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Abstract 

Introduction. Electrocorticography (ECoG), a neural recording technique employed in both 

clinical and research applications, is characterized by a relatively high spatiotemporal 

resolution. ECoG has extremely low susceptibility to noise and motion artefacts compared 

to other techniques, such as electroencephalography (EEG). Recently, the possibility of 

decoding speech from ECoG signals has been investigated with promising results, 

significantly advancing the clinical viability of using speech-related brain-computer 

interfaces (BCI) to restore communication. Speech neuroprosthetic devices aim to 

improve the quality of life of people suffering from communication deficits because of 

serious motor disabilities. In such patients, vocalization might not be possible due to 

severe paralysis, even though language areas are still intact. However, two technical 

aspects shall be improved before researchers can start clinical trials in patient populations. 

The first key improvement is concerning the tolerability of chronic ECoG implants. 

Standard ECoG grids cover different brain areas recruited in language processing, which is 

an advantage for speech decoding. However, this requires invasive procedures due to the 

large size of the grid, while its stiffness can lead to inflammatory responses. One critical 

improvement could involve flexible high-density micro-grids directly placed over eloquent 

areas for speech production. This approach would increase the spatial resolution by 

maximizing the specificity of the recorded signals; furthermore, it would minimize the risk 

of damaging the cortex. The second key improvement of the current approaches extends 

beyond the technical implantation limits. To make use of promising results obtained in 

speech decoding from neuronal signals for neuroprosthetic applications, more attention 

should be paid to the feasibility of their use in a natural setting, such as in communication 

deficits. One critical issue in the development of assistive devices is the lack of detectable 

speech-related events to control the decoding. Detecting speech-related motor intentions 

would represent a fundamental step toward improving speech neuroprosthetics. 

Furthermore, this achievement could function as a trigger to initiate decoding whenever 

an explicit alignment is not possible (e.g., the case of covert speech). Since a vocal cue is 
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employed to start the most common virtual assistants (e.g., Google Assistant, Alexa, Siri), 

a neuronal cue to activate the speech decoder is fundamental in applications for patients 

unable to speak.  

Methods. First, a new generation of devices known as micro-ECoG (μECoG, electrode 

pitch below 1 mm) arrays was tested in rats to determine the best recording configuration 

in terms of reference and ground connections: Single-Ended Screw (without reference), 

Differential or Single-Ended Reference (with reference). Several experiments were 

conducted for the setup validation using adult Long Evans rats. The ECoG devices were 

placed over the barrel cortex, and signals were recorded during mechanical stimulation of 

the whiskers. Next, two ultra-conformable polyimide-based μECoG arrays (referred to as 

MuSA and CaLEAF going forward) were validated with the best recording configuration to 

test whether all the electrodes could record the high-frequency components of the 

evoked responses, independent from their geometry. Finally, two μECoG arrays were 

acutely implanted in a human patient undergoing awake neurosurgery for tumor resection 

(low-grade glioma) to investigate speech production processes in speech-related cortical 

regions. Thus, the ability to recognize speech-related motor intention directly from the 

neural signals was explored. The neural signals were pre-processed to extract the power 

spectral features, which were used to train a support-vector machine binary classifier. The 

performances were then evaluated with standard and non-standard metrics for different 

combinations of hyperparameters (frequency bands and number of features). 

Results. The preliminary results obtained from the setup validation demonstrate that not 

all the reference-ground configurations tested are indicated for µECoG recording; indeed, 

the onsite reference might affect the signal quality when it is located too close to the 

source of interest. This result suggests that the Single-Ended Screw is the most appropriate 

for µECoG recording. This configuration was used also during MuSA and CaLEAF devices 

validations. Evidence shows that both µECoG arrays can record the high-frequency 

components of the SEPs, independent from the electrode size, though small electrodes 

show higher background noise than large electrodes. Finally, for the first time, µECoG 

grids were acutely implanted in a human patient to investigate speech production 

processes in the speech arrest area. Recorded neural signals were characterized by 
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different and well-defined time-frequency components, time-locked to speech 

production. More specifically, beta, gamma and high-gamma oscillations were involved 

during speech production at different timings and spatial localization. However, the best 

performances in the prediction of speech preparation were reported for the high-gamma 

features.  

Conclusion. The results of this work provide new insights into understanding complex 

neural processes behind speech production that are still not well understood, with a 

spatial resolution not previously attained in cortical recordings. The μECoG data provide 

valuable information at a very high spatiotemporal resolution, which could have 

important implications for the design of speech brain-computer interfaces. In the future, 

our data from recordings in humans and the related analyses should be confirmed in more 

subjects to confirm the robustness and reliability of our speech prediction system.  
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1.     INTRODUCTION 

1.1 Principles of Neuroscience 

Neuroscience approaches the nervous system from several perspectives of view and at 

different temporal and spatial scales. Nowadays, the main experimental approaches 

employed in Neuroscience research can be divided in three principal streams: in silico, in 

vitro and in vivo. In silico experiments consist in building detailed multi-scale 

reconstructions or simulation of brain circuits and their components in order to 

understand functions and connections of the nervous system. The in vitro approach allows 

investigating specific phenomena or diseases under controlled conditions, mainly at the 

cellular level. Finally, in vivo refers to experiments conducted in animal models or human 

subjects with the aim of understanding the brain physiology and to eventually test 

therapies and clinical procedures. These experiments allow also to observe and 

characterize brain structures, functions and behaviors during specific experimental 

conditions in either healthy or unhealthy subjects. The common goal of these 

complementary approaches is to progress our knowledge in Neuroscience, taking 

inspiration also from advances in other disciplines and applying them to the study of the 

brain and its functions. 

1.1.1 Brain and neurons  

The nervous system consists of two main parts defined as the central nervous system 

(CNS) and the peripheral nervous system (PNS). Specifically, the CNS mediates the most 
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basic forms of behavior through two main components: the brain and the spinal cord. The 

brain controls the activities of the body by processing, integrating, and coordinating the 

information it receives from the sense organs. It is composed primarily of two broad 

classes of cells: neurons and glial cells. Neurons are usually considered as the most 

important cells in the brain [1], not only because of their density (in humans, an overall 

amount of 1011 neurons that is packed in a skull volume of 1.5 litres [2]). However, it is 

not merely the number of neurons that makes the brain so effective in rapidly processing 

and reacting to external or internal stimuli. According to literature, the computational 

efficiency of the brain derives from the connectivity and the communication between 

neurons and other parts of the body [2]. The unique ability to send signals to specific 

target cells over long distances makes neurons capable to communicate with other cells 

located nearby or in distant parts of the brain or body. This fundamental property is due 

to the presence of a thin fiber, the axon, extending from the cell body. Axons occupy most 

of the space in the brain and projects to other sites with several branches. Neuronal 

signals are transmitted across the brain in the form of electrochemical pulses called action 

potentials, also known as spikes. Spikes propagate from one neuron to another through 

specialized junctions called synapses. The communication starts when a neuron releases 

the neurotransmitters, chemicals stored in the axon synaptic terminals. These messengers 

bind to receptors present in the postsynaptic neuron at the level of the dendrites, 

ramifications that host several synapses, and the soma. From there, the signal travels 

along the axon of the second cell to arrive at the axon terminal and propagates across 

other connections. Thus, together with dendrites, synapses are the key functional 

elements of the brain. A single axon may make several thousands of synaptic connections 

with other cells. It has been estimated that the human brain contains approximately 100 

trillion synapses. The foundations of sensation, perception, and behavior derive from the 

information that travels from the periphery toward the CNS (or deeper centrally within 

the spinal cord and the brain) by means of afferent neurons. Inversely, information can be 

carried away from the brain or spinal cord (or away from the hub in question) through 

efferent neurons. This general distinction divides such networks into two functional 

systems: the sensory system that acquires and processes information from the 

environment (e.g., the visual system or the auditory system), and the motor system that 

https://en.wikipedia.org/wiki/Neuron
https://en.wikipedia.org/wiki/Neuroglia
https://en.wikipedia.org/wiki/Synapse
https://en.wikipedia.org/wiki/Receptor_(biochemistry)
https://en.wikipedia.org/wiki/Dendrite
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responds to such information by generating movements. The information that travels all 

over the brain creates neuronal oscillations. 

1.1.2 Neuronal oscillations 

Neuronal oscillations, or brainwaves, are repetitive patterns of neural activity generated 

by the neurons or networks of neurons in the brain. Even though the spikes of single 

neurons in the brain might be difficult to predict, since their activity strictly depends on 

the connections, their spatiotemporal summation creates rhythmic waves, the oscillations 

[2]. Techniques such as Electrocorticography (ECoG) and Electroencephalography (EEG) 

allow to observe and measure large-scale patterns generated by more connected neurons 

that fire together. The classification of the main frequency bands used in both clinics and 

research are delta (1-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (15-30 Hz), low gamma 

(30-70 Hz) and high gamma (70-150 Hz). Brainwaves can come simultaneously at different 

frequencies and they can appear in different regions. For instance, faster rhythms (gamma 

activity) linked to several cognitive processes, such as speech, can be present in the motor 

and auditory areas, as well as in more circumscribed cortical regions, such as Broca’s area 

[3-5], the frontal region for speech production. The spatial extent of cortical involvement 

depends primarily on the frequency of oscillations. As a rule, slower frequencies involve 

more extensive synchronous activation of the neuronal pool, while high-frequency 

oscillations usually emerge in more localized regions [2].  

In this thesis, I inspected the brainwaves generated by two different models using two 

different areas under specific experimental conditions. The first network is a well assessed 

example of cortical functional organization in rats, known as Barrel Cortex, studied 

eliciting Somatosensory Evoked Potential (SEP). The second is Broca’s area, one of the 

regions responsible for speech production in humans. These two approaches are briefly 

described in the following paragraphs. 

1.1.2.1 Somatosensory Evoked Potential  

The whiskers of mice and rats serve as a highly sensitive tool to detect and acquire tactile 

information. In fact, rodents build spatial representations of the external environment, 

locate objects and discriminate different textures by their whiskers [6]. As already 
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mentioned, the somatosensory whisker-related area, also known as Barrel Cortex, is an 

extraordinary example of cortical functional organization of the brain. The representation 

of the whiskers follows their spatial localization on the body (see Figure 1 [6, 7]) in a highly 

organized somatotopic map [6, 8]. Each whisker is represented by a column (or barrel) 

containing neurons that respond specifically to the stimulation of that specific whisker. 

The barrel columns can be subdivided into six cortical layers from the more superficial (L1) 

to the deepest (L6) [9]. All layers include axons, dendrites and synapses. As shown in 

Figure 1B, the cortical barrels in layer IV of the primary somatosensory cortex [6] are 

arranged very similarly to the layout of the whisker follicles of the rodent.  

 

Figure 1. Schematics of the rat whisker-to-barrel system. A) The deflection of a whisker evokes 

action potentials in sensory neurons. The central whisker C2 is marked in yellow. B) Representation 

of the cortical columns for the whiskers in layer IV of the primary somatosensory cortex. Each 

whisker is represented in neurons responding preferentially to its stimulation.  

 

This somatosensory system has been widely investigated in previous studies [6, 8, 10-13], 

aiming to understand the processing of sensory information in well-defined synaptic 

pathways. In light of the well-known activity evoked by the whisker deflection (see Figure 

2) [11], this model represents a relatively simple but also attractive network to investigate 

and test new devices [14]. The single-whisker sensory response propagates from neurons 

in the cortical layer 4 to neurons of layer 2-3 belonging to the same barrel. However, the 

fast oscillations spread beyond the barrel borders and begin to interact within the barrel 

field, propagating across the barrel map over the next milliseconds [6, 11]. The primary 
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somatosensory (S1) barrel cortex connects with the secondary somatosensory cortex (S2) 

and the primary motor cortex (M1) of the same hemisphere, although callosal projections 

are also present but less prominently. The stimulation of a single whisker (vibrissae) 

results in a positive/negative activation in the contralateral hemisphere of the brain (see 

Figure 2 [15]). 

 

Figure 2. Example of somatosensory-evoked potentials (SEP) averaged across animals, obtained 

from the cortex in response to stimulation of a single whisker (C2). 

 

1.1.2.2 High-gamma oscillations in Broca’s area during speech production 

Language-related processes have been deeply investigated and results show that such 

task recruits several cortical areas, which are widely distributed all over the brain [16, 17]. 

Various studies provide evidence that high-gamma activity, important during cortical 

processing [18], is robustly engaged during speech perception and production [17, 19-22]. 

It is widely recognized that important regions for speech processing are distributed in the 

parietal, temporal and frontal cortices (see Figure 3 extracted from a review of 2011 

authored by Friederici [23]). 

Because of its unclear function, one of the most debated language-related regions of the 

brain is the Broca’s area. This area was firstly described by the French neurologist Paul 

Broca, who observed speech impairment in a patient with a lesion in the posterior part of 

the third frontal convolution of the left hemisphere, later called Broca’s region [24]. This 
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area, which corresponds to Brodmann’s areas (BA) 44 and 45 of the left hemisphere, has 

classically been associated with language, but its connectivity with other brain regions, as 

well as its specific functions, still remain unsolved [23].  

 

Figure 3. Simplified view of primary motor cortex, premotor cortex, IFG, STG, MTG, involved during 

speech production and comprehension. 

 

Nowadays, the gold standard for the identification of eloquent areas is the intraoperative 

functional mapping carried out through Direct Electrical Stimulation (DES) [25-27]. When 

performed during speech production, this procedure may induce the so called speech 

arrest phenomenon, i.e. the complete interruption of ongoing speech in absence of oro-

facial movements and vocal output [28]. This reversible functional arrest allows the 

identification of Broca’s area, and it provides evidence of its critical importance for speech 

production. 



Introduction  State of the Art about speech Brain-
Computer Interfaces  

7 
 

In a recent study conducted by Flinker et al. [5], the role of Broca’s area, as well as of the 

motor cortex and Superior Temporal Gyrus (STG), has been studied during word 

production with standard ECoG. Results show that electrodes covering Broca’s area 

exhibit an activation in the high-gamma frequency range immediately before the speech 

onset. Moreover, after speech starts, activations are present in the motor cortex but not 

in Broca’s area.  

Another recent study based on DES provided further evidence that Broca’s area is involved 

in early phases of speech production [28]. Results show that no effects are induced by DES 

during speech production. On the contrary, speech never starts if DES is applied before 

speech onset. This study provides evidence that Broca’s area plays a fundamental role 

before the onset of speech and thus that it may be involved in pre-articulatory functions. 

1.2 State of the Art about speech Brain-Computer Interfaces  

As more questions about the functions of the brain arise, the need for more advanced 

experimental tools arises as well [29]. One recent approach is that of realizing brain-

machine interfaces (BMI), or brain-computer interfaces (BCI), wherein the brain and an 

artificial device communicate via electrical activity using an interface. The current brain-

recording approaches can show different advantages and drawbacks depending on the 

purpose. In the next section, I will to discuss the current recording methods focusing on 

the most suitable for BCI development and speech neuroprosthetics. 

1.2.1 Recording brain activity 

As already mentioned, one of the essential functions of the brain is communication. The 

mechanisms that encode neurons firing into perceptions, thoughts and actions have been 

studied for many decades with several brain recording techniques, each one with its own 

purpose, level of invasiveness and spatiotemporal resolution (see Figure 4 [30]). These 

two features become even more important when dealing with the choice of the most 

suitable method for BCI systems. Indeed, the ideal recording technique for speech 

neuroprosthetic should be non-invasive and, considering the fast time varying 

characteristics of the process, able to ensure highly resolute signals in both time and space 

https://en.wikipedia.org/wiki/Cell%E2%80%93cell_interaction
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[31]. On the one hand, metabolic-based imaging, such as functional Magnetic Resonance 

Imaging (fMRI), guarantees relatively high spatial resolution and absence of invasiveness, 

but is affected by low temporal resolution. This technique does not allow to properly 

record processes that change rapidly. On the other hand, electrophysiological techniques 

are characterized by higher spatiotemporal resolution, but they still have few 

disadvantages. Electroencephalography (EEG) is not invasive and easy to set up, but this 

recording method has low spatial resolution and is highly sensitive to both volume 

conduction noise and motion artefacts. Magnetoencephalography (MEG) has higher 

spatial resolution, but it is largely affected by motion artefacts and external magnetic 

signals. Moreover, it requires a big apparatus, not applicable for practical BCI. These 

drawbacks make EEG and MEG ill-suited for BCI applications, especially for speech 

neuroprosthetics. On the contrary, intracortical devices such as microelectrode arrays 

(MEAs) can record activity with an unparalleled spatial and temporal resolution (single 

neurons activity) [30, 32, 33]. Unfortunately, MEAs are also the most invasive devices. 

Since penetration of the brain is required, tissue inflammatory responses and neuronal 

cells death are elicited affecting in turn the long term stability of the signal [33, 34]. In 

addition, even though MEAs may allow BCIs for motor prosthetic control [35-37], their 

spatial coverage is eventually too limited for the decoding of speech, in which the 

networks recruited are distributed in several brain regions [31]. Less invasive recording 

approaches such as ECoG (ECoG) can overcome the aforementioned limitations. The ECoG 

grids of electrodes offer indeed the advantage of recording neural activity directly from 

the cortical surface with a spatiotemporal resolution inaccessible to non-invasive brain 

recording techniques [16, 38-40] and reduced invasiveness when compared to 

intracortical devices [41]. In addition, ECoG recordings are not attenuated and filtered by 

the scalp and skin and may provide high-frequency neuronal signals [4, 16, 42].  
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Figure 4. Overview of the current methods used to record brain activity. Brain recording techniques 

grouped by level of invasiveness and spatiotemporal resolution, from the low invasive with low 

resolution, Electroencephalography (EEG) and fMRI, through the mildly invasive with high 

resolution, Electrocorticography (ECoG), and finally to extremely invasive and stereo-

encephalography (SEEG) and intracortical single neuron recording (single cell resolution). 

 

The state of the art regarding ECoG devices application into speech BCI development is 

described in the next subsection. 

1.2.2 ECoG-based interfaces for communication  

Standard ECoG grids are typically composed of platinum electrodes embedded in soft 

silastic (silicon) film. The number of contacts goes from few electrodes up to 256 spaced 

by 1 cm (see Figure 5); individual electrodes are typically 5 mm in diameter, even though 

they can be of various dimensions. The grids are transparent, flexible, and numbered at 
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each electrode contact. ECoG grids are surgically implanted either directly beneath the 

dura (subdural) or above it (epidural) [31, 43]. The placement is guided by the results of 

preoperative magnetic resonance imaging (MRI). 

ECoG grids are considered the gold standard for assessing neuronal activity in patients 

with epilepsy (where it can be implanted semi-chronically 2 weeks [44]) and are widely 

used, acutely, for presurgical planning, in order to guide the resection of brain lesions [45-

47].  

 

Figure 5. Standard ECoG grid in different shapes and sizes, depending on the clinical applications. 

 

However, this technique has recently emerged as a promising approach for BCI 

applications to create a direct neural interface that may allow the control of prosthetic, 

electronic, or digital devices [31, 36, 40, 44, 48-65]. In general terms, all the BCI systems 

require the following components: a sensor to record and monitor the brain activity and a 

decoder that converts the brain activity in commands to control the external effector (e.g., 

a robotic limb, a digital cursor or a virtual keyboard) [66]. Researchers are currently taking 

advantage of ECoG for speech BCI development [54-56, 67, 68]. A speech BCI can produce 

different forms of speech output (e.g., words, sentences, synthesized speech) from a pre-

processed measure of the user’s brain activity. Such technologies aim to restore 

communication via neural correlates of attempted or imagined speech, improving the 

quality of life of locked-in patients and others paralyzed patients [31]. Current approaches 

include also interfaces based on non-invasive recording modalities such as EEG [69]. 
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However, the current gold standards for BCI is ECoG, which has shown much success in 

the literature in spite of its drawbacks [53, 55, 56, 64, 70].  

The neural representation of speech and language is widely distributed, involving several 

frontal, parietal, and temporal cortical regions. ECoG can monitor different brain areas 

with excellent temporal resolution, and the population activity captured by this device 

could provide special advantages for speech BCI [31]. Recently, the possibility of decoding 

speech from ECoG signals has been deeply investigated using different neural decoders 

and feature extraction approaches [50, 51, 54-56, 68, 70-73]. Several studies examined 

the cortical activity related to speech production, which arises in several brain regions at 

different timings, by means of auditory [39, 52, 64, 67, 68, 74-76], semantic [70, 73] and 

articulatory features [55, 72]. Very recently, two groups provided evidence that speech 

can be synthesized mapping the cortical activity into acoustic output, by modelling 

intermediate representations of production  [55, 56]. In particular, Anumanchipalli et al. 

used a two-stage decoder mapping cortical recordings to synthesized audible speech [55]. 

The movements of the lips, tongue and jaw, as well as the manner of articulation, were 

modelled from audio recordings. Starting from vocal tract kinematic model, the first stage 

decodes the articulatory features from ECoG recording. The second stage maps the 

articulatory kinematic into acoustic features, such as Mel-Frequency Cepstral Coefficients 

(MFCCs), voicing and pitch, to reconstruct the participant’s speech. To demonstrate that 

the decoder does not rely only on the auditory feedback of vocalization, and to simulate a 

setting closer to locked-in syndrome (covert speech), the decoder was also tested on 

silently mimed speech. Decoded sentences were significantly better than chance-level 

decoding for both speaking conditions. This study profoundly advances the clinical viability 

of using speech BCIs to restore communication. 

1.3 Main approach  

The potential for decoding speech from ECoG signals has been investigated with promising 

strategies and results [55, 56]. However, several aspects of direct speech synthesis from 

brain activity need to be optimized before researchers can afford the challenge of clinical 

trials [31]. A first focus of this thesis was to investigate the possibility of recording high-
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frequency components of neural signals from the cortex surface using ultra-flexible micro-

ECoG devices (electrode distance below 1 mm, µECoG). Additionally, a second focus of this 

work was examining implementation of this approach to improve speech-BCI performance 

in real-life applications. 

1.3.1  Micro-electrocorticographic approach to cortical recordings 

The first investigation in this work focused on issues concerning tolerability for chronic 

ECoG implants. It is well known that standard ECoG recording techniques still require 

invasive procedures due to the dimensions of the grid [31]. Although covering different 

brain areas recruited in speech processing is an advantage for speech decoding, this 

traditional approach could be improved by using multiple high-density micro-grids directly 

placed over functional brain regions of interest [77, 78], instead of only one macro-grid 

covering several areas of the brain. This innovative technology would increase the spatial 

resolution of the recording, maximize the specificity of the recorded signals and, at the 

same time, minimize the risk of damage to the cortex. Moreover, the long-term 

performance of invasive BCI systems, which strictly depend on the inflammatory response 

and thus on the size and stiffness of the device [29], would increase substantially. This has 

been confirmed by empirical evidence showing that probes with a degree of flexibility 

comparable to brain tissue can minimize foreign body reactions and improve implant 

biocompatibility [29, 79, 80]. In the present work, I will first describe the results of cortical 

recordings performed in rats with different micro-ECoG devices, with the goal of validating 

this approach. Subsequently, I will report the results from micro-ECoG grids acutely 

implanted in a human patient undergoing tumor neurosurgery to investigate speech-

related processes recorded from the left frontal region of the brain. 

1.3.2  Micro-electrocorticography during speech production 

The second focus of my thesis extends beyond the limits of technical implantation. Speech 

neuroprosthetic devices aim to improve the quality of life of people suffering from 

communication deficits due to severe motor limitations. In such patients, even though 

communication is no longer possible due to severe paralysis of motor cortices [81], 

language-related cortices might still be intact. Ideally, a speech-BCI system should be able 
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to decode speech directly from brain activity elicited in eloquent areas for speech 

production and perception [50, 55, 56, 64, 65, 67, 68]. Detecting speech-related motor 

preparation would thus be a step toward building a speech decoding system. Indeed, since 

vocal cues may currently be employed to activate the most common virtual assistants 

(e.g., Google Assistant, Alexa, Siri), a neuronal cue could serve to initiate speech decoding. 

Here, I investigate the possibility of recognizing speech-related motor preparation from 

µECoG data recorded from a patient performing a naming task to provide new insights 

into understanding the complex and still unclear neural processes of speech production at 

a very high spatial resolution [82, 83].  I will demonstrate that µECoG signals recorded 

from speech-related brain regions can provide the necessary information to detect speech 

initiation. This achievement could be employed as the trigger when a measurable speech 

event, and thus an explicit articulatory alignment, is not possible (e.g., in the case of 

covert speech) to start the decoding in real-time BCIs. 
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2.     MATERIALS AND 

METHODS 

In this chapter, I will describe the experimental setup used to record electrocorticographic 

data either in rats or human subjects (see section 2.1). Afterwards, I will describe the in 

vivo experiments conducted for setup and electrode validation in rats and humans (see 

sections 2.2.1 and 2.2.2), as well as the specific pipelines followed during the data analysis 

(see sections 2.2.1.2 and 2.2.2.3). 

2.1  The recording setup 

The custom-made μECoG devices were connected to a TDT system (Tucker-Davis 

Technologies), described in the next subsections.  

2.1.1 Tucker-Davis Technologies (TDT) based setup 

μECoG data were recorded with a multi-channel amplifier optically connected to a digital 

processor from Tucker-Davis Technologies. Specifically, the main components of the 

recording setup are the following: 

 Headstage with μECoG device and ZIF-CLIP;  

 Preamplifier (PZ2); 

 Digital signal processor (RZ2); 

 Computer; 
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 Microphone or stimulator. 

These components are connected as shown in Figure 6. The headstage is connected via 

ZIF-CLIP to a battery-based preamplifier, the PZ2. The preamplifier interconnects the 

device to the RZ base station through a fast fiber optic connection. The PZ2 channels are 

organized into groups of 16 channel banks, and the signals are amplified, digitized and 

transmitted to the RZ2 base station. Therefore, the fiber optic connection leaves the 

experimental subject electronically isolated for safety reasons. The RZ2 processes signals 

from additional devices (i.e., the microphone) and external triggers. A trigger is an 

externally generated signal to capture specific events or conditions during a task, such as 

the timing of a stimulation or different phases of an experimental protocol (listening or 

speech production). All the data recorded and processed by the RZ2 are stored in the 

computer connected to it. 

2.1.2  The μECoG devices 

The data analyzed in this thesis were recorded with three different devices. The Epi device 

was designed at the Italian Institute of Technology (IIT) and was tested and described in 

previous studies [14, 84, 85]. Flexible Printed Circuit Technology reduced the size of 

recording sites and inter-electrodes spacing while using nanostructured gold coatings to 

ensure low electrodes impedances. The device consisted of 64 recording sites of 140 μm 

diameter arranged in an 8 × 8 grid with 0.6 mm spacing, producing a total covered area of 

4.3 by 4.3 mm. An image of the device with its dimensions is shown in Figure 6A. The 

second and the third devices, the MuSA and the CaLEAF, are ultra-conformable polyimide-

based μECoG arrays (see Figure 6B-C). The MuSA devices were produced at the Institute of 

Microsystem Technology (IMTEK), Laboratory for Biomedical Microtechnology, in Freiburg, 

Germany, by Maria Vomero and Maria Francisca Porto Cruz. The CaLEAF devices were 

produced at the same institute by Maria Vomero. The fabrication process for the devices 

has been previously described [86, 87]. The main differences between the two devices 

consist of the material, number and diameter of the electrodes. The MuSA device holds 32 

platinum (Pt) electrodes, 16 large size (diameter of 100 μm) and 16 small size (diameter of 

10 μm); the large and the small contacts are separated by 45 μm. The CaLEAF device 

consists of 16 glassy carbon electrodes with following sizes: 50, 100, 200, and 300 μm 
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(four electrodes for each size). The MuSA and the Epi were tested in both humans and 

animals, while the CaLEAF was only tested in rats. 

 

  

Figure 6. Overview of the setup used during ECoG recordings in both animal and human in vivo 

experiments. The Epi (A), MuSA (B) and CaLEAF (C) devices have been tested following the chain 

from the headstage to the processor and computer. The setup can record also external triggers to 

align the trials during the offline data processing. For in vivo animal experiments, the stimulation 

trigger was recorded to align the trials to the timing of the mechanical stimulation. During the 

experiments in human, the external input used to align and analyze the data was the voice of the 

patient, recorded with a microphone at 24kHz. 

 

2.1.3 The configurations 

Recording with a TDT-based system allows the user to choose between three possible 

configurations in terms of reference (if any) and ground: Single-Ended Screw (or Dura in 

human subjects), Differential or Single-Ended Reference (see Figure 7). During the first part 
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of the study, I focused my attention on determining the configuration to optimize the 

recording quality and the evoked-to-spontaneous ratio. Ground and reference placements 

are important in all headstage configurations because they can produce undesired results 

if incorrectly wired. The Single-Ended configuration requires a connection between 

reference and ground at the headstage level (see Figure 7B or C). For the Single-Ended 

Screw configuration (C), reference and ground are attached to a skull screw (or clipped to 

the dura mater), while the two pins are attached to one or more onsite reference 

electrodes in the Single-Ended Reference configuration (B). In the Differential 

configuration (A), the ground is not connected to the reference at the headstage level; in 

this case, the reference is connected to the onsite reference electrodes, while the ground 

is attached to the skull screw. Specifically, in the Epi and the MuSA devices, the onsite 

reference is close to the recording electrodes. The Epi is provided with two lateral 

reference electrodes, while the MuSA’s reference consists of a crown of interconnected 

electrodes placed around the active area (see Figure 6A-B). The choice and test of the 

reference electrodes are important because any activity detected by the reference is 

reflected as activity in all the recording electrodes—that is, the voltage values recorded 

from each electrode are relative to a voltage recorded elsewhere (reference site). 

 

 

Figure 7. Ground and reference configurations for the headstage. A) Differential configuration: 

reference and ground are separated at the headstage level, and the ground is shorted to the skull 

screw (or dura), while the reference is connected to a different site on the subject. B) Single-Ended 

Reference configuration: ground and reference pins are connected at the headstage level and 
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shorted to the onsite reference electrode. C) Single-Ended Screw configuration: ground and 

reference pins are connected at the headstage level and shorted to a skull screw. 

 

2.2 Setup validation: from animal models to humans 

2.2.1 In vivo validation in animal models 

The experimental procedures to record the data in rats were planned and conducted by 

Elena Zucchini, while I conceptualized and developed the software necessary for the data 

pre-processing, analysis and visualization of the results. 

2.2.1.1 Recording setup and experiments 

First, the team validated the three recording configurations with both the MuSA and the 

Epi devices, with four and two in vivo animal experiments respectively. Next, five CaLEAF 

and eight MuSA devices were tested for high-frequency recordings in rats. 

Neural signals were recorded using the Tucker Davis Technologies (TDT) multi-channel 

recording system described above; data were digitized at a sample rate of 12207 

samples/s at 18-bit resolution. In order to reduce electromagnetic noise, the experimental 

setup was placed in a Faraday cage.  

The experiments for setup and electrode validation were conducted using adult Long 

Evans rats (400–500 g). To record somatosensory evoked potentials, animal surgery and 

implantation of the ECoG electrodes over the rat barrel cortex were carried out (A-P: -1 

mm to -4 mm from bregma, M-L: -3 mm to -5 mm from the midline) following the 

procedure described in a previous study [88]. The experimental plan was designed in 

compliance with the guidelines established by the European Communities Council 

(Directive 2010/63/EU, Italian Legislative Decree n. 26, 4/3/2014), and the protocol was 

approved by the Ethics Committee for animal research of the University of Ferrara and by 

the Italian Ministry of Health (authorization n 332/2015-PR) [87].  

For each rat, several positions and orientations of the ECoG devices over the barrel cortex 

were investigated. The somatosensory evoked potentials (SEPs) were mechanically evoked 
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with a vibrating system used to produce a whiskers deflection along the horizontal plane. 

The stimulation involved either several whiskers or a single whisker. The whiskers 

contralateral to the craniotomy were shortened and inserted into a velcro strip attached 

to a rod. A shaker (Type 4810 mini shaker; Bruel & Kjaer, Naerum, Denmark) controlled by 

a National Instruments board (Austin, TX, USA) moved the rod to deflect the whiskers. For 

single-whisker stimulation, the whisker of interest was inserted into a needle attached to 

the rod. In both single and multi-whiskers stimulation protocols, the deflection stimulus, 

consisting of a sine waveform of 12 ms duration, was delivered at 10 Hz. The stimulation 

amplitude was coincident with a multi-whisker deflection of 500 μm. Each deflection 

stimulus was repeated 100 times and was separated from the others by a four-second 

pause.   

2.2.1.2  Task-specific pipeline for Somatosensory Evoked Potentials signal 
processing 

Band-pass filtering and segmentation 

The processing began with organizing the raw data and experiment information. Each 

electrode was visually and qualitatively inspected, searching for artefacts or external 

noise. Raw data were band-pass filtered into different frequency bands using a digital 

zero-phase 8th-order Butterworth filter to extract different components of the SEP.  Data 

were band-pass filtered between 70 and 300 Hz for the setup validation and between 200 

and 1000 Hz for the device validation. The filtered data were segmented into trials of 80 

ms, which were time-locked to the stimulation (ranging from 20 ms before the onset to 60 

ms after it). The filtered trials were then processed in several steps and inspected in order 

to understand the spatial distribution of the evoked potentials.  

Time-frequency analysis 

For the bands of interest, the time-frequency analysis was performed by applying the 

built-in spectrogram() Matlab function, based on the short-time Fourier transform (see 

A.1). The time-frequency analysis is applied by setting two parameters: the window length 

and the overlap. The single-trial spectrograms were computed by setting a window of 10 

ms and an overlap of 9 ms. For the frequency bands 70-300 Hz and 200-1000 Hz, the 

frequency step was equal to 5 and 10 Hz, respectively. The single-trial spectrograms were 
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inspected to exclude the presence of artefacts and were subsequently averaged to obtain 

mean spectrograms.  

Evoked-to-Spontaneous Ratio and statistics 

The amplitudes of SEPs evoked by peripheral stimulation of the whiskers were used as 

measures of the recording quality by calculating the Evoked-to-Spontaneous Ratio (ESR). 

The ESR is usually defined as the ratio of the amplitude of a response evoked by a stimulus 

to an average value of spontaneous activity and was computed as follows: 

𝐸𝑆𝑅 = 𝑚𝑒𝑑𝑖𝑎𝑛( 
𝑃𝑒𝑎𝑘𝑇𝑜𝑃𝑒𝑎𝑘

2 · 𝑠𝑡𝑑(𝑛𝑜𝑖𝑠𝑒)
) 

where PeakToPeak is the single-trial peak-to-peak amplitude of the signal of interest (the 

evoked potential), i.e., the difference between the maximum positive peak and the 

maximum negative peak. The std(noise) is the standard deviation of the spontaneous 

activity (100 ms duration before each stimulation), which was considered to be the 

background for each trial.  

The possible difference in ESR performances between different electrode sizes in the 

MuSA device were tested using a one-way ANOVA. The purpose of a one-way ANOVA is to 

determine whether data from different groups (or levels) of a factor have a common 

mean [89]. This analysis enables us to determine whether the groups of an independent 

variable (here, the electrode size) have different effects on the response variable. This test 

was conducted only for the MuSA ESR values. Comparison of single-trial ESR values was 

performed for each large electrode and its corresponding small one (45 μm far); thus, for 

each recording session, the ANOVA was performed sixteen times (for the sixteen 

electrode pairs). The test was not conducted for the CaLEAF because a direct comparison 

across different electrode sizes is not possible; the distance between electrodes is 400 μm, 

thus the peak-to-peak amplitudes might change with the distance of the electrodes from 

the signal source. 

Interpolated maps from peak-to-peak amplitude 

In order to have a better understanding of the spatial distribution of the signals, a 

bidimensional map was computed by interpolating the average peak-to-peak values 
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between the electrodes, with a resolution of 30 μm. The interpolation was performed 

applying the thin-plate smoothing spline method, which is suited to extrapolate surfaces 

starting from a grid of values. The advantage of this method is that it is also possible to 

interpolate values outside the starting grid and not only inside. The median evoked 

potential was also shown overlaid on the bidimensional map.  
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Figure 8. Signal processing pipeline for the SEPs analysis. The black arrows show the direct process 

flow. The black parallelograms represent the data resulting from the analytical steps (rounded 

rectangles), which are saved for future elaborations (orange arrows). The light blue arrows indicate 

the possibility to load stored data at any point in the flow. The green arrows show which type of 

data can be visually inspected using dedicated functions. 
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2.2.2 In vivo validation in humans 

The data recording in humans was conducted by Dr. Tamara Ius. The analyses were 

conceptualized by Aldo Pastore and me, while I developed the software necessary for the 

data pre-processing, analysis and visualization of the results. 

2.2.2.1 Participants 

Data were collected from one male patient: an Italian native speaker, undergoing awake 

neurosurgery for tumor resection (low-grade glioma). The patient gave his informed 

consent, and the protocol was approved by the Ethics Committee of Azienda Ospedaliera 

Universitaria Santa Maria della Misericordia (Udine, Italy) and by the Italian Ministry of 

Health. 

2.2.2.2  Recording setup and task 

Device specifications and recording setup were previously described by Rembado et al. 

and Vomero et al. [85, 86]. Briefly, two devices were used for the recordings. The first 

array (Epi) consisted of 64 channels arranged in an 8x8 layout, with a pitch of 600 μm and 

a diameter of 140 μm (see Figure 10A-left); the second array (MuSA) consisted of 32 

channels, among which only the 16 with a diameter of 100 μm were considered. The 

MuSA electrodes are arranged in a 4x4 layout, with a pitch of 750 μm (see Figure 10B-

right). Array references were disconnected, and the ground was connected to the dura 

mater of the patient (Single-Ended Dura configuration).  

The patient’s voice was acquired at 24 kHz for the entire recording sessions, and neural 

signals were collected before the tumor resection procedure. The placement of the μECoG 

devices over a healthy and informative portion of the cortex was obtained with 

preoperative and intraoperative mapping. The patient underwent functional Magnetic 

Resonance Imaging (fMRI) while performing a naming task (see Table 1) as part of his 

clinical plan to localize the responsive areas and their distance from the tumor. 

Subsequently, to identify the speech arrest area and center the μECoG arrays above it, 

cortical mapping was carried out with intraoperative DES. To determine the position of 

the devices above the cortex, the four corners of the Epi and one point of the MuSA (due 

to its small dimensions) were acquired with a neuronavigator. Since only one point was 
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acquired for the MuSA device, their relative position was estimated by plotting the 

coordinates in two dimensions  (see Figure 9).  

 

Figure 9. Relative position and orientation of the MuSA and the EPI devices. The numbers reported 

in the corners correspond to the electrodes in those positions. 

The subject was asked to repeat the same naming assignment performed during the fMRI 

scan. This procedure is routinely used with this task or other similar tasks (i.e., a counting 

task) to monitor speech functionality during the tumor removal surgery. 

The task consisted of naming different images displayed on a screen three times in the 

same order. In total, 30 trials with the Epi and 30 trials with the MuSA were recorded in 

separate and consecutive recording sessions. The Italian nouns repeated during the task 

are reported in Table 1.  

 

Table 1. Naming Task performed during the recordings (first row) and the English translation 

(second row). 
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Figure 10. Overview of the devices and their positions over the cortex during in vivo experiment 

in humans. A) Schematics and a pictures of the active sites area of the two micro-ECoG arrays 

used for the recordings (A-left Epi: electrodes diameter 140 µm - electrodes pitch 600 µm; A-

right MuSA: electrodes diameter 100 µm - electrodes pitch 750 µm). Pictures of the devices over 

the patient cortex are shown in the bottom. The superimposed sketch represents how 

differently the two arrays adapt to the cortex. B) Snapshot from the neuronavigation system 

showing the µECoG array location superimposed to the MRI scan. The four boxes show different 

brain sections (clockwise starting from the top left image: 3D view, horizontal plane, coronal 

plane and sagittal plane). Red dot corresponds to the speech arrest area and thus to where the 

arrays were placed. 

 



Materials and Methods  Setup validation: from animal models to 
humans  

26 
 

2.2.2.3 Task-specific pipeline for predicting speech preparation from µECoG 
signals 

The pipeline followed during the offline processing is reported more in detail in Figure 11. 

The processing started with loading and organizing the raw data and the experiment 

information. Raw data were band-pass filtered into the traditional beta (15 - 30 Hz), 

gamma (30 - 60 Hz), and high gamma (70 - 150 Hz) bands. The Matlab function filtfilt() was 

applied to avoid phase distortion (50 Hz; harmonics up to 150 were removed with notch 

filters). The filtered data were subsequently segmented into 1 second trials time-locked to 

the speech onset (ranging from 500 ms before the onset to 500 ms after it) for visual 

inspection. Last, the filtered trials were processed and inspected to check the quality of 

the data. The visual inspection consisted mainly of correlation analysis and time-frequency 

analysis (see sections A.1 and A.2). 

Correlation analysis 

Correlation analysis is a normalized measure of covariation that quantifies the strength of 

a relationship between two variables. It is usually applied to find a linear dependence 

between measures and to explore network function and connectivity [90]. 

The correlation of neural signals was analyzed in two ways:  

 Electrode correlation as a function of the pitch: this measure is often used both as an 

index of spatial propagation of neural signals and as a metric to define the resolution 

of particular phenomena in specific frequency bands [77, 91]. The Pearson correlation 

coefficient was computed trial by trial from the filtered signals and then averaged 

across electrodes sharing the same distance; the result is a mean profile for each 

inspected frequency band.   

 All-vs-all electrode correlation: a mean correlation map for each electrode compared 

to the others was computed starting from the single trial and then averaged across 

trials for the frequency bands of interest. 

The mean correlation profile and the correlation maps were explored to investigate the 

redundancy of the information as well as to define the spatial distribution of task-specific 
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dynamics. The correlation maps and profiles were computed for beta, gamma and high-

gamma ranges and plotted for visual inspection.   

Time-frequency analysis and mean power profile 

For the bands of interest, the time-frequency analysis was performed by applying the 

built-in spectrogram() Matlab function based on the short-time Fourier transform (see 

A.1). The spectrogram computation was performed considering a window of 100 ms and 

an approximate overlap of 90 ms, while the frequency step was adapted to the range of 

interest. Next, the mean spectrogram for each electrode was obtained averaging across 

trials. The single-trial and mean spectrograms were inspected to exclude the presence of 

artefacts.  

The mean power profile (MPP) was calculated starting from the spectrograms, computing 

the average across frequencies, to obtain a mean time-varying profile of the power 

spectral density.  
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Figure 11. Signal processing pipeline followed for the speech production analysis. The black arrows 

show the direct process flow. The black parallelograms represent the data resulting from the 

analytical steps (rounded rectangles), which are saved for future elaborations (orange arrows). The 

light blue arrows indicate the possibility to load stored data at any point in the flow. The green 

arrows show which type of data can be visually inspected with dedicated functions. 
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Feature extraction for speech preparation classification 

To obtain a matrix of features, the MPP was computed for the entire recording session 

and then divided in 30 intervals, each containing only one naming execution. Specifically, 

segments ranged from 500 ms before the speech onset of the included word to 500 ms 

before the onset of the subsequent one. The observations provided to the classifier were 

obtained by considering each electrode independently. This approach uses two 

hyperparameters (see Figure 12): the length of the window w, and the length of the shift 

s. Every time point included in a window was considered to be a feature; thus, its length 

determines the size of the feature vector. The number of overlapping time points, and 

thus the number of features that were present both in one observation and in the 

subsequent one, was established by the length of the shift. The observations are 

considered to be speech preparation when comprised between 500 ms before the speech 

onset and the onset (class 0). Instead, when the entire window the observation belong to 

the speech production segment (after the speech onset) class 1 is assigned (non-

preparation class). 

Formally, with a shift length s and window length w, each observation 𝑜𝑏𝑠𝑗  ranges 

between [𝑡𝑗 , 𝑡𝑗 + 𝑤] , and the subsequent observation starts at 𝑡𝑗 + 𝑠  and ends at 

𝑡𝑗 + 𝑠 + 𝑤. This approach offers the advantage of providing temporal context information 

to the classifier, a common method described in previous literature [54, 92]. In our 

experiment, the shifting window covered approximately 60 ms, and no overlap was set (s 

= w). For this set of parameters, the observation matrix consisted of nine observations for 

the preparation class and a variable number of observations for the non-preparation class, 

according to the temporal distance between a trial and the consecutive one. In order to 

train the classifier, each observation of i-th interval was matched with a binary label. If 

𝑡𝑜𝑛𝑠𝑒𝑡𝑖
< 𝑡𝑗 < 𝑡𝑜𝑛𝑠𝑒𝑡𝑖+1

− 500𝑚𝑠 , the observation was labelled as 1. When 𝑡𝑜𝑛𝑠𝑒𝑡𝑖
−

500𝑚𝑠 < 𝑡𝑗 < 𝑡𝑜𝑛𝑠𝑒𝑡𝑖
, the observation belonged to the preparation interval and was 

labelled as 0. 

We assume that the power spectrum of the selected frequency band is characterized by 

well-defined temporal patterns representing speech preparation that did not emerge at 

other time points. However, these anticipatory neural patterns might carry some 
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physiological variability in timing, which could lead to wrong labelling when a precise and 

fixed temporal window is used to assign the classes. For the sake of simplicity, I followed 

the procedure indicated above, but this is likely to have made the classification task 

harder. 

 

 

Figure 12. Feature matrix creation and labelling procedure starting from the features F (MPP or 

Envelope). Considering a shift length s and context length w, and considering an observation 

𝑜𝑏𝑠𝑗 ranging between [𝑡𝑗 , 𝑡𝑗 + 𝑤], the following observation would range [𝑡𝑗 + 𝑠, 𝑡𝑗 + 𝑠 + 𝑤]. One 

segment starts 500 ms before the speech onset and ends at 500 ms before the speech onset of the 

subsequent trial. The observations are considered to be speech preparation when comprised 

between 500 ms before the speech onset and the onset (class 0). Instead, when the entire window 

belongs to the speech production segment (after the speech onset) class 1 is assigned. 

 

Dealing with unbalanced classes 

Most real-world classification problems are characterized by imbalanced classes—that is, 

the two classes are not equally represented in the dataset. This data imbalance problem 

is recognized as a major issue in the field of data mining (see A.4). Indeed, most 

machine learning approaches assume that data are equally distributed; if not, the 

majority classes would dominate over minority classes, causing classifiers to be more 

biased towards majority classes, with poor or zero detection of minority 

classes. Another consequence is difficult performance evaluation, since overall accuracy is 
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not a good criterion to assess the classifier’s performance in imbalanced domains. The 

goal of recognizing speech preparation is a clear example of a real-world 

classification problem suffering from imbalanced classes. Possible approaches to 

dealing with imbalanced classes consist of re-sizing the data either by undersampling 

or oversampling [93] in order to change the prior conditions of the training data. 

Here, considering the small amount of data, overfitting was likely to occur with 

oversampling; therefore, I decided to adopt the undersampling approach, a popular 

technique for unbalanced datasets that reduces the skewness in class distributions.   

The undersampling procedure consisted of reducing the number of observations 

belonging to the speech/silence class by using a proportionality factor (pf). By definition, 

this factor depends on the majority/minority ratio. However, due to the leave-one trial-

out approach, the data segmentation could produce trials of different length, as described 

above. In this case, a definite pf, computed as the ratio #majority/#minority, could be at 

the most equal to two, because of the presence of some very short trials. Such balancing 

between the two classes would probably improve the classification performances when 

dealing with large datasets by reducing the prior probability of the majority class. 

However, in this case, it would also drastically reduce the number of observations. 

Therefore, I decided to test different values of pf consisting of the maximum imbalance 

allowed. The tested pf were integer values ranging between 1 and 5. Finally, also the 

uncontrolled imbalance was tested. To control the level of imbalance, the majority class 

was randomly downsampled during the training: briefly, if the minority class had k 

observations, the majority class could have at the most pf·k observations, according to the 

length of the segments. This downsampling allowed for controlling the proportions of the 

minority and the majority class, as well as finding the best trade-off between 

undersampling and balancing.  

This test was conducted for the Epi recording device, since the task-related power 

appeared to be more consistent in this device and was present in more electrodes. 

Subsequently, the best combination was then tested with the MuSA recording device. 
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SVM classification 

To increase the reliability of the results, I used a leave-one trial-out approach. The 

recording session was segmented into 30 intervals, and all the observations located inside 

29 of 30 intervals were used to train a binary SVM classifier with a Gaussian kernel (see 

A.5). The classifier was then tested using the observation from the excluded segment. The 

training procedure was repeated separately for each channel and frequency band of 

interest (beta, gamma and high-gamma) to understand if the decoding was operating 

better in some combinations of spatial localization and frequency modulation. For 

completeness, the classifier was also trained with randomized labels for the best 

combination of window, pf and features.  

Classifier performance   

Unfortunately, one of the main complications of this study was that the evaluation of our 

classifier performance was derived from the assignment of an ambiguous class such as 

speech preparation. However, similar to covert speech, there is little information about 

the real timing of preparation intervals, which implies inevitable errors during the labelling 

procedure [68]. This problem is already known in literature as label noise [94, 95]. 

Therefore, the goodness of the classifiers cannot be evaluated only with standard 

measures (see A.6); other evaluation metrics should also be taken into account. For these 

reasons, one reliable measure to quantify the prediction accuracy could be provided 

instead by the number of detected trials, as explained in the following paragraph. 

To assess how well a trained model was performing, an index of performance was defined 

taking into account both the percentage of identified preparation segments and the 

number of false positives. Each preparation was considered to be detected if the classifier 

was able to correctly identify at least n observations as preparation, for different values of 

n considered (between 1 and 4), inside the corresponding fixed time intervals (from 500 

ms before the speech onset to the speech onset). Accordingly, the performance of the 

classification index (PCI) can be described as follows:  

𝑃𝐶𝐼 = 100 ∗  
#Preparationdetected

#Preparationtotal
− 1.5 ∗  

#NotPreparationmisclassified

#NotPreparationtotal
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To achieve the highest positive score, the decoder must detect all the preparation 

intervals without misclassifying the observations of the other class. However, if no 

preparation is detected and every non-preparation observation is misclassified, the most 

negative value is obtained. In addition, the F-score and the Matthews correlation 

coefficient were also computed and used as evaluation criteria (see A.6). 

2.2.3  Graphical User Interface for ECoG signals processing 

To identify key array features underlying high-quality signals, I analyzed several datasets 

recorded with high-density μECoG devices. In order to provide a tool for systematically 

processing and analyzing the acquired neuronal signals with repeatable methods, I 

developed a user-friendly graphical interface (GUI). The GUI and the analyses were 

implemented in Matlab (version 9.5, Mathworks, Inc., Natick, MA), with the only 

exception of the speech timing computation, which was extracted with the free software 

Audacity(R) (version 2.1.2). Audacity® software is copyright © 1999-2019 Audacity Team. 

The name Audacity® is a registered trademark of Dominic Mazzoni. All the analyses 

described in the previous sections, which were carried out both to inspect and process the 

data, have been included in the GUI and organized into several menus, which allow the 

user to control the procedures and the parameters. In particular, the main parameters for 

trials segmentation (segmentation timings), filtering (frequency range, sampling 

frequency), spectrogram computation (window and overlap) and feature extraction 

(window and overlap) are controlled by the user; during the processing, this information is 

added through popup dialog boxes.  

The first step to begin analyzing a new dataset is loading the raw data, including the 

information about the experiment. The user is asked to import the following information: 

1. The identification numbers of the blocks to be analyzed; 

2. The number of different devices used during the experiment; 

3. The type and the name of the devices; 

4. Whether a trigger has been recorded during the experiment or not; if yes, either 

the on-board analog input number of the trigger or the .txt files where the 

timings are stored will be requested; 
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5. The minimum number of samples that should elapse between one trial and the 

following one. 

The information provided will be stored in a file, which will set the starting point of each 

further analysis in order to reduce the computational cost. For example, after filtering and 

segmenting the data, the resulting matrix will be stored in a file, which can be loaded in 

the future to apply visual inspection algorithms as well as exploratory analyses.  

The SEPs analyses as well as the speech prediction were conducted entirely through the 

GUI to guarantee repeatable measures and results for future experiments.    
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3.     RESULTS AND 

DISCUSSIONS 

In this chapter, data analysis of the in vivo validation of the setup (see section 3.1) are 

reported along with the MuSA and CaLEAF validation evidence (see sections 3.2 and 3.3). 

Next, findings obtained from translational application of the Epi and MuSA devices in one 

human subject is described (see 3.4). I will provide evidence that neural signals recorded 

with sub-millimeter-spaced electrodes exhibit low correlation and that different frequency 

bands show diverse and well-defined temporal dynamics and spatial localizations, strictly 

depending on the experimental conditions. Furthermore, I will explore whether it is 

possible to exploit high spatial resolution to understand speech production processes in 

the speech arrest area. Finally, I will report the findings of the prediction of speech 

production, obtained using high-gamma activity anticipatory features extracted from the 

neural signal.  

3.1  Setup validation: improving recording quality 

3.1.1 Results 

The setup was validated with the MuSA and the Epi devices in several experiments. For 

simplicity, in the following subsections only one experiment conducted with a MuSA is 

described; all the results obtained from the other experiments were consistent with those 
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reported below. These experiments helped to determine which configuration is more 

stable and reliable between Differential, Single-Ended Reference and Single-Ended Screw.  

In the following figures, only data from the large electrodes are reported, since the small 

ones perfectly followed the same oscillations and did not add any new information to the 

figures.  

3.1.1.1 Mean trials in time and time-frequency domain 

The first analytical step of the setup validation was the computation of the mean trial to 

detect possible artefacts or disadvantages due to an erroneous connection between 

reference and ground. 

The plots reported in Figure 13 and Figure 14 represent the mean trial obtained from the 

average of 100 trials, previously band-pass filtered at 70-300 Hz for each recording 

configuration tested: Differential (A), Single-Ended Reference (B), Single-Ended Screw (C). 

  

Figure 13. Mean SEP trial for Differential, Single-Ended Reference and Single-Ended Screw 

configurations. Each plot represents the average of 100 trials for all the recording electrodes, 

reported for Differential (A), Single-Ended Reference (B) and Single-Ended Screw (C) configurations. 

The recordings were performed with the MuSA. 

 

From the data visualization in Figure 13, there is an apparent difference across the three 

recording approaches. In particular, we assist to sign-inverted activity for some electrodes 

during the recording with Differential (A) and Single-Ended Reference (B) configurations, 
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but not with Single-Ended Screw (C). The details of this phenomenon are more evident in 

Figure 14. The Single-Ended Screw (C) configuration is characterized by a waveform 

propagating from the top right to the bottom left, with a gradual reduction of the evoked 

amplitude. In contrast, in both Differential and Single-Ended Reference configuration 

recordings, the signal starts propagating from the top right, but shows a fast reduction in 

the peak amplitude and a sudden reversal of the sign in the middle of the recording area 

(marked with a red line). This indicates that the reference onsite has a strong effect on 

both Differential and Single-Ended Reference configurations. To understand the effect in 

the time-frequency domain, the mean spectrograms were computed in the same 

frequency band (see Figure 15A-B). The main effect consisted of delocalized power due to 

the presence of the reference. Moreover, in both Differential and Single-Ended Reference 

configurations, the spectrogram of electrode 4 appeared to be less powerful compared to 

the Single-Ended Screw configuration. A similar behavior is also found in the electrodes in 

the central portion of the device.  

This evidence demonstrates that the reference onsite can significantly change the spatial 

localization as well as the sign and amplitude of the signals, depending on what the 

reference is recording and whether it is connected to the reference pin (Differential) or to 

both reference and ground pins (Single-Ended Reference).  

  

3.1.1.2 Correlation analysis 

The mean correlation maps provide additional evidence that the Single-Ended Screw 

configuration is the optimal solution for recording with micro-ECoG devices, particularly 

when the onsite reference is too close to the source. The correlation across channels 

changes sign when the reference is connected either to the reference pin or to the ground 

pin; thus, signals are negatively correlated (see Figure 16A-B). In contrast, the correlation 

between those same electrodes is strictly positive when the reference and the ground are 

connected to the skull screw (C). 
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Figure 14. Mean SEP trial for Differential (A), Single-Ended Reference (B) and Single-Ended Screw 

(C) configurations. Each plot represents the average of 100 trials. For better clarity, only data from 

the large electrodes are reported, since the small ones behaved identically. The red line indicates 

the reversal of the peak due to the presence of the onsite reference (A) and (B), which was not 

present when the reference was connected to the skull screw (C). 
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Figure 15. Mean spectrograms for Differential (A), Single-Ended Reference (B) and Single-Ended 

Screw (C) configurations. Each plot represents the average of 100 trials. Again, for clarity, only the 

large electrodes are reported (see labels). The vertical red line represents the timing of the 

stimulus.  
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Figure 16 Mean correlation maps obtained for the three recording configurations: Differential (A), 

Single-Ended Reference (B) and Single-Ended Screw (C). Each labelled square represents one of the 

large channels (see labels) and contains the correlation coefficients for that channel against all the 

others. The maps share the same color-scale, from -1 (anti-correlated) to 1 (correlated) signals.  

 

3.1.1.3 Interpolated maps from peak-to-peak amplitude and evoked-to-
spontaneous ratio 

The maps computed for each setup configuration are reported in Figure 17: Differential 

configuration (A), Single-Ended Reference (B) and Single-Ended Screw (C). Since the device 

maintained the same position over the barrel cortex for the entire experiment, the change 

in the median peak-to-peak amplitudes can be due to either the recording configuration 
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or the level of anesthesia. However, it should also be considered that the latter factor 

would reasonably impact all the electrodes equally.  

  

 

Figure 17. Bidimensional interpolated maps obtained for the three different configurations: 

Differential (A), Single-Ended Reference (B), Single-Ended Screw (C). The maps were computed 

starting from the median peak-to-peak amplitude for the three different recordings. The device 

was maintained in the same position during the entire experiment. Blue denotes the lowest values, 

and red indicates the highest values. The recordings were performed with the MuSA, and only the 

large channels are reported. 

 

The interpolated maps are a useful tool to locate the source of the signal, but they do not 

take into account the background noise; thus, they cannot quantify the electrode’s 

performance. As previously mentioned, a straightforward measure to represent the 

electrode’s performance while recording evoked potentials is the evoked-to-spontaneous 

ratio (ESR). This measure is not based on the mean peak-to-peak amplitude but also on 

the background noise. The ESRs for the three different recording configurations 

performed with the MuSA are reported in Figure 18. When observing the mean trial and 

the interpolated map related to the Differential Configuration (see Figure 14A), channel 17 

appear to record perfectly the SEPs. However, the ESR values were considerably low 

(Figure 18A) because of the high background noise, visible from the spectrograms (Figure 

15).  



Results and Discussions  Setup validation: improving recording quality  

42 
 

 

Figure 18. Evoked-to-spontaneous Ratio for the three setup configurations tested with the MuSA. 

The small electrodes, in light green, usually performed slightly worse than the corresponding large 

electrodes (in dark green); this behavior is due to the difference in the impedance of the two 

groups. The ESR ratios reflect the behavior observed with the spectrograms for the three 

configurations. The electrodes with the lowest ESR in Differential (A) and Single-Ended Reference 

(B) configurations show a higher ratio than the Single-Ended Screw (C). 
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The ESR is an important measure for an additional reason: this measure also quantifies 

differences across experimental conditions and, in this particular case, across the three 

configurations. In Differential (Figure 18A) and Single-Ended Reference (Figure 18B) 

configurations, the ESRs of channels 19 and 20 were considerably low when compared to 

the Single-Ended Screw values. 

3.1.2  Discussion 

To understand the most appropriate configuration of ground and reference for micro-

ECoG recordings, several methods have been developed. These analyses provide evidence 

that the three tested configurations (Single-Ended Reference, Single-Ended Screw and 

Differential) record very different information and thus are not exchangeable. The main 

difference between the configurations can be attributed to the onsite reference, which 

can cause major effects in both Differential and Single-Ended Reference configurations: 

the activity detected by the reference affects the signal recorded with active electrodes. 

Therefore, the reference should not be on top of the signal source of interest. 

Additionally, depending on the similarity between the onsite reference and recording 

electrodes oscillations, we can deduce different implications. Specifically, if reference and 

recording electrodes show high positively correlated signals, there will be almost no 

difference between their oscillations and, thus, lower activity or “inverted” activity will be 

recorded depending on which signal is stronger. This inversion was confirmed by the 

correlation analysis results. Here, I show that the reference can nullify, amplify or invert 

signals, creating negative correlations in case of inverted signals (see Figure 16A-B). The 

second issue impacts the Single-Ended Reference configuration. In this case, the ground 

pin and the reference pin are shorted to the reference onsite, which fluctuates with the 

potential of local brain electrical activity, causing fluctuations in the ground potential as 

well. This configuration is usually not indicated because it can be a source of noise. In 

contrast, in the Differential configuration the ground pin is connected to an external screw 

implanted in the skull of the rat, which in turn is in a Faraday cage connected to earth 

ground. In this case, the potential is highly stable, and it does not affect the recorded 

signal. 
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Since it is also possible to reference the data offline by choosing a recording electrode as 

reference, the Single-Ended Screw configuration may be considered to be the most 

reliable solution. However, the reference could be not recorded in Differential or Single-

Ended Reference because of setup constraints; thus, the data could not be transformed 

offline by re-referencing. This preliminary study was conducted both with the MuSA and 

with the Epi device. Since the results for the two devices were coherent, only the findings 

using the MuSA were reported. These findings were fundamental to choosing the most 

reliable recording configuration, employed for the following experiments. 

3.2  Contribution to MuSA validation 

3.2.1 Results 

Once the setup was validated, further experiments were conducted to test the MuSA 

devices in the best possible recording configuration. The devices have been tested both 

acutely implants to determine their recording reliability for high frequency components. In 

this project, I was responsible for data pre-processing and visualization for testing the 

signal quality and possible differences between large and small electrodes. 

In the following subsections, I focus on the results obtained in the analyses of two MuSA 

devices, from now on device1 and device2, acutely tested in the same rat. Each device was 

tested in three different positions over the barrel cortex.  

3.2.1.1  Time-frequency analysis 

The average spectrograms obtained for all the large channels of both devices are reported 

in Figure 19. The results of device1 spectrograms are shown in A-C for three recording 

sessions and different device positions over the rat barrel cortex. The results for device2 

are reported in D-F, also for three distinct positions.  

3.2.1.2 Interpolated maps from peak-to-peak amplitude 

The interpolated maps reflect the different spatial localization of the device above the 

barrel cortex (see Figure 20). The maps were computed as usual starting from the median 

peak-to-peak amplitudes for the different recordings, i.e., six different positions recorded 
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with two devices above the barrel cortex. The peak-to-peak amplitudes were calculated 

starting from the band-pass filtered signals in the range 200-1000 Hz. This approach was 

important to demonstrate that high-frequency activity recorded with micro-ECoG 

electrodes propagates and spreads across the cortex surface. Indeed, very close 

electrodes can record the SEP-related activity with different amplitudes, even during 

multi-whiskers stimulation within a small recording area. 

 

 

Figure 19. Average spectrograms obtained for the sixteen large electrodes in the MuSA devices, 

one for each recording; A-C for device1, and D-F for device2. The plots share the same color-scale 

reported with the color-bar. On the x-axis, the time is reported in seconds, while the red vertical 

line corresponds to the stimulation onset. The y-axis represents the frequency range (from 200 to 

1000 Hz). 
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3.2.1.3 Evoked-to-spontaneous ratio  

The evoked-to-spontaneous ratios for the six different recordings performed with the 

MuSA are reported in Figure 21. The ESR reflects a change in the array positions with 

respect to the source of the evoked activity during the different recordings, as well as the 

quality and capacity of the recording electrodes. The highest ESR values of almost every 

recording derive from the large electrodes, while the small contacts usually perform 

slightly worse than the corresponding large ones. The results of the one-way analysis of 

variance (ANOVA) were obtained by comparing the ESR values of each large electrode to 

the corresponding small one independently for each recording session (see Figure 22). 

This analysis provides further evidence that large electrodes produce higher quality 

recordings of high frequency components. This behavior might be due to the difference in 

the impedances of the two groups of electrodes, as described in a previous study [86]. 
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Figure 20. Bidimensional interpolated maps obtained for the recordings performed with the MuSA 

devices. The maps were computed starting from the median peak-to-peak amplitude for the six 

different recordings acutely performed with two devices, (A-C) device1 and (D-F) device2. The color-
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code indicates blue for the lowest values and red for the highest values. The plots share the same 

color scale, reported in the bottom with a color bar. 

 

 

Figure 21. Evoked-to-spontaneous ratio for the six different recordings performed with the MuSA 

devices. The ratio accurately reflects the change of the array positions with respect to the source of 

interest; the electrodes with highest ESR change for each position. The small electrodes, in light 

green, usually perform slightly worse than the corresponding large electrodes, shown in dark 

green. 



Results and Discussions  Contribution to MuSA validation  

49 
 

 

Figure 22. One-way ANOVA results comparing the ESR values for large and small electrodes. The 

bar plots show the difference between the estimated group means, normalized by the maximum 

value for each pair of electrodes (large minus the respective small). The group means are 

significantly different from each other if one asterisk (p<0.05) or two asterisks (p<0.01) are 

reported above. 

 

3.2.2 Discussion 

The main goal of this study was to validate the MuSA, a new highly conformable 

Polyimide-based device with platinum electrodes. This device was validated during several 

in vivo experiments performed by a biologist. The experiments consisted of peripheral 
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mechanical stimulation of the whiskers with simultaneous recording of barrel cortex 

activation in rats. My role was to develop the scripts in order to visualize the data and 

measure the quality of the micro-ECoG recordings. The analyses provided evidence that 

the MuSA devices can record high frequency multi-unit signals, and electrode capability is 

not dramatically affected by the size of the electrodes. These results confirm that high 

frequency components (above 200 Hz) of neuronal signals can be recorded directly from 

the cortex with a spatial resolution never reached before with cortical recordings. Indeed, 

the previously-attained spatial resolution reached until now is 1000 μm, and only 2000 μm 

for speech investigations [83, 96]. Such a minimally-invasive and ultra-conformable device 

could be helpful in both research and clinical applications, from understanding 

physiological network activity to BCI research [29, 42, 79, 80].  

3.2.3 Related Publications 

[86] M. Vomero, M.F.P. Cruz, E. Zucchini, A. Shabanian, E. Delfino, S. Carli, L. Fadiga, D. 

Ricci, T. Stieglitz, Achieving ultra-conformability with polyimide-based ECoG arrays,  2018 

40th Annual International Conference of the IEEE Engineering in Medicine and Biology 

Society (EMBC), IEEE, 2018, pp. 4464-4467.   
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3.3 Contribution to CaLEAF validation 

The CaLEAF electrodes validation was conducted in five experimental sessions with 

different devices. In the following subsections, only one experiment will be described, 

since all the obtained results were consistent with those reported below [87].  

The device was tested first by stimulating all the whiskers and then by stimulating only 

single whiskers to test whether all the electrode diameters were able to detect and 

discriminate the evoked responses from the background noise. 

3.3.1 Results 

3.3.1.1 Time-frequency analysis 

To determine whether the size of the electrodes was an issue in recordings of high-

frequency components, time-frequency analysis was conducted on the signals, which 

were band-pass filtered at 200-1000 Hz. Apart from one electrode with a diameter of 300 

μm, all the other electrodes were able to record the signals of interest during multi-

whiskers stimulations (see Figure 23A-C). However, the smaller electrodes showed higher 

background noise compared to the larger electrodes. This evidence was also confirmed by 

the spectrograms obtained for the single-whisker stimulations (Figure 24). Indeed, the 

smallest electrodes (5-8) showed the most powerful spectrograms but also the highest 

background noise. 

3.3.1.2 Evoked-to-spontaneous ratio  

The ESR results are reported in Figure 25 for both the multi -whiskers stimulation 

performed testing three position (indicated as P1-P2-P3) of the ECoG device over the 

barrel cortex (A-C), and the single-whisker stimulations, C2 (B), D4 (C) and B2 (D). The ratio 

values reflect both the change in the array positions with respect to the source of interest 

and the different types of stimulation, multi -whiskers (A-C) and single-whisker (D-F).  
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Figure 23. Mean spectrograms for the CaLEAF device obtained by averaging 100 trials for three 

different recording sites during multi-whiskers stimulations. Electrode 2 was not working properly 

so this position was left empty to avoid biasing the color scale. Electrodes sizes: 1-4 300 μm; 5-8 50 

μm; 9-12 200 μm; 13-16 100 μm.  
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Figure 24. Mean spectrograms for the CaLEAF device, obtained by averaging 100 trials of three 

different single-whisker stimulations, (A) C2 stimulation (B) D4 stimulation (C) B2 stimulation. Each 

single square represents one electrode (see label), while the red vertical line corresponds to the 

stimulation time. All the plots use the same color-scale. 
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Figure 25. Evoked-to-spontaneous ratio for the different recordings performed with the CaLEAF 

device. The ratio reflects both the change in the array positions with respect to the source of 

interest and the different types of stimulation, multi-whiskers (A-C) and single-whisker (D-F). The 

amplitude scale for the multi-whiskers stimulations (on the left column A-C) is different from the 

one set for single-whisker stimulation (D-F) in order to better understand the behavior of the 

electrodes. 

 

3.3.2 Discussion 

The main goal of this study was to validate another new, highly conformable polyimide-

based device with glassy carbon electrodes, the CaLEAF. Glassy carbon has high potential 

in neural applications since it is biocompatible and electrochemically inert, and is capable 
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of simultaneously serving as a stimulating and recording site [87]. The device was 

validated during several in vivo experiments performed by a biologist. The experiments 

consisted of peripheral mechanical stimulation of the whiskers while recording the activity 

elicited in the barrel cortex of rats. My role was to analyze the data, adapting the scripts 

already developed for the MuSA validation. The analyses conducted on this dataset 

demonstrated that all the electrodes could record the high frequency components of the 

SEPs, even though small electrodes showed higher background noise than large 

electrodes. Excluding a broken contact (2), electrodes with larger diameters (300 μm) 

showed the best performance, while background noise was evident in both spectrograms 

and ESRs of the smallest electrodes (see Figure 23). Therefore, the relevant difference 

between the channel performances seemed to be related to the different electrode 

diameters. Nevertheless, the ESR values of the smallest electrodes were not different 

from electrodes with 200 μm diameter (see electrodes 9-12 in C and F). However, when 

using the ESR to evaluate electrode performance, it is important to note that the values 

depend on electrode dimensions as well as the distance of the electrode from the signal 

source location. Since it is not possible to make a direct comparison between close 

electrodes of different sizes in this device, the performance of these electrodes cannot be 

statistically compared. Finally, when only single whiskers are stimulated, smaller SEP 

amplitudes and lower ESR values were reported for all the electrodes, which was expected 

given the reduced population of neurons involved in the task (Figure 25). 

3.3.3 Related Publications 

[87] M. Vomero, E. Zucchini, E. Delfino, C. Gueli, N. Mondragon, S. Carli, L. Fadiga, T. 

Stieglitz, Glassy Carbon Electrocorticography Electrodes on Ultra-Thin and Finger-Like 

Polyimide Substrate: Performance Evaluation Based on Different Electrode Diameters, 

Materials, 11 (2018) 2486. 
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3.4 Translational application in humans: predicting speech-

related motor preparation 

In this section, I report data recorded from the speech arrest area during a naming task. 

After recording the brain activity during speech production, several analyses and methods 

were applied offline to visualize and investigate the spatiotemporal relationships between 

signals recorded with sub-millimeter-spaced microelectrodes. I provide evidence that 

µECoG recordings contain the necessary information to predict when the subject is going 

to speak, using two different devices.  

3.4.1 Results 

3.4.1.1 Data visual inspection 

Segmentation and band-pass filtering 

The recorded signals (see Figure 26) were filtered using Butterworth band-pass filters of 

order 8 in the traditional beta (15 - 30 Hz), gamma (30 - 60 Hz) and high-gamma (70 - 150 

Hz) bands, applying the function filtfilt() to avoid phase distortion; 50 Hz and the 

harmonics up to 200 Hz were removed with notch filters. The timing of the speech 

production was used to segment the filtered data into trials. For visual inspection 

purposes, the trials were segmented from 500 ms before to 500 ms after the speech 

onset. The resulting band-pass filtered signals of one trial are reported for some selected 

channels in Figure 27B-D as well as the raw signals (A).  
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Figure 26.  Raw µECoG signals extracted from the recording performed with the Epi device. 

Channels on the y-axis extend from 1 (bottom) to 64 (top), and the time interval is 5 seconds long. 

All the electrodes were recording properly during the experiment. 

 

Figure 27. Raw and band-pass filtered signals aligned to the voice onset for one trial recorded with 

the Epi device. A) The raw signals extracted from an interval lasting approximately 1 second are 

reported for 12 selected channels (see y-label). For the same channels and the same time interval, 
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the band-pass filtered signals in 15-30, 30-60 and 70-150 Hz are reported (B-C-D, respectively). The 

vertical red line indicates the timing of the speech onset. The amplitude scales are independent for 

each plot to allow a better visualization. 

 

Correlation analysis 

The correlation analysis was conducted in two different steps to inspect possible patterns 

across the different frequency bands. The first informative result was derived from the 

correlation profile analysis (see Figure 28A). Here, the mean correlation coefficient 

obtained by averaging across trials and electrodes of same distance is shown for the 

inspected frequency bands. Consistent with previous literature [77], the three computed 

profiles show decreasing trends, with higher values for lower frequencies; interestingly, 

the high-gamma correlations show a consistent drop (50% reduction) for inter-electrode 

distances in the range from 0.6 mm to 2.4 mm, indicating that electrodes with a distance 

greater than 2.4 mm between each other are not highly correlated during the task. 

Additional evidence is reported in Figure 28D, where the spatial distribution of the 

correlation coefficients averaged across trials is represented according to the electrode 

position on the array. As illustrated in the figure, the high-gamma correlations between 

the most active channels (bottom-right portion of the array) are locally high, but they 

steeply decreased to 50% of their initial values within few electrodes. 
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Figure 28. A) Correlation profiles obtained considering signals from equidistant electrode pairs and 

averaging across trials. Colors represent different frequency bands. Mean correlation maps were 

obtained averaging single-trial correlations, computed for signals band-pass filtered in 15-30 Hz 

(B), 30-60 Hz (C) and 70-150 Hz (D). Each matrix of the plot represents the correlation coefficients 

computed for the electrode in the same position with all the others, averaged across trials.  

 

Time-frequency analysis 

For the bands of interest, the power was extracted every 10 ms within a 100 ms window 

for both the entire recording and the segmented data. Next, the mean spectrogram for 

each electrode was obtained by averaging across trials. The single-trial and mean 

spectrograms were then inspected in order to exclude any artefacts. The average 

spectrograms for beta and high gamma are reported in Figure 29 and Figure 30 for both 

MuSA and Epi devices, respectively. Both the high-gamma and the beta activation 
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spectrograms were were time-locked to the signal at the speech onset and segmenting 

the signals from 500 ms before to 500 ms after it. The spectrograms showed coherent 

activation between the MuSA and the Epi recordings. Furthermore, the time-frequency 

results confirm that µECoG recordings of neighbouring electrodes provide diverse 

information about the dynamics of neural activations during speech production: for the 

Epi recording, the power associated with the high-gamma range followed an apparent 

spatial activation pattern propagating from the bottom-right portion of the array, whereas 

the pattern associated with beta band spread from the top-left side of the matrix (see 

Figure 30). For the MuSA recording, the power extracted from the same bands shows 

different patterns but is only due to different orientations of the device on the cortex (see 

Figure 29). 
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Figure 29. Averaged spectrogram maps for large electrodes of the MuSA array. Spectrograms were 

averaged across trials for the 16 electrodes in the range of frequencies 15-30 Hz (A) and 70-150 Hz 

(B). The window of analysis starts 500 ms before the onset of the speech and ends 500 ms after. 

The vertical red line represents the speech onset. 
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Figure 30. Averaged spectrogram maps for the Epi array. Spectrograms were averaged across trials 

for the 64 electrodes in the range of frequencies 15-30 Hz (A) and 70-150 Hz (B). The window of 

analysis starts 500 ms before the onset of the speech and ends 500 ms after. The vertical red line 

represents the speech onset. 
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Mean power profile  

The mean power profile (MPP) was computed for high-gamma activity starting from the 

single-trial spectrograms to obtain a time-varying profile of the average activity in this 

frequency band. The results for the Epi and the MuSA devices are reported in Figure 31A-

B, respectively, showing the most active channels selected on the basis of the mean 

spectrograms results. 

Visual inspection of the single-trial MPPs allows us to identify the main characteristics of 

the preparation activity, which is fast, short and highly localized to few electrodes in a 

precise time window. The consistency of these features is demonstrated by the mean 

spectrograms. This prior knowledge was used to implement a simple but efficient method 

for predicting speech preparation from the neuronal signals. 
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Figure 31. Mean power profile for some selected channels (see labels) of the Epi and the MuSA 

arrays. The spectrograms averaged across the frequencies in the range of 70-150 Hz are reported 

for the recordings performed with the Epi (A) and the MuSA (B). Each square represents a channel 

MPP during three different single-trials, represented with different colors and line-styles, aligned to 

the speech onset. The window of analysis starts 500 ms before the onset of the speech and ends 

500 ms after. 
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3.4.1.2 Predicting speech preparation using SVM Classification 

Speech preparation was predicted with a binary classification approach based on a 

support vector machine with gaussian kernel and leave-one interval-out cross validation. 

Hyperparameters were chosen from the recordings performed with the Epi, and the best 

combination was used to test the system with the MuSA recording. After extracting 

temporal features (MPP), I used 29 of 30 segments to train the classifier, leaving a 

different segment out at every iteration of the process. The trained classifier was tested 

on all the 60 ms shifting windows over the left-out interval, and all the test sets were then 

concatenated. 

Dealing with unbalanced classes and context 

As explained in sections Feature extraction and Dealing with unbalanced classes, the main 

issue in classification is balancing the number of observations with the number of features 

used for the training. In this case, given the low amount of data and the unbalanced 

classes, the choice of the two parameters, window length (i.e., number of features) and 

proportionality factor (pf), was made taking into consideration the Performance of 

Classification Index. The classification was performed by combining several values of 

window length and pf. The tests were conducted only for the Epi recording, since 

electrodes in this device showed more task-related activation.  

The study of the different hyperparameters (window length and pf) allowed me to identify 

the best training conditions for the high-gamma features. Indeed, performance strictly 

depended on the proportionality factor (pf), as well as on the number of features (w); 

these consistently changed with the two hyperparameters (see  Figure 32). The best 

performance obtained was 85.71 (pf=5, window length=3).  
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Figure 32. Performance of Classification Index for different proportionality factors and window 

lengths tested for high-gamma MPP features. The performance values obtained for high-gamma 

by varying the window length (x-axis) and the maximum imbalance between the classes (color-

coded) are reported for n=1, taking into consideration only the best channel for each condition. 

 

Classifier performances 

It is well known from the literature that the brain activity recorded during cognitive tasks 

is characterized by an increase in the high-gamma band [3, 5, 16-18, 20, 97]. Evidence 

from this study demonstrates that speech production is also characterized by gamma and 

beta activation. To rule out the possibility that the other frequency bands might also allow 

prediction of speech preparation, the system was additionally tested with features 

extracted from beta and gamma bands, using the same hyperparameters used for high-

gamma features. The results are reported in Figure 33. For each frequency band, i.e. beta, 

gamma and high-gamma, the PCI is reported for different tested n [1, 4]. In every subplot, 
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each single channel is represented as a square of the matrix following the spatial 

distribution of the electrodes in the device. The best-channel PCI reached by classifiers for 

n=1 was 16.08 for beta and 76.03 for gamma, compared to 85.71 reached with high-

gamma features. These performance values are coherent with the diverse spatiotemporal 

patterns explored above with standard methods (spectrograms, correlations). This finding 

also demonstrates that the information extracted from adjacent electrodes may be 

profoundly variable in time and frequency at spatial resolutions below one millimeter.  

 

Figure 33. Prediction accuracy maps of the Epi array for MPP features. From the top, the 

performance obtained for high-gamma, gamma and beta are reported by varying n, the minimum 

number of samples that defines whether a trial was detected or not. The color scale represents the 

performance of classification index for each channel, represented as a square of the matrix. 

 

The main complication of this study was evaluating our classifier performance from 

assignment of an ambiguous class such as speech preparation. The lack of information 

about the real timing of preparation intervals implies inevitable errors during the labelling 

procedure [68]. Nonetheless, I computed the standard confusion matrix and other derived 
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measures typically used to report classifier performance. The perfect classifier is expected 

to have an overall accuracy of 100%, meaning that it is both precise and sensitive. The F-

score and Matthews Correlation Coefficient reach their best value at 1 (perfect classifier) 

and the worst at 0. For completeness, the classifier was trained also with randomized 

labels for the best combination of window and pf, and features were extracted from the 

high-gamma MPP. 

The results of the different metrics and features are reported in Table 2 for the Epi and the 

MuSA recordings. 

 

Table 2. Classification performance obtained for high-gamma features and optimal 

hyperparameters (window length and proportionality factor) with the Epi and the MuSA 

recordings. Only the values for the channel with the best PCI are reported. 

 
Epi 

(pf=5, window length=3)   

MuSA 

(pf=3, window length=5)   True Random True Random 

Overall Accuracy 81.3% 79.3% 80.4% 80.5% 

Matthews Correlation Coefficient 0.36 0.08 0.25 0.04 

F-score 0.46 0.06 0.33 0.01 

PCI 85.71 24.04 77.54 6.4 

 

 

To visualize the predicted profile obtained from predicting for the best configuration 

(channel 62, pf=3, window length=5, F-score=0.46), the segments predicted during each 

test were concatenated and plotted with the true profile and the voice signal (see Figure 

34). Interestingly, the classifier predicted also a segment during which the patient was 

reading a sentence from the screen, thus not part of the naming task (see the dark cyan 

segment).  
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Figure 34. Predicted and hypothetical speech preparation profiles aligned with the voice signal. 

From the top, predicted labels for channel 62 and ideal labelling, aligned with the voice signal 

reported in black, are reported for the test sets (grey for predicted preparation, red for the real 

preparation and white for speech or silence). The bottom figure shows a zoomed interval, where 

the cyan interval underlines the presence of a speech preparation segment predicted by the 

classifiers even if not part of the naming task. 
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3.4.2 Discussion  

In this case study, the recording micro-ECoG TDT-based setup was validated in a human 

subject undergoing awake neurosurgery. The experiment consisted of recording brain 

activity of the patient during performance of a naming task. The main goal was to 

demonstrate that the brain activity recorded with micro-ECoG devices, less invasive than 

standard ECoG grids, still carries relevant information and is diverse across electrodes for 

frequency and timing components. 

Evidence from this study indicates that the neural signals are characterized by different 

temporal patterns whose spatial distributions depend on the frequency range of interest. 

According to previous literature, two critical aspects should be considered when studying 

correlation as a metric to define the resolution of specific phenomena: 

1.   correlations between pairs of electrodes are inversely proportional to their 

distance [77, 91]; 

2.   correlations at low frequencies are greater than those at high frequencies, which 

are mainly recruited during the execution of tasks [97], such as speech production 

in Broca’s area [5]. 

Since fast oscillations propagate around the signal source across few millimeters [98], 

high-density µECoG arrays should provide a more detailed picture of the phenomenon, 

improving the accuracy of neurophysiological processes description. These results provide 

evidence that broadens our knowledge about speech production processes in a language-

related area at sub-millimeter scale. µECoG recordings of neighboring electrodes provide 

diverse information about the dynamic of neural activity during speech production. In 

addition, beta activity showed late activation aligned with the speech onset and was 

localized to several electrodes (see Figure 28B, Figure 29A, Figure 30A). In contrast, high-

gamma brainwaves are characterized by a fast increase in power, involving few electrodes 

and anticipating the speech onset (see Figure 28D, Figure 29B, Figure 30B). Starting from 

the information provided by the correlation and time-frequency analyses, it seems fitting 

to conclude that high-gamma activation is the most confined in both time and space, 

while the energy in the beta bands propagates in a higher number of electrodes. Thus, 

neural activity recorded by sub-millimeter-spaced electrodes seems to modulate not only 
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the frequency band but also with the pitch and the position of the electrodes over the 

cortex (see Figure 28). 

The second finding here may demonstrate that Broca’s area is a key node in cortical 

networks responsible for speech production, participating during preparation rather than 

during articulation [5]. The consistency of high-gamma activations was shown using a 

classification experiment. Briefly, the high-gamma features were used to predict whether 

the patient was preparing to speak by training a Gaussian SVM classifier. I used a Leave-

one trial-Out approach, since the number of trials was exiguous. The SVM classifier was 

trained with 29 trials and tested with the remaining one. This procedure was repeated by 

training a new classifier for each Leave-one trial-Out set, until all the trials were tested 

once.  

The lack of information about the real timing of preparation intervals implies inevitable 

errors during the labelling procedure. This label noise made it difficult to evaluate our 

classifier performance. The results obtained for both the devices recording confirmed that 

the standard confusion matrix and other derived measures typically used to report a 

classifier performance, such as the overall accuracy, might not be relevant. These results 

are reported in Table 2 for both the Epi and the MuSA recordings. The overall accuracy 

seems to indicate that the performance could not reach or exceed randomized results. 

However, the PCI score showed values far from the randomized performances, similarly to 

the F-score and Matthews Correlation Coefficient behaviors. This demonstrated that the 

PCI is a reliable measure to evaluate the accuracy of the speech prediction system. In 

addition, the results obtained for the MuSA recording provide helpful insights into the 

spatial electrodes arrangement, which may inform fabrication of new µECoG devices. 

Indeed, the best performance was lower than the one obtained for the Epi recording. This 

finding suggests that the MuSA device was covering a sub-optimal and too circumscribed 

area. Ideally, the dimension and pitch of the electrodes should be optimized in a new 

device, taking into consideration its real application. 

The resulting performance was also highly dependent on the imbalance between the 

preparation and non-preparation classes, as well as on the number of features. Reducing 

the number of samples for the majority class during the training changed the performance 



Results and Discussions  Translational application in humans: 
predicting speech-related motor preparation  

72 
 

values consistently, even though the best PCI performance was never reached in the 

completely balanced classes condition. This effect was a possible consequence of the 

limited number of samples available for the training. Moreover, the number of features 

also has a strong impact on the performance. Interestingly, the best classifier was able to 

detect two preparation segments that did not belong to the naming task (Figure 34). This 

was additional proof that the model was not over-fit to the naming preparation.  

The same routine was also repeated for the MPP features extracted from gamma and beta 

bands. Gamma activity showed spatiotemporal patterns similar to those elicited in the 

high-gamma range, explaining the lower but sufficient PCI performances during 

classification. In contrast, the beta activity is recruited mainly after the speech onset; 

consistent with its temporal dynamic, the performance confirmed that this band is not 

well suited for predicting speech preparation. 
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4.     CONCLUSIONS AND 

FUTURE PERSPECTIVES 

ECoG-based speech BCIs could effectively help patients with severe communication 

disorders [31]. A growing body of literature has demonstrated that speech synthesis from 

neuronal activity is possible through ECoG recordings, paving the way for long-term 

speech-BCI systems [55, 56]. ECoG approaches are useful in BCI applications, as well as in 

clinical procedures, because this technique is characterized by high spatiotemporal 

resolution and low susceptibility to noise—both prerequisites for speech neuroprosthetic 

devices. However, there are both technical and computational issues that need to be 

improved. 

One main issue is the stability and tolerability of chronic ECoG implants. The current 

approach is still relatively invasive, and the grid placement is strictly enforced by protocols 

for treating epilepsy and tumors. However, recent scientific developments may justify 

implantation in clinical populations that could benefit from such procedures, including BCI 

applications. Therefore, in order to increase the long-term performance, the flexibility and 

dimensions of ECoG grids should be drastically improved [31]. Furthermore, invasive BCI 

performance strictly depends on the inflammatory response and, thus, on dimension and 

stiffness of the device [29, 42, 79, 80]. Placing high-density micro-grids directly over 

language-related areas would increase the specificity of the recorded signals; additionally, 

adapting the device to conform to the brain would substantially reduce the risk of damage 
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to the cortex [77, 78]. In this study, I explored neural signals recorded in rats in to test a 

new generation of devices known as micro-ECoG (μECoG). I focused signals collected 

during in vivo experiments in rats to validate a μECoG-based setup. Here, two highly 

conformable polyimide-based μECoG devices were validated. The analyses provided 

evidence that μECoG devices can record high frequency multi-unit signals that are 

minimally affected by the small sizes of the electrodes and with a spatial resolution that 

has not been attained in previous cortical recordings. The potential to record high-

frequency components of neuronal signals (above 200 Hz) directly from the cortex with a 

small and ultra-conformable device could be helpful in developing different applications, 

from understanding physiological networks activity to BCI research [29, 42, 79, 80]. 

The second key contribution of my thesis extends beyond the technical implantation 

limits. Speech neuroprosthetics aim to improve the quality of life of people suffering from 

communications deficits due to a variety of neurological causes. In these patients, 

communication might be not possible due to severe paralysis, even if language cortices 

are intact [81]. In such conditions, the speech-BCI system must be able to decode speech 

directly from brain activity [50, 55, 56, 64, 65, 67, 68]; thus, in order to start the speech 

decoding accordingly to language preparation, a neuronal cue might be necessary. In this 

study, I investigated the possibility of recognizing speech preparation from μECoG signals. 

For the first time, μECoG grids were acutely implanted in a human patient to investigate 

speech production processes in a language-related region. Our results revealed that 

during speech production, high-gamma activity shows well-defined temporal dynamics, 

with a related power augmentation occurring a few hundred milliseconds before speech 

onset. The brain activity elicited in this band was used to successfully train a support-

vector machine (SVM) classifier for predicting speech preparation. These findings provide 

further indications that μECoG recordings provide access to valuable information at a very 

high spatiotemporal resolution, which could have important implications for designing 

speech-BCI devices. Indeed, the approach introduced here could be employed to trigger 

the speech decoding in the case of covert speech (see Figure 35). The results from analysis 

of human recordings reported here should be validated in more subjects, followed by 

being embedded in a speech decoder to test its effectiveness and reliability in a real-life 

scenario. 
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Figure 35. Overview of the ideal covert speech decoding system. The neural signals should be pre-

processed online, and the speech prediction system would be employed as trigger for the covert 

speech decoder and voice synthesizer. 
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APPENDIX 

A.1 Correlation analysis 

The correlation analysis is a statistical method that allows quantifying the strength of the 

relationship between two continuous variables and it is usually applied to find a linear 

dependence between measures. If we consider two measures, x and y, both with N 

samples, the result of the correlation analysis is given by the Pearson correlation 

coefficient, which is defined as: 

𝜌(𝑥, 𝑦) =
1

𝑁 − 1
∑

𝑥𝑘 − �̅�

𝜎𝑥
 ∙  

𝑦𝑘 − �̅�

𝜎𝑦

𝑁

𝑘=1

=  
𝑐𝑜𝑣(𝑥, 𝑦)

𝜎𝑥𝜎𝑦
 

By its definition, the Pearson correlation coefficient is the covariance of the two variables 

divided by the product of their standard deviations. 

The correlation analysis has been previously used in Neuroscience to study the spatial 

distribution and propagation of neuronal activity in order to find the best compromise 

between cortex coverage and redundancy of information [77].  The choice depends on the 

frequency band of interest  and, thus, also on the task. According to literature, two critical 

aspects need to be taken into account when studying functional correlation in neural 

networks related to language: 1) correlations between pairs of electrodes are inversely 

proportional to their distance [77] and 2) correlations at low frequencies are greater than 

at high frequencies, which are mainly recruited during the execution of tasks [97] like 
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speech production in Broca’s area [5]. High-frequency components, which are believed to 

represent spatially localized neural processes, propagate around the signal source across 

few millimeters. Thus, the correlation coefficient is a key factor in the choice of the 

optimal ECoG electrodes spacing. 

A.2 Fourier transform and time-frequency analysis in 

neuroscience 

One way to explore signals in the frequency domain is the Fourier Transform, a 

mathematical formula that relates a signal sampled in time or space to the same signal 

sampled in frequency. In mathematics, Fourier analysis is the study of general functions 

approximation using sums of simpler trigonometric functions, sines and cosines, with 

three fundamental properties: frequency, power, and phase [99]. The Fourier transform 

produces a continuous function of frequency, known as a frequency distribution, starting 

from a time-varying signal. In signal processing, the Fourier transform can reveal 

important characteristics of a signal, namely, its frequency components. The Matlab 

function spectrogram() returns the short-time Fourier transform of the input signal x, 

providing a representation of the spectrum of frequency as it varies with time. The 

function is called using the parameters window, noverlap, frequency_range, fs: 

[𝑠, 𝑝𝑠] = 𝑠𝑝𝑒𝑐𝑡𝑟𝑜𝑔𝑟𝑎𝑚(𝑥, 𝑤𝑖𝑛𝑑𝑜𝑤, 𝑛𝑜𝑣𝑒𝑟𝑙𝑎𝑝, 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦_𝑟𝑎𝑛𝑔𝑒, 𝑓𝑠) 

If window is an integer, then spectrogram divides x into segments of length window. Then, 

a Hamming window of that length is applied to each segment. noverlap is the number of 

overlapped samples, specified as a positive integer; if window is scalar, then noverlap 

must be smaller than window; frequency_range determines the frequency range of 

interest; fs is the sampling rate specified as the number of samples per unit time. The 

outputs are an estimate of the short-term, time-localized frequency content of x and an 

estimate of power spectral density (PSD) or power spectrum of each segment. Signal 

power as a function of frequency and time is a common metric used in signal processing 

for neuroscience [99]. In fact, EEG and ECoG data contain rhythmic activity [2, 98, 100] 

that can be analytically processed by means of amplitude, frequency and phase.  These 
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properties are extracted from neural recordings using time-frequency analysis. Time-

frequency analysis results have three dimensions and they can be represented as an 

image where time is on the x -axis and frequency is on the y –axis while the color of the 

plot (the z-axis) reflects some feature of the time-frequency data such as power. 

A.3 Pattern classification 

A.4 Dealing with unbalanced classes 

Most real-world classification problems are characterized by imbalanced classes, i.e. the 

two classes are not equally represented in the dataset. The data imbalance is recognized 

as one of the major issues in the field of data mining. Indeed, most machine learning 

approaches assume that data are equally distributed; otherwise, the majority classes 

will dominate over minority classes causing classifiers to be more biased towards 

majority classes. This causes poor or zero detection of minority classes.  Another 

consequence is the performance evaluation, because overall accuracy is not the best 

criterion to assess the classifier’s performance in imbalanced domains. The goal to 

recognize speech-related motor preparation is an example of real-world classification 

problem suffering from imbalanced dataset. Possible approaches to deal with 

imbalanced classes consist in re-sizing the data by undersampling and oversampling 

[93] in order to  change the prior conditions of the training set. Here, considering the 

small amount of data, overfitting was likely to occur and, therefore, I decided to adopt 

the undersampling approach, a popular technique for unbalanced datasets to reduce 

skew in class distributions.  

A.5 SVM classification 

The separation between speech preparation and not speech preparation segments was 

performed by support-vector machines (SVMs), which are widely described in literature 

and used when aiming to classify neural signals [53, 68, 70]. SVMs are a set of supervised 

learning methods typically used for classification problems when the observations cannot 

be linearly separable in their space.  

https://www.datascience.com/blog/introduction-to-machine-learning-algorithms
https://www.datascience.com/blog/introduction-to-machine-learning-algorithms
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The first step to create the SVM classifier is to choose a nonlinear function   (also 

known as kernel function) to map the observations x to a higher dimensional space in 

which the data points will be linearly separable by a hyperplane (see Figure 36A-B). The 

dimensionality of the mapped space can be arbitrarily high, but it is limited by 

computational resources. The resulting SVM classifier will provide a nonlinear decision 

boundary in the original space that maximizes the margin between the closest data points 

for the two classes known as support vectors (see Figure 36C). Other data points can be 

moved around freely (as long as they remain outside the margin region) without changing 

the decision boundary, and so the solution will be independent of such data points. The 

goal in training a Support Vector Machine is to find the separating hyperplane with the 

largest margin; we expect that the larger the margin is, the better the classifier 

generalization is.  

 

Figure 36. A) Example of nonlinear separation of two classes in a 2D space. B) Example of linear 

separation (hyperplane) of two classes in a higher dimensional space. C) The SVM training consists 

in finding the hyperplane with the maximum distance from the closest training data points, the 

support vectors. The support vectors are shown in solid dots.  
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A.6 Classifier performance   

A binary classifier can be evaluated by means of standard metrics. The standard measures 

directly derive from the confusion matrix, which is represented as a matrix that 

summarizes the prediction results of a classification problem. As already explained, the 

confusion matrix can be extracted comparing the reference labels to the output of the 

classifier, i.e. the predicted labels. It is possible to define the standard metrics in terms of 

true/false positive/negative. The true/false (T/F) refers to the correctness of the predicted 

labels while positive/negative (P/N) refers to the label assigned by the classifier (i.e. class 1 

and class 2). Using this terminology, it is possible to define the following parameters: 

 Sensitivity (True Positive Rate, TPR) = 
𝑇𝑃

𝑃
 

 Specificity (True Negative Rate, TNR) = 
𝑇𝑁

𝑁
 

 False Positive Rate (FPR) = 
𝐹𝑃

𝑁
 

 False Negative Rate (FNR) = 
𝐹𝑁

𝑃
 

 False Discovery Rate (FDR) = 
𝐹𝑃

𝐹𝑃+𝑇𝑁
 

 Precision (Positive Predictive Value, PPV) = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
   

 F-Score = 2 ∙
𝑃𝑃𝑉 ∙ 𝑇𝑃𝑅

𝑃𝑃𝑉+ 𝑇𝑃𝑅
 

 MCC= 
𝑇𝑃 ∙ 𝑇𝑁−𝐹𝑃 ∙ 𝐹𝑁 

√(𝑇𝑃+ 𝐹𝑃)∙(𝑇𝑃+ 𝐹𝑁)∙(𝑇𝑁+ 𝐹𝑃)∙(𝑇𝑁+ 𝐹𝑁)
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