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1 Introduction

We denote with the term exponential sum every sum S which can be written as

S = ∑
a≤n≤b

wn e2πixn (1.1)

where 1 ≤ a < b < +∞ and {wn}, {xn} are two sequences of complex and real numbers respec-

tively. From now on we will use the standard notation e(θ) = e2πiθ so that the sum above becomes

S = ∑a≤n≤b wne(xn). Studying exponential sums is a central point in Analytic Number Theory

since they can be encountered approaching a large variety of problems; the main question one

may want to answer is how large the modulus of S is in terms of the range of summation [a,b] and,

naturally, of the sequences {xn} and {wn}. An example of application comes from the study of the

Riemann zeta-function ζ (s); if we write s = σ + it, then

ζ (s) = ∑
n≤N

n−s +
N1−s

s−1
+O

(

N−σ
)

(1.2)

holds in a suitable region of the complex plane; it is immediate to see that an estimate for ζ (s)

reduces to the study of the sum

∑
n≤N

n−it = ∑
n≤N

e
(

− t

2π
logn

)

.

This is an example of a Weyl sum, a family of exponential sums which are obtained by taking wn ≡
1 and xn = f (n) in (1.1), with f (x) a real-valued function over [a,b] satisfying suitable hypotheses

of regularity. One of the first examples of application of exponential sums was given by Weyl (see

[45] and [46] for his original works) who established a famous criterion for the equidistribution

of sequences modulo 1; in the twenties he developed a general method to estimate exponential

sums which is extremely effective when f (n) = P(n) with P(x) a real polynomial of any degree.

In the Appendix we recall his classical theorem and we prove a slight modification of it, which is

actually really useful in our applications. Amongst the other fundamental contributions, we recall

the work of van der Corput (see [40] and [41]), and Vinogradov (see [43]). More recently Vaughan

[42] developed a new method which has important applications to the study of exponential sums

when the weights wn in (1.1) define an arithmetic function related to an L-function; the classical

example is xn = Λ(n), the von Mangoldt function, whose generating function is the logarithmic

derivative of ζ (s).
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2 Introduction

Let us consider the case wn = µ(n) with µ(n) the Möbius function; the study of this kind

of sums lies in the intersection between the study of exponential sums and another interesting

problem usually referred to as Möbius Randomness Law. In Chapter 2 we will describe this

phenomenon more precisely; here we content ourselves to say that we expect the sum

∑
n≤x

µ(n)ξ (n) (1.3)

to be relatively small (for a large class of sequences {ξ (n)}) because of the random changes of

sign of µ(n). If we take ξ (n) = e(P(n)) with P(t) a real polynomial we get the expression

∑
n≤x

µ(n)e(P(n)) (1.4)

which has been studied by Davenport (in the linear case) and Hua (when the degree of the poly-

nomial is greater than one). A theorem collecting their results can be found at the beginning of

Chapter 4. In our work we study a family of exponential sums which is apparently close to (1.4),

but which actually requires a sharper set of tools to be studied; what we do is to replace µ(n) with

µ f (n), the equivalent of the Möbius function for the L-function associated to a cuspidal eigenform

f . The definition and some relevant properties of this function can be found in Chapter 3. The

result we prove is the following.

Theorem. Let P(t) be a real polynomial of degree k ≥ 3; then,

S f (x;P) = ∑
n≤x

µ f (n)e(P(n))�k

x

log1/4 x
log logx.

We consider polynomials of degree at least 3 because, for smaller degrees, a much stronger

result can be produced; we recall the result for the linear and quadratic case in Theorem 4.4 and

Theorem 4.8. We note here that the estimates were essentially already known or easily deducible

from the works of Fouvry & Ganguly [11] and Hou & Lü [16], with the latter based on previous

important work of Pitt [34]. The basic idea in both the situations is to apply Diophantine approx-

imation to the leading coefficient of the polynomial and to approach the problem in two different

ways according to the size of the denominator, say q, of the approximation. When q is small we

use the analytic properties of the L-function generating µ f (n), while when q is large we apply the

Vaughan identity. In the latter case, while dealing with the so called Type II sums, it is necessary

to have a good estimate for the quantity

∑
n≤x

a f (n)e(P(n)) (1.5)

where a f (n) is the sequence of normalized Fourier coefficients of f and, as a multiplicative func-

tion, the inverse of µ f (n) with respect to the Dirichlet convolution. The main reason we can not

apply the same technique described above to polynomials of higher degree is that estimates for the
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sum in (1.5) are not known and it seems quite a difficult problem to prove them for higher degree

polynomials along the lines in the paper of Pitt. In our theorem we apply Diophantine approxima-

tion to all the coefficients of the polynomial and, again, we proceed differently according to the

size of the denominators; the main difference is that, when at least one of them is large, we can not

use the Vaughan identity, because the saving for the sum in (1.5) is not good enough to produce an

interesting result. Instead, we use a direct approach, namely our Theorem 3.7. This is an extension

of a result of Bourgain, Sarnak and Ziegler [3] which is a standard tool for estimating sums as in

(1.3) when ξ (n) is bounded. Their Theorem works even replacing µ(n) with any multiplicative

bounded function, but it can not be applied to µ f (n) which is not bounded. In our version, we both

weaken the hypotheses on the multiplicative function and we make the result quantitative.

Finally, we give another application of Theorem 3.7 proving an estimate for the sum

S′f (x,P) := ∑
n≤x

a f (n)e(P(n)).

We are able to prove the following result.

Theorem. Let P(t) be a real polynomial of degree k ≥ 3; then,

S′f (x,P)�k

x

log1/2 x
log logx.

For a description of the contents of each chapter we refer to the brief introductions at the

beginning of each of them.

Finally, we would like to note that a stronger version of the results proved in Theorem 3.7 and

hence in Theorem 4.11 and Theorem 4.14 can be found in the work [5] (in preparation) by the

author and the supervisors of this thesis.





2 The Sarnak Conjecture

In this chapter we collect some well-known results about the Möbius function; after recalling its

definition and some of the properties which give this function a central role in Analytic Number

Theory, we will focus on what is usually known as Möbius Randomness Law. In the second

section, we will focus on a conjecture formulated by Sarnak in 2010.

2.1 The Möbius Randomess Law

Definition 2.1. We define the Möbius function µ : N → {−1,0,1} as the multiplicative function

such that

µ(pe) =











−1 e = 1,

0 e ≥ 2

for every prime p. In particular, if n is a square-free positive integer which is the product of k

distinct primes, then µ(n) = (−1)k.

One of the main reasons for the importance of the Möbius function in Number Theory is its

connection with the Riemann zeta-function. We recall some basic properties of this function; for

a proof of the following results and a deeper analysis about its properties we refer to Davenport,

[8] and Titchmarsh, [39].

Theorem 2.2. Let ζ (s) be the Riemann zeta-function defined for ℜs > 1 as the Dirichlet series

ζ (s) = ∑
n≥1

1

ns
.

The function ζ (s) can be continued to a meromorphic function with a simple pole at s = 1 and

satisfies the functional equation

Λ(s) = Λ(1− s) (2.1)

where

Λ(s) = π−s/2Γ

( s

2

)

ζ (s) (2.2)

5



6 Sarnak Conjecture

and Γ(s) is the Gamma function.

In the region of absolute convergence ζ (s) con be written as the Euler product

ζ (s) = ∏
p

(

1− 1

ps

)−1

.

Finally, in the same half plane, ζ (s)−1 can be written as a Dirichlet series with coefficient µ(n),

i.e.
1

ζ (s)
= ∑

n≥1

µ(n)

ns
. (2.3)

A central problem in Analytic Number Theory is to determine the distribution of the zeros of

ζ (s); it is well-known that ζ (s) has no zeros for ℜs ≥ 1 and that the only zeros in the half plane

ℜs ≤ 0 coincide with the negative even integers (the trivial zeros). Moreover, it can be proved that

in the so called critical strip 0 < ℜs < 1 the function ζ (s) has infinitely many zeros (the non-trivial

zeros) which are symmetric with respect to the real axis and the complex line of real part 1/2. The

most important Conjecture in Analytic Number Theory about the position of the non-trivial zeros

of ζ (s) is the Riemann Hypothesis.

Conjecture 2.3 (RH). All the non-trivial zeros of the Riemann zeta-function are on the complex

line of real part 1/2.

There exist several conditions which are equivalent to the Riemann Hypothesis; we are partic-

ularly interested in one involving µ(n). Starting from the identity (2.3), by partial summation we

easily get for ℜs > 1
1

ζ (s)
= s

∫ +∞

1

M(t)

ts+1
d t (2.4)

where

M(t) = ∑
n≤t

µ(n)

is the Mertens function. It is easy to see that, if the estimate M(t) � tα with α ∈ (1/2,1) held,

then the integral on the right-hand side of (2.4) would define a holomorphic continuation of ζ (s)−1

to the half plane with real part greater than α . This would imply that ζ (s) has no zeros in that

region and, by symmetry, also in 0 < ℜs < 1−α . This leads to the conclusion that if we could

prove that the estimate

M(t)�ε t1/2+ε (2.5)

holds for every ε > 0, then this would imply the truth of the Riemann Hypothesis. Indeed, the two

conditions are equivalent (for example, see [39], § 14.25).

It is well-known that the Prime Number Theorem is equivalent to M(x) = o(x) as x →+∞; the

cancellation in the sum is essentially due to the changes of sign of the Möbius function. Indeed,

we can interpret condition (2.5) from a probabilistic point of view. Let us recall that a symmetric
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simple random walk on Z is a stochastic sequence {Sn} with S0 = 0 and SN = ∑n≤N Xn where

{Xn} are independent and identically distributed random variables taking values +1,−1 each with

probability 1/2. It can be proved that

lim
N→+∞

E(|SN |)
N1/2

=

(

2

π

)1/2

(2.6)

where E(X) is the expected value of the random variable X (for definitions and more general

results on stochastic sequences see, for example, Norris’ book [31]).

Now, let us consider a “walker” on Z who starts at 0 and behaves at the n-th step in this way:

- he moves a unit to the left if µ(n) =−1;

- he moves a unit to the right if µ(n) = 1;

- he does not move if µ(n) = 0.

Then, the Riemann Hypothesis in its equivalent form (2.5), compared to (2.6), suggests that M(x)

behaves similarly to a simple random walk on Z. In this sense, we may say that the changes of

sign of µ(n) behave randomly.

An interesting aspect related to this sort of randomness of µ is the Möbius Randomness Law

which asserts that for every reasonable bounded sequence ξ (n), the twisted sum S(x,ξ ) defined as

S(x,ξ ) := ∑
n≤x

µ(n)ξ (n) (2.7)

is small due to the random changes of sign of µ(n).

Definition 2.4. We say that the Möbius function is orthogonal to the bounded sequence {ξ (n)} if

S(x,ξ ) = o(x)

as x tends to infinity.

Before focusing on what “reasonable” may mean we remark that the importance of studying

this kind of sums is due to their connection with related sums over primes. Recalling the identity

Λ(n) =−∑
d|n

µ(d) logd ∀n ≥ 1

where Λ(n) is the von Mangoldt function, one can write

∑
n≤x

Λ(n)ξ (n) =− ∑
d≤x

µ(d) logd ∑
m≤x

m≡0 mod d

ξ (m) =− ∑
d≤x

µ(d)Ξd(x),

say. Now, if we assume that a reasonable sequence ξ (n) produces a reasonable sequnce Ξd(x),

then the Möbius Randomness Law would allow us to assume that the contribution for large d’s in
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the sum above is small, so that we can approximate well the sum truncating it at some height D

smaller than x. Dealing with smaller d’s could be useful in order to find an asymptotic behaviour

for the functions Ξd(x) and this could be used to find, at least heuristically, the behaviour of the

initial sum. For more details about the results we may expect from this heuristics see, for example,

Iwaniec & Kowalski [19], § 13.1.

Now, let us return to the Möbius Randomness Law; to understand which kind of sequences

may be “reasonable”, we consider two examples. First let us take ξ (n) ≡ 1; the sum S(x,ξ )

coincides with the Mertens function M(x), hence we can conclude that µ(n) is orthogonal to the

sequence identically equal to 1 (and, in general, to any constant sequence). On the other hand, if

we choose ξ (n) = µ(n), the function S(x,µ) counts the number of positive square-free integers

up to x and since this set has positive density ζ (2)−1 we have

S(x,µ)∼ 1

ζ (2)
x

as x → +∞; in particular, this means that the Möbius function is not orthogonal to itself. As a

conclusion, we expect that if ξ (n) is too similar to µ(n) there can not be much cancellation in

S(x,ξ ) so that, to have orthogonality, we may consider as “reasonable”, sequences which are not

“random” enough to approximate the Möbius function.

In the next section we will see how a definition of complexity for a sequence can be given in

the context of dynamical systems and how this definition is helpful to identify a large class of

sequences for which we expect to have orthogonality.

2.2 The Sarnak Conjecture

We follow the work and notations of Furstenberg (see [12], but also Glasner’s book [13]).

Definition 2.5. A flow F is an abstract dynamical system F = (X ,T ) where X is a compact metric

topological space and T is a continuous map from X to X. We say the a sequence {ξ (n)} is

observed or realized in F if there is a point x ∈ X and a continuous function f from X to C such

that

ξ (n) = f (T n(x)) ∀n ≥ 1.

Essentially, we are considering sequences which are the image through a continuous function

of the orbits in X generated by the trivial action of T . Since X is compact we immediately deduce

that any sequence observable in X is bounded; vice-versa, if ξ (n) is bounded, then it is contained

in a compact subset K of C and then it can be observed in the flow F = (X ,T ) where X = KN

with the product topology and T is the shift map defined by T ((x1,x2, . . .)) = (x2,x3, . . .). In

particular, we can observe the sequence ξ (n) by taking the point x = (ξ (1),ξ (2),ξ (3), . . .) ∈ X

and, as function f , the projection over the first coordinate, i.e. f ((x1,x2, . . .)) = x1.
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As anticipated in the previous section, we want to measure the complexity of a sequence by the

complexity of the simplest flow in which it can be observed. The basic measure of the complexity

of a flow F is its topological entropy h(F) which we define in the following lines.

Definition 2.6. Let F = (X ,T ) be a flow; for every ε > 0 and n ≥ 1 we say that a set E ⊂ X is a

(n,ε)-spanning set if

∀x ∈ X , ∃y ∈ E s.t. d(T i(x),T i(y))< ε, ∀i ∈ {0, . . . ,n−1}

where d(·, ·) is the distance defined on X. Let r(ε,n) be the minimal cardinality of a (n,ε)-

spanning set, which is finite by compactness. Then, for every ε > 0 we define

h(ε) = limsup
n→+∞

logr(ε,n)

n
.

Finally we define the topological entropy h(F) of F as

h(F) = sup
ε>0

h(ε).

This definition can be found in Bowen [4]; we refer to Adler, Konheim & McAndrew [1]

for a more general one based only on open coverings and hence valid even in non-metric spaces.

The two definitions are equivalent in metric spaces and we refer to both the works cited for some

basic properties. We just remark that the non-negative number h(F) is essentially, by definition, a

measure of the exponential growth rate of the number of orbits in the flow F . We are interested in

flows with low complexity.

Definition 2.7. We say that a flow F is deterministic if h(F) = 0. A sequence ξ (n) is said to be

deterministic if it can be observed in a deterministic flow.

In 2010, Sarnak [35] formulated a conjecture on the behaviour of the sum S(x,ξ ) defined in

(2.7) when ξ (n) is deterministic.

Conjecture 2.8 (Sarnak). Let F = (X ,T ) be a deterministic flow and ξ (n) any observable se-

quence in F; then

S(x,ξ ) = o(x)

as x →+∞, i.e. µ is orthogonal to the sequence ξ (n).

Sarnak’s Conjecture asserts, in particular, that any deterministic sequence is “reasonable” in

the context of the Möbius Randomness Law.

A first interesting question is if µ(n) is deterministic; if it were, the Conjecture would be obviously

false, but Sarnak himself proved in [35] that µ(n) is not deterministic by showing that the simplest

possible flow in which it can be observed has positive topological entropy.

We briefly recall some cases in which the Conjecture has been proved; we remark that the first

three example below are results proved far before the formulation of the Conjecture, but they have

a simple interpretation in the context of flows.



10 Sarnak Conjecture

i) When F is a single point (i.e. when X is), then every observable sequence is a constant

sequence and orthogonality is equivalent to the Prime Number Theorem, as already stated.

ii) More generally, if F is finite (i.e. if X is), then F is said to be periodic and orthogonality is

equivalent to the quantitative Dirichlet Theorem on primes in progressions.

iii) If F = (X ,Tα) where X =R/Z is the one dimensional torus, α ∈ X and Tα is the translation

x 7→ x+α ; the result was proven by Davenport [7], but it can be easily generalized to any

Kronecker flow, i.e. a flow F = (X ,Ta) where X is a compact abelian group, a ∈ X and

Ta(x) = ax for all x ∈ X .

iv) If F is a horocycle flow the truth of the Conjecture was proved by Bourgain, Sarnak and

Ziegler in [3]; in the next chapter we will analyse and generalise a powerful tool they devel-

oped to prove this result.

There are many other situations in which Sarnak’s conjecture has been proved; amongst the most

recent results we recall the works of Green & Tao [14], Bourgain [2], Liu & Sarnak [22], and

Müllner [29].

We conclude this chapter by introducing an even stronger Conjecture formulated by Chowla

[6] on the correlations of the Möbius function.

Conjecture 2.9. Let 0 ≤ a1 < a2 < · · ·< at be integers and ki ∈ {1,2} for i = 1, . . . , t not all even;

then

∑
n≤x

µ(n+a1)
k1 µ(n+a2)

k2 · · ·µ(n+at)
kt = o(x)

as x →+∞.

We remark that when t = 1 the Conjecture is proved since we are considering essentially the

Mertens function, but very little is known when t ≥ 2; recently, Matomäki, Radziwiłł and Tao [26]

proved an average version of the Conjecture in short intervals for t = 2 (see also the papers [25]

and [27] by the same authors for further progresses on this topic). A logarithmically averaged

version of the Conjecture has been successfully studied by Tao [37] for t = 2 and by Tao and

Teräväinen [38] for t odd.

A proof of the fact that Chowla’s Conjecture implies the Sarnak Conjecture can be found in El

Abdalaoui, Kułaga-Przymus, Lemańczyk & de la Rue [9]; we only note that the authors prove

the implication in a very general case, namely replacing the Möbius function with any arithmetic

function taking values in {−1,0,+1}.



3 Modular Forms

In this chapter we want to extend some ideas and problems we investigated in the previous chapter.

In the first section we recall some well-known result about holomorphic cuspidal forms and L-

functions attached to them; this will lead us to introduce a family of arithmetic functions which

are strictly related to the Möbius function. As we have done in Section 2.1 we introduce a class

of twisted sums involving these functions and we see how the definition of orthogonality transfers

in this context. The latter part of the chapter will be used to present a generalization of a result

by Bourgain, Sarnak and Ziegler (see Theorem 3.6) and to prove that it is suitable to be used for

studying the new sums introduced.

For an introduction and more general results about modular forms we refer to Iwaniec [18].

3.1 Basic Facts

Let f be normalized cuspidal form of weight d for the full modular group which is an eigenfunction

for every Hecke operator. From now on, we think f as fixed. Let {a f (n)n
(d−1)/2} be the sequence

of its Fourier coefficients. We define the L-function L(s, f ) associated to f for ℜs > 1 as

L(s, f ) = ∑
n≥1

a f (n)

ns
. (3.1)

Lemma 3.1. The series L(s, f ) is absolutely convergent for ℜs > 1 and it can be continued to an

entire function which satisfies the functional equation

Λ(s) = idΛ(1− s) (3.2)

where

Λ(s) = (2π)−sΓ

(

s+
d −1

2

)

L(s, f ). (3.3)

The coefficients a f are real-valued, multiplicative and for every prime p there exists a complex

number α f (p) with |α f (p)|= 1 such that

a f (p) = α f (p)+α f (p); (3.4)

moreover, they satisfy the recursive formula

a f (pl+1) = a f (p)a f (pl)−a f (pl−1) (3.5)

11



12 Modular Forms

for every prime p and for every l ≥ 1. As a consequence, the function L(s, f ) can be written, for

ℜs > 1, as the Euler product

L(s, f ) = ∏
p

(

1− α f (p)

ps

)−1(

1− α f (p)

ps

)−1

. (3.6)

Proof. See Iwaniec [18], in particular Chapters from 5 to 7.

In the half plane of absolute convergence we can express L(s, f )−1 as a Dirichlet series; we

define µ f (n) as the sequence generated by L(s, f )−1, i.e.

L(s, f )−1 = ∑
n≥1

µ f (n)

ns
. (3.7)

In the following Lemma we collect some results and estimates for the coefficients a f (n) and µ f (n).

Lemma 3.2. Let a f (n) and µ f (n) be as above and b(n) be either of the two functions; then

1. |b(n)| ≤ d(n) where d(n) is the divisor function;

2.

∑
n≤x

|b(n)| � f

x

logδ x
; (3.8)

where δ = 1/16;

3. there exists a positive constant c f depending on f such that

∑
n≤x

|a f (n)|2 = c f x+O(x3/5) (3.9)

and, as a consequence,

∑
n≤x

|µ f (n)|2 � f x. (3.10)

Proof. From the Euler product for L(s, f ) we get

L(s, f )−1 = ∏
p

(

1− α f (p)

ps

)(

1− α f (p)

ps

)

which leads to the following expression for µ f (n):

µ f (n) =























1 if n = 1;

(−1)ka f (p1 · · · pk) if n = p1 · · · pk (pk+1 · · · pr)
2

pi 6= p j;

0 elsewhere.

(3.11)

We remark that the function µ f (n) is supported on cube-free integers.

From (3.6) we can write a f as the Dirichlet convolution α ∗α where α is a completely mul-

tiplicative function such that α(p) = α f (p); recalling that |α f (p)| = 1, we immediately have
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|a f (n)| ≤ d(n). From (3.11) it follows that the same bound holds for µ f (n) too.

The bound (3.8) for a f (n) is proved by Elliott, Moreno and Shahidi in [10]; for µ f (n), using (3.11),

we have that

∑
n≤x

|µ f (n)|= ∑
(p1···pk)2≤x

∑
pk+1···pr≤x/(p1 p2···pk)2

|a f (pk+1 · · · pr)| ≤ ∑
d2≤x

∑
n≤x/d2

|a f (n)|

= ∑
d2≤x/4

∑
n≤x/d2

|a f (n)|+ ∑
x/4<d2≤x

∑
n≤x/d2

|a f (n)|

� ∑
d2≤x/4

∑
n≤x/d2

|a f (n)|+ x1/2

� ∑
d2≤x/4

x

d2
log−δ (x/d2)+ x1/2 = S(x)+ x1/2,

say. Now

S(x)�
∫ x1/2/2

1

x

t2
log−δ (x/t2)d t

and with the change of variable y = x1/2/t we have

S(x)� x1/2

∫ x1/2

2

d y

logδ y2
= x1/2

(

∫ x1/4

2
+
∫ x1/2

x1/4

)

(

d y

logδ y2

)

� x1/2

(

x1/4 +
x1/2

logδ x1/2

)

� x

logδ x
.

Collecting the results we get

∑
n≤x

|µ f (n)| �
x

logδ x
. (3.12)

Finally, the asymptotic in (3.9) is a result due to Rankin and Selberg (see [18], Chapter 13) and

with the same technique we used to obtain (3.12) we easily deduce (3.10).

3.2 Twisted sums of µ f (n)

It is easy to establish an analogy between the Möbius function µ and µ f ; summarizing, we may

say that the µ f plays for L(s, f ) the role which µ plays for the Riemann zeta-function. As we

have already remarked in the previous section, the function L(s, f ) shares several properties (and

open conjectures) with ζ (s); in particular, one can formulate an equivalent version of the Riemann

Hypothesis for the class of L-function L(s, f ).

Theorem 3.3. Let L(s, f ) be as in (3.1); then the following conditions are equivalent:

• all the zeros of L(s, f ) in the critical strip 0 < ℜs < 1 lie on the complex line ℜs = 1/2;

• for every ε > 0

M f (x) := ∑
n≤x

µ f (n)�ε x1/2+ε

as x →+∞.



14 Modular Forms

The equivalence comes from identities which are completely analogous to what we have seen

for M(x) and ζ (s) in Chapter 1 (we refer, again, to Iwaniec & Kowalski [19] for more details and

proofs of this facts).

Since we conjecture that the same estimate should hold for both the Mertens function M(x)

and its modular analogue M f (x), it is natural to ask if the properties of randomness expected for

µ(n) are still valid for µ f (n). In particular, we introduce a new version of the sums introduced in

(2.7).

Definition 3.4. Given a bounded sequence ξ (n) we define the sum S f (x,ξ ) for x ≥ 1 as

S f (x,ξ ) := ∑
n≤x

µ f (n)ξ (n). (3.13)

Aiming to extend the notion of orthogonality which we have defined for the Möbius function,

we note that the condition

S f (x,ξ ) = o(x)

is trivially satisfied by any bounded sequence ξ (n); this is due to the estimate (3.8) that we have

proved for µ f (n). To replace the condition above with a more reasonable one, we would like to

know the asymptotic behaviour of the sum

∑
n≤x

|µ f (n)|.

It is easy to prove that, unconditionally,

x

logx
� f ∑

n≤x

|µ f (n)| � f

x

log1/16 x
;

the upper bound is part of Lemma 3.2 and the lower bound comes from

∑
n≤x

|µ f (n)| ≥ ∑
p≤x

|µ f (p)|= ∑
p≤x

|a f (p)| � x

logx

(for the last estimate see Fouvry & Ganguly [11], Proposition 3.1). However, to find the correct

asymptotic, we need to assume a quantitative version of the Sato-Tate conjecture for cuspidal

eigenforms. We recall briefly that the Conjecture asserts that the sequence {θ f (p)}⊆ [0,π] defined

by the identity

a f (p) = 2cosθ f (p)

is uniformly distributed with respect to the Sato-Tate measure

2

π
sin2 θ dθ .

In [10] Elliot, Moreno and Shahidi find the asymptotic behaviour of the sum

∑
n≤x

|a f (n)|;
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in particular, assuming that as x → ∞,

∑
p≤x

θ f (p)≤α

1 =
2

π

∫ α

0
sin2 θ dθ · x

logx
+O

(

x

log2 x

)

(3.14)

uniformly in α ∈ [0,π], they prove that there is a positive constant c f such that

∑
n≤x

|a f (n)| ∼ c f

x

logδ x
(3.15)

where δ = 1−8/(3π)' 0.15.

We now want to prove that replacing |a f (n)| with |µ f (n)| the same asymptotic holds with

possibly a different constant c′f > 0. We begin recalling that µ f (p) =−a f (p) and µ f (p2) = 1 for

every prime p. The basic idea is to prove that the functions

F(s) = ∑
n≥1

|a f (n)|
ns

and

H(s) = ∑
n≥1

|µ f (n)|
ns

= ∏
p

(

1+
|a f (p)|

ps
+

1

p2s

)

differ by a factor which is holomorphic in the half plane ℜs > 1/2; to do this we study the ratio

(F/G)(s). We set β (n) = |a f (n)| and γ(n) = |µ f (n)|−1∗ , where −1∗ denotes the inverse with

respect to the Dirichlet convolution. The function (F/G)(s) can be expressed for ℜs > 1 as a

Dirichlet series with coefficients η(n) defined by

η(n) = (β ∗ γ)(n).

It is easy to see that the modulus of the function η(n) does not grow too rapidly; we already know

from Lemma 3.2 that β (n)≤ d(n) and the same estimate holds also for γ(n) since

H(s)−1 = ∏
p

(

1+
εpα f (p))

ps

)−1(

1+
εpα f (p))

ps

)−1

where εp = sign(a f (p)). From the definition of Dirichlet convolution we conclude that

|η(n)| ≤ ∑
h|n

|β (h)||γ(n/h)| ≤ ∑
h|n

d(h)d(n/h) = (d ∗d)(n) = d4(n)

with dl(n) the generalized divisor function which satisfies dl(n) � nε for every ε > 0 (see, for

example, Linnik [21], Chapter 1). Moreover, since γ(p) =−|µ f (p)|=−|a f (p)| we have that

η(p) = β (p)+ γ(p) = |a f (p)|− |a f (p)|= 0

for every prime p. Collecting these results we can write the ratio g(s) := (F/G)(s) as the Euler

product

g(s) = ∏
p

(

1+
η(p2)

p2s
+

η(p3)

p3s
+ · · ·

)
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which is convergent for ℜs> 1/2. Moreover, it’s easy to see that each p-factor in the Euler product

of g(s) does not vanish at s = 1, so that g(1) 6= 0. Then, the asymptotic for ∑n≤x |µ f (n)| follows

from (3.15) and from the trivial identity F(s) = g(s)H(s).

Even if the asymptotic has been obtained conditionally, it can be used to extend properly the

definition of orthogonality we have introduced for the Möbius function.

Definition 3.5. We say that the function µ f (n) is orthogonal to the bounded sequence {ξ (n)} if

S f (x,ξ ) = o

(

x

logδ x

)

as x →+∞,

where δ = 1−8/(3π).

In Chapter 4 we will show a family of sequences for which we can prove orthogonality; to

make an example here, we note that if we consider a constant or a periodic sequence, then or-

thogonality follows from the equivalent of the Prime Number Theorem in progressions valid for

modular cuspidal coefficients. For a precise statement see Lemma 4.3 in the next chapter.

In the next section we develop an extremely useful tool for studying orthogonality properties

of µ f (n).

3.3 A generalisation of a result of Bourgain, Sarnak & Ziegler

The Vinogradov’s bilinear method and its modern variants such as the Vaughan identity are stan-

dard tools which can be successfully used to estimate the sums ∑n≤x µ(n)F(n) in terms of Type

I and Type II sums (see, for example, Iwaniec & Kowalski [19]). In [3], Bourgain, Sarnak and

Ziegler prove the following result which can be considered another modern version of Vino-

gradov’s method.

Theorem 3.6. Let F : N→ C with |F | ≤ 1 and let ν be a multiplicative function with |ν | ≤ 1.

Let τ > 0 be a small parameter and assume that for all primes p1 6= p2 with p1, p2 ≤ exp(1/τ) we

have
∣

∣

∣

∣

∣

∑
m≤M

F(p1m)F(p2m)

∣

∣

∣

∣

∣

≤ τM (3.16)

for M large enough. Then, for x large enough,

∑
n≤x

ν(n)F(n)� xτ1/2 log
1

τ
. (3.17)

We remark that the control over the sums in (3.16) (which occur in the estimate of Type II

sums) is required to hold uniformly only for primes in a bounded range, depending on τ (and not

on x), as M tends to infinity. This is enough to prove that the sum in (3.17) is o(x), but it gives

us no rates. This powerful tool has been used to prove the orthogonality of the Möbius function
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in several situations, see for example the works of Bourgain, Sarnak & Ziegler, [3], Liu & Sarnak

[22] and Wang [44].

We can’t use this Theorem directly to deal with sums involving µ f (n) essentially for two reasons:

1. the functions µ f (n) are not bounded;

2. as pointed out at the end of the previous section, to get a non-trivial estimate for S f (x,F) we

need to go below x log−δ x.

We present here a new version of the theorem in which we both weaken the condition required for

the multiplicative function and produce a quantitative version of the result.

Theorem 3.7. Let F(n) and a(n) be two arithmetic functions with |F(n)| ≤ 1 and a(n) multiplica-

tive satisfying

(i) |a(p)| ≤ K for all primes p and some K > 0;

(ii)

∑
n≤x

|a(n)|2 � x;

(iii)

∑
n≤x

(n,P)=1

|a(n)|2 � φ(P)

P
x

with P = ∏
y<p≤z

p and 1 � y(x)< z(x)� exp(logx/ log logx).

Let T = T (x)≥ 1 be a positive parameter which tends to infinity when x →+∞ and which satisfies

T ≤ logx; (3.18)

assume that for all primes p1 6= p2, with p1, p2 ≤ exp(T log−1 T ) we have

∑
m≤x

F(p1m)F(p2m)� x

T
(3.19)

for x large enough. Then

∑
n≤x

a(n)F(n)� logT

T 1/2
x (3.20)

where the implied constant does not depend on T .

We make a remark on the range 1 � y(x) < z(x) � exp(logx/ log logx) in condition (iii); a

posteriori, this is the minimal condition we have to require to make the proof work with our choice

of the parameters A and B in (3.39).

Proof. Following the idea of the proof in [3], we want to decompose the set Ix := [1,x]∩Z as

Ix = N1 ∪N2 with N1 ∩N2 = /0 and such that:
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- integers in N1 have a good factorisation; in particular, they have unique prime factors in

suitable intervals;

- the cardinality of the set N2 is small (depending on T ).

Let A = A(T ),B = B(T ) be two integers to be decided later satisfying

A(T )→+∞ as T →+∞ and 1 � A < B � xδ (3.21)

for some small positive δ . We define the sequence

A j := (A+ j)2 for j = 0, . . . ,J (3.22)

where J = B−A; clearly we have A0 = A2 and AJ = B2. For every integer j such that 1 ≤ j ≤ J

let us consider the sets

Pj =
{

p prime : p ∈ (A j−1,A j]
}

and

Q j =

{

m ∈
[

1,
x

A j

]

: m has no prime factor in
⋃

1≤i≤ j

Pi

}

.

We remark that the sets Pj form a decomposition of the set of primes in the interval (A2,B2] and

the product sets PjQ j, where 1 ≤ j ≤ J are pairwise disjoint and contained in Ix.

We define

N1 :=
⋃

1≤ j≤J

PjQ j =
⋃

1≤ j≤J

{

pm | p ∈ Pj,m ∈ Q j

}

and we want to estimate the sum

S1 = ∑
n∈N1

a(n)F(n).

Since Pj ∩Q j = /0, the sets Pj ×Q j and PjQ j are in bijection; moreover, for p ∈ Pj and m ∈ Q j we

have (p,m) = 1; then using the multiplicativity of the function a(n), by a trivial computation we

get

S1 = ∑
n∈N1

a(n)F(n) = ∑
1≤ j≤J

∑
pm∈PjQ j

a(pm)F(pm)

= ∑
1≤ j≤J

∑
m∈Q j

a(m) ∑
p∈Pj

a(p)F(pm)

= ∑
1≤ j≤J

S1, j,

say. Now, we want to estimate S1, j for 1 ≤ j ≤ J. We begin applying the Cauchy inequality, i.e.

|S1, j| ≤
(

∑
m∈Q j

|a(m)|2
)1/2(

∑
m∈Q j

∣

∣

∣

∣

∣

∑
p∈Pj

a(p)F(pm)

∣

∣

∣

∣

∣

2)1/2

. (3.23)
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Observe that the set Q j can be written as

Q j =

{

m ∈
[

1,
x

A j

]

: (m,p j) = 1

}

where p j is the product of all primes in
⋃

1≤i≤ j Pi, i.e.

p j = ∏
A0<p≤A j

p prime

p.

Using standard sieve methods (see, for example, Halberstam & Richert, [15], Theorem 2.1) it can

be proved that, as x tends to infinity,

|{n ≤ x,(n, p) = 1,∀p ∈ P}| � x ∏
p∈P

(

1− 1

p

)

assuming that P ⊂ [1,xδ ′
] for some small δ ′ > 0 (we are not interested in the optimal choice, we

simply note that we may take δ ′ = 1/6). From (3.21) we have that A j � x2δ and x/A j � x1−2δ ,

hence assuming δ sufficiently small we conclude that

|Q j| �
φ(p j)

p j

x

A j

(3.24)

as x →+∞. Under much weaker hypotheses (see [15], Theorem 3.5) we also have

|Q j| �
φ(p j)

p j

x

A j

. (3.25)

Assuming A0 and AJ large enough we can use condition (iii) (again, we will see that the hypotheses

are satisfied by the choice of A and B) and (3.25) to get

∑
m∈Q j

|a(m)|2 � |Q j|

and so

|S1, j| � |Q j|1/2



 ∑
m≤x/A j

∣

∣

∣

∣

∣

∑
p∈Pj

a(p)F(pm)

∣

∣

∣

∣

∣

2




1/2

where we replaced the condition m ∈ Q j in (3.23) with m ≤ x/A j (which is trivially weaker) in the

second factor.

Computing the square of the norm, using condition (i) and rearranging the sum we finally have

|S1, j| � |Q j|1/2

(

∑
m≤x/A j

∑
p1,p2∈Pj

a(p1)F(p1m)a(p2)F(p2m)

)1/2

� |Q j|1/2

(

∑
p1,p2∈Pj

∣

∣

∣

∣

∣

∑
m≤x/A j

F(p1m)F(p2m)

∣

∣

∣

∣

∣

)1/2

.
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We can estimate the inner sum using the hypothesis (3.19), but we need to handle the diagonal

case separately; so, for p1 = p2

∑
p1∈Pj

∑
m≤x/A j

|F(p1m)|2 ≤ |Pj|
A j

x. (3.26)

For non-diagonal elements we have

∑
p1 6=p2∈Pj

∣

∣

∣

∣

∣

∑
m≤x/A j

F(p1m)F(p2m)

∣

∣

∣

∣

∣

≤ 1

T

|Pj|2
A j

x. (3.27)

We remark that, in order to apply the hypothesis, we need that the primes involved satisfy the

condition p1, p2 ≤ exp(T log−1 T ); it is easy to see that our choice of A and B in (3.39) is coherent

with this condition.

From (3.26) and (3.27) we have

|S1, j| � |Q j|1/2

((

|Pj|+
|Pj|2

T

)

x

A j

)1/2

and, summing over 1 ≤ j ≤ J,

|S1| � x1/2 ∑
1≤ j≤J

(

|PjQ j|1/2

A
1/2
j

+T−1/2 |Q j|1/2 |Pj|
A

1/2
j

)

. (3.28)

To complete the estimate of S1 we consider the sums:

SD = ∑
1≤ j≤J

|PjQ j|1/2

A
1/2
j

and SND = ∑
1≤ j≤J

|Q j|1/2 |Pj|
A

1/2
j

.

For the first one, applying the Cauchy inequality, we have

SD ≤
(

∑
1≤ j≤J

|PjQ j|
)1/2(

∑
1≤ j≤J

1

A j

)1/2

� x1/2

(

∑
A2≤n2≤B2

1

n2

)1/2

� x1/2

A1/2
(3.29)

where we used the fact that the sets PjQ j are pairwise disjoint and contained in Ix.

To deal with SND we need an estimate for the cardinality of Pj; an application of the Brun-

Titchmarsh inequality (see [15], Theorem 3.7) to the interval (u,u+w) with u = A j−1 and w =

A j −A j−1 = 2A+2 j−1 gives

|Pj| �
w

logw
�

A
1/2
j

logA j

. (3.30)

Then, using the estimates (3.25) and (3.30) we get

SND � ∑
1≤ j≤J

(

φ(p j)

p j

x

A j

)1/2
1

logA j

.
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Using Mertens’ formula and assuming A0 (and hence A j) sufficiently large we deduce that

φ(p j)

p j

= ∏
A0<p≤A j

p prime

(

1− 1

p

)

∼ logA0

logA j

and then

SND � x1/2 log1/2 A ∑
1≤ j≤J

1

A
1/2
j log3/2 A j

� x1/2 log1/2 A ∑
1≤ j≤J

1

A
1/2
j (log3/2 A j)

� x1/2 log1/2 A ∑
A<n≤B

1

n log3/2 n
� x1/2. (3.31)

Collecting the results in (3.29) and (3.31) and inserting them in (3.28) we obtain

|S1| �
(

A−1/2 +T−1/2
)

x. (3.32)

Now, we need to estimate S2, the sum over the set N2 defined as

N2 := Ix \N1 = Ix \
⋃

1≤ j≤J

PjQ j.

To do this we will find an estimate for the cardinality of the set N2 and then we will use condition

(ii) to conclude via the Cauchy inequality that

|S2|=
∣

∣

∣

∣

∣

∑
n∈N2

a(n)F(n)

∣

∣

∣

∣

∣

≤ |N2|1/2

(

∑
n≤x

|a(n)F(n)|2
)1/2

≤ |N2|1/2

(

∑
n≤x

|a(n)|2
)1/2

(3.33)

� |N2|1/2x1/2.

For 1 ≤ j ≤ J let us consider the sets

H j =

{

n ∈ Ix : n has a single divisor in Pj and no divisors in
⋃

1≤i< j

Pi

}

.

The product set PjQ j is contained in H j and we have the trivial inclusion

(S j \PjQ j)⊂ PjR j

where

R j =

{

m ∈
[

x

A j

,
x

A j−1

]

: (m,p j) = 1

}

.

The cardinality of the set R j satisfies

|R j| �
φ(pj)

pj

x

A
3/2
j

.
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Summing over j and using (3.30), we get

∑
1≤ j≤J

∣

∣H j \PjQ j

∣

∣≤ ∑
1≤ j≤J

φ(pj)

pj

|Pj|
A

3/2
j

x

� x logA ∑
1≤ j≤J

1

A j log2 A j

� x

A logA
. (3.34)

The sets H j are disjoint and included in the set H defined as

H = {n ∈ Ix : n has a prime factor in (A0,AJ)} ;

moreover

H \
⋃

1≤ j≤J

H j ⊂
⋃

1≤ j≤J

{

n ∈ Ix : n has at least two prime divisors in Pj

}

.

Then
∣

∣

∣

∣

∣

H \
⋃

1≤ j≤J

H j

∣

∣

∣

∣

∣

� ∑
1≤ j≤J

∑
p1,p2∈Pj

x

p1 p2

≤ x ∑
1≤ j≤J

( |Pj|
A j

)2

� x ∑
1≤ j≤J

1

A j log2 A j

� x

A log2 A
. (3.35)

Finally, observe that

|Ix \H| � x ∏
A0<p≤AJ

p prime

(

1− 1

p

)

(again from [15], Theorem 3.5); we can suppose A0 and AJ to be large enough to use the Mertens

formula to estimate the product on the right side above

∏
A0<p≤AJ

p prime

(

1− 1

p

)

∼ logA0

logAJ

=
logA

logB

and conclude that

|Ix \H| � logA

logB
x. (3.36)

Collecting the results in (3.34), (3.35) and (3.36) we can say that

|N2| ≤ ∑
1≤ j≤J

∣

∣H j \PjQ j

∣

∣+

∣

∣

∣

∣

∣

H \
⋃

1≤ j≤J

H j

∣

∣

∣

∣

∣

+ |Ix \H|

�
(

1

A logA
+

logA

logB

)

x.

From (3.33) we get

|S2| �
(

1

A logA
+

logA

logB

)1/2

x. (3.37)

Collecting the results in (3.32) and (3.37) we conclude

∑
n≤x

a(n)F(n) = S1 +S2 �
(

1

A1/2
+

1

T 1/2
+

(

logA

logB

)1/2
)

x. (3.38)
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Now we have to choose the parameters A and B; we take

A = T and B = AT/ log2 T . (3.39)

Making this choice in (3.38) the theorem follows.

We remark that the condition (3.18) on the parameter T sets a lower bound for the cancellation

we can obtain applying this theorem; essentially, we can not go below the square root of logx.

3.4 Modular coefficients satisfy the hypotheses of Theorem 3.7

In this section we prove that the coefficients a f (n) (and then µ f (n)) satisfy the hypotheses of

Theorem 3.7.

Conditions (i) and (ii) follow immediately from Lemma 3.2. To show that condition (iii) is

satisfied, we need to prove that

∑
n≤x

(n,P)=1

|a f (n)|2 �
φ(P)

P
x (3.40)

for every integer P that can be written as

P = ∏
y<p≤z

p (3.41)

with 1 � y(x)< z(x)� exp(logx/ log logx). Indeed, it is not necessary to assume this bound for

z(x); our proof is still valid under the hypothesis 1 � y(x)< z(x)≤ x.

The main tool we will use is a Theorem proven by Shiu in [36] and generalized by Nair in [30].

Their result can be used to obtain good estimates for sums of the form ∑n≤x F(an), where the

function F and the sequence an satisfy suitable conditions. Since we need to use it in a very

particular case, it could be useful to recall briefly the properties required for the function F and

consider a simpler version of the result. Where possible, we will try to use the same notations as

in [30].

We begin recalling the definition of the class M of arithmetic functions F satisfying the fol-

lowing axioms:

• F is multiplicative, real-valued and non-negative;

• there is a constant A0 > 0 such that, for every prime p,

F(pl)≤ Al
0 ∀l ∈ N; (3.42)

• for every ε > 0 there is a constant A1 = A1(ε)> 0 such that

F(n)≤ A1nε ∀n ∈ N. (3.43)
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An example of a function belonging to M is the divisor function d(n).

Corollary 3.8. Let F ∈ M and x be sufficiently large; then

∑
n≤x

F(n)� x ∏
p≤x

(

1− 1

p

)

exp

(

∑
p≤x

F(p)

p

)

(3.44)

and the implied constant depends on F only through the constants A0 and A1 defined in (3.42) and

(3.43) respectively.

Proof. This can be easily deduced from the main Theorem in [30] by taking P(t) = t, y = x. We

remark that the function ρ(m), defined as the number of solution modulo m of the congruence

P(n)≡ 0 mod m, is identically equal to 1 with our choice of the polynomial P.

Now, we define the function F as

F(n) =











|a f (n)|2 (n,P) = 1

0 (n,P)> 1.

We remark that, since P depends on x, also F does; it follows immediately from the definition that

∑
n≤x

(n,P)=1

|a f (n)|2 = ∑
n≤x

F(n).

First, we will show that F ∈ M, then we will use Corollary 3.8 to prove that (3.40) holds. Ob-

viously, F is real valued and non-negative; to show that it is also multiplicative let us consider

n,m ∈ N with (n,m) = 1. If both n and m are coprime with P, then also their product is coprime

with P and using the multiplicativity of a f we have

F(nm) = |a f (nm)|2 = |a f (n)|2|a f (m)|2 = F(n)F(m).

On the other hand, if at least one between n and m is not coprime with P, then both F(nm)

and F(n)F(m) are equal to 0 and F(nm) = F(n)F(m) trivially. Thus, we have proved that F is

multiplicative (for every possible choice of P). Now, we deal with the inequalities in (3.42) and

(3.43). The first one is a consequence of the recursive formula (3.5), in particular it follows from

|a f (p)| ≤ 2 that |a f (pl)| ≤ 2l for every l ∈ N. Then, for the function F we can conclude that

F(pl)≤ |a f (pl)|2 ≤ 4l

for every l ∈ N. For the second inequality, we recall that |a f (n)| ≤ d(n); then,

F(n)≤ |a f (n)|2 ≤ d(n)2 �ε nε (3.45)

for every ε > 0. Thus, we have proved that the function F (for every possible P) belongs to M;

moreover we can take A0 = 4 and the constant A1(ε), which is implicit in (3.45), can be chosen
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independently from P; this is crucial, since it means that the implicit constant in (3.44) does not

depend on P and hence on x. Applying the Corollary to F we obtain

∑
n≤x

F(n)� x ∏
p≤x

(

1− 1

p

)

exp

(

∑
p≤x

F(p)

p

)

= x ∏
p≤x

(

1− 1

p

)

exp

(

∑
p-P

|a f (p)|2
p

)

. (3.46)

We need to estimate the exponential factor; observing that for t ∈ [0,2] one can use exp(t) =

1+ t +O(t2), we write

exp

(

∑
p-P

|a f (p)|2
p

)

= ∏
p-P

exp

(

|a f (p)|2
p

)

= ∏
p-P

(

1+
|a f (p)|2

p
+O

( |a f (p)|4
p2

)

)

.

Since |a f (p)|4 is bounded, we conclude that

exp

(

∑
p-P

|a f (p)|2
p

)

� ∏
p-P

(

1+
|a f (p)|2

p

)

= ∏
p≤x

(

1+
|a f (p)|2

p

)

∏
p|P

(

1+
|a f (p)|2

p

)−1

� ∏
p≤x

(

1+
|a f (p)|2

p

)

∏
p|P

(

1− |a f (p)|2
p

)

(3.47)

where we used that (1+ t)−1 = 1− t +O(t2) for |t| ≤ 1/2. We remark that, by definition of P in

(3.41), we can assume its least prime factor to be arbitrarily large, as x →+∞.

The next step is to prove that

∏
p≤t

(

1± |a f (p)|2
p

)

� ∏
p≤t

(

1± 1

p

)

(3.48)

as t → +∞; we will do the computation only in the case with the minus sign, since the case with

plus sign behaves in the same way. We begin computing the logarithm of the ratio of the two

products in (3.48), i.e.

log

[

∏
p≤t

(

1− |a f (p)|2
p

)(

1− 1

p

)−1]

= ∑
p≤x

[

log

(

1− |a f (p)|2
p

)

− log

(

1− 1

p

)]

= ∑
p≤t

1−|a f (p)|2
p

+O(1) .

By partial summation, the sum over the primes can be written as

∑
p≤t

1−|a f (p)|2
p

=
R(t)

t
+
∫ t

2

R(w)

w2
d w (3.49)

where R(t) = π(t)−∑p≤t |a f (p)|2. Using the Prime Number Theorem and the equivalent version

for the Rankin-Selberg L-function (see, for example [23], Corollary 1.2 and Lemma 5.1) we have

that there exist two positive constants c1,c2 such that

R(w) = li(w)+O
(

we−c1

√
logw
)

−
[

li(w)+O
(

we−c2

√
logw
)]

= O
(

we−c
√

logw
)
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with c = min(c1,c2) and as w →+∞. Inserting this estimate in (3.49) we find that

∑
p≤t

1−|a f (p)|2
p

� e−c
√

log t +
∫ t

2

e−c
√

logw

w
d w � 1.

In conclusion, we showed that

log

[

∏
p≤t

(

1− |a f (p)|2
p

)(

1− 1

p

)−1]

� 1

and hence the claim in (3.48) is proved. As an immediate consequence, we have that

∏
p|P

(

1− |a f (p)|2
p

)

= ∏
y<p≤z

(

1− |a f (p)|2
p

)

= ∏
p≤z

(

1− |a f (p)|2
p

)

∏
p≤y

(

1− |a f (p)|2
p

)−1

� ∏
p≤z

(

1− 1

p

)

∏
p≤y

(

1+
1

p

)

� ∏
y<p≤z

(

1− 1

p

)

= ∏
p|P

(

1− 1

p

)

=
φ(P)

P
. (3.50)

Inserting the estimate (3.47) in (3.46) and using (3.48) and (3.50) we can finally conclude that

∑
n≤x

F(n)� x ∏
p≤x

(

1− 1

p

)

∏
p≤x

(

1+
|a f (p)|2

p

)

∏
p|P

(

1− |a f (p)|2
p

)

� x ∏
p≤x

(

1− 1

p

)

∏
p≤x

(

1+
1

p

)

φ(P)

P

� φ(P)

P
x.

By applying the same technique we used in Lemma 3.2 to deduce (3.12) we can easily say that the

same estimate holds replacing a f (n) with µ f (n). Hence, we have proved that both the coefficients

a f (n) and µ f (n) satisfy condition (iii) of Theorem 3.7.



4 Polynomial Orthogonality

In this chapter we consider a particular case of the sums defined in Section 3.2 as we take ξ (n) =

e(P(n)) with P(t) ∈ R[t] a real polynomial of degree k ≥ 1; we will use the notation

S f (x,P) = ∑
n≤x

µ f (n)e(P(n)). (4.1)

In Chapter 2 we recalled that the Möbius function is orthogonal to the sequences e(αn) with α

any real number, that is, to e(P(n)) with P a polynomial of degree 1. A much more general result

has been proved by Hua [17] who extended the orthogonality to sequences with polynomials of

any degree; collecting the result in Davenport [7] and Hua we have the following Theorem.

Theorem 4.1. Let ν be a positive integer, let 0 ≤ l < ν and let P(t) be a real polynomial of degree

k > 0; then, for every A > 0,

∑
n≤x

n≡l mod ν

µ(n)e(P(n))�k,A
x

logA x
(4.2)

as x →+∞.

The results we are able to prove for S f (x,P) heavily depend on the degree k of P. If k ≤ 2,

orthogonality in a form similar to (4.2) can be proved; this is done in the first section. In the second

and in the third one we deal with polynomials of degree greater than two; we are still able to prove

orthogonality, but the techniques used provide us a weaker estimate. We first reduce to consider

monomials and then we extend the result to any polynomial of degree k ≥ 3.

4.1 Polynomials of degree 1 and 2

We start from polynomial of degree 1, i.e. P(x) = αx with α ∈ R; we can assume the constant

term to be equal to zero since the modulus of the sum S f (x,P) does not depend on it. Then (4.1)

becomes

S f (x,P) = S f (x,α) = ∑
n≤x

µ f (n)e(nα) (4.3)

and since e(x) is a 1-periodic function we consider α ∈ T. We will need the following lemmas.

27
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Lemma 4.2. Let α ∈ R and a,q ∈ Z such that (a,q) = 1 and |α − (a/q)| ≤ 1/q2. Then

S f (x,α)� f

(

xq−1/2 + x1/2q1/2 + x5/6
)

logr x (4.4)

for some r > 0.

This result was proven by Perelli in [32].

Lemma 4.3. Let χ be any Dirichlet character of conductor q. Then there is an absolute constant

c > 0 such that

∑
n≤x

µ f (n)χ(n)� f q1/2 xexp
(

−c
√

logx
)

. (4.5)

A proof of this can be found as a partial result of Theorem 4.1 in Fouvry & Ganguly [11]. We

remark that in this paper the authors study the sum

∑
n≤x

µ(n)a f (n)e(αn) (4.6)

which is really close to S f (x,α), since the multiplicative functions µ f (n) and µ(n)a f (n) coincide

over the primes. The bound they find for the sum in (4.6) is the same we have for S f (x,α) in (4.7)

and we expect that one can obtain one estimate from the other with no much effort; however, we

prefer to give an independent proof of Theorem 4.4 using the same technique as in [11]. The main

purpose is to show in this simpler environment the ideas we will use also in Theorems 4.8, 4.10

and 4.11.

Theorem 4.4. There is a constant c > 0 such that for all α ∈ T

S f (x,α)� f xexp
(

−c
√

logx
)

(4.7)

with the implied constant depending only on the cuspidal form f . In particular, the estimate is

uniform in α .

Proof. Let Q = Q(x)> 1 be a parameter to be decided later; given α ∈ T, by Dirichlet’s approxi-

mation theorem, there is always a rational number a/q with (a,q) = 1 satisfying the conditions

1 ≤ q ≤ Q and

∣

∣

∣

∣

α − a

q

∣

∣

∣

∣

≤ 1

qQ
. (4.8)

We remark that, since Q is chosen as a function of x, also a and q will depend on x. We need

two different arguments according to the size of q; for q small we use Lemma 4.3, for q large

we use Lemma 4.2. We deal first the case when q is small, namely when q ≤ exp(c
√

logx) for

some positive constant c which will be specified later. The basic idea is to approximate S f (x,α)

with S f (x,a/q), to split the sum in the residue classes modulo q and then to apply Lemma 4.3. By

partial summation, we have

S f (x,α) = ∑
n≤x

µ f (n)e(n(α −a/q))e(na/q)
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� |S f (x,a/q)|+
∫ x

1

∣

∣

∣

∣

(

α − a

q

)

S f (t,a/q)

∣

∣

∣

∣

d t +1. (4.9)

To estimate (4.9) it is sufficient to study the sum S f (x,a/q); using the periodicity of the exponential

function we can write

S f (x,a/q) = ∑
b mod q

e

(

ab

q

)

∑
n≤x

n≡b mod q

µ f (n). (4.10)

The next step in to express the condition n ≡ b mod q using the orthogonality of Dirichlet char-

acters, but to do this we need to ensure the class and the modulus to be coprime. To do this we

write

d = (b,q), b1 = b/d and q1 = q/d

so that

∑
n≤x

n≡b mod q

µ f (n) = ∑
n≤x/d

n≡b1 mod q1

µ f (dn). (4.11)

Since the function µ f is supported on the cube-free integers we can assume that d is cube-free,

otherwise we would have µ f (dn) = 0 for every n. So we can write

d =
s

∏
i=1

pi

t

∏
j=1

q2
j = PQ2, (4.12)

say, where the primes pi,q j are all distinct. We want to use the multiplicativity of function µ f ,

but it is possible that n and d in (4.11) are not coprime; let δ be their greater common divisor.

We observe that if δ divides Q then dn in not cube-free and µ f (dn) = 0; so we can assume that

δ divides P and not Q. We rearrange the sum in (4.11) collecting the integers n ≤ x/d such that

(n,d) = δ and the summing over δ dividing P. Writing n = δm we have

∑
n≤x

n≡b1 mod q1

µ f (dn) = ∑
δ |P

∑
m≤x/dδ

δm≡b1 mod q1

(m,P)=1

µ f (dδm).

Let us consider now the congruence δm ≡ b1 mod q1. There are essentially two possibilities: if δ

and q1 are coprime we can rewrite it as m ≡ bδ mod q1 where bδ = b1δ−1 mod q1; otherwise, if δ

and q1 are not coprime, the congruence has no solution, since b1 and q1 are coprime by definition.

So we can write

∑
δ |P

∑
m≤x/dδ

δm≡b1 mod q1

(m,P)=1

µ f (dδm) = ∑
δ |P

∗
∑

m≤x/dδ
m≡bδ mod q1

(m,d)=1

µ f (dδm) (4.13)

where ∑
∗ means that the sum in taken over δ such that (δ ,q1) = 1. Finally, we replaced the

condition (n,P)= 1 with (n,d)= 1 because, as already remarked, (m,Q)> 1 implies µ f (dδn)= 0.

Using the multiplicativity of µ f (n) we find from (4.13) that

∑
δ |P

∗
∑

n≤x/dδ
n≡bδ mod q1

(n,d)=1

µ f (dδn) = ∑
δ |P

∗
µ f (dδ ) ∑

n≤x/dδ
n≡bδ mod q1

µ f (n)χd(n)
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where χd is the principal character modulo d. Using the orthogonality of Dirichlet’s characters we

can write the sum above as

∑
δ |P

∗ µ f (dδ )

φ(q1)
∑

χ mod q1

χ(bδ ) ∑
n≤x/dδ

µ f (n)(χd χ)(n) (4.14)

where χd χ is a character of conductor ≤ q. We can now apply Lemma 4.3 to the inner sum in

(4.14); we find that

∑
n≤x

n≡b mod q

µ f (n)� f ∑
δ |P

∗ |µ f (dδ )|
φ(q1)

∑
χ mod q1

q1/2 x

dδ
exp
(

−c
√

log(x/dδ )
)

� f q1/2 x exp

(

−c

√

log(x/q2)

)

∑
δ |P

∗ |µ f (dδ )|
dδ

(4.15)

where we used the trivial estimate dδ ≤ q2. Since µ f (dδ )� (dδ )1/2 we trivially have that

∑
δ |P

∗ |µ f (dδ )|
dδ

� d−1/2 ∑
δ≤P

δ−1/2 �
(

P

d

)1/2

� 1

and inserting estimate (4.15) in (4.10) we have

S f (x,a/q)� f q3/2 xexp

(

−c

√

log(x/q2)

)

. (4.16)

Finally, from (4.9), we deduce

S f (x,α)� f q1/2 xexp

(

−c

√

log(x/q2)

)(

q+
x

Q

)

. (4.17)

Now, we set Q = xexp
(

−c/3
√

logx
)

where c is the same constant appearing in (4.17) and we

assume that q ≤ x/Q = exp
(

c/3
√

logx
)

; it follows immediately from (4.17) that

S f (x,α)� f xexp
( c

2

√

logx
)

exp

(

−c

√

logx− 2c

3

√

logx

)

� f xexp
(

−c′
√

logx
)

(4.18)

for some suitable c′ > 0. Then, we have proved that the sum S f (x,α) satisfies the estimate (4.18)

when q is small. When q is large, i.e. when it satisfies exp
(

c/3
√

logx
)

< q ≤ Q, we can apply

Lemma 4.2. In particular, the range in which q lies allows us to estimate both xq−1/2 and x1/2q1/2

with xexp(−c/6
√

logx); we conclude that there exist a positive constant c′′ such that

S f (x,α)� f xexp
(

−c′′
√

logx
)

. (4.19)

Collecting the results in (4.18) and (4.19) the theorem is proved.

Corollary 4.5. Let q be a positive integer and 0 ≤ a < q; then

∑
n≤x

n≡b mod q

µ f (n)� f xexp(−c
√

logx)

with the implied constant depending only on f and c the same positive constant appearing in

Theorem 4.4.



4.1. Polynomials of degree 1 and 2 31

Proof. Using the orthogonality properties of the exponential function e(x), we can write the sum

as

∑
n≤x

n≡b mod q

µ f (n) =
1

q
∑

h mod q

e(−hb/q) ∑
n≤x

µ f (n)e(nh/q).

The Corollary follows immediately applying the estimate of Theorem 4.4.

We now consider polynomials of degree 2; the technique used will be essentially the same as

in the linear case. We remark that in [16] Hou and Lü found the same estimates for the sums

∑
n≤x

Λ f (n)e(P(n))

with P(t) a polynomial of degree 2 and Λ f (n) defined by

L′(s, f )

L(s, f )
= ∑

n≥1

Λ f (n)

ns
, ℜs > 1.

We need the following two lemmas.

Lemma 4.6. Let α,β ∈ T; then, for any ε > 0,

∑
n≤x

a f (n)e(αn2 +βn)�ε N
7
8
+ε

This is a result due to Liu and Ren (see [24]) which improves the first non-trivial estimate

proved by Pitt [34].

Lemma 4.7. Let {h(n)},{k(n)} be two sequences of complex numbers satisfying

∑
m∼M

|h(n)|2 � M logb1 M and ∑
m∼N

|k(n)|2 � N logb2 N

for M,N ≥ 2 and for some b1,b2 > 0 (we write n ∼ N for N/2 < n ≤ N). Then, there exists a

positive constant c > 0 such that for every α,β ∈ T

∑
n∼N,m∼M

nm∼x

h(n)k(m)e(α(nm)2 +βnm)� x

(

1

q
+

1

M
+

1

N4
+

q

x2

) 1
8

logc x

where q ≥ 1 satisfies
∣

∣

∣

∣

α − a

q

∣

∣

∣

∣

≤ 1

q2

for some integer a such that (a,q) = 1.

A proof of this result can be found in [16].

Theorem 4.8. There is a constant c > 0 such that for all polynomials P(x) ∈ T[x] of degree 2

S f (x,P)� f xexp
(

−c
√

logx
)

(4.20)

with the implied constant depending only on f .
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Proof. Let us write P(x) = αx2 +βx and let Q,q and a be as in (4.8), i.e. such that

1 ≤ q ≤ Q and

∣

∣

∣

∣

α − a

q

∣

∣

∣

∣

≤ 1

qQ
. (4.21)

Moreover, we set

Q = x2 exp
(

−C
√

logx
)

(4.22)

with C > 0 a constant to be decided later. As in the case of degree 1 polynomials we proceed in

two different ways according to the size of q = q(x). If q ≤ exp
(

C
√

logx
)

we have, as in (4.9),

S f (x,P) = ∑
n≤x

µ f (n)e(n
2 a/q+βn)e(n2(α −a/q))

� |S f (x,Pq)|+
∫ x

1

∣

∣

∣

∣

t

(

α − a

q

)

S f (t,Pq)

∣

∣

∣

∣

d t +1 (4.23)

where Pq(x) = (a/q)x2 +βx. To estimate S f (x,Pq) we write

S f (x,Pq) = ∑
n≤x

µ f (n)e(n
2(a/q)+βn)

= ∑
b mod q

e

(

ab2

q

)

∑
n≤x

n≡b mod q

µ f (n)e(βn)

=
1

q
∑

b mod q

∑
d mod q

e

(

ab2 −db

q

)

∑
n≤x

µ f (n)e((β +d/q)n) (4.24)

where we used the orthogonality properties of the exponential function. Then,

S f (x,Pq)�
1

q
∑

b mod q

∑
d mod q

∣

∣

∣

∣

∣

e

(

ab2 −db

q

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑
n≤x

µ f (n)e((β +d/q)n)

∣

∣

∣

∣

∣

and we can use Theorem 4.4 to conclude that

S f (x,Pq)� qx exp(−c
√

logx). (4.25)

Now we choose C = c/2 in (4.22); inserting (4.25) in (4.23) and recalling that q ≤ x2/Q =

exp(C
√

logx) we find that

S f (x,P)� qxexp(−c
√

logx)

(

1+
x2

qQ

)

= xexp(−c
√

logx)

(

q+
x2

Q

)

� xexp(− c

2

√

logx). (4.26)

Now we need to deal the case exp(C
√

logx) < q ≤ Q; we will use Vaughan’s identity as well as

Lemma 4.6 and Lemma 4.7.

By taking ξ (n) = e(αn2 +βn) in (A.1) we get

S f (x,P) = 2S1 −S2 −S3
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where

S1 = ∑
n≤Y

µ f (n)e(αn2 +βn),

S2 = ∑
n1≤Y 2

A f (n1) ∑
n2≤x/n1

a f (n2)e(α(n1n2)
2 +βn1n2),

S3 = ∑
Y<n1≤x/Y

∑
Y<n2<x/n1

µ f (n1)B f (n2)e(α(n1n2)
2 +βn1n2)

and

A f (n) = ∑
n1n2=n
ni≤Y

µ f (n1)µ f (n2), B f (n) = ∑
n1n2=n
n2≤Y

a f (n1)µ f (n2).

We have that S1 � f Y from Lemma 3.2 and S2 � f x7/8+ε Y 2 from Lemma 4.6. To estimate S3 we

can use Lemma 4.7; we begin writing the sum as a linear combination of O(log2 x) terms of the

form

∑
m∼M,n∼N′

nm∼N′′

µ f (n)B f (m)e(α(nm)2 +βnm) (4.27)

with

Y < M <
2x

Y
, Y < N′ <

2x

Y
, Y 2 < N′′ < 2x, MN′ � N′′.

Each of these sums satisfies the hypotheses of the Lemma; in fact, from Lemma 3.2, we have

∑
n∼N

|µ f (n)|2 � N,

and

|B(n)| ≤ ∑
n1n2=n

d(n1)d(n2) = (d ∗d)(n) = d4(n);

which implies that

∑
n∼N

|B f (n)|2 ≤ ∑
n∼N

d4(n)
2 � N log7 N

(see Linnik’s book [21], Chapter 1 for the properties of generalised divisor function). Hence, there

is a constant h > 0 such that

S3 � f

(

x

(

1

q
+

q

x2

)1/8

+
x

Y 1/8

)

logh x.

Recalling that we are in the case exp(C
√

logx) < q ≤ x2 exp(−C
√

logx) and making the choice

Y = exp(C
√

logx) we conclude that

S3 � f xexp(−c′
√

logx)

for some positive constant c′; collecting the estimates we find that

S f (x,P)� f xexp(−c′
√

logx). (4.28)

The theorem follows from (4.26) and (4.28).
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Corollary 4.9. Let P(t) be any real polynomial of degree less than or equal to 2; then, for any

positive integer ν and 0 ≤ a < ν ,

∑
n≤x

n≡a mod ν

µ f (n)e(P(n))� xexp(−c
√

logx)

with c > 0 the same constant appearing in Theorem 4.8.

Proof. As we have done in Corollary 4.5 we use the orthogonality properties of e(x) to write

∑
n≤x

n≡a mod q

µ f (n)e(P(n)) =
1

q
∑

h mod q

e(−ah/q) ∑
n≤x

µ f (n)e(P(n)+nh/q).

Now we can apply Theorem 4.8 to every polynomial Ph(t) = P(t)+ (h/q)t and the Corollary is

proved.

4.2 Monomial of degree k ≥ 3

We want to study what happens when we increase the degree of the polynomial. The techniques

we used in the previous section can not be applied here, because it would be crucial to have strong

estimates for the sums

∑
n≤x

a f (n)e(P(n))

which are not known if the degree of P is greater than 2. We begin by considering monomials of

degree k ≥ 3.

Theorem 4.10. Let S f (x,α) be defined as

S f (x,α;k) = ∑
n≤x

µ f (n)e(αnk)

where x ≥ 1, k ≥ 3 and α ∈ T. Then,

S f (x,α;k)�k

x

log1/4 x
log logx

with the implied constant uniform in α .

Proof. As in the proof of Theorem 4.8 we consider Q = Q(x) and, in analogy, we set it as Q =

xk exp
(

−cQ

√
logx

)

with cQ > 0 to be decided later. Let q and a be as in (4.8), i.e. such that

1 ≤ q ≤ Q and

∣

∣

∣

∣

α − a

q

∣

∣

∣

∣

≤ 1

qQ
. (4.29)

Again, the proof requires two different arguments according to the size of q. First we assume that

q is not too large, in particular q ≤ exp
(

cq

√
logx

)

for some cq > 0. As in (4.9) we find

S f (x,α;k)� |S f (x,a/q;k)|+ k

∫ x

1
|S f (x,a/q;k)|

∣

∣

∣

∣

α − a

q

∣

∣

∣

∣

tk−1d t. (4.30)
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To estimate S f (x,a/q;k) we compute

S f (x,a/q;k) =
q

∑
b=1

e

(

a

q
bk

)

∑
n≤x

n≡b mod q

µ f (n) (4.31)

and using Corollary 4.5 we conclude that there exists a positive constant c such that

Sk(x,a/q;k)� qxexp
(

−c
√

logx
)

.

Thus, from above, we have

S f (x,α;k)�k qxexp
(

−c
√

logx
)

(

1+
∫ x

1

tk−1

qQ
d t

)

�k xexp
(

−c
√

logx
)(

exp
(

cq

√

logx
)

+ exp
(

cQ

√

logx
))

�k xexp
(

(−c+ c′)
√

logx
)

(4.32)

where c′ = max(cq,cQ). We choose cq and cQ such that c′− c < 0.

Let us suppose, now, that exp(cq

√
logx)< q ≤ Q; we want to use Theorem 3.7 with T = cT

√
logx

and cT > 0 to be decided later. We remark that T 1/2 � log1/4 x will be, essentially, the saving over

the trivial bound that we obtain by the application of the theorem (see (4.36)). To apply Theorem

3.7 we need to estimate the sum

S1,2 := ∑
n≤x

e
(

α
(

pk
1 − pk

2

)

nk
)

for every pair of distinct primes p2 < p1 ≤ exp
(

cT

√
logx

)

.

We want to apply Lemma A.2 to the polynomial S(t) = α(pk
1 − pk

2)t
k, hence we need to find a

good approximation for the leading coefficient α(pk
1 − pk

2). The inequality |α − a/q| ≤ (qQ)−1

implies immediately that

∣

∣

∣

∣

α(pk
1 − pk

2)−
a(pk

1 − pk
2)

q

∣

∣

∣

∣

≤ (pk
1 − pk

2)

qQ
. (4.33)

To ensure that pk
1 − pk

2 are q are coprime we divide them by their greatest common divisor, so let

P′
1,2 and q′1,2 be defined as

r1,2 = (pk
1 − pk

2,q), pk
1 − pk

2 = r1,2 P′
1,2 and q = r1,2 q′1,2;

inequality (4.33) becomes

∣

∣

∣

∣

∣

α(pk
1 − pk

2)−
aP′

1,2

q′1,2

∣

∣

∣

∣

∣

≤
P′

1,2

q′1,2Q
≤

P′
1,2

q′1,2
2
. (4.34)

Then, for every Z > 0, we have

S1,2 �k x

(

P′
1,2 Z

q′1,2
+

P′
1,2 Z

x
logq′1,2 +P′

1,2 Z
q′1,2
xk

logq′1,2 +
logb(k) x

Z

)κ

(4.35)
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with κ = 21−k; we take Z = exp
(

cZ

√
logx

)

form some cZ > 0 and we remark that

P′
1,2

q′1,2
=

pk
1 − pk

2

q
≤ exp

(

(kcT − cq)
√

logx
)

, P′
1,2 ≤ pk

1− pk
2 ≤ exp

(

kcT

√

logx
)

, q′1,2 ≤ q≤Q.

Inserting these estimate in (4.35) we find that

S1,2 �k x

(

exp
(

(cZ + kcT − cq)
√

logx
)

+ exp
(

(cZ + kcT )
√

logx
) logx

x

+ exp
(

(kcT + cZ − cQ)
√

logx
)

logx

+
logb(k) x

exp
(

cZ

√
logx

)

)κ

.

Since we can choose cT and cZ such that










cZ + kcT − cq < 0

kcT + cZ − cQ < 0

we conclude that

S1,2 �k xexp
(

−c′′
√

logx
)

.

for some positive constant c′′ = c′′(k). Since the hypotheses of Theorem 3.7 are satisfied we can

conclude that, for exp(cq

√
logx)< q ≤ Q,

S f (x,α;k)�k

x

log1/4 x
log logx. (4.36)

The Theorem follows from (4.32) and (4.36).

4.3 Generic polynomial of degree k ≥ 3

In this section we prove that the same result that holds for monomials can be extended to any

polynomial of degree greater than two. So, let us assume that P(n) = αknk +αk−1nk−1+ · · ·+α1n

with α j ∈ T for j = 1, . . . ,k and k ≥ 3.

Theorem 4.11. Let P(t) be as above; then,

S f (x;P)�k

x

log1/4 x
log logx. (4.37)

Proof. Let us set Q′ = xk exp
(

−cQ′
√

logx
)

and Q = xk exp
(

−cQ

√
logx

)

; by Diophantine approx-

imation there exist ai,qi ∈ Z with (ai,qi) = 1 such that
∣

∣

∣

∣

αk −
ak

qk

∣

∣

∣

∣

≤ 1

qkQ′
∣

∣

∣

∣

αi −
ai

qi

∣

∣

∣

∣

≤ 1

qiQ
i = 2, . . . ,k−1.

We have to consider several cases:
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• in Case A we will assume that all the denominators q j are small and we will proceed using

partial summation as in the previous theorems;

• in Case B we will assume that qk is large and we will use the result of Theorem 4.10;

• in Case C we will consider the last scenario with qk small and qt large for some 2 ≤ t < k

and we will use a combination of techniques used in the first two cases.

To determine when the denominators q j are small or large we will introduce a set of constants c j

that will be chosen at the end of the proof; we remark here that they will depend only on the degree

k and on the constant c of Corollary 4.9.

Finally we note that we do not approximate the coefficient α1; this ensures us that the polyno-

mial H defined in (4.44) has degree at least 2, which is crucial. On the other hand, the estimate

valid for polynomials of degree 1, see Theorem 4.4 and its corollaries, is strong enough to be used

in (4.39) to get a suitable bound.

Case A

We assume qi ≤ exp
(

ci

√
logx

)

for 2 ≤ i ≤ k and for some constants ci > 0 (to be decided later).

Then by partial summation we have

S f (x,P)�k

∣

∣S f (x,P)
∣

∣+
∫ x

1

∣

∣S f (y,P)
∣

∣

∣

∣

∣

∣

αk −
ak

qk

∣

∣

∣

∣

yk−1d y+ exp
(

cQ

√

logx
)

(4.38)

where P(n) = (ak/qk)n
k + . . .+(a2/q2)n

2 +α1n. Now, let q = lcm(q2, . . . ,qk),

S f (x,P) =
q

∑
b=1

e
(

P(b)
)

∑
n≤x

n≡b mod q

µ f (n)e(αn)� qxexp
(

−c
√

logx
)

(4.39)

where c is the constant in Corollary 4.9. Inserting this estimate in (4.38) we have

S f (x,P)�k qxexp
(

−c
√

logx
)(

1+ exp
(

cQ′
√

logx
))

�k xexp

(

−
(

c− cQ′ −
k

∑
i=2

ci

)

√

logx

)

. (4.40)

We will assume that

c−
(

cQ′ +
k

∑
i=2

ci

)

> 0. (4.41)

Case B

We assume that qk > exp
(

ck

√
logx

)

; we can proceed as in the second part of the proof of Theorem

4.10, since the technique used there requires hypothesis only on the leading coefficient. So we can

conclude that

S f (x,P)�k

x

log1/4 x
log logx. (4.42)

Case C

Let t be the largest index, 2 ≤ t ≤ k− 1 such that qt > exp
(

ct

√
logx

)

; as in the monomial case
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we want to use Theorem 3.7 with T = cT

√
logx and cT > 0 to be fixed later. As already stated in

Theorem 4.10 this choice will lead to a saving which is essentially T 1/2 � log1/4 x. We need to

estimate the sum

S1,2(x) := ∑
n≤x

e

(

k

∑
i=1

αi

(

pi
1 − pi

2

)

ni

)

for every pair of distinct primes p2 < p1 ≤ exp
(

cT

√
logx

)

. A direct application of Lemma A.2

wouldn’t give any interesting result, so we first need to transform the sum S1,2. By partial summa-

tion we get

S1,2(x)�k

∣

∣S′1,2(x)
∣

∣+
∫ x

1

∣

∣S′1,2(y)
∣

∣

∣

∣

∣

∣

αk −
ak

qk

∣

∣

∣

∣

(

pk
1 − pk

2

)

yk−1d y+ exp
(

cQ

√

logx
)

(4.43)

where

S′1,2(x) := ∑
n≤x

e

(

t

∑
i=1

αi

(

pi
1 − pi

2

)

ni +
k

∑
i=t+1

ai

qi

(

pi
1 − pi

2

)

ni

)

= ∑
n≤x

e

(

H(n)+
k

∑
i=t+1

ai

qi

(

pi
1 − pi

2

)

ni

)

, (4.44)

say. Let q be the lcm(qt+1, . . . ,qk), then we write

S′1,2(x) =
q

∑
b=1

e

(

k

∑
i=t+1

ai

qi

(

pi
1 − pi

2

)

bi

)

∑
n≤x

n≡b mod q

e(H(n))

=
1

q

q

∑
b=1

e

(

k

∑
i=t+1

ai

qi

(

pi
1 − pi

2

)

bi

)

q

∑
h=1

e

(−hb

q

)

∑
n≤x

e

(

H(n)+
hn

q

)

. (4.45)

The polynomial H(n)+hn/q has degree t ≥ 2 and leading coefficient αt(pt
1 − pt

2); now we apply

Lemma A.2 to the sum

R(x) := ∑
n≤x

e

(

H(n)+
hn

q

)

.

By definition, inequalities (4.33) and (4.34) hold with q and k replaced by qt and t respectively;

hence we can conclude as in (4.35) that, for any Z > 0,

R(x)�k x

(

(pt
1 − pt

2)Z

qt

+
(pt

1 − pt
2)Z

x
logqt +(pt

1 − pt
2)Z

qt

xk
logqt +

logb(k) x

Z

)κ

with κ = 21−t .

Setting Z = exp
(

ρt

√
logx

)

and recalling that

(pt
1 − pt

2)≤ exp
(

tcT

√

logx
)

qt > exp
(

ct

√

logx
)

qt ≤ xk exp
(

−cQ

√

logx
)

we can conclude that

R(x)�k xexp
(

−c′′t
√

logx
)
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for any c′′t > 0 satisfying the conditions

2t−1c′′t <























cQ − tcT −ρt

ct − tcT −ρt

ρt

(4.46)

We assume cQ > ct for every t ∈ {2, . . . ,k} so that the first condition in (4.46) can be removed.

Inserting the estimate for R(x) in (4.45) and (4.43) we have

S′1,2(x)�k qxexp
(

−c′′t
√

logx
)

and

S1,2(x)�k qxexp
(

−c′′
√

logx
)(

1+ exp
(

(cQ′ + kcT )
√

logx
))

�k xexp

(

−
(

c′′t − cQ′ − kcT −
k

∑
i=t+1

ci

)

√

logx

)

.

If we assume that

c′′t − cQ′ − kcT −
k

∑
i=t+1

ci > 0, (4.47)

then the hypotheses of Theorem 3.7 are satisfied and we can conclude that

S f (x;P)�k

x

log1/4 x
log logx. (4.48)

To complete the analysis of Case C, we need to verify that the system of conditions (4.41), (4.46)

and (4.47) admits a solution; this is done in Lemma 4.12.

Then, the Theorem follows from the results in (4.40), (4.42) and (4.48).

We remark that the estimate (4.37) depends on the degree of the polynomial, but is uniform

in the coefficients; hence, as we did in Corollary 4.9, we can extend the result to any arithmetic

progression, i.e.

∑
n≤x

n≡a mod ν

µ f (n)e(P(n))�k

x

log1/4 x
log logx

where ν is a positive integer and 0 ≤ a < ν .

To conclude the proof of Theorem 4.11 we need the following fact.

Lemma 4.12. Let k be an integer greater than two and c > 0 a given real constant; the system of

linear inequalities


















































α,βt ,γt ,δ ,λt > 0 2 ≤ t ≤ k

α +∑
k
j=2 β j < c

2t−1γt < min











βt − tδ −λt

λt

2 ≤ t ≤ k−1

γt −α − kδ −∑
k
j=t+1 β j > 0 2 ≤ t ≤ k−1

(4.49)
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admits infinitely many solutions.

Proof. Since all the inequalities are strict, it is enough to prove the existence of a solution to

conclude that there are infinitely many.

It is easy to see that the second and the third set of conditions imply that β2 > β3 > .. . > βk.

We begin choosing λt = βt/2, so that the system becomes























α +∑
k
j=2 β j < c

2t−1γt < βt/2− tδ 2 ≤ t ≤ k−1

γt −α − kδ −∑
k
j=t+1 β j > 0 2 ≤ t ≤ k−1.

(4.50)

Assuming tδ < γt/4, we have that

γt =
βt

2t+1

satisfies the second inequality, so that the we can consider a new system











α +∑
k
j=2 β j < c

βt/2t+1 −α − kδ −∑
k
j=t+1 β j > 0 2 ≤ t ≤ k−1.

(4.51)

By considering the last inequality for t = k−1, we get

βk−1

2k
−α − kδ −βk > 0

which is satisfied by taking

α = kδ = βk =
βk−1

2k+4

We remark that, with this choice, tδ < kδ = βk−1/2k+4 < γt/4. Now, by considering t = k− 1

we were able to express βk as a function of βk−1; we can reiterate the process by taking t =

k−2,k−3, . . . ,2, so that we can establish a condition involving βt and βt+1. In particular we can

choose

βt =
βt−1

2t+4

for 3 ≤ t ≤ k−2. Finally, we need to determine a value for β2 in order to satisfy the last condition

to be considered, which is

α +
k

∑
j=2

β j < c.

With the choices made so far, it is sufficient to take β2 = c/2.

We conclude remarking that in the solution we found all the variables can be expressed as a ratio

with numerator c and denominator a suitable power of 2 with exponent depending on k and not

exceeding k(k+1).
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In the proof of Theorem 4.11 we use this Lemma with:


















































α = cQ′ ,

βt = ct 2 ≤ t ≤ k,

γt = c′′t ,

δ = cT ,

λt = ρt 2 ≤ t ≤ k−1.

In the last part of this chapter we will show that the estimate for S f (x,P) proved in Theorem

4.11 is also valid for the sum S′f (x,P) defined as

S′f (x,P) = ∑
n≤x

a f (n)e(P(n)).

Again, we consider polynomials of degree k ≥ 3, since for lower degrees much stronger bounds

can be proved. For polynomials of degree at most 2 we have already recalled in Lemma 4.6 that

the estimate

S′f (x,P)�ε x7/8+ε (4.52)

holds for every ε > 0. Actually, when we consider linear polynomial, the exponent in (4.52) can

be lowered.

Lemma 4.13. For every α ∈ R

∑
n≤x

a f (n)e(αn)� f x1/2 logx. (4.53)

This was originally proved by Wilton [47] and then the estimate was improved by Jutila [20]

who removed the factor logx; it is known that the exponent 1/2 in (4.53) is optimal if one requires

uniformity in α . Moreover, using this uniformity, we immediately deduce that the same estimate

in (4.53) holds if we consider the sum over any arithmetic progression.

Now, let us adapt the proof of Theorem 4.11 to deal with the sum S′f (x,P); in Case A we can just

do the same computations with µ f (n) replaced by a f (n) and use Lemma 4.13 instead of Corollary

4.9 in (4.39). Then we get

S′f (x,P)� x1/2 exp
(

C
√

logx
)

for some positive constant C; this is much stronger than what we need and we do not even need to

consider condition (4.41).

In Case B and Case C the proof does not need any modification because, as we already stated,

both a f (n) and µ f (n) satisfy the hypothesis of Theorem 3.7. Hence, we have proved that

S′f (x;P)�k

x

log1/4 x)
log logx.

In fact, we are able to improve this result applying the same ideas of Theorem 4.11 with a different

setting.
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Theorem 4.14. Let P(t) be a real polynomial of degree k ≥ 3; then,

S′f (x;P)�k

x

log1/2 x
log logx. (4.54)

Proof. We just give a sketch of the proof, since the computations needed are formally the same as

in Theorem 4.11. In particular, what we do is to replace any occurrence of
√

logx with logx.

We begin with Diophantine approximation; the original setting Q′ = xk exp
(

−cQ′
√

logx
)

and

Q = xk exp
(

−cQ

√
logx

)

becomes Q′ = xkx−cQ′ and Q = xkx−cQ . Let ai,qi ∈ Z with (ai,qi) = 1 be

such that

∣

∣

∣

∣

αk −
ak

qk

∣

∣

∣

∣

≤ 1

qkQ′
∣

∣

∣

∣

αi −
ai

qi

∣

∣

∣

∣

≤ 1

qiQ
i = 2, . . . ,k−1.

In Case A, the new condition on the denominators becomes q j ≤ xc j for 2 ≤ j ≤ k and for some

positive small constant c j; applying partial summation and Lemma 4.13 in the version improved

by Jutila we get

S′f (x,P)�k qx1/2xcQ′ ≤ xδ (4.55)

where q = lcm(q2, . . . ,qk) and

δ =
1

2
+ cQ′ +

k

∑
j=2

c j.

The condition (4.41) is naturally replaced by δ < 1, i.e.

1

2
−
(

cQ′ +
k

∑
j=2

c j

)

> 0.

In Case B and Case C we can see where the improvement in (4.54) comes from. In both cases

we set T = cT logx for some positive small constant cT ; applying Theorem 3.7 with this choice

we essentially get a saving of the order of log1/2 x instead of log1/4 x which was obtained with the

setting T = cT

√
logx

Finally, we remark that, since the computations are formally the same, the system of inequali-

ties that we find here is exactly the same as in (4.41), (4.46) and (4.47) of Theorem 4.11, but with

the constant c replaced by 1/2.



A Appendix

A.1 Vaughan’s Identity

We recall here the analogue of Vaughan’s identity for L(s, f )−1. We start from the identity

L(s, f )−1 = 2G(s)−L(s, f )G(s)2 +
(

L(s, f )−1 −G(s)
)

(1−L(s, f )G(s)) (A.1)

valid in the region of the complex plane where L(s, f ),L(s, f )−1 and G(s) are defined. Let {ξ (n)}
be a sequence of complex numbers and Y > 1; by taking

G(s) = ∑
n≤Y

µ f (n)

ns
,

and considering (A.1) for ℜs > 1 we conclude that

∑
n≤x

µ f (n)ξ (n) = 2S1 −S2 −S3

where

S1 = ∑
n≤Y

µ f (n)ξ (n),

S2 = ∑
n1≤Y 2

A f (n1) ∑
n2≤x/n1

a f (n2)ξ (n1n2),

S3 = ∑
Y<n1≤x/Y

∑
Y<n2<x/n1

µ f (n1)B f (n2)ξ (n1n2)

and

A f (n) = ∑
n1n2=n
ni≤Y

µ f (n1)µ f (n2), B f (n) = ∑
n1n2=n
n2≤Y

a f (n1)µ f (n2).

A.2 Exponential sums with polynomials

Lemma A.1. Let c be a positive constant, α ∈ T and consider a,q ∈ N,(a,q) = 1 such that
∣

∣

∣

∣

α − a

q

∣

∣

∣

∣

≤ c

q2
.

Then, for any H,N ≥ 1,

H

∑
n=1

min

(

N,
1

‖αn‖

)

� c

(

NH

q
+H logq+N +q logq

)

where ‖z‖ is the distance from z to the nearest integer.
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Proof. Let M ≥ 1 be an integer; for y ∈ R we define the function S(y) as

S(y) =

∣

∣

∣

∣

{

M < n ≤ M+q | ‖nα − y‖ ≤ 1

2q

}∣

∣

∣

∣

.

For every integer m in [1,q/2], if n is counted in S (m/q) (or in S ((q−m)/q)), from the definition

we have that

‖nα‖> m

q
− 1

2q
� m

q
;

then
M+q

∑
n=M+1

min

(

N,
1

‖αn‖

)

� N ·S(0)+
q/2

∑
m=1

q

m

(

S

(

m

q

)

+S

(

q−m

q

))

. (A.2)

Now we need to prove that S(y)� c; with a change of variables we write

S(Mα +ν) =

∣

∣

∣

∣

{

1 ≤ m ≤ q | ‖mα −ν‖ ≤ 1

2q

}∣

∣

∣

∣

.

If α = a/q+δ with |δ | ≤ c/q2 then the condition above implies that
∥

∥

∥

∥

m
a

q
−ν

∥

∥

∥

∥

≤ ‖mα −ν‖+‖mδ‖ ≤ 1

2q
+

c

q
≤ 2c

q
.

Since in the interval
[

ν − 2c
q
,ν + 2c

q

]

there are at most 4c+1 fractions of the form r/q and ma/q

must be one of them, we can conclude that S(Mα + ν) � c uniformly in ν which implies that

S(y)� c uniformly in y.

Inserting this estimate in (A.2) we have

M+q

∑
n=M+1

min

(

N,
1

‖αn‖

)

� c(N +q logq) .

Applying this estimate to (H/q+1) blocks of length ≤ q the Lemma is proved.

The following Lemma is a generalization of a well-known result due to Weyl (see, for example,

Montgomery [28], Chapter 3, Theorem 2) which asserts that, given a real valued polynomial P(t)

of degree k ≥ 1 with leading coefficient α , the estimate

∑
n≤x

e(P(n))�k x1+ε

(

1

q
+

1

x
+

q

xk
logq

)κ

holds for κ = 21−k and a,q coprime integers such that |α −a/q| ≤ q−2. We are able to weaken the

Diophantine condition (as we did in the previous Lemma) and, more importantly, we remove the

factor xε ; to do this we rely on a technique used by Perelli and Zaccagnini in [33].

Lemma A.2. Let α,a,q and c be as in the previous Lemma and P(t) = αtk +αk−1tk−1+ . . .+α1t

be a polynomial of degree k ≥ 1; then, for any Z > 0, we have

S := ∑
n≤x

e(P(n))�k x

(

cZ

q
+

cZ

x
logq+ cZ

q

xk
logq+

logb(k) x

Z

)κ

(A.3)

where b(k) = k2 −2k and κ = 21−k.
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Proof. Applying the standard Weyl method to deal with exponential sums we get

|S|2k−1 �k x2k−1−1 + x2k−1−k ∑
h1,h2,...,hk−1

min

(

x,
1

‖k!h1h2 · · ·hk−1α‖

)

(A.4)

where each h j satisfies the condition 1 ≤ h j ≤ x. Since k!h1h2 · · ·hk−1 ∈
[

1,k!xk−1
]

we have

S′ := ∑
h1,h2,...,hk−1

min

(

x,
1

‖k!h1h2 · · ·hk−1α‖

)

≤ ∑
h≤k!xk−1

dk−1(h)min

(

x,
1

‖hα‖

)

. (A.5)

Now, let us consider the set H+ of the integers h up to k!xk−1 such that dk−1(h) > Z and H− its

complementary set. Applying Lemma A.1 to H− we have

∑
h∈H−

dk−1(h)min

(

x,
1

‖hα‖

)

≤ Z ∑
h≤k!xk−1

min

(

x,
1

‖hα‖

)

� cZ

(

xk

q
+ xk−1 logq+ x+q logq

)

while for H+ we write

∑
h∈H+

dk−1(h)min

(

x,
1

‖hα‖

)

≤ 1

Z
∑

h≤k!xk−1

dk−1(h)
2 min

(

x,
1

‖hα‖

)

≤ x

Z
∑

h≤k!xk−1

dk−1(h)
2 �k

xk

Z
logb(k) x,

where b(k) = k2 − 2k (for the properties of the generalized divisor function we refer to Linnik’s

book, [21], Chapter 1). Collecting the results and inserting them in (A.5) we get

S′ �k xk

(

cZ

q
+

cZ

x
logq+ cZ

q

xk
logq+

logb(k) x

Z

)

.

Finally, the Lemma follows from (A.4).
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[11] É. Fouvry and S. Ganguly. Strong orthogonality between the Möbius function, additive
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[25] K. Matomäki and Radziwiłł. Multiplicative functions in short intervals. Ann. of Math. (2),

183(3):1015–1056, 2016.
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