∇H f (x),v]H . Fixed any orthonormal basis {hn : n ∈ N} of H, we set

∂i f (x) :=
∂ f
∂hi

(x), i ∈ N.

So, we have

(3.1.2) ∇H f (x) =
∞

∑
i=1

∂i f (x)hi,

where the series converges in H.

3.1.2. W 1,p(X).

LEMMA 3.1.5. For every 1 ≤ p < ∞, the operator ∇H : D(∇H) = FC∞
b (X)→ Lp(X ,γ,H) is

closable as an operator from Lp(X ,γ) to Lp(X ,γ,H).

DEFINITION 3.1.6. For every 1 ≤ p < ∞, the Sobolev space W 1,p(X ,γ) is the domain of the
closure of ∇H : FC∞

b (X)→ Lp(X ,γ,H) in Lp(X ,γ) (still denoted by ∇H). Therefore, an element
f ∈ Lp(X ,γ) belongs to W 1,p(X ,γ) iff there exists a sequence of functions fn ∈ FC∞

b (X) such that
fn→ f in Lp(X ,γ) and ∇H fn converges in Lp(X ,γ,H), and in this case, ∇H f = limn→∞ ∇H fn.

We will usually denote W 1,p(X ,γ) with W 1,p(X).

For more details on th prevous definition we refer to [14], Section 5.2.

REMARK 3.1.7. If a subspace E is dense in W 1,p(X), and we can define ∇H on E in a coherent
way, then we can give the above definition with E instead of FC∞

b (X), and we get an equivalent
definition.

For instance, it is immediate that to FC1
b is associable ∇H , that it is dense in W 1,p(X) (because

it contains FC∞
b (X)), so we can substitute it in Definition 3.1.6.
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We have an integration by part formula: for every f ∈W 1,p(X), g ∈C1
b(X) and h ∈ H we have

(3.1.3)
ˆ

X

∂ f
∂h

gdγ =−
ˆ

X

∂g
∂h

f dγ +

ˆ
X

f g ĥdγ.

In the sequel, we will often define the ∗-partial derivatives
∂ ∗g
∂h

:= ∂
∗
h g :=

∂g
∂h
−gĥ,

and we have that the integration by part formula can be written as

(3.1.4)
ˆ

X

∂ f
∂h

gdγ =−
ˆ

X

∂ ∗g
∂h

f dγ

which corresponds to the usual integration by parts formula.

The next Lemma is contained in ([14], Lem. 5.7.7).

LEMMA 3.1.8. If p> 1 and f ∈W 1,p, then |∇H f |H = 0 γ-almost everywhere in the set f−1(0).

The next proposition is contained in ([14], Prop. 5.4.5).

PROPOSITION 3.1.9. Let 1≤ p < ∞ and let f ∈W 1,p(X). Then, En f ∈W 1,p(X) for all n ∈N
and:

i) for every j ∈ N

(3.1.5) ∂ j(En f ) =
{

En(∂ j f ) if j ≤ n,
0 if j > n;

ii) ‖En f‖W 1,p(X ,γ) ≤ ‖ f‖W 1,p(X);
iii) lim

n→∞
En f = f in W 1,p(X).

We will use the following definition.

DEFINITION 3.1.10. A real function on Ω ⊆ X is said H-Lipschitz with constant c > 0 if for
every x ∈Ω, for every h ∈ H s.t. x+h ∈Ω,

| f (x+h)− f (x)| ≤ c|h|H .
Clearly a Lipschitz function on Ω is H-Lipschitz (because for some c1 > 0 we have ‖h‖X ≤ c1|h|H
for every h ∈ H by (2.2.5)).

We recall this result ([14], Thm. 5.11.2).

THEOREM 3.1.11. Let (X ,γ) be a Wiener space with Cameron Martin space H; if Ω ⊆ R is
open and F : Ω→ X is H-Lipschitz with constant c > 0, then almost everywhere it is Gâteaux
H-differentiable and H-differentiable; moreover γ-almost everywhere,

|DHF |H ≤ c.

REMARK 3.1.12. In [14], Thm. 5.11.2, the argument is done for all X , but it can easily
extended to the case Ω⊂ X open.

We recall the Lemma (see [14], Prop. 5.4.6 and Def. 5.2.4).

LEMMA 3.1.13. A measurable function F is in W 1,p(X), iff these conditions are satisfied:
i) for every h ∈ H, for γh⊥-a.e. y ∈ h⊥ there exists f locally absolutely continuous s.t.

Fy = f γh-almost everywhere ;
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ii) there exists a function ∇HF ∈ Lp(X ,H) s.t.

F(x+ th)−F(x)
t

−〈∇HF,h〉H
tends to 0 in measure γ for t→ 0.

REMARK 3.1.14. In [14] the expression ’absolutely continuous’ is equivalent to our ’locally
absolutely continuous’ (it follows [3] and [20] II.4.1.5).

By putting together Lemma 3.1.13 and Theorem 3.1.11, we have this Corollary.

COROLLARY 3.1.15. If F is H-Lipschitz with constant c > 0, then it is in W 1,p(X) with gra-
dient equal to its Gâteaux differentiable γ-almost everywhere, DHF = ∇HF ≤ c. If F is Lipschitz
on O with constant c, we have the same property.

Now, by Lemma 3.1.13 and Corollary 3.1.15, we have that Lipb(X) is dense in W 1,p(X) (be-
cause it contains FC∞

b (X)), so by Remark 3.1.7, we have this Corollary.

COROLLARY 3.1.16. The operator ∇H : Lipb(X)→ Lp(X ,H) defined by the Gâteaux deriv-
ative is closable, the domain of its closure is (isomorphic to) W 1,p(X), and the closure defines
∇H : W 1,p(X)→ Lp(X ,H).

The above Corollary yields an alternative definition of the Sobolev space W 1,p; following [26]
et al. we can use this idea to define W 1,p(O) on an open set O⊂ X , see Section 3.2.

3.1.3. The divergence operator. Let us recall the definition of adjoint operator. If X1, X2 are
real Hilbert spaces and T : D(T )⊂ X1→ X2 is a densely defined linear operator, an element v∈ X2
belongs to D(T ∗) iff the function D(T )→ R, f 7→ 〈T f ,v〉X2 has a linear continuous extension to
the whole X1, namely iff there exists g ∈ X1 such that

〈T f ,v〉X2 = 〈 f ,g〉X1 , f ∈ D(T ).

In this case g is unique (because D(T ) is dense in X1) and we set

g = T ∗v.

Now, let (X ,γ) be a Wiener space, as usual.
We consider X1 := L2(X), X2 := L2(X ,H) and T := ∇H . For f ∈W 1,2(X), v ∈ L2(X ,H) we

have
〈T f ,v〉L2(X ,H) =

ˆ
X
〈∇H f (x),v(x)〉H dγ(x)

so that v ∈ D(T ∗) if and only if there exists g ∈ L2(X ,γ) such that

(3.1.6)
ˆ

X
〈∇H f (x),v(x)〉H γ(dx) =

ˆ
X

f (x)g(x)dγ(x), f ∈W 1,2(X ,γ).

In analogy to the finite dimensional case, we can set

divγv :=−g

and we call divγv the divergence or Gaussian divergence of v. As FC1
b(X) is dense in W 1,2(X),

(3.1.6) is equivalent to ˆ
X
〈∇H f (x),v(x)〉H dγ(x) =

ˆ
X

f (x)g(x)dγ(x)

for every f ∈ FC1
b(X).
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Clearly, for every m ∈ N, the set Lip0,m(X ,H) is contained in the domain of divγ , and for
v ∈ Lip0,m(X ,H) we have the formula

(3.1.7) divγv(x) =
∞

∑
n=1

(
∂nvn(x)− vn(x)ĥn(x)

)
=

m

∑
n=1

(
∂nvn(x)− vn(x)ĥn(x)

)
(we recall that, if v ∈ Lip0,m(X ,H) then vi = 0 for i > m).

REMARK 3.1.17. Let g ∈ Lip0,m(O,H) (see Definition 1.2.35), hence g can be extended to
0 out of O, which implies that divγg|X\O = 0, so g,divγg ∈ Lp(X) for every p ∈ [1,+∞); if f ∈
Lipb(O), then it can be extended out of X (for example with McShane extension, see Appendix)
and by the formulas (3.1.4) and (3.1.7)ˆ

O
〈∇H f ,g〉H dγ =−

ˆ
O

divγg f dγ;

clearly, by the definition of W 1,p, the above equation is true for every f ∈W 1,p(O) for every
p ∈ [1,+∞).

3.2. Sobolev spaces on O⊂ X open

3.2.1. L log
1
2 L. We recall the theory of Orlicz spaces in infinite dimension (see [42] for the

particular case: it is done for the whole space X , but it remains true for an open subset O; see [1]
for the general case).

We introduce the function on R+

A 1
2
(t) =

ˆ t

0
(log(1+ s))

1
2 ds,

this function is called an N-function.
We say that A 1

2
satisfies the ∆2-condition near infinity: i.e. for some k > 0, t0 > 0, for all t ∈

(t0,+∞) we have A 1
2
(2t)≤ kA 1

2
(t)) as t→ 0. This is true because d

dt t(log(1+ t))
1
2 ∼ (log(1+ t))

1
2 .

For every p > 1 there exists C > 0 and R ∈ (0,1) s.t. A 1
2
(t)≤ R∨Ct p for every t > 0 because

there exists R (0 < R < 1) s.t. if t > R then (log(1+ t))
1
2 <Ct p−1.

Given O⊆ X open set, we introduce the space

L log
1
2 L(O) := L(logL)

1
2 (O) := { f measurable on O |A1/2(c| f |) ∈ L1(O) for some c > 0}=

= { f measurable on O |A1/2(| f |) ∈ L1(O)}=

= { f measurable on O | f (log | f |∨0)
1
2 ∈ L1(O)}

to see this equality, we can compare the derivative of | f (log | f |∨0)
1
2 with (log(1+s))

1
2 . L log

1
2 L(O)

is an Orlicz class, see [1]; it is a Banach space (by the ∆2-condition and γ finite, see ([1]) with the
norm

‖ f‖
L(logL)

1
2 (O,γ)

:= inf{α > 0|
ˆ

O
A1/2(| f |/α) dγ ≤ 1};

we introduce on R+ the function

Ψ(x) =
ˆ x

0
exp(t2−1)dt;
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we can do the same construction, and, given O⊆ X open set, the space

LΨ(O) := { f measurable on O |exp(c| f |2) ∈ L1(O) for some c > 0}
is a Banach space with the norm

‖ f‖LΨ(O) = inf{α > 0|
ˆ

O
Ψ(| f |/α) dγ ≤ 1}.

A1/2 and Ψ are complementary functions in the sense of [1] (see for instance [42]), and we
have that, if f ∈ L(logL)

1
2 (O), g ∈ LΨ(O) then we have this generalized Hölder inequality

‖ f g‖L1(O) ≤ 2‖ f‖
L(logL)

1
2 (O)
‖g‖LΨ(O);

we have that, if g ∈ X∗γ , hence there exists c > 0 s.t.ˆ
O

exp
(
c|g|2

)
dγ < ∞

by Corollary 2.1.19 (particular case of the Fernique theorem), so for all h ∈ H, f ∈ L(logL)
1
2 (O),

the integral
´

O f ĥ dγ is well defined and finite.

We want to prove
Lp(O)⊆ L log

1
2 L(O)⊆ L1(O);

the first step is to prove for some c > 0 that
∥∥ĥ
∥∥

LΨ(O)
≤ c|h|H for every h ∈ H.

If h ∈ H, then we can define the measure γ ◦ ĥ−1; by [14], Lem. 2.2.8, we have that γ ◦ ĥ−1 is
a centered Gaussian measure with variance |h|2H =

∥∥ĥ
∥∥2

L2(X)
.

We want to estimate∥∥ĥ
∥∥

LΨ(O)
≤
∥∥ĥ
∥∥

LΨ(X)
= inf{α > 0|

ˆ
X

Ψ

(
ĥ
α

)
dγ ≤ 1};

now, for α > 0,

aα :=
ˆ

X
Ψ

(
|ĥ|
α

)
dγ =

ˆ
X

ˆ |ĥ(x)|/α

0
exp(t2−1) dt dγ(x);

we have
exp(s2−1)≤ 1

if |s| ≤ 1, and
exp(s2−1)≤ sexps2

if s > 1, therefore for every s > 0

exp(s2−1)≤ 1+ sexps2,

hence
ˆ t

0
exp(s2−1) ds≤

ˆ t

0
(1+ sexps2) ds = t +

exp t2−1
2

and so

aα =

ˆ
X

ˆ |ĥ(x)|/α

0
exp(t2−1) dtdγ(x)≤
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≤ α
−1
ˆ

X
|ĥ(x)| dγ(x)+

1
2

ˆ
X

exp(|ĥ(x)|2/α
2) dγ(x)− 1

2
≤

(because γ ◦ ĥ−1 is a centered Gaussian measure with variance |h|2H and by Hölder inequality)

≤ α
−1|ĥ|L2(X)+

1
2|h|H

√
2π

ˆ +∞

−∞

exp
(
− t2

2|h|2H

)
exp

t2

α2 dt− 1
2
=

= α
−1|h|H +

1
2|h|H

√
2π

ˆ +∞

−∞

exp(t2(α−2− 1
2|h|2H

)) dt− 1
2

so for every α > 2|h|H

ˆ
X

Ψ

(
|ĥ|
α

)
dγ ≤ 1

2
+
|h|H
√

4π

2|h|H
√

2π
− 1

2
≤
√

2
2

< 1;

hence ∥∥ĥ
∥∥

LΨ(O)
≤ 2|h|H .

In particular, we have that if f ∈ L log
1
2 L(O) thenˆ

f ĥ dγ ≤ 2‖ f‖
L log

1
2 L(O)

∥∥ĥ
∥∥

LΨ(O)
≤ 4‖ f‖

L log
1
2 L(O)

|h|H .

We have that L log
1
2 L(O) is continuously embedded in L1(O), becauseˆ

O
| f | dγ ≤ 2‖χO‖LΨ(O) ‖ f‖

L log
1
2 L(O)

.

We notice that, for all p > 1, there exists C > 0 and R (0 < R < 1) s.t. A1/2(t) ≤ R+Ct p for
every t > 0, hence, for ‖ f‖p

Lp(O) <C−1(1−R) we have
ˆ

O
A1/2(| f (x)|) dγ(x)≤ R+C

ˆ
O
| f |p dγ ≤ 1,

i.e. for every f ∈ Lp

ˆ
O

A1/2

 (1−R)
1
p | f |

‖ f‖Lp(O)C
1
p

 dγ ≤ 1

so

‖ f‖
L log

1
2 L(O)

≤ ‖ f‖Lp(O)

(
C

1−R

)
1
p

and Lp(O) is continuously embedded in L log
1
2 L(O).

Hence we have

Lp(O)⊆ L log
1
2 L(O)⊆ L1(O)

and the embeddings are continuous.
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3.2.2. Definition of W 1,p(O) . We will always assume that O⊆ X is an open set; we want to
define the Sobolev space W 1,p(O) for p ∈ [1,+∞]. There are different possible definitions; we use
the definition as the closure of Lipschitz functions in norm W 1,p.

We recall that Lipschitz functions are Gâteaux differentiable and H- Gâteaux differentiable
γ-almost everywhere by Theorem 3.1.11.

DEFINITION 3.2.1. If O⊆ X is open, we define the operator ∇H from Lip(O) to Lp(O,H).

The next Lemma is a generalization of [26], Lem. 2.2.

LEMMA 3.2.2. For every p ∈ [1,+∞), the operator ∇H is closable as operator Lp(O)→
Lp(O,H).

PROOF. We have to prove that, if there are two sequences fn,gn in Lip(O) s.t. fn → f and
gn→ f in Lp(O) while ∇H fn→ ψ1 and ∇Hgn→ ψ2 in Lp(O,H) then ψ1 ≡ ψ2.

By linearity, the above is equivalent to prove that given a sequence fn in Lip(O) s.t. fn→ 0 in
Lp(O) and ∇H fn→ ψ1 in Lp(O,H) then ψ1 ≡ 0.

It is not restrictive to suppose that p = 1. We consider h ∈ H,|h|H = 1, we define for every
y ∈ h⊥ the open set Oy ⊆ R where Oy := {t ∈ R|y+ th ∈ O} and the functions fn,y ∈ Lip(Oy)

where fn,y(t) = fn(y+ th); clearly fn,y→ 0 in L1(Oy,γ
1) for n→+∞ for γh⊥-a.e. y ∈ h⊥; we also

have that fn,y is absolutely continuous and

f ′n,y(t)≡ 〈∇H fn(y+ th),h〉H
(for γh⊥-a.e. y ∈ h⊥). Now, 〈∇H fn,h〉H converges to 〈ψ,h〉H in L1(O), hence, for γh⊥-a.e. y ∈ h⊥

we have that f ′n,y converges in L1(Oy,γ
1). We consider such y: in every open bounded interval

(a,b) ⊆ Oy, we have that fn,y is a sequence which converges in W 1,1((a,b),γ1), and hence also
in W 1,1((a,b)) with the Lebesgue measure (because (a,b) is bounded); so fn,y converges to 0 in
W 1,1(a,b) and 〈ψ(y+ ·h),h〉H ≡ 0; so 〈ψ(y+ ·h),h〉H ≡ 0 on Oy (that is open) and this for γh⊥-a.e.
y ∈ h⊥, hence 〈ψ(·),h〉H = 0 γ-almost everywhere on O; this for every h ∈ H,|h|H = 1, so ψ ≡ 0
and we conclude. �

By the above Lemma, we can introduce this Definition.

DEFINITION 3.2.3. (Sobolev Spaces) For every p ∈ [1,+∞), W 1,p(O) will be the domain of
the closure of ∇H : Lip(O)→ Lp(O,H), this closure will always be denoted by ∇H .

By Corollary 3.1.16, for O = X the above definition is coherent with the Definition 3.1.6.

REMARK 3.2.4. i) The Sobolev space W 1,p(O) can be defined in other ways for O = X
and p = 1, other definition are in [14]). An equivalent definition of W 1,2(O) with O
convex is in the next subsection 3.2.3.

ii) If f is Lipschitz in O, it can be extended to a Lipschitz function f̄ in X , hence f̄ ∈
W 1,p(X); we know that FC∞

b (X) is dense in W 1,p(X), so f̄ can be approximated by
functions in FC∞

b (X); hence, by definition, the restrictions to O of functions of FC∞
b (X)

are dense in W 1,p(O).

DEFINITION 3.2.5. For p,q ∈ [1,+∞), q > p , we define W 1,p(O)∩Lq(O) or
(
W 1,p∩Lq

)
(O)

as a space given by the norm ‖·‖W 1,p + ‖·‖Lq ; a sequence converges in this space if it converges
both in W 1,p(O) and in Lq(O).
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REMARK 3.2.6. We have that the restrictions to O of FC∞
b are also dense in the space

W 1,2(O): it suffices to consider the extensions of Lipschitz functions, and to approximate those
with elements of FC∞

b .

REMARK 3.2.7. We recall that a Lipschitz function f on a subset of a metric space can always
be extended to a function Lipschitz in all the space, with the same Lipschitz constant l, for example
with the McShane extension (see Appendix).

REMARK 3.2.8. By the definition, it is easy to deduce that some versions of the chain rule and
of the Leibniz rule are true for the H-gradient ∇H : if ϕ ∈ Lipb(O) (Lipschitz and bounded) and
f ∈W 1,p(O) for p≥ 1, then ϕ f ∈W 1,p(O), and

∇H(ϕ f ) = ∇Hϕ f +ϕ∇H f ;

if ϕ ∈ Lip(R) and f ∈W 1,p(O,γ) for p≥ 1, then ϕ ◦ f ∈W 1,p(O), and

∇H(ϕ ◦ f ) = (ϕ ′ ◦ f )∇H f .

In particular, if f+ is the positive part of a function f ∈W 1,p(O) (i.e. f+ = f ∨ 0), we have
that f+ ∈W 1,p(O) and, if A = {x ∈ O| f (x) > 0} then ∇H f+|A ≡ ∇H f|A and ∇H f+|X\A ≡ 0; in fact
f+ := g◦ f where g is the positive part of the identity on R, g is Lipschitz, g′|R+ ≡ 0 and g′|R− ≡ 1,
so we can conclude by the chain rule.

REMARK 3.2.9. We have this result ([42], Prop. 3.2).

LEMMA 3.2.10. The space W 1,1(X) is continuously embedded in L log
1
2 L(X).

We recall that C1
b(X) is the set of all the Fréchet differentiable functions bounded s.t. f ′ is

bounded and continuous as a function X → H.

DEFINITION 3.2.11. C1
0(O) will be the set of the restrictions to O of all the functions f ∈

C1
b(X) s.t. f = 0 out of O.

We have that each function in C1
b(X) is Lipschitz. We could consider C1

0(O) as a subspace of
W 1,2(X) or of W 1,2(O) (with the same topology).

DEFINITION 3.2.12. In this setting, for all p ≥ 1, the set W 1,p
0 (O) will be the closure in

W 1,p(O) of C1
0(O) (equivalently, we can consider it as the closure in W 1,p(O) or as the completion

in the topology W 1,p).

3.2.3. W 1,p
∗ (O) for O open and convex. We recall the concept of locally absolute continuous

function (see Appendix).
We will consider O⊆ X open set.
We recall that for every h∈ Rγ(X∗), |h|H = 1 we can decompose (X ,γ) as X =R×X⊥h (where

X⊥h is the closure of the orthogonal of h) and γ = γ1⊗ γh⊥ (γ1 is the standard Gaussian measure on
R and γh⊥ is a nondegenerate centered Gaussian measure on X⊥h ).

We fix a basis {h1, . . .} of H s.t. , hi ∈ Rγ(X∗) for all i ∈ N.
Fixed h ∈ Rγ(X∗), |h|H = 1 and y ∈ X⊥h we recall the definition of Oy = {t ∈ R|y+ th ∈ O},

interval in R, and the function fy on Oy defined as fy := f (y+ th).
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DEFINITION 3.2.13. For every h∈Rγ(X∗), we define DO
h as the set of γ-class of γ−measurable

functions s.t. for γh⊥-almost every y ∈ X⊥h , the function fy on Oy has γ1-representative f̃y (i.e.
fy(t) = f̃y(t) for γ1-a.e. t) that is locally absolutely continuous; hence, for such y we define

∂h f (y+ th) := f ′y(t),

that is well defined for γh⊥-almost every y ∈ X⊥h for γ1-almost every t ∈ Oy.

It is clear that, if f ∈ DO
h then f has a representative f̃ s.t. for γh⊥-almost every y ∈ X⊥h the

function f̃y is locally absolutely continuous.

DEFINITION 3.2.14. Given p ∈ [1,+∞), we say that f ∈W 1,p
∗ (O) if f ∈ Lp(O) and f ∈ DO

h
for all h ∈ Rγ(X∗), and there exists ∇H f ∈ Lp(O,H) s.t. ∂h f = 〈∇H f ,h〉H .

LEMMA 3.2.15. W 1,p
∗ (O) is always a Banach space with the norm given by

‖·‖W 1,p
∗ (O)

= ‖·‖Lp(O)+‖∇H ·‖Lp(O,H) .

PROOF. The only thing to prove is that, if fn is a Cauchy sequence in W 1,p
∗ (O), then there

exists f ∈W 1,p
∗ (O) s.t. fn→ f in Lp(O) and ‖∇H( fn− f )‖Lp(O,H)→ 0.

We already know that Lp(O) and Lp(O,H) are complete, hence fn → f and ∇H fn → ψ for
some f ∈ Lp(O) and ψ ∈ Lp(O,H), we want to prove that f ∈W 1,p(O) and ψ = ∇H f .

For every h ∈ H, for every y ∈ X⊥h we define

Oy := {t ∈ R|y+ th ∈ O}
and fy,n, f functions on Oy defined as

fy,n(t) := fn(y+ th), fy(t) := f (y+ th);

clearly for γh⊥-almost every y ∈ X⊥h , we have that the convergences fy,n −−−−→
n→+∞

fy and ∂h fy −−−−→
n→+∞

(〈ψ,h〉H)y in Lp(Oy,γ
1).

For every interval (a,b)⊆ R , for such y we have that fn,y converges to fy in W 1,p((a,b),L 1)
(therefore fy has γ1-representative that is locally absolutely continuous), and ∂h f = 〈ψ,h〉H γ-
almost everywhere; so we can conclude. �

REMARK 3.2.16. i) The norm ‖·‖W 1,p
∗ (O)

is the same of ‖·‖W 1,p(O) for every p∈ [1,+∞).

Lipschitz functions are clearly in W 1,p
∗ (O), so W 1,p(O)⊆W 1,p

∗ (O).
ii) Obviously if p≤ q then W 1,q

∗ (O)⊆W 1,p
∗ (O).

iii) The definition 3.2.14 is inspired by the definition of W 1,2(X) in [44] (that is linked to
that of weak Sobolev space in [35]); in [44] the expression ’absolutely continuous’ is
equivalent to our ’locally absolutely continuous’ (they follow [3] and [20] II.4.1.5).

The next definition is taken from ([14], Def. 5.2.3).

DEFINITION 3.2.17. A measurable function f : X → R is said stochastically Gâteaux differ-
entiable if there exists a measurable function DH f : X → H (called stochastic derivative) s.t. for
every h ∈ H, f (·+th)− f (·)

t converges to 〈∇H f (·),h〉H in measure γ for t→ 0.

LEMMA 3.2.18. Given p ∈ [1,+∞), if f ∈W 1,p
∗ (X), then f is stochastically Gâteaux differen-

tiable and DH f = ∇H f .
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PROOF. It is not restrictive to suppose p = 1. Let h ∈ H, |h|H = 1, πh⊥ the projection on h⊥

(given by I− ĥh).
For every h ∈ H, t ∈ [0,+∞), let fh,t := f (·+th)− f (·)

t ; we have to prove that fh,t converges to
∂h f in measure γ for t→ 0.

Let ε > 0; let
At,ε := {x ∈ X || fh,t(x)−∂h f (x)|> ε},

we want to prove that χAε
converges to 0 in L1(X ,γ).

For every h ∈ H, f has a representative f̃ s.t. for γh⊥-almost every y ∈ X⊥h the function f̃y is
locally absolutely continuous and f̃y

′
(t) = ∂h f (y+ th); we have that ∂h f ∈ L1(X ,γ), so (∂h f )y ∈

L1(R,γ1) for γh⊥-almost every y∈X⊥h , for such y we have that (∂h f )y≡ f̃y
′ is L1

loc(R,L
1) (locally

L1 with respect to the Lebesgue measure) hence γ1-almost every point of R is a Lebesgue point
for f̃y

′; if t0 is a Lebesgue point, we have that

f̃y(t0 + t)− f̃y(t0)
t

− f̃y
′
(·) =

 t

t0
f̃y
′
(s) ds− f̃y

′
(t)−−→

t→t0
0

hence we have that fh,t converges to ∂h f almost everywhere in measure γ1 for t→ 0; therefore χAε

converges to 0 γ-almost everywhere.
We can apply the dominated convergence theorem, so χAε

converges to 0 in L1 and we con-
clude. �

REMARK 3.2.19. The problem to find an identity between W 1,p(O) and W 1,p
∗ (O) can be seen

as an extension to the Wiener space case of the Meyers-Serrin theorem (see [55]).

We recall this result ([14], Prop. 5.4.6 ,iii)).

PROPOSITION 3.2.20. W 1,p
∗ (X) =W 1,p(X).

REMARK 3.2.21. In [14], Prop. 5.4.6, it is used a space Dp,1(X) defined in Def. 5.2.4: the
elements of Dp,1(X) are functions in W 1,p

∗ (X) which are Gâteaux differentiable with DH f = ∇H f ;
hence, by Lemma 3.2.18 W 1,p

∗ (X) coincides with Dp,1(X).

The next proposition is an immediate consequence of the results in [44].

PROPOSITION 3.2.22. If O ⊆ X is open and convex, then the set of the restrictions of the
functions in W 1,2(X) =W 1,2

∗ (X) is dense in W 1,2
∗ (O).

In Proposition 3.2.23, we will generalize the above result, by adapting the proof in [44].
For p,q ∈ [1,+∞), p ≤ q, we can consider W 1,p

∗ (O)∩Lq(O) as a linear normed space with
norm

‖·‖W 1,p
∗ (O)∩Lq(O)

:= ‖·‖W 1,p
∗ (O)

+‖·‖Lp(O) .

Clearly it is a Banach space.
We will prove this generalization of Proposition 3.2.20.

PROPOSITION 3.2.23. For p,q ∈ [1,+∞), p≤ q, if O⊆ X is open and convex, then the set of
the restrictions of the functions in W 1,p(X)∩Lq(X) is dense in W 1,p

∗ (O)∩LqO).

Section 3.3 will be dedicated to the proof of the above Proposition, modelled on that in [44].

By the above Proposition, we have in particular that the set of restrictions of the functions in
W 1,p(X) is dense in W 1,p

∗ (O).
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Now, we recall that FC∞
b (X), FC1

b(X) are dense subspace of W 1,p(X) (see Definition 3.1.6,
and Remark 3.2.16); hence the spaces

FC∞
b (O) := { f : O→ R| f = g|O where g ∈FC∞

b (X)},

FC1
b(O) := { f : O→ R| f = g|O where g ∈FC1

b(X)},
are dense subspaces of W 1,p(O).

We have also that Lipb(O) is a dense subspace of W 1,p(O) by Corollary 3.1.15.
Now, bounded Lipschitz function in O can be extended to bounded Lipschitz functions of X ;

hence we have this Corollary of Proposition 3.2.23.

COROLLARY 3.2.24. For p,q∈ [1,+∞), p≤ q, if O is a open convex set, then Lipb(O),FC∞
b (O),

FC1
b(O) are dense subspaces of W 1,p

∗ (O) and of W 1,p
∗ (O)∩Lq(O); moreover W 1,p

∗ (O) =W 1,p(O).

3.3. Proof of Proposition 3.2.26

In this section we adapt the argument of [44] to prove Proposition 3.2.23.
In Subsection 3.3.1 we recall some concepts, and we define, given a function f and a finite

subspace F ⊂ H, a function fε which is in some sense, an approximation of f by convolution in
the directions of F ; we give also some properties of fε . In Subsection 3.3.2 the proof is given, by
using these properties.

3.3.1. Preliminaries. In the sequel, as usually,(X ,γ) is a Wiener space, H is the Cameron-
Martin space, {hi}i∈N is an orthonormal basis, and, for every n ∈ N, Fn :=< h1, . . . ,hn >. For each
Fn, we will define πn as πn(x) := ∑

n
i=1 ĥi(x)hi and Pn := I−πn; for F ⊆ H, F finite dimensional,

we consider F⊥ as in Section 2.3. B(a,r) will be the ball of center a and radius r in the metric of
X , B̄(a,r) is the closure of B(a,r), B(s) is the closed ball with center 0 and radius s; BH(a,r) is the
set of all the points x ∈ X s.t. x−a ∈H and |x−a|H < r, BH(s) is the closed ball in H (as a metric
space) with center 0 and radius s. If F is a subspace of H, BF(a,r) will be the set of all the points
x ∈ X s.t. x−a ∈ F and |x−a|H < r, and BF(r) := BF(0,r).

If A is a set in X , we will write co(A) to mean its convex hull, i.e. the smaller convex set
contained in X which contains A.

We recall that there is c > 0 s.t., for every h ∈H, ‖h‖X ≤ c|h|H by (2.2.5). We recall also that,
if f is H-Lipschitz on X , then it is W 1,p(X) for every p ∈ [1,+∞] by Corollary 3.1.15. For every
F ⊆ H, as usual we define γF measure on F and γF⊥ measure on F⊥ as in Section 2.4; for h ∈ H
we will write γh⊥ to mean γ<F>⊥ . Let O be an open subset of X , and f a measurable function on
O: Oy and fy are defined as usually.

DEFINITION 3.3.1. If O ⊆ X we will say that O is moderate if, for every h ∈ H, for γh⊥-a.e.
y the boundary in R of Oy has null Lebesgue measure (in particular, if O is convex it is clearly
moderate).

Let F be a finite dimensional subspace of Rγ(X∗)⊆H of dimension N; with the inner product
of H, F has an orthonormal basis and it is isomorphic to RN , so on F we can define the N-
dimensional Lebesgue measure L N ; let Ψ∈C∞(F) be a nonnegative function such that supp Ψ⊂
BF(1) and ‖Ψ‖L1(F,L N) = 1. For ε > 0 we define on F the function Ψε(y) := Ψ(xε−1).

Let O be an open convex (hence moderate) subset of X . We consider an element f ∈ Lp(O)
as an element of Lp(X) setting f ≡ 0 on X \O. Moreover, assume that f ≡ 0 on X \A+BF(R),
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where A⊂ F⊥ is a compact set. Then,

∞ >

ˆ
A

ˆ
BF (R)

| f (x+ y)|pdγF(y) dγF⊥(x) =

= (2π)−
N
2

ˆ
A

ˆ
BF (R)

| f (x+ y)|p exp
(
−1

2
|y|2
)

dy dγF⊥(x)≥

≥ (2π)−
N
2

ˆ
A

ˆ
BF (R)

| f (x+ y)|p exp
(
−1

2
R2
)

dy dγF⊥(x),

and so y 7→ f (x+ y) ∈ Lp
loc(F,L

N) for γF⊥-a.e. x ∈ F⊥. Now for such x, for y ∈ F , we can define

fε(x) :=
ˆ

F
f (x+ y− z)Ψε(z)dz =

ˆ
F

f (x+ z)Ψε(x+ y− z)dz.(3.3.1)

In other words, for γF⊥-a.e. x ∈ F⊥ the function fε,x on F is the convolution of fx with Ψε , where
it is defined (by identifying F with RN).

For almost γF⊥-a.e. x ∈ F⊥ we can introduce the section fε,x : F → R, h 7→ fε(x+h).
For γF⊥-a.e. x ∈ F⊥ we have, for some C > 0 depending only on R,

‖ fε,x‖p
Lp(F) ≤C‖ fx‖p

Lp(F),(3.3.2)

hence fε ∈ Lp(X).
In fact

‖ fε,x‖p
Lp(F) =

ˆ
F

∣∣∣∣ˆ
F

f (x+ y− y′)Ψε(y′)dy′
∣∣∣∣p γF(dy)≤

(by the Jensen inequality, by remarking that ψL 1 is a probability)

≤
ˆ

F

ˆ
F
| f (x+ y− y′)|pΨε(y′)dy′γF(dy) =

(with a change of variables)

=

ˆ
F

Ψε(y′)
ˆ

BF (R)
| f (x+ y′′)|p exp

(
−1

2
|y′+ y′′|2 + 1

2
|y′′|2

)
γF(dy′′)dy′ ≤

(by y′′ ∈ BF(R))

≤ exp
(

R2

2

)ˆ
F

Ψε(y′)‖ fx‖p
Lp(F)dy′ = exp

(
R2

2

)
| fx‖p

Lp(F).

For every x ∈ F⊥ s.t. fx is L1
loc(F,γF⊥) (so, for γF⊥ almost every x) we have that the function

fε,x is a continuous function (by the properties of convolution in finite dimension).
Moreover for such x, for any h ∈ F \{0}, we have, by differentiating under the integral sign,

that fε,x ∈C1(R) for γ⊥F -a.e. x ∈ F⊥, and for such a x, for every y,h ∈ F ,

∂h fε(x+ y) =
ˆ

F
f (x+ z)∂hΨε(x+ y− z)dz, .(3.3.3)

Let f ∈W 1,p
∗ (X); then for γ⊥F -a.e. x ∈ F⊥, we have fx ∈W 1,p(F), so fx ∈W 1,p

loc in the Lebesgue
sense; in this case, by the properties of convolutions, for every y,h ∈ F we have

∂h fε(x+ y) =
ˆ

F
∂h f (x+ y− z)Ψε(z)dz,(3.3.4)
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(in particular fε ∈ DO
h )): hence ∂h fε,x is the convolution of ∂h fx with Ψ, and arguing as above we

obtain that for γ-a.e. x ∈ X , ∂h fε(x+ ·) ∈ Lp(X).
We have this Lemma.

LEMMA 3.3.2. Let f ∈ Lp(X) and let fε be defined as above, for any ε > 0.
i) fε → f in Lp(X) as ε → 0.

ii) Let U ⊆ X be an open; let f ∈W 1,p
∗ (U) and let U ′ ⊂ X be an open set such that U ′+

BF(r)⊂U for some r > 0. Then, ∂h fε = (∂h f )ε in U ′ and it converges to ∂h f in Lp(U ′)
as ε → 0 for any h ∈ F \{0}.

PROOF. i) At first, we notice that fε,x → fx in Lp(F) by the properties of convolutions: in
addition ‖ fε,x‖p

Lp(F) ≤ ‖ fε,x‖p
Lp(F)), and we get

‖ fε − f‖p
Lp(X) =

ˆ
A
‖ fε,x− fx‖p

Lp(F)γF⊥(dx)→ 0,

as ε → 0 and we can conclude by dominated convergence theorem.

ii) As we seen for 3.3.4, ∂h fε(z) = (∂h f )ε(z) if z+BF(ε)⊂U , and so ∂h fε = (∂h f )ε in U ′ for
any ε < r. Therefore, the same argument of i) implies that (∂h f )ε → ∂h f in Lp(U ′). �

3.3.2. Proof of Proposition 3.2.23. Let p≥ 1. We define:

W1(O) :=W 1,p
∗ (O)∩L∞(O).

W2(O) as the set of elements f ∈W1(O) s.t. there exist some F ∈ {Fn}n∈N, a compact convex
V ⊂ F⊥, a ∈ F and s > 0 s.t. V +B(a,s)⊆ O and f|O\(V+F) = 0 γ-a.e..

W3(O) as the set of elements f ∈W1(O) s.t. there exist some F ∈ {Fn}n∈N, a compact convex
V ⊂ F⊥, a ∈ F , s > 0 and R > 0 s.t. V +B(a,s)⊆ O and f|O\(V+BF (R))| = 0 γ-a.e..

Proof of Proposition 3.2.23.
The proof will be in four steps.

Step 1.
We prove that if f ∈W1(O) then it can be approximated in sense W 1,p

∗ by functions in W2(O)
which are uniformly bounded in L∞(O) by ‖ f‖L∞(O).

Let f ∈W1(O); hence, for any ε > 0 there exists δ ∈ (0,ε) such thatˆ
A
|∇H f |pdγ ≤ ε, for every A ∈B(X) s.t. γ(A)≤ δ ;

in fact, if by contradiction such a δ does not exist, then there is a sequence of Borel sets An s.t.
γ(An)→ 0 but

´
An
|∇H f |pdγ does not converge to 0, but this contradicts the absolute continuity of

the integral.
Fix ε and δ as above. We define the following sets.
• V1 := B(a0,s) such that B(a0,3s)⊂ O.
• V2⊂V1+F be a compact set such that γ(V2)≥ 1−δ , for some F ∈{Fn}n∈N; we prove the

existence of V2. We define F∞ :=
⋃+∞

n=1 Fn; we know that it is dense in X , so V1 +F∞ = X
by definition of V1. Now, γ(V1 +F∞) = supn∈N γ(Fn), so there exists F := Fn (we will
write PF :=Pn and πF := πn) such that γ(V1+F)≥ 1−δ/2. We can conclude by recalling
that V1 +F is an open set, and so γ is a Radon measure on V1 +F (by Proposition 1.2.6).
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• V3 := PF(V2). We stress that V3 = PF(V2)⊂ PF(V1+F) = PF(V1). V3 is clearly a compact
subset of F⊥.
• V4 := coV3 is a convex compact set in X (the closure of a convex hull of a compact in a

Banach space is compact, see e.g. [[14], Prop. A.1.6]), and therefore in F⊥.
• V :=V4 +(F⊥∩BH(s)), and a := πF(a0). Clearly, also V is compact in F⊥ since BH(s)

is compact in X (because the inclusion of H in X is compact).
We have V2⊂V4+F . Indeed, for any v∈V2 we obtain v=PFv+πFv∈V3+F ⊂V4+F . Moreover,
V +B(a,s)⊂ O. To prove this inclusion, we note that

V +B(a,s)⊂V4 +BH(s)+B(a,s)⊂V4 +B(s)+B(a,s)⊂V4 +B(a,2s).(3.3.5)

Hence, it remains to prove that V4 is contained in a suitable set. To this aim, from the above
definitions we have

V4 =coV3 = coPF(V2)⊂ coPF(V1 +F) = coPFV1 ⊂ coPFB(a0,s)⊂ BE(a0,s).(3.3.6)

The last inclusion follows from the fact that PFB(a0,s) ⊂ B(PFa0,s), and that coPFB(a0,s) is the
smallest convex set which contains PFB(a0,s). Indeed, putting together (3.3.5) and (3.3.6) we get

V4 +B(a,s)⊂ B(PFa0,s)+B(a,s)⊂ B(a0,3s).

The last inclusion is quite easy to prove. Let x ∈ B(PFa0,s) and y ∈ B(a,s). Then,

‖x+ y−a0‖= ‖x+ y−a−PFa0‖ ≤ ‖x−PFa0‖+‖y−a‖< 3s,

and since B(a0,3s)⊂ O the proof is complete.
Now, we set

ϕ(z) := (1− s−1dist(z,V4 +F))+

where dist is the distance in the space X . Clearly ϕ is 2s−1-Lipschitz, hence ϕ ∈W 1,p(O) and
|∇Hϕ|H ≤ 2s−1 γ-a.e.. Moreover, ϕ(z) ∈ [0,1] everywhere, ϕ(z) = 1 if z ∈ V4 +F , ϕ ≡ 0 on
O\ (V +F) and

‖∇Hϕ‖Lp(O) = ‖∇Hϕ‖Lp(O\(V4+)F) ≤ 2s−1
γ(O\V2)

1/p ≤ 2ε1/p

s
.

We prove ϕ f ∈W1(O). We get

‖ f −ϕ f‖Lp(O) ≤M‖1−ϕ‖Lp(O) ≤Mγ(O\ (V4 +F))1/p ≤Mγ(X \V2)
1/p ≤Mδ

1/p,

where M := ‖ f‖∞. As far as the Lp-norm of the gradient has concerned, we obtain

‖∇H f −∇H(ϕ f )‖Lp(O) ≤‖∇H f‖Lp(O\V4+F)+M‖∇Hϕ‖L2(O\V4+F)

≤ε +
2Mε1/p

s
≤ ε

1/p(ε1/p′+2Ms−1).

Obviously ‖ϕ f‖L∞(O) ≤M.Therefore, W2(O) is dense in W 1(O).

Step 2.
We prove that if g ∈W1(O) then it can be approximated in W 1,p

∗ by functions in W3(O) which
are uniformly bounded in L∞(O) by ‖g‖L∞(O).

By the first step, we know that a function in W1(O) can be approximated by functions in W2(O)
which are uniformly bounded in L∞(O) with its L∞ constant; we prove that a function f ∈W3(O)
can be approximated by functions in W2(O) which are uniformly bounded in L∞(O). To this aim,
we consider f ∈W2(O), F as in the definition of W2(O) and for any R > 0 we take a smooth
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function ΦR : [0,+∞)−→ [0,1] such that ΦR = 1 on [0,R/3), ΦR = 0 on [R,+∞) and |Φ′R| ≤ 2/R.
We set ϕR(z) := ΦR(|πFz|H). Clearly, f ϕR ∈W3(O) and

‖ f −ϕR f‖Lp(O) ≤MγF(BF(R/3)c)1/p→ 0,

‖∇H( f −ϕR f )‖Lp(O) ≤ ‖∇H f‖Lp(O)γF(BF(R/3)c)1/p +2R−1M→ 0,

as R→+∞, where M := ‖ f‖∞. It is also clear that ‖ϕ f‖L∞(O) ≤M.

Step 3.
We prove that if f ∈W1(O) then it can be approximated in W 1,p

∗ by functions in W 1,p(X)|O
which are uniformly bounded in L∞(O) by | f |L∞(O).

By the second step, it is not restrictive to suppose that f ∈W3(O). Let V,F,a,s and R be as in
the definition of W3(O), and let R be large enough such that

V +B(a,s)⊂ F⊥+B(a,s)⊂ F⊥+B(R).

Let α ∈ (0,1/2] and let us consider the homeomorphism Tα on X defined by

Tα(z) := PF(z)+(1−α)πF(z)+αa = z+α(a−πF(z)),

for any z ∈ X . If z = x+g, with g ∈ F , then Tα(z) = z+α(a−πF(z)) = x+g+α(a−πF(z)) =
a+ g′, where g′ = g+α(a− πF(z)) ∈ F . Hence, x+F is invariant under Tα , for any x ∈ F⊥.
Moreover, it is easy to see that Tα |x+F is the homothety centered in PF(x)+ a with ratio 1−α .
Therefore, if we consider z ∈V +B(s/2), we get

T−1
α (O)∩ (z+F) =T−1

α (O∩ (z+F))

=T−1
α ((O∩ (z+F))

⊃O∩ (z+F) = O∩ (z+F).

Now, we define

Yα := T−1
α ((V +B(s/2)+F)∩O),

for any α ∈ (0,1/2].
Each Yα is convex, Yβ ⊂ Yα if β < α and we can define fα := f ◦Tα , on Yα , since if z ∈ Yα

then Tα(z) ∈ O.
Obviously fα ∈ L∞(Yα) and ‖ fα‖L∞(Yα )

≤ ‖ f‖L∞(O). By Lemma 3.3.3, we have that fα ∈
W 1,p
∗ (Yα/2) and it converges to f|Yα/2

in that space if α goes to 0.
Now we set O1 := (V +BF(R′))∩O and O2 := (V +B(s/4)+BF(R′+1))∩T−1

α/4(O
◦). Clearly,

O1 is a compact set, O2 is an open set and we have the following chain of inclusions:

Y ⊂ O1 ⊂ O2 ⊂ O2 ⊂ Y ◦
α/2 = Yα/2.

We introduce the function

ρ(z) :=
dist(z,Oc

2)

dist(z,O1)+dist(z,Oc
2)

where dist is the distance in X . 0≤ ρ ≤ 1, ρ ≡ 1 on O1 and ρ ≡ 0 on Oc
2.

We define

g(z) :=

{
fα(z)ρ(z), z ∈ O2,

0 z /∈ O2.
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ρ is bounded and Lipschitz continuous, hence g ∈W 1,p(X). Moreover, g≡ fα on Y and g≡ 0 on
O\Y . Indeed, fα ≡ 0 on (Yα ∩O)\Y and ρ ≡ 0 on (O\Yα)\Y ⊂ (O\Yα/2)⊂Oc

2. Then, we have

‖g− f‖W 1,p
∗ (O)

= ‖ fα − f‖W 1,p
∗ (Y ) ≤ ε.(3.3.7)

Hence, g approximates f in W 1,p
∗ (O), and clearly

‖g‖L∞(O) ≤ ‖ fα‖L∞(O2) ≤ ‖ f‖L∞(O).

Step 4.
Let f ∈W 1,p

∗ (O), for M ∈ N we define the function fM := f ∧M∨ (−M); for every h ∈ H, it
suffices to consider fy on Oy for γ⊥-almost every y ∈ h⊥ to prove that fM ∈ DO

h and that (up to a
γ-representative)

∂h fM(x) =

{
∂h f (x) if | f (x)|< M
0 otherwise

;

hence, it is immediate that f ∈W 1,p
∗ (O) with

∇H f =

{
∇H f (x) if | f (x)|< M
0 otherwise

;

moreover fM → f in W 1,p
∗ (O) as M→+∞ , for any p≥ 1 (by dominated convergence theorem).

Then, let f ∈W 1,p
∗ (O)∩ Lq(O), we have that for fM = f ∧M ∨ (−M), fM → f in W 1,p

∗ (O)
by what we said, and fM → f in Lq(O) by the dominated convergence theorem and clearly fM ∈
W 1,p
∗ (O)∩ L∞(O) for every M. By the above steps, each function in W 1,p

∗ (O)∩ L∞(O) can be
approximated in W 1,p by a sequence of restrictions on O of functions fn in W 1,p(X)∩ L∞(X)
which are uniformly bounded in L∞(O); so, by the dominated convergence Theorem (because γ

is finite and fn converges pointwise), fn converges also in Lq(O) for every q <+∞; therefore, we
conclude the proof.

�

Now we prove Lemma 3.3.3 which we used in the step 3.

LEMMA 3.3.3. Let f ∈W3, fα defined in the step 3; then fα ∈W 1,p
∗ (Yα/2) and it converges to

f|Yα/2
in that space if α goes to 0.

PROOF. We recall that f ∈W3 satisfies the hypotheses of Subsection 3.3.1: we can define fε ,
and we have fε ∈ Lp(X), ∂h fε ∈ Lp(X) because f ∈W 1,p(X).

We recall that

Yα = T−1
α ((V +B(s/2)+F)∩O)

for α ∈ (0,1/2].
At first, we notice that fα ≡ 0 on Yα \T−1

α (V +BF(R)), since f ≡ 0 on O\(V +BF(R)). Hence,
there exists R′ > R independent of α such that fα ≡ 0 on Yα \ (V +BF(R′)) for any α ∈ (0,1/2]
(it is enough to take R′ > 2R).

We define

Y := (V +BF(R′))∩O⊆ (V +F)∩O⊆ Yα ,

it is a set relatively compact (because V is compact) and convex.
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We prove that γ ◦T−1
α is absolutely continuous with respect to γ: in fact for any bounded Borel

function g on X we have ˆ
X

g(z)dγ ◦T−1
α (dz) =

ˆ
X

g(Tα(z)) dγ(z) =

=

ˆ
F⊥

ˆ
F

g(x+(1−α)y+αa) dγF(y) dγF⊥(x) =

= (2π)−
n
2

ˆ
F⊥

ˆ
F

g(x+ y′)exp
(
−|y

′−αa|2

2(1−α)

)
(1−α)−ndy′ dγF⊥(x) =

= (2π)−
n
2

ˆ
F⊥

ˆ
F

g(x+ y′)exp
(
−|y

′−αa|2

2(1−α)
+

1
2
|y′|2

)
(1−α)−n dγF(y′)dγF⊥(x).

Hence, γ ◦T−1
α is absolutely continuous with respect to γ and its Radon-Nikodym density

d(γ ◦T−1
α )

dγ
(y) = exp

(
−|y

′−αa|2

2(1−α)
+

1
2
|y′|2

)
(1−α)−n

is uniformly bounded with respect to α ∈ (0, 1
2) on any compact of X , hence also on Y .

fα = 0 on (Yα ∩O)\Y and f ≡ 0 on O\Y (because f ∈W3 and R′ > R). We haveˆ
Yα

f p
α dγ =

ˆ
Tα (Yα )

f pd(γ ◦T−1
α ) =

ˆ
Tα (Yα )∩Y

f p d(γ ◦T−1
α )

dγ
dγ <+∞,

since the Radon-Nikodym derivative of γ ◦ T−1
α is bounded on compact set. Therefore, fα ∈

Lp(Yα).
For every f ∈ Lp(Y ) ( f not necessarily bounded) we have

‖ fα − f‖p
Lp(Y ) ≤‖ f ◦Tα − fε ◦Tα‖Lp(Y )+‖ fε ◦Tα − fε‖Lp(Y )+‖ fε − f‖Lp(Y )(3.3.8)

≤‖ fε − f‖Lp(Y )

(∥∥∥∥d(γ ◦T−1
α )

dγ

∥∥∥∥1/p

L∞(Y )
+1

)
+‖ fε ◦Tα − fε‖Lp(Y ).(3.3.9)

The last term goes to 0 as α → 0: in fact, fε is continuous in direction h for every h ∈ F , we have
Tα(x+F) ⊆ x+F for every α ∈ (0,1) and x ∈ X , and Tα converges to the identity; moreover
(3.3.2) yields

‖ fε ◦Tα − fε‖ ≤ g

where, for every y ∈ F⊥, h ∈ F ,

g(y+ k) := αR‖ f‖L1(Yy,L N)‖Ψε‖C1 ;

now ˆ
Y

gp dγ ≤ ε
N

α
p‖Ψε‖p

C1

ˆ
F⊥

ˆ
(Yα )y

| f (y+ k)|p dk dγF⊥(y)≤

(if ρF is the density of γF with respect to the Lebesgue measure)

≤ α
p‖Ψε‖p

C1

ˆ
F⊥

ˆ
(Yα )y

| f (y+ k)|pρ
−1
F (k) dγF(k) dγF⊥(y)≤

≤ α
p‖Ψε‖p

C1ε
N(p−1) sup{ρF(y,k)|y+ k ∈ Y}

ˆ
X
| f |pdγ
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(sup{ρ−1
F (y,k)|y+ k ∈ Y} < ∞ because Y is compact) hence gp ∈ L1(Y ) and we can apply the

dominated convergence Theorem to conclude (we remark that in this argument we did not use the
boundedness of f ). Hence, we get

limsup
α→0

‖ fα − f‖Lp(Y ) ≤‖ fε − f‖Lp(Y )

(
sup

α∈(0,1/2]

∥∥∥∥d(γ ◦T−1
α )

dγ

∥∥∥∥1/p

L∞(Y )
+1

)
,

and letting ε approaches 0, by Lemma [?] we obtain that fα converges to f in Lp(Y ) as α → 0.
Analogously we can prove that ∇H f ◦Tα converges to ∇H f in Lp (in the above paragraphs we

used the fact that f is Lp and 0 out of the compact Y , not that it is bounded).
To prove the convergence of the derivatives, let us consider h ∈ H \ {0} and let us define

F̃ := span(F +h). We denote by {h1, . . . ,hm} an orthonormal basis of F̃ . Clearly, for all z ∈ X the
maps y 7→ Tα(z+ y) maps F̃ to F̃ +Tα(z) and it is smooth. Now, we define fε with F replaced by
F̃ and we notice that f is 0 on X \ (Ṽ +BF̃(R̃), where Ṽ ⊂ F̃⊥. Indeed, f is zero on O\Y and Y is
a compact set. Moreover, the map fε ◦Tα is differentiable along any direction of F̃ γ-a.e. and

∂h( fε ◦Tα) =
m

∑
i=1

∂hi fε ◦Tα〈h−απF(h),hi〉H .(3.3.10)

By Lemma 3.3.2, with F̃ =F , O=X and Tα(Yα/2)=U ′, we deduce that ∂hi fε→ ∂hi f in Lp(Tα(Yα/2))
as ε → 0. Then,

‖∂hi fε ◦Tα −∂hi f ◦Tα‖Lp(Yα/2) =

ˆ
Tα (Yα/2)

|∂hi fε −∂hi f |pd(γ ◦T−1
α )

=

ˆ
Tα (Yα/2)∩(Y+BF̃ (1))

|∂hi fε −∂hi f |p d(γ ◦T−1
α )

dγ
dγ

→ 0, ε → 0.(3.3.11)

Hence, putting together (3.3.10) and (3.3.11) we conclude that there exists the Lp(Tα(Yα/2))-limit
of ∂h( fε ◦Tα) as ε → 0 and

lim
ε→0

∂h( fε ◦Tα) =
m

∑
i=1

∂hi f ◦Tα〈h−απF(h),hi〉H = 〈∇H f ◦Tα ,h−απF(h)〉H = langleψα ,h〉H ,

in Lp(Tα(Yα/2)), where

ψα := ∇H f ◦Tα −απF ◦∇H f ◦Tα .

Since fε ◦ Tα converges to fα in Lp(Yα), we conclude that fα ∈ D
Yα/2
h (see the definition in the

above subsection) and ∇H fα = ψα ∈ Lp(Yα/2). Hence, fα ∈W 1,p
∗ (Yα/2) and

‖∇H fα −∇H f‖p
Lp(Y ) =

ˆ
Y
|ψα −∇H f |pdγ =

ˆ
Y∩O◦
|ψα −∇H f |pdγ

≤
ˆ

Y∩O◦
|∇H f ◦Tα −∇H f |pdγ +2p−1

α
p−1

ˆ
Y∩O◦
|πF ◦∇H f ◦Tα |pdγ

=:I1(α)+ I2(α).
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By arguing as in (3.3.9), we deduce that I1(α) vanishes as α → 0. Moreover,

I2(α)≤α
p−12p−1

ˆ
Tα (Y∩O◦)

|∇H f |p d(γ ◦Tα)

dγ
dγ ≤ α

p−12p−1‖∇H f‖Lp(Y )

∥∥∥∥d(γ ◦Tα)

dγ

∥∥∥∥
L∞(Y )

→ 0,

as α → 0. Hence, ∇H fα converges to ∇H f in Lp(Y ) and therefore for any ε > 0 there exists
α ∈ (0,1/2] such that ‖ fα − f‖W∗1,p(Y ) < ε .

�

3.4. Second derivatives in Wiener spaces

3.4.1. Second derivatives and Hilbert-Schmidt norm. We recall the definition of Hilbert–
Schmidt operators, see e.g. [33, S XI.6]; for H-derivative we refer to [14], Chap. 5.

DEFINITION 3.4.1. Let H1, H2 be separable Hilbert spaces. A linear operator A ∈ L(H1,H2)
is called a Hilbert-Schmidt operator if there exists an orthonormal basis {h j : j ∈ N} of H1 such
that

(3.4.1)
∞

∑
j=1
‖Ah j‖2

H2
< ∞.

If A is a Hilbert-Schmidt operator and {e j : j ∈N} is any orthonormal basis of H1, {y j : j ∈N}
is any orthonormal basis of H2, then

‖Ae j‖2
H2

=
∞

∑
k=1
〈Ae j,yk〉2H2

=
∞

∑
k=1
〈e j,A∗yk〉2H2

so that
∞

∑
j=1
‖Ae j‖2

H2
=

∞

∑
j=1

∞

∑
k=1
〈e j,A∗yk〉2H2

=
∞

∑
k=1

∞

∑
j=1
〈e j,A∗yk〉2H2

=
∞

∑
k=1
‖A∗yk‖2

H1
.

So, the convergence of the series (3.4.1) and the value of its sum are independent of the basis of
H1. We denote by H(H1,H2) the space of the Hilbert-Schmidt operators from H1 to H2, and we
set

‖A‖H(H1,H2) =

(
∞

∑
j=1
‖Ah j‖2

H2

)1/2

,

for any fixed orthonormal basis {h j : j ∈ N} of H1; we call ‖ · ‖H(H1,H2) the Hilbert-Schmidt
norm. When the setting is clear we denote this norm simply by | · |HS. Notice that if H1 = Rn,
H2 = Rm, the Hilbert–Schmidt norm of any linear operator coincides with the Euclidean norm of
the associated matrix.

The norm (3.4.1) comes from the inner product

〈A,B〉H(H1,H2) =
∞

∑
j=1
〈Ah j,Bh j〉H2 ;

for every couple of Hilbert-Schmidt operators A, B, the series converges for every orthonormal
basis {h j : j ∈ N} of H1, and its value is independent of the basis. The space H(H1,H2) is a
separable Hilbert space with the above inner product.

If H1 = H2 = H, where H is the Cameron–Martin space of (X ,γ), we set H :=H(H,H).
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We want to define W k,p(X) for k > 1. To this aim, we define the cylindrical E-valued functions
as follows, where E is any normed space.

DEFINITION 3.4.2. For k ∈ N we define FCk
b(X ,E) (respectively, FC∞

b (X ,E)) as the linear
span of the functions x 7→ v(x)y, with v ∈ FCk

b(X) (respectively, v ∈ FC∞
b (X)) and y ∈ E.

Therefore, every element of FCk
b(X ,E) may be written as

(3.4.2) v(x) =
n

∑
j=1

v j(x)y j

for some n∈N, and v j ∈FCk
b(X), y j ∈ E. Such functions are Fréchet differentiable at every x∈ X ,

with v′(x) ∈ L(X ,E) given by

(v′(x))(h) =
n

∑
j=1

(v′j(x))(h)y j

for every h ∈ X .
Similarly to the scalar case, we introduce the notion of H-differentiable function.

DEFINITION 3.4.3. A function f : X → E is called H-differentiable at x ∈ X if there exists
L ∈L (H,E) such that for every

‖ f (x+h)− f (x)−L(h)‖E = o(|h|H) for h ∈ H.

i.e.

lim
r→0+

sup
h∈BH(r)

‖ f (x+h)− f (x)−L(h)‖E

|h|
= 0

where BH(r) is the ball in H cantered in 0 with radius r.
In this case we set L =: DHv(x).

If f ∈FC1
b(X ,E) is given by f (·)=ψ(·)y with ψ ∈FC1

b(X) and y∈E, then f is H-differentiable
at every x ∈ X , and

DH f (x)(h) = [∇Hψ(x),h]H y.
In particular, if E = H and {h j : j ∈ N} is any orthonormal basis of H we have

|DHv(x)(h j)|2H ≤ |
〈
∇Hψ(x),h j

〉
H |

2 |y|2H
so that DHv(x) is a Hilbert-Schmidt operator, and we have

|DHv(x)|2H =
∞

∑
j=1
|DHv(x)(h j)|2 =

∞

∑
j=1
|
〈
∇Hψ(x),h j

〉
H |

2|y|2H

= |∇Hψ(x)|2H |y|2H .
Moreover, x 7→ ∇Hψ(x) is continuous and bounded. In addition, the operator J : H→H,

(Jk)(h) := 〈k,h〉H y, k,h ∈ H

is bounded since

|Jk|2H =
∞

∑
j=1
|
〈
k,h j

〉
H y|2H = |k|2H |y|2H .

Then x 7→DHv(x) = J(∇Hψ(x)) is continuous and bounded from X to H. In particular, it belongs
to Lp(X ,H) for every 1≤ p < ∞.

We have this Lemma
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LEMMA 3.4.4. For every 1≤ p < ∞, the operator DH : FC1
b(X ,H)→ Lp(X ,γ;H) is closable

in Lp(X ,H).

DEFINITION 3.4.5. For every 1 ≤ p < ∞ we define W 1,p(X ,H) as the domain of the closure
of the operator DH : FC1

b(X ,H)→ Lp(X ,H) (still denoted by DH) in Lp(X ,H).

We get that W 1,p(X ,H) is a Banach space with the graph norm

‖V‖W 1,p(X ,H) =
(ˆ

X
|V (x)|pHdγ

)1/p
+
(ˆ

X
|DHV (x)|pHdγ

)1/p

=
(ˆ

X

( ∞

∑
j=1

〈
V (x),h j

〉2
H

)p/2
dγ

)1/p
+
(ˆ

X

( ∞

∑
i, j=1

〈
DHV (x)(hi),h j

〉2
H

)p/2
dγ

)1/p
.

3.4.2. The Sobolev spaces W 2,p(X ,γ). If f : X → R is H-differentiable at any x ∈ X (hence
the operator ∇H is everywhere defined), we say that f is twice H-differentiable at x if ∇Hand there
exists a linear operator LH ∈L (H) such that

|∇H f (x+h)−∇H f (x)−LHh|H = o(|h|H) as h→ 0 in H.

The operator LH is denoted by D2
H f (x), and by Definition 3.4.3, we have that D2

H f (x)=DH∇H f (x).
If f ∈ FC2

b(X), f (x) = ϕ(l1(x), . . . , ln(x)) with ϕ ∈C2
b(Rn), lk ∈ X∗, then f is twice differen-

tiable at any x ∈ X and

( f ′′(x)v)(w) =
n

∑
i, j=1

∂i∂ jϕ(l1(x), . . . , ln(x)li(v)l j(w), v, w ∈ X

so that 〈
D2

H f (x)h,k
〉

H =
n

∑
i, j=1

∂i∂ jϕ(l1(x), . . . , ln(x)
〈
Rγ li,h

〉
H

〈
Rγ l j,k

〉
H , h, k ∈ H.

D2
H f (x) is a Hilbert–Schmidt operator. We have this Lemma (see [14], Sec. 5.2).

LEMMA 3.4.6. For every 1≤ p < ∞, the operator

(∇H ,D2
H) : FC2

b(X)→ Lp(X ,γ;H)×Lp(X ,γ;H)

is closable in Lp(X ,γ).

REMARK 3.4.7. In [14] the space of FC∞
b (X) is used instead of FC2

b(X), but it is equivalent,
because each element of FC2

b(X) can be approximated by an element of FC∞
b (X) by convolutions.

DEFINITION 3.4.8. For every 1≤ p < ∞, W 2,p(X ,γ) is the domain of the closure of

(∇H ,D2
H) : FC2

b(X)→ Lp(X ,γ;H)×Lp(X ,γ;H)

in Lp(X ,γ). Therefore, f ∈ Lp(X ,γ) belongs to W 2,p(X ,γ) iff there exists a sequence ( fn) ⊂
FC2

b(X) such that fn → f in Lp(X ,γ), ∇H fn converges in Lp(X ,γ;H) and D2
H fn converges in

Lp(X ,γ;H). In this case we set D2
H f := limn→∞ D2

H fn.
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W 2,p(X ,γ) is a Banach space with the graph norm

‖ f‖W 2,p := ‖ f‖Lp(X ,γ)+‖∇H f‖Lp(X ,γ;H)+‖D2
H f‖Lp(X ,γ;H)(3.4.3)

=

(ˆ
X
| f |pdγ

)1/p

+

(ˆ
X
|∇H f |pHdγ

)1/p

+

(ˆ
X
|D2

H f |pHdγ

)1/p

.

Fixed any orthonormal basis {h j : j ∈ N} of H, for every f ∈W 2,p(X ,γ) we set

∂i j f (x) =
〈
D2

H f (x)h j,hi
〉

H .

For every sequence of approximating functions fn we have〈
D2

H fn(x)h j,hi
〉

H =
〈
D2

H fn(x)hi,h j
〉

H , x ∈ X , i, j ∈ N,
then the equality

∂i j f (x) = ∂ ji f (x),
holds a.e.. Therefore, the W 2,p norm may be rewritten as(ˆ

X
| f |pdγ

)1/p

+

(ˆ
X

(
∞

∑
j=1

(∂ j f )2
)p/2

dγ

)1/p

+

(ˆ
X

(
∞

∑
i, j=1

(∂i j f )2
)p/2

dγ

)1/p

.

3.4.3. Ornstein-Uhlenbeck operator. The concepts of strongly continuous semigroup on a
Banach space, of its generator and of form associated to semigroup on Hilbert space (see Subsec-
tion 1.1).

We recall that if an operator L is associated to a dissipative form, then its spectrum is contained
in (−∞,0], and, for σ > 0 we can define (σ I−L)−1 as a self-adjoint operator in L2(O).

We introduce, in this setting

Jσ := (I−σL)−1 = σ(σ I−L)−1 = σR(σ ,L).

Let (E,µ) be a measure space; in the sequel, L will always be an operator on H = L2(E,µ),
a a form on H and Tt the strongly continuous semigroup on H generated by L, Gλ be the strongly
continuous contractive resolvent associated to L.

For the following definitions see e.g. [[52], Def. I.4.1].

DEFINITION 3.4.9. Tt (Gλ ) is said sub-Markovian if, for every f s.t. 0 ≤ f ≤ 1 then 0 ≤
Tt( f )≤ 1 for every t > 0 (0≤ Tλ ( f )≤ 1 for every λ > 0 ).

L is said a Dirichlet operator if 〈Lu,(u−1)+〉H ≤ 0 for every u ∈ H.

We also recall this result about operators and generators (see [52], Prop. I.4.3).

PROPOSITION 3.4.10. The following are equivalent:
i) L is a Dirichlet operator;

ii) Tt is sub-Markovian;
iii) Gλ is sub-Markovian.

In particular we recall what that the heat semigroup on L2(Rd ,L d) is associated to the form
(W 1,2(Rd ,L d),D) where, for f ,g ∈W 1,2(Rd ,L d),

D( f ,g) :=
1
2

ˆ
Rd

∇ f (x) ·∇g(x) dx.

The generator of Tt is called Laplace operator, and it is denote by ∆.
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We have that D(∆) =W 2,2(Rd ,L d), and

∆ f =
d

∑
i=1

∂ 2
i f

∂x2
i

and we can say that ∆ f is the divergence of the gradient of f .
The fact that ∆ is associated to D implies this formulaˆ

Rd
∆ f (x)g(x) dx =−

ˆ
Rd

∇ f (x) ·∇g(x) dx

for every f ∈W 2,2(Rd ,L d), g ∈W 1,2(Rd ,L d).

We can find make equivalent construction in infinite dimensional space. Let (X ,γ) be a Wiener
space. We will consider the Hilbert space L2(X).

We can define the form (W 1,2(X),D) where

D( f ,g) :=
1
2

ˆ
X
〈∇H f ,∇Hg〉H dγ(x);

the semigroup associated to this form is the Ornstein-Uhlenbeck semigroup on X , and it can be
expressed by the Mehler formula

(3.4.4) Tt f (x) :=
ˆ

X
f (e−tx+

√
1− e−2ty)γ(dy);

the operator which generates this semigroup is said Ornstein-Uhlenbeck operator on X . We have
that its domain is W 2,2(X) and it can be represented as

L f (x) =
+∞

∑
i=1

(
∂

2
hi

f (x)− ĥi(x)∂hi f (x)
)

where {hi}i∈N is an orthonormal basis of H; for what we said about the Gaussian divergence we
have

L f = divγ(∇H f ).
The fact that L is associated to D implies this formulaˆ

X
(L f )g dγ =−

ˆ
X
〈∇H f ,∇Hg〉H dγ

for every f ∈W 2,2(X), g ∈W 1,2(X).
In the case RN with standard Gaussian measure γN , L has the form

L f (ξ ) = ∆ f (ξ )−
N

∑
i=1

ξiDi f (ξ )

where ∆ is the Laplace operator, for f ∈W q,2 for some q≥ 1; If X is infinite dimensional we have
that

(3.4.5) L f (x) =
∞

∑
i=1

(〈
D2

H f (x)hi,hi
〉

H − ĥi(x)∂hi f (x)
)

or f ∈W q,2 for some q≥ 1.

Now, let O ⊂ X be an open set. We have that we can define on L2(O) the form given by
(W 1,2(O),D) where D is expressed as



78 3. SOBOLEV SPACE IN WIENER SPACES

(3.4.6) D( f ,g) :=
1
2

ˆ
O
〈∇H f ,∇Hg〉H dγ(x);

it is a closed symmetric form (the closure is a consequence of the definition of W 1,2(O)). We call
the semigroup associated to Ornstein-Uhlenbeck semigroup with Neumann boundary conditions
on O or Neumann Ornstein-Uhlenbeck semigroup, and the operator LN will be called Neumann
Ornstein-Uhlenbeck operator ; also in this case we have

(3.4.7)
ˆ

O
(LN f )g dγ =−

ˆ
O
〈∇H f ,∇Hg〉H dγ

for every f ∈D(LN), g ∈W 1,2(O) (from an heuristic point of view, the above formula is a version
of an integration by parts formula without the part of the boundary; so, D(LN) imposes that f
satisfy, in some weak sense, a Neumann boundary conditions).

If we consider the form given by (W 1,2
0 (O),D) where D is expressed as in (3.4.6), it is a

closed symmetric form; it is associated to a semigroup called Ornstein-Uhlenbeck semigroup with
Dirichlet boundary conditions on O or Dirichlet Ornstein-Uhlenbeck semigroup, and the generator
LD will be called Dirichlet Ornstein-Uhlenbeck operator; by definition D(LD) ⊆W 1,2

0 (O) (so it
satisfies a Dirichlet boundary condition) and LD satisfies

(3.4.8)
ˆ

O
(LD f )g dγ =−

ˆ
O
〈∇H f ,∇Hg〉H dγ

for every f ∈ D(LD), g ∈W 1,2
0 (O).

In all cases, L ∈ {LD,LN} is a Markov operator, in fact, if u ∈D(L), then (by applying (3.4.7),
(3.4.8)) ˆ

O
Lu(u−1)+ dγ =−

ˆ
O

〈
∇Hu,∇H(u−1)+

〉
H dγ ≤ 0;

hence in all of these cases, Tt is a contractive strongly continuous semigroup (by Proposition
3.4.10), and Gσ is a contractive resolvent semigroup on L2(X), which implies (by definition of
contractive resolvent semigroup) that Jσ = σGσ (·) is contractive in L2(O) and that Tt is a sub-
Markovian semigroup i.e. if f ≤ 1 then Tt( f ) ≤ 1 and it is L∞-contractive; we also have that Gσ

has the same property; so we can restrict Tt and Jσ to L∞(O), and they are contraction operators.
We see that Jσ (and Tt) can be defined as operator from Lp(O) to Lp(O) for every p ∈ [1,+∞)

(but we do not know if they is regularizing).
We have now that Jσ (and Tt) in L2 is contractive with respect to the metric L1: in fact, for all

y ∈ L2, for all test functions ϕ , by the self-adjointness of Jσ ,

(3.4.9)
ˆ

O
Jσ (y)ϕ dγ =

ˆ
O

yJσ (ϕ) dγ ≤ ‖y‖L1‖Jσ (ϕ)‖L∞ ≤ ‖y‖L1‖ϕ‖L∞ ,

hence ‖Jσ (y)‖L1 ≤ ‖y‖L1 ; so by the density of L2 in L1, we can define Jσ as a contractive (and
hence continuous) operator in L1.

Hence, we have that Jσ (and Tt) can be defined as a contractive operator Lp(O)→ Lp(O), for
all p ∈ [1,∞), by the Riesz-Thorin interpolation theorem (see e.g. [58], Sub. 1.3.18), because L2

is dense in Lp (see the Appendix for one of the several statements of the Riesz-Thorin theorem).
As in (3.4.9) we can see that Tt is contractive in Lp for every p > 2 (by using the duality with

respect to Lp′).
So, Jσ and Tt can be defined in every Lp for every p ∈ [1,+∞) and they are contractive.
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REMARK 3.4.11. Exactly the same argument can be used for the Laplace operators ∆N and
∆D in L2(O,L N).

We consider O = X ; for p ∈ [1,+∞) the Ornstein-Uhlenbeck semigroup (Tt)t≥0 on Lp(X) can
be defined pointwise by Mehler’s formula:

(3.4.10) Ttu(x) =
ˆ

X
u
(

e−tx+
√

1− e−2ty
)

dγ(y)

for all u ∈ Lp(X ,γ), t ≥ 0; we remark that the formula does not depend on p.
Moreover, Tt is a strongly continuous semigroup on Lp(X); in the rest of this subsection, we

call Lp the generator of the Ornstein-Uhlenbeck semigroup in Lp(X).

3.5. Feyel-de La Pradelle measures and traces

3.5.1. Feyel-de La Pradelle measures. For this Chapter the main reference is [39].
Let (X ,γ) be a Wiener space.
Let F ⊂Rγ(X∗) be an m-dimensional subspace of H; as usual we identify F with Rm, choosing

an orthonormal basis. We recall the concept, for k ∈ N, of spherical k-dimensional Hausdorff
measure Sk.

We denote by z = πF(x) the canonical projection as in Section 2.4, and F⊥, γF and γ⊥, for
y ∈ Ker(πF), by By we denote the section

(3.5.1) By = {z ∈ F : y+ z ∈ B} .

as in Section 2.4.
We can now define spherical (∞−1)-dimensional Hausdorff measures in X relative to F by

(3.5.2) S∞−1
F (B) =

ˆ
Ker(πF )

ˆ
By

Gm(z)dSm−1(z)dγ
⊥(y) ∀B⊂ X .

for B ∈B(F).

LEMMA 3.5.1. S∞−1
F is a σ -additive Borel measure on B(X). In addition, for all Borel sets B

the map y 7→
´

By
Gm dSm−1 is γ⊥-measurable in F⊥.

A remarkable fact is the monotonicity of S∞−1
F with respect to F , which crucially depends on

the fact that we are considering spherical Hausdorff measures.

LEMMA 3.5.2. S∞−1
F ≤ S∞−1

G on B(X) whenever F ⊂ G.

It follows from Lemma 3.5.2 that the following definition of spherical (∞− 1)-Hausdorff
measure or Feyel-de La Pradelle measure S∞−1 in is well-posed; we set

(3.5.3) S∞−1(B) = sup
F

S∞−1
F (B) = lim

F
S∞−1

F (B),

the limits being understood in the directed set of finite-dimensional subspaces of QX∗; we have
that it is actually a measure.

LEMMA 3.5.3. If S∞−1(B)<+∞ then γ(S) = 0.
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3.5.2. Traces. We recall some results from [26].
As usual, (X ,γ) is a Wiener space. We recall that it is defined the Ornstein-Uhlenbeck semi-

group on Lp(X); its generator can be denoted as Lp.
For k = 1,2, let (I−Lp)

− k
2 be the operator on Lp(X) defined as

(I−Lp)
− k

2 f := Γ(k)−1
ˆ

∞

0
t

k
2−1e−tTt f dt

where Tt is the Ornstein-Uhlenbeck semigroup on Lp(X) and

Γ(k) =
ˆ

∞

0
tk−1e−t dt

(see [14], Sec. 5.3). We have that for p > 1, the image of (I−Lp)
− k

2 is W 1,p(X) (see [14], Thm.
5.7.2). Following [26] and also ([14], Sec. 5.9), we recall a particular kind of capacity Ck,p for
k ∈ N and p ∈ [1,+∞); for an open set U ,

Ck,p(U) := inf{‖ f‖Lp(X)| f ∈ Lp(X), (I−Lp)
− k

2 f ≥ 1 γ− a.e. in U};

for a general set A,
Ck,p(A) := inf{Ck,p(U)|A⊆U, A is open}.

DEFINITION 3.5.4. A function f is called C1,p-quasicontinuous if for each ε > 0 there is an
open set A⊆ X such that C1,p(A)≤ ε and f̃|X\A is continuous.

Always following [26], we have the next Lemma which is an immediate consequence of [14],
Thm. 5.9.6.

LEMMA 3.5.5. Let p ∈ (1,+∞)Let f ∈W 1,p(X) ( f considered as a class of functions): there
exists a version f̃ of f (i.e. f̃ is a function element of f ) that is Borel measurable and C1,p-
quasicontinuous; moreover for every r > 0

C1,p(x ∈ X : | f̃ (x)|> r)≤ 1
r

∥∥∥(I−Lp)
− 1

2 f̃
∥∥∥

Lp(X)
.

Such f̃ is called a precise version of f . It is easy to deduce, from the above Lemma, that
two precise versions of f differs only in a set with 0 C1,p-capacity: in fact their difference is C1,p-
quasicontinuous, and it is a version of the null function, so it is 0 but in a set with 0 C1,p-capacity.

We remark that, if G is the precise version of a function in W 1,p(X), then G−1(0) is a Borel
set.

Hereafter, we denote by ρ the measure S∞−1.
We have this result ([26], Prop. 2.1)

LEMMA 3.5.6. If A is a Borel set s.t. C1,p(A) = 0 for some p > 1, then ρ(A) = 0.

We consider G ∈W 1,q(X) for some q > 1 and O := G−1((−∞,0)); in this setting, following
[26] we can give a definition of W 1,p(O) for p≥ q′ also if O is not open. Firstly, given f ∈ Lip(O)
we can consider an extension to a function Lipschitz on X , and its gradient: by Lemma 3.1.8 this
gradient is uniquely defined in γ-almost every point of O. So, we can define the gradient ∇H as
an operator from Lip(O) in Lp(O,H); we have that this operator is closable by ([26], Lem. 2.2).
Hence we can give this definition.
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DEFINITION 3.5.7. Let G ∈W 1,q(X) for some q > 1 and O := G−1((−∞,0); for p ≥ q′ we
define the Sobolev space W 1,p(O) as the domain of the closure of ∇H (defined on Lip(O)), with
the graph norm; it is a Banach space.

In this subsection we always use the above definition of W 1,p(O); in Chapter 6, we will make
stronger hypotheses on G (continuity) which imply that O is open; clearly in this case the definition
of W 1,p(O) is equivalent to that of Section 3.1.

The next Hypothesis correspond to ([26], Hyp. 3.1)

HYPOTHESIS 3.5.8. We consider a function G on X and a δ > 0 such that:
i) G ∈W 2,q(X) for every q ∈ [1,∞) (so ∇HG is well defined almost everywhere);

ii) γ(G−1((−∞,0))> 0;
iii) |∇HG|−1

H ∈ Lq(X) for every q ∈ [1,∞).

In the above hypothesis, we define the measurable set O := G−1((−∞,0)); on O we can define
the space W 1,p(O) for every q > 1, by following Definition 3.5.7.

By G∈W 2,q(X) for every q∈ (1,+∞), we can consider LG where L is the Ornstein-Uhlenbeck
operator on Lq(X) for every q ∈ (1,+∞).

REMARK 3.5.9. Thanks to iii), we can define

divγ

∇HG
|∇HG|H

=
LG
|∇HG|H

−
〈
D2

HG(∇HG),∇HG
〉

H

|∇HG|3H
,

which is used in the proof of [26], Prop. 4.2, which corresponds here to Lemma 3.5.15; for divγ

see Subsection 3.1.3.

By G∈W 2,q(X) and |∇HG|−1
H ∈ Lq(X) for every q∈ [1,+∞), we have that |∇HG|H ∈W 1,p(X)

for every p ∈ [1,+∞) and

∇H |∇HG|H =
D2

HG(∇HG)

∇HG|H
;

in particular, when we will write |∇HG|H , we will usually intend a precise version of |∇HG|H
considered as a class of functions; we recall that two precise version are equal everywhere except
in a set with 0 C1,p-capacity (and 0 Feyel-de La Pradelle measure by Lemma 3.5.6).

We consider some additional hypotheses, that we will add in some situation.

HYPOTHESIS 3.5.10. For the function G above defined, we add these properties:
i) |∇HG|−1

H (considered as a precise version) is well defined in G−1(0) and it is L∞(G−1(0),ρ);
ii) |∇HG|H ∈ L∞(G−1(−δ ,0));

iii) |LG| ∈ L∞(G−1(−δ ,0)).

The next Lemma corresponds to ([26], Cor. 3.2) (see also Remark 3.5.12 here).

LEMMA 3.5.11. Under Hypothesis 3.5.8, let δ0 > 0 and Oδ0 := G−1(−δ0,δ0); if f is a Borel
functions that is in L1(Oδ ), then the function

q f (ξ ) :=
ˆ

G−1(ξ )

f
|∇HG|H

dρ

is well defined for almost every ξ ∈ (−δ0,δ0) (in the Lebesgue sense), and it is in L1((−δ0,δ0),L
1)

(where L 1 is the 1-dimensional Lebesgue measure); moreover the measure f γ ◦G−1 id absolutely
continuous with respect to L 1 and q f is its density.
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REMARK 3.5.12. In ([26], Cor. 3.2), it is used a measure ρV , which in this setting coincides
with ρ by ([26], Cor. 3.6).

The next Lemma corresponds to the first part of ([26], Prop. 4.1).

LEMMA 3.5.13. Under Hypothesis 3.5.8, let p > 1, f ∈W 1,p(X), and f̃ be a precise version
of f ˆ

{G=0}
| f |q|∇HG|H dρ =

= q
ˆ

G−1(−∞,0)
| f |q−2 f 〈∇H f ,∇HG〉H dγ +

ˆ
G−1(−∞,0)

LG| f |q dγ

where L is the Ornstein-Uhlenbeck operator on Lp.

The next Lemma corresponds to the second part of ([26], Prop. 4.1).

LEMMA 3.5.14. Under Hypothesis 3.5.8, let p > 1, f ∈W 1,p(X), and f̃ be a precise version
of f ˆ

{G=0}
| f̃ |q dρ =

= q
ˆ

G−1(−∞,0)
| f |q−2 f

〈∇H f ,∇HG〉H
|∇HG|H

dγ +

ˆ
G−1(−∞,0)

divγ

(
∇HG
|∇HG|H

)
| f |q dγ.

The next Lemma corresponds to ([26], Prop. 4.2).

LEMMA 3.5.15. [Trace] Under Hypothesis 3.5.8, let p > 1; for every ϕ ∈W 1,p(O), there
exists exactly one ψ ∈

⋂
q<p Lq({G = 0},ρ) with the following property: if {ϕn}n∈N ⊂ Lip(X)

is a sequence s.t. ϕn|O converge to ϕ in W 1,p(O), then the sequence ϕn|{G=0} converges to ψ in
Lq({G = 0},ρ) for every q < p.

For ϕ = 1 everywhere, we have the following Corollary (see also [26], Rem. 4.9 (i)).

COROLLARY 3.5.16. Under Hypothesis 3.5.8, ρ({G = 0})< ∞.

By the above Lemma we can give the following Definition (it corresponds to [26], Def. 4.3).

DEFINITION 3.5.17. [Trace] For each ϕ ∈W 1,p(O), we define the trace Trϕ as the element of
ϕ ∈W 1,p(O) defined in Lemma 3.5.15; we have that Trϕ ∈ Lq(G−1(0),ρ) for every q ∈ [1,+∞).
In particular,under Under Hypothesis 3.5.10 Trϕ ∈ Lp(G−1(0),ρ) (by the Lemma 3.5.18).

The next Lemma corresponds to ([26], Lem. 4.6).

LEMMA 3.5.18. Under Hypotheses 3.5.8, 3.5.10, Tr is a bounded operator W 1,p(O)→Lp(G−1(0),ρ)
for every p > 1.

The next Lemma corresponds to ([26], Prop. 4.10).

LEMMA 3.5.19. Under Hypotheses 3.5.8, for all p > 1, let f ∈W 1,p(O), we have that Tr f ≡ 0
iff the extension of f to 0 out of O is in W 1,p(X).



CHAPTER 4

BV functions

The topic of BV (bounded variation) functions in Wiener space has been studied for instance
in [42, 45, 7, 8, 4, 5, 18, 17, 51]; we widely used the survey [54].

In the finite dimensional case, the total variation of a function in an open set A⊂ Rd is

|Du|(A) := sup
{ˆ

A
u(x)divφ(x) dx : φ ∈C1

c (A,Rd),‖φ‖∞ ≤ 1
}

;

in Theorem 4.1.1 is stated that this is equivalent to the existence of a countably additive vector
measure with bounded variation (see Subsection 1.2.5) which satisfies to an integration by part
formula.

In the case of a Wiener space X , it can be given similar definitions (see in particular [8]); this
is recalled in Theorem 4.1.3.

A set A⊂ X is said of finite perimeter if its characteristic function 1lE is BV; this concept will
be especially used in Chapter 8.

All this is in Section 4.1.

A possible definition of functions of bounded variation on O⊂ X for X Wiener space is given
in [17]; the idea is that a function f must be BV along almost every line, hence a weak derivative
can be defined as a vector measure; if we impose that this measure has bounded variation, we have
the definition of BV (O); the idea of [17] is based upon the concept of Skorohod differentiability
(see e.g. [13]). This is recalled in Section 4.2.

In Section 7.5 we will introduce an equivalent definition of BV (O) (only for function which
are in L2(O)): it is inspired by one of the equivalences in Theorem 4.1.3.

In [17], the definition of BV (O) is actually done for sets O which are H-convex a condition
weaker that convexity. We remark that the definition in [17] make sense for every open subset of
X .

4.1. Definition of BV functions in Rd and in X

Let µ be a countably additive vector measure with values in H and bounded variation; if h∈H,
h 6= 0 we define πhµ as the real measure with bounded variation defined as

πhµ(A) := πh(µ(A)),

and for every i ∈ N we define πi projection of H in Fi =< h1, . . . ,hn >, and we define πiµ as the
countably additive vector measure with values in Fi and bounded variation defined as

πiµ(A) := πi(µ(A)),

We recall that there exists C1 s.t. if L log
1
2 L(O) then

´
O f ĥ dγ ≤C‖ f‖

L log
1
2 L(O)

|h|H for every

h ∈ H (see subsection 3.2.1).

There are several ways of defining BV functions on Rd , which are useful in different contexts.

83



84 4. BV FUNCTIONS

For the general concept see [6], [53]. For the next theorem see e.g [8] Thm. 2.1.

THEOREM 4.1.1. Let u ∈ L1(Rd). The following are equivalent:
i) there exist real finite measures µ j, j = 1, . . . ,d, on Rd such that

(4.1.1)
ˆ
Rd

u(x)∂ jφ(x) dx =−
ˆ
Rd

φ(x) dµ j(x), ∀φ ∈C1
c (Rd),

i.e., the distributional gradient Du = {µ j} j∈N is an Rd-valued measure with finite total
variation |Du|(Rd);

ii) the quantity

V (u) = sup
{ˆ

Rd
u(x)divφ(x) dx : φ ∈C1

c (Rd ,Rd),‖φ‖∞ ≤ 1
}

is finite;
iii) the quantity

L(u) = inf
{

liminf
n→∞

ˆ
Rd
|∇un(x)|dx|{un}n∈N ⊂ Lip(Rd), un

L1

−→ u
}

is finite;
iv) if (Tt)t≥0 denotes the heat semigroup in Rd , then

W [u] = lim
t→0

ˆ
Rd
|∇Ttu|dx < ∞.

Moreover, |Du|(Rd) =V (u) = L(u) = W [u].

If one of (hence all) the conditions in Theorem 4.1.1 holds, we say that u ∈ BV (Rd). . V (u) is
called total variation of u.

If E ⊂Rd and |DχE |(Rd) is finite, we say that E is a set with finite perimeter, use the notation
P(E) (perimeter of E) for the total variation of the measure DχE and write P(E, ·) for |DχE |(·).

We say that E ⊂ Rd has density α ∈ [0,1] at x ∈ Rd if

(4.1.2) lim
ρ→0

L d(E ∩Br(x))
L d(Br(x))

= α

(Br(x) is the ball of radius r and center x) and in this case we write x ∈ Eα .
We introduce the essential boundary

∂
∗E := Rd \ (E0∪E1).

Let E be a set with finite perimeter, we define the reduced boundary FE in this way: x ∈ FE if the
following conditions hold:

(4.1.3) |DχE |(Bρ(x))> 0 ∀ρ > 0 and ∃ νE(x) = lim
r→0

DχE(Br(x))
|DχE |(Br(x))

with |νE(x)| = 1; in this case, the perimeter measure coincide with the d− 1-Hausdorff measure
on FE (De Giorgi structure theorem)

(4.1.4) P(E, ·) = H d−1
|FE (·).

We have that
FE ⊂ E1/2 ⊂ ∂

∗E,



4.1. DEFINITION OF BV FUNCTIONS IN Rd AND IN X 85

and
H d−1(Rd \ (E0∪E1∪E1/2)) = 0,

and in particular H d−1(∂ ∗E \FE) = 0.
We say that B is countably H s-rectifiable (for s ∈ N) if there are countably many Lipschitz

functions f j : Rs→ Rd such that

(4.1.5) H s
(

B\
∞⋃

j=0

f j(Rs)
)
= 0.

DEFINITION 4.1.2. Let A⊆ Rd be an open set. Given a function f : A→ R, we say that it is
locally BV if, for every x ∈ A, there is a B neighbourhood of x s.t.

VB( f ) := sup
{ˆ

B
u(xdivφ(x) dx : φ ∈C1

c (B,Rd),‖φ‖∞ ≤ 1
}
<+∞;

equivalently, it can be defined a countably additive vector measure Du (with variation not neces-
sarily bounded) s.t. for every open B s.t. |Du|(B) < +∞ we have for every φ ∈ C1

c (B,Rd) that
(4.1.1) is verified.

We recall that for every j∈N, the operator ∂ ∗h j
can be defined as ∂ ∗h j

φ(x)= ∂h j φ(x)− ĥ j(x)φ(x).
Now, the concept of BV function can be generalized for the case of a Wiener space (X ,γ) see

[8] Thm. 4.5.

THEOREM 4.1.3. Let u ∈ L log
1
2 L(X). The following are equivalent:

i) there exists a countably additive vector measure Dγu with values in H and bounded
variation such that

(4.1.6)
ˆ

X
u∂
∗
h j

φdγ =−
ˆ

X
φd
〈
dDγu,h j

〉
H , ∀φ ∈C1

b(X),

i.e., the distributional gradient Dγu is a H-valued measure with finite total variation
|Dγu|(X);

ii) the quantity

V (u) = sup
{ˆ

X
udivγφ dγ|φ ∈FC∞

b (X ,H),‖φ‖∞ ≤ 1
}

is finite;
iii) the quantity

L(u) = inf
{

liminf
n→∞

ˆ
X
|∇Hun|H dγ|{un}n∈N ∈ Lip(X), un

L1

−→ u
}

is finite;
iv) if (Tt)t≥0 denotes the Ornstein-Uhlenbeck semigroup in X, then

W [u] = lim
t→0

ˆ
X
|∇HTtu|H dγ < ∞.

Moreover, |Dγu|(X) =V (u) = L(u) = W [u].

If one of (hence all) the conditions in Theorem 4.1.3 holds, we say that u ∈ BV (X). V (u) is
called total variation of u.
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Similarly to the finite dimensional case, if E ⊂ X and |Dγ χE |(X) is finite, we say that E is a
set with finite perimeter, use the notation Pγ(E) (γ -perimeter of E) for the total variation of the
measure Dγ χE and write Pγ(E, ·) for |Dγ χE |(·).

LEMMA 4.1.4. Let X = Rd , (Rd ,γd) be a Wiener space; if f is of bounded variation in the
Gaussian sense with weak gradient Dγ f , then it is locally BV in sense Lebesgue; in particular f
is BV (O) in sense Lebesgue on every bounded set and D f is absolutely continuous with respect to
Dγ f with Radon-Nikodym derivative g(x) = exp(− |x|

2

2 ).

PROOF. It is an immediate calculation that, for every φ ∈C1
c (O),ˆ

Rd
f ∂
∗
x j

φ dγ =

ˆ
Rd

f (x)∂x j(φ(x)/g(x)) dx =
ˆ
Rd

φ

g
d(D f ) j

and so, by the definitions, we can conclude. �

We recall this result from [25], Prop. 4.2.

PROPOSITION 4.1.5. If O⊆ X is an open convex set, then γ(∂O) = 0 and O has finite perime-
ter.

REMARK 4.1.6. In [25] there is indeed an example of compact set with infinite perimeter.

DEFINITION 4.1.7. [Essential boundary relative to F] If we write X = F⊕Ker(πF), we recall
by (3.5.1) the definition of the slice of E in direction F

Ey = {z ∈ F : y+ z ∈ E} ⊂ F ;

the essential boundary of E relative to F is then defined as

∂
∗
FE = {x = y+ z : z ∈ ∂

∗(Ey)}.

DEFINITION 4.1.8. [Cylindrical essential boundary] Let F be a countable set of finite-dimensional
subspaces of H stable under finite union, with ∪F∈FF dense in H. Then, we define cylindrical es-
sential boundary ∂ ∗FE along F the set

∂
∗
FE :=

⋃
F∈F

⋂
G∈F,G⊃F

∂
∗
GE.

The cylindrical essential boundary depends on F.
By [45] and [9], we get a representation of the perimeter measure as follows.

THEOREM 4.1.9. Let E ∈B(X) be a set with finite γ-perimeter in X, let F be as in Defini-
tion 4.1.8 and let ∂ ∗FE be the corresponding cylindrical essential boundary. Then, if {Fn}n∈N ⊂ F

is an increasing sequence s.t.
⋃

n∈N Fn is dense in H, hence for every B ∈B(X)

S ∞−1
Fn

(B∩∂
∗
FE) n→+∞−−−−→ |Dγ χE |(B).

REMARK 4.1.10. The above result is similar to the De Giorgi structure theorem (see (4.1.4),
but we can say that ∂ ∗FE corresponds more to the essential boundary than to the reduced boundary.

The generalization of the concept of BV in a set O⊂ X is more complicated; we consider it in
the next section, for O convex, by using some concepts from [17].
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4.2. Definition of BV functions in convex subsets of Wiener spaces

4.2.1. Fundamental notions. We consider an orthonormal basis {hi, . . .}i∈N of H s.t. hi ∈
Rγ(X∗) for all i ∈ N; for f function with values in H, we will write fi := 〈 f ,hi〉H .

As said in Subsection 2.3, for each h ∈ Rγ(X∗), the set Xh⊥ will be the closure in X of h⊥(in
H), and we recall that on it a centered nondegenerate Gaussian measure γh⊥ is uniquely defined,
s.t. γ = γh⊥⊗ γ1 (where γ1 is the standard centered Gaussian measure on R).

The next definition is taken from [13].

DEFINITION 4.2.1. A Radon measure µ on X is said Skorohod differentiable along h ∈ X , if,
for every f ∈Cb(X), the function on R

t 7→
ˆ

X
f (x− th) dµ(x)

is differentiable. If µ is Skorohod differentiable then there exists exactly a measure ν , said Skoro-
hod derivative of µ along h s.t. for every f ∈Cb(X)

lim
t→0

ˆ
X

f (x− th)− f (x)
t

dµ(x) =
ˆ

X
f dν

(see [13] Subsec. 3.1).

REMARK 4.2.2. In ([13] Subsec. 3.1) the measures are supposed to be defined in the Baire
σ -algebra, but it coincides with Borel σ -algebra for metric spaces.

The next results are contained in [13], Thm. 3.6.5. and Cor. 3.6.7

PROPOSITION 4.2.3. A Radon measure µ on X is Skorohod differentiable along h ∈ X with
derivative ν if and only if, for every ϕ ∈ FC∞

b (X), for every t ∈ R,
ˆ

X
(ϕ(x− th)−ϕ(x)) dµ(x) =

ˆ t

0

ˆ
X

ϕ(x− sh) dν(x) ds.

PROPOSITION 4.2.4. If a Radon measure µ on X is Skorohod differentiable along h ∈ X with
derivative ν then, for every ϕ ∈C1

b(X),ˆ
X

∂hϕ dµ =−
ˆ

X
ϕ dν .

From the above two propositions and the Fubini theorem we can deduce this Corollary.

COROLLARY 4.2.5. µ is Skorohod differentiable along h ∈ X if and only if, for every ϕ ∈
FC∞

b (X), ˆ
X

∂hϕ dµ =−
ˆ

X
ϕ dν .

Instead of FC∞
b (X) we can equivalently use C1

b(X), or FC1
b(X).

Now we can give a definition of BV (X) which is equivalent to that of [17], of [7], of [51] and
others (the difference is only in the set of test functions chosen).



88 4. BV FUNCTIONS

DEFINITION 4.2.6. A function f ∈ L log
1
2 L(O) is BV (O) if f γ is Skorohod differentiable

along every h ∈ H\{0} and if there exists a countably additive vector measure Dγ f with values
in H and bounded variation (Dγ f is called weak gradient), s.t. for every h ∈ H\{0} the real
measure πhDγ f − f ĥγ is the Skorohod derivative of f γ; equivalently (see Corollary 4.2.5), for
every ϕ ∈ FC∞

b (X), ˆ
X

f ∂hϕ dγ =−
ˆ

X
f d
(
πhDγ f

)
+

ˆ
X

f ϕ ĥ dγ,

which equivales to ˆ
X

f ∂
∗
h ϕ dγ =−

ˆ
X

f d
(
πhDγ f

)
.

REMARK 4.2.7. If instead of FC∞
b (X) we use FC1

b(X) or C1
b(X) as set of test functions, the

definition is equivalent.

We will give a definition of BV functions taken by ([17]).

DEFINITION 4.2.8. Let O ⊆ X a convex open set, a function f ∈ L log
1
2 L(O) is BV (O) if

there exists a countably additive vector measure Dγ f with values in H and bounded variation
(Dγ f is called weak gradient), s.t., for all h ∈ H\{0} we have: if for y ∈ Xh⊥ we define the set
Oy := {t ∈ R|y+ th ∈ O}, then for γh⊥-almost every y the function f ∗y defined as

f ∗y : t 7→ f (y+ th)exp(−t2/2),

is well defined and BV on Oy (with Lebesgue measure), and, for each A Borel subset of O,

πhDγ f (A) =
ˆ

Xh⊥

dγ
⊥(y)(

ˆ
Ay

dD f ∗y −
ˆ

Ay

t f ∗y (t) dt),

where D f ∗y is the weak derivative (with respect to the Lebesgue measure) of f ∗y , and Ay := {t ∈
R|y+ th ∈ A}.

REMARK 4.2.9. The above definition is equivalent to that of ([17], Def. 3.4) in the Gaussian
case, if we add the requirement f ∈ L log

1
2 L(O).

In particular we can define the BV norm

‖ f‖BV (O) = | f |L1(O)+ |Dγ f |(O)+ sup{
ˆ

O
f ĥ dγ|h ∈ H, |h|H}.

and we have that there exists C > 0 s.t. ‖ f‖BV (O) ≤ |Dγ f |(O)+‖ f‖
L log

1
2 L(O)

.

In particular, for O = X , it is equivalent to the Skorohod differentiability of f γ for every h∈H
with derivative πhDγ f − f ĥγ (see [13], Theorem 3.5.1.(iii)), so it is equivalent to Definition 4.2.6.

4.2.2. Further properties.

LEMMA 4.2.10. If y is BV (O), then for all n ∈ N, vn := n ∧ y ∨ (−n) is in BV (O) and
|Dγvn|(O)≤ |Dγy|(O).

PROOF. By the Definition 4.2.8, and by |vn| ≤ |yn| a.e., it suffices to prove that, if a function
f on (a,b)⊆ R is BV with Lebesgue norm, its truncation fn := n∧ y∨ (−n) is BV with Lebesgue
norm and

|D f |(a,b)≤ |D fn|(a,b);
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(where D· is the weak gradient, with the Lebesgue measure); clearly this is true if f ∈C∞(a,b):
in fact in this case the weak derivative coincides with the derivative multiplied by the Lebesgue
measure, so we observe that f ′n = f ′ where | f |< n and f ′n = 0 where | f |> n.

Now it suffices to consider a sequence of functions { fi} ⊂ C∞(a,b) s.t. fi → f in L1 and
‖ f ′i ‖L1(a,b)→ |D f |(a,b) (see e.g. [6], Thm. 3.9), we have that the truncation fn,i := n∧ fi∨ (−n)
converges to fn in L1 and |D fn,i|((a,b)) ≤ |D fi|((a,b)), so by the lower semicontinuity of total
variation in L1 (see e.g. [6], Rem. 3.5) we conclude. �

REMARK 4.2.11. It is immediate that f ∈ L log
1
2 L(O) is BV (O) if and only if there exists a

countably additive vector measure Dγ f with values in H and bounded variation s.t., for all h ∈ H,
defined for y ∈ Xh⊥ the set Oy := {t ∈ R|y+ th ∈ O}, then for γh⊥-almost every y the function fy
defined as

fy : t 7→ f (y+ th),
is well defined and BV on Oy (with Gaussian measure γ1), and, for each A Borel subset of O,

πhDγ f (A) =
ˆ

Xh⊥

(Dγ1 fy)(Ay) dγ
⊥
h (y),

where Dγ1 fy is the weak derivative (with respect to the Gaussian measure γ1) of fy.

A kind of Leibniz rule can be defined for this weak derivative:

LEMMA 4.2.12. Let O an open convex set, if f ∈ Lp(O) for some p > 1, f ∈ BV (O) and g is
Lipschitz and bounded, then f g ∈ BV (X) and

(4.2.1) Dγ( f g) = gDγ f + f ∇Hgγ.

PROOF. Clearly f g ∈ Lp(X). If X is one-dimensional, then f is locally BV in Lebesgue sense
and

D f = (2π)−
1
2 e
|·|2
2 Dγ f

(see the proof of Lemma 4.1.4); it is a simple calculation that f g is locally BV in Lebesgue sense
and

D( f g) = gD f + f ∇HgL 1;
and in this case it is immediate that (4.2.1) is verified.

The general case is a consequence of the Definition 4.2.8. �

REMARK 4.2.13. We have that, if f ∈ Lip0,h(O), then for every x the function fx is differen-
tiable L 1 almost everywhere on R; we remark that, for all t ∈ R, for all x ∈ X the function fx+th
is differentiable in 0 iff fx is differentiable in 0. We recall that for each h, the measure γ can be
decomposed γ = γ⊥h ⊗ γ1 where γ1 is the 1-dimensional standard Gaussian measure and γ⊥h is a
Gaussian measure on h⊥ := ker(ĥ) (see Subsection 2.3), and γ1 is continuous with respect to the
Lebesgue measure; hence, for almost every x ∈ X , the function fx is differentiable in 0.

DEFINITION 4.2.14. If f ∈ Lip0,h(O) (see Definition 1.2.34), we define

∂h f (x) := f ′x(0)

whenever the derivative f ′x(0) exists (clearly it is well defined for almost every x ∈ X by the above
Remark), ∂h f is defined in L∞(X) and ‖∂h f‖L∞(X) ≤ c and

∂
∗
h f (x) := ∂h f − f ĥ.
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The next Lemma is a slight modification of ([17], Lem. 3.5).

LEMMA 4.2.15. Let O be an open convex subset of X. A function f ∈ L log
1
2 L(O) is BV(O)

iff there exists µ s.t. for all h ∈ H, for all ϕ ∈ Lip0,h(O),

(4.2.2)
ˆ

O
∂
∗
h ϕ f dγ =−

ˆ
O

ϕ d 〈h, µ〉H ,

and, in this case, Dγ f = µ .

REMARK 4.2.16. There are some remarks about the proof of the above lemma.
In ([17], Lem. 3.5), the set of test function is a particular subset Dh(O) of Lip0,h(O): if (4.2.2)

is satisfied for all ϕ ∈ Lip0,h(O), then it will be satisfied for all ϕ ∈ Dh(O), and f ∈ BV (O) by
([17], Lem. 3.5); if f ∈ BV(O), then (4.2.2) is a consequence of the definition of BV(O).

In fact, if f ∈ BV(O), for all ϕ ∈ Lip0,h(O) (so ϕ|X\O ≡ 0) if

f ∗y (t) := f (y+ th)(2π)−
1
2 exp(−t2/2),

and
ϕy(t) := ϕ(y+ th)

and Oy := {t ∈ R|y+ th ∈ O}, then, recalling that ϕy|R\Oy ≡ 0 by definition of Lip0,h(O) and the
Definition 4.2.8 ˆ

O
∂
∗
h ϕ f dγ =

ˆ
Xh⊥

dγ
⊥(y)

ˆ
R
(ϕ ′y(t) f ∗y (t)− tϕy(t) f ∗y (t)) dt =

=

ˆ
Xh⊥

dγ
⊥(y)(

ˆ
Oy

ϕy(t) dD f ∗y −
ˆ

Oy

ϕy(t)t f ∗y (t) dt) =−
ˆ

O
ϕ d

〈
h, Dγ f

〉
H .

For the proof in the particular case O = X , see for instance [13], Thm. 3.6.5.

REMARK 4.2.17. In the case O = X , the condition of equation (4.2.2) is equivalent if we use
FC∞

b (X) as the set of test functions (see [17], Sec. 3).

REMARK 4.2.18. It is clear that, if f ∈W 1,2(O), then f ∈ BV (O) and Dγ f coincides with
∇H f γ (we recall that L2(O)⊆ L(logL)

1
2 (O)).

We Remark that, if f ∈ BV(O) and we decompose Dγ f as σ |µ| then we can write σi|µ| =〈
hi, Dγ f

〉
H for all i ∈ N.

We have, by Lemma 1.2.36, if Ω is an open set in O, for each function f ∈ BV (O)

|Dγ f |(Ω) =

= sup{
m

∑
i=1

ˆ
Ω

ϕi d
〈
hi, Dγ f

〉
H : m ∈ N,ϕ ∈ Lip0,m(Ω,H), ‖ϕ‖L∞(Ω,H) ≤ 1}

and, by Lemma 4.2.15, we can deduce this Corollary (recalling the Definition 1.2.35 of Lip0,m(Ω,H)).

COROLLARY 4.2.19. If Ω is a open set in O, for each function f ∈ BV (O)

|Dγ f |(Ω) =
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(4.2.3) = sup{
m

∑
i=1

ˆ
Ω

f ∂
∗
hi

ϕi dγ : m ∈ N,ϕ ∈ Lip0,m(Ω,H), ‖ϕ‖L∞(Ω,H) ≤ 1}.

REMARK 4.2.20. Let { fn}n∈N be a sequence of functions and f a function s.t. fn(x)→ f (x)
for γ-almost every x ∈ X and

V := liminf
n→∞

‖ fn‖L log
1
2 L(O)

< ∞,

then, by the Fatou Lemma and the properties of L log
1
2 L(O) spaces we have f ∈ L log

1
2 L(O) and

‖ f‖
L log

1
2 L(O)

≤V .

By ([17], Thm. 3.8) and Remarks 4.2.9, 4.2.20 we have the following result:

PROPOSITION 4.2.21. If { fn}n∈N is a sequence of BV functions s.t. fn(x)→ f (x) for γ-almost
every x ∈ X and

V1 := liminf
n→∞

|Dγ fn|(O)< ∞,

V2 := liminf
n→∞

‖ fn‖L log
1
2 L(O)

< ∞

then f ∈ BV (O) and |Dγ f |(O)≤V1, ‖ f‖
L log

1
2 L(O)

≤V2.

From the above Proposition follows the lower semicontinuity of the BV norm respect to the
L log

1
2 L(O) convergence, and we can deduce the following Corollary.

COROLLARY 4.2.22. If { fn} is a sequence of BV functions s.t. fn→ f in L log
1
2 L(O) and

V := liminf
n→∞

|Dγ fn|(O)< ∞

then f ∈ BV (O) and |Dγ f |(O)≤V1.

We will use the two following results, the first corresponds to a part of ([7], Theorem 4.5), we
can consider it in our case by the Remark 4.2.9; the second is an easy extension of ([51], Cor. 2.5).

PROPOSITION 4.2.23. In our hypothesis Tt be the Ornstein-Uhlenbeck semigroup in L2(X):
if f ∈ BV (X), then

´
X |∇HTt f |H dγ −−→

t→0
|Dγ f |(X).

LEMMA 4.2.24. Let Ω⊆ O be open: if f ∈ BV (O), and { fn}n∈N is a sequence in BV (O) s.t.
fn ⇀ f in L log

1
2 L(Ω), then |Dγ f |(Ω)≤ liminfn→∞ |Dγ fn|(Ω).

PROOF. We argue as in the proof of ([51], Cor. 2.5).
Let c := liminfn→∞ |Dγ fn|(Ω). Up to a subsequence, |Dγ fn|(Ω) −−−→

n→∞
c; hence, by Corollary

4.2.19, for all ε > 0 there exists nε s.t. ∑
m
i=1

´
O fn∂ ∗hi

ϕ dγ ≤ c+ ε for all m ∈ N, n > nε and
ϕ ∈ Lipm(Ω,H), ‖ϕ‖L∞(Ω,H) ≤ 1. Now for each i ∈ N, we recall that ∂ ∗hi

ψi ∈ LΨ, and hence in

particular ∂ ∗hi
ψi ∈ (L log

1
2 L)′ (see Section 3.2.1), so

m0

∑
i=1

ˆ
Ω

fn∂
∗
hi

ψi dγ −−−→
n→∞

m0

∑
i=1

ˆ
Ω

f ∂
∗
hi

ψi dγ
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by the weak convergence; hence
m0

∑
i=1

ˆ
Ω

f ∂
∗
hi

ψi dγ ≤ c+ ε

for every ε > 0, therefore, always by Corollary 4.2.19,

|Dγ f |(Ω)≤
m0

∑
i=1

ˆ
Ω

f ∂
∗
hi

ψi dγ ≤ c−

�

We can deduce the following result.

COROLLARY 4.2.25. Let Tt be the Ornstein-Uhlenbeck semigroup in L2(X): if f ∈ BV ∩
L2(X), then |∇HTt f |Hγ weakly converges to |Dγ f | as a measure.

PROOF. We have that Tt f
L2(Ω)−−−→
t→0

f for each open Ω⊆ X , and recalling that L2(X) is embedded

in L log
1
2 L(X), we can apply Lemma 4.2.24 and we have that

(4.2.4) |Dγ f |(Ω)≤ liminf
n→∞

ˆ
Ω

|∇HTt f |H dγ

(because |DγTt f |= |∇HTt f |Hγ , see Remark 4.2.18).
Now, by Proposition 4.2.23 we have

´
X |∇HTt f |H dγ −−→

t→0
|D f |(X).

If |Dγ f |(X) = 0 then Dγ f is the null measure and |∇HTt f |Hγ converges to it (because it is
positive).

We consider the case |Dγ f |(X)> 0; hence we can define

µ := (|Dγ f |(X))−1|Dγ f |,
and, for t sufficiently small, since

´
X |∇HTt f |H dγ > 0

µt := (

ˆ
X
|∇HTt f |H dγ)−1|∇HTt f |Hγ;

µ,µt are probability measure.
Applying (4.2.4) we have that

µ(Ω)≤ liminf
t→0

µt(Ω)

for each open set Ω ⊆ X . Now, to prove µt ⇀
∗ µ , we can use Theorem 1.2.19 (the ’Portmanteau

Theorem’); hence we can conclude because
ˆ

X
|∇HTt f |H dγ −−→

t→0
|Dγ f |(X).

�



CHAPTER 5

Mosco Convergence

We recall a particular kind of convergence of forms, introduced by U. Mosco in [56], which
implies the convergence of the semigroups and of the associated resolvents (see Section 1.1).
We apply this concepts in some lemmas, in which we prove that, if a sequence of sets {On}n∈N
converges in some sense to O (in (Rd ,L d) or in (X ,γ)) then also the corresponding Dirichlet
forms converges: so we have also a convergence of resolvents. This concepts and results are used
extensively in Chapter 7.

The Mosco convergence is a topic currently well known, and the concepts has been extended
for instance in [49].

5.1. General concepts

As usual, ⇀ represents the weak convergence.
We recall the following easy result.

LEMMA 5.1.1. i) Let O be an open subset of Rd . If f ∈W 1,2(O,L d) and { fn}n∈N is
a sequence in W 1,2(O,L d) which weakly converges to f , then fn ⇀ f in L2(O,L d) and
∇ fn ⇀ ∇ f in L2(O,L d ,RN).

ii) Let O be an open subset of X. If f ∈W 1,2(O) and { fn}n∈N is a sequence in W 1,2(O)
which weakly converges to f , then fn ⇀ f in L2(O) and ∇H fn ⇀ ∇H f in L2(O,H).

PROOF. Case i): to prove that fn ⇀ f in L2(O,L d), i.e. fn− f ⇀ 0, it suffices to consider
that, for all g∈ L2(O,L d), we have that f 7→ 〈 f ,g〉L2(O,L d) is in the dual of W 1,2(O,L d), so there
exists ϕ ∈W 1,2(O,L d) s.t.

〈 f ,g〉L2(O,L d) = 〈ϕ, f 〉W 1,2(O,L d) ,

hence we have 〈 fn− f ,g〉L2(O,L d) → 0 for every g ∈ L2(O,L d). Analogously, we can prove
∇ fn ⇀ ∇ f in L2(O,L d ,Rd).

Case ii) is similar. �

Let X be a separable metric space and µ a σ -finite measure on (X ,B(X)). In this setting a
form a on L2(X ,µ) will always be a nonnegative bilinear symmetric form defined on a subspace
D(a) of L2(X) s.t. a(u,u)≥ 0 for all u ∈ D(a); we set a(v,v) :=+∞ if v /∈ D(a).

DEFINITION 5.1.2. Let X be a separable metric space and µ a σ -finite measure on (X ,B(X)).
A sequence of forms an defined on L2(X ,µ) is Mosco-convergent to a form a defined on L2(X ,µ)
if:

i) For every sequence fn s.t. fn ⇀ f in L2(X) we have liminfan( fn, fn)≥ a( f , f ).
ii) For every f ∈ L2(X), there exists fn→ f in L2(X) s. t. limsupan( fn, fn)≤ a( f , f ).

93
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For us, a closed form a is a form s.t. a(u,u) as a functional of u is lower semicontinuous with
respect to L2(X).

For each λ > 0, given a closed form a′ on L2(X), we define the resolvent Gλ as the operator
that to each y ∈ L2(X) associates the only element of D(a′) s.t., for all v ∈ D(a′),

a′(Gλ (y),v)+λ 〈Gλ (y),v〉L2(X) = 〈y,v〉L2(X).

We will use this known theorem ([56] Thm. 2.4.1).

THEOREM 5.1.3. Let X be a separable topological space and (X ,F ) be a measurable space
with µ a σ -finite measure on (X ,B(X)); let a be a form, {an}n∈N a sequence of closed forms, for
all σ > 0 let Gσ ,n be the resolvent associated to an for σ , let Gσ be the resolvent associated to a
for σ .
{an}n∈N converges to a in the Mosco sense, if and only if, for all σ > 0 for every u ∈ L2(X)

we have that Gσ ,n(u)→ Gσ (u).

REMARK 5.1.4. In [56] the hypotheses on Gσ ,n is that they are the resolvents associated to
the relaxed of an: but if an is closed then it coincides with an itself(see [56] Subsec. 1.e).

5.2. Applications

We recall this result (see e.g. [29], Prop. 2.70, in that book the hypothesis is that the set is
uniformly Lipschitz).

PROPOSITION 5.2.1. Let O⊆ Rd be a bounded open set with Lipschitz boundary.
If f ∈W 1,2(O,L d) then f can be extended to a function g ∈W 1,2(Rd ,L d

For O open set in Rd we will say say that a is the Dirichlet form associated to W 1,2(O,L d) if
D(a) = { f | f|O ∈W 1,2(O,L d)},

a( f ,g) =
ˆ

O
∇ f (x) ·∇g(x) dx;

it will be always a closed form in L2(X ,L d) (i.e. a(u,u) as function of u will be lower semicon-
tinuous respect to L2(X ,L d)).

Now we can state the next Lemma.

LEMMA 5.2.2. Let O a bounded open set with Lipschitz boundary, let {On}n∈N a decreasing
sequence of open sets in Rd s.t. L d(On\O)→ 0. If an is the sequence of the Dirichlet forms in
W 1,2(On,L d) and a is the Dirichlet form in W 1,2(O,L d), then an converges to a in the sense of
Mosco.

PROOF. We consider the first condition of the Mosco convergence: so, let fn a sequence of
functions s.t. fn ⇀ f in L2(Rd ,L N).

By contradiction, we suppose liminfan( fn, fn) < a( f , f ): then, up to a subsequence, fn ∈
W 1,2(On) for all n ∈N and the sequence ∇ fn|O is uniformly bounded in L2(O,L d ,Rd) and fn|O is
uniformly bounded in W 1,2(O,L d), so, by the Banach-Alaoglu theorem (see Appendix) up to a
subsequence, fn|O ⇀ g in W 1,2(O,L d) for some g ∈W 1,2(O), hence fn|O ⇀ g in L2(O,L d), and
∇ fn|O ⇀ ∇g in L2(O,L d ,Rd) by Lemma 5.1.1; clearly, g = f|O, so f|O ∈W 1,2(O,L d) andˆ

Rd
|∇ f |2(x) dx≤ liminfan( fn, fn),
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contradiction.
Now we consider the second condition of the Mosco convergence: let f ∈ L2(Rd ,L d), we

look for a sequence fn s.t. fn→ f in L2(Rd ,L d) and limsupan( fn, fn)≤ a( f , f ).
If f|O /∈W 1,2(O,L d), we can simply take fn := f for all n ∈ N. If f|O ∈W 1,2(O,L d), then

we can extend f|O to some g out of O keeping the condition W 1,2 by Proposition 5.2.1; we will
have g ∈W 1,2(Rd ,L d), and we can define

fn(x) :=

{
g(x) if x ∈ On

f (x) otherwise,

and it is obvious that the condition is satisfied. �

For O convex set in Rd we will say say that a is the Dirichlet form associated to W 1,2
0 (O,L d)

if D(a) = { f | f ∈W 1,2(O,L d), f|Rd\O ≡ 0},

a( f ,g) =
ˆ

O
∇ f (x) ·∇g(x) dx;

it will always be a closed form in L2(Rd ,L d) (i.e. a(u,u) as function of u will be lower semicon-
tinuous respect to L2(Rd ,L d)).

LEMMA 5.2.3. Let O⊆Rd be a convex open set, let {On}n∈N a decreasing sequence of convex
open sets in Rd s.t. O⊆

⋂
n∈N On and L d(On\O)→ 0 where L d is the Lebesgue measure. If an is

the sequence of the Dirichlet forms in W 1,2
0 (On,L d) and a is the Dirichlet form in W 1,2

0 (O,L d),
then an converges to a in the sense of Mosco.

PROOF. We consider the first condition of the Mosco convergence: so, let fn a sequence of
functions s.t. fn ⇀ f in L2(Rd ,L d).

By contradiction, we suppose liminfan( fn, fn) < a( f , f ): then, up to a subsequence, fn|On ∈
W 1,2

0 (On) for all n ∈ N; so, each fn can be extended as 0 out of On an fn ∈W 1,2(Rd ,L d); the se-
quence ∇ fn is uniformly bounded in L2(Rd ,L d ,Rd) and fn is uniformly bounded in W 1,2(Rd ,L d),
so, by the Banach-Alaoglu theorem (see Appendix) up to a subsequence, fn ⇀ g in W 1,2(Rd ,L d)
for some g; clearly g|Oc

n
≡ 0 for every n, therefore g|Oc ≡ 0 because L d(On\O)→ 0, so g|O ∈

W 1,2
0 (O,L d) hence fn ⇀ g in L2(Rd ,L d), and ∇ fn|O ⇀ ∇g in L2(O,L d ,Rd) by Lemma 5.1.1;

clearly, g = f|O, so f|O ∈W 1,2(O,L d) andˆ
O
|∇ f |2(x) dx≤ liminfan( fn, fn),

contradiction.
Now we consider the second condition of the Mosco convergence: let f ∈ L2(Rd ,L d), we

look for a sequence fn s.t. fn→ f in L2(Rd ,L d) and limsupan( fn, fn)≤ a( f , f ).
If f|O /∈W 1,2

0 (O,L d), we can simply take fn := f for all n ∈ N. If f|O ∈W 1,2
0 (O,L d), then

we can extend f|O to a function g which is 0 out of O we will have g|On ∈W 1,2
0 (On,L d), and we

can define fn := g, and it is obvious that the condition is satisfied. �

Now let (X ,γ) a Wiener space. For O open set in X s.t. O=G−1((−∞,0)) for G∈ Lq for q< 2
we will say that a is the Dirichlet form associated to W 1,2(O,γ) if D(a) = { f | f|O ∈W 1,2(O,γ)},
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a( f ,g) =
´

O 〈∇H f ,∇Hg〉 dγ; it will be always a closed form in L2(X ,γ) (i.e. a(u,u) as function
of u will be lower semicontinuous with respect to L2(X ,γ)).

Let O an open set and {On}n∈N a sequence of open sets in X ; hence we can define W 1,2(O,γ)
and W 1,2(On,γ) for every n ∈ N.

LEMMA 5.2.4. In the above hypothesis, we suppose O⊆On for every n∈N and γ(On\O)→ 0.
If an is the sequence of the Dirichlet forms in W 1,2(On,γ) and a is the Dirichlet form in W 1,2(O,γ),
then an converges to a in the sense of Mosco.

PROOF. We consider the first condition of the Mosco convergence: it can be done in same
way of Lemma 5.2.2.

Now we consider the second condition of the Mosco convergence: let f ∈ L2(X), we look for
a sequence fn s.t. fn→ f in L2(X ,γ) and limsupan( fn, fn)≤ a( f , f ).

If f|O /∈ W 1,2(O,γ), we can simply take fn := f for all n ∈ N. If f|O ∈ W 1,2(O,γ), then
there exists a sequence of Lipschitz functions gm which approximates f in W 1,2(O,γ), s.t. ‖gm−
f‖W 1,2(O,γ)≤m−1; each gm can be extended out of O with the same Lipschitz constant (for example
with McShane extension, see Appendix), and gm ∈W 1,2(X ,γ) , henceˆ

On\O
|∇Hgm|H 2 dγ −−−→

n→∞
0

and ˆ
On\O
|gm|2 dγ −−−→

n→∞
0,

(because O =
⋂

∞
n=1On).

We Remark that we cannot use a simple diagonal argument to conclude, because we have to
define fn for every n, not only up to a subsequence.

For each m, the set

Am := {a ∈ N|a > m,

ˆ
Oi\O
|∇Hgm|2H dγ ≤ m−1,

ˆ
Oi\O
|gm|2 dγ ≤ m−1 for all i≥ a}

is not empty (because γ(On\O)→ 0), and we can define am := minAm, we have that am > m and
Am = {a ∈ N,a > am}; for n ∈ N, n > a1, the set

Bn := {b ∈ N|n > ab}

is not empty; for each n, Bn is bounded by n (because b < ab < n for every b ∈ Bn), and we can
define bn := maxBn. For n > a1, we have bn < n, moreover bm −−−→

m→∞
∞: in fact, for every c ∈ N,

if n > ac we have c ∈ Bn (by definition of Bn) and so bn ≥ c.
Let n ∈ N, n > a1; bn ∈ Bn by definition of bn, so by definition of Bn we have n > abn , so,

recalling that On are decreasing,ˆ
On\O
|∇Hgbn |2H dγ ≤

ˆ
Oabn

\O
|∇Hgbn |2H dγ

and ˆ
On\O
|gbn |2 dγ ≤

ˆ
Oabn

\O
|gbn |2 dγ,
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hence, by abn ∈ Abn and by the definition of Abn ,ˆ
On\O
|∇Hgbn |2H dγ ≤ b−1

n ,

ˆ
On\O
|gbn |2 dγ ≤ b−1

n ,

we already know that ‖gbn− f‖W 1,2(O) ≤ b−1
n , so, if

fn(x) :=

{
gbn(x) x ∈ On

f (x) x /∈ On
,

by bn −−−→
n→∞

∞ we have that fn→ f in L2(X ,γ) and
ˆ

On

|∇H fn|2H dγ →
ˆ

O
|∇H f |2H dγ,

hence we can conclude. �





Part 2

Main Results





CHAPTER 6

Classes W 1,p
0 in Wiener spaces

We deal with the problem of defining W 1,p
0 (O), the functions with zero trace on ∂O: we define

a function in W 1,p
0 (O) as the limit of a sequence of regular functions which are null out of O.

In [26], a particular kind of sets allows us to define the trace as an operator, so in this setting a
possible definition of W 1,p

0 (O) is the space of functions with null trace; in Theorem 6.2.2 (which
is the main result of the Chapter) we prove, under certain conditions stronger than that of [26]
(Hypothesis 6.1.3 that for p = 2 the two definitions are equivalent. We also apply the concept of
Mosco convergence (Chapter 5)

We extensively make use of Section 3.5.

6.1. Setting

We will suppose (X ,γ) is a separable Wiener space (so X is separable): H will be the Cameron-
Martin space, Rγ the isometry from X∗γ in H; for all h ∈ Rγ(X∗), we will set ĥ = R−1

γ (h); we
introduce a basis {hn}n∈N of H, contained in Rγ(X∗); for each n ∈ N,let Fn be the space generated
by h1, . . . ,hn. For each Fn we define πFn(x) = ∑

n
i=1 ĥi(x)hi.

L is always the Ornstein-Uhlenbeck operator defined pointwise for regular functions by

LG(x) =
∞

∑
i=1

(〈
D2

HG(x)hi,hi
〉

H − ĥi(x)∂hiG(x)
)

where ∇HG and the H-second derivative D2
H of G are everywhere defined (for bounded regular

functions, it can be considered as the Ornstein-Uhlenbeck operator in Lp, for p ∈ [1,+∞]).
We recall that ρ is the Feyel-de La Pradelle measure.

DEFINITION 6.1.1. C1
b,H(X) will be the set of all the continuous functions (not necessarily

bounded) s.t. ∇H f is bounded and continuous as a function X → H.

REMARK 6.1.2. If G ∈C1
b,H(X) s.t. the H-second derivative D2

H of G is everywhere defined
and |D2

HG|HS is bounded in a set O, if |∇HG|−1
H ∈ L∞(O), then |∇HG|−1

H is H-differentiable in O
and

∇H(|∇HG|−1
H ) =−D2

HG(∇HG)

|∇HG|3H
;

if in addition LG ∈ L∞(O) we have that divγ
∇H G
|∇H G|H is well defined in every Lp for p < ∞ and

divγ

∇HG
|∇HG|H

=
LG
|∇HG|H

−
〈
D2

HG(∇HG),∇HG
〉

H

|∇HG|3H
.

Hereafter we will suppose: O is the sublevel G−1((−∞,0)) of a function G with the following
properties, which implies Hypotheses 3.5.8 and 3.5.10.
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HYPOTHESIS 6.1.3. We consider a function G on X and a δ > 0 such that:

i) G ∈C1
b,H(X) (hence ∇HG exists everywhere);

ii) ∇HG is everywhere H-differentiable, with derivative D2
HG such that |D2

HG|HS is uni-
formly bounded (where | · |HS is the Hilbert-Schmidt norm);

iii) G−1(0) 6=∅;
iv) |∇HG|−1

H ∈ L∞(X);
v) LG is bounded on G−1(−δ ,δ ).

In the above hypotheses, we define the open set O := G−1((−∞,0)).

REMARK 6.1.4. i) In the above hypothesis, ∂O = G−1(0); we prove it. It is clear
that ∂O ⊆ G−1(0) by the continuity of G. To prove that G−1(0) ⊆ ∂O we remark that
∇HG 6= 0 on G−1(0) by iv); so, let x ∈ G−1(0), for h = ∇H(G)

|∇H(G)|H the function g : R→ R,
t 7→ G(x+ th) is strictly monotone increasing, hence it is null only for t = 0, therefore
x ∈ ∂O.

The point iii) implies ∂O 6=∅ for what we said above, and hence O 6=∅ and γ(O)> 0
because it is an open.

ii) The above hypotheses imply Hypotheses 3.5.8.
iii) The points i), iv) and v) imply the Hypothes is3.5.10, hence we can define a bounded

trace operator W 1,p(O)→ Lp(G−1(O)) for all p > 1. To have this result we could also
substitute iv) with: |∇HG|−1

H ∈ L∞(G−1(−δ ,0)) and |∇HG|−1
H ∈ Lq(G−1(0,δ )) for all

q > 1.
iv) By the points ii) and iv) we have that ∇H G

|∇H G|H ∈W 1,2(G−1(−δ ,0),H). By adding the point

v) we have also that divγ

(
∇H G
|∇H G|H

)
∈ L∞(G−1(−δ ,δ )) (see Remark 6.1.2).

v) The point iv) is very restrictive, for example it is not satisfied by ‖ · ‖2
X in Hilbert spaces,

which would allow to consider the ball (conversely [26] consider this case).
vi) For −δ < ε < δ the Hypothesis remains true if we substitute G with G + ε or with
−G+ ε , value δ substituted with δ ′ := δ −|ε|.

viii) By Hypotheses i), ii), we have that LG ∈ Lp(X) for all p < ∞.

We also remark that we can apply all the results in Subsection 3.5.2, but there W 1,p(O) was
defined in the sense of Definition 3.5.7, here O is open (because G ∈ C1

b,H(X)), so W 1,p(O) is
clearly that of our usual definition (because in both cases we define the Sobolev space as the
domain of the closure of gradient ∇H on Lipschitz functions).

EXAMPLE 6.1.5. If h ∈ H, X̃ := h⊥, πh projection on X̃ , we can consider a function F on X̃
that is twice differentiable with bounded Hilbert-Schmidt norm and s.t. LF ∈ L∞(X̃), then we have
that G(x) = ĥ(x)−F(πh(x)) satisfies all the properties (see also [26], 5.2).

We recall Definition 3.2.3 for W 1,p(O); also in this case we have Remark 3.2.7: hence, if
f ∈W 1,p(O), it can be approximated by a sequence of smooth cylindrical functions.

As we said, we are in the situation of Hypotheses 3.5.8 and 3.5.10. This allows us to (see
Subsection 3.5.2)

• define, for all ϕ ∈ L1, densities of the measure ϕγ ◦G−1 (restricted to G−1(−δ ,δ )) with
respect to the Lebesgue measure on R;
• define bounded trace operators Tr : W 1,p(O)→ Lp(G−1(0),ρ) for p > 1.
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In the Hypothesis 6.1.3, we can apply Lemma 3.5.18 and for all p > 1, and then for all t ∈ (−δ ,0)
there exists a bounded trace operator

Trt : W 1,p(G−1(−∞, t))→ Lp(G−1(t),ρ)

s.t. if ϕ is a Lipschitz function in X hence Trϕ = ϕ|G−1(t).
We have this two Lemmas, which are derived respectively by Lemma 3.5.11 and 3.5.19.

LEMMA 6.1.6. Under Hypothesis 6.1.3 points i)-iv), let δ0 > 0 and Oδ0 := G−1(−δ0,δ0); if f
is a Borel function that is in L1(Oδ ), then the function

q f (ξ ) :=
ˆ

G−1(ξ )

f
|∇HG|H

dρ

is well defined for almost every ξ ∈ (−δ0,δ0), and it is in L1((−δ0,δ0),L
1); moreover q f is a

density, with respect to L 1, of the measure f γ ◦G−1.

LEMMA 6.1.7. Under Hypothesis 6.1.3 points i)-iv), for all p > 1, for all t ∈ (−δ ,δ ), for all
f ∈W 1,p(G−1(−∞, t)), we have that Trt f ≡ 0 iff the extension of f to 0 out of G−1(−∞, t) is in
W 1,p(X).

REMARK 6.1.8. In Lemma 3.5.19 it is supposed t = 0; but because of Remark 6.1.4 vi), we
can apply the result to t ∈ (−δ ,δ ).

Now, we recall that for t ∈ G(R), p > 1, q ∈ (1, p), we have that W 1,p(G−1(−∞, t)) is con-
tinuously embedded in W 1,q(G−1(−∞, t)), and, under our hypotheses, the trace is defined as a
bounded operator from W 1,q(G−1(−∞, t)) to Lq(G−1(t)) and so also as a bounded operator from
W 1,q(G−1(−∞, t)) to Lq(G−1(t)).

We have this Lemma, which is an easy consequence of Lemma 3.5.13.

LEMMA 6.1.9. Under Hypothesis 6.1.3 points i)-iv), for all p > 1, for all t ∈ (−δ ,δ ) for all
f ∈W 1,p(X), if q ∈ [1, p) we have

(6.1.1)
ˆ
{G=t}

|Trt f |q|∇HG|H dρ =

= q
ˆ

G−1(−∞,t)
| f |q−2 f 〈∇H f ,∇HG〉H dγ +

ˆ
G−1(−∞,t)

LG| f |q dγ =

=−q
ˆ

G−1(t,+∞)
| f |q−2 f 〈∇H f ,∇HG〉H dγ−

ˆ
G−1(t,+∞)

LG| f |q dγ.

PROOF. From Lemma 3.5.13 it follows the first equality of (6.1.1) for t = 0 and f precise; by
Remark 6.1.4 vi), we can prove (6.1.1) in general by considering the precise version of f (because
only Hypothesis 6.1.3 i)-iv) are used, equivalent to Hypothesis 3.5.8).

We prove the case f ∈W 1,p: if f Lipschitz then it is precise, and then we have only to observe
that Lip is dense in W 1,p, that Trt is continuous as operator in Lp(G−1(t),ρ), that ∇HG is bounded
and LG ∈ Lp′ for all p′ < ∞ (see Remark 6.1.4 vii)). �

Now we prove some Lemmas.
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LEMMA 6.1.10. Under Hypothesis 6.1.3 (all the points), for all p > 1, for all δ0 ∈ (0,δ ) there
exists C > 0 s.t. for all t ∈ (−δ0,0) , if f ∈W 1,p(X) then we have,

(6.1.2) ‖Trt f‖p
Lp(G−1(t),ρ) ≤C(‖ f‖p−1

Lp(Ot)
‖∇H f‖Lp(G−1(t,δ ),H)+‖ f‖p

Lp(G−1(t,δ ))).

PROOF. Hereafter we will write Ot := G−1(t,δ ).
By density, it isn’t restrictive to assume f Lipschitz.
Arguing as in the proof of ([26], Prop. 4.1), we can introduce a function θ ∈C∞

b (R, [0,1]) that
is 1 in (−∞, t] and 0 in [t+(δ −δ0),+∞) (hence, in particular θ|(δ ,+∞) ≡ 0) and θ ′ ≤ 2(δ −δ0)

−1;
we introduce ψ = f · (θ ◦G); we have that ψ ∈W 1,p(X) for all p < ∞ (because f Lipschitz and
G ∈C1

b,H), that θ ◦G|G−1(δ ,+∞) ≡ 0 and that, for

C1 = 2(δ −δ0)
−1 ‖∇HG‖L∞(X ,H)+1

we have
‖ψ‖Lp(G−1(t,+∞)) ≤ ‖ f‖Lp(Ot)

and
‖∇Hψ‖Lp(G−1(t,+∞),H) ≤C1‖ψ‖Lp(Ot ,H)

(recalling the Hypothesis 6.1.3 i)); we have also ψ|G−1(t) ≡ f and so, we can apply Lemma 6.1.9
and recalling Hypothesis 6.1.3 i) and iv) and that ψ|G−1(δ ,+∞) ≡ 0 we haveˆ

G−1(t)
|Trt f |p|∇HG|H dρ =

ˆ
G−1(t)

|Trtψ|p|∇HG|H dρ ≤

≤ p‖∇HG‖L∞(Ot ,H)

ˆ
G−1(t,+∞)

|ψ|p−1|∇Hψ|H dγ +‖LG‖L∞(Ot)‖ψ‖
p
Lp(G−1(t,+∞))

≤

(by Hölder inequality)

≤ p‖∇HG‖L∞(Ot ,H)‖ψ‖
p−1
Lp(Ot)

‖∇Hψ‖Lp(Ot ,H)+‖LG‖L∞(Ot)‖ψ‖
p
Lp(Ot)

=

≤ pC1‖∇HG‖L∞(Ot ,H)‖ f‖p−1
Lp(Ot)

‖∇H f‖Lp(Ot ,H)+‖LG‖L∞(Ot)‖ f‖p
Lp(Ot)

.

So recalling that |∇HG|H ∈ L∞(Ot) by Hypothesis 6.1.3 i) and LG ∈ L∞(Ot) by Hypothesis 6.1.3
v), for some C > 0 independent on f , t we have (6.1.2). �

REMARK 6.1.11. In the above Lemma, we used for the first time Hypothesis 6.1.3 v); we
needed LG ∈ L∞(G−1(−δ ,δ )) and not only LG ∈ L∞(G−1(−δ ,0)).

6.2. Results about W 1,p
0 (O)

LEMMA 6.2.1. Under Hypothesis 6.1.3, for all p > 1 there exist C′ > 0 and δ0 > 0 s.t if
f ∈W 1,p(O) and Tr0 f ≡ 0 (on G−1(0)) then for all t ∈ (0,δ0) with δ0 < δ we haveˆ

G−1(−t,0)
f p dγ ≤C′t2‖∇H f‖p

Lp(G−1(t,0),H)
.

PROOF. By Lemma 6.1.7, f can be extended out of O with 0 value, and f ∈W 1,p(X); we
consider a δ ′ < δ and we apply Lemma 6.1.10 for such a δ ′, hence for all s ∈ (−δ0,0), for some
C > 0 independent on s,

‖Trs f‖p
Lp(G−1(s),ρ) =C(‖ f‖p−1

Lp(G−1(s,0))‖∇H f‖Lp(G−1(s,0),H)+‖ f‖p
Lp(G−1(s,0)))≤
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≤C(‖ f‖p−1
Lp(G−1(s,0))‖∇H f‖Lp(G−1(s,0),H)+‖ f‖p

Lp(G−1(s,0)))

by recalling that f ≡ 0 in G−1(0,+∞).
We have also, by Lemma 6.1.6 and 6.1.3 iv) that we can define

q(s) :=
ˆ

G−1(s)
Trs f p|∇HG|−1

H dρ ≤C0‖Trs( f )‖p
Lp(G−1(t),ρ);

for
C0 := ‖|∇HG|−1

H ‖L∞(G−1(−δ ,δ ));

always by Lemma 6.1.6 we have for all t ∈ (0,δ ′)

‖ f‖p
Lp(G−1(−t,0)) ≤

ˆ 0

−t
q(s)ds≤C0t sup

s∈(0,t)
‖Trs( f )‖p

Lp(G−1(s),ρ) ≤

(for some C2 =CC0 independent on f , t)

≤C2t(‖ f‖p−1
Lp(G−1(t,0))‖∇H f‖Lp(G−1(t,0),H)+‖ f‖p

Lp(G−1(t,0)));

for δ0 ≤ δ ′ sufficiently small (δ0 =
1
2C−1

2 independent on f ), for all t s.t. 0≤ t < δ0 we have

| f |pLp(G−1(−t,0)) ≤C2t‖ f‖p−1
Lp(G−1(t,0))‖∇H f‖Lp(G−1(t,0),H)+

1
2
‖ f‖p

Lp(G−1(t,0)),

and hence
‖ f‖p

Lp(G−1(−t,0)) ≤ 2C2t‖ f‖p−1
Lp(G−1(t,0))‖∇H f‖Lp(G−1(t,0),H) ≤

(by the Young inequality, for all ε > 0)

≤ 2C2εt p′‖ f‖p
Lp(G−1(t,0))+2C2ε

−1t p‖∇H f‖p
Lp(G−1(t,0),H)

;

with ε := (4C2t p′)−1, for some C3 > 0,

‖ f‖p
Lp(G−1(−t,0)) ≤

1
2
‖ f‖p

Lp(G−1(−t,0))+C3t2‖∇H f‖p
Lp(G−1(t,0),H)

and we can conclude. �

The next result (the main result of the Chapter) is the infinite-dimensional version of a well-
known theorem (see e.g. [38] Thm. 5.5.2).

THEOREM 6.2.2. Let O satisfies Hypotheses 6.1.3, and f ∈W 1,2(O): the following claims are
equivalent:

i) f ∈W 1,2
0 (O);

ii) Tr f ≡ 0;
iii) given the extension of f that is 0 out of O, we have f ∈W 1,2(X).

PROOF. The points ii) and iii) are equivalent by Lemma 6.1.7.
It is obvious that, if f ∈W 1,2

0 (O), then it is the limit of a sequence fn ∈C1
0(O); clearly fn, can

be extended as 0 out of O, and these extended functions f̄n converges to some f̄ ∈W 1,2(X) that is
0 out of O, and f in O; so i)⇒iii).

We will prove ii)⇒i).
Let f ∈W 1,2(O) be s.t. Tr( f ) ≡ 0: we will prove that f ∈W 1,2

0 (O) by finding a sequence
gn ∈C1

0(O) which converges to f in W 1,2(O).
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Let η a smooth function s.t. 0 ≤ η ≤ 1 everywhere, and η is 1 in (−∞,−1] and 0 in
[−1/2,+∞), and η ′ ≤ 0. In our hypotheses, for each m ∈ N, we can define χm ∈C1

0(O) as

χm(x) =

{
η(mG(x)) if x ∈ O
0 if x /∈ O

,

and clearly, χm is 1 on G−1(−∞,− 1
m ] and it is 0 on G−1(0,+∞]; in Om := G−1(− 1

m ,0) we have

(6.2.1) ∇H χm = (mη
′ ◦ (mG))∇HG,

(hence ∇H χm is continuous and bounded) while ∇H χm|X\Om = 0 and, for some C > 0 independent
on m

(6.2.2) ‖∇H χm‖L∞(X ,H) ≤Cm.

{G−1(− 1
m ,0)}m∈N is a sequence of open decreasing sets s.t.

(6.2.3)
⋂

m∈N
G−1(−m−1,0) =∅.

For each ϕ ∈ Lip(G−1(−δ ,0)) or all ϕ ∈W 1,2(O) s.t. Trϕ ≡ 0,ˆ
O

ϕ
2|∇H χm|2H dγ ≤Cm2

ˆ
Om

ϕ
2 dγ;

hence, by Lemma 6.2.1, for C′ defined in such Lemma, for C2 :=CC′ > 0 independent on m, ϕ ,

(6.2.4)
ˆ

O
ϕ

2|∇H χm|2H dγ ≤C2‖ϕ‖2
W 1,2(Om)

.

Now, we consider our f ∈W 1,2(X) s.t. f = 0 out of O; there exists a sequence gn of bounded
smooth cylindrical functions s.t. gn→ f in W 1,2(X); fixed gn we consider for m ∈ N the function
fm = gnχm, clearly it is in C1

0(O). Now,ˆ
O
|gnχm−gn|2 dγ =

ˆ
O

g2
n|χm−1|2 dγ

converges to 0 if m→ ∞, because χm
L2(X)−−−→
m→∞

1lO and gn is bounded. By (6.2.1) we have |∇H χm| ≤
Cm for some C > 0 independent on m; we have that, for each n∈N, for some c1,c> 0 independent
on m, ˆ

O
|∇H(gnχm)−∇H f |2H dγ =

=

ˆ
O
|gn∇H χm +χm∇Hgn−∇H f − f ∇H χm + f ∇H χm−χm∇H f +χm∇H f |2H dγ ≤

(by reordering the terms)

≤ c1(

ˆ
O
(gn− f )2|∇H χm|2H dγ +

ˆ
O

χ
2
m|∇Hgn−∇H f |2H dγ+

+

ˆ
O
(χm−1)2|∇H f |2H dγ +

ˆ
O

f 2|∇H χm|2H dγ)≤

(recalling (6.2.1))
≤ c(m2‖gn− f‖2

L2(O)+‖∇Hgn−∇H f‖2
L2(O,H)+
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+

ˆ
G−1(Om)

|∇H f |2Hdγ +

ˆ
O

f 2|∇H χm|2Hdγ)≤

(by (6.2.4))

≤ c(m2‖gn− f‖2
L2(O)+‖∇Hgn−∇H f‖2

L2(O,H)+(1+C2)| f |2W 1,2(Om)
).

Now, recalling that gn→ f in W 1,2(O) we have that, fixed m ∈ N, there exists nm s.t.ˆ
O
|∇H(gnm χm)−∇H f |2H dγ ≤ c(m−1 +(1+C2)‖ f‖2

W 1,2(Om)
),

and, by (6.2.3), the last term converges to 0 for m→ ∞; so, if fm := gnm χm, it converges to f in
W 1,2 for m→ ∞ and fm ∈C1

0(O) and we can conclude. �

REMARK 6.2.3. Thank to the above proposition, we have that, if O satisfies Hypothesis 6.1.3,
then W 1,2

0 (O) can be equivalently defined as the closure in W 1,2(O) of Lip0(O).

We return to consider the situation of the previous subsection: O will be a set which satisfies
Hypothesis 6.1.3, we will define for all n, Gn := G ◦ πFn ; we define On := G−1

n ((−∞,0)). We
remark that, for each n, Gn satisfies the Hypothesis 6.1.3, and it is a cylindrical set.

Here, given the set O = G−1((−∞,0)) and the sequence of sets On = G−1
n ((−∞,0)), we will

consider for each n ∈ N the Dirichlet form an on W 1,2
0 (On), i.e.

D(an) = { f ∈ L2(X)| f|X\On ≡ 0, f|On ∈W 1,2
0 (On)},

an( f ,g) =
ˆ

On

〈∇H f ,∇Hg〉 dγ;

we consider a the Dirichlet form in W 1,2
0 (O), i.e.

D(a) = { f ∈ L2(X)| f|X\O ≡ 0, f|O ∈W 1,2
0 (O)},

a( f ,g) =
ˆ

O
〈∇H f ,∇Hg〉 dγ.

By Theorem 6.2.2, D(a),D(an)⊆W 1,2(X) for all n ∈ N.

LEMMA 6.2.4. If f ∈C1
b(X), we have, for all p ∈ [1,+∞),

f ◦πn
W 1,p(X)−−−−→

n→∞
f .

PROOF. If fn := f ◦πFn we have fn→ f almost everywhere by the continuity of f and Theorem
2.4.2, and

∇H fn(x) = πn(∇H f ◦πFn(x));

we recall that for each Fn ⊂ H, for each h ∈ H we have |πn(h)|H ≤ |h|H (πFn is a projection in H)
and πn(h)−−−→

n→∞
h for all h ∈ H; so

|∇H fn(x)−∇H f (x)|H ≤ |πn(∇H f ◦πn(x))−πn(∇H f (x))|H+

+|πn(∇H f (x))|H −∇H f (x)|H ≤
≤ |∇H f (πn(x))−∇H f (x)|H + |πn(∇H f (x))−∇H f (x)|H ,
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the first term converges to 0 for almost every x by f ∈C1
b and Theorem 2.4.2, the second converges

to 0 because of the convergence of πn in H. By the dominated convergence theorem, we can
conclude �

Now, we want to prove the following result.

PROPOSITION 6.2.5. Let G be a function which satisfies Hypothesis 6.1.3, O and On defined
as above: if an is the sequence of the Dirichlet forms in W 1,2

0 (On) and a is the Dirichlet form in
W 1,2

0 (O), then an converges to a in the sense of Mosco.

PROOF. We have that, ρ(G−1(0)) < ∞, see ([26], Rem. 4.9 (i)) taking into account Remark
6.1.4 iii), hence γ(G−1(0)) = 0 (see Lemma 3.5.3).

So in our hypotheses γ(G−1(0)) = 0 i.e. γ(∂O) = 0.
We consider the first condition of the Mosco convergence: so, let fn a sequence of functions

s.t. fn ⇀ f in L2(X).
If liminfan( fn, fn) = +∞, there is nothing to prove; so, we suppose that liminfan( fn, fn) <

+∞, in particular it is not restrictive to suppose that, up to a subsequence, fn ∈ D(an) for every
n. Firstly, we prove that f|X\Ō ≡ 0. We define Un :=

⋃
∞
i=n Oi, it is a decreasing sequence of open

sets. fm|X\Om ≡ 0 for each m ∈ N; for each n ∈ N we have fm|X\Un ≡ 0 for all m ≥ n, and hence
f|X\Un ≡ 0 for all n ∈ N, because fm ⇀ f in L2(X), so f|⋃∞

i=1(X\Ui) ≡ 0.
We have also that

γ((X\Ō)\
∞⋃

i=1

(X\Ui)) = 0 :

in fact
X\Ō = {x ∈ X |G(x)> 0},

hence, for almost every x ∈ X\Ō there exists n0 ∈ N s.t. Gn(x) = G ◦ πn(x) > 0 for all n > n0
(because G is continuous and πn(x)−−−→

n→∞
x for almost every x ∈ X by Theorem 2.4.2, so, for such

a x, we have, for all n > n0, that x /∈ On, hence x /∈Un0 ; this yields x ∈
⋃

∞
i=1(X\Ui) .

Hence, f|X\Ō ≡ 0; for γ(∂O) = 0, we have that f|X\O ≡ 0.
Now, we consider the sequence fn; if liminfan( fn, fn) = +∞, there is nothing to prove; other-

wise, up to a subsequence, fn ∈ D(an) for all n ∈ N (hence for what we said fn is in W 1,2(X) and
fn|X\On ≡ 0), and it is uniformly bounded in W 1,2(X), so, up to a subsequence, fn ⇀ g in W 1,2(X)

for some g ∈W 1,2(X); clearly, fn ⇀ g also in L2(X) so g = f , therefore f ∈W 1,2(X) andˆ
X
|∇H f |2H dµ ≤ liminfan( fn, fn);

we already know f|X\O ≡ 0, then f|O ∈W 1,2
0 because f ∈W 1,2(X) and Theorem 6.2.2, and in that

case f ∈ D(a)) and a( f , f )≤ liminfan( fn, fn).

Now we consider the second condition of the Mosco convergence: let f ∈ L2(X), we look for
a sequence fn s.t. fn→ f in L2(X) and limsupan( fn, fn)≤ a( f , f ).

If f /∈ D(a), we can simply take fn := f for all n ∈ N. If f ∈ D(a), then f|O ∈W 1,2
0 (O) and

f|X\O ≡ 0, then by definition there exists a sequence of functions g̃m ∈C1
0(O) which approximates

f in W 1,2(O), s.t. ‖g̃m− f‖W 1,2(O) ≤ m−1; we will extend each g̃m to a function gm that is 0 on
X\O, and gm ∈C1

b(X) by the definition of C1
0(O), hence ‖g̃m− f‖W 1,2(X)≤m−1; for each gm we can
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define gm,n := gm ◦πFn which approximate gm in W 1,2(X) by Lemma 6.2.4 (because gm ∈C1
b(X)),

while gm,n|X\On ≡ 0, hence gm,n|On ∈C1
0(On)⊆W 1,2

0 (On).
We Remark that we cannot use a simple diagonal argument, because we have to define fn for

every n, not only up to a subsequence; we conclude with an argument similar to that of the last
part of Lemma 5.2.4.

For each m ∈ N the set

Am := {a ∈ N|a > m,‖gm,i−gm‖W 1,2(X) ≤ m−1 for all i≥ a},
is not empty (because gm,n → gm), and we can define am := minAm, we have that am > m and
Am = {a ∈ N,a > am}; for n ∈ N with n > a1 the set

Bn := {b ∈ N|n > ab}
is not empty; for each n, Bn is bounded by n (because b < ab < n for every b), so for every n > a1
we can define bn := maxBn. For such n, we have bn < n, moreover bn −−−→

n→∞
∞: in fact, for every

c ∈ N, for every n > ac we have c ∈ Bn (by definition of Bn) and so bn ≥ c.
For every n > a1, bn ∈ Bn by definition of bn, so by definition of Bn we have n > abn , hence,

by abn ∈ Abn and by the definition of Abn ,

‖gbn,n−gbn‖W 1,2(X) ≤ b−1
n

we already know that ‖gbn− f‖W 1,2(X) ≤ b−1
n , so, if fn := gbn,n, by bn −−−→

n→∞
∞ we have that fn→ f

in W 1,2(X), hence we concluded. �

We recall the definition of Jσ with zero Dirichlet boundary condition from L2(O) in W 1,2
0 (O).

We can give an equivalent definition: if Gσ−1 is the σ−1-resolvent of a Dirichlet boundary condi-
tions on O we can always extend f ∈ L2(O) as f̃ that is 0 out of O and

Jσ ( f ) = σGσ−1( f̃ )|O.

In the same way we can define Jσ ,n.
By Theorem 5.1.3 and Proposition 6.2.5 we can easily deduce this Corollary.

COROLLARY 6.2.6. In our hypotheses about O, and On, let An be the Ornstein-Uhlenbeck
operator with zero Dirichlet boundary conditions in L2(On), A the Ornstein-Uhlenbeck operator
with zero Dirichlet boundary conditions in L2(O), σ > 0, Jσ ,n := (I−σAn)

−1, Jσ := (I−σA)−1;
then for every x ∈ L2(X), we have that Jσ ,n(x)→ Jσ (x) in L2(X).

REMARK 6.2.7. We have collected in Subsection 7.3.2.1 some examples of sets satisfying
Hypothesis 6.1.3.





CHAPTER 7

Gradient contractivity of operators

This is the main Chapter of the thesis: a description of its content is in the Introduction; the
concepts of Sobolev spaces in Wiener spaces (Chapter 3), Mosco convergence (Chapter 5) and
that of resolvent (Section 1.1) will be largely used.

In Section 7.1 the setting is defined, together with concepts and results which are used in
Sections 7.2 and 7.4; it is based upon Section 8 of the paper [12] (due to H. Brezis) about the
resolvent of the Laplacian in finite dimension: if O is a convex bounded set with regular boundary
in X = Rd and L is the Laplace operator in O with null Dirichlet boundary conditions, if σ > 0, if
y ∈W 1,1

0 (O,L d)∩L2(O,L d), and u := (I−σL)−1y (in the sense of resolvents), then

(7.0.1)
ˆ

O
|∇u(x)| dx≤

ˆ
O
|∇y(x)| dx.

This result is recalled (with some minimal modifications) in Proposition 7.2.4. In this section we
use regularity of solutions of elliptic equations (see Appendix).

In Section 7.2 we extend (7.0.1) to the Gaussian case in finite dimension (with null Dirichlet
boundary condition), adapting the results in section 8 of the paper [12]; here, L is the Ornstein-
Uhlenbeck operator (with null Dirichlet boundary conditions), see Subsection 3.4.1.

In Section 7.3 we use the concepts and the results of Chapter 6, together with the above Section
and Mosco convergence (Chapter 5: we pose a particular condition on O seen in Chapter 6, which
we use to have the Theorem 6.2.2 about W 1,2

0 (O); moreover, we impose a condition, that we could
name Gaussian convexity; under this hypotheses (Hypothesis 7.3.5), for y ∈W 1,p

0 (O)∩L2(O) for
some p > 1, and u := (I−σL)−1y (L Ornstein-Uhlenbeck operator with null Dirichlet boundary
conditions) we have this inequality (Theorem 7.3.7)

(7.0.2)
ˆ

O
|∇Hu| dγ ≤

ˆ
O
|∇y| dγ.

which is the most important result of the section.
In Subsection 7.3.2.1 we provide two applications; one is an epigraph, the other one is in

(X ,γ) which represents the Brownian Bridge, seen in Section 2.6.

Section 7.4 is divided in two sections, with two important results.
In Subsection 7.4.1 we extend (7.0.1) to the case where L is the Laplace operator in O

with null Neumann boundary conditions and y ∈W 1,1(O,L d)∩ L2(O,L d), in Theorem 7.4.4
(main result of the Section). In Subsection 7.4.2, we extend the result to the case where L is
Ornstein-Uhlenbeck operator on O (open convex) with null Neumann boundary conditions and
y ∈
(
W 1,1∩L2

)
(O), Gaussian measure (Theorem 7.4.7); in this section we use Lemma 7.4.2.

In Section 7.5, we want to find a definition of bounded variation function on O condition
which is equivalent to that in [17] (see Section 4.2); in Proposition 7.5.9 we get that, if f ∈

111
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BV (O)∩L2(O) then there exists a sequence of approximations in variation in terms of functions
of W 1,1(O)∩L2(O) (we also use Proposition 3.2.23); in Theorem 7.5.11 we give a version of 7.0.2
for BV functions which are L2(O):

Dγ(Jσ (y))(O)≤ |Dγy|(O).

Moreover, with Corollary 7.5.13 (which resumes the main results of the Sections) we have (by
using Theorem 7.4.7) that, under the hypothesis that y ∈ L2(O), it is BV if and only if

limsup
σ→0

ˆ
O
|∇HJσ (y)| dγ <+∞

and if and only if there exists a sequence of functions fn ∈W 1,1 s.t. fn→ f in L1 and

limsup
n→+∞

ˆ
O
|∇H fn|H dγ < ∞.

Moreover, by using a result in [24](thesis) and [23](submitted paper), we can find a result
similar to Corollary 7.5.13 but with the Tt Ornstein-Uhlenbeck semigroup with null Neumann
boundary conditions instead of Jσ (Corollary 7.5.16).

7.1. Preliminaries about gradient contractivity of operators

In this Chapter we will consider:

i) Rd endowed with the Lebesgue measure;
ii) X = Rd with the standard Gaussian measure γd ;

iii) a finite or infinite dimensional separable Banach space X with non-degenerate Gaussian
measures γ .

In case i), we consider an open set U ⊂ Rd , in the other cases, an open set O ⊂ X with some
properties.

In the setting of the Lebesgue measure, we will consider the Laplace operator with Dirichlet
boundary condition ∆D on U , the Laplace operator with Neumann boundary condition ∆d on U .

In the setting of Gaussian measure, we recall the results about Ornstein-Uhlenbeck operator
with Dirichlet boundary condition LD (Subsection 3.4.3) and Ornstein-Uhlenbeck operator with
Neumann boundary condition Ld .

For what we said, the operators ∆D, ∆d are associated to contractive strongly continuous semi-
groups and to contractive resolvent semigroups on L2(U,L d); in the same way, LD, Ld are asso-
ciated to contractive strongly continuous semigroups and to contractive resolvent semigroups on
L2(O).

In each of thise cases, we define for σ > 0 an operator Jσ =(I−σA)−1 (where A=∆D,∆d ,LD,Ld);
in all cases we have that for y ∈ L2, Jσ (y) ∈W 1,2 (it is regularizing) and we can prove that, for
y ∈W 1,1∩L2

‖∇Jσ (y)‖L1 ≤ ‖∇y‖L1 ;

the case for ∆D is proved in ([12], Section 8); we will prove the other cases.
Hereafter u :== Jσ y, so u−σLu = y.
Our strategy will be, at first, to prove the result for the finite dimensional case, then for the

infinite dimensional case.



7.1. PRELIMINARIES ABOUT GRADIENT CONTRACTIVITY OF OPERATORS 113

REMARK 7.1.1. For an open set O, if y ∈W 1,1(O) then ∇Hyγ is obviously a countably ad-
ditive vector measure with bounded variation. We have that the functional y 7→

´
O |∇Hy|H dγ

defined from W 1,1(O) in [0,+∞), is lower semicontinuous with respect to the L log
1
2 L(O) norm;

analogously, y 7→
´

U |∇y| dL d is lower semicontinuous with respect to the L1(U,L d) norm.
We write the simple proof for the Gaussian case (the Lebesgue case is analogous): if

yn
L(logL)

1
2 (O)−−−−−−−→

n→∞
y

and y ∈W 1,1(O), then (by Lemma 1.2.36)ˆ
O
|∇Hy|H dγ =

= sup
m∈N,ϕ∈Lip0,m(Ω,H),‖ϕ‖L∞≤1

ˆ
O
〈∇Hy,ϕ〉H dγ =

(by Remark 3.1.17)

= sup
m∈N,ϕ∈Lip0,m(Ω,H),‖ϕ‖L∞≤1

ˆ
O

ydivγϕ dγ =

= sup
m∈N,ϕ∈Lip0,m(Ω,H),,‖ϕ‖L∞≤1

lim
n→∞

ˆ
O

yndivγϕdγ ≤

≤ liminf
n→∞

sup
m∈N,ϕ∈Lip0,m(Ω,H),,‖ϕ‖L∞≤1

ˆ
O

yndivγϕdγ =

(by Remark 3.1.17)

= liminf
n→∞

sup
m∈N,ϕ∈Lip0,m(Ω,H),‖ϕ‖L∞≤1

ˆ
O
〈∇Hyn,ϕ〉H dγ = liminf

n→∞

ˆ
O
|∇Hyn|H dγ.

If O is bounded, we have that the functional is lower semicontinuous with respect to the L1(O)
norm (because divγϕ ∈ L∞(O) if ϕ ∈ Lip0(O,H)).

We introduce u = Jσ y, so u−σLu = y.
Our strategy will be, at first, to prove the result for the finite dimensional case, then for the

infinite dimensional case.
In the finite dimensional case (with measure µ = L d or γd) the general idea will be to prove

the result for y smooth, and we can conclude because of the density of smooth function in W 1,p,
of the continuity of Jσ and of the lower semicontinuity of the functional

´
O |∇ · | dµ .

So, in O ⊂ Rd , we consider A = ∆ = ∑
d
i=1 ∂ 2

xixi
, Laplace operator in C2, for y ∈ C∞(O), let

u ∈C2(O) s.t. u−σAu = y, and

ϕ(ξ ) = |∇u(ξ )|, ϕε(ξ ) =
√

ε2 + |∇u(ξ )|2.

In [12], Lem. 8.2 it is proved that if O is a bounded convex domain with boundary C2 then

ϕ2

ϕε

−σϕε ≤ |∇y|

in each point.
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Our first goal is to prove the same estimate for A = L = ∆−∑
d
i=1 xi∂xi .

So, let y be C∞(O); let u ∈ C2(O) s.t. u−σAu = y, then u ∈ C∞(U) in each bounded set U
in O due to the regularity and ellipticity of the operator I +σA (see e.g. [38], 6.3.1, Theorem 3)
hence u ∈C∞(O). In this hypothesis, we introduce ϕ and ϕε ∈C∞(O) by setting:

ϕ(ξ ) = |∇u(ξ )|, ϕε(ξ ) =
√

ε2 + |∇u(ξ )|2.

Firstly, we prove the equivalent of Lemma 8.2 in [12].

LEMMA 7.1.2. In this setting, we have, in every point of the domain O,

(7.1.1)
ϕ2

ϕε

−σLϕε ≤ |∇y|.

PROOF. We will use Di for ∂

∂xi
and D2

i j for ∂ 2

∂xi∂x j
.

In the same way of [12], we have

(7.1.2) ϕεD jϕε =
d

∑
i=1

DiuD2
i ju,

and

|∇ϕε |2 ≤
∑

d
j=1

(
∑

d
i=1 DiuD2

i ju
)2

ϕ2
ε

≤
∑

d
j=1

(
∑

d
i=1(Diu)2

∑
d
i=1(D

2
i ju)

2
)

ϕ2
ε

≤

(7.1.3) ≤ ∑
d
i=1 (Diu)

2

ϕ2
ε

d

∑
i, j=1

(D2
i ju)

2 ≤
d

∑
i, j=1
|D2

i ju|2,

by using (7.1.2) we have

D2
j jϕε = D j

∑
d
i=1 DiuD2

i ju

ϕε

=

(7.1.4) =
∑

d
i=1 |D2

i ju|2

ϕε

+
∑

d
i=1 DiuD3

j jiu

ϕε

−
∑

d
i=1 D jϕεDiuD2

i ju

ϕ2
ε

.

We recall that, for each f ∈C∞,

DiL f (ξ ) = ∆Di f (ξ )−
d

∑
j=1

D2
i j f (ξ )ξ j−Di f (ξ )

and, for all ξ ,

LDi f (ξ ) = ∆Di f (ξ )−
d

∑
j=1

D2
i j f (ξ )ξ j = DiL f (ξ )+Di f (ξ );

so,

(7.1.5) Di f LDi f ≥ Di f DiL f .

Now, by using 7.1.4 and 7.1.2, we can do the calculation, for all ξ ∈ Rd ,

ϕεLϕε(ξ ) = (ϕε∆ϕε)(ξ )−ϕε(ξ )∇ϕε(ξ ) ·ξ =

=

(
ϕε

(
∑

d
i, j=1 |D2

i ju|2

ϕε

+
∑

d
i=1 Diu∆Diu

ϕε

−
∑

d
i, j=1 D jϕεDiuD2

i ju

ϕ2
ε

))
(ξ )+
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−ϕε(ξ )∇ϕε(ξ ) ·ξ =

=

ϕε

∑
d
i, j=1 |D2

i ju|2

ϕε

+
∑

d
i=1 Diu∆Diu

ϕε

−
∑

d
j=1 D jϕε

(
∑

d
i=1 DiuD2

i ju
)

ϕ2
ε

(ξ )+

−
d

∑
i, j=1

ξ j
(
DiuD2

i ju
)
(ξ ) =

(by using one more time (7.1.2) and reordering the terms)

=
d

∑
i, j=1
|D2

i ju|2(ξ )+
d

∑
i=1

Diu(ξ )

(
∆Diu(ξ )−

d

∑
j=1

ξ jD2
i ju(ξ )

)
+

−
ϕ2

ε ∑
d
j=1 D jϕεD jϕε

ϕ2
ε

(ξ ) =

=

(
d

∑
i, j=1
|D2

i ju|2 +
d

∑
i=1

DiuL Diu

)
(ξ )−|∇ϕε |2(ξ )≥

(by (7.1.5))

≥
d

∑
i, j=1
|D2

i ju|2(ξ )+
d

∑
i=1

Diu(ξ )DiL u(ξ )−|∇ϕε |2(ξ ) =

(recalling (7.1.3))

=

(
d

∑
i, j=1
|D2

i ju|2 +
d

∑
i=1

Diu
(
σ
−1Diu−σ

−1Diy
))

(ξ )−|∇ϕε |2(ξ ) =

=

(
d

∑
i, j=1
|D2

i ju|2 +σ
−1|∇u|2−σ

−1
∇u ·∇y

)
(ξ )−|∇ϕε |2(ξ )≥

(recalling |∇ϕε |2 ≤ ∑
d
i, j=1 |D2

i ju|2)

≥
(
σ
−1

ϕ
2−σ

−1
ϕ|∇y|

)
(ξ );

then
−σϕεLϕε +ϕ

2 ≤ ϕ|∇y|,
and, since ϕ

ϕε
≤ 1 we can conclude. �

DEFINITION 7.1.3. Let O be a domain with a C2-regular boundary ∂O i.e. for each point
x ∈ ∂O there is a ball B centered in x, s.t. ∂O∩B is locally the graph of a C2 function Ψx s.t.
∇HΨ(x) = 0; we say that ∂O has positive mean curvature in x if ∆Ψx is positive in the point
corresponding to x with the positive direction of the axis entering in ∂O).

It is easy to see that a regular convex set has positive mean curvature in every point of its
boundary.

This result is ([12], Prop. 8.1) rewritten:
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PROPOSITION 7.1.4. If O⊆Rd is an open, bounded set with C2,α boundary with positive mean
curvature; if Jσ = (I−σ∆)−1 with ∆ Laplacian operator with Dirichlet null boundary conditions
then ˆ

O
|∇Jσ (y)|(x) dx≤

ˆ
O
|∇y|(x) dx

for all y ∈ (W 1,1
0 (O,L d).

REMARK 7.1.5. We imposed C2,α to have that Jσ (y) is C2(Ō) (see Appendix); this condition
is necessary in the proof of ([12], Prop. 8.1).

In Prop. 8.1 in [12], O must be convex, but in the proof it is used only the fact that the boundary
has positive mean curvature.

The proof of ([12], Prop. 8.1) is very similar to that of the Proposition 7.2.4 in the next section.

7.2. Case Dirichlet

7.2.1. Case Dirichlet O 6=X , finite dimension. We will consider Rd with the standard Gauss-
ian measure γd . We will suppose O⊆ Rd is an open C2,α

loc regular set. which means that O = {g <

0} with g∈C2,α
loc (R

2) with α > 0). We will impose on the boundary a kind of condition of positive
Gaussian mean curvature.

Under such conditions, we define L Ornstein-Uhlenbeck operator with zero Dirichlet boundary
condition, that is, L is associated to the Dirichlet form in W 1,2

0 (O) in the sense of Definition 3.2.12).
We want to prove that, if Jσ = (I−σL)−1 (where L is the O), then

(7.2.1)
ˆ

O
|∇Jσ (y)| dγ

d ≤
ˆ

O
|∇y| dγ

d , ∀y ∈ (W 1,1
0 ∩L2)(O).

We define the (inner) mean curvature of ∂O at a point as ∆ψ where ψ is the function of the
graph with the axis oriented inside O.

Equivalently, if O = {g < 0} with g ∈C2(R2), we have that the mean curvature on the point
of ∂O is

(7.2.2) H∂O =
∆g
|∇g|

− D2g(∇g,∇g)
|∇g|3

considered as a bilinear operator.

REMARK 7.2.1. To be more precise, H∂O is the sum of the principal curvatures and the mean
curvature is given by 1

d−1 H∂O.

We recall the Definition of W 1,p
0 (O) (Definition 3.2.12): let f ∈W 1,p

0 (O), then it is a limit
of functions in C1

0(O); we have that it can be approximated by a sequence of functions fn in
C1

0(O) with bounded support (because γd is a finite measure). This means that fn ∈W 1,p
0 (O,L d);

so, we can construct a sequence of approximating functions which are in Cc(O), such that they
approximate f also in f ∈W 1,p

0 (O).

DEFINITION 7.2.2. If O⊆ Rd is a set with boundary C2,α
loc -regular, the Gaussian mean curva-

ture in a point x ∈ ∂O is H ′
∂O(x) = H∂O(x)− x ·ν∂O where H∂O is the mean curvature and ν∂O is

the outer normal to ∂O.
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We will suppose that O is bounded and that it has a C2,α
loc boundary for some α > 0, with

everywhere non negative Gaussian mean curvature.
Now, we define L as the Ornstein-Uhlenbeck operator in O with zero Dirichlet boundary

condition; we introduce Jσ in L1(O), and, for each y ∈ L2(O), the function u = Jσ (y) is well
defined and belongs to W 1,2

0 (O).
Now, we suppose that y ∈C∞

c (Ō), by Remark A.0.1 (in the Appendix) we have u ∈C2(Ō).
We can define ϕ = |∇u| and ϕε =

√
ε +ϕ2, we will find the equivalent of the Lemma 7.1.2.

We will change the coordinates in a way such that 0 ∈ ∂O, and that ∂Ω is the graph of a
function ψ : Rd−1→ R, with ψ(0) = 0, ∇ψ(0) = 0; the graph is oriented with the outer normal
downward. We redefine u, ϕ and ϕε in this case (the main difference will be that now γ is not
centered; we denote the new center by x).

LEMMA 7.2.3. In the above hypotheses,

Ddϕε(0) = (Ddu(0))2(ε2 +(Ddu(0))2)−
1
2 (∆ψ(0)− xd) .

PROOF. We repeat the argument of [[12], Sec. 8]. Arguing as in the proof of [12], (8.11), we
consider that u(ξ ′,ψ(ξ ′)) = 0 where ξ ′ ∈ Rd−1, and then we have

Diu+DduDiψ = 0,

D2
iiψ +2D2

iduDiψ +D2
dd(Diψ)2 +DduD2

iiψ = 0,

and Diψ = 0; hence we have Diu(0) = 0 and

D2
iiu(0)+Ddu(0)D2

iiψ(0) = 0

for all i≤ n−1: so (recalling that L can be applied to u also on the boundary because u∈C2
loc(Ō)),

we can write
Lu(0) = D2

ddu(0)−Ddu(0)∆
ξ
′ψ(0)−Ddu(0)(0− xd),

clearly Lu(0) = 0 because u,y are 0 on 0, so

D2
ddu(0) = Ddu(0)(∆

ξ
′ψ(0)− xd);

by (7.1.2) we have

ϕεDdϕε =
d

∑
i=1

DiuD2
diu

(this is true also on the boundary, because u ∈C2
loc(Ō)) so, using the above equalities, we have

ϕεDdϕε(0) = Ddu(0)D2
ddu(0) = (Ddu)2(0)

(
∆

ξ
′ψ(0)− xd

)
,

and we can conclude. �

Now we can argue as in the proof of ([12],Proposition 8.1); we assume that the outward normal
to ∂O is η = (0, . . . ,0,−1), then ∂ϕε

∂η
(0) =−Ddϕε(0), and that |Ddu(0)|= |∇u(0)|= ϕ(0), since

u|∂O = 0 we have

∂ϕε

∂η
(0) =−(Ddu(0))2

ϕε(0)
(∆ψ(0)− xd) =−

ϕ2(0)
ϕε(0)

(∆ψ(0)− xd);
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but ∆
ξ
′ψ(0)− xd = H ′S(0), and, by hypothesis, H ′S ≥ 0. Now,

ˆ
O

Lϕε dγ
d =

1√
2π

ˆ
∂O

∂ϕε

∂n
ϕ dS≤ 0,

where g(x) := (2π)−
d
2 exp−‖x‖

2

2 and S is the measure given by the area of ∂O.
Now, integrating 7.1.1, we have thatˆ

O

ϕ2

ϕε

dγ
d−σ

ˆ
O

Lϕε dγ
d ≤

ˆ
O
|∇y| dγ

d ,

hence ˆ
O

ϕ2

ϕε

dγ
d ≤

ˆ
O
|∇y| dγ

d ;

by letting ε → 0, we obtain the inequality 7.2.1.
The previous computations has been done for y ∈ C∞

c (Ō), but for the density of C∞
c (Ō) in

W 1,p
0 (O), by the Remark 7.1.1 and the continuity of Jσ in L2, we have proved the next Proposition.

PROPOSITION 7.2.4. In Rd , if O⊆ X is a C2,α
loc-regular set for some α > 0 s.t. H ′

∂O(x)≥ 0 at
each point x ∈ ∂O, if σ > 0, L is the Ornstein-Uhlenbeck operator on L2(O) with zero Dirichlet
boundary conditionn and Jσ := (I−σL)−1,thenˆ

O
|∇Jσ (y)| dγ

d ≤
ˆ

O
|∇y| dγ

d

for all y ∈W 1,2
0 (O).

REMARK 7.2.5. The above Proposition could be easily extended to the case y ∈ (W 1,2
0 ∩

L2)(O), but we are more interested to the infinite dimensional case, in which the extension is
impossible with our instruments.

7.3. Case Dirichlet O 6= X , infinite dimension

We will use the notations of the above chapters.

7.3.1. Cylindrical case. For some α > 0, let O be a cylinder, O = O1×X⊥m where O1 ⊆ Fm
(Fm =< h1, . . . ,hm > subspace of Rγ(X∗)), X⊥m is the closure in X of F⊥ (orthogonal of F in
H), O1 is a regular set in F with C2,α

loc-regular boundary: i.e. there exists g ∈ C2,α
loc (F) s.t. O1 =

g−1((−∞,0)); if we define G(x) := g(ĥ1(x), . . . , ĥm(x)), we have that O = G−1((−∞,0)), and we
can define the space W 1,p(O) and W 1,p

0 (O).

DEFINITION 7.3.1. FC1
0(O) will be the set of all C1 cylindrical functions that are 0 on ∂O:

y ∈FC1
0(O) if y(·) = v(ĥ1(·), . . . , ĥm(·)) for some v ∈ C1

0,b(O1) i.e. v ∈ C1
b(Rn) with support in

O1.

REMARK 7.3.2. For W 1,p
0 (O) we follow the definition of 3.2.12; it is equivalently defined

as the closure in norm W 1,p of FC1
0(O): in fact, if f ∈ C1

0(O), and if fn := En f is the cylindri-
cal approximation relative to Fn (see Section 2.4), clearly fn will be 0 out of O and fn → f in
W 1,p(X), and we can write fn(x) = v(ĥi(x), . . . , ĥn(x)) where h1, . . . ,hn ∈ H and v ∈ C1

b(Fn) (we
have supp( fn)⊆ Ō×F⊥).
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The following Proposition will be generalized in Theorem 7.3.7.

PROPOSITION 7.3.3. In the above setting, if H ′
∂O(x)≥ 0 at each point x ∈ ∂O, if σ > 0, L and

Jσ are the operators associated to the zero Dirichlet boundary conditions, then
´

O |∇HJσ (y)| dγ ≤´
O |∇Hy| dγ for all y ∈W 1,2

0 (O).

PROOF. For each n > m, we define On := πFn(O), we have that O is isometric to On×X⊥n ,
and On is isometric to Om×Rn−m.

At first, we suppose that y ∈FC1
0(O) and that there exists n > m s.t. y(·) = v(ĥ1(·), . . . , ĥn(·))

for some v ∈ C∞
0 (On). On L2(Fn) we can define the Ornstein-Uhlenbeck operator Ln and the

bounded operator Jσ ,n with respect to On, in the case Dirichlet; we will have that

(Jσ ,nv)◦πFn = Jσ y,

moreover
‖∇Hy‖L1(O,H) = ‖∇v‖L1(On,Rn)

and
‖∇HJσ y‖L1(O,H) = ‖∇Jσ ,nv‖L1(On,Rn).

Hence, by using Proposition 7.2.4 we haveˆ
O
|∇HJσ (y)|H dγ =

ˆ
On

|∇Jσ ,nv| dγ
n ≤

ˆ
On

|∇v| dγ
d =

ˆ
O
|∇Hy| dγ,

and we have concluded, in the case FC1
0(Ō).

Now, let y be in W 1,2
0 (O); it can be approximated in W 1,2 by a sequence of function yn ∈

FC1
0(O) by Remark 7.3.2; we already know that Jσ yn converges to Jσ y in L2; we have that, for a

couple of function yn,ym ∈W 1,2
0 (O)ˆ

O
|∇HJσ (yn− ym)|Hdγ ≤

ˆ
O
|∇H(yn− ym)|Hdγ,

so, by the linearity of Jσ and of ∇H , we have that Jσ yn converges to Jσ y in W 1,2
0 (O). So, if we

extend those functions to 0 out of O, we have a convergence in W 1,2(X) and so also in L2(X)

and L log
1
2 L(X); and by lower semicontinuity of the functional

´
O |∇H · |H dγd with respect to

L log
1
2 L(X), we can conclude. �

7.3.2. Generalization to non-cylindrical case. We recall a technical remark that will be used
later.

REMARK 7.3.4. If {ai,n}i∈I,n∈N for some set I is a sequence, then

sup{limsup
n→∞

ai,n|i ∈ I} ≤ limsup
n→∞

sup{ai,n|i ∈ I};

in fact, for each j ∈ I, n ∈ N
a j,n ≤ sup{ai,n|i ∈ I},

so
limsup

n→∞

a j,n ≤ limsup
n→∞

sup{ai,n|i ∈ I},

hence we can conclude.
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We will use the hypotheses and notations of Chapter 6.
In this setting, for a regular function f on X , we can write

L f (x) :=
∞

∑
i=1

∂
2
hi,hi

f (x)−
∞

∑
i=1

∂hi f (x)ĥi(x).

πn will be the projection on Fn = 〈h1, . . . ,hn〉. For a function g on Rn, we define, for all n ∈ N

Lng(x) :=
n

∑
i=1

∂
2
i,ig(x)−

n

∑
i=1

∂ig(x)xi.

We recall that if O = G−1(−∞,0), ∂O = G−1(0); we have that ∂O has in each point an outer
H-normal that plays the role of the outer normal to ∂O.

The next Remarks are inspired also by [28].
We define, for all n ∈ N, the cylindrical function Gn = G◦πn, and

Hn(x) =
LGn(x)
|∇HGn(x)|H

− D2
HGn(x)(∇HGn(x),∇HGn(x))

|∇HGn(x)|3H
.

For n ∈ N, we will call On := G−1
n ((−∞,0)), it will be a cylindrical approximation of O; then

On will be a cylinder Cn×X0 for some Banach space X0 and Cn = g−1
n ((−∞,0)) where gn :Rn→R,

gn = G◦ I where I is the identification of Rn with On; we introduce on Rn the function

Hn(x) =
Lngn(x)
|∇gn(x)|

− D2gn(x)(∇gn(x),∇gn(x))
|∇gn(x)|3

(where Ln is the Ornstein Uhlenbeck operator for smooth functions in Fn with Gaussian standard
measure γn); clearly we have

Hn = Hn ◦πn.

HYPOTHESIS 7.3.5. We suppose that Hypothesis 6.1.3 is verified, and moreover that for some
k ∈ N, we have πk(∇HG) 6= 0 on ∂O and that G◦πn|Fn is C2,α

loc in Fn for all n ∈ N.
We suppose that, for some n0 ∈ N, Hn(x)≥ 0 for all x ∈ ∂On, for all n > n0.

We remark that, in the above hypotheses, we can apply Corollary 6.2.6 because Hypothesis
7.3.5 contains Hypothesis 6.1.3.

REMARK 7.3.6. If n > k , then gn is C2,α and satisfies the hypothesis of the implicit function
theorem (because πk(∇HG) 6= 0) and Cn is an open set with C2,α boundary (see e.g [36], Appendix
A, Corollary A.4).

Cn = g−1
n ((−∞,0)),

and on ∂Cn = g−1
n (0) we have ν∂Cn =

∇gn
|∇gn| . On the boundary, Hn(x) coincides with the Gaussian

mean curvature defined in Definition 7.2.2: in fact for x ∈ ∂Cn, recalling (7.2.2),

H ′
∂Cn

(x) = H∂Cn(x)− x ·ν∂Cn =
∆gn

|∇gn|
− D2gn(x)(∇gn(x),∇gn(x))

|∇gn(x)|3
− x · ∇gn

|∇gn|
=Hn(x).

In particular, if Hn(x) is always positive, for all n ∈ N the set On satisfies the hypotheses of
Theorem 7.3.3.

As usual, u := Jσ (y).
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THEOREM 7.3.7. Let O be an open set which satisfies to Hypothesis 7.3.5, if σ > 0, L is the
Ornstein-Uhlenbeck operator with zero Dirichlet boundary condition on O, and Jσ := (I−σL)−1,
then

´
O |∇Hu|H dγ ≤

´
O |∇Hy|H dγ for all y ∈W 1,2

0 (O).

PROOF. By Remark 7.3.6, and by Proposition 7.3.3, we have that, for all n > n0, (n0 defined
in Hypothesis 7.3.5) if y ∈W 1,2

0 (On), if Ln is the Ornstein-Uhlenbeck operator with zero Dirichlet
condition in On, if Jσ ,n = σ−1R(σ−1,Ln), then

´
On
|∇HJσ ,n(y)| dγ ≤

´
On
|∇Hy| dγ .

We will suppose y ∈ C1
0(O) (hence y ∈ L2(O)), hence we can define, for every n ∈ N, the

cylindrical C1 function yn = y◦πn, then yn ∈C1
0(On) and we can define un = Jσ ,n(yn) in L2: hence

un ∈W 1,2(On) and ˆ
On

|∇Hun|H dγ ≤
ˆ

On

|∇Hyn|H dγ

by Proposition 7.3.3.
We remark that, by Theorem 6.2.2, yn can always be extended to X , by setting yn = 0 out of

On (and y can be extended to X in the same way). Now, by Lemma 6.2.4 we have thatˆ
On

|∇Hyn|H dγ →
ˆ

O
|∇Hy|H dγ.

We have

(7.3.1) liminf
n→∞

ˆ
On

|∇Hun|H dγ ≤ lim
n→∞

ˆ
On

|∇Hyn|H dγ =

ˆ
O
|∇Hy|H dγ.

We remark that u ∈W 1,2
0 (O) and un ∈W 1,2

0 (On) for every n ∈ N, hence by Theorem 6.2.2,
we can extend u,un to functions ũ, ũn ∈W 1,2(X) (ũ|X\O ≡ 0, ũn|X\On ≡ 0). By Corollary 6.2.6, we

have that un→ u in L2(X) (and then also in L log
1
2 L(O)). Hence, by Remark 7.1.1

‖∇Hu‖L1(X ,H) ≤ liminf
n→∞

‖∇Hun‖L1(X ,H).

Now by (7.3.1), we can concludeˆ
O
|∇Hu|H dγ ≤

ˆ
O
|∇Hy|H dγ,

in the case of y ∈ C1
0(O). For the case W 1,2

0 (O), we recall that C1
0(O) is dense in W 1,2

0 (O) by
Definition 3.2.12, and then we can conclude because Jσ is continuous from L2 in L2, because Lp2

is continuously embedded in L log
1
2 L and

´
O |∇H · |H dγ is lower semicontinuous with respect to

L log
1
2 L. �

7.3.2.1. Examples .
Example 1. Epigraphs. Let X be a Hilbert space (see Subsection 2.5). We consider a basis

{hi}i∈N in Rγ(X∗). We want that O = G−1((−∞,0)) is a the epigraph of a function.
For simplicity, let Φ be a function on all X , we suppose ∂h1(Φ)≡ 0 everywhere (so, Φ can be

seen as a function with domain given by an hyperplane of X , Φ(x) = Φ(x−π1(x))) and we set

G(x) := ĥ1(x)+Φ(x).

Now, on Φ we suppose (in addition to ∂h1(Φ) ≡ 0 everywhere): Φ ◦πn ∈C2,α
loc(Fn) for every

n ∈ N (by identifying Fn with Rn), for some α > 0; ∇HΦ ∈ Rγ(X∗) everywhere, |∇HΦ|H and
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|D2
HΦ|HS are bounded, and, for some C,C1,C2,C3 > 0 independent on h,n∈H, we have φ(x)≥C,
|D2

HΦ|HS(x)≤C1, ∇̂HΦ(x)(x)≤C2 (·̂ is, as usual the function Rγ(X∗)→ X∗) and
∞

∑
i=2
|D2

HΦ(yn(x))(hi,hi)|H ≤C3

for every x ∈ X , with C1 +C2 +C3 ≤C.
Now, for n≥ 1,

Gn(x) = ĥ1(x)−Φ(πn(x)−π1(x)),
(it is C2,α on Fn) hereafter we will write yn(x) := πn(x)−π1(x), so Gn(x) = ĥ1(x)−Φ(yn(x)); then

∇HG(x) = h1 +∇HΦ(x−π1(x)),
(clearly πn(∇HG) 6= 0 everywhere for every n)

LG(x) =−ĥ1(x)+LΦ(x−π1(x)),

∇HGn(x) = h1 +πn (∇HΦ(yn(x)))

LGn(x) =−ĥ1(x)+
n

∑
i=2

(
−D2

HΦ(yn(x))(hi,hi)+ ĥi(x)〈DHΦ(yn(x)),hi〉H
)
,

and by ([26], 5.2) the Hypothesis 6.1.3 is verified; moreover, on G−1(0) we have

Hn(x) =
LGn(x)
|∇HGn(x)|

− D2
HGn(x)(∇HGn(x),∇HGn(x))

|∇HGn(x)|3
=

(since ĥ1(x) =−Φ(x) in G−1(0))

=
Φ(x)+∑

n
i=2
(
−D2

HΦ(yn(x))(hi,hi)+ ĥi(x)〈DHΦ(yn(x)),hi〉H
)√

1+∑
n
i=2 〈∇HΦ(yn(x)),hi〉2H

+

−D2
HΦ(yn(x))(∇HΦ(yn(x)),∇HΦ(yn(x))(

1+∑
n
i=2 〈∇HΦ(yn(x),hi〉2H

) 3
2

;

hence we have
Hn(x)≥

≥ Φ(x)−∑
∞
i=2 |D2

HΦ(yn(x))(hi,hi)|H − ∇̂HΦ(x)(x)√
1+∑

n
i=2 〈∇HΦ(yn(x)),hi〉2H

+

+
−D2

HΦ(yn(x))|∇HΦ|2H√
1+∑

n
i=2 〈∇HΦ(yn(x)),hi〉2H

≥

≥ C−C1−C2−C3√
1+∑

n
i=2 〈∇HΦ(yn(x)),hi〉2H

≥ 0.

then G satisfies Hypothesis 7.3.5.
In particular, if Φ ≡ C ≥ 0 everywhere, it satisfies the above condition: so, the halfspace

{ĥ1 ≤−C} satisfies the condition if C < 0.
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Example 2. Pinned Wiener space (Brownian bridge). For this example, we refer to ([28],
Example 5.4).

Let Y = C([0,1]). We recall the concept of Brownian Bridge (see Subsection 2.6.3); it is
represented by a Wiener space (X ,γW ) where X = L2[0,1], the Cameron-Martin space is H =

W 1,2
0 ((0,1)). We remark that, for every h ∈ H,

(7.3.2) ‖h‖C([0,1]) ≤
ˆ 1

0
|h′(t)| dt ≤ |h|W 1,2

0 ((0,1)) = |h|H .

We assume that g ∈C2,α(R) is a function with bounded first and second order derivative in R
(let c be the Hölder constant of g′′) such that, for some C > 0, for every ξ ,η ∈ R,

(7.3.3) |g′′(ξ )−g′′(η)| ≤C|ξ −η |(|ξ |+ |η |),
(so, in particular g′′ is Liploc) and moreover, for some a > 0, α > 0 and β1,β2 ∈ R it satisfies
|g′(ξ )| ≥ a (hence g′(ξ ) 6= 0 for every ξ ) and

(7.3.4) αg(ξ )+β1 ≤ ξ g′(ξ )≤ αg(ξ )+β2

for all ξ ∈ R.
The above assumptions are satisfied by g = p/q for q positive polynomial of degree n∈N and

p polynomial of degree n+ 1 s.t. g′(ξ ) 6= 0 for all ξ ∈ R (in this case, g has an asymptote l, the
angular coefficient of l will be α).

PROPOSITION 7.3.8. Given r in the range of g and r < α
−1
1 (−β1−

‖g‖C2
b (R)

6 ), we define

G(x) :=
ˆ 1

0
g(x(s)) ds− r

on X; we have that O := G−1((−∞,0)) satisfies Hypotheses 7.3.5(see also proof of [28], Prop.
5.1).

In fact, G is Fréchet differentiable with gradient given by

(DG(x))(h) =
ˆ 1

0
g′(x(s))h(s) ds,

so G is H-differentiable and, for every h ∈ H,

〈∇HG(x),h〉H =

ˆ 1

0
g′(x(s))h(s) ds

so

|∇HG(x)|2H ≤
ˆ 1

0
|g′(x(s))|2 ds≤ ‖g‖2

C1
b(R)

and moreover for x,y ∈ X ,

|∇HG(x)−∇HG(y)|2H ≤
ˆ 1

0
|g′(x(s))−g′(y(s))|2 ds≤

≤ ‖g‖2
C2([0,1]) |x− y|2X

hence G ∈C1
b(X ,H), D2

HG is everywhere defined and, for every h,k ∈ H,

D2
HG(x)(h,k) =

ˆ 1

0
g′′(x(s))h(s)k(s) ds.
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Recalling (7.3.2),

|D2
HG(x)(h,k)| ≤ ‖g‖C2

b(R)
‖h‖C([0,1]) ‖k‖C([0,1]) ≤ ‖g‖C2

b(R)
|h|H |k|H ,

and so

(7.3.5) |D2
HG|HS ≤ |g|C2

b(R)
.

Moreover, fixed h,k we have that if x1,x2 ∈ X

|D2
HG(x1)(h,k)−D2

HG(x2)(h,k)|=

=

∣∣∣∣ˆ 1

0
(g′′(x1(s))−g′′(x2(s)))h(s)k(s) ds

∣∣∣∣≤ c
ˆ 1

0
|x1(s)− x2(s)|αh(s)k(s) ds≤

(if c is the Hölder constant of g′′)

≤ c|h|X |k|X |x1− x2|α

hence G is C2,α on every F ≤ H with dim(F)< ∞.
If l ∈ g−1(r) (l exists because r is in the range of g), if x(s) = l for every s ∈ [0,1] then

x ∈ G−1(0), so

(7.3.6) G−1(0) 6=∅.

We recall that in Subsection 2.6.3 is defined an orthonormal basis {ei}i∈N with eigenvalues
λk = (πk)−2, and H has an orthonormal basis of eigenvector hk = {

√
2π−1k−1 sin(kπ·)}k∈N.

For h1(s) :=
√

2π−1 sinπs (h1(s)> 0 everywhere), by g′ ≥ a we have that for every x ∈ X

| 〈∇HG(x),h1〉H |=
√

2π
−1
ˆ 1

0
g′(x(s))sinπs ds≥

√
2π
−1a

ˆ 1

0
sinπs ds = 2

√
2π
−2a > 0

so |πn(∇HG)|H 6= 0 everywhere for every n and

(7.3.7) |∇HG|−1
H ≤ π

2a−1

√
2

4
(because |h1|2H = 1).

If we consider the sequence hk we have that the series ∑
∞
k=1 h2

k(·) converges uniformly to

f (s) := s− s2

in [0,1]: in fact (by the duplication formula of cosine)

h2
k(s) = π

−2k−2(1− cos2kπs)

converges uniformly (because ∑
+∞

k=1 k−2 is a convergent series) and if we expand f in Fourier series
of cosines we have

f (s) =
1
6
−

+∞

∑
k=1

π
−2k−2 cos2kπs

and
+∞

∑
k=1

k−2 =
π2

6
(the above formula is the solution of the Basel problem, see e.g. [34]). Now we have

LG(x) =
∞

∑
i=1

D2
HG(x)(hi,hi)−

∞

∑
i=1
〈∇HG(x),hi〉H =
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=
∞

∑
i=1

ˆ 1

0
g′′(x(s))h2

i (s) ds−
ˆ 1

0
g′(x(s))x(s) ds =

=

ˆ 1

0
g′′(x(s))(s− s2) ds−

ˆ 1

0
g′(x(s))x(s) ds,

clearly
´ 1

0 g′′(x(s))(s− s2) ds is bounded because g ∈C2
b(R), and, by (7.3.4)ˆ 1

0
g′(x(s))x(s) ds≤

ˆ 1

0
(α1g(x(s))+β1) ds = αG(x)−αr+β1

and ˆ 1

0
g′(x(s))x(s)≥

ˆ 1

0
(α2g(x(s))+β2) ds = αG(x)−αr+β2;

therefore LG is bounded in G−1(−δ ,δ ) (for every δ > 0); so, by (7.3.7) and (7.3.5), we have the
Hypothesis 6.1.3.

For n ∈ N, and x ∈ ∂On, we consider ϕn ∈ H ⊂ X = L2([0,1]) as ϕn := ∇HGn(x) (so |ϕn|H ≤
‖g‖2

C2
b(R)

everywhere), πn projection from X in Fn =< e1, . . . ,en >,

fn(s) :=
n

∑
k=1

2π
−1k−1 sin2 kπs,

we have fn > 0 everywhere, and ˆ 1

0
fn ds≤

ˆ 1

0
f ds =

1
6

;

we have that, for some sequence {µk}k∈N,

ϕn(s) =
n

∑
k=1

µk sinkπs.

Hence

|ϕn|2H =
n

∑
i=1

λ
−1
k µ

2
k ,

so

(ϕn(s))2 ≤

(
n

∑
i=1

λ
−1
k µ

2
k

)(
n

∑
k=1

λk sin2 kπs

)
≤

= |ϕn|2H fn(s),
therefore in particular

(7.3.8) fn−
ϕ2

n

|ϕn|2H
≥ 0

and

LGn(x) =
ˆ 1

0
g′′(πn(x)(s)) fn(s) ds−

ˆ 1

0
g′(πn(x)(s))πn(x)(s) ds

therefore

Hn(x) =
LGn(x)
|∇HGn(x)|H

− D2
HGn(x)(∇HGn(x),∇HGn(x))

|∇HGn(x)|3H
=
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=

´ 1
0 g′′(πn(x)(s)) fn(s) ds−

´ 1
0 g′(πn(x)(s))πn(x)(s) ds

|ϕn|H
−
´ 1

0 g′′(πn(x)(s))ϕ2
n (s) ds

|ϕn|3H
=

= |ϕn|−1
H (

ˆ 1

0
g′′(πn(x)(s))

(
fn−

ϕ2
n (s)
|ϕn|2H

)
ds+

−
ˆ 1

0
g′(πn(x)(s))πn(x)(s) ds)≥

(by (7.3.8) and by (7.3.4))

≥ |ϕn|−1
H (

ˆ
{s∈[0,1]|g′′(πn(x)(s))<0}

g′′(πn(x)(s))
(

fn−
ϕ2

n (s)
|ϕn|2H

)
ds+

−
ˆ 1

0
α1g(πn(x)(s))+β1 ds≥

(by the fact that, in the first integral, g′′(πn(x)(s))< 0 everywhere)

≥ |ϕn|−1
H (

ˆ
{s∈[0,1]|g′′(πn(x)(s))<0}

g′′(πn(x)(s)) fn ds+

−
ˆ 1

0
α1g(πn(x)(s))+β1 ds)≥

( fn > 0 everywhere)

≥ |ϕn|−1
H (−‖g‖C2

b(R)

ˆ 1

0
fn ds+

−
ˆ 1

0
α1g(πn(x)(s))+β1 ds)≥

(by
´ 1

0 fn ds≤ 1
6 )

≥ |ϕn|−1
H

(
−
‖g‖C2

b(R)

6
−α1

ˆ 1

0
g(πn(x)(s)) ds+β1

)
=

= |ϕn|−1
H

(
−
‖g‖C2

b(R)

6
−α1Gn(x)−α1r−β1

)
.

Now, if x ∈ G−1
n (0)

Hn(x) = |ϕn|−1
H

(
−
‖g‖C2

b(R)

6
−α1r−β1

)
≥ 0

in our hypotheses about r. Hence, we have all the Hypotheses of Theorem 7.3.7.
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7.4. Case Neumann boundary conditions

7.4.1. Case Neumann boundary conditions, Lebesgue measure. Firstly we consider the
case with Lebesgue measure.

We suppose X = Rd and O is an open, bounded and convex set.
We define Jσ = (I−σ∆

−1
N where ∆N is the Laplacian on O with Neumann condition.

REMARK 7.4.1. If O is bounded has C∞-boundary, and y∈C∞(Ō), A is an operator in O which
is strictly elliptic on bounded sets (see e.g. [43]), then u := (I−σA)−1y is u ∈C∞ in Ō.

In fact, for each R′ > R > 0, we can consider two balls BR′ ,BR centered in a point of ∂O, and
a smooth function θ that is 1 on BR and 0 out of BR′ , and a bounded set with smooth boundary C
s.t. C∩BR′ = O∩BR′ ; hence, v := θu will be the solution of a Neumann problem{

σLv− v = g in C
∇v ·ν∂O = 0 on ∂C

(where ν∂O(x) is the normal vector to ∂O in x) for some g that is in L2(C,L d) (because u ∈
W 1,2(O,L d)) and L is strictly elliptic on C; therefore, v ∈W 2,2(O∩BR′ ,L

d) (e.g. by [21], 9,
Rem. 24), hence u ∈W 2,2(O∩ BR,L d) (and this for all R > 0). By repeating the argument,
we can find that u ∈W k,2(O∩BR,L d) for all k ∈ N and R > 0 (at each step, by knowing that
u ∈W k,2(O∩BR,L d) we can find that g ∈W k−1,2(C,L d) and hence u ∈W k+1,2(O∩BR,L d)).
So, u has a representative in C∞(Ō) (see e.g. [21], Cor. 9.15).

In the same way, we can prove that, if O has C∞-boundary in a neighbourhood B of a point
x0 ∈ ∂O, and y|Ō∩B ∈C∞(Ō∩B), L is an operator in O which is strictly elliptic on bounded sets
(see e.g. [43]) and u := (I−σL)−1y we have that u|Ō∩B ∈C∞(Ō∩B).

We Remark that, when L is strictly elliptic on all O (as in the case of Laplace operator), the
passages are simpler (e.g. by [21], Rem. 24); we will use the case of L locally strictly elliptic in
the next section.

We prove, in some steps, thatˆ
O
|∇Jσ (y)|(x) dx≤

ˆ
O
|∇y|(x) dx.

LEMMA 7.4.2. Let O be an open convex set s.t. ∂O is C2(O), if u ∈C1(Ō), and ∇u in x0 is
orthogonal to ν∂O (orthogonal to ∂O), and ϕε(ξ ) =

√
ε2 + |∇u(ξ )|2, then ν∂O ·∇ϕε ≤ 0 in each

regular point x0 of ∂O.

PROOF. We have, for 7.1.2

ν∂O ·∇ϕε =
D2u(∇u,ν∂O

ϕε

)

where D2u is the Hessian operator of u, considered as bilinear operator in Rd .
Now, we observe that ∇u ·νO = 0 (i.e. ∇u is tangent to ∂O in each point) because u ∈D(∆N);

∂O is regular, hence we can consider it as the sublevel of a smooth function g ∈ C∞(Rd), s.t.
O = g−1((−∞,0)), ∂O = g−1(0) and ν∂O = ∇g

‖∇g‖ on ∂O. If we consider the tangent plane Tp in a
point p∈ ∂O, we will have that g≥ 0 on the plane Tp, and g(p) = 0, so p is a local minimum point
on Tp for g; hence, the Hessian D2g in p restricted to the vectors of Tp is positive semidefinite.

Now on ∂O we have
〈∇u,∇g〉= 〈∇u,ν∂O〉= 0
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because ∇u is on the tangent; we can consider 〈∇u,∇g〉 as a function on O which is constant on
∂O, hence ∇(〈∇u,∇g〉) is normal to ∂O in each point of ∂O; so, recalling that ∇u is tangent to
∂O,

(7.4.1) 0 = ∇(〈∇u,∇g〉) ·∇u = D2u∇g ·∇u+D2g∇u ·∇u;

D2g in p restricted to the vectors of Tp will be positive semidefinite (because of the convexity of
O) so

D2g∇u ·∇u≥ 0,
due to ∇u is tangent to ∂O, hence, applying (7.4.1).

D2u∇u ·ν∂O = D2u∇u ·∇g =−D2g∇u ·∇u≤ 0,

and we have concluded. �

LEMMA 7.4.3. If O⊆ Rd is convex, open and bounded set with C∞ boundary, thenˆ
O
|∇Jσ (y)|(x) dx≤

ˆ
O
|∇y|(x) dx

for all y ∈W 1,1(O,L d)∩L2(O,L d).

PROOF. We recall the lower semicontinuity of the functional
´

O |∇ · |(x) dx with respect to the
norm L1, and that Jσ is a bounded operator L2→ L2.

Let y ∈W 1,1(O,L d)∩L2(O,L d). It is clear, by truncation, that y∧ n∨−n converges to y
both in W 1,1(O,L d) and in L2(O,L d). So, it is not restrictive to suppose y ∈W 1,1(O,L d)∩
L∞(O,L d); now, we know that y can be extended in W 1,1(X) (because O is convex) and this
extension can be truncated to the same ‖·‖L∞ norm of y; the extension can be approximated by
convolutions (which converges both in W 1,1and in L2): so, it is not restrictive to suppose that y are
restrictions of functions in C∞(Rd).

So, let y be smooth in Ō: hence we can apply Lemma 7.1.2; moreover, by Remark 7.4.1 we
have in this case u ∈ Ō.

Arguing as in ([12], 8) we can suppose that σ = 1, and we introduce ϕ and ϕε ∈C1(O) (with
ε > 0) in a similar way

ϕ(ξ ) = |∇u(ξ )|, ϕε(ξ ) =
√

ε2 + |∇u(ξ )|2,

and we can prove
ϕ2

ϕε

−∆ϕε ≤ |∇y|

exactly in the same way of ([12], Lemma 8.2).
If we integrate, we have ˆ

O

ϕ2

ϕε

(x) dx−
ˆ

O
∆ϕε(x) dx =

=

ˆ
O

ϕ2

ϕε

(x) dx−
ˆ

∂O
ν∂O ·∇ϕε dS≤

ˆ
O
|∇y|(x) dx;

by Lemma 7.4.2, we have ν∂O ·∇ϕε ≤ 0 in each regular point on ∂O, henceˆ
O

ϕ2

ϕε

(x) dx≤
ˆ

O
|∇y|(x) dx,

so, due to the convergence ϕ2

ϕε
→ ∇u, we can conclude. �
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In the next result, by L in O⊆ Rd we will denote the operator s.t.:

D(L) = { f | f|O ∈ D(∆N)}

and L( f ) = ∆N( f|O) extended to 0 out of O, where ∆N is the Laplace operator with Neumann null
boundary conditions in O.

THEOREM 7.4.4. If O⊆ Rd is open, bounded and convex, if Jσ = (I−σ∆N)
−1, thenˆ

O
|∇Jσ (y)|(x) dx≤

ˆ
O
|∇y|(x) dx

for all y ∈W 1,1(O,L d)∩L2(O,L d).

PROOF. We consider y ∈ (W 1,1 ∩L2)(O,L d); by the convexity of O, and arguing as at the
beginning of the proof of Lemma 7.4.3, we can suppose that y is L∞(O), and we can extend it out
of O.

Hence, we can suppose y ∈W 1,1(Rd ,L d)∩L∞(Rd ,L d).
Clearly there exists a decreasing sequence {On}n∈N of open bounded convex sets in Rd with

C∞ boundary s.t. O ⊆
⋂

∞
n=1 On and L d(On\O)→ 0. We consider LO Laplace operator in O

(on L2(Rd ,L d)) and LOn Laplace operator in On (on L2(Rd ,L d)), for σ > 0 we consider J′σ :=
(I − σL)−1, J′σ ,n := (I − σLn)

−1 operators in L2. We can apply Lemma 5.2.2, and we have a
Mosco convergence of an (form associated to LOn) to a (form associated to L). It is clear that for
all f ∈ L2(Rd ,L d), we have

u := J′σ (y)|O = Jσ (y|O)

and
un := J′σ ,n(y)|On = Jσ ,n(y)

where Jσ := (I−σ∆O)
−1 in L2(O) and Jσ ,n := (I−σ∆On)

−1 in L2(On,L d).
It is clear that σJ′σ ,n is associated to an,σ where an is the Dirichlet form in W 1,2(On), while

σJ′σ is associated to a,σ where a is the Dirichlet form in W 1,2
0 (On,L d); hence, by using Theorem

5.1.3 and Mosco convergence of an to a we have that J′σ ,n(y)→ J′σ (y) in L2(Rd ,L d); so, each
subsequence converges up to a subsequence, hence J′σ ,n(y)→ J′σ (y) in L2(Rd ,L d), and un|O→ u
in L2(O,L d)

By Lemma 7.4.3 we have that

‖∇HJ′σ ,n(y|On)‖L1(On,H) ≤ ‖∇Hy‖L1(On,H)

and hence

(7.4.2) limsup‖∇HJ′σ ,n(y|On)‖L1(On,H) ≤ ‖∇Hy‖L1(O,H).

(because L d(On\O)→ 0).
We have that un|O→ u in L2(O,L d). Now, the functional

´
O |∇ · |(x) dx is lower semicontin-

uous with respect to L2convergence, soˆ
O
|∇Hu|H dγ ≤

ˆ
O
|∇Hy|H dγ.

�

7.4.2. Case Neumann boundary conditions, Gaussian measure.
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7.4.2.1. Finite dimensional case. In the case of the Gaussian measure (in finite dimension),
and zero Neumann boundary conditions, the argument is similar to that in the above section: for
O ⊆ Rd convex we define L as the Ornstein-Uhlenbeck operator with zero Neumann boundary
conditions on O, and Jσ = (I−σL)−1.

We recall that, for p ∈ [1,+∞], we say f ∈W 1,p(O) (in the sense that f ∈W 1,p(O,γd)) if
f ∈W 1,p

loc (O,γd) and f ∈ Lp(O), ∇ f ∈ Lp(O,γd ,Rd). Clearly in this setting W 1,2 ⊆W 1,1 because
the measure γd is finite.

LEMMA 7.4.5. If O⊆ Rd is convex with C∞ boundary, thenˆ
O
|∇Jσ (y)| dγ

d ≤
ˆ

O
|∇y| dγ

d

for all y ∈ (W 1,1∩L2)(O).

PROOF. Because of the lower semicontinuity of the functional
´

O |∇ · | dγ with respect to L2

and of the density of C∞(O) in (W 1,1∩L2)(O) (by Corollary 3.2.24), it isn’t restrictive to suppose
that y ∈C∞.

We recall the definitions of ϕε in Section 7.2.1.
Remark 7.4.1 implies that u ∈ C∞(Ō). Now, we have that ∇u is orthogonal to ν∂O because

u ∈ D(LN); so we can apply Lemma 7.4.2 and we have ν∂O ·∇ϕε ≤ 0 in each point of ∂O.
Now, we can apply Lemma 7.1.2, and we have

ϕ2

ϕε

−σLNϕε ≤ |∇y|,

integrating we obtain that ˆ
O

ϕ2

ϕε

dγ
d−

ˆ
O

Aϕε dγ
d =

=

ˆ
O

ϕ2

ϕε

dγ
d−

ˆ
O

gd(x)∆ϕε(x) dx+
ˆ

O
gd(x)nablaϕε(x) · x dx =

(where gd(x) := (2π)−
d
2 exp ‖x‖

2

2 )

=

ˆ
O

ϕ2

ϕε

dγ
d−

ˆ
∂O

ν∂O ·∇ϕεgd dS≤
ˆ

O
|∇y| dγ

d

where S is the area measure of ∂O; soˆ
O

ϕ2

ϕε

dγ
d ≤

ˆ
O
|∇y| dγ

d

and ϕ2

ϕε
→ ∇u pointwise, therefore we can conclude by the Fatou Lemma. �

7.4.2.2. Infinite dimensional case. From now on, we will suppose X to be a generic Banach
separable space,γ a Gaussian measure on X , H the Cameron-Martin space; as above, we will
suppose that O is an open convex set in X .

In this setting, we can define the (Neumann) Ornstein-Uhlenbeck operator on the open convex
O (see [51]).
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We suppose dim(Fn) = n and Fn =< h1, . . . ,hn > where {h j} j∈N in Rγ(X∗) is an orthonormal
base of H, and we define πn, projection from X in Fn; we define γFn = γn = γ ◦π−1

n , it is a non-
degenerate Gaussian measure on Fn, and, if we identify Fn with Rn through the basis {h1, . . . ,hn},
then γn is a standard Gaussian measure.

LEMMA 7.4.6. If X is a Banach separable space, if O⊆ X is open convex cylindrical regular
set, and Jσ is defined in the Neumann boundary conditions, thenˆ

O
|∇HJσ (y)|H dγ ≤

ˆ
O
|∇Hy|H dγ

for all y ∈ (W 1,1∩L2)(O).

PROOF. We suppose that O is n-cylindrical. For m ∈ N s.t. n≤ m, we can consider the space
Fm with Fn ≤ Fm and we can define Lm

n as the (Neumann) Ornstein-Uhlenbeck operator in

Bn,m =Cn×Rm−n ⊆ Rm

(we can consider Bn,m⊆Fm) with the standard Gaussian measure γm; we have that, if f ∈W 1,p(Bn,m)
then f ◦πFm ∈W 1,p(O), and we have

(Lm
n f )◦πFm|O = Ln( f ◦πFm|O);

where Ln is the Ornstein-Uhlenbeck operator in O; we can deduce also, that, for every λ > 0,

(7.4.3) (R(λ ,−Lm
n ) f )◦πFm|O = R(λ ,−Ln)

(
f ◦πFm|O

)
;

so, by Lemma 7.4.5, we have that, if Jσ ,n := σ−1R(σ−1,−Ln) thenˆ
O
|∇HJσ ,n(y)|H dγ ≤

ˆ
On

|∇Hy|H dγ

for all y = f ◦πFm for some f ∈W 1,p(Bn,m).
Now, given y ∈ (W 1,1∩L2)(O), we consider for every m ∈N, m > n the measure γF⊥m (see Part

I) and the function on Bn,m

Em(y)(x) :=
ˆ

π
−1
m (x)

y dγF⊥m

that is well defined for γm-almost every point of Bn,m ⊆ Fm (by identifying Fm with Rm); we have
also Em(y) ∈W 1,p(Bn,m), and if

ym := Em(y)◦πFm ,

then fm converges to f in W 1,p(O) (so also in L log
1
2 L); for what we said we haveˆ

On

|∇HJσ ,n(ym)|H dγ ≤
ˆ

On

|∇Hym|H dγ,

so, also by the lower semicontinuity of
´

On
|∇H · |H dγ with respect to L log

1
2 L, we can conclude.

�

Using the Mosco convergence (see Subsection 5) we can prove this Proposition, which will
be extended in Theorem 7.5.11.
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THEOREM 7.4.7. If X is a Banach separable space, if O ⊆ X is open and convex, and Jσ is
defined using the zero Neumann boundary condition, thenˆ

O
|∇HJσ (y)|H dγ ≤

ˆ
O
|∇Hy|H dγ

for all y ∈ (W 1,1∩L2)(O).

PROOF. We recall, by convexity, that W 1,1 = W 1,1
∗ (see Part I). By Proposition 3.2.23, if y ∈

W 1,1
∗ (O)∩Lp, there exists a sequence of Lipschitz functions which converges to y both in W 1,1

∗ (O)

and in Lp(O); by recalling that Jσ is bounded from Lp to Lp, that Lp is embedded in L log
1
2 L, and

Remark 7.1.1, we have that it if we prove the statement for y Lipschitz, we can conclude.
Now, each y∈Lip(O) has a Lipschitz extension on X ; we will consider one of such extensions:

from now on, we will call this extension y (in particular, y ∈W 1,2(X)). u will be Jσ (y|O).
O is convex, so, Cn = πn(O) is a convex set and O′n := π−1

n (Cn) is a convex n-cylinder (not
regular); O′n is a decreasing sequence of open sets containing O; moreover, if x ∈

⋂
∞
n=1 O′n\O then

x ∈ ∂O: by the convexity of O and the density of H, if x /∈ Ō there exists n ∈ N s.t. sup{ĥn(x−
x0)|x0 ∈ O} > 0, and hence x /∈ O′n. So, since γ(∂O) = 0 (by Proposition 4.1.5) we have that
γ(O′n\O)→ 0; now, for each Cn, there exists Bn s.t. Cn ⊆ Bn, Bn is convex with C∞ boundary and
γn(Bn\Cn)≤ n−1 (see [51], Prop. A.4).

Let On := π−1
n (Bn), we have that O⊆ On for every n ∈ N and γ(On\O)→ 0.

Now, if Ln is the Ornstein-Uhlenbeck operator with zero Neumann boundary condition in On
and Jσ ,n := (I−σLn)

−1 is the operator in L2(On) defined in the Neumann boundary conditions,
by Lemma 7.4.6 we have thatˆ

On

|∇HJσ ,n(y)|H dγ ≤
ˆ

On

|∇Hy|H dγ;

let an the Dirichlet form in W 1,2(On) and a the Dirichlet form in W 1,2(O) (see Subsection 5),
by Lemma 5.2.4 we have that an converges to a in the sense of Mosco; so, by Lemma 5.2.4,
Jσ ,n(y)|O converges to Jσ (y) in L2(O), and so also in L log

1
2 L; so by the lower semicontinuity of´

On
|∇H · |H dγ in L log

1
2 L we have

ˆ
O
|∇HJσ (y)|H dγ ≤ liminf

n→∞

ˆ
O
|∇HJσ ,n(y)|H dγ ≤ liminf

n→∞

ˆ
On

|∇HJσ ,n(y)|H dγ ≤

≤ liminf
n→∞

ˆ
On

|∇Hy|H dγ =

ˆ
O
|∇Hy|H dγ.

and we can conclude. �

REMARK 7.4.8. In the finite dimensional case, the above theorem is an extension of Lemma
7.4.5 to the case of a convex non-regular set.

7.5. BV functions and resolvent contractivity

7.5.1. BV (O) and approximating sequence. We will consider the Neumann case (section
7.4.2), with O open convex set. In this Subsection, for a function f on X , we will denote the set
f−1(R+) with supp( f ), and we will call it support of f .
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Now, we recall that let u ∈ L log
1
2 L(X) by Theorem 4.1.3, u is BV (X) with total variation L(u)

if and only if the quantity

L(u) = inf
{

liminf
h→∞

ˆ
X
|∇Hun|H dγ|{un}n∈N ∈ Lip(X), uh

L1

−→ u
}
< ∞,

and if and only if

L(u) = lim
t→0

ˆ
X
|∇HTtu|H dγ < ∞.

((Tt)t≥0 denotes the Ornstein-Uhlenbeck semigroup in X); our goal is to find a version of this
result for BV (O)∩L2(O).

Our first step will be to prove that, if u ∈ BV (O)∩ L2(O) then there exists a sequence of
functions un in W 1,1(O)∩L2(O) which converges to u in L2(O) s.t.

´
X |∇Hun|H dγ converges to

the total variation of u.
We recall that a covering is locally finite if each point has a neighbourhood which intersects

only a finite number of elements of the covering.

DEFINITION 7.5.1. Given an open set O ⊆ X , given an open covering {Uα} of O, given W
linear space of real valued functions on O, we will say that a set of functions {ψi} in W is a
partition of unity of class W subordinated to {Uα} if

i) ψi ≥ 0 for all i, and ∑i ψi(x) = 1,
ii) there exists a locally finite open covering {Vi} of X s.t. each Vi is contained in some Uα ,

and supp(ψi)⊆Vi.

We will say that O admits partition of unity of class W , if, for all open covering {Uα} of O,
there exists a partition of unity of class W subordinated to {Uα}.

REMARK 7.5.2. O is metric and separable, so it is second countable, and then it has the
Lindelöf property: i.e. each open covering has a countable subcovering. So, it is not restrictive to
suppose that {Uα}, {Vi}, {ψi} are countable.

We observe that the above definition implies that ψi ≤ 1 for all i.
We have this result of Albeverio, Ma and Röckner ([2], Cor. 1.4).

LEMMA 7.5.3. Let X be a separable metric space, let W be a linear space of real-valued
functions on X; moreover, let us assume that the following conditions are satisfied:

i) for each f ∈W, if ψ ∈C∞
b with ψ(0) = 0 then ψ ◦ f ∈W;

i) given two open sets A1,A2 of X s.t. dist(A1,A2)> 0, there is a positive element of W that
is greater than 1 on A1 and 0 on A2.

Then, X admits partition of unity of class W.

We can deduce this Lemma.

LEMMA 7.5.4. If X is a separable metric space, if W is the set of bounded Lipschitz functions
on O, then O admits partition of unity of class W.

PROOF. We will use Lemma 7.5.3: we have to prove that W satisfies two conditions: the first
one is that, for each f ∈W , if ψ ∈C∞

b then ψ ◦ f ∈W , and this is clearly satisfied because ψ is
Lipschitz and bounded on f (O) that is a bounded set.
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The second condition is: given two open sets A1,A2 s.t. dist(A1,A2) > 0, there is a positive
element of W that is greater than 1 on A1 and 0 on A2. This condition is satisfied, for instance by
considering it suffices to consider the function

f (x) :=
dist(x,A2)

dist(x,A1)+dist(x,A2)
;

it is bounded and Lipschitz with constant dist(A1,A2)
−1. �

To proceed, we will need to prove that a BV function can be approximated in a suitable way
by W 1,2 functions.

REMARK 7.5.5. We recall that the Ornstein-Uhlenbeck operator L with zero Neumann bound-
ary conditions is the generator of the Ornstein-Uhlenbeck semigroup that is sub-Markovian (see
Subsection 3.4.3).

If O is a convex open set, we fix a point x0 ∈ O and we consider, for each r s.t. 0 < r ≤ 1, the
shrinking or centered in x0

or(x) := r(x− x0)+ x0

and the set Or := or(O), that is clearly an open convex set.
We will need a technical result.

LEMMA 7.5.6. If O 6= X, then

dist(∂Or1 ,∂Or2)≥ |r1− r2|d
where d := dist(x0,∂Or1)∧dist(x0,∂Or2).

PROOF. By the geometric properties of the functions or, it is not restrictive to suppose r1 = 1,
we will use r instead to r2.

Clearly here d := dist(x0,∂Or); given a plane π s.t. x0 ∈ π , the sets Or∩π and O∩π are open
in O and convex and dist(x0,π\Or)> d. We have that

(7.5.1) dist(∂Or,∂O) = inf{dist(π\O,Or ∩π)|π plane s.t. x0 ∈ π}
(it suffices to consider, for each couple (x,y) with x ∈ ∂Or and y ∈ ∂O, a plane through x0,x and
y).

So, we can consider the bidimensional case: let X = R2, O a convex open, x0 ∈ O and Or =
or(O), we can prove that

dist(x,∂O)≥ (1− r)dist(x0,π\Or)≥ (1− r)d

and we conclude.
In fact, given x ∈ ∂Or, clearly there exists y ∈ ∂O s.t. ‖x− y‖X = dist(x,∂O) (by using the

local compactness of R2); for such a y, there must be only a tangent line t to O in y, and t must be
orthogonal to y− x; then

dist(x,y) = dist(x, t);
we consider tr = or(t), then tr is parallel to t and tangent to Or, and it separates x and y, hence

dist(x, t)≥ dist(tr, t) = (1− r)dist(x0, t ′)≥
≥ (1− r)dist(x0,π\Or)

so
dist(x,∂O)≥ (1− r)dist(x0,π\Or).

�
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We also recall this Remark.

REMARK 7.5.7. If f ∈W 1,p(O), if g is bounded and Lipschitz and supp(g) ⊆ O, then the
function

l(x) :=

{
f (x)g(x) if x ∈ O
0 otherwise

is in W 1,p(X) (it can be seen by density).

We also recall this technical calculations.

LEMMA 7.5.8. Let X be a normed vector, µ be a positive measure on some space Ω, f ,g ∈
L1(Ω,µ,X) and c ∈ R; then

ˆ
Ω

‖ f +g‖X dµ + c≤
ˆ

Ω

‖ f‖X dµ +

ˆ
Ω

‖g‖X dµ + c≤

(7.5.2) ≤
ˆ

Ω

‖ f‖X dµ + |
ˆ

Ω

‖g‖X dµ + c|.

PROOF. By the triangular inequality applied to L1(Ω,µ,X),ˆ
Ω

‖−g‖X dµ ≤
ˆ

Ω

‖− f −g‖X dµ +

ˆ
Ω

‖ f‖X dµ

so
−
ˆ

Ω

‖− f −g‖X dµ− c≤
ˆ

Ω

‖ f‖X dµ−
ˆ

Ω

‖−g‖X dµ− c≤

(7.5.3) ≤
ˆ

Ω

‖ f‖X dµ + |
ˆ

Ω

‖g‖X dµ + c|.

Hence, by (7.5.2), (7.5.3)

(7.5.4) |
ˆ

Ω

‖ f +g‖X dµ + c| ≤
ˆ

Ω

‖ f‖X dµ + |
ˆ

Ω

‖g‖X dµ + c|.

�

PROPOSITION 7.5.9. If O is a convex open set, if f ∈ L2(O)∩BV (O), then there exists a
sequence fn ∈ (W 1,1

∗ ∩ L2)(O) s.t. fn → f in L2(O) and
´

O |∇H fn|H dγ converges to the total
variation of f in O.

PROOF. Hereafter, Tt will be the Ornstein-Uhlenbeck semigroup in X .

We recall that, if f ∈ L2(X), then Tt f
L2(X)−−−→
t→0

f and, by Corollary 4.2.25 (clearly it can be

applied), if f ∈ BV (X) then |∇HTt f |Hγ weakly converges to |Dγ f | as a measure.
If O = X , we know that Tt f ∈W 1,2(X), so for tn→ 0 we can use Ttn f to approximate f , and

we conclude.
Hereafter we suppose O 6= X .
Let f ∈ L2(O)∩BV (O).
We fix a point x0 ∈O and we consider, for each r s.t. 0 < r < 1, the set Or, defined above, that

is clearly an open convex set; for each r we can define the function lr,

lr(x) :=
dist(x,X\O)

dist(x,X\O)+dist(x,Or)
,
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we have that lr is bounded and Lipschitz with constant dist(Or,X\O)−1 which is finite by Lemma
7.5.6; for every x, 0≤ lr(x)≤ 1, moreover lr|Or ≡ 1, lr|X\O ≡ 0.

We have that f|Or can be extended to a function fr ∈ BV (X) in this way:

fr(x) :=

{
f (x)lr(x) if x ∈ O
0 otherwise

,

clearly fr ∈ BV (X) and by Lemma 4.2.12

(7.5.5) Dγ fr = (Dγ f )lr + f (∇H lr)γ

(clearly lr ∈W 1,p(O) for all p > 1 and |∇H lr|H is bounded because lr it is Lipschitz) and clearly
fr|Or = f|Or ; by (7.5.5) we have that

(7.5.6) Dγ fr|Or = Dγ f|Or

and,

(7.5.7) |Dγ fr|(∂Or) = |Dγ f |(∂Or).

If r1 6= r2 then ∂Or1 ∩ ∂Or2 = ∅ by Lemma 7.5.6, and |Dγ f | is a bounded measure: so
|Dγ f |(∂Or) = 0 for all r ∈ (0,1) but a countable subset.

Let r ∈ (0,1) s.t. |Dγ f |(∂Or) = 0. We define fr,t := Tt( fr) is W 1,2(O), clearly fr,t
L2(Or)−−−→
t→0+

f

(hence fr,t
L1(Or)−−−→
t→0+

f because γ is a probability measure) and by Corollary 4.2.25 we have the weak
convergence

|∇H fr,t |Hγ ⇀∗ |Dγ fr|
for t→ 0+, hence

(7.5.8)
ˆ

O
ψ|∇H fr,t |H dγ −−−→

t→0+

ˆ
O

ψ d|Dγ fr|

for all ψ continuous bounded functions, and, since |Dγ f |(∂Or) = 0 and (7.5.5) we can deduce

(7.5.9)
ˆ

Or

ψ|∇H fr,t |H dγ →
ˆ

Or

ψ d|Dγ fr|.

Let {ri}i∈N be an increasing sequence of positive numbers s.t. ri −−→
i→∞

1 and |Dγ f |(∂Ori) = 0

for every i ∈N. We define U1 := Or1 , U2 := Or2 and Ui := Ori\Ori−2 for i ∈N, i > 2 (we recall that
Ori−1 ⊆ Ori+1 because O is open and convex), we have that {Ui}i∈N is an open covering of O, that
Ui∩U j =∅ if |i− j|> 1, and Ui ⊆ Ori .

By Lemma 7.5.4, there exists a partition of the unity {ψi}i∈N (i.e. ψi(x)∈ [0,1] and ∑
∞
i=1 ψi = 1

on O) s.t. each ψi is Lipschitz and it has support contained in Ui for every i ∈ N.
Let ε > 0.
There exists iε ∈ N s.t.

(7.5.10) |Dγ f |(O\Ori)≤ ε,

for all i≥ iε −1 .
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By the convergence of friε ,t in L2 for t → 0, by (7.5.9) and the convergence in L2 of Tt there
exists tε s.t.

(7.5.11) |
ˆ

Oriε

f 2
riε ,tε

dγ−
ˆ

Oriε

f 2 dγ| ≤ ε,

(7.5.12)
∥∥ friε ,tε − f

∥∥
L1(Oriε

) ≤ 2−i
ε(‖∇Hψi‖L∞(X ,H)+1)−1,

(7.5.13) |
ˆ

Or(iε−1)

|∇H friε ,tε |H dγ−|Dγ f |(Oriε
)| ≤ ε

and

(7.5.14) |
ˆ

O
ψi|∇H friε ,tε |H dγ−

ˆ
O

ψi d|Dγ fri || ≤ 2−i
ε

for all i with 0 < i≤ iε (because {1, . . . , iε} is finite); clearly by (7.5.14) we can deduce

(7.5.15) |
ˆ

O
ψi|∇H friε ,tε |H dγ−

ˆ
O

ψi d|Dγ f || ≤ 2−i
ε

for all i with 0 < i≤ iε because ψi has support in Ui ⊂Oriε
, and because Dγ fr|Or = Dγ f|Or (7.5.6).

For each i ∈ N, i > iε there exists tε,i > 0 s.t.:

(7.5.16)
∥∥ fri,tε,i− f

∥∥
L2(Ori )

≤ 2−i
ε,

(7.5.17)
∥∥ fri,tε,i− f

∥∥
L1(Ori )

≤ 2−i
ε(‖∇Hψi‖L∞(X ,H)+1)−1,

and, by (7.5.9) and the fact that ψi has support in Ori , we can also suppose that

(7.5.18) |
ˆ

O
ψi|∇H fri,tε,i |H dγ−

ˆ
O

ψi d|Dγ fri || ≤ 2−i
ε;

this last one implies

(7.5.19) |
ˆ

O
ψi|∇H fri,tε,i |H dγ−

ˆ
O

ψi d|Dγ f || ≤ 2−i
ε

because ψi has support in Ui ⊂ Ori , and (7.5.6).
For each i ∈ N, ε > 0, we can choose such a tε,i and we define on O,

fε,i(x) :=

{
ψi(x) friε ,tε (x) if i≤ iε
ψi(x) fri,tε,i(x) if i > iε

,

clearly fε,i ∈W 1,2(X) and fε,i has support in Ui.
We define on O

fε :=
∞

∑
i=1

fε,i

(it is well defined because ψi has support in Ui and Ui meets only Ui+1 and Ui−1), clearly we have

(7.5.20) fε|Or(iε−1)
≡ friε ,tε |Or(iε−1)

.

As usually, given h ∈ Rγ(X ), we define the set Oy and the function fε,y on Oy.
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We have that fε|Ori
∈W 1,2

∗ (Ori); we recall that W 1,2(X) = W 1,2
∗ (X) (see Proposition 3.2.20).

Hence, for every h ∈ Rγ(X∗) we have fε ∈ D
Ori
h ; this means that, for every h ∈ Rγ(X∗), for γh⊥-

almost every y ∈ h⊥, the function fε,y on the section (Ori)y has γ1-representative f̃y that is locally
absolutely continuous (see Definition 3.2.13); now, by considering the countable sequence ri, we
have that for γh⊥-almost every y ∈ X⊥h , the function fy on the section Oy has γ1-representative f̃y

that is locally absolutely continuous, therefore f ∈ D
Ori
h for all h ∈ Rγ(X∗). ∇H fε is defined on

every Ui as ∇H fε,i−1 +∇H fε,i +∇H fε,i+1; in this sense it is well defined on O.
Now, to prove that f ∈W 1,1

∗ (Ori), we need only the finiteness of
´

O | fε | dγ and of
´

O |∇H fε |H dγ

We recall that in O we can also write

f =
+∞

∑
i=1

ψi f

(because {ψi}i∈N is a partition of the unity in O).
We have

‖ fε − f‖L2(O) =

∥∥∥∥∥+∞

∑
i=1

fε,i−
+∞

∑
i=1

ψi f

∥∥∥∥∥L2(O) ≤

≤

∥∥∥∥∥ iε

∑
i=1

ψi friε ,tε −
iε

∑
i=1

ψi f

∥∥∥∥∥L2(O)+

∥∥∥∥∥ +∞

∑
i=iε+1

ψi fri,tε,i−
+∞

∑
i=iε+1

ψi f

∥∥∥∥∥L2(O) ≤

(by (7.5.20) and recalling that ψi has support in Ui ⊂ Ori)

≤

∥∥∥∥∥ iε

∑
i=1

ψi friε ,tε −
iε

∑
i=1

ψi f

∥∥∥∥∥L2(Oriε
)+

+∞

∑
i=iε+1

∥∥ψi fri,tε,i−ψi f
∥∥

L2(Ui)

≤
∥∥ friε ,tε − f

∥∥
L2(Or(iε−1)

)+
+∞

∑
i=iε+1

∥∥ fri,tε,i− f
∥∥

L2(Ori )
≤

(by (7.5.16) and (7.5.11))

≤
+∞

∑
i=1

ε2−i + ε = 2ε.

We recall that
+∞

∑
i=1

∇Hψi ≡ 0;

(in each point, ∇Hψi = 0 for all i ∈ N but two) hence
ˆ

O
|

+∞

∑
i=iε+1

∇Hψi fri,tε,i +
iε

∑
i=1

∇Hψi friε ,tε |H dγ ≤

≤
ˆ

O
|

+∞

∑
i=iε+1

∇Hψi( fri,tε,i− f )+
iε

∑
i=1

∇Hψi( friε ,tε − f )|H dγ ≤

(recalling that ∇ψi ha support in Ui)

≤
+∞

∑
i=iε+1

ˆ
Ui

|∇Hψi|H | fri,tε,i− f | dγ +
iε

∑
i=1

ˆ
Ui

|∇Hψi|H | friε ,tε − f | dγ ≤
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≤
+∞

∑
i=iε

‖∇Hψi‖L∞(X ,H)‖ fri,tε,i− f‖L1(Ori )
+

iε

∑
i=1
‖∇Hψi‖L∞(X ,H)‖ friε ,tε − f‖L1(Ori )

≤

(by (7.5.17) and (7.5.12))

≤
+∞

∑
i=1

ε2−i = ε;

we have found then that

(7.5.21)
ˆ

O
|

+∞

∑
i=iε+1

∇Hψi fri,tε,i +
iε

∑
i=1

∇Hψi friε ,tε |H dγ ≤ ε.

So we have that, in our hypotheses,

|
ˆ

O
|∇H fε |H dγ−|Dγ f |(O)|=

= |
ˆ

O
|

+∞

∑
i=iε+1

∇Hψi fri,tε,i +
iε

∑
i=1

∇Hψi friε ,tε +
+∞

∑
i=iε+1

ψi∇H fri,tε,i+

+
iε

∑
i=1

ψi∇H friε ,tε |H dγ−|Dγ f |(O)| ≤

(by (7.5.4) in Remark 7.3.4)

≤
ˆ

O
|

+∞

∑
i=iε+1

∇Hψi fri,tε,i +
iε

∑
i=1

∇Hψi friε ,tε |H dγ+

+|
ˆ

O
|

+∞

∑
i=iε+1

ψi∇H fri,tε,i +
iε

∑
i=1

ψi∇H friε ,tε |H dγ−|Dγ f |(O)| ≤

(by (7.5.21 and (7.5.4) again)

≤ ε +

ˆ
O\Or(iε )−1

|
+∞

∑
i=iε+1

ψi∇H fri,tε,i +
iε

∑
i=1

ψi∇H friε ,tε |H dγ+

+|
ˆ

Or(iε )−1

|
+∞

∑
i=iε+1

ψi∇H fri,tε,i +
iε

∑
i=1

ψi∇H friε ,tε |H dγ−|Dγ f |(O)| ≤

(recalling that, for i > iε , ψi|Or(iε )−1
≡ 0 and, for i≤ iε , ψi|Oc

riε
≡ 0, and that

iε

∑
i=1

ψi = 1 on Oriε
)

≤ ε +

ˆ
O\Or(iε )−1

|
+∞

∑
i=iε+1

ψi∇H fri,tε,i +ψiε ∇H friε ,tε |H dγ+

+|
ˆ

Or(iε )−1

|∇H friε ,tε |H dγ−|Dγ f |(O)| ≤

≤
∞

∑
i=iε

(

ˆ
O

ψi|∇H fri,tε,i |H dγ)+

ˆ
O

ψiε |∇H friε ,tε |H dγ + ε+

+

∣∣∣∣∣
ˆ

Or(iε )−1

|∇H friε ,tε |H dγ−|Dγ f |(Or(iε )−1)

∣∣∣∣∣+ ||Dγ f |(Or(iε )−1)−|Dγ f |(O)| ≤
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(by (7.5.19), (7.5.15), (7.5.13), and (7.5.10))

≤
∞

∑
i=iε

(

ˆ
O\Oriε−1

ψi d|Dγ f |+2−i
ε)+3ε ≤

≤ 4ε +

ˆ
O\Oriε−1

∞

∑
i=iε−1

ψi d|Dγ f |=

(recalling that ∑
∞
i=iε ψi = 1 on O\Oriε+1

)

= 4ε + |Dγ f |(O\Oriε−1
)≤ 5ε

by (7.5.10).
So, |∇H fε | ∈ L1(O) and

´
O |∇H fε |H dγ −−→

ε→0
|Dγ f |(O).

Hence, if we take fn := f 1
n
, we have that fn ∈W 1,1

∗ (O),L2(O), fn→ f in L2, and
´

O |∇H fn|H dγ→
|Dγ f |(O). �

REMARK 7.5.10. The convergence we have found ( fn→ f in L2 and
´
|∇H fn|γ →

´
|Dγ f |γ)

is similar to the finite dimensional intermediate convergence (see e.g. [10], Def. 10.1.3).

We remark that in the above Theorem we use the convexity only to define the sequence of
concentric sets with mutually disjoint boundaries which cover all the domain; this can be done in
a more general setting.

7.5.2. Approximation by Jσ . We recall that Jσ can be defined as a contractive operator from
Lp(O) in Lp(O) for every p ∈ [1,+∞] (see Subsection 3.4.3); in general we don’t know if it is
regularizing.

We have this Theorem.

THEOREM 7.5.11. If O is open and convex and y∈ (BV ∩Lp)(O) and y∈ Lp(O) for some p >
1, if Jσ is defined in Lp(O) and associated to L Ornstein-Uhlenbeck operator with zero Neumann
boundary conditions, then Jσ (y) ∈ BV (O) and

|Dγ(Jσ (y))|(O)≤ |Dγy|(O).

PROOF. We consider a representative of y ∈ BV (O) finite in each point. We have that, for all
n ∈ N, the function vn := n∧ y∨ (−n) is L∞∩BV (O) and |Dγvn|(O) ≤ |Dγy|(O) for all n ∈ N by
Lemma 4.2.10; we have also that the sequence vn converges to y in Lp and so also in L log

1
2 L(O),

hence, by (4.2.3) (and recalling that, for ϕ Lipschitz and bounded, ∂ ∗h ϕ ∈ LΨ for every h ∈ H, see
Subsection 3.2.1)

|Dγy|(O) = sup{
m

∑
i=1

ˆ
O

y∂
∗
hi

ϕi dγ| m ∈ N,ϕ ∈ Lip0,m(O,H), ‖ϕ‖L∞(O,H) ≤ 1}=

= sup{ lim
n→∞

m

∑
i=1

ˆ
O

vn∂
∗
hi

ϕi dγ| m ∈ N,ϕ ∈ Lip0,m(O,H), ‖ϕ‖L∞(O,H) ≤ 1} ≤

≤ liminf
n→∞

sup{
m

∑
i=1

ˆ
O

vn∂
∗
hi

ϕi dγ : m ∈ N,ϕ ∈ Lip0,m(O,H), ‖ϕ‖L∞(O,H) ≤ 1}=

= liminf
m→∞

|Dγvm|(O);
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therefore, |Dγy|(O) = limn→∞ |Dγvn|(O).
By Proposition 7.5.9 each vn can be approximated by a sequence of function ym,n ∈W 1,1

∗ (O)∩
L2(O) (which converges to vn in L2 and s.t. |∇Hym,n|L1(O,H) −−−−→m→+∞

|Dγvn|(O); we recall that

W 1,1
∗ (O) =W 1,1(O) by the convexity of O and Corollary 3.2.24.

So, with a diagonal procedure we can find a sequence yn = ymn,n in W 1,1(O)∩L2(O) which
converges to y in Lq (for q := 2∧ p, by recalling that Lp is embedded in Lq because γ is finite)
and s.t. ‖∇Hyn‖L1(O,H) → |Dγy|(O); we recall that Jσ is a bounded operator in Lq, so for all

σ > 0, Jσ (yn)
Lq

−−−→
n→∞

Jσ (y) and hence the convergence is also in L(logL)
1
2 ; to each yn we can apply

Theorem 7.4.7, ˆ
O
|∇HJσ (yn)|H dγ ≤

ˆ
O
|∇Hyn|H dγ;

hence, by lower semicontinuity of BV norm with respect to L(logL)
1
2 (O) convergence (Corollary

4.2.22), we have that Jσ (y) ∈ BV (O) and

|Dγ(Jσ (y))|(O)≤ liminf
n→∞

ˆ
O
|∇HJσ (yn)|H dγ ≤

≤ liminf
n→∞

ˆ
O
|∇Hyn|H dγ = |Dγy|(O).

�

PROPOSITION 7.5.12. Let y ∈ L2(O); if there exist c > 0, and a sequence σn s.t. σn −→ 0 and
‖∇HJσn(y)‖L2(X ,H) ≤ c for all n, then Jσn(y)⇀ y in L log

1
2 L, y ∈ BV (O) and |Dγy|(O)≤ c.

PROOF. We recall that Jσ is a contractive operator from L2 in L2 for all σ > 0. Hence, for
a y ∈ L2 the functions Jσn(y) are uniformly bounded in L2; we have that up to a subsequences as
σn −−−→

n→∞
0, s.t. Jσn(y)⇀ w in L2 for some w∈ L2 by the Banach-Alaoglu theorem (see Appendix);

recalling that Jσ = (I−σL)−1, the definition of L (which is the operator associated to the form´
O 〈∇H ,∇H〉H dγ) and the fact that the image of Jσn is in the domain of L, we have that, if ϕ ∈FC∞

b ,ˆ
O
(Jσn(y)− y)ϕ dγ = σn

ˆ
O

L(Jσn(y))ϕ dγ =

=−σn

ˆ
O
〈∇HJσn(y),∇Hϕ〉H dγ

but ‖∇Hϕ‖L∞(X ,H) is bounded, and ‖∇HJσn(y)‖L1(X ,H) ≤ c for every n, hence, for some C > 0
independent on n,

|
ˆ

O
(Jσn(y)− y)ϕ dγ| ≤ ‖∇Hϕ‖L∞(X ,H)cσn −−−→

n→∞
0;

hence ˆ
O
(w− y)ϕ dγ = 0.

By the density of FC∞
b in L2, we have that w = y. With this argument, we proved that Jσ y ⇀

y in L2 (because, for every sequence, there is a subsequence which converges). Recalling that
L2 ⊂ L log

1
2 L for all p > 1, we have Jσ (y) ⇀ y in L log

1
2 L; so we can conclude by the lower

semicontinuity (Lemma 4.2.24). �
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COROLLARY 7.5.13. If O is a convex open set, for y∈ L2(O), these conditions are equivalent.
i) y is BV (O);

ii)
´

O |∇HJσ (y)|H dγ is uniformly bounded with respect to σ ;
iii)

´
O |∇HJσ (y)|H dγ converges for σ → 0;

iv) there exists a sequence σn s.t. σn −→ 0 and
´

O |∇HJσn(y)|H dγ converges for n→+∞.
In these cases,

lim
σ→0

ˆ
O
|∇HJσ (y)|H dγ = sup{

ˆ
O
|∇HJσ (y)|H dγ|σ > 0}= |Dγy|(O).

PROOF. It is obvious that iii)⇒iv) and ii)⇒iv). Jσn(y)
L2(O)−−−→ y, hence by the Corollary 4.2.22,

iv)⇒i) .
Let us now assume i), i.e. y ∈ BV (O): we will prove ii), iii) and the last statement.
By Theorem 7.5.11 we know that ‖Jσ (y)‖W 1,1(O) is uniformly boundedˆ

O
|∇HJσ (y)|H dγ ≤ |Dγy|(O).

Therefore, by the Proposition 7.5.12, for each sequence σn which converges to 0, we have
Jσn(y)⇀ y in L2(O) for σn→ 0, so the convergence is also in L log

1
2 L and we can apply Lemma

4.2.24 and

|Dγy|(O)≤ liminf
n→∞

ˆ
O
|∇HJσn(y)|H dγ

so we can conclude that
´

O |∇HJσ (y)|H dγ converges to |Dγy|(O) for σ → 0. �

7.5.3. Approximation by Tt . We recall that, if Tt is the Ornstein-Uhlenbeck semigroup in
L2(O) then it is analytic, and Tt f ∈W 1,2(O) for every f ∈ L2(O). Moreover Tt is contractive as an
operator in Lp(O) for every p ∈ [1,+∞) (see Subsection 3.4.3).

We consider also a result from [23], and also ([24], Thm. 17).

PROPOSITION 7.5.14. If O is a convex open set and Tt is the Ornstein-Uhlenbeck semigroup
with zero Neumann boundary condition on L2(O), then

|∇HTt f |H ≤ e−tTt(|∇H f |H)
γ-a. e. on O, for every f ∈W 1,2(O).

We have these consequences.

COROLLARY 7.5.15. If O is a convex open set and Tt is the Ornstein-Uhlenbeck semigroup
with zero Neumann boundary condition on L2(O), if f ∈ (W 1,1∩L2)(O) then Tt f ∈ BVγ(O) andˆ

O
∇HTt f |(O)≤ e−t

ˆ
O
|∇H f |H dγ.

PROOF. If f is Lipschitz and bounded, then the inequality is verified by the above proposition
and by the contractivity of Tt in L2(O).

If f ∈ (W 1,1∩L2)(O), then we can consider a sequence fn of Lipschitz functions which con-
verges to f in (W 1,1∩L2)(O) (by Corollary 3.2.24): by the fact that Tt is contractive in L1(O).

lim
n→+∞

ˆ
O

Tt(|∇H fn|H)) dγ =

ˆ
O

Tt(|∇H f |H)) dγ ≤
ˆ

O
|∇H f |H dγ
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by Proposition 7.5.14 we have

liminf
n→+∞

ˆ
O
|∇HTt fn|H dγ ≤ e−t liminf

n→+∞

ˆ
O

Tt(|∇H fn|H) dγ ≤ e−t
ˆ

O
|∇H f |H dγ;

moreover Tt fn converges to Tt f in Lp(O) and hence in L log
1
2 L; so by the lower semicontinuity

(Corollary 4.2.22), we have that Tt f ∈ BV (O) and we can conclude. �

COROLLARY 7.5.16. If f ∈ L2(O), then f ∈ BV (O) iff

(7.5.22) liminf
t→0

ˆ
O
|∇HTt f |H dγ < ∞,

and in this case

(7.5.23) lim
t→0
|
ˆ

O
∇HTt f |H = |Dγ f |(O).

PROOF. If (7.5.22) is satisfied, then there exists a sequence tn −→ 0 s.t.

lim
n→+∞

ˆ
|∇HTtn f |H dγ = c < ∞,

we already know that Ttn f converges to f in L2(O) and hence in L log
1
2 L(O), and therefore f ∈

BV (O) and |Dγ f |(O)≤ c by Corollary 4.2.22.
If f ∈ BV (O)∩ L2(O), by truncation there exists a sequence of bounded functions which

converges to f in BV (O)∩L2(O), and hence by Proposition 7.5.9 there exists a sequence fn of

functions in
(
W 1,1∩L2

)
(O) s.t. fn

Lp(O)−−−→ f and
´

O |∇H fn|H dγ converges to |Dγ f |(O); therefore
we have (recalling that Tt is bounded in Lp(O) for every ft and Lemma 4.2.24)

limsup
t→0

ˆ
|∇HTt f |H dγ ≤ limsup

t→0
limsup
n→+∞

ˆ
|∇HTt( fn)|H dγ ≤

(recalling that Jσ f ∈W 1,p(O) and Corollary 7.5.15)

≤ limsup
t→0

e−t
(

limsup
n→∞

ˆ
O
|∇H fn|H dγ

)
≤ limsup

n→∞

ˆ
O
|∇H fn|H dγ = |Dγ f |(O).

Hence, in this case, we have (7.5.23) and we can conclude. �

REMARK 7.5.17. The argument of this section could be reversed: the Proposition 7.5.14 could
be used together with Proposition 7.5.9 to prove the Corollary 7.5.16, and this yields Theorem
7.5.11.





CHAPTER 8

A finite perimeter subset of a classical Wiener space

Let X∗ =C∗([0,1],Rd) (continuous functions starting by 0), we consider the measure given by
the Brownian motion (see Section 2.6) with starting point in 0 ∈ X , hence it is represented by a
Gaussian measure P0. For every A ∈B(X∗), we define Ξ∗A := {ω ∈ X |ω(t) ∈ A ∀t ∈ [0,1]}.

In [46] (see Thm. 5.1) it is proved that, if d ≥ 2 and Ω ⊂ Rd is an open set which satisfies a
uniform outer ball condition then Ξ∗

Ω
has finite perimeter in the sense of Gaussian measure (see

Section 7.5).
Our aim is to find a weaker condition on Ω (for dimension sufficiently large) such that Ξ∗

Ω
has

finite perimeter
The main points are these: in Section 8.2 we introduce ρ and δ functions on Rd s.t. ρ(x) ∈

[0,1] for every x ∈ X , ρ|Oc ≡ 0 and ρ is locally Lipschitz in Ω̄ with a local constant given by δ ,
except in a set ∂sΩ of singular points of ∂Ω.

Hence, in Section 8.3, we impose that Ω satisfies certain conditions (Hypotheses 8.2.1, 8.3.20,
8.3.11, 8.3.19), we define function ρ̄ on X and δ̄ on X\Θ∂sΩ based on ρ and δ , and we prove that
ρ̄ ∈W 1,1(X), and we use it to build a sequence of functions which converges to the characteristic
function of Ξ∗

Ω
; hence we can state Theorem 8.3.21, main result of the Chapter, which asserts that,

under our conditions, Ξ∗
Ω

has finite perimeter. This result is actually an extension of ([46], Thm.
5.1), see Example 8.3.22.

In Section 8.1 we introduce some preliminary results that are used in Section 8.3: among
others, we use stochastic concepts (see Section 1.3), the concept of Bessel process (see Subsection
1.3.5) and Proposition 1.3.18.

In Section 8.4, we prove that if Ω is the complementary of a symmetric cone in dimension
greater than 6, then it satisfies our conditions and Ξ∗

Ω
has finite perimeter (Proposition 8.4.2).

It remains, as conjecture, the possibility to extend this result to sets which satisfy an uniform
cone condition.

8.1. Preliminary results

8.1.1. Pseudo-Hausdorff set-function.

DEFINITION 8.1.1. (pseudo-Hausdorff set function) In Rd , given E ⊂Rd , we define the family
Is,E of finite covering Ci of E with Cα = (Bα,1, . . . ,Bα,nα

) where Bα, j is a ball with radius s for
every j ∈ {1, . . . ,nα} and E ⊆

⋃nα

j=1 Bα, j; for s > 0 we define the index

(8.1.1) ns(E) = min
Ci∈Is,E

ni;

for m,s > 0 we define the set function

Hm
s (E) = nssm;

145
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we define the spherical pseudo-m-Hausdorff set function

Hm(E) = liminf
s→0

Hm
s (E).

REMARK 8.1.2. i) We have Hm(E) =Hm(Ē) for every E (differently from the Haus-
dorff measure H ), because if we substitute the sphere B j with B j, they cover Ē. If
Hm(E)< ∞ then H m(Ē)< ∞ ( where H m is the Hausdorff measure).

ii) If Hm(E) = 0 then H m(Ē) = 0
iii) If E is a k-manifold then dimH(E) = k.

In the next Lemma we make use of the Brownian motion

Z = (A,F ,{Zt}t∈[0,+∞],{µx}x∈Rd
∂

,{Ft}t∈[0,+∞])

(see Section 1.3.2 for the concept of Markov process and Subsection 1.3.4 for the Brownian motion
as a Markov process).

LEMMA 8.1.3. Let E ⊂Rd , x ∈Rd s.t. r = dist(x,E)> 0; we consider, for all s s.t. r
2 > s > 0,

the neighbourhood As := B(E,s), and the random variable τs, the hitting time of As; then

µx(τs < ∞)≤ 22d−4

rd−2 Hd−2
s (E).

PROOF. By definition of Hd−2
s we can define a covering C = (B1, . . . ,Bns) of E s.t. Bi has

radius s for all i and ns satisfies (8.1.1); now, we can define, for all i, a ball B′i with the same centre
yi of Bi and radius 2s; we remark that ‖x0− yi‖ ≥ r

2 because s < r
2 .

Clearly the balls B′i cover As; we define U :=
⋃ns

i=1 B′i, τU the hitting time of U (it is surely
positive because r > 2s), and, for every i ∈ {1, . . . ,ns} the variable τB′i hitting time of B′i.

It is also clear that τs ≥ τU surely, so µx(τs < ∞)≤ µx(τU < ∞); we have also that

{a ∈A|τU(a)< ∞}=
ns⋃

i=1

{a ∈A|τB′i(a)< ∞},

so

µx(τU < ∞)≤
ns

∑
i=1

µx(τB′i < ∞);

now, for some c0 > 0 we have, recalling ‖x0− yi‖ ≥ r
2 and that

µx(τB′i < ∞) =
(2s)d−2

‖x0− yi‖d−2

by Lemma 1.3.21, we have, for every i,

µx(τB′i < ∞)≤ 22d−4sd−2

rd−2
so

ni

∑
j=1

µx(τB′i < ∞)≤
n j22d−4sd−2

rd−2 =
22d−4

rd−2 Hd−2
s (E)

and we conclude. �

To control the hitting probability of a set, we will suppose that the next hypothesis is true, so
we can apply the above Lemma.
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HYPOTHESIS 8.1.4. We suppose that, for some l > 0, for s < 1, the set E is such that
Hd−2

s (E)≤ csl for some c > 0 independent of s.

EXAMPLE 8.1.5. If E is a bounded subset of an affine p-dimensional subspace of Rd , we can
consider, for the center of the ball of the coverings, a regular distribution in p-dimensional cells,
so ns ≤ cs−p with c > 0 independent of s < 1; then Hd−2

s (E)≤ csd−2−p.

REMARK 8.1.6. If the above hypothesis is true, clearly Hd−2(E) = 0.

COROLLARY 8.1.7. If E ⊆ Rd satisfies Hypothesis 8.1.4, let x0 ∈ Rd (starting point) s.t. r =
dist(x,E) > 0; we consider, for all s s.t. r

2 ∧ 1 > s > 0, the neighbourhood As = B(E,s), and the
random variable τs, the hitting time of As; then, there exists a constant c0 > 0 independent of E
and x s.t. µx(τs < ∞)≤ c0

rd−2 sl .

PROOF. It is an immediate consequence of Lemma 8.1.3. �

8.1.2. A result about exit time. If µ and ν are measures over a X , as usual we will write
µ << ν to mean that µ is absolutely continuous with respect to ν .

We will need some preliminary results.

LEMMA 8.1.8. Given a bounded space interval [a,b], for c := (b−a)−2 s.t., if f ∈C1([a,b])
and

´ b
a | f (x)| dx≤ 1, we have

sup
[a,b]

f 2 ≤ 2
ˆ b

a
| f (x)| dx

(
sup
[a,b]

∣∣ f ′∣∣+ c

)
.

PROOF. It is clear that

inf
[a,b]
| f | ≤ (b−a)−1

ˆ b

a
| f | dx,

and that

sup
[a,b]

f 2− inf
[a,b]

f 2 ≤
ˆ b

a
| d
dx

f 2(x)| dx = 2
ˆ b

a
| f (x) f ′(x)| dx≤ 2sup

[a,b]

∣∣ f ′∣∣ˆ b

a
| f (x)| dx;

so (by
´ b

a | f (x)| dx≤ 1)

sup
[a,b]

f 2 = sup
[a,b]

f 2− inf
[a,b]

f 2 + inf
[a,b]

f 2 ≤ 2sup
[a,b]

∣∣ f ′∣∣ˆ b

a
| f (x)| dx+

+

(ˆ b

a
| f (x)| dx

)2

(b−a)−2 ≤ 2
ˆ b

a
| f (x)| dx

(
sup
[a,b]

∣∣ f ′∣∣+ c

)
.

�

We suppose that X := {ω ∈C([0,1],Rd)}. We have that there exists a d-standard Brownian
motion (as a Markov process, see Section 1.3) on Rd

Z = (A,F ,{Zt}t∈[0,+∞],{µx}x∈Rd
∂

,{Ft}t∈[0,+∞])

(where (A,F ) is a measurable space). Fixed x ∈ Rd , we define the function

ix : A→{measurable functions R+→ Rd}
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as
ix(a) 7→ (t 7→ Zt(a));

we have that ix is a measurable functions, we can define

(8.1.2) Px := i−1
x ◦µx,

it concentrates on X , so we can consider Px as a measure on X
F will be the Brownian filtration.
We will suppose 1≤ p < ∞.
Given Ω ⊆ Rd open, x ∈ Ω, we consider the absorbing Brownian motion in Ω with starting

point x (see Subsection 1.3.4):

ZΩ = (A,F ,{ZΩ
t }t∈[0,+∞],{µx}x∈Ω∂

,{Ft}t∈[0,+∞]);

arguing in a way similar to that above, we define P′x the probability associated to this motion on
XΩ := {ω ∈C([0,1],Ω)}. For t > 0 and B ∈B(D),

P′x({ω ∈A|ω(t) ∈ B}) = µx(ZD
t ∈ B).

We recall (see Subsection 1.3.4) that there exists q≥ 0 kernel s.t.

µx(ZΩ
t ∈ B) =

ˆ
B

q(x,y, t) dy,

so
´

B q(x,y, t) dy≤ 1 for every x.
We can apply Proposition 1.3.18, so q is 2-derivable and

(8.1.3)
∣∣∣∣ ∂

∂ t
q(x,y, t)

∣∣∣∣≤C1t−
d
2−1 exp(−C2 ‖x− y‖2

t
),

and

(8.1.4)
∣∣∣∣ ∂ 2

∂ t2 q(x,y, t)
∣∣∣∣≤C3t−

d
2−2 exp(−C4 ‖x− y‖2

t
),

with C1,C2,C3,C4 > 0 independents of x,Ω. for q transition function associated to ZΩ.
Now, we can consider τ is the exit time associated to Ω, and define

Pτ
x := τ

−1 ◦µx,

we have that Pτ
x is a probability on R+.

We will argue in a way similar to [[46], Lemma 3.2].

LEMMA 8.1.9. In this setting, given Ω ⊆ Rd open with x ∈ Ω, let τ be the exit time associ-
ated to Ω, and Pτ

x the probability associated to τ on R+ with starting point x: then the function
Pτ

x ((0, t)) is continuous and derivable in t, with non negative derivative d
dt Pτ

x ((0, t))≤ c1t−1 with
c1 > 0 independent of x,Ω; in particular, Px[τ = t] = 0 for all t 6= ∞. Moreover, there exists c2 > 0

independent of x,Ω s.t. supt∈[ 1
2 ,1]

d
dt Pτ

x ((0, t))≤ c2

√
Pτ

x (
[1

2 ,1
]
).

PROOF. By recalling the concepts of Markov processes, let ∂ be the cemetery point. We
remark that for t > 0,

{a ∈A|τ(a) ∈ (0, t)}= {a ∈A|ZΩ
t (a) = ∂},

so
Pτ

x ((0, t)) = µx(ZΩ
t = ∂ ) = 1−µx(ZΩ

t ∈Ω) =
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= 1−
ˆ

Ω

q(x,y, t)dy =

(by the Chapman-Kolmogorov property for kernels (1.3.4))

= 1−
ˆ ˆ

Ω×Ω

q(x,z, t− s)q(z,y,s) dy dz

for all s < t.
By (8.1.3), Pτ

x ((0, t)) is differentiable with respect to t; clearly it is increasing (by definition
of τ), so d

dt Pτ
x ((0, t))≥ 0 for all x ∈Ω, 0 < t; hence, by q≥ 0 and (8.1.3), for all x ∈Ω, 0 < s < t

| d
dt

Pτ
x ([0, t])|= |

ˆ ˆ
Ω×Ω

q(x,z,s)
∂

∂ t
q(z,y, t− s) dy dz| ≤

≤C1

ˆ ˆ
Ω×Ω

q(x,z,s)(t− s)−
d
2−1 exp

(
−C2
‖z− y‖2

t− s

)
dy dz≤

(recalling that
´
Rd e−σ |x|2dx≤Cσ−

d
2 for some C > 0, we have for some C5 independent on x,s, t)

≤C5(t− s)−1
ˆ

Ω

q(x,z,s) dy≤

(by
´

Ω
q(x,z,s) dy≤ 1)

≤C1(t− s)−1

and, if we choose s < t
2 , we have d

dt Pτ
x ((0, t))≤ c1t−1 for some c1 > 0; we do the same thing for

d2

dt2 , we have that Pτ
x ((0, t)) is two derivable and

| d
2

dt2 Pτ
x ([0, t])|= |

ˆ ˆ
Ω×Ω

q(x,z,s)
∂ 2

∂ t2 q(z,y, t− s) dy dz| ≤

≤C3

ˆ ˆ
Ω×Ω

q(x,z,s)(t− s)−
d
2−2 exp

(
−C4
‖z− y‖2

t− s

)
dy dz≤

(for some C5 > 0 independent on x,s, t)

≤C5(t− s)−2
ˆ

Ω

q(x,z,s) dy≤C5(t− s)−2

because
´

B q(x,y, t) dy≤ 1 for every x. Therefore, for some C6 > 0 independent on x

sup
[ 1

2 ,1]
| d

2

dt2 Pτ
x ((0, t))| ≤C6,

so, if we define g(t) = d
dt Pτ

x ((0, t)), we have |g′(t)| ≤C6 on
[1

2 ,1
]
, and clearly g≥ 0 everywhere;

so, by Lemma 8.1.8

sup
t∈[ 1

2 ,1]
g2(t)≤ 2(c+C6)

ˆ 1

1
2

g(t) dt = 2(c+C6)Pτ
x (

[
1
2
,1
]
),

hence

sup
t∈[ 1

2 ,1]
g(t)≤ c2

√
Pτ

x (

[
1
2
,1
]
)
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for some c2 independent on Ω, x. �

REMARK 8.1.10. This proof is done for a d-dimensional standard Brownian motion; if, in-
stead, we consider a d dimensional Brownian motion on the interval [0,1], clearly the inequality
of the above propositions remain true because the exit time in this case is τ ′ = τ ∧1, and so if we
define Pτ ′

x := τ ′−1 ◦µx, we have d
dt Pτ ′

x ((0, t)) = d
dt Pτ

x ((0, t)) for every t < 1.

8.1.3. Construction of a W 1,1 function which is piecewise Lipschitz. We consider a sepa-
rable Banach space with centered non-degenerate Gaussian measure (X ;γ); clearly it is Radon.

We suppose that a centered non-degenerate Gaussian measure γ is defined on Rn.

DEFINITION 8.1.11. We consider an open Ω ⊆ X . F function on Ω is locally Lipschitz if
there exists an open covering {Oi}i∈N of Ω s.t. F is Lipschitz in Oi for every i ∈ N.

F function on Ω is locally H-Lipschitz if there exists an open covering {Oi}i∈N of Ω s.t. F is
H-Lipschitz in Oi for every i ∈ N.

Let F ∈ L∞(X), F locally Lipschitz on Ω, hence it is also locally H-Lipschitz on Ω; then,
by Corollary 3.1.15, it is almost everywhere Gâteaux differentiable , and we can define almost
everywhere a local H-derivative, ∇HF and the partial derivatives ∂hF for all h ∈ H.

We recall that, for all measures µ � L1, a function f ∈ L∞(R) is in W 1,1(R) iff it is W 1,1
loc (R)

and | f ′|L1(R) < ∞; if f is Lipschitz on an interval, then it is absolutely continuous and hence W 1,1

on that interval; in particular, if f is locally Lipschitz on an open of R, then it is W 1,1
loc on this open

(for the absolute continuity and the local absolute continuity see the Appendix).
We give a definition of 2-capacity of sets of (X ,γ), modelled on that in Rd .

DEFINITION 8.1.12. We define the 2-capacity of an open O⊆ X as

C2(O) := inf
f∈W 1,2(X), f|O≥1

‖ f‖W 1,2(X) .

and for a generic set A we define C2(A) = infO∈O,A⊆OC2(O) where O is the set of open subsets of
X .

It is clear that, if γ(A)> 0 then C2(O)> 0.

PROPOSITION 8.1.13. We suppose that there exists a sequence of {li}i∈N ⊂ [0,+∞), a se-
quence of mutually disjoint Borel subsets {Xi}i∈N, s.t. γ(X\

⋃
∞
i=1 Xi) = 0 and a closed Θ s.t.

C2(Θ) = 0; we will suppose
∞

∑
i=0

l2
i γ(Xi) =: l < ∞

(hence ∑
∞
i=0 liγ(Xi)< ∞ due to the finiteness of γ).

Let F ∈ L∞(X), such that F is locally Lipschitz out of Θ, and F is li-Lipschitz in Xi for every
i ∈ N: then F ∈W 1,1(X).

Moreover, F admits almost everywhere H-derivative, and, for almost each point, if x ∈ Xi then
|∇HF(x)|H ≤ li.

PROOF. Under the hypothesis, F is almost everywhere Gâteaux differentiable and admits
almost everywhere H-gradient, moreover, for almost each point, if x ∈ Xi then |∇HF(x)|H ≤ li
by Theorem 3.1.11 and Corollary 3.1.15.
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F is locally Lipschitz out of Θ, so it is locally absolutely continuous along lines.
∇HF ∈ L1(X ,H) because ˆ

X
‖∇HF‖H dγ ≤

∞

∑
i=1

liγ(Xi)< ∞.

Now, for n ∈ N we consider an On ⊂ X open with Θ⊂ On, and a gn ∈W 1,2(X) s.t.

‖gn‖W 1,1(X) ≤ ‖gn‖W 1,2(X) −→ 0

(‖·‖W 1,1 ≤ ‖·‖W 1,2 due to the fact that γ is a probability), 0≤ gn ≤ 1,gn|On = 1.
We consider Fn := F(1−gn), we prove it is in W 1,1(X) with weak gradient

∇HFn := ∇HF(1−gn)−F∇Hgn;

by Lemma 3.1.13 it suffices to prove that, for every h ∈ H, for γh⊥-a.e. y ∈ h⊥ the function (Fn)y
has a representative locally absolutely continuous, and that

(8.1.5)
Fn(x+ th)−Fn(x)

t
−〈∇HFn,h〉H

converges to 0 in measure γ for t→ 0.
For every y ∈ h⊥, we have that gn ≡ 0 on (On)y ⊃ Θy and (gn)y has a representative locally

absolutely continuous, while the function Fy is locally absolutely continuous on R\Θy for γh⊥-a.e.
y ∈ h⊥, so (Fn)y has a representative locally absolutely continuous in such y.

We have that, for every h ∈ H, by F locally Lipschitz out of Θ, that

F(x+ th)−F(x)
t

−〈∇HF,h〉H

tends to 0 γ-a.e, and that for

gn(x+ th)−gn(x)
t

−〈∇Hgn,h〉H

we have the convergence in measure to 0; so we have the convergence (8.1.5) in measure γ.
So Fn ∈W 1,1(X) for every n ∈ N by Lemma 3.1.13.

Now, we prove that Fn
W 1,1(X)→ F ; we have (by using the hypothesis on the sequence {li}i∈N)

‖∇HFgn‖L1(X ,H) ≤
ˆ

X
|∇HF |Hgn dγ ≤

(by the Hölder inequality)

≤ ‖|∇HF |H‖L2(X) ‖gn‖L2(X) =

(
∞

∑
i=1

l2
i γ(Xi) dγ

) 1
2

‖gn‖L2(X) =

= l ‖gn‖L2(X)
n→∞−−−→ 0

and therefore
‖F−Fn‖W 1,1(X ,H) = ‖Fgn‖W 1,1(X ,H) ≤

≤ ‖F‖L∞ ‖1−gn‖L1 +‖F‖L∞ ‖∇gn‖L1 +‖(1−gn)∇F‖L1(X ,H)
n→∞−−−→ 0;

hence, F is the limit of the sequence {Fgn}n∈N in W 1,1, hence it is in W 1,1. �
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REMARK 8.1.14. We recall that for every h ∈ H, ‖h‖X ≤ ‖h‖H . If we want to prove that
‖∇HF(x)‖H ≤ li in a.e. x ∈ Xi, it is sufficient to prove that for all h ∈ H, for t sufficiently small∣∣∣∣F(x+ th)−F(x)

t

∣∣∣∣≤ li ‖h‖X ;

then

|∂hF |= liminf
t→0

∣∣∣∣F(x+ th)−F(x)
t

∣∣∣∣≤ li ‖h‖X ≤ li ‖h‖H ≤ li.

So, for such a x we can write ∇HF ∈ H, and ‖∇HF(x)‖ ≤ li.

REMARK 8.1.15. We will apply the Proposition 8.1.13 for Brownian motion in Rd , that is
a particular case of Gaussian measure; if the starting point is 0, it will be a centered Gaussian
measure; however, the property of the Brownian motion doesn’t change if we change the starting
point, so we can apply this result for all the starting points.

8.2. Some technical lemmas about open sets

Let Ω⊆Rd be an open set. For every r > 0 we define Br as the ball with radius r > 0 centered
in 0, and B(x,r) as the ball centered in x ∈ Rd and with radius r > 0.

Very heuristically, our main goal in this subsection is to define: a set ∂sΩ of points of ∂Ω

which do not admits a tangent ball out of Ω; a function δ on Ω which, for every x ∈Ω, express the
radius of a ball out of Ω which is, in a certain sense, ’near’ to x; and a function ρ1 which, in some
sense, substitutes the distance from Ω̄, s.t. it is c−1-Lipschitz in regions of Ω in which δ > c (so
ρ1 is not regular near the points of ∂sΩ).

Hereafter we will suppose that the next hypothesis is true.

HYPOTHESIS 8.2.1. There exists R,η > 0 s.t. for every x ∈ ∂Ω there exists a y ∈ Ωc s.t.
dist(y,x)≤ R and dist(y,Ω)≥ η .

We define q(x) := dist(x,Ωc).We consider for some 0 < r < 1 the open set

(8.2.1) Ωr := {x ∈Ω|q(x)> r} ⊆Ω;

so in particular
Ω1 := {x ∈Ω|q(x)> 1}.

We set, for each y ∈ Rd ,
δ
′(y) := dist(y,Ω̄)∧1;

then δ ′ is continuous (and 1-Lipschitz) and positive, and δ ′(y)→ 0 if y converges to a point of
∂Ω; we define, for x ∈ Ω̄ and y ∈ Ω̄c,

g(x,y) :=
‖x− y‖−δ ′(y)

δ ′(y)
;

we have that g is continuous in y and in x, it is non negative (by ‖x− y‖ ≥ δ ′(y)), and it converges
to +∞ if x is fixed and |y| goes to +∞; moreover, if yn→ y0 ∈ ∂Ω\{x}, then g(x,yn)→+∞.

So, if x ∈Ω, fixed x the function g(x, ·) has a minimum.
Let ∂ssΩ the sets of elements of ∂Ω s.t. g(x, ·) does not have a minimum.
For every x ∈ Ω̄\∂ssΩ, g(x, ·) has a minimum.
If x ∈Ω, then ‖x− y‖> dist(y,Ω̄) for every y ∈ Ω̄c, so g(x,y)> 0.
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DEFINITION 8.2.2. We define on Ω̄\∂ssΩ

g1(x) := inf
y∈Ω̄c

‖x− y‖−δ ′(y)
δ ′(y)

= min
y∈Ω̄c

g(x,y),

and, on Rd

ρ(x) :=

{
1∧g1(x) if x ∈ Ω̄\∂ssΩ

0 otherwise
;

we have that, for all x ∈ Ω̄\∂ssΩ, there is a nonempty compact set M(x) of minimal points of
g(x, ·); we define on Ω̄\∂ssΩ a function δ1(x) := maxy∈M(x) δ ′(y)> 0; we define on Rd

δ (x) :=

{
δ1(x) if x ∈ Ω̄\(Ω1∪∂ssΩ)

1 otherwise
;

clearly δ (x)≤ 1 everywhere.

In general, 0≤ ρ(x)≤ 1, for x ∈Ω we have that g1(x)> 0, ρ(x)> 0, and for x ∈Ω
c we have

that ρ(x) = 0, g1(x)< 0.
We observe that q(x) ≤ g1(x) for every x ∈ Ω: in fact, for all y ∈ Ω̄c, we have g(x,y) ≥

‖x− y‖−δ ′(y)≥ q(x); therefore, q(x)≤ ρ(x) on Rd\(Ω1∪∂ssΩ).
δ is defined everywhere, but its behaviour is interesting only in Ω̄\(Ω1∪∂ssΩ).

REMARK 8.2.3. If x ∈ ∂Ω, and if there exists a ball B1 ⊆ Ω̄c tangent in x of radius r ≤ 1
and center y then clearly x /∈ ∂ssΩ and ρ(x) = 0 (recalling that g(x) is always non negative, so
g1(x) = g(x,y) = 0 and 0 is a minimum) and δ (x)≥ r. If z ∈Ω and the above mentioned x is the
nearest point of ∂Ω to z then δ (z)≥ r .

In fact, if by contradiction δ (z) < r, then there exists y ∈ Ω̄c s.t. δ ′(y) = δ (z) < r and s.t.
g(z,y) ≤ g(z,w) where w is the center of B1 (hence δ ′(w) = r); this yields, if v is an intersection
of the segment between z and y with ∂Ω, then

‖z− y‖−δ
′(y)≤

(
‖z−w‖−δ

′(w)
) δ ′(y)

δ ′(w)
≤ ‖z−w‖− r

and

‖z− v‖ ≤ ‖z− y‖−δ
′(y)≤ ‖z−w‖− r = ‖z− x‖ ,

(the last equality is true because x ∈ ∂B1 and r is the radius of B1); but x is the nearest point to z
of ∂Ω, contradiction.

For x ∈Ω1 we have

g1(x)≥
1

δ1(x)
≥ 1

so

(8.2.2) ρ|Ω1 ≡ 1;

for x ∈Ω\Ω1, by the Hypothesis 8.2.1 there exists y s.t. δ (y)> η and ‖x− y‖ ≤ R+1, so

(8.2.3) g1(x)≤ c0 :=
R+1

η
.
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For x ∈Ω\Ω1 and y ∈M(x) we have that ‖x− y‖−δ ′(y)≥ q(x) (because δ ′(y) = dist(y,Ω)),
therefore, by definition of ρ and δ

ρ(x) = g1(x)≥
q(x)
δ ′(y)

≥ q(x)
δ (x)

;

hence, for every x ∈Ω\Ω1, by (8.2.3),

(8.2.4) δ (x)>
q(x)
g1(x)

≥ c−1
0 q(x),

clearly (8.2.4) is true for every x ∈Ω, because δ|Ω1 ≡ 1.

LEMMA 8.2.4. If xn→ x in Ω̄\(Ω1∪∂ssΩ), with δ (xn)→ δ1 > 0 for some δ1, then δ (x) = δ1;
δ is upper semicontinuous in Ω̄\(Ω1∪∂ssΩ).

PROOF. Let xn → x, with δ (xn)→ δ1 > 0; it is not restrictive to suppose that there exists
c > 0 s.t. δ (xn)> c > 0; let yn a sequence s.t. yn ∈M(xn) and δ ′(yn) = δ (xn), and let z ∈M(xn);
we have that g(xn,z)→ g(x,z), hence there exists C > 0 s.t. for every n ∈ N g(xn,z) ≤C and so
g(xn,yn)≤C (because yn ∈M(xn)), so

‖xn− yn‖ ≤ δ
′(y)C+δ

′(y)≤C+1.

So, by xn→ x, there exists R> 0 s.t. dist(yn,x)≤R, hence {yn}n∈N is contained in the compact
B(x,R) and up to a subsequence we have that yn converges to some y, and, by the continuity of δ ′,
δ1 := δ ′(y)> c > 0 and y ∈ Ω̄c; therefore by the continuity of g on Rd× Ω̄c

g(x,y) = lim
n→∞

g(x,yn) = lim
n→∞

g(xn,yn),

and we can infer y ∈ M(x) and δ (x) = δ ′(y), because if by contradiction there exists y′ s.t.
g(x,y′) < g(x,y), then by continuity of g for some n we have that g(xn,y′) < g(xn,yn) and yn /∈
M(xn) (contradiction).

If δ (xn)→ 0, the upper semicontinuity in Ω̄\(Ω1∪∂ssΩ) is obvious, because δ is non negative,
so we have concluded. �

REMARK 8.2.5. Now we consider a set O ⊆ Ω̄\∂ssΩ and a c > 0 s.t. for all x ∈ O, we have
δ (x)≥ c; then, ρ is c−1-Lipschitz in O.

In fact, for x1 ∈ O, x2 ∈ O with g1(x2) = ρ(x2) < ρ(x1) (hence, we can suppose x2 /∈ Ω1 by
(8.2.2)), we can fix y2 ∈M(x2), so δ ′(y2) = δ (x2)≥ c and we have

ρ(x1)−ρ(x2)≤ g1(x1)−g1(x2)≤ inf
y∈Ω̄c

‖x1− y‖−δ ′(y)
δ ′(y)

− ‖x2− y2‖−δ ′(y2)

δ ′(y2)
≤

≤ ‖x1− y2‖−δ ′(y2)

δ ′(y2)
− ‖x2− y2‖−δ ′(y2)

δ ′(y2)
≤ c−1 ‖x1− x2‖ .

REMARK 8.2.6. For r ≤ 1, by (8.2.4), δ (x) > c−1r if x ∈ Ωr\Ω1 and by (8.2.2) ρ(x) = 1 if
x ∈Ω1; so ρ is cr−1-Lipschitz in Ωr for Remark 8.2.5.

We have also Ω =
⋃

∞
n=1 Ω 1

n
; therefore, ρ is locally Lipschitz, and hence continuous, on Ω; the

set

(8.2.5) Ω
∗
r := {x ∈Ω|ρ(x)> r}

is open for all r > 0. Besides, ρ ≡ 0 on Ω̄c, and so ρ is continuous everywhere except on the
boundary of Ω.
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DEFINITION 8.2.7. We consider

∂
′
sΩ = {x ∈ ∂Ω\∂ssΩ|g1(x)> 0}.

We define

∂sΩ := {x ∈ Ω̄|∃{xn}n∈N sequence in Ω̄ s.t xn→ x,δ (xn)→ 0}
⋃

∂ ′sΩ∪∂ssΩ;

by (8.2.4) ∂sΩ⊆ ∂Ω. It is obvious that ∂sΩ is closed. We will call ∂sΩ singular part of ∂Ω ,

REMARK 8.2.8. Let A⊆ Rd be an open and s > 0 s.t. for every x ∈ ∂Ω∩A there exists a ball
B⊂Ωc s,t, x ∈ B̄; then S∩∂sΩ =∅ by Remark 8.2.3.

REMARK 8.2.9. δ is continuous in Ω̄\(∂sΩ∪Ω1) by Lemma 8.2.4; g1 = 0 in ∂Ω\∂sΩ.

DEFINITION 8.2.10. For each a > 0, if we define the compact set

Γa := {x ∈ B 1
a
|dist(x,∂sΩ)≥ a}

(where B 1
a

is the ball centered in the origin with radius a).

δ is continuous on the compact
(
Γa∩ Ω̄

)
\Ω1, so δ has a minimum c > 0 on

(
Γa∩ Ω̄

)
\Ω1

(because ∂sΩ∩Γa =∅), so δ has minimum c on Γa (because δ ≡ 1 on Ω̄c and Ω1).

REMARK 8.2.11. We recall that, if a function is not Lipschitz in a compact, then there is at
least a point in which is not locally Lipschitz.

LEMMA 8.2.12. Let a > 0; ρ is Lipschitz in Γa. ρ is locally Lipschitz out of ∂sΩ.

PROOF. Let c the minimum of δ on Γa.
We want to prove the first point. By Remark 8.2.11, we have only to verify that ρ is locally

Lipschitz in every point.
In Ω̄c, we have ρ = 0, hence the local Lipschitzianity is verified.
If x ∈ Γa∩Ω, then by Remark 8.2.5, ρ is c−1-locally Lipschitz in x.
If x ∈ Γa∩∂Ω, then x /∈ ∂sΩ, so in a convex neighbourhood B of x we have

ρ|B∩∂Ω ≡ 0;

by Remark 8.2.5, ρ restricted to Γa ∩ Ω̄ is c−1-Lipschitz, and restricted to Ωc is 0, so it is c−1-
Lipschitz in B: given x ∈Ω∩B and y ∈Ωc∩B, the segment between them intersects B∩∂Ω in a
point z and ρ(z) = ρ(y) = 0, so

|ρ(x)−ρ(y)|
‖x− y‖

≤ |ρ(x)−ρ(z)|
‖x− z‖

≤ c−1.

Hence we concluded the first part.
The second part is an obvious consequence (because Rd\∂sΩ =

⋃
a>0 Γa). �

8.3. Finite perimeter of subsets of C([0,1],Rd) through approximations of characteristic
functions.

As in Section 8.2, Ω ⊆ Rd is an open set which satisfies Hypothesis 8.2.1. We recall the
concepts of ρ,δ ,∂sΩ,Γa of Section 8.2.
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8.3.1. Geometric properties of functions on C([0,1],Rd). In this subsection, X =C([0,1],Rd).
For each A⊂ Rd we define

ΘA = {ω ∈ X |∃t ∈ [0,1] s.t. ω(t) ∈ A}

and
ΞA = {ω ∈ X |ω(t) ∈ A ∀t ∈ [0,1]}.

If A is open in Rd , then ΞA,ΘA are open in X ; if A is closed in Rd , then ΞA,ΘA are closed in X .
In particular, Θ∂sΩ is closed.

DEFINITION 8.3.1. We define ρ1 : X → R as

ρ(ω) :=

{
inft∈[0,1] ρ(ω(t)) if ω /∈Θ∂sΩ

0 if ω ∈Θ∂sΩ

.

LEMMA 8.3.2. ρ̄ is locally Lipschitz out of Θ∂sΩ; in particular it is continuous on X\Θ∂sΩ,
and Borel measurable on X.

PROOF. For all ω ∈ X\Θ∂sΩ, we define the function

τ(ω) := inf{t ∈ [0,1]|ρ(ω(t)) = ρ̄(ω)},

and x̄(ω) := ω(τ(ω)): it is clear that if ω /∈ Θ∂sΩ then ρ̄(ω) = ρ(x̄(ω)), because ρ is continuous
on ω([0,1]) and ω is continuous.

For a > 0, the function ρ is Lipschitz in the open set Γ̊a (interior of Γa) by Lemma 8.2.12,
with a constant that we denote as δ−1

a .
We consider ϒa := Ξ

Γ̊a
⊆ X , we have that it is an open, and let ω1,ω2 ∈ ϒr, if ρ̄(ω1)> ρ̄(ω2)

then (recalling that ρ̄(ω1)≤ ρ̄(ω1(t)) for all t)

|ρ̄(ω1)− ρ̄(ω2)|
‖ω1−ω2‖X

=
ρ̄(ω1)

‖ω1−ω2‖X
− ρ(ω2(τ(ω2)))

‖ω1−ω2‖X
≤

≤ ρ(ω1(τ(ω2)))

‖ω1−ω2‖X
− ρ(ω2(τ(ω2)))

‖ω1−ω2‖X
≤

δ−1
a ‖ω1−ω2‖C([0,1)]

‖ω1−ω2‖X
= δ

−1
a .

We have that if ω /∈ Θ∂sΩ, then dist(ω([0,1]),∂sΩ) = r′ > 0, and ω ∈ ϒa for some a > 0; so
X\Θ∂sΩ =

⋃
∞
i=1 ϒ 1

i
, hence ρ̄ is locally Lipschitz in X\Θ∂sΩ, and we can conclude. �

Our first issue is to give sufficient conditions to can use the Proposition 8.1.13 for the func-
tional ρ̄ .

We can define for all ω /∈Θ∂sΩ the set

(8.3.1) A(ω) := {x ∈ ω([0,1]),ρ(x) = ρ̄(ω)}.

For ω /∈Θ∂sΩ we get ω([0,1])⊂ Γa for some a > 0, hence, by Lemma 8.2.12, ρ is continuous
on ω([0,1]); this, together with the continuity of ω , yields that A(ω) is compact; δ is continuous
on Γa\Ω1 by Remark 8.2.9 (and it is 1 on Ω1 and Rd\Ω̄, and less than 1 in the other points), hence
it admits a minimum on A(ω).

For what we said, we can give the following definition.
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DEFINITION 8.3.3. We define on X\Θ∂sΩ

δ̄1(ω) := min
x∈A(ω)

δ (x)

and

δ̄ (ω) :=

{
δ̄1(ω) if ω ∈ ΞΩ̄\Θ∂sΩ

1 otherwise

(by recalling the definition of Ω1 in the Section 8.2); clearly 0 < δ̄ (ω)≤ 1.

LEMMA 8.3.4. δ̄ is lower semicontinuous in ΞΩ̄\Θ∂sΩ; in particular, it is a Borel measurable
function.

PROOF. We have δ|Ω1 ≡ 1 , so δ̄|ΞΩ1
≡ 1, hence in ΞΩ1 there is nothing to prove because it is

open and δ̄ ≤ 1 everywhere.
Because of the lower semicontinuity, it suffices to prove that δ̄ is lower continuous on ΞΩ̄\(Θ∂sΩ∪

ΞΩ1); so, let ωn be a sequence which uniformly converges to ω in ΞΩ̄\(Θ∂sΩ ∪ΞΩ1). Let l :=
liminfn→∞ δ̄ (ωn), we want to prove that l ≥ δ̄ (ω).

If l = 1, there is nothing to prove.
Let l < 1. For every n ∈ N there exists xn ∈ A(ωn) s.t. δ (xn) = δ̄ (ωn), so δ (xn)→ l; there

exists a sequence tn s.t. xn = ωn(tn), up to a subsequence tn → t, let x := ω(t), we get xn → x;
by the continuity of ρ̄ out of Θ∂sΩ and the continuity of ρ out of ∂sΩ, we have x ∈ A(ω); clearly
x /∈ Ω1 because l < 1, δ|Ω1 ≡ 1 and Ω1 is open; hence, by the continuity of δ in Ω̄\(∂sΩ∪Ω1)

(Remark 8.2.9), we have δ (x) = l, so l ≥ δ̄ (ω).
Hence we proved the lower semicontinuity in ΞΩ̄\Θ∂sΩ; by this and by ΞΩ̄\Θ∂sΩ ∈B(X), we

get the B(X)-measurability (see Lemma 1.2.8). �

DEFINITION 8.3.5. For all n ∈ N, n > 1 we define the set

Yn :=
{

ω ∈ X\Θ∂sΩ|δ̄ (ω)≤ 1
n−1

}
,

Xn :=
{

ω ∈ X\Θ∂sΩ|
1
n
< δ̄ (ω)≤ 1

n−1

}
,

by Lemma 8.3.4, Xn and Yn are Borel sets.

REMARK 8.3.6. The sets Xn are mutually disjoint;
⋃

∞
n=2 Xn = X\Θ∂sΩ.

LEMMA 8.3.7. In this setting, for every n ∈N, we have that, in each point of Xn, the Lipschitz
constant of ρ̄ (as function on X), is less than n.

PROOF. We use the Remark 8.1.14: given ω ∈ Xn and ω1 ∈ X we want to find a l0 s.t. if l < l0
then

|ρ̄(ω + lω1)− ρ̄(ω)| ≤ nt ‖h‖X ;
it suffices to prove that there exists cω > 0 s.t. for a generic ω1 with ‖ω1‖X ≤ c we get |ρ̄(ω +
ω1)− ρ̄(ω)| ≤ n‖ω1‖X .

Hereafter, B(A(ω),r) is the set of points of Rd at distance from A(ω) less than r.
Case 1): ω ∈ Xn∩ΞΩ1 ; hence the local n-Lipschitzianity it is clear because ρ|Ω1 = 1 and ΞΩ1

is open;
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Case 2) ω ∈ Xn∩ΞΩ\ΞΩ1 : ΞΩ is open , therefore there exists c1 > 0 s.t. for a generic ω1 with
‖ω1‖X ≤ c1 we get ω +ω1 ∈ ΞΩ.

ω /∈ Θ∂sΩ by definition of Xn, so dist(A(ω),∂sΩ) > 0, moreover dist(ω([0,1]),Ωc) > 0 (be-
cause ω ∈ ΞΩ and Ω is open); by ω ∈ Xn we get δ (ω(x))> 1

n for all x ∈ A(ω); we know that δ is
continuous in Ω̄\∂Ωs (Remark 8.2.9), and δ = 1 in Ω̄c so there exists an r > 0 s.t. δ (x) > 1

n for
all x ∈ B(A(ω),r); hence, ρ is n-Lipschitz in B(A(ω),r)∩ Ω̄ by Remark 8.2.5, therefore

(8.3.2) ρ̄ is n-Lipschitz in B(A(ω),r)

because ρ = 0 on Ω̄c.
By recalling (8.2.5), the compact ω([0,1])\B(A, r

2) is contained into the open Ω∗
ρ̄(ω) by the

definition of A(ω), hence dist(ω([0,1])\B(A(ω), r
2),R

d\Ω∗
ρ̄(ω)) =: r′ > 0.

Now we consider a ω1 ∈ X s.t. ‖ω1‖X < r
2 ∧ r′ ∧ c1 (recalling that ‖·‖X is the L∞ norm):

let t ∈ [0,1] s.t. ω(t) ∈ B(A(ω), r
2), we have (ω +ω1)(t) ∈ B(A(ω),r)∩Ω (by ‖ω1‖X < r

2 and
ω +ω1 ∈ ΞΩ), hence by (8.3.2)

|ρ ((ω +ω1)(t))−ρ ((ω)(t))| ≤ n‖ω1‖X

so

(8.3.3) ρ((ω +ω1)(t))≥ ρ(ω(t))−n‖ω1‖X ≥ ρ̄(ω)−n‖ω1‖X .

Moreover, by considering t0 s.t. ω(t0) ∈ A(ω)⊂ B(A(ω), r
2), we have also

(8.3.4) ρ̄(ω)+n‖ω1‖X = ρ(ω(t0))+n‖ω1‖X ≥ ρ((ω +ω1)(t0))≥ ρ̄(ω +ω1).

Let t ∈ [0,1] s.t. ω(t) /∈ B(A, r
2) then (ω +ω1)(t) ∈Ω∗

ρ̄(ω) (by ‖ω1‖X < r′), i.e.

ρ((ω +ω1)(t))> ρ̄(ω),

so by this and (8.3.3), we have for every t ∈ [0,1],

(8.3.5) ρ(ω +ω1)(t)≥ ρ̄(ω)−n‖ω1‖X

hence

(8.3.6) ρ̄(ω +ω1)≥ ρ̄(ω)−n‖ω1‖X .

Now, by (8.3.4) and (8.3.6), and by the generality of ω1 we have that ρ̄ is Lipschitz in a
neighbourhood of ω with constant n.

Case 3) ω ∈ Xn ∩ΘΩc ∩ΞΩ̄\ΞΩ1 : so, A(ω) intersects ∂Ω\∂sΩ and ρ̄(ω) = 0 (recalling that
ρ = 0 on ∂Ω\∂sΩ); we can repeat the arguments of Case 2), but we do not define c1 and we
impose ‖ω1‖X < r

2 ∧ r′ (instead of ‖ω1‖X < r
2 ∧ r′∧ c1): if ω +ω1 /∈ ΞΩ̄ then

(8.3.7) ρ̄(ω +ω1) = ρ̄(ω) = 0;

otherwise, let t ∈ [0,1] s.t. ω(t) ∈ B(A(ω), r
2), we have (ω +ω1)(t0) ∈ B(A(ω),r) ∩ Ω̄ (by

‖ω1‖X < r
2 and ω +ω1 ∈ ΞΩ̄), hence in both cases

|ρ ((ω +ω1)(t))−ρ(ω)(t)| ≤ n‖ω1‖X ,

and we can deduce (8.3.4) and (8.3.3); (8.3.5) in this case is obvious because ρ̄(ω) = 0, and we
can conclude in the same way of Case 2)

Case 4) ω ∈ΘΩ̄c then obviously ρ̄ is 0 in a neighbourhood, and there is nothing to prove. �
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8.3.2. Stochastic properties of functions on C([0,1],Rd). Also in this subsection, we write
X =C([0,1],Rd).

We recall that the Brownian motion can be described by a Markov process

Z = (A,F ,{Zt}t∈[0,+∞],{µx}x∈Rd
∂

,{Ft}t∈[0,+∞])

(see Subsection 1.3.4).
We define i : A→ X , a 7→ (t 7→ Zt(a)) and, for every x ∈ Rd ,

Px := i−1 ◦µx

is a probability on X which describes the d-dimensional Brownian motion with starting point in x.
In the rest of this subsection we suppose the following Hypotheses on Ω are true.

HYPOTHESIS 8.3.8. For every x /∈ ∂sΩ, we assume Px(Θ∂sΩ) = 0.

REMARK 8.3.9. By Hypothesis 8.3.8, ω([0,1]∩∂sΩ =∅ Px-almost surely, hence in particular
ρ(ω(·)) is continuous Px-almost surely by Lemma 8.2.12.

We recall Hd
s defined in Definition 8.1.1.

HYPOTHESIS 8.3.10. For some l > 0, for s < 1, it is verified Hd−2
s (∂sΩ)≤ csl for some c > 0

independent of s (i.e. the set ∂sΩ satisfies the Hypothesis 8.1.4).

HYPOTHESIS 8.3.11. There exists c2 > 0 s.t. for all r > 0 with r < 1 we have δ (x)> c2r for
all x /∈ B(∂sΩ,r).

REMARK 8.3.12. Let
U := B(∂sΩ,c−1

2 (n−1)−1)

the set of points with distance from ∂sΩ less than c−1
2 (n−1)−1. If the Hypothesis 8.3.11 is verified,

then, Yn ⊂ΘU and, if ω ∈ Yn then A(ω)∩U 6=∅.
In fact, if ω ∈ Yn, then δ̄ (ω) ≤ 1

n−1 , so there exists x ∈ A(ω) s.t. δ (x) ≤ 1
n−1 and so by the

hypothesis x ∈U .

EXAMPLE 8.3.13. By Remark 8.2.3, if Ω satisfies an uniform outer ball condition for some
radius r > 0, then ∂sΩ =∅ (by Remark 8.2.8) and δ (x)> r everywhere in Ω (see Remark 8.2.3),
in particular it satisfies Hypotheses 8.3.10 and 8.3.11.

COROLLARY 8.3.14. Let x /∈ ∂sΩ, Px be the probability associated to the Brownian motion
with starting point x. If Hypotheses 8.3.8, 8.3.10 and 8.3.11 are true, then there exists C > 0 and
n1 ∈ N (dependent on Ω, x) s.t. for all n ∈ N, n > n1 we have

Px(Xn+1)≤ Px(Yn+1)≤ Px(ΘB(∂sΩ, 1
n )
)<C(n−1)−l,

for the l in Hypothesis 8.3.10.

PROOF. We have that, by Hypothesis 8.3.11,

Xn ⊆ Yn ⊆Θ
B(∂sΩ, 1

n )
⊂ΘB(∂sΩ, 1

n−1 )
;

we suppose that n > 1, n > dist(x,∂sΩ)−1; clearly

Px(ΘB(∂sΩ, 1
n−1 )

)≤ µx(τ 1
n
< ∞])
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where τ 1
n

is the hitting time of B(∂sΩ, 1
n) so by Hypothesis 8.3.10 we can apply Corollary 8.1.7

Px(ΘB(∂sΩ, 1
n )
)≤C1H

d−2
s (∂sΩ),

for some C > 0 (depending on Ω, x); hence we conclude. �

To prove the next result, we will argue as in the proof of [[46], Proposition 3.1] with ‖x− y‖−
δ ′(y) (for y ∈M(x)) instead of q(x) and δ (x)< 1 instead of δ .

LEMMA 8.3.15. ∃C1 > 0 s.t. for all u ∈ (0,1], x ∈Ω,

Px{ω ∈ X\Θ∂sΩ|0 < inf
t∈[0,u]

ρ(ω(t))} ≤C1g1(x)u−
1
2 .

PROOF. Clearly, by the continuity of ρ out of ∂sΩ,

{ω ∈ X\Θ∂sΩ|0 < inf
t∈[0,u]

ρ(ω(t))}

is open.
Given x∈Ω, let y∈M(x). We recall that ρ(z) = 0 for z∈Ωc\∂sΩ, and that the ball B(y,δ ′(y))

is in Ω̄c, so
{X\Θ∂sΩ|0 < inf

t∈[0,u]
ρ(ω(t))} ⊆ {ω ∈ X |ω([0,u])∩ Ω̄

c =∅} ⊆

⊆ {ω ∈ X |ω([0,u])∩B(y,δ ′(y)) =∅}= {ω ∈ X | inf
t∈[0,u]

‖ω(t)− y‖ ≥ δ
′(y)}

(clearly they are all Borel subsets of X); now, we can apply Lemma 1.3.20 (µ corresponds to Px),
a is substituted by δ ′(y), r is substituted by ‖x− y‖−δ ′(y): for the c > 0 of that Lemma we have
(by recalling δ ′(y)≤ 1, u≤ 1)

Px{X\Θ∂sΩ|0 < inf
t∈[0,u]

ρ(ω(t))} ≤

≤ c
(
‖x− y‖−δ ′(y)

δ ′(y)
+u−

1
2 (‖x− y‖−δ (y))

)
≤C1g(x,y)u−

1
2 =C1g1(x)u−

1
2

for some C1 := c+1 independent of x,u. �

Hereafter, let
Λr := ΘEr ∪ΞΩ

where Er := {x ∈Ω\Θ∂sΩ|ρ1(x)≤ r} (it is closed in Ω\Θ∂sΩ); clearly Λr is a Borel set.

LEMMA 8.3.16. Let U ′ be a closed set s.t.

U ′ ⊆ ∂sΩ∪{x ∈ Rd\∂sΩ|ρ(x)≤ r},
τ ′ be the hitting time associated to U ′, Z be the Markov process introduced above, associated
to a Brownian motion. There exists C > 0 s.t. for every x ∈ Ω, for µx-almost every a ∈ A, for
k, l,c ∈ (0,1)

µx

(
k < 1− τ

′ ≤ l, 0 < inf
t∈[0,cl]

ρ(Zτ ′+t)|Fτ ′(a)

)
(a)≤

≤ 1l(k,l](1− τ
′(a)) ·Cc−

1
2 r
(
1− τ

′(a)
)− 1

2 .
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PROOF. τ ′ is the hitting time associated to U , hence it corresponds to the exit time of the open
Uc (and x ∈Uc). We will use i : A→ X ; hereafter we will write also ωa to mean i(a) with a ∈A

(ωa will be a part of the sample path of a).
We recall that ρ ◦ωa is continuous for µx-almost every a ∈A by Remark 8.3.9 hence, for the

definition of τ ′, we have that ρ(ω(τ ′)) ≤ r < 1 Px-almost surely, so ρ(ω(τ ′)) = g1(ω(τ ′)) ≤ r;
therefore, by Lemma 8.3.15

µωa(τ ′(a))

([
0 < inf

t∈[0,cl]
ρ(Zt)

])
=

(8.3.8) = Pωa(τ ′(a)){ω ∈ X |0 < inf
t∈[0,cl]

ρ(ω(t))} ≤C1c−
1
2 rl−

1
2 ,

for µx-almost every a∈A; hence, arguing as in [46], we have the following calculation (Ex will be
the mean value of a function with respect to the measure given by µx): for µx-almost every a ∈A

µx

(
k < 1− τ

′ ≤ l, 0 < inf
t∈[0,cl]

ρ(Zτ ′+t)|Fτ ′(a)

)
(a) =

(because χ(k,l](1− τ ′(·)) is Fτ ′(a) measurable)

= 1l(k,l](1− τ
′(a)) ·µx

(
0 < inf

t∈[0,cl]
ρ(Zτ ′+t)|Fτ ′(a)

)
(a) =

(by the strong Markov property, and the fact that the set defined by 0 < inft∈[0,k] ρ(·) is Borel)

≤ 1l(k,l](1− τ
′(a)) ·µωa(τ ′(a))

([
0≤ inf

t∈[0,cl]
ρ(Zt)

])
≤

(we know that ρ(ωa(τ
′))≤ r for µx-almost every a ∈A, so by (8.3.8) there exists C s.t.)

≤ 1l(k,l](1− τ
′(a)) ·Cc−

1
2 rl−

1
2 ≤

≤ 1l(k,l](1− τ
′(a)) ·Cc−

1
2 r
(
1− τ

′)− 1
2

and we can conclude. �

LEMMA 8.3.17. Let x0 ∈Ω. In our hypothesis there exists C > 0, s.t., for all 0 < r < 1,

(8.3.9) Px0

(
{ω ∈ X |0 < inf

t∈[0,1]
ρ(ω(t))≤ r}

)
≤Cr

for the l in Hypothesis 8.3.10.

PROOF. ρ(x0)> 0, so it is not restrictive to suppose r < ρ(x0).
We will use the Markov process

Z = (A,F ,{Zt}t∈[0,+∞],{µx}x∈Rd
∂

,{Ft}t∈[0,+∞]);

we recall that Z is a strong Markov process, and it has the strong Markov property (see Definition
1.3.12); we want to prove for some C > 0

µx0(i
−1(Λr))≤Cr,

where i : A→ X , a 7→ (t 7→ Zt(a)).
We recall the set A(ω) = {x ∈ ω([0,1]),ρ(x) = ρ̄(ω)}.
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We define the closed set

U := ∂sΩ∪{x ∈ Rd\∂sΩ|ρ(x)≤ r}
(it is closed because ρ is continuous out of ∂sΩ); we have x0 /∈U .

We define τ ′ the hitting time associated to U (it corresponds to the exit time of the open Uc)
for the Brownian motion with starting point x0 ∈Uc; it is clear

i−1(ΘU) = {a ∈A|τ ′(a)≤ 1};
and

i−1(Xn+1∩Λr)⊆ i−1(ΘU ∩ΞΩ) = {a ∈A|τ ′(a)≤ 1,0 < inf
t∈[0,1]

ρ(Zt(a))} ⊆

⊆
∞⋃

k=1

{a ∈A|2−k < 1− τ
′(a)≤ 2−k+1,0 < inf

t∈[0,1]
ρ(Zt(a))}∪{a ∈A|τ ′(a) = 1} ⊆

⊆
∞⋃

k=1

(2−k < 1− τ
′(a)≤ 2−k+1,0 < inf

t∈[0,2−k]
ρ(Zτ ′+t(a)))∪ (τ ′(a) = 1);

we have that µx({τ ′ = 1}) = 0 due to Lemma 8.1.9; by Lemma 8.3.16 there exists C1 > 0 s.t. for
every x ∈Ω, k ∈ N and for µx-almost every a ∈A,

µx

(
2−k < 1− τ

′ ≤ 2−k+1, 0 < inf
t∈[0,2−k]

ρ(Zτ ′+t)|Fτ ′(a)

)
(a) =

≤ 1l(2−k,2−k+1](1− τ
′(a)) ·C1r

(
1− τ ′(a)

2

)− 1
2

.

In the following Ex will be the expected value respect to the probability µx, and Ex(·,F) will
be the conditional expected value with respect to the probability µx.

Defining Pτ ′
x0

:= τ ′−1 ◦µx measure on [0,+∞] (it is the law of τ ′ under Px), arguing as in [46],
Prop. 3.3 (but by using the Lemma 8.1.9 instead of [46], Lem. 3.2), we have that

Px0

([
0 < inf

t∈[0,1]
ρ(ω(t))≤ r

])
= Px0(i

−1(ΘU ∩ΞΩ))≤

≤ µx0(
∞⋃

k=1

(2−k < 1− τ
′ ≤ 2−k+1,0 < inf

t∈[0,2−k]
ρ(Zτ ′+t))∪ (τ ′ = 1)) =

(recalling that µx({τ ′ = 1}) = 0, and by the properties of the conditional probability in Proposition
1.3.9 and of conditional expectation in Proposition 1.3.7)

= Ex0

[
µx0(

∞⋃
k=1

(2−k < 1− τ
′(a)≤ 2−k+1,0 < inf

t∈[0,2−k]
ρ(Zτ ′+t)|Fτ ′)

]
≤

≤ Ex0

[
∞

∑
k=1

µx0

([
2−k < 1− τ

′ ≤ 2−k+1, 0 < inf
t∈[0,2−k]

ρ(Zτ ′+t)

]
|Fτ ′

)]
=

=
∞

∑
k=1

Ex0

[
µx0

([
2−k < 1− τ

′ ≤ 2−k+1, 0 < inf
t∈[0,2−k]

ρ(Zτ ′+t)

]
|Fτ ′

)]
≤

≤
∞

∑
k=1

Ex0

[
1{2−k<1−τ ′≤2−k+1} ·C1r

(
1− τ ′

2

)− 1
2
]
=
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= Ex0

[
1{τ ′≤1} ·C1r

(
1− τ ′

2

)− 1
2
]
=

(we can apply Lemma 8.1.9, because τ ′ is the exit time from an open, so Pτ ′
x0
((0, t)) is differen-

tiable)

=C1r
ˆ 1

0

d
dt

Pτ ′
x0
((0, t))

(
1− t

2

)− 1
2

dt

≤C1r

((
1− 1

2
2

)− 1
2 ˆ 1

2

0

d
dt

Pτ ′
x0
((0, t)) dt+

+ sup
t∈[ 1

2 ,1]

d
dt

Pτ ′
x0
((0, t))

ˆ 1

1
2

(
1− t

2

)− 1
2

dt

)
≤

(by Lemma 8.1.9, supt∈[ 1
2 ,1]

d
dt Pτ ′

x0
((0, t))< c

√
Pτ ′

x ([0,1]) for some c > 0 independent on n,r)

≤C1r
(

Pτ ′
x

((
0,

1
2

))
+ c
√

Pτ ′
x ([0,1])

)
≤ rC2

for some C2 > 0 and because U ⊆ B(∂sΩ,(c2n)−1); clearly C2 is independent on r, and we con-
cluded. �

PROPOSITION 8.3.18. Let x0 ∈ Ω. In our hypothesis there exists C > 0, n0 ∈ N s.t., for all
0 < r < 1, n ∈ N, n > n0

(8.3.10) Px0

(
Xn+1∩{ω ∈ X |0 < inf

t∈[0,1]
ρ(ω(t))≤ r}

)
≤Cr(n−1)

−l
2

for the l in Hypothesis 8.3.10.

PROOF. We have

Xn∩{ω ∈ X |0 < inf
t∈[0,1]

ρ(ω(t))≤ r}= Xn∩Λr

because Xn∩Θ∂sΩ =∅, hence it is a Borel set.
We will use the Markov process

Z = (A,F ,{Zt}t∈[0,+∞],{µx}x∈Rd
∂

,{Ft}t∈[0,+∞]);

we recall that Z is a strong Markov process, and it has the strong Markov property (see Definition
1.3.12); we want to prove

µx0(i
−1(Xn∩Λr))≤Crn

−l
2 ,

where i : A→ X , a 7→ (t 7→ Zt(a)).
We recall the set A(ω) = {x ∈ ω([0,1]),ρ(x) = ρ̄(ω)}.
We suppose n0 > dist(x0,∂sΩ)−1.
Let c2 the constant in Hypothesis 8.3.11; for n ∈ N, n > n0 we define the closed set

U := ∂sΩ∪
(

B(∂sΩ,(c2n)−1)∩{x ∈ Rd\∂sΩ|ρ(x)≤ r}
)

(it is closed because ρ is continuous out of ∂sΩ); we have x0 /∈U .
By Remark 8.3.12, if ω ∈ Xn+1 ⊂ Yn+1, then there exists

x ∈ A(ω)∩B(∂sΩ,(c2n)−1)
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so ρ(x) = ρ̄(ω)≤ r, therefore
Xn+1∩Λr ⊆ΘU ∩ΞΩ.

We define τ ′ the hitting time associated to U (it corresponds to the exit time of the open Uc) for
the Brownian motion with starting point x0 ∈Uc; it is clear

i−1(ΘU) = {a ∈A|τ ′(a)≤ 1};

and
i−1(Xn+1∩Λr)⊆ i−1(ΘU ∩ΞΩ) = {a ∈A|τ ′(a)≤ 1,0 < inf

t∈[0,1]
ρ(Zt(a))} ⊆

⊆
∞⋃

k=1

{a ∈A|2−k < 1− τ
′(a)≤ 2−k+1,0 < inf

t∈[0,1]
ρ(Zt(a))}∪{a ∈A|τ ′(a) = 1} ⊆

⊆
∞⋃

k=1

(2−k < 1− τ
′(a)≤ 2−k+1,0 < inf

t∈[0,2−k]
ρ(Zτ ′+t(a)))∪ (τ ′(a) = 1);

we have that µx({τ ′ = 1}) = 0 due to Lemma 8.1.9; by Lemma 8.3.16 there exists C1 > 0 s.t. for
every x ∈Ω, k ∈ N and for µx-almost every a ∈A,

µx

(
2−k < 1− τ

′ ≤ 2−k+1, 0 < inf
t∈[0,2−k]

ρ(Zτ ′+t)|Fτ ′(a)

)
(a) =

≤ 1l(2−k,2−k+1](1− τ
′(a)) ·C1r

(
1− τ ′(a)

2

)− 1
2

.

In the following Ex will be the expected value respect to the probability µx, and Ex(·,F) will
be the conditional expected value with respect to the probability µx.

Defining Pτ ′
x0

:= τ ′−1 ◦µx measure on [0,+∞] (it is the law of τ ′ under Px), arguing as in [46],
Prop. 3.3 (but by using the Lemma 8.1.9 instead of [46], Lem. 3.2), we have that

Px0

(
Xn+1∩

[
0 < inf

t∈[0,1]
ρ(ω(t))≤ r

])
= Px0(i

−1(ΘU ∩ΞΩ))≤

≤ µx0(
∞⋃

k=1

(2−k < 1− τ
′ ≤ 2−k+1,0 < inf

t∈[0,2−k]
ρ(Zτ ′+t))∪ (τ ′ = 1)) =

(recalling that µx({τ ′ = 1}) = 0, and by the properties of the conditional probability in Proposition
1.3.9 and of conditional expectation in Proposition 1.3.7)

= Ex0

[
µx0(

∞⋃
k=1

(2−k < 1− τ
′(a)≤ 2−k+1,0 < inf

t∈[0,2−k]
ρ(Zτ ′+t)|Fτ ′)

]
≤

≤ Ex0

[
∞

∑
k=1

µx0

([
2−k < 1− τ

′ ≤ 2−k+1, 0 < inf
t∈[0,2−k]

ρ(Zτ ′+t)

]
|Fτ ′

)]
=

=
∞

∑
k=1

Ex0

[
µx0

([
2−k < 1− τ

′ ≤ 2−k+1, 0 < inf
t∈[0,2−k]

ρ(Zτ ′+t)

]
|Fτ ′

)]
≤

≤
∞

∑
k=1

Ex0

[
1{2−k<1−τ ′≤2−k+1} ·C1r

(
1− τ ′

2

)− 1
2
]
=
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= Ex0

[
1{τ ′≤1} ·C1r

(
1− τ ′

2

)− 1
2
]
=

(we can apply Lemma 8.1.9, because τ ′ is the exit time from an open, so Pτ ′
x0
((0, t)) is differen-

tiable)

=C1r
ˆ 1

0

d
dt

Pτ ′
x0
((0, t))

(
1− t

2

)− 1
2

dt

≤C1r

((
1− 1

2
2

)− 1
2 ˆ 1

2

0

d
dt

Pτ ′
x0
((0, t)) dt+

+ sup
t∈[ 1

2 ,1]

d
dt

Pτ ′
x0
((0, t))

ˆ 1

1
2

(
1− t

2

)− 1
2

dt

)
≤

(by Lemma 8.1.9, supt∈[ 1
2 ,1]

d
dt Pτ ′

x0
((0, t))< c

√
Pτ ′

x ([0,1]) for some c > 0 independent on n,r)

≤C1r
(

Pτ ′
x

((
0,

1
2

))
+ c
√

Pτ ′
x ([0,1])

)
≤ rC2

√
Pτ ′

x ([0,1])≤ rC3(n−1)
l
2

for some C2,C3 > 0 and n> n1 (for some n1) by Corollary 8.3.14 and because U ⊆B(∂sΩ,(c2n)−1);
clearly C3 is independent on r, n > n0. Let n0 := dist(x0,∂sΩ)−1 + n1, and C := C3 we have that
the inequality (8.3.10) is verified for every n > n0.

So we concluded. �

8.3.3. Finite perimeter of ΞΩ. In the above subsections we considered X =C([0,1],Rd), for
every x on X it is defined the probability Px corresponding to the Brownian motion with starting
point in x.

We have that, in particular, P0 is a probability on X , that describes the d-dimensional Brownian
motion with starting point in 0 (see Section 2.6), and P0 concentrates on X∗ :=C∗([0,1],Rd) let H
be the Cameron-Martin space. We recall that (X∗,P0) is a Wiener space.

For a set A⊂ Rd we define Θ∗ and Ξ∗ in X∗ in a way similar to Θ and Ξ:

Θ
∗
A := {ω ∈ X∗|∃t ∈ [0,1] s.t. ω(t) ∈ A}= Θ

∗
A∩X∗

and
Ξ
∗
A := {ω ∈ X∗|ω(t) ∈ A ∀t ∈ [0,1]}= Ξ

∗
A∩X∗.

We can restrict ρ̄ on X∗.
We consider an open set Ω⊆ X which satisfies Hypotheses 8.2.1, 8.3.8, 8.3.10, 8.3.11.
We make stronger assumptions about Hypothesis 8.3.10 and Hypothesis 8.3.8.

HYPOTHESIS 8.3.19. For s < 1, the set Hd−2
s (∂sΩ)≤ cs5 for some c > 0 independent of s (in

other words, Hypothesis 8.3.10 is true for some l ≥ 5).

HYPOTHESIS 8.3.20. In addition to Hypothesis 8.3.8 (Px(Θ∂sΩ) = 0 for every x /∈ ∂sΩ) we
suppose that Θ∂sΩ has null 2-capacity with respect to the measure γ , i.e. C2(Θ

∗
∂sΩ

) = 0 (see Defi-
nition 8.1.12).

THEOREM 8.3.21. Let 0 ∈Ω, we assume Hypotheses 8.2.1, 8.3.20, 8.3.11, 8.3.19, then 1Ξ∗
Ω

is
BV (with respect to the measure P0).
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PROOF. The first step is to prove that ρ̄ ∈W 1,1(X∗), by using Proposition 8.1.13.
We recall that

P0(Θ
∗
∂sΩ

) = P0(Θ∂sΩ) = 0
(by Hypothesis 8.3.20)

We Remark that ρ̄ ∈W 1,1(X∗): in Xn∩X∗ we have that ρ̄ has Lipschitz constant less or equal
to n (Lemma 8.3.7), hence |∇H ρ̄|H ≤ n; moreover we have by Corollary 8.3.14, by n sufficiently
large

P0(Xn∩X∗)≤ c(n−2)
−l
2 ;

clearly ∑
+∞

i=2(n−2)
−l
2 <+∞ because l > 4. So, by the Remarks 8.3.6 and recalling C2(Θ∂sΩ) = 0

by Hypothesis 8.3.20, we have all the hypotheses of the Proposition 8.1.13 with ln = n, and we
can apply it (recalling the Remark 8.1.15).

We define, for j ∈ N,
ρ̄( j)(ω) := jρ̄(ω)∧1,

clearly, ρ̄( j) is jn-Lipschitz a.e. in Xn, for every n ∈ N; by Corollary 8.3.14 there exists n1 ∈ N s.t.
for some c > 0 we have (by l > 4)

∞

∑
n=n1

j2n2P0(Xn) =
∞

∑
n=n1

c j2(n−2)2−l < ∞,

so ρ̄( j) ∈W 1,1(X∗) arguing as to prove ρ̄ ∈W 1,1(X∗) above (by using Proposition 8.1.13).
We recall that P0(Θ∂sΩ) = 0 (because it has null capacity by Hypothesis 8.3.20).
By Lemma 8.3.2, ρ̄ is locally Lipschitz out of Θ∗

∂sΩ
, so we can locally define ∇H ρ̄ almost

everywhere. Let ω ∈ X∗\(Ξ∗
Ω
∪Θ∗

∂sΩ
), we have ρ̄(ω) = 0 (by ρ|Ωc\∂sΩ ≡ 0 ), so it is a point

of minimum, hence, on each line, if the restriction of ρ̄ is derivable then it has 0 derivative; so
∇H ρ̄ = 0 almost everywhere on X∗\(Ξ∗Ω∪Θ∗

∂sΩ
).

Let U j := {x ∈ Ω|ρ ≥ 1
j}. On the set ΞU j , ∇H ρ̄( j) = 0 almost everywhere in a similar way

(ρ̄( j) ≡ 1, so each it is a point of maximum).
For j→ ∞, U j is an increasing sequence s.t.

⋃+∞

j=1U j = Ω; in particular, for n0 in Proposition
8.3.18, we have P0(

⋃n0
n=2 Xn\U j)→ 0.

Now, by the chain rule (see Remark 3.2.8) and Remark 8.3.6∥∥∇H ρ̄( j)
∥∥

L1(X∗,(H,µ))
=
∥∥∇H ρ̄( j)

∥∥
L1(ΞΩ,(H,µ))

=
∥∥∥ j1l(0<ρ̄< 1

j )
|∇H ρ̄|H

∥∥∥
L1(ΞΩ,(H,µ))

=

=
∞

∑
n=2

j
∥∥∥1l(0<ρ̄< 1

j )
∇H ρ̄

∥∥∥
L1(Xn∩ΞΩ,(H,µ))

=

(by Lemma 8.3.7, Proposition 8.3.18)

≤ j
∞

∑
n=2

nP0

[
ω ∈ Xn,0 < inf

t∈[0,1]
ρ(ω(t))< j−1

]
≤ j

n0

∑
n=2

n+C j
1
j

∞

∑
n=n0

(n−2)−
l
2+1 < ∞

because l
2 > 2.

So 1ΞΩ
is BV due to ρ̄( j)

L1

→ 1ΞΩ
and Theorem 4.1.3: in fact, by recalling that P0(Θ∂sΩ) = 0,

that we have ρ̄( j)(ω) = 1 if inft∈[0,1] ρ(ω(t))≥ j−1, and ρ( j)(ω) = 0 in

X\(ΞΩ∪Θ∂sΩ)⊂ {ω ∈ X | inf
t∈[0,1]

ρ(ω(t)) = 0},
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and 0≤ ρ̄( j) ≤ 1, we have that∥∥ρ̄( j)−1ΞΩ

∥∥
L1(X)

=

ˆ
X

(
1ΞΩ
− ρ̄( j)

)
dP0 ≤ P0{ω ∈ X\Θ∂sΩ|0 < inf

t∈[0,1]
ρ(ω(t))≤ j−1} ≤

(by Remark 8.3.6)

≤
∞

∑
n=1

P0{ω ∈ Xn+1|0 < inf
t∈[0,1]

ρ(ω(t))≤ j−1} ≤

≤
∞

∑
n=1

C j−1n
−l
2 =

n0

∑
n=2

Cc j−1n+
∞

∑
n=1

C j−1n
−l
2 = c0 j−1 j→∞−−−→ 0

for some c,c0 > 0, due to Lemma 8.3.17, Proposition 8.3.18 and because l ≥ 4. �

In other words, ΞΩ is a set with finite perimeter.

EXAMPLE 8.3.22. If Ω satisfies the outer ball condition, then clearly it satisfies Hypothesis
8.2.1, moreover ∂sΩ = ∅ , and Ω satisfies also Hypotheses 8.3.20, 8.3.11, 8.3.19 (see Example
8.3.13); so, we can apply Theorem 8.3.21.

8.4. Example: complement of a cone

X = {ω ∈C∗([0,1],Rd)}, P0 as in the above Section (as we said it is a Wiener space).
For every r > 0, we define on R+

lr(t) :=


1 if t ∈ [0,r]
2r−t

r if t ∈ [r,2r]
0 if t > 2r

;

it is r−1-Lipschitz.
For a point x0 ∈ Rd we can consider the function f : X → R

ω 7→ lr(dist(ω([0,1]),x0));

We have that f is r−1-Lipschitz, hence it is W 1,2(X), ∇H lr|(X\ΘB2r)∪ΘBr
≡ 0 and (|∇H lr|H)|ΘB2r

≤
r−1; now by Lemma 1.3.21, for every y /∈ ΘB2r we have (by recalling that, for y ∈ Rd , the proba-
bility Py correspond to µ probability associated to the Markov process with starting point y)

Py(ΘB2r)≤ (2r)d−2 |x− y|2−d ;

so, | fr|W 1,2
γ (X)

r→0−−→ 0 because d > 3.
We proved

(8.4.1) Py({x}) = 0 for every y 6= x, C2(Θ{x}) = 0

where C2 is the 2-capacity in (X ,P0).

REMARK 8.4.1. Analogously it can be proved that, if A is an affine subspace with dimension
d > 3, then C2(Θ{x}) = 0.
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Now, let K be an open circular cone with vertex in the origin O, i.e. there exists a ball B⊂Rd

s.t. x ∈ K if and only if x is on a half-line starting from O and intersecting B; there exists a, a
half-line starting from O and passing through the center of B; b will be the line which completes a
and it is called axis of the cone. In our setting, K will be up, and b\a down.

Clearly K is convex, and it is symmetric with respect to b.
Let Ω := K̄c; for such a Ω we apply the concepts of Subsection 8.2.
We have that ∂Ω is the union of half-line starting from O and tangent to B, and each of that

forms with a an angle of amplitude α . It is clear, that, for each point of z ∈ ∂Ω except O, there is
an outer ball tangent in z, and the radius of this ball is locally uniform, as in Remark 8.2.8, so for
what we said in that Remark ∂sΩ⊆ {O}.

Now, with a translation, we suppose that O is in the origin (only to simplify some calculation
about the geometry Ω).

We will suppose that the axes of the first coordinate in Rd , in the positive part, corresponds to
a. So, each x ∈ Rd can be written as x = (x1, x̄) where x̄ ∈ Rd−1. For each y ∈ Ω̄c (so y1 > 0), we
have that δ ′(y) = y1 sinα; hereafter, we write r := sinα , so δ ′(y) = ry1.

If x1 > 0, then the point zx of ∂Ω nearest to x is on a line lx passing through x and orthogonal
to the surface of ∂Ω, so lx intersect a in yx with an angle π/2+α with respect to its unbounded
part; we have that there is a ball in Ω̄c with center in yx tangent to zx and with radius ‖zx‖ tanα

(because O, zx and yx form a rectangular triangle); so by Remark 8.2.3,

δ (x)≥ 1∧‖zx‖ tanα,

by x1 > 0 we have also that

‖zx‖ ≥ ‖x̄‖ tanα ≥ ‖x‖sinα tanα,

is nearer to O than x (because lx is orthogonal to the line through O and zx and by the Pythagorean
theorem), so

(8.4.2) δ (x)≥ 1∧‖x‖ tanα.

Let x ∈ Ω s.t. δ (x) < 1 and x1 ≤ 0: clearly x /∈ Ω1; by Remark 8.2.6, we have that δ (x) >
1∧ cq(x) (where q(x) is the distance from the boundary) for some c > 0 independent on x. We
have that t. q(x)≥ sinαdist‖x‖, hence for some c2 > 0

(8.4.3) δ (x)≥ 1∧ c2 ‖x‖ .

We are ready to prove the above result.

PROPOSITION 8.4.2. Let d ≥ 7 the dimension, for Ω = K̄c (where K is the above described
cone), and 0 ∈Ω, we have Ξ∗

Ω
∈ BV (X).

PROOF. We prove that the hypotheses of Theorem 8.3.21 are verified, so we can apply it.
It is clear that Hypothesis 8.2.1 is satisfied. Obviously ∂sΩ = {O}, it is a point and by (8.4.1)

C2(Θ∂sΩ) = 0, so Hypothesis 8.1.4 is verified. Clearly Hypothesis 8.3.10 is verified for l = 5, in
fact for some c > 0

Hd−2
s (∂sΩ) = cs5

Eventually, Hypothesis 8.3.11 is verified by putting together (8.4.2),(8.4.3). �
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REMARK 8.4.3. For d ≥ 7, we can define K a spheric cone in Rd , and then K1 = K×Rm ⊂
Rd+m (a cone that is translation invariant in some directions). It can be verified that what we
said can be extended to K1, because a d +m-dimensional Brownian motion can be decomposed
in a sum of a d-dimensional Brownian motion and a m-dimensional Brownian motion, mutually
independent.





APPENDIX A

Fundamental definitions and notions

Basic notions about Lipschitzianity, Hölderianity, graphs, lower semicontinuity. If X is a met-
ric space, a real function f is said locally Lipschitz if, for every x ∈ X , there is a ball B centered in
x s.t. f|B is Lipschitz.

A Lipschitz function with Lipschitz constant c > 0 is said c-Lipschitz.
A function f : X → R is said α-Hölder if there exists a constant c s.t.

| f (x)− f (y)|X ≤ c|x− y|α .

Given a function f : X → Y , we define the sets {G = k} := {x ∈ X |G(x) = k}, {G ∈ A} :=
{x ∈ X |G(x) ∈ A}.

Given a function f : X → R, the graph of f is the set

{y ∈ X×R|y = (x, f (x)) for some x ∈ X}.

Given a function f : X → R, the epigraph of f is the set

{y ∈ X×R|y = (x,y′) where x ∈ X and y′ < f (x)}.

Let X be a topological space. We say that a function f : X → R is lower semicontinuous if,
for every xn→ x we have

f (x)≤ liminf
n→+∞

f (xn),

or equivalently, if f−1((r,+∞]) is an open set for every r ∈ R.
Some geometric notions. A topological space X is said separable if there exists a countable

basis of open set, i.e. a countable collections A of open set s.t. all the open sets of X can be
obtained by a countable union of open sets of A.

A set A⊆Rd satisfies an uniform outer ball condition if there exists r > 0 s.t., for every x∈ ∂A,
there exists an y s.t. Br(y)∩A =∅ but x ∈ ∂Br(y).

If X is a normed space, a set A ⊆ X is said convex if: if x1, . . . ,xm ∈ A, if λ1, . . . ,λm > 0 s.t.
∑

m
i=1 λi = 1, then

m

∑
i=1

λixi ∈ A.

If X is a Banach space and A is a convex subset, for every point x ∈ ∂A there exists at least an
hyperplane π s.t. x ∈ π and one of the two halfspaces does not intersect A (a hyperplane with this
property is said tangent hyperplane).

The intersection of convex sets is always convex; in particular, the intersection of a convex
and a line is an interval on the line.

A convex set in Rd , has always Lipschitz boundary.

171
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Let Ω be a subset of a metric space X , l > 0, f be a l-Lipschitz function on Ω; then f admits
the McShane extension which is Lipschitz on X

f̄ (x) := sup{ f (y)− l ‖x− y‖|y ∈ O}
(clearly f̄|Ω = f ); if f is Lipschitz and bounded, we can consider a truncated McShane extension
which has the same Lipschitz constant an the same sup-norm of f .

Vector spaces, Banach spaces, complexifications. If E is a real vector space, we consider a
complexification EC in this way: as set EC = E×E, the sum is defined in the obvious way, and if
z ∈ C then

z(x1,x2) := (ℜzx1−ℑzx2,ℑzx1 +ℜzx2)

we will write x1 + ix2 to mean (x,y), and EC is a complex vector space.
In a real (or complex) vector space X a norm is a nonnegative function ‖·‖X on X s.t.: ‖rx‖X =

|r|‖x‖X for every r ∈R (r ∈C) and x ∈ X ;‖x‖X = 0 iff x = 0 (for x ∈ X); ‖x+ y‖X ≤ ‖x‖X +‖y‖X
for every x,y ∈ X ; a space provided with a norm is said a normed space; it is a a metric space with
dist(x,y) = ‖x− y‖X (and it has a topology).

A normed space it is complete if {xn}n∈N is a sequence of points of x s.t., for every ε > 0 there
exists mε s.t. ‖xn− xm‖X < ε for every n > mε , then xn converges to some x ∈ X for n→ ∞.

A complete normed real vector space X is said a (real) Banach space.
A complete normed complex vector space X is said a complex Banach space
A (real or complex) Hilbert space H is a (real or complex) Banach space provided with an

inner product 〈·, ·〉H s.t. ‖x‖H =
√
〈x,x〉H ; we denote ‖·‖H also as |·|H . Every separable Hilbert

space H admits a orthonormal basis {hi}i∈N, s.t. each h ∈ H can be written in only one way as

h = ∑
+∞

i=1 aihi where ai ∈ R for every i ∈ N and
+∞

∑
i
|ai|2 < +∞ (we will call a real Hilbert space

simply Hilbert space).
Given a real Banach space X we define its complexification XC in this way: XC is the com-

plexification of H as a vector space, and the norm is defined as

‖(x1,x2)‖X̃ := sup
−π≤θ≤π

‖x1 cosθ + x2 sinθ‖;

XC is a complex Banach space (see e.g. [50], Appendix).
If H is a real Hilbert space, we consider a complexification HC in this way: HC is the com-

plexification of H as a vector space, and, for x1,x2,x3,x4 ∈ H,

〈x1 + ix2,x3 + ix4〉HC
= 〈x1,x3〉H + i〈x2,x3〉H − i〈x1,x4〉H + 〈x2,x4〉H

and
|x1 + ix2|HC =

√
|x1|2H + |x2|2H

HC is a complex Hilbert space.
If X is a Banach space, its dual X∗ is the space of bounded linear functions from X to R, i.e.

the linear functions f s.t.

‖ f‖X∗ := sup
x∈X

f (x)
‖x‖X

= sup
x∈X ,‖x‖X=1

f (x)<+∞;

X∗ is a Banach space with norm ‖·‖X∗ .
If H is a Hilbert space, then its dual H∗ is canonically isometric to H by the function

H→ H∗, h 7→ 〈h, ·〉H .
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If H is a Hilbert space, and F is dense in H, then for h ∈H, we have that h = 0 iff 〈h,g〉H = 0
for every g ∈ F .

If X is a Banach space, the weak∗ topology on X∗is the weakest topology s.t. for each x ∈ X
the function X∗→ R, f 7→ f (x) is continuous; the weak topology on X is the littlest topology s.t.
for each f ∈ X∗ the weakest X →R, x 7→ f (x) is continuous; this topology always exists; if X is a
Hilbert space, the weak topology and the weak∗ topology coincide (recalling that H is the dual of
itself).

If xn converges to x the sense of weak∗ topology (we also say in weak∗ sense), we write
xn ⇀

∗ x. If xn converges to x the sense of weak topology (we also say in weak sense), we write
xn ⇀ x.

In a Banach space X , a set A is said an hyperplane if there exists f ∈ X∗s.t. A = f−1(c) for
some c∈R; in this setting, we say that the hyperplane cuts X in two open halfspaces, f−1((c,+∞))
and f−1((−∞,c)).

A open O ⊆ Rd is said set with Lipschitz boundary if the boundary is locally the graph of a
Lipschitz function.

For every p ∈ [1,+∞], and A ⊆ Rd open, Lp(A,L d) and Lp
loc(A,L

d) (for Lebesgue measure
L d) are defined as usual.

Let A ⊂ Rd , A open. For every p ∈ [1,+∞] we define the Sobolev space W 1,p(A,L d) ⊂
Lp(A,L d) (for Lebesgue measure) in this way: f ∈ Lp(A,L d) is in W 1,p(A,L d) if for every
i ∈ {1, . . . ,d} there exists gi ∈ Lp(A,L d) s.t. , for every ϕ ∈C1

c (A),ˆ
A

f (x)
∂ϕ

∂xi
(x) dx =−

ˆ
A

gi(x)ϕ(x) dx;

we define the gradient ∇ f := (g1, . . . ,gd), we will write gi =: ∂ f
∂xi

for every i ∈ 1, . . . ,d and we
define the norm

‖ f‖W 1,p(A,L d) = ‖ f‖Lp(A,L d)+

(ˆ
A

d

∑
i=1
| ∂ f
∂xi

(x)|p dx

) 1
p

for f ∈W 1,p(A,L d). We have that, with this norm, W 1,p(A,L d) is a Banach space (as Lp(A,L d)
with its norm); on W 1,2(A,L d), it is defined this inner product: if f1, f2 ∈W 1,2(A,L d)

〈 f ,g〉W 1,2(A,L d) =

ˆ
A

f (x)g(x) dx+
ˆ

A

d

∑
i=1

∂ f
∂xi

(x)
∂g
∂xi

(x) dx;

we have that W 1,2(A,L d) with this product is a Hilbert space (as L2(A,L d) is with its norm).
We define W 1,p

0 (A,L d) as the closure in W 1,p(A,L d) of C1
c (A); if A is a convex, W 1,p

0 (A,L d)

is also the set of the restrictions to A of functions in W 1,p(Rd ,L d) which are 0 a.e. out of A.
W 1,p

loc (R
d ,L d) is the subset of of classes of measurable functions f on Rd , s.t., for every point

x ∈ Rd , there exists a neighbourhood A of x s.t. f|A ∈W 1,p
loc (A,L

d).
If A has Lipschitz boundary, then each function in W 1,1(A) can be extended to a function in

W 1,1(A); in particular, this can be done for A convex set.
Holomorphic function. If O ⊆ C and X is a complex Banach space, we say that a function

f : O→ X is holomorphic in a point z0 ∈ O if there exists f ′ ∈ X s.t.,

f ′ = lim
z→z0

f (z)− f (z0)

z− z0
;
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f is holomorphic in O if it is holomorphic in every point of O.
Convolutions. If ϕ,η are functions on Rd , the convolution is the function given by the integral

(if it is always well-defined)

ϕ ∗η(x) =
ˆ

ϕ(y)η(x− y) dy.

If for k ∈ N∪{+∞} and η ∈ Ck(Rd) then ϕ ∗η ∈ Ck(Rd); if {ηn}n∈N ⊆ C1
c (Rd ,L d) is a

sequence s.t. ηn ≥ 0, |ηn|L1(Rd) = 1 for every n ∈ N and supp(ηn) converges to {0} as a set,
then: if ϕ ∈ Lp(Rd) then ϕ ∗ηn converges to ϕ in Lp(Rd ,L d); if ϕ ∈W 1,p(Rd ,L d) then ϕ ∗ηn
converges to ϕ in W 1,p(Rd ,L d).

So, a function in W 1,p(Rd ,L d), by convolution, can be approximated by a sequence of Lips-
chitz functions.

If ϕ ∈ L1(Rd) and η ∈ Lp(Rd) then ϕ ∗η ∈ Lp(Rd)) and |ϕ ∗η |Lp(Rd) ≤ |ϕ|L1(Rd)|η |Lp(Rd).
Absolute continuity. We recall some facts and definitions about absolute continuity.

DEFINITION. Let U an open subset of R. A real function f on U is said absolutely con-
tinuous if, for every ε > 0 there exists δε > 0 s.t., for every finite sequence of disjoint interval
A = {[a1,bi], . . . , [an,bn]} s.t. [ai,bi]⊆U for every i and ∑

n
i=1(bi−ai)≤ δε , the condition

n

∑
i=1
| f (bi)− f (ai)| ≤ ε

is satisfied.
A real function f on U is said locally absolutely continuous if, for every compact interval

[a,b]⊆ R, f|[a,b] is absolutely continuous.

We recall the well-known facts that a absolutely continuous function in U is in W 1,1(U) (with
the Lebesgue measure), and that an element f of W 1,1(U) always admits an absolutely continuous
version f̃ .

Riesz-Thorin interpolation theorem. For the above result and more, see e.g. [58], Sub. 1.3.18.

PROPOSITION. [Riesz-Thorin theorem] Let (X ,µ) be a measure space, p,q ∈ [1,+∞), A1
be a contractive operator in Lp(X ,µ) and A2 be a contractive operator in Lq(X ,µ), and A1 and
A2 coincide on Lp(X ,µ)∩Lq(X ,µ); then they can be extended in a unique way to a contractive
operator in Lr(X ,µ) for every r ∈ (p,q).

Banach-Alaoglu theorem.

THEOREM. [Banach-Alaoglu theorem] If X is a Banach space, then each bounded set X∗ is
compact in the weak∗ topology; in particular, if X is a Hilbert space, then each bounded set is
compact in the weak topology.

Hölderianity of the solution of elliptic problems. We recall that, for α > 0, Ck,α is the set of
functions with k derivatives which are all α-Hölder.

DEFINITION. We will say that a set has boundary Ck,α -regular if the boundary is locally a
graph of a function Ck,α .

REMARK A.0.1. If O ⊆ RN is a set with boundary C2,α -regular for some α > 0, if L is an
operator in O strictly elliptic on bounded sets (see e.g. [43]) with Dirichlet boundary conditions,
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if y ∈C∞(Ō) and u := (I−σL)−1 and L is an operator which is strictly elliptic on bounded sets,
we have that u ∈C2(Ō). Let’s recall the proof.

In fact, for each R′>R> 0, we can consider two balls BR′ ,BR centered in a point, and a smooth
function θ that is 1 on BR and 0 out of BR′ , and a bounded smooth set C s.t C∩BR′ = O∩BR′ ;
hence, v := θu will be the classical solution of a Dirichlet problem{

σLv− v = g in C
v = 0 on ∂C

for some g that is in L2(C) (because u ∈W 1,2(O)) and L is strictly elliptic on C; therefore, v ∈
W 2,2(O∩BR′) (e.g. by [43], Thm. 9.15), hence u ∈W 2,2(O∩BR) (and this for all R > 0). Hence,
by the Morrey theorem (see e.g. [21], Cor. 9.15) we have W 1,p ⊆ Lq with 1

q = 1
p −

1
N , hence

u and its first derivatives are in L( 1
2−

1
N )−1

in each bounded set. By induction, we can find that
v ∈W 2,p(O∩BR) for a creasing sequence of p > 1 and R > 0 (at each step, by knowing that
u ∈W 2,p(O∩BR) we can find that g ∈ Lq(C) and hence u ∈W 2,q(O∩BR) for q = ( 1

p −
1
N )
−1);

in particular, u ∈W 2,p(O∩BR) for some p s.t. 1
p −

1
N < 0; hence, u ∈ C1,α(Ō∩BR) for some

α > 0, always by the Morrey theorem. Hence, g ∈C0,α(Ō∩BR), so θu is a classical solution and
θu ∈C2(Ō∩BR) (by [43], Th. 6.14), and this for all R > 0. So, u ∈C2(Ō).
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