

Fig. 249 Secondary education institutions in horeca, agrarian and tourism services sector (source: Provinces of Ferrara, Rovigo, Venice and Padua; elaborated by the author)

1'117 291

294

306

231 170

816

SECONDARY EDUCATION INSTITUTIONS IN HORECA, AGRARIAN AND TOURISM SERVICES SECTOR

n of	enrolled	students

+	> 1000	
+	500 - 1000	
+	100 - 500	
+	< 00	

total enrolled students: 35'438		
	horeca sector: 1'265 / 3.5%	
	agrarian sector: 350 / 1%	
	tourism sector: 705 / 2%	

IPSAR Vergani - Ferrara:	1'065
IPSAR Remo Brindisi - Comacchio:	200
ITA Navarra - Malborghetto:	201
ITA Navarra - Ostellato:	149
IPSSCT - Portomaggiore:	20
IPSSCT Einaudi - Ferrara:	685

IPA Cipriani - Adria: IPA Bellini - Trecenta:

ITA Munerati - Rovigo:

ITC De Amicis - Rovigo:

IPSSCT Colombo - Adria:

IPSSCT Marco Polo - Rovigo: ITC - Porto Viro:

ROVIGO PROVINCE nts: 9'488

FERRARA PROVINCE

total enrolled students: 9'488
horeca sector: 1'408 / 14.8%
agrarian sector: 294 / 3%
tourism sector: 1'523 / 16%

VENICE PROVINCE total enrolled students: 32'889

$\boldsymbol{\mathcal{C}}$	

horeca sector: 3'85 / .7%
agrarian sector: 1'705 / 5.2%
tourism sector: 3'091 / 9.4%

PADUA PROVINCE

total enrolled students: 36'456 horeca sector: 1'407 / **3.9%** agrarian sector: 1'644 / **4.5%** tourism sector: 1'750 / **4.8%**

IT Cestari - Chioggia:	530
IPSAR Musatti - Dolo:	976
IPSAR Cornaro - Jesolo:	975
IPSSCT Corner - Venezia:	366
IPSAR Barbarigo - Venezia:	1'004
ITCG 8 Marzo - Mirano:	1'025
ITA Lorenz - Mirano:	279
ITAS Da Vinci - Portogruaro:	62
ITA Scarpa - San Donà di Piave:	339
IT Lazzari - Dolo:	664
ITC Luzzatto - Portogruaro:	574
ITC L.B. Alberti - San Donà di Piavo	e: 1'382
IPSSCT Einaudi - Portogruaro:	471

IPA Pietro d'Abano - Abano Terme:	929
IIS J. Da Montagnana - Montagnana:	478
IIS Duca degli Abruzzi - Padova:	892
IPA S.Benedetto da Norcia - Padova	:390
ITS Kennedy - Monselice:	226
IPA San Benedetto - Piove di Sacco:	136
ITE Einaudi - Padova:	452
ITE Gramsci - Padova:	186
IIS Da Vinci - Padova:	118
IIS Valle - Padova:	216
ITS Girardi - Cittadella:	172
ITS Kennedy - Monselice:	198
IIS De Nicola - Piove di Sacco:	305
IIS Newton-Pertini-Camposampiero	103

Fig. 250 University institutions in the agricultural sector (source: University of Padua; elaborated by the author)

UNIVERSITY INSTITUTIONS IN THE AGRICULTURAL SECTOR

n. of enrolled students

+ < 100

UNIVERSITY OF PADUA

total enrolled students: 57'646

agricultural sector: 3'400 / **6%** in Legnaro: 3'228 in Conegliano: 287 in Vicenza: 355

MAIN DEPARTMENTS IN LEGNARO

MAIN DEPARTMENTS IN LEGNARO	
Territorial management and landscape protection	326
Science and culture of gastronomy	189
Food science and technology	465
Agrarian science and technology	372
Forestry and environmental technology	4 4
MAIN DEPARTMENT IN CONEGLIANO Viticultural and oenological sciences and technologies	287
MAIN DEPARTMENT IN VICENZA Food health safety	355

The considerations above seem to constitute a solid basis on which to move forward and propose the settlement of some activities that will be part of a *multifunctional programme of CO*₂ *eater activities*.

It is important to emphasize that the reasoning we are proposing below is part of a theoretical-speculative path useful for the construction of scenarios, but that, in a possible future application of the methodology within a multidisciplinary research, will have to be supported by detailed technical, economic and social analysis conducted by experts in order to better define the feasibility and size the necessary infrastructure and activities.

The lack of educational services in the Po delta region together with a very high average rate of students enrolled in primary and tertiary sector's formation in the province of Rovigo and with the excellence of local food products seem to justify the possibility of establishing in the area of the former Polesine Camerini power plant a school complex for the secondary and university education dedicated in the horeca, agrarian and tourism promotion sectors. The considerable size of the area can encourage the establishment of experimental greenhouses for practical application and research.

The establishment of activities related to applied research in agriculture, **2. BUSINESS INCUBATOR** gastronomy and tourism could generate those dynamic conditions which are normally needed to launch *business incubator programmes* for the formation of new entrepreneurs who will use a locally-generated know-how on a larger markets.

- Algae's CO₂ absorption could even find concrete applications in wellness and beauty fields. In fact, as already mentioned above, the quietness of the protected landscape of the Po delta, together with a specialization in algae cultivations, could constitute an attractive tourist package that promotes body care treatments through *algae therapy* and cosmetic products derived from the same algae. In addition, some non-surgical cosmetic medicines treatment, such as *carboxytherapy*, employs injections to infuse gaseous purified carbon dioxide below the skin into the subcutaneous tissue to stimulate blood flow and improve the skin's elasticity.
- The possibility of using carbon dioxide to make safer the process for hydrogen **4. ALTERNATIVE MOBILITY** production and storage³ could allow to imagine the development of an *electric hub for public mobility* with storage, recharging, service and distribution of clean energy for a full-electric public transport. An innovative hydrogen-powered and modulable mobility system could compensate the current lack of public transport in the Po delta region. The effects would not only be beneficial for our

3 see http://www.enea.it/it/Stampa/news/energia-produrre-idrogeno-in-sicurezza-sfruttando-la-co2/

QUALITY a multifunctional programme study area, but would extend to the vast region of the Po delta.

The interest in developing an innovative and demand-driven system is justified by the expected increase in green jobs in Polesine Camerini linked to a new educational and tourism programme that will therefore attract more workers, students, tourists and users in general.

The main objective of *CATS (City Alternative Transport System)*⁴ EU-funded project consists in developing a new generation of public transport service based on the utilization of a single modular type of vehicle for individual use, based on a self-service mode, or for collective transport, offered through a flexible composition of modules and a shuttle service.

This new hybrid public transport philosophy could prove to be useful in serving a vast territory in a more flexible way and demand-driven, trying to fill the gap between an expensive public transport service organized on a regular timetable basis which results to be economically unbearable and private motorised transports, which have a high environmental impact.

The beneficial impact of this type of alternative mobility could also affect the most important urban centres, within a radius of 50 km from the Po delta, which are located along major road or rail infrastructure, such as Chioggia, Porto Viro, Mesola and Comacchio, thus becoming intermodal hubs of exchange between the regional and national transport system and the local hybrid mobility system proposed for the Po delta region.

⁴ CATS (*City Alternative Transport System*) is a 5-year project (2010-2014) funded by the EU under the FP7 - TRANSPORT (see www.cats -project.org) and coordinated by a Swiss company.

Fig. 25 I CRISTAL: the hybrid transport solution developed in CATS project (source: GEA partners)

Confirming the two-stage development scenario previously seen for Ravenna industrial harbour also for this second scenario (first phase: establishment of the Eco-industrial park for the development of CCU technology; second phase: conversion of fossil fuels-based industrial activities into bio-based ones and development of hydrogen technology), we can therefore summarize as follows the synergic model between CO₂ feeders and CO₂ eaters' activities as part of a wider multifunctional programme:

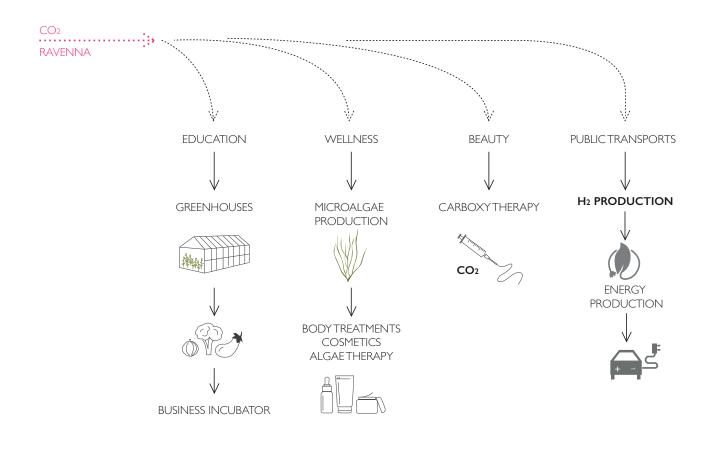


Fig. 252 Carbon neutral synergic model for a multifunctional programme (source: elaborated by the author)

The definition of the new multi-functional programme from a qualitative point of view must also address very important quantitative issues.

We cannot tackle the problem of the valorization of the site without noting that the volumes of the existing buildings that have characterized the delta landscape for almost 35 years are absolutely oversized and out of scale for any activity that is not related to energy production. Thinking about converting and entirely occupying them with a single activity is inconceivable, but even through a multifunctional program it seems to be unrealistic. In fact, steam generators and electric transformers occupy approximately 1'000'000 m³, distributed in volumes reaching up to 35 and 60 meters in height, without taking into account the 250 m high chimney.

At first glance, these figures seem to us to be heights that we can find in metropolitan environments rather than in a natural context such as that of the Po Delta. However, we believe that the challenge is to propose a conversion of the area that reuses the existing infrastructure, which are part of the territorial palimpsest and which have been, in some way, already metabolized by the territory and by the common perception. The challenge is to reinvent the landscapes of the second industrial revolution in the light of the high value added of socioecological dimensions.

If we briefly analyze the energetic produtive configuration of the area, it seems clear to us that all production activities and transport flows have been concentrated in the northern area of the site, leaving the southern part for agro-industrial uses. We think that this programmatic macro-subdivision of the site can be confirmed even in the light of a multifunctional scenario. In fact, proposing a *selective strategy* based on a concentrated re-functionalization of some portions of the power plant's volumes allows to take advantage of the existing infrastructure in the urbanized part of the site.

On the contrary, a *tabula rasa approach* would erroneusly lead to considering height and grandeur of volumes as the main problem on which to intervene. This would generate a dispersion process of the activities in lower volumes scattered throughout the site in order to obtain an apparent better integration into the context. The effects of this functional dispersion would lead to a massive spread of mobility, energetic, sewage infrastructure throughout the site, being, environmentally speaking, more invasive and less sustainable than the other approach.

Thus, our scenario assumes the grandeur of the volumes as a historicized character of the landscape around which trying to invent a new narrative of the former power plant site. QUANTITY a selective approach to downsize the built-up area A first foreseeable reorganization and volumetric reduction action could answer the question: *what are the upyclable volumes that make possible the understanding of the site's energy production past?* From our point of view, the four monumental 40x40x60 m parallelepipeds of the steam generators can act as a metaphorical connection between the industrial image of the past and their re-functionalization in a socioecological way. This downsizing operation would lead to a considerable cut of 600'000 m³.

Each boiler, in fact, represents $100'000 \text{ m}^3$. If we consider an average floor height for public activities of 3.5 m, we might think of settling a 17-storey and 28'500 m² building inside a boiler volume.

Given that proposed activities require natural lighting in most of their spaces, the current boilers' depth (40 m) results to be excessive.

Generally speaking, we can imagine organizing the built-up areas around some voids which could reduce the gross surface by between 10-15%. Therefore, we can consider a maximum constructible surface area of 25'000 m² per boiler, thus reaching a total of 100'000 m², taking into account the sum of the four steam generators' volumes.

MEASURE benchmark If we consider as a benchmark the *Apple Park*, the corporate headquarters of Apple Inc. under construction in Cupertino (California) by Norman Foster, the building will house more than 12'000 employees in one four-storey circular volume of approximately 260'000 m².

Our 100'000 m² we were talking about would represent approximately more than one third of Apple Park's programme. Considering an average surface area of 30 m² per employee, our programme could house about 3'500 people.

Clearly these figures still seem unrealistic, first of all, because we are not in a dynamic environment like Cupertino, secondly, because it is not Apple that is setting up its headquarters, and thirdly, because the entire Municipality of Porto Tolle counts about 10'000 inhabitants spread over 257 square kilometres (38 inhabitants/sqkm). A further downsizing seems to be necessary.

HARD PROGRAMME critical mass for a local development

If we want to justify the quantification of a target group of potential users on the basis of a known historical employment figure, 300 workers were employed on site during the exploitation of the area as a power plant (Caldiron, 2013). It follows that reaching a maximum target of about 1'000 users, among workers, students and tourists, would almost tripled the previous users capacity, with the subsequent impacts on existing infrastructure that should not be underestimated.

Given the previous average surface of 30 m^2 per worker or temporary user, we can therefore imagine fixing the overall amount of constructible gross

surface area to 30'000 m², corresponding to about 100'000 m³, which have to be distributed inside the four former steam generators'volumes.

This seems to us to be a considerable surface, but necessary to create that critical mass which is necessary to run the envisaged multifunctional program.

As the four former steam generators make 400'000 m³, the remaining three quarters of unbuildable volume could play an important role in terms of CO_2 absorption programme. In fact, they could be used to implement a *soft programme* of activities, made of removable structures, related to the applied research in new hydroponic cultivation processes and micro-algae cultivation in vertical greenhouses boosted by the injection of that CO_2 recovered from Ravenna industrial activities.

In order to obtain a mitigation of the visual impact of the four volumes, we might consider adding a further limitation that could however enrich the landscapes we are imagining: only 50% of the soft programme volume can be realized inside the steam generators' volumes, while the remaining 50% could be freely distributed in the southern part of the site, devoted to agro-industrial production.

The construction of the hard and soft programmes will have to evolve at the same time, maintaining a constant presence ratio of 1:3 on the site.

To sum it up, we can imagine that our scenario could be articulated within the following overall volumetric and dimensional constraints:

BOILERS' CURRENT VOLUME		400'000 m ³
HARD PROGRAMME VOLUME		100'000 m ³
SOFT PROGRAMME VOLUME		300'000 m ³
of which:	within boilers' volume	150'000 m ³
	distributed over the area	150'000 m ³
MAXIMUM HEIGHT		60 m

We could consider the four emptied boilers' volumes as the maximum overall dimensions for the simultaneous settlement of a *hard* and *soft* part of the programme, with the intent of hybridizing them and leaving however a wide volume compositional freedom.

In fact, with only the above limitations, several settlement strategies are allowed, thus leaving the possibility to intervene through superimposed floors which will not reach the maximum allowed height, as well as through lateral juxtapositions, that exploit the maximum height, but that will not completely occupy the maximum ground footprint. SOFT PROGRAMME plants and algae greenhouses as CO₂ eater activities

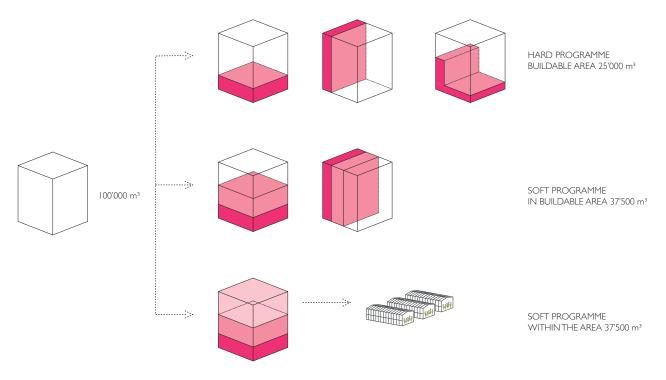


Fig. 253 The compositional freedom of hard and soft programme inside the boiler's volume outline (source: elaborated by the author)

With regard to this scenario, we would like to test an incremental rather than typological development of the program, because we believe that a sustainable local development, economically as well as socially speaking, depends on the simultaneous settlement of the four sectors. In fact, some activities, which are socially useful to create a sense of community, are not necessarily generating an economic value added, such as services for secondary education. On the contrary, tourism-related activities related to wellness and gastronomic sectors could have a significant economic impact on the business plan from the first steps of the conversion process. At the same time, we must not forget the importance of providing an adequate public transport service that can allow users reducing the use of private motorized transport and better connect the site of Polesine Camerini to a regional transport system.

The four macro-activities will be distributed each within a boiler volume, thus allowing a necessary functional separation, but maintaining the synergic proximity which results to be necessary to operate a multifunctional program. Spatial needs of the four macro activities are different, which is why the gross surface area does not necessarily have to be equally distributed among the four sectors. This will therefore allow to concentrate more hard and soft activities in some volumes, reducing the density of others.

The following dimensioning has been carried out on the basis of the dimensional design criteria proposed by the text: Neufert, E. (2013). *Enciclopedia pratica per progettare e costruire*. Milano: Hoepli.

BOILER I - HARD PROGRAMME 30'000 m³

EDUCATION SECTOR / University Institution and R&D

APPROXIMATELY GROSS SURFACE AREA 3'500 m²

APPROXIMATELY VOLUME I2'500 m³

As we have seen in the cartographies presented above, the two branches of the Department of Agricultural sector of the University of Padua, located in Conegliano and Vicenza, count approximately 300 students each.

As far as our case study is concerned, we could imagine that the formative and research activities that can be set up in Polesine Camerini could actually be seen as a detachment of the Department of Agriculture of the University of Padua which could be specialized, just to give an example, in hydroponic cultivations, cultivations in marshy environments and in algae cultivations. Since Conegliano and Vicenza are urban centres definitely better connected than our case study, we can imagine that the audience for the attendance of these activities can be lower, reaching about 150-200 units between enrolled students and researchers.

phase 1: 2025 hard and soft programme

EDUCATION SECTOR / Secondary Education

APPROXIMATELY GROSS SURFACE AREA 5'000 m²

APPROXIMATELY VOLUME

17'500 m³

Secondary education institutions in horeca, agrarian or tourism services in small urban centers in the province of Rovigo count approximately between 170 and 300 students. Thus, we can imagine that the secondary school complex in the site could consist of 2 sections of 5 classes, which means approximately 250 students. Facilities related to educational complexes, such as sports hall, canteen, cafeteria, printing centre and auditorium are included in the calculation of the average surface area per student and can be shared between University, research and secondary education institutions.

BOILER 2 - HARD PROGRAMME 15'500 m³

WELLNESS and BEAUTY / Spa and therapeutic treatments

APPROXIMATELY GROSS SURFACE AREA 1'000 m²

APPROXIMATELY VOLUME 3'500 m³

The programme is designed in order to accommodate activities body well-being for 60-80 users, through a range of thermal baths, rest areas, massage areas, algae therapy areas, areas for non-surgical beauty treatments. The surrounding natural context would also make possible to implement outdoor water basins for body care treatments.

ACCOMODATION / Premium hotel / 60 beds

APPROXIMATELY GROSS SURFACE AREA 1'500 m²

APPROXIMATELY VOLUME

We can imagine that the enhancement of a wellness and body care tourism could be completed by the offer of a high level 60-bed hotel which can accommodate clients for multi-day treatments.

5'000 m³

7'000 m³

ACCOMODATION / Youth hostel / 100 beds

APPROXIMATELY GROSS SURFACE AREA 2'000 m²

APPROXIMATELY VOLUME

The site could also become a hub for a slow and ecological tourism network, which is probably more interested in the knowledge of the territory and landscape than in the wellness offer. The hospitality offer can therefore be completed by an alternative accommodation facility, such as a youth hostel, which can also be converted into a temporary accommodation facility for students and workers of the site.

BOILER 3 - HARD PROGRAMME 15'000 m³

BUSINESS INCUBATORS / Offices and laboratories

APPROXIMATELY GROSS SURFACE AREA 5'000 m²

APPROXIMATELY VOLUME 15'000 m³

Applied research activities can be supported by synergies created between university institutions, research centres and business incubator programmes, in order to develop research products and bring them to the real market.

The simultaneous presence on the site of all the necessary conditions for the launch and operativity of these kind of programmes can encourage the establishment of offices, laboratories and other connected services which can exploit a local-created know-how for a wider production. Let us assume that, initially, 200 workplaces, corresponding to more or less 15-20 small-medium entreprises, could benefit from this synergic environment.

BOILER 4 - HARD PROGRAMME 10'500 m³

ALTERNATIVE MOBILITY / Electric hub for public mobiltiy

APPROXIMATELY GROSS SURFACE AREA 3'000 m²

APPROXIMATELY VOLUME 10'500 m³

The hybrid alternative mobility system would principally need some spaces for storage, recharging, service, production and distribution of clean energy for a full-electric public transport and parking lots for modular vehicles.

Considering that each module of the CRISTAL hybrid transport solution mentioned above can carry up to 5 people in the individual configuration and up to 18 people standing in shuttle mode, we could imagine that a fleet of 30 modules could cover the transport needs for 50% of the users of the area in shuttle mode.

TOTAL PHASE I		71'000 m ³	
BUILDABLE RESERVE		29'000 m ³	
SOFT PROGRAMME - PHASE I		213'000 m ³	
of which	within boilers' volumes	106'500 m ³	
	distributed over the site	106'500 m ³	

It is worth highlighting the fact that the settlement of this multifunctional programme could allow the establishment of useful synergies between the educational programme, the accomodation and wellness services through the involvement of students during working periods and internships.

In order to complete the offer for the users of the site, some common services, (restaurants, cafés, stores) could occupy the ground floor of the four volumes.

From an energetic production point of view, there is certainly no lack of synergies in this sector: in fact, the cultivation of algae and plants in greenhouses for research activities could devote some biomass for energy purposes.

Recalling once again that the dimensioning of the activities will require more in-depth studies from an economic, financial and social point of view in the framework of a concrete multidisciplinary research, according to our assumptions based on available data and limitations, phase 1 does not fully exploit the buildable potential.

Therefore, we could imagine a temporary use of this not exploited volume for soft programme activities, thus increasing the area dedicated to vertical greenhouses.

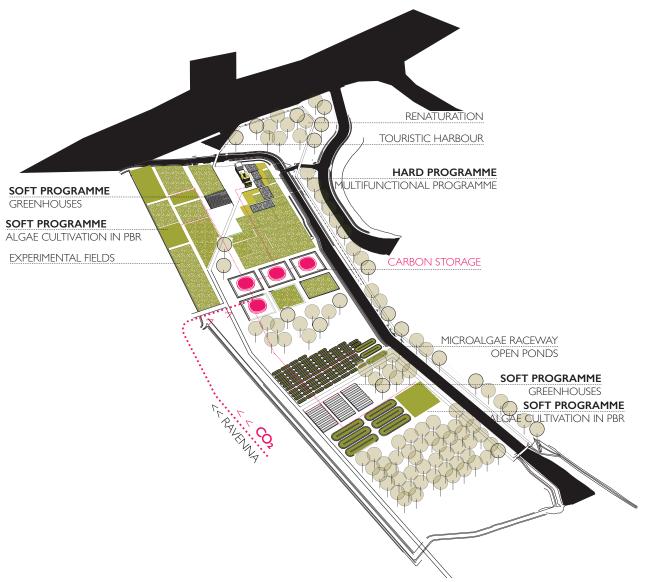


Fig. 254 Polesine Camerini power plant: hard and soft programme (source: elaborated by the author)

Fig. 255 Polesine Camerini multifunctional OILANDSCAPE: scenario 2 (source: elaborated by the author)

Phase 2 consists of an adjusting step of spatial needs of activities and of a technological upgrading in order to improve activities' performance and reduce their environmental impact.

phase 2: 2040 incremental growth

If necessary, the buildable volume temporarily occupied by soft programme will be redirected to hard programme activities. The trend of activities in these first operational years will allow to define the spatial needs for the extension of the hard programme. Thus, the remaining buildable volume could be used to increase accomodation tourism offer, educational and research spaces or business incubators' activities. The construction of this portion of hard programme will be followed by the settlement of the corresponding part of soft programme activities, maintaining the same volumetric ratio (3 times the volume of soft programme activities compared to the hard programme) and the same percentage of distribution within the volumes of the former boilers and outside (50%-50%).

As in the first scenario, the implementation of the microalgae cultivation technology in photobioreactors could complement the construction of our energy landscape. In this case, hydrogen production would take place directly during the phase of algae photosynthesis and would be recovered and conveyed to the electric hub for public mobility to charge hydrogen batteries for the fleet of vehicles.

TOTAL PHASE 2		29'000 m ³	
BUILDABLE RESERVE		0 m ³	
SOFT PROGRAMME - PHASE I		87'000 m ³	
of which	within boilers'volumes	43'500 m ³	
	distributed over the area	43'500 m ³	

The total surface area of the soft programme represents approximately 10 hectares of experimental greenhouses, of about 5 hectares in vertical greenhouses within the boiler volumes and 5 hectares distributed on the site. The remaining land within the plot could be used, during both phases, for traditional agricultural cultivations, for the implementation of aquaculture basins and for the cultivation of algae in raceway open ponds, so as to create a diversified landscape.

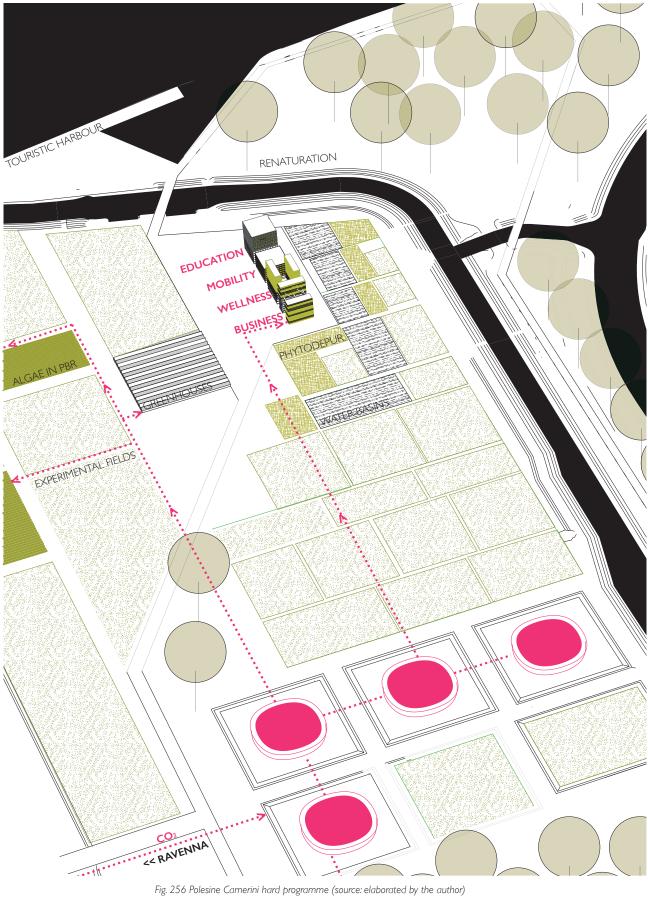


Fig. 256 Polesine Camerini hard programme (source: elaborated by the author)

Fig. 257 Polesine Camerini multifunctional **OIL**AND**SCAPE**: scenario 2 (source: elaborated by the author)

0380 OILANDSCAPES

OILANDSCAPES are green infrastructure

Comparative assessment: multi criteria analysis of scenarios

scenarios as a measuring tool	The construction of scenarios, through reasoning and some simple design tools,	
	allows different development strategies to be compared. This methodology does	
	not aim to give a value judgment on the quality of scenarios themselves, but	
	rather wants to provide decision-makers with useful tools for the assessment	
	and measurement of the effects that scenarios can have on the territorial	
	development.	
	If, at a first sight, scenarios' building helps decision-makers to visualize and	
	imagine the consistency and typology of the programme for possible future	
	developments, the assessment process cannot stop at this stage.	
	We are aware that territorial planning problems are complex, because they often	
	involve many stakeholders and have to answer to relevant social, economic and	
	environmental challenges. Thus, intuitive decisions risk to be simplistic because	
	of the lack of a simultaneous evaluation of the interrelation among problems.	
Multiple Criteria Decision-Making	Quoting what Stanley Zionts wrote in 1979 in his article MCDM - if not a Roman	
	numeral, then what? 1, Multiple Criteria Decision-Making (MCDM) stands for	
	"problem solving with multiple conflicting objectives".	
	Thus, in order to compare and assess the impact of scenarios in an objective	
	way, complexity needs to be simplified and its components must be separated	
	in objective evaluation criteria. In the light of the priorities initially defined, it	
	will become possible for decision-makers to position themselves in front of	
	scenario's compliance with the criteria chosen.	

I see Zionts, S. (1979). *MCDM - If not a Roman numeral, then what?*, in Interfaces, Vol. 9, No. 4, August 1979, The inStitute of Management Sciences

Decision-makers will not necessarily have to choose which one of the scenarios proposed has to be implemented. In fact, the knowledge and awareness achieved during the assessment process will allow them to propose more complete development strategies that could combine some features of different scenarios.

It is generally known that the pursuit of a sustainable development aims to achieve a balance among economic, ecological and social components.

If the assessment process was defined by criteria that directly address these three aspects, we believe that the evaluation process would focus on the programmatic aspects already explored.

For this reason we are convinced that some transversal criteria, which, for example, put at the centre of the reflection the role of the stakeholders in the implementation and management process or the repeatability of virtuous processes on a long-term period would allow to give neutral judgments from a content point of view, but rather the would define objective and targeted appraisals in terms of measurable territorial effects.

We would like to set up a matrix based on three families of assessment criteria that seem to be preponderant in a decision-making process, namely:

- stakeholder involvement;
- territorial governance;
- local consensus.

famlies of assessment criteria

1. stakeholders' involvement The criteria for stakeholders' involvement aim to provide decision-makers with the preliminary information necessary to decide how to build the political and technical path for a territorial conversion process. On the basis of these assessments, decision-makers will be able to define the strategies and tools which will be necessary to regulate the public-private partnership, sharing common objectives of social and ecological responsibility.

I. Stakeholders' diversification

In a long-term perspective, the involvement of a wide range of stakeholders (public, private, economic and social associations of the territory) could ensure a greater programmatic resilience of the site towards socio-economic changes.

2. Local community involvement

A successful completion of the conversion operation may depend on the active participation of the local community in the definition of some programmatic aspects.

3. Site management

The management of activities, site spaces and building rights' allocation among the stakeholders could represent a very impactful aspect that should be considered from the beginning of the economic-financial perimeter of the operation.

4. Public interest

The public interest of the transformation process will be defined by the profile of the stakeholders involved.

5. Horizontal hierarchies

The establishment of a horizontal hierarchical system among stakeholders will guarantee the possibility of measuring their actions in terms of social and ecological responsibility. The coexistence of different interests should be a natural process for balancing the responsibilities of key operators towards civil society. Territorial governance assessment criteria must provide decision-makers with the necessary tools to frame the administrative-bureaucratic path to be taken, as well as those potential synergies with superordinated planning tools.

2. territorial governance

I. Compliance with existing legislative framework

Scenarios must be analyzed from an administrative point of view, highlighting those aspects that respond to the legal framework and those that would require for derogations. The criterion should focus on procedures' timeframes as relevant information for the decision-making process.

2. Adherence of the programme to the real territorial context

There is often a great time gap between territorial planning objectives and real territorial needs. The criterion is conceived in order to relate, from a quantitative and qualitative point of view, the compliance to the regulatory framework with the usefulness of the envisaged programme in relation to the real territorial context.

3. Public-private concertation

Public-private partnerships normally increase the quality and efficiency of services. They require the definition of public-private agreements which can be operational because of their public interest.

4. Inter-territorial synergies

Planning tools generally define land uses and territorial development strategies on the basis of administrative boundaries, without looking at wider trans-regional synergies and opportunities. This criterion should aim to provide support to decision-makers in order to contextualize the strategy in a wider scale focusing on the possibility to take advantage of some trans-regional territorial benefits which could contribute in enhancing the local territorial development.

5. Implementation of national development strategies

National development strategies are rarely incorporated into planning tools. The criterion should provide decision-makers with the tools to focus on the possibility to integrate existing national development strategies into the legal framework.

3. local consensus Local population's acceptance often determines the final outcome of territorial transformations. Decision-makers must therefore be able to assess the positive effects that transformations can have on local communities, thus focusing communication strategies on these expected benefits. Criteria are taken from the *National Strategy for Growth and Economic Development of Inner Areas* (Barca and Casavola, 2014), the Italian national programme for the enhancement of the local development in those territories which have limited access to basic public services (education, health, mobility).

I. Increase in the well-being of the local population

The beneficial effects of a local development strategy on the well-being of a local community are a key element if the know-how brought by the application of the scenario is replicable and applicable in other contexts and domains.

2. Increase in local demand for labour

The criterion should help decision-makers to assess the scenarios according to their potential to create induced labour on a larger scale and on a long term perspective.

3. Valorization of territorial capital

By *territorial capital* we mean those existing local excellences or cultural and landscape heritage which should be enhanced and on which it would be desirable to invest in order to foster a sustainable local territorial development. Decision-makers must be able to assess the potential of scenarios in involving the existing economic and cultural networks in future development strategies.

4. Reduction of the social costs of de-anthropization

Preventing the abandonment of territories could guarantee a continuous and spontaneous maintenance of the territorial infrastructure, thus preventing environmental disasters and their high social, economic and environmental costs. Policy-makers should therefore be able to assess which of the analyzed scenarios could have a better impact for repopulating processes in the medium-long term.

5. Enhancement of local development factors

The germ of the local development must be sown, but it must be allowed to sprout and contaminate spontaneous development processes. Decision-makers must interpret the scenarios in the light of this perspective, imagining how to set up a monitoring path of local development processes, with the aim not to leave territories alone as soon as the incubation phase is over.

SCENARIO I / STAKEHOLDERS' INVOLVEMENT

I. Stakeholders' diversfication

The energy conversion scenario of the Polesine Camerini site does not open up to many stakeholders. Maintaining the energy-producing role of the area implies the sole involvement of national or international actors operating in the energy sector. An alternative scenario, but which does not open to more diversified scenarios, could see the *Eco-industrial Park* established in Ravenna industrial harbour for the implementantion of CCS technology investing also in the requalification of Polesine Camerini site so as to diversify their production by reusing the waste CO₂ emitted by their main activities.

2. Local community involvement

The high technical skills which are necessary for the development of the energy conversion process do not require the involvement of the local population in participatory processes.

3. Site management

It is expected that only one company or a consortium of energy sector companies will manage energy activities and their development on the site.

4. Public interest

An activity based on a centralized energy production seems to better respond to private economic interests rather than satisfying the lack of public services which could represent an intervention which meets the public interest.

5. Horizontal hierarchies

The concept of a centralized conversion of energy production does not open up to any kind of horizontal relationship with final consumers or even with local authorities.

LOW

LOW

LOW

HIGH

LOW

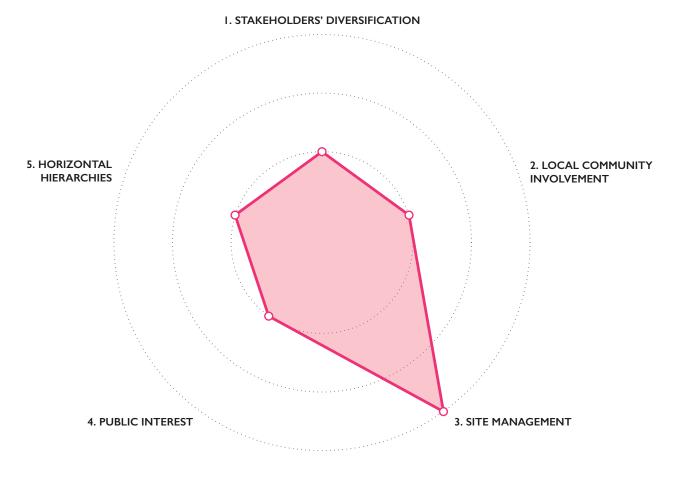


Fig. 258 Scenario 1: stakeholders' involvement assessment (source: elaborated by the author)

SCENARIO 2 / STAKEHOLDERS' INVOLVEMENT

I. Stakeholders' diversfication

The development of the second scenario requires the participation of a wider range of stakeholders. The presence of educational services will involve public institutions and public or private research centres, while tourism-related activities will attract private investors specialized in wellness and accomodation sector, as well as companies specialized in the sale and distribution of local Italian food products, such as Eataly. At the same time, enhancing local agricultural production and aquaculture excellences will also allow the involvement of economic and social associations of the territory. The integration of business incubator's activities could also attract already existing realities, such as H-Farm in Roncade (Treviso) which has already experienced the establishment of this kind of programme in rural contexts. Finally, activities related to alternative mobility could bring private or public-private companies involved in the provision of municipal or provincial mobility services, as well as Ferrovie dello Stato Italiane, which is the current provider of the weak bus service in the area, and could involve research centres for the implementation of electric and hydrogen vehicle technologies.

2. Local community involvement

The involvement of local communities could be organized under the form of participatory workshops and it represents a fundamental aspect for the definition of the scenario programme as it allows to strengthen possible synergies with the existing economic, cultural and social network.

3. Site management

Activities' management could be more complicated because of the presence of many stakeholders. The establishment of a *consortium*, that is to say a legal institute that regulates a voluntary aggregation of private or public entities for common business initiatives, could define from the beginning of the process the relations among the different operators.

4. Public interest

The level of interactivity of the proposed programme with the local community is high, both directly, by offering work and meeting places, and indirectly, by encouraging and enhancing existing local excellences.

5. Horizontal hierarchies

The necessity to focus on common interests and synergies lays the foundations

HIGH

HIGH

MEDIUM

HIGH

HIGH

for establishing a horizontal hierarchical relationship between public and private operators. The participatory process which could be undertaken with the local population would make the horizontality of the system even more evident, thus making all the stakeholders equally responsible from a social and ecological point of view.

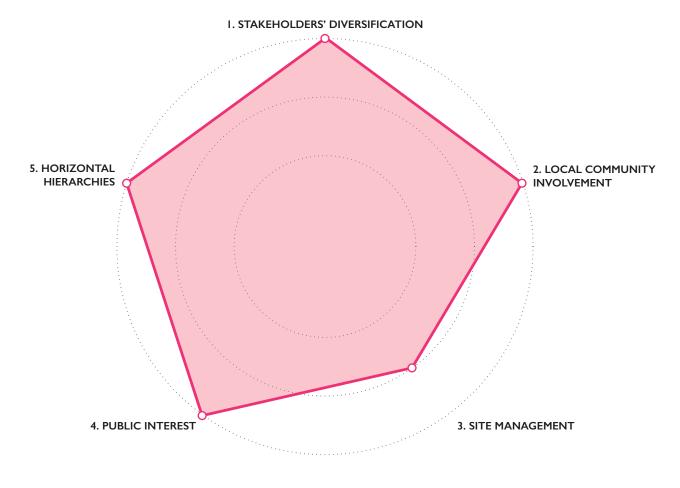


Fig. 259 Scenario 2: stakeholders' involvement assessment (source: elaborated by the author)

SCENARIO I / TERRITORIAL GOVERNANCE

I. Compliance with the existing legislative framework

The first scenario is conceived in order to comply with the municipal and provincial planning tools in force, which confirm the energy production vocation of the area. According to the Regional Law of Veneto 11/2004, art. 18 bis -Interventions in direct application of urban planning instruments, the conversion of the energy production technology for a reduction of the environmental impact is therefore an intervention which is always permitted.

Energy production activities are among those listed in Annex IV to Part II of the Legislative Decree 152/2006 - Environmental regulations, thus an Environmental Impact Assessment (VIA) is required. The aim of this procedure is to describe and assess the impacts of the project on the environment, on human health and wellbeing, as well as to identify any protective measures to eliminate or minimize the negative impacts.

2. Adherence of the programme to real territorial context LOW

It is impossible to avoid noticing a temporal discrepancy among the planned future of the area, current territorial needs and the projections regarding structural changes in energy production model suggested by the same owner of the area (ENEL spa).

A paradoxical situation therefore emerges: the most recent planning tools, such as the PTCP of the province of Rovigo, approved in 2012, and the PAT of the municipality of Porto Tolle, also approved in 2012, unequivocally reaffirm the energy vocation of a site that houses an oil power plant decommissioned in 2010 and whose Environmental Impact Assessment for a coal conversion project has been definitively rejected in 2011. Moreover, ENEL is promoting a non-energy use requalification of those disused power plants' sites which have completed their life cycle and Polesine Camerini is one of them (see Futur-E programme).

3. Public-private concertation

No public-private concertation should be initiated as the operation envisaged by the scenario corresponds to territorial planning instruments and can be directly developed by private operators.

4. Inter-territorial synergies

Trans-regional synergies are limited to the exchange of resources, such as carbon dioxide via the pipeline, between Ravenna and Polesine Camerini sites.

LOW

MEDIUM

HIGH

5. Implementation of national development strategies LOW

The scenario for the energetic conversion of Polesine Camerini site does not integrate the local development perspectives advocated by the *National Strategy for Growth and Economic Development of Inner Areas*, which envisages the implementation of those missing services for the local community in order to pursue a long-term sustainable local development.

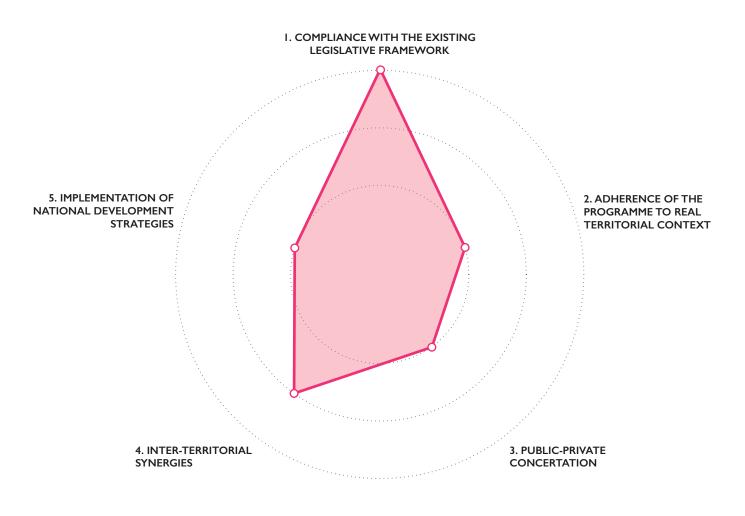


Fig. 260 Scenario 1: territorial governance assessment (source: elaborated by the author)

SCENARIO 2 / TERRITORIAL GOVERNANCE

I. Compliance with existing legislative framework

The second scenario, exploring the possibility of converting the area of the former Polesine Camerini power plant through a mixed programme for nonenergy purposes, does not fit into the current regulatory framework. For this reason, it will be necessary to modify the existing urban planning instruments in order to be able to implement the re-functionalization foreseen by the scenario. The proposed programme of activities can be considered of major public interest and involves public and private sector actors. According to art. 7 of the Veneto Regional Law 11/2004, it is possible to define and implement intervention programmes of public interest, which require the integrated and coordinated action of municipalities, provinces, regions and other public or private entities, through the stipulation of Programme Agreements (Accordi di Programma). Once the unanimous agreement of the participants has been verified at the Services Conference (Conferenza di servizi), the programme agreement is signed by the representatives of public or private actors participating. If the programme agreement doesn't comply with urban planning instruments (PTCP and PAT), the Province's approval is required and the agreement is approved by the President of the Province. Given the consistency and the typology of the planned programme (see Annex IV to Part II of the Legislative Decree 152/2006, which also includes those tourist accommodation activities which measure more than 25'000 m³) located in a fragile environmental area of which some parts are included in the protected natural areas' list, it will be necessary to undertake the Environmental Impact Assessment procedure.

2. Adherence of the programme to real territorial context **HIGH**

The proposed programme attempts to propose an alternative local development scenario that starts with the enhancement of local excellences and with the improvement of services' accessibility of local population.

3. Public-private concertation

Concertation between public and private operators is a fundamental moment for the successful transformation of the area. The possible synergies between public and private activities constitute the high value added on which to build the negotiation path for the achievement of a good public-private partnership.

4. Inter-territorial synergies

Trans-regional synergies are not only limited to the transfer of carbon dioxide from Ravenna site to Polesine Camerini one, but they are extended, looking at

HIGH

HIGH

LOW

strengthening the tourist offer of the Adriatic coastal region that runs from Venice to Ravenna, to the creation of an educational, research and wellness tourism hub in Polesine Camerini which could implement the network of tourist routes on a vast area and directly relate the depressed economy of a peripheral area with more dynamic economies of poles, such as Ravenna and Venice.

5. Implementation of national development strategies **HIGH**

The scenario is fully aligned with the development and economic growth objectives of the *National Strategy for Inner Areas* and tries to make operational a strategy that has not yet been incorporated into urban and territorial planning instruments.

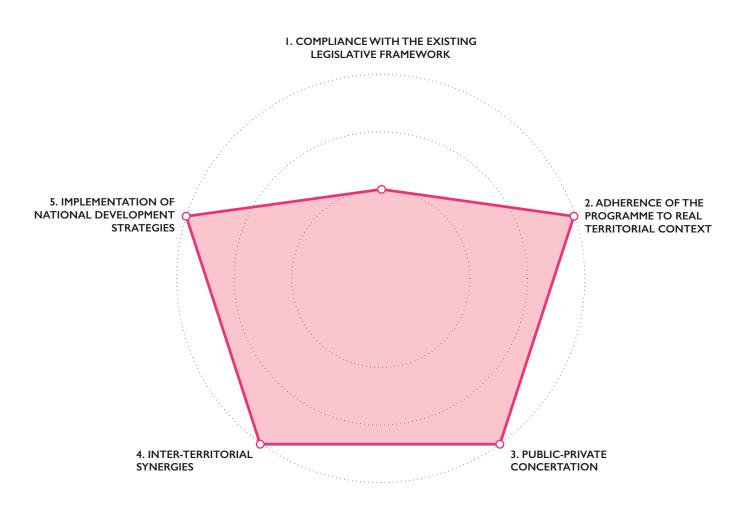


Fig. 261 Scenario 2: territorial governance assessment (source: elaborated by the author)

SCENARIO I / LOCAL CONSENSUS

1. Increase in the well-being of the local population

A scenario which envisages an energetic conversion process undoubtedly brings environmental improvements, but it remains a very specialized industrial activity with a low attractiveness in terms of creating an induced working circuit that can effectively distribute a greater well-being to the population by involving other sectors (tertiary, tourism, etc.).

2. Increase in local demand for labour

During the maximum production period (1980-2010), there were about 300 people employed in the power plant processes (Caldiron, 2013). Although a more precise assessment can only be made through engineering and economic studies, the conversion of the energy production system will not generate higher employment peaks than those already experienced. There may be a light increase in indirect employment because of the necessity to locally develop some specific aspects of the production, of bio-char marketing and of plant maintenance activities, but the remoteness of the site from research and development dynamic contexts will not facilitate the dissemination of the know-how among local entrepreneurs.

3. Valorization of territorial capital

By territorial capital we mean those local production excellences and cultural heritage with which the scenario will not create close relationships for their valorization. Tourist routes which surround the site will complete an educational or a slow-ecological touristic offer, blurring that clear separation between industry and nature that characterized landscapes of the second industrial revolution.

4. Reduction of the social costs of de-anthropization

The re-functionalization of the site will allow its land and water reclamation from environmental pollutants, introducing new practices of waste waster purification through micro-algae cultivation and guaranteeing the maintenance of all those hydraulic engineering works carried out to avoid natural water stagnation in the territories of the Po delta.

5. Enhancement of local development factors

As already experienced with the closure of energy production activities in 2010, the working dependency of local communities on the industrial energy sector does not open up alternative solutions for local development, thus making the territorial destiny uniquely linked to energy industry's trend.

LOW

MEDIUM rere about 3

LOW

HIGH

LOW

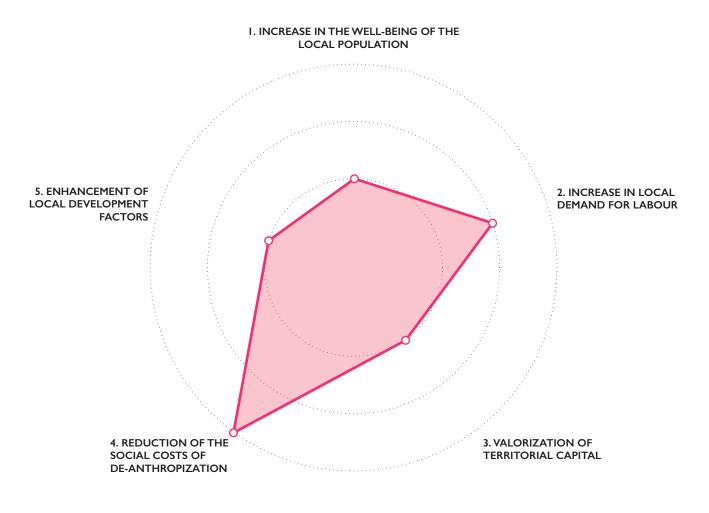


Fig. 262 Scenario 1: local consensus assessment (source: elaborated by the author)

SCENARIO 2 / LOCAL CONSENSUS

I. Increase in the well-being of the local population

The scenario will provide for a programme of activities that can respond to the lack of services in the territory and that can integrate the existing agricultural and tourism economic network. Predictable improvements are therefore structural and can actually have positive effects on the well-being of the population of a larger area and not only on workers employed in Polesine Camerini site.

2. Increase in local demand for labour

As seen in the previous part of our research, the size of the reconversion activities was calculated on the basis of 1'000 people, including staff, students and temporary users, thus tripling the work expectations of the previous use for energy purposes. In addition, benefits generated by the establishment of research, educational and tourism activities will also be reflected in the creation of a significant amount of indirect employment and of new small-medium businesses that will take advantage of synergies with the strengthened local economy.

3. Valorization of territorial capital

The programme has been conceived in order to enhance the valorization of local agricultural and landscape excellences on which to establish a more sustainable local development model with a high level of social and ecological responsibility.

4. Reduction of the social costs of de-anthropization

The re-functionalization of the site will allow its land and water reclamation from environmental pollutants, introducing new practices of waste waster purification through micro-algae cultivation and guaranteeing the maintenance of all those hydraulic engineering works carried out to avoid natural water stagnation in the territories of the Po river delta.

5. Enhancement of local development factors

Established activities are a reference hub for a long-term development, which must strengthen a circular economic model capable of enhancing territorial strenghts.

HIGH

HIGH

HIGH

HIGH

HIGH

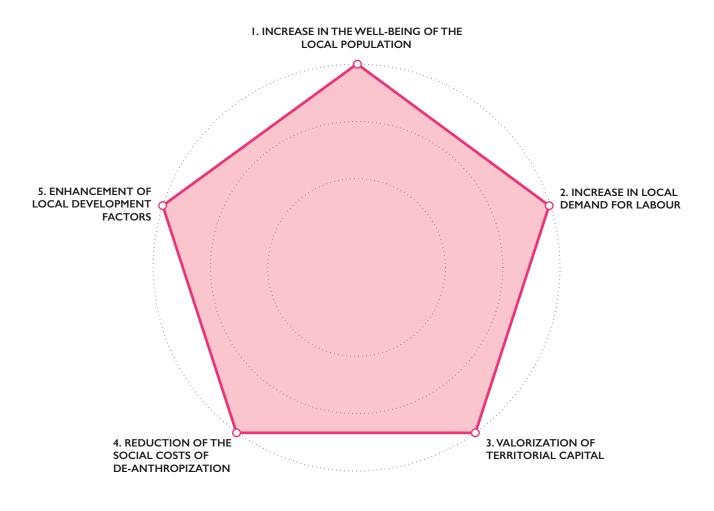


Fig. 263 Scenario 2: local consensus assessment (source: elaborated by the author)

SCENARIO I / COMPARATIVE ASSESSMENT

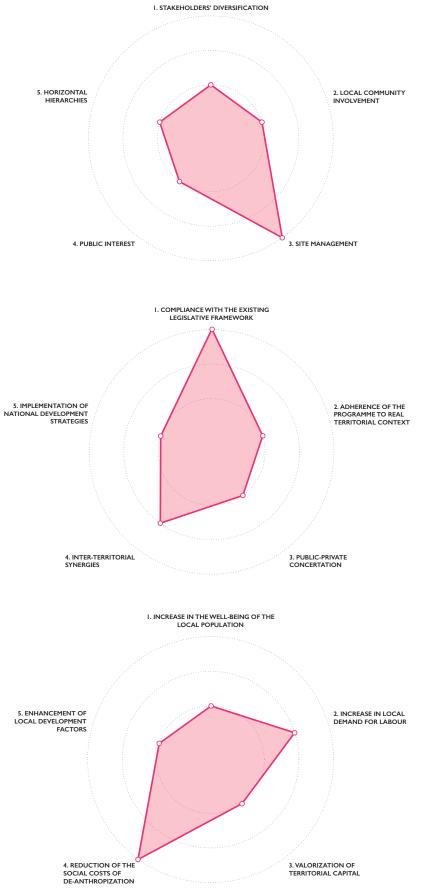
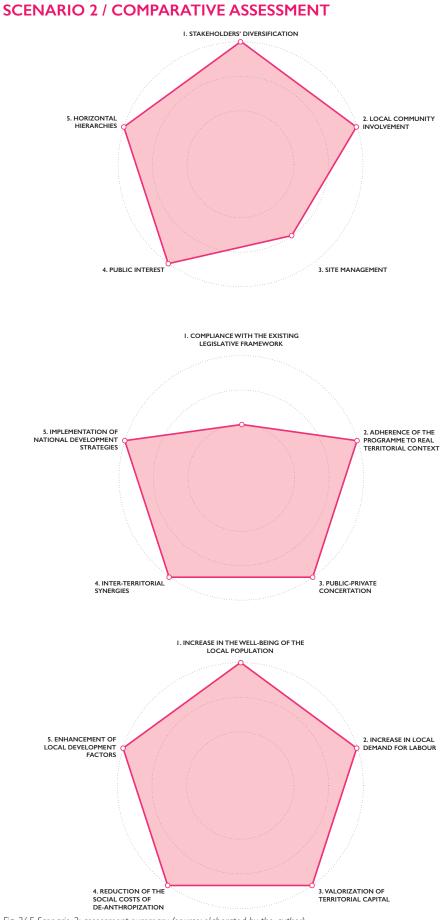



Fig. 264 Scenario 1: assessment summary (source: elaborated by the author)

The implementation of current administrative procedures

From a comparative assessment between the scenarios, we can conclude that:

- the first scenario, more technical and specialized, aims at optimising the circular production model for energy purposes and maximizing carbon dioxide absorption in order to have a beneficial impact in terms of global sustainability;
- the second scenario looks at a balanced local development as the primary objective for the definition of sustainable growth's criteria.

According to the selected criteria, the imbalance between the two analyzed scenarios seems to be considerable. However, the analysis does not want to define whether one scenario is better than the other in absolute terms.

On the basis of the criteria chosen, which meet priorities and expectations of a hypothetical public decision-maker, the second scenario seems to provide more effective responses if the objectives are to ensure a democratization of development processes, to guarantee the well-being for the widest range of population, to trigger territorial cohesion processes in order to pursue a balanced territorial development and competitiveness.

However, the complications for the development of the second scenario are evident, as it does not correspond to the existing territorial and urban planning instruments and we can imagine that long processes will be necessary for the their modification.

Programme agreements are existing instruments, regulated by regional laws for the territorial governance (in our case, the Regional Law of Veneto n. 11/2004 in art. 7 - *Programme agreements* and the Regional Law of Emilia-Romagna n. 20/2000, art. 18 - *Agreements with private entities*) that can facilitate and simplify the bureaucratic process for introducing variants to planning instruments.

Programme agreements are used to approve projects which entail the declaration of public interest and urgency of the works.

The necessity to regulate stakeholders' relationships from a planning, management and contractual point of view, *programme agreements* generally need a bigger design effort that goes beyond a mere zoning.

Their key activity is that of programming process, in order to undertake an aware project that can support the optimization of investment choices for the efficient allocation of public resources and for a conscious involvement of private funds. Thus, the stipulation of a *programme agreement* is normally accompanied by a

feasibility study that allows the project to be examined in depth, as well as its technical, social and economic-financial criticalities.

The document Guidelines for the elaboration of feasibility studies prepared by ITACA

comparative assessment of the two scenarios

programme agreement

feasibility study (Istituto per la Trasparenza degli Appalti e la Compatibilità Ambientale - Institute for the Transparency of Tenders and Environmental Compatibility) in 2012 shows that in Italy, from the 1990s up to now, *assessment process* has not been established as a widespread good practice for programming activities of major public interest operations for two principal reasons:

• assessment has been perceived as a procedure which would have reduced the discretion of the political decision-maker;

• the absence of a clear legal framework.

Feasibility study stands for a preliminary assessment tool that, through the proposal of possible alternatives, analyzes the territorial and socio-economic context, proposing a management model that will be evaluated according to technical, financial and economic feasibility, in order to stress any critical issue in the medium-long term.

Feasibility studies appear for the first time in the Italian legal framwork with the Law on Public Works n. 109/94 (Legge Merloni) which, in art. 14, states that feasibility studies are those necessary tools to identify the technical characteristics and the economic-financial framework of public works foreseen in the three-yearly programming plan. Subsequently, in the art. 37 bis of the same law, the request to draw up a feasibility study is also envisaged for the programming of public works or for operations of major public interest carried out in public-private partnerships.

Recent changes in the legal framework are now aimed at better specifying the roles and content of feasibility studies. The third amendment to the Code of Contracts (Legislative Decree n. 152/2008) imposes their preparation in public-private operations for the realization of public works through Project Financing, both for a programming stage to apply for funding and, in a more complete form, as the basis for call for tenders.

The contents of the feasibility study in its most complete form have finally been defined in DPR n. 207/2010, art.14, c.2 as follows:

Part One - General explanatory report:

- 1. territorial and socio-economic framework
- 2. analysis of current and forecast demand
- 3. analysis of design alternatives
- 4. study of the environmental impact of possible alternative solutions

Part Two - Technical report

- 5. technical and functional analysis of the intervention
- 6. time and costs estimates
- 7. administrative-procedural sustainability

Part Three - Economic and financial report

8. financial feasibility (economic and financial plan)

9. economic and social feasibility (cost-benefit analysis)

The conversion programme of 23 decommissioned power plants launched by ENEL in 2015 has already led to some initial procedural results.

From the programme website¹, it is possible to identify three procedural strategies that Enel has adopted until now:

• the direct sale of those plants with lower production capacity and small size for a functional valorization that could meet the needs of the territory (for example, Livorno and Carpi sites);

• a two-stage procedure for the acquisition and requalification of the site organized through:

- a manifestation of interest;

- a due diligence, project proposal and binding purchase offer of the site. The site of the Polesine Camerini thermoelectric power plant is part of this kind of procedure;

• an international ideas competition, at the moment applied only for the conversion proposal for Alessandria power plant site.

We have already mentioned that Porto Tolle urban planning tools prevent any kind of development that is not related to energy production purposes, nevertheless the two-stage tender procedure for the reconversion of Polesine Camerini power plant explicitly states that no conversion of the site for energy purposes is possible and that the second stage of the procedure consists of a binding project and economic offer for the site acquisition, which is structured on a simplified model of feasibility study.

Although the subsequent procedure is not mentioned in any part of the document, it seems plausible to think that the intention is to proceed through a *programme agreement* which would involve the participation of at least one private entity that would commit itself for purchasing the site through a project proposal assessed by a feasibility study.

The procedure should therefore derogate from the current planning instruments under the aegis of urgency and public utility to speed up the bureaucraticadministrative process.

With regard to the experience of the international ideas competition, the call explicitly states that, at the conclusion of the procedure, Enel will evaluate the start of a second phase aimed at the sale of the site.

programming experiences within the Futur-E programme

I see https://corporate.enel.it/it/futur-e.html

The proposal to be developed will be chosen among the award-winning projects and this one could be entrusted with the task of arranging a pre-feasibility study commissioned by the private entity interested in the development of the selected project.

The presence in the jury of a representative of the municipality and the perspective of the preparation of a feasibility study lead us to think that the objective could be starting a concerted path between public and private entities in order to define the reconversion programme of Alessandria power plant site in the form of a *program agreement*.

FUTUR-E RESULTS

Ideas competition for the reconversion of Alessandria power plant

Fig. 266 Alessandria power plant (source: Enel)

Images and texts from the website: https://corporate.enel.it/it/futur-e/impianto/alessandria/concordo-di-idee.html

Location Alessandria (Piedmont, Italy) Type of plant Turbogas Area extension 66'000 m² Gross plant power 176 MW

The plant consists of two single-cycle gas turbogas units with a capacity of approximately 90 MW each. An emergency generator set is added to the units as a back-up power supply. In the plant there are various auxiliary technological plants, necessary for the production process such as the methane gas decompression station, diesel engines launch, emergency diesel generator sets, hydraulic network and wastewater treatment plant.

Alessandria power plant was the first example of an International Ideas Competition promoted in July 2015 within the Futur-e programme to identify a new use of the site. The initiative involved 200 participants from 8 countries in Europe, Latin America and Asia. Private citizens, groups of companies, architecture firms and associations have sent their proposals, which have been selected by the jury composed of representatives of Enel, Alessandria Municipality, Polytechnic of Milan and the University of Eastern Piedmont. Three prizes have been awarded, as indicated in the call, to which two special mentions have been added.

The territory

Alessandria is a crossroads of trade, industry and handicraft as well as research and culture. The strategic position in the centre of the Turin-Milan-Genoa triangle and the traditional connection among Piedmont, Lombardy and Liguria has contributed to make the city and its province a fundamental hub of the Italian economic system.

The province of Alessandria accounts for almost 10% of Piedmont's businesses and about 1% of all Italian businesses. The business is varied and diversified: from agriculture to construction, from mining to services, with excellence in jewellery and precious processing and a strong propensity to export, particularly to France, Switzerland and Germany.

FIRST PRIZE XXL - Xtreme Xperience Land Sport field

Team: Recchi Engineering srl, Frigerio Design Group, Ing. Livio Dezzani, Arch. Stefano Ponzano, Ing. Ermanno Maritano

Description of the project

The winning project envisages the creation of a park dedicated to extreme sports, divided into 5 thematic areas (water, land, air, energy and nature). The two ex-tanks are reused for indoor climbing and scuba diving activities; externally, one is surrounded by areas dedicated to skateboarding, bmx, skating and parkour, the other by areas for water activities such as surfing and wakeboarding. The site has a unique, new *building-path* that extends through the area. The building contains locker rooms, a medical room, a refreshment area, specialized shops and an auditorium dedicated to formative and team building activities, which can also be carried outside.

Jury judgement

The idea enhances the industrial identity of the power plant, maintains the historical memory of the site, through the reuse of many existing structures which are converted to sports use and well integrated into the project. The idea is based on an interesting and potentially profitable business model, with positive externalities, attractiveness on the territory and beneficial employment effects for Alessandria and the surrounding areas, focused above on young people.

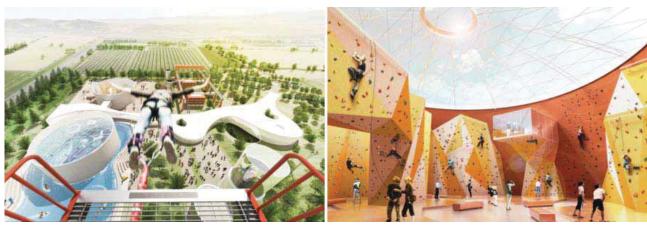


Fig. 267 XXL project for the reconversion of Alessandria power plant (source: Enel)

SECOND PRIZE Anello di una storia che continua Agri-business field

Team: Prof. Arch. Antonello Stella, Daniele Durante (Studio BV36), Arch. Guido Maurizio Urbani, Ing. Maurizio Urbani

Description of the project

The project aims to transform the site into an agricultural pole of excellence, where to combine scientific research (mainly dedicated to the creation of a germplasm bank, in which to select and preserve native seeds of valuable or endangered plant species), the production of local varieties and the consumption of local products. The site is consequently divided into three areas: the spaces intended for research/communication activities of the agricultural pole (including laboratories, greenhouses and a vertical farm) are placed in the southern part, the central area is dedicated to the cultivation of local species, while in the northern part of the site catering and market areas are set up, dedicated to the sale and consumption of local products.

Jury judgement

The project has been rewarded because it is based on innovative logics of valorization of products and agro-food excellences typical of the territory and for the high quality of the project. Particularly noteworthy are the open spaces. The project integrates some interesting existing facilities in memory of the industrial identity of the site (including ex-tanks, the former water treatment bowl and a turbogas group).

Fig. 268 Anello di una storia che continua project for the reconversion of Alessandria power plant (source: Enel)

THIRD PRIZE

Oncological research centre, social-assistance residences and rehabilitation centre Health field

Team: Alice Bottelli (studio DBmLab Architects), Giuseppe Joi Donati (studio DBmLab Architects), Arch. Stefano Antonelli, Ing. Ferruccio Galmozzi (DIGIERRE 3 Srl)

Description of the project

The project involves the creation of an oncology research centre, a socialassistance residence, a rehabilitation centre, a church/auditorium and a University of the Third Age. The project valorizes some pre-existing structures, in particular the two tanks and a chimney.

Jury judgement

The project has been rewarded for the significant positive social impact it would generate and for the quality of the architectural project, which is well inserted within the context and integrates in an interesting way different pre-existing structures. The design concept also presents significant positive externalities for both Alessandria and its surrounding urban areas with significant employment growth's effects. The proposal is also interesting for its possible future synergies with other hospital rehabilitation centres in proximity of the area.

Fig. 269 Oncological centre project for the reconversion of Alessandria power plant (source: Enel)

SPECIAL MENTION LIIG – LISSÄNDRIA INNOVATION GARDEN

Research field

Team: Arch. Matteo Valente, Ing. Davide Baccarin

Description of the project

The project envisages the creation of a science and technology park dedicated to small businesses with the presence of laboratories, educational areas and co-working spaces. Business incubators complete the campus together with temporary residences. The two tanks, memory of the site's industrial past, are used respectively for educational purposes and as a conference centre.

Jury judgement

The project is mentioned for the quality of the architectural project with a special focus also on technical solutions and for the potential positive effects on young people.

Fig. 270 LIIG project fot the reconversion of Alessandria power plant (source: Enel)

SPECIAL MENTION E-CITY Research field

Team: Arch. Luigi Centola (Centola & Associati), Arch. Mauro Piantelli (DE8 Architetti), Ing. Arch. Giovanni Zallocco (ERREGI Srl)

Description of the project

E-CITY consists in the transformation of the power plant into an electric hub for full-electric systems (for home automation and zero emission mobility). The project includes an event area, research, start-ups and co-working areas, a headquarters dedicated to exhibition/sales for electric mobility and full-electric systems for the home. The two tanks are dedicated to the storage of batteries and surrounded by a circuit of electric karts.

Jury judgement

The project is mentioned for the innovativeness of the proposed model and the attention devoted to architectural design and management of environmental, acoustic and visual impacts as well as to the logics of social inclusion in terms of involvement of citizens, entrepreneurs and young university students.

Fig. 271 E-CITY project fot the reconversion of Alessandria power plant (source: Enel)

Towards a trans-regional programming tool

What seems to stress the previous administrative excursus in the Italian planning scene is the use of feasibility studies only to verify and confirm planning tools, in order to evaluate technical alternatives within the superimposed regulatory framework.

The possible adaptation of planning instruments through the use of *programme agreements* for public interest reasons may correct some punctual planning delays, but due to their contingential and exceptional nature, it is not conceivable to consider using them systematically.

The risk is that punctual adjustments remain operations separately conceived, although they are developed to better respond to the renewed needs of the territory and, as in the case of the Futur-E programme, to trigger local development processes. In this sense, the incremental beneficial effect of a longterm strategic vision, which coordinates and seeks synergies among the different parts of the territorial puzzle, could be lost. It is not said that the sum of the effects of so many separate operations corresponds to the effects generated by a programmed coordination for the implementation of the same sites.

The oil mesh of our case study between Ravenna and Polesine Camerini perfectly exemplifies the above mentioned risk. As seen above, we can assume that the conversion of the Polesini Camerini site could take place through a *programme agreement* that will derogate from the planning tools in force, but no current planning tool proposes to consider in a systemic way the infrastructural connections among midstream and downstream infrastructure of the oil mesh. By maintaining its industrial production activities, the port site of Ravenna will probably be able to evolve without needing any variation in the urban planning tools and will only implement production technologies in order to be more respectful of the environment as required by the Municipal Structural Plan (Piano Strutturale Comunale Ravenna). If green technologies could be developed on the site without necessarily involving Polesine Camerini site, this would preclude the benefits generated by the synergy between the dynamic economic environment of a pole area and the depressed one of a peripheral area.

In order to test the scale of intervention of the systemic planning tool we would like to propose to manage the reconversion of oil meshes, we would like to focus on a planning experience on Polesine territories, which dates back to the 1960s and was proposed by the Italian urbanist Giuseppe Samonà (1961).

First of all, we must quickly frame the socio-economic and political-administrative context of that period in order to be able to better contextualize the disruptive

incremental benefits of a systemic planning

the Piano Comprensoriale experience (Regional District Plan) power of Samonà's planning proposal:

• from an administrative and political point of view, the decentralization of competences for territorial planning to regions and provinces had not yet occurred in the 1960s. In fact, only in 1970 ordinary Regions were established together with their competences.

If we look at the Urban Planning Law n. 1150/1942, art. 6 contemplates the establishment of Territorial Coordination Plans, but it doesn't define the territorial governance boundaries of the instrument. The same article, through c.2, states that "municipalities, whose territory is wholly or partly covered by a territorial coordination plan, are required to comply with this requirement in the respective municipal development plan". It is therefore established that local municipal planning must be subordinated to the territorial framework plan, but the law apparently allows the possibility that the latter one does not necessarily correspond to administrative borders, but rather to geographical areas.

• the Introductory Report to the *Piano Comprensoriale dei Comuni del Polesine* (Regioanl District Plan of the Municipalities of Polesine territory - Samonà, 1961) describes the Italian socio-economic context at the beginning of the 1960s: the protectionism of the Fascist years delayed the establishment of a free and competitive market, favouring the monopolistic role of some main entrepreneurial activities, thus delaying a widespread and balanced industrial development. Although during the 1960s the first significant developments in the secondary sector were registered, the ratio between the industrial product and the agricultural one was still far less than that of many European countries: the value of industrial production in Italy was 2.5 times than that of agricultural production, while in Germany it was 6 times and in England 12 times (Samonà, 1961).

In this framework, Samonà understood the necessity to define an industrial development plan on the basis of programmatic guidelines, part of a national investment plan, that must intervene in those territorial situations with serious economic and social imbalances, such as Polesine.

According to him, the criterion that was to determine the scope of such development plans should not correspond to administrative boundaries, but should allow to distinguish and unite portions of territory according to their similar economic and social characteristics, the so-called *comprensori regionali* (definition that we try to translate as *Regional Districts*), where to adopt common economic development strategies.

Samonà's intention was to propose, at a time when the decentralization of territorial planning power was not yet operational, a planning activity for public interest purposes organized on different levels and scales, from national to municipal one, where the Municipal level had to receive, locate and implement the programmatic lines of the regional district plans and the Region had to transmit to the national level the guidelines that should have constituted the basis for the definition of the periodic programme for national investments.

In the light of what has previously been pointed out by the Urban Planning Law n. 1150/1942, *Regional District Plans* seem to correspond to those instruments for the territorial coordination prescribed by the law.

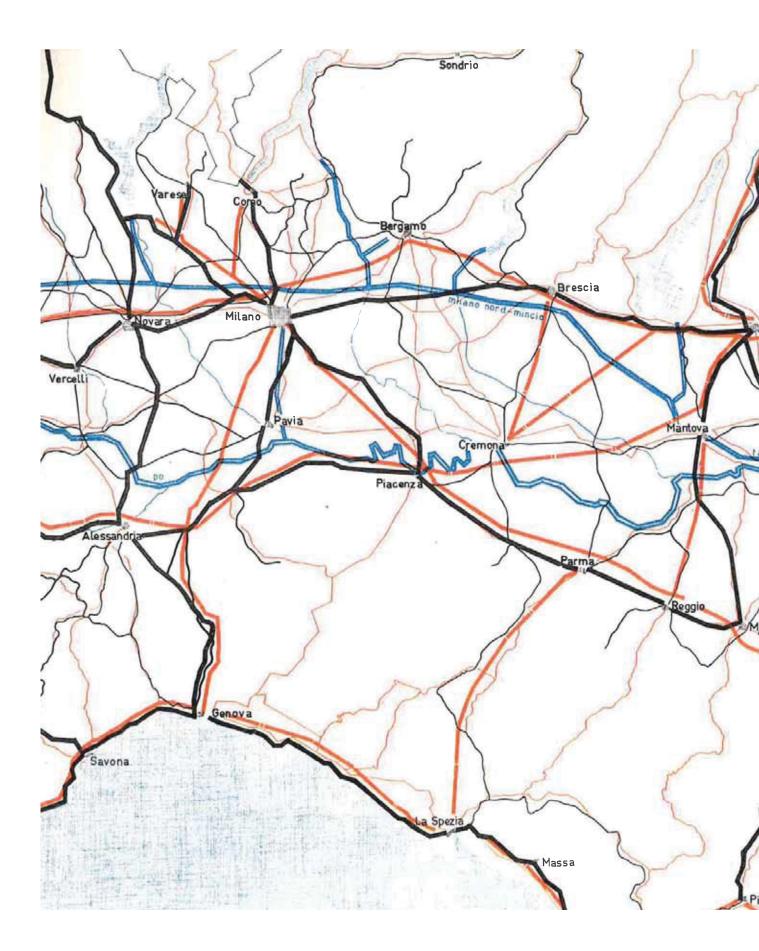
In the case of Polesine region, Samonà stated that the intention of the *Regional District Plan* was to overtake the sectoriality of those previous studies which only focused on the potential navigability of the Po river, but which considered only the mere technical-hydraulic components. Those studies forgot to assess the beneficial effects that the navigability of Po waterway would have brought to all the other activities of the territory. The objective, therefore, of the *Regional District Plan of the Municipalities of Polesine territory* was to simultaneously answer to the complexity of all Polesine territorial problems, in order to make the overall solution an economic driver for a wider national development perspective.

Samonà recognized in the widespread presence of navigable or potentially navigable watercourses the great territorial potential that would have allowed to accommodate important industrial platforms, which, at the same time, would have controlled and reduced the risk of flooding of delta territories through watercourses' canalisation.

The vision expressed by Samonà denotes a substantial difference of the cultural context and ecological conscience if compared to today: the territorial development expected in the 1960s and the search for wellbeing for local population relied on massive industrial developments that should have harnessed environmental resources to generate profit for human activities.

Although today, in the light of the failure of this model, we would no longer formulate a territorial development vision rooted on these contents, it seems interesting to see how Samonà's proposal, dating back to almost sixty years ago, represents a response to that same question stressed by the strategy for Inner Areas nowadays, namely *how we can intervene in the Polesine territory in order to limit the process of depopulation and of de-anthropization*. In addition, Samonà highlights the high percentage of illiteracy among the local labour force, a condition that does not seem to be completely resolved even today, given the difficult accessibility of school services for local communities in Polesine.

Samonà probably overestimated the order of magnitude of the role that Polesine could have played in shifting the infrastructural balances. His thesis, in fact, foresaw the establishment of a large port area that should have connected the delta of Adige river and the Po di Levante one in Rosolina. The port should have been able to accommodate ocean boats in such a way that it would have become one of the most important river ports in Europe. The port should also have represented the intermodal interchange hub with rail and motorway infrastructure.


Thus, the role of that port would have forced to relocate some mobility axes of the national infrastructural planning so as to complete the Polesine development plan and lead the territory to a new economic role in the national productive dynamics.

The *Regional District Plan* proposed a branch of motorway passing through Ferrara and Adria and connected with the A13 motorway near Rovigo and with the SS Romea to the north-west of Chioggia. From this axis, two perpendicular branches should have ensured the connection with the SS Romea to the south of the port of Rosolina, creating the quadrilateral Adria-Corbole-Taglio di Po-Loreo inside which important industrial platforms should have been developed in proximity of the multimodal hub.

In order to complete the mobility infrastructure development, the realization of a major rail axis between Ravenna and Venice would have served a minor public rail transport system in the Polesine.

Remarkable is the fact that the uniqueness of the landscape and of the natural context of the Po delta area are not mentioned even once in the text, testifying the fact that territory was seen as a passive support to human infrastructure activities.

Ports and infrastructure were to become the organizers of a widespread *metropolitan ensemble*, of an *urbanized countryside*, of a *city-territory* (Samonà, 1961) organized as an open structure around decentralized industrial platforms which would have defined a new form of landscape.

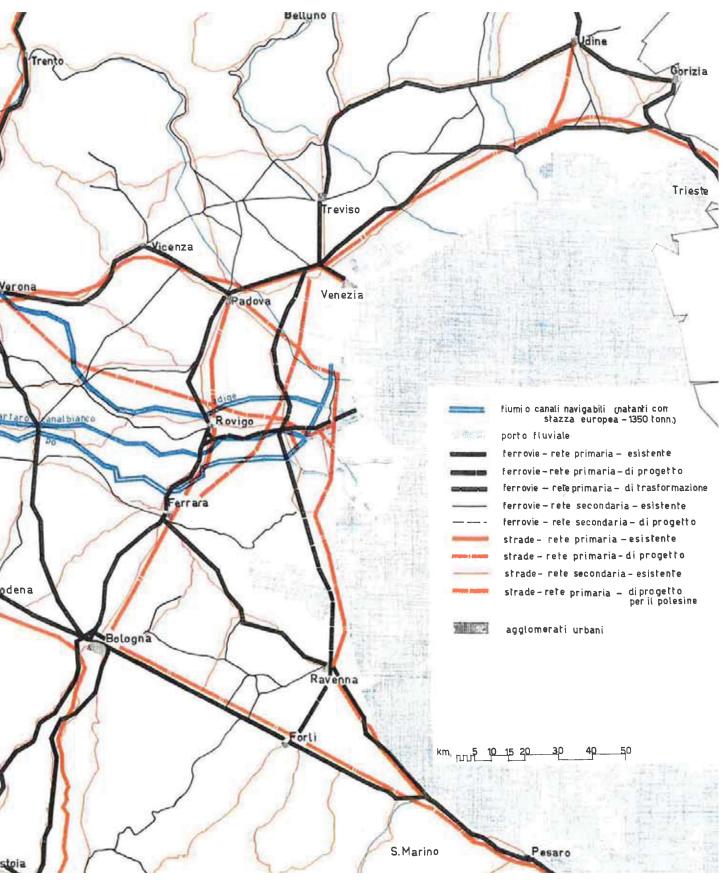


Fig. 272 The proposed infrastructural network by Samonà for the Regional District Plan for Polesine (source: Samonà, annex2)

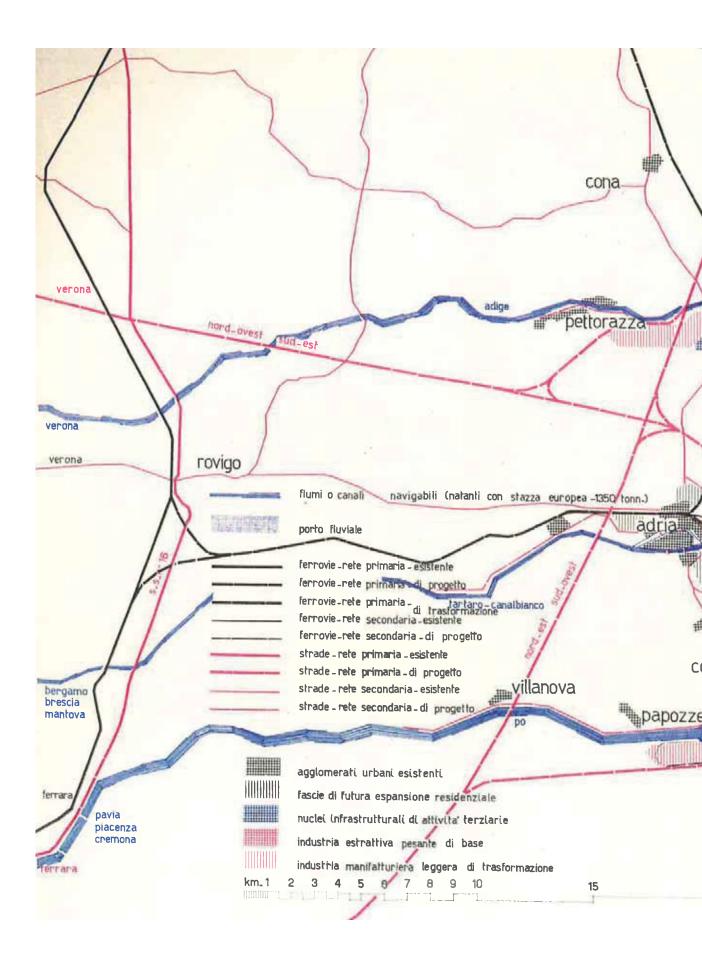


Fig. 273 The main infrastructural interventions proposed by Samonà in Polesine (source: Samonà, annex2)

Retrospectively we can say that the great development of Polesine has never been implemented: the great logistical harbour has been reduced to a small tourist and fishing port in Porto Levante, road and railway infrastructure has not been built and the Romea still remains the only primary axis of the region, however far from the national motorway system. The development of industrial platforms has been partially implemented by the municipality of Porto Viro, which, near the Polesano-Padano Collector and in correspondence of the crossroads between the SS Romea and the Po di Levante, has developed small industrial areas.

Sixty years later, the regional depopulation is still the major problem that has not yet been resolved.

A critical look at Samona's planning experience leaves us with a lot of material to think about and from which to begin to define the field of intervention of our trans-regional systemic programming tool, which we would like to summarize in 5 key lessons:

I. REGIONAL DISTRICTS AS A MINIMUM PROGRAMMING UNIT

Learning from *regional districts'* experience, it seems to be interesting to recognize a geographical area, defined for similar territorial characteristics, imbalances or dynamics, as a minimum territorial unit in which to intervene through a programming instrument aimed at its local development.

The National Strategy for the Development and Economic Growth of the Inner Areas, as seen in the previous part, also goes in this direction, identifying geographical areas affected by similar lacking conditions in terms of accessibility to public services in order to coordinate a coherent process of development on the whole of these weak territories, thus transcending administrative borders.

What the territorial governance of the oil meshes regional districts should try to overcome is the current lack of an interregional planning and programming level which could guide and coordinate the interventions of several public entities in the light of a shared strategic vision.

2. THE TRANS-REGIONAL PROGRAMMING LEVEL

If we wanted to try to frame interregional planning tools within the classical planning hierarchical organization, they could be assimilated to the *Sector Plans* (Piani di Settore), that is to say a facultative sub-category of the *Framework Plans*¹ (Piani Quadro) which addresses specific territroial themes. *Sector plans* are normally subordinate to *Base Plans* (Piani Base, such as the Territorial Coordination Plan), which must contain overall themes. Therefore, *sector plans* must be drawn up

lessons for a trans-regional programming

I Framework Plans (Piani quadro) are those plans which operate at a territorial scale and which set the objectives and provide the programmatic lines of the territorial development. They are normally composed of Base Plans (Piani Base, mandatory) and Sector Plans (Piani di Settore, optional).

in accordance with the indications of *base plans*, apart from *Basin Plans* (Piani di Bacino, the respect for which is indispensable to avoid dangerous natural disasters) and *Park Plans* (Piani di Parco, in order to protect natural environments) which result to be superordinate to Territorial Coordination Plans.

Precisely because of the close relationship that trans-regional oil infrastructure has with natural areas and because of the supra-regional effects of their pollution, we believe that recommendations from interregional planning sectorial tools should be incorporated by regional and provincial planning level.

3. THE ROLE OF INFRASTRUCTURE

The role of infrastructure in the Polesine development vision provided by Samonà would have been fundamental to support the desired economic and productive growth. The fact that the proposed *regional district planning tool* was not taken into account by national infrastructural strategy, which therefore preferred to invest in other axes and in other areas, inevitably stopped the realization of the evocative vision of the "urbanized countryside" (Samonà, 1961) organized around decentralized industrial platforms near watercourses. At the same time, the non-implementation of the envisaged mobility infrastructure permitted to preserve another type of infrastructure that would have been deeply damaged: *green infrastructure*. This is normally regulated by natural protection constraints, in fact naturalistic components are generally identified as constituent elements of the ecological network to be preserved, rather than being governed by specific instruments that investigate the type of projects that could be expected in these contexts.

We believe that green infrastructure should be conceived, designed and assessed as mobility infrastructure is.

Entering into a design domain to define the role of green infrastructure for the third rindustrial revolution's territorial restructuring would not undermine their naturalistic component and their fundamental role in preserving and promoting biodiversity, but it would allow to assess the coexistence of other possible functions, such as that of green energy backbones envisaged for our fossil fuel meshes. In fact, they could be incorporated within green infrastructure, as they transport green energy or sources for the production of green energy and actively participate in carbon dioxide reduction.

4. FEASIBILITY STUDY AS PROPAEDEUTIC PROGRAMMING TOOL

The environmental impact that the immense harbour between the Po di Levante river and the Adige one proposed by Samonà would have had on an important strip of wetlands cannot pass unnoticed in the light of the contemporary ecological conscience. As this experience also testifies, the tabula rasa approach reveals a threatening mismatch between the contextual reality and drawn plans. Even if Samonà was in rupture with the Modernist planning method, we perceive in his proposal the single-function zoning approach typical of the period: heavy industrial expansion areas are identified and clearly separated from light industrial ones and from residential expansions. In a simplistic way, we could summarize the Modernist planning approach as the product of a culture *either...or...* : either you are a city, or you are countryside.

We have already seen before how much more complex contemporary reality is, and, resuming Zygmunt Baumann and his *liquid modernity* (2003), our society must learn to live together and adapt its relational systems on the equation *both... and...*, therefore on the simultaneous coexistence of a reality and its opposite: the city-territory is both city and agriculture.

Therefore, why couldn't *green infrastructure* be both natural areas part of an ecological network and, for example, green energy backbones?

The classical zoning approach conceived on the assignment of one and only one land use no longer follows the needs and possibilities of territories of the third industrial revolution.

For this reason we believe, as mentioned at the beginning of the research, that the de-engineering of fossil fuel meshes and the design of new green infrastructure must enter the fields of architecture and landscape architecture.

The in-depth knowledge of the environmental and socio-economic specificities of the green infrastructure to be designed becomes an integral and fundamental part of the design process, because standard and repeatable solutions allowed by classical zoning could be dangerous in these fragile frameworks.

The uniqueness of the naturalistic constituents of the ecological network must encourage planning domain to integrate among its instruments the *feasibility study* as a provider of contextual and specific design solutions which should be taken into account for the definition of territorial development scenarios.

The construction of plausible development scenarios and their subsequent comparative assessment from a technical, socio-economic and environmental point of view should become milestones in the design implementation of what green infrastructure could be. In this way, the feasibility study could become a propaedeutic tool for territorial programming tools and the knowledge generated by its application must be incorporated into higher-level planning tools.

5. CITY-TERRITORY IS A FLEXIBLE CONCEPT

It is interesting to observe that the concept of *city-territory* emerged several times in the framework of our research. Trying to reorganize the debate in a synthetic way and in a chronological order, the following theoretical approaches can be recognized:

• in the 1960s, Giuseppe Samonà used the figure of the *city-territory* in order to describe his personal vision for the development of Polesine territory, characterized by a widespread polycentric development of the *urbanized countryside* around new decentralized industrial platforms;

• between the 1980s and the 1990s, Francesco Indovina used this definition to describe the polycentric system of the central Veneto region and the consequent dispersal of public services and activities in proximity of small urban centres, where a dynamic small-medium enterprises' netwok has historically been set up;

• between the 1990s and the 2000s, Andrea Branzi approached the debate of the city-territory describing the functioning of his *weak urbanization model*, that is to say a half urban and half agricultural territory where the great potential lies in the cohabitation of intense urban spatial relations with agricultural practices and where the advent of the information technology revolution could bring new hybrid urban forms;

• from the beginning of the 2000s, Bernardo Secchi and Paola Viganò, through their *Horizontal metropolis*, and Maria Chiara Tosi and Stefano Munarin, through their notion of *territory as a new form of city*, return to the debate about the city-territory. Indovina's reflections became the starting point for interpreting the fragmentation of the territory as the real potential for a territorial restructuring. The coexistence in Veneto region of dispersed industrial fabrics, of a dense infrastructural network, of agricultural and urban environments and of shopping malls as new meeting places define new horizontal hierarchies among the territorial components that allow an extensive distribution of activities against an intensive use of the territory by each inhabitant who self-constructs his own city map according to his needs.

Although the city-territory visions differ in their physical manifestation and have evolved over time enriching the debate, the recurring and transversal element to all experiences is the presence of a dense infrastructural network, whether it it mobility infrastructure or communication and energetic one as in the case of Branzi's weak urbanization, in order to guarantee the functioning of an open territorial system.

Considering the case of Polesine region, where it is no longer conceivable to consolidate the city-territory figure around the development of national transport infrastructure, we can however imagine that the already present infrastructure on the territory, such as that green infrastructure in its natural and energy hybrid meaning, could become the infra-structuring element of a new form for an extensive use of the cityterritory.

Focusing the attention on the design of green natural and energetic backbones would provide the territory with the minimum common denominator that could admit multiple territorial and urban developments, thus leaving flexibility and adaptability of the open territorial system over time.

Green Infrastructure Systemic Programming Tool

In the light of what we have learnt from previous experiences, we would like to propose a programming tool that could be useful for the trans-regional design activity we have mentioned: the *Green Infrastructure Systemic Programming tool (GISP)*.

First of all, we would like to emphasize the choice that we have made to talk about *a programming tool* and *not about a planning one*.

In fact, its finality is not to define rigid land uses that could be coupled in a decontextualized and extensive way to *green infrastructure*, as could have been the case for classical territorial and urban planning.

The main goal, on the contrary, is to transcribe on a territorial scale the knowledge learnt through the informative use of the design scale of the feasibility study, with its construction of scenarios, that allows to explore possible green infrastructure development models, deriving from the synergic exploitation of existing infrastructural relations.

The subordinate planning tools (regional, provincial) must therefore incorporate the GISP's programmatic indications in order to bind the development of certain areas to a coordinated inter-regional programming of interventions based on the strategic vision of green infrastructure system.

In order to describe the characteristics of the GISP tool, we will outline the 5 points highlighted in the previous paragraph on the basis of an hypothetical systemic development of the oil mesh between Ravenna and Polesine Camerini which integrates the observations brought by design experience of scenario 2.

I. REGIONAL DISTRICTS AS A MINIMUM PROGRAMMING UNIT

The definition of the perimeter of our regional district is based on the desire to integrate the *Strategy for the development of Inner areas* into a territorial programming tool, which, at present, is not contemplated by current planning tools. The strategy of inner areas confirms the similarity of the territorial trends highlighted previously in cartographies presented in part IV, when these served to define the Adriatic Coastal Arc from Chioggia to Ravenna where to propose common development strategies in order to pursue a balanced territorial and economic cohesion.

In particular, it is possible to highlight how, by integrating the coastal municipalities of the province of Ferrara and the pole of the Ravenna Municipality, which therefore do not fall within the definition given for inner areas, we would like to trigger local development processes exploiting the synergic potential offered by the existing infrastructural relations among these territories and inner areas if they would be thought and designed as *green infrastructure*.

2. THE TRANS-REGIONAL PROGRAMMING LEVEL

As mentioned above, the objective of the GISP tool is to focus the programmatic attention on possible synergies that a classical planning defined by administrative borders would neglect. In fact, infrastructure, whatever its type, transcends the provincial and regional borders and links together areas on vast territories. In our case, the portions of infrastructure considered cross two regions (Veneto and Emilia-Romagna) and four provinces (Venice, Rovigo, Ferrara and Ravenna). In the same way, green infrastructure, already in their current meaning of ecological network to be preserved, do not stop at administrative boundaries but try to establish a physical continuity between different and distant natural areas in order to build a continuous mesh that extends over vast areas. Furthermore, in view of the structuring role that designing green infrastructure could play in the territorial restructuring of the third industrial revolution, their scale of influence cannot be considered sufficient if it stops at fictitious borders. Programming infrastructure necessarily means intervening on a supra-regional scale.

3. THE ROLE OF INFRASTRUCTURE

Two infrastructures cross in a north-south direction the territories of our regional district, establishing completely different relationships with the landscapes they traverse:

- the infrastructural network related to oil industry between the industrial
- port of Ravenna and the former power plant of Polesine Camerini;
- the SS Romea that goes from Ravenna to Chioggia.

If the conversion context of the oil mesh into a green energy backbone for CO_2 recovery has already been extensively dealt with, some integrations must be made regarding the future of the SS Romea mobility axis.

The planning of the European north-south mobility backbone E55 that goes from Helsingborg (Sweden) to Kalamata (Greece) includes the construction of a motorway section that should move and absorb the high traffic intensity of SS Romea on a route further to the west, offering a faster and safer connection between Ravenna and Venice. An east-west motorway, the Nogara-Mare one, should intersect and connect the new E55 to other strategic national motorways, such as the A22 (Brennero-Modena), the A31 (Piovene Rochetta-Vicenza) and the A13 (Bologna-Padua).

Without going into the complicated and sensitive field of risk-benefit assessments related to the construction of new mobility infrastructure that still invest in a road transport fueled by oil by-products, we decide to integrate in our scenario this infrastructural implementation and the consequent downgrading of the SS Romea as a fact.

The dual role identified in the GISP for this infrastructure (eco-tourism route and

subway surface) allows to combine two important domains for the achievement of a balanced development aimed at triggering territorial development processes in the long term: slow-tourism and public transport.

In fact, the reduction in traffic along the SS Romea could contribute to its conversion into a sort of *Regional eco-boulevard*, along which a public transport service could be structured in the form of a subway surface between Chioggia and Ravenna. The fact that along the SS Romea a mixed and disparate landscape has been concentrating, composed of small conurbations, industrial platforms, commercial areas and large agricultural areas, makes the infrastructure ideal for the development of a public transport backbone of regional importance serving the urbanized areas and becoming the main interface for a public transport exchange into a local system.

At the same time, the downgrading of the SS Romea could also lead to a rethinking of the road section which, in addition to integrating rails and stop areas of subway surface, could also include a new project of renaturation of road edges that incorporates cycle-pedestrian paths for slow ecological tourism. The presence of some cultural heritage sites, such as the abbey of Pomposa, along the Romea axis can strengthen its tourist interest.

As far as the development of a slow ecological tourism is concerned, the Ravenna-Polesine Camerini pipeline, converted into a green energy backbone in its underground route, can also contribute. In fact, its projection on the surface could turn into an additional network of cycle-pedestrian paths. According to art. 20 of the PAT of the Municipality of Porto Tolle, a buffer zone of 8.00 metres measured at the axis of the pipeline must be left free on both sides. As can be seen from Map 1 of the PAT of Porto Tolle Municipality (Fig.19, pag. 315), the pipeline route follows as closely as possible the division of agricultural plots and properties. On the basis of this indication provided by the GISP, the subordinate instruments could integrate the need, for example, to leave a small portion of the buffer zone deriving from the presence of the pipeline and in correspondence with the divisions of agricultural properties for public use, in order to create that cyclo-pedestrian network which allow to experience the real essence of the Po Delta. The deployment of these two green infrastructures would also allow many protected Nature 2000 areas to be integrated into a unique ecological network.

4. FEASIBILITY STUDY AS PROPAEDEUTIC PROGRAMMING TOOL

The knowledge acquired through the construction of scenarios as an integral part of a feasibility study process can inform GISP tool of some strategic aspects on which to build an enlarged vision for the territorial development. In fact, the choice of scenario 2 as the model for the systemic development of the Ravenna-Polesine Camerini oil mesh allows us to extend our considerations in terms of programming over a wider area. Scenario 2 left us with a double long-term proposal for the conversion of the two sites in Ravenna and Polesine Camerini:

• the industrial port area of Ravenna, in addition to becoming the main CO_2 feeder activity of the network, will convert its industrial activities related to oil downstream into bio-based industrial activities, which will operate around the chain of algae downstream that will be produced locally both for the supply of biomass and for the production of hydrogen for energy purposes;

• Polesine Camerini area will be transformed into a multi-functional centre that will offer activities and public services related to education, research in the agricultural field, wellness and ecological tourism, business incubation and a hybrid private-collective mobility hub. The cultivation of algae is the minimum common denominator among all activities and the functional link with Ravenna, allowing to use and absorb the CO₂ captured from industrial activities.

If the proposed activities are very specific to the reasoning that lies behind the scenario construction and feasibility study, we can imagine that the GISP can embrace the macro-programmatic intentions of the scenario (CO_2 absoprtion activities, tourism-related activies, hub for alternative mobility), leaving more flexibility in the definition of the specific programme of activities. Thanks to these considerations and to the intersection with green infrastructure, it is possible to identify other poles where it could become interesting to conduct specific feasibility studies to assess the effects due to the integration of further macro-programmatic intentions. For example, along the Romea subway surface axis, four stations could be identified within a radius of 50 km from Polesine Camerini (Chioggia, Porto Viro, Mesola, Comacchio) where a combined mobility hub could be developed in order to integrate the offer of a fully electric private-collective mobility service to provide the dispersed territories of the Po Delta with a flexible transport model which can compensate for the lack of a public transport service.

The simultaneous presence of the two green infrastructures in Comacchio could suggest launching a feasibility study that would permit to assess the convenience of installing CO₂ eater activities even in this location, branching the supply of

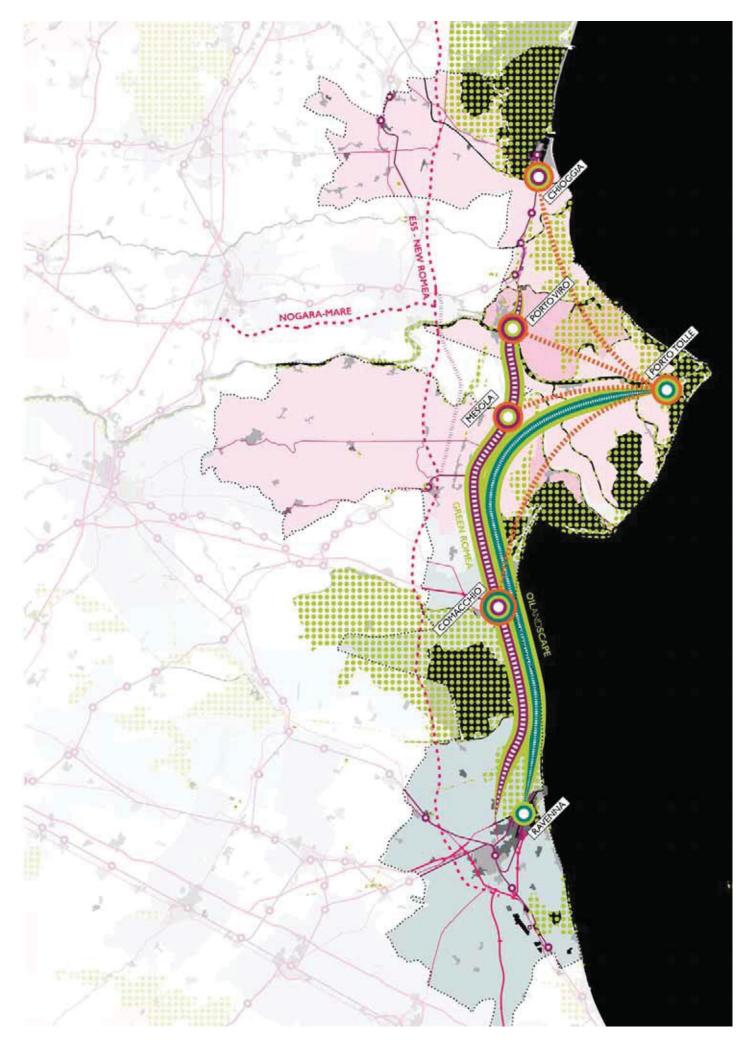
 CO_2 to the former oil pipeline, thus increasing the global potential in carbon dioxide absorption of the system.

The synergic interaction among public transport, multifunctional poles, services and green infrastructure, together with the already mentioned connection with Natura 2000 protected areas and cultural heritage sites, could create considerable long-term benefits due to the strengthening of a local development focused on a renewed tourism offer in the area.

5. CITY-TERRITORY IS A FLEXIBLE CONCEPT

The concept of a *city-territory* that describes a polycentric urban development of Polesine territories remains only a Modernist mirage proposed by Samonà in the 1960s, which is no longer even imaginable today.

The so sparsely inhabited Polesine context suggests an interpretation of the functioning of the city-territory that revolves around its extensive use due to the territorial mending implemented by green infrastructure and its uses, namely a system of public transport, multifunctional poles and services, new methods of agricultural cultivation in vertical greenhouses (algae and hydroponic cultivations) and a network of energy distribution to reduce CO_2 emissions.


Unlike the polycentric system of the central Veneto city-territory, which, as seen before, responds to a development model typical of the second industrial revolution based on a massive use of motorized individual transport to connect a constellation of small urban centres and industrial areas (Indovina, 1990; Tosi and Munarin, 2001) which encourages energy and oil consumption for its extensive use, the new model of the city-territory of Polesine could lie on completely opposite development principles.

In view of the energetic transition and of the shift towards a distributed territorial energy production model, we could assume that Polesine city-territory main aim is to contain energy consumption generated by its extensive use .

Thus, the organizing green infrastructure perfectly responds to expectations:

• on the one hand, the city-territory is articulated around a north-south fully-electric public transport system, which, at the same time, may attract and optimize the settlement of some services, activities or urban developments on a regional district scale and provides for a secondary, fully-electric and flexible mobility system to reach the most remote territories;

• on the other hand, green energy backbones, combining with agricultural processes for the simultaneous production of energy sources and agricultural or algae sub-products, become that non-figurative architecture for energy production of which Branzi spoke about his weak urbanization model (2006).

INNER AREAS STRATEGY

- INTERMEDIATE AREA
- PERIPHERAL AREA

PUBLIC TRANSPORT

- RAILWAY
- RAILWAY IN PROJECT
- O RAILWAY STATION

ROADS SYSTEM

- MOTORWAYS
- - MOTORWAYS IN PROJECT

URBAN SYSTEMS

- URBAN AREAS
- INDUSTRIAL AREAS

EXISTING GREEN INFRASTRUCTURES

NATURA 2000 AREAS

GREEN INFRASTRUCTURE SYSTEMIC PROGRAMMING AREA

REGIONAL DISTRICT

NEW GREEN INFRASTRUCTURES

ECO-TOURISM ROUTES GREEN ENERGY BACKBONE / CO; RECOVERY SUBWAY-SURFACE

PROGRAMMATIC INTENTIONS

ELECTRIC HUB FOR ALTERMATIVE MOBILITY

CO2 ABSORPTION ACTIVITIES

TOURISM RELATED ACTIVITIES

SUBWAY SURFACE STATION

ALTERNATIVE MOBILITY CONNECTIONS

CONCLUSIONS

0432 OILANDSCAPES

Conclusions

	We have finally reached the end of my PhD research experience.
	The journey through the world of oil landscapes has been long, fascinating,
	insidious and above all very complex.
	Many people during these three years of research have asked me why an architect
	should be interested in researching the role of infrastructure in the territory,
	because they belong to engineering skills in the common imagination.
	In particular, energy infrastructure, due to its technological complexity and the
	underlying industrial processes, seems to be a field that is light years away from
	what is believed to be the architect's skills, that is to say, designing "beautiful but
	expensive" buildings while choosing energy saving materials at most.
energy issue is a cultural challenge	There is a great confusion about energy issue: the rampant culture of energy
	saving from a purely technical point of view, and not through the change in
	certain habits of life, contributes to the peroration of an image of a technocratic
	functioning of the world, which feeds the sectorial separation of competences
	resulting from the errors committed in XX century and does not encourage an
	interdisciplinary approach to complex problems.
	Professional experiences lead me to say that the demand for photovoltaic panels
	on the roof has become the "mantra" of ecologically sensitive clients, the same
	ones that, maybe, will dress of a single t-shirt in a house heated to 26°C in
	winter. We, architects, will have fought to insulate the house with a very expensive
	insulation in natural plant fibers to reduce the total construction grey energy and
	will have installed the much desired photovoltaic panels on the roof, so we will

result all sensitive to the ecological issue. But only apparently.

In our opinion, energy issue is first of all a cultural problem and, as wondered by Rifkin (2011), a massive energetic transition towards a system mainly dominated by renewable energies is not only a technological issue, but it is principally an economic model challenge that has to deal with very different thinking structures from those of the second industrial revolution, namely *consumption* and *quantity*. According to the current "on consumption" model, the consumer pays for the amount of energy actually provided by the supplier, who has no interest in promoting a reduction in consumption and improving efficiency. The previous example of overheating a house goes exactly in this direction, to the advantage of the energy provider who benefits from a bad habit leading to an unnecessary waste of energy.

On the contrary, a new economic and cultural model for the third industrial revolution could be based on criteria such as *performance* and *quality*.

In this case, the energy supplier provides a service to the consumer to ensure his well-being at a fixed price, and the economic profit margin is no longer in the volume of energy sold, but it is in the search for a maximum efficiency of the process in such a way as to avoid waste and lower the cost of the service provision. Just to give an example, the supplier could offers home heating service guaranteeing the internal comfort temperature of 21°C and it will be its care and interest to ensure that the price for the provision of this service costs as little as possible. Thus, the energy provider will be forced to regularly upgrade the installations in order to seek a better performance, lower energy dispersion and therefore a higher profit, but even a lower environmental impact. At the same time the final consumer will lose his bad habit and considerably reduce energy waste.

Even according to Rifkin (2011), the increase in the production of small quantities of renewable energy in autonomous form by the same consumers should lead energy supply companies from a production-based business to a business based on the provision of services for the maintenance of optimal performance of infrastructure needed for distribution.

If the reduction of energy waste works for the small scale of the individual residence, we can imagine that the economic model based on *performance* and *quality*, rather than on *consumption quantity*, is repeatable for other types of services (private mobility, food supplies, etc.) and also for larger scales of intervention, thus contributing to that cultural change which is necessary to switch towards innovative thinking structures that better meet the needs of the territories and of the circular economy coming from the third industrial revolution.

green infrastructure is a spatial issue As regards green infrastructure domain, progress can also be made in the interdisciplinary approach to the issue. To my great surprise, in these years of research during which I have participated in international conferences to present some of the advancement of my research, I have often perceived a great reticence on the part of geographers and landscape planners in accepting that also architects can be interested in territorial issues.

An important research trend that I have noticed in the field of green infrastructure focuses on the quantitative analysis of natural elements in cities, bringing as research results the proposal of complicated mathematical algorithms to be applied in GIS programs for mapping. What surprised me most was the purely zenithal approach, almost disinterested in the spatial, living and programmatic component, I mean in the design aspect of green infrastructure. We were talking about green infrastructure, but we saw no image showing what we were talking about.

It is not my intention to generalize or inimicate other disciplines, but I would just focus on the fact that architects' growing interest in this field of research can be an opportunity for everyone, because skills are different but complementary. The geographical and quantitative analysis of green infrastructure becomes absolutely a fundamental tool if made available to design professionals who can interpret them and transform them into spaces where life can be housed.

the interdisciplinary structure of the research As already mentioned in the body of the thesis, my research has consciously chosen not to deal with technical and quantitative problems linked to the energy capacity of certain solutions proposed because they are not competences that belong to the mission of architects. Starting from published research results that investigate alternative and innovative renewable energy production systems, the question that the research raises concerns how the materialization of these technologies could change the appearance of our energy landscapes, but leaves the door open to future necessary collaborations and sectorial integrations to size the actual amount of the infrastructure needed to be distributed and designed on the territory.

> The generalist and coordinating approach of my research aims to highlight how complex problems must be studied and analyzed from multiple points of view and how only the enhancement of an interdisciplinary and collaborative approach can provide holistic, and not sectorial, responses.

> In fact, in the first four parts of the research, the thesis has sought to read and interpret energy industry, focusing in particular on oil infrastructure, through the analytical lenses of the main disciplines that concern its functioning:

• the historical-economic analysis of oil industry presented in part I wanted to intercept, on the one hand, those dynamics that allowed oil to establish itself as the main energy source of XX century in support of an exponential growth industrialization model and, on the other one, what were, at the beginning of its crisis in the 1970s, the main theoretical arguments that founded the diffusion of an ecological thinking and of an alternative growth model which are still relevant topics in the debate on the development of contemporary territories;

• in part II, thematic analytical studies have been carried out in order to investigate the type of dependencies that have been established between oil and chemistry, oil and industrial revolutions, oil and landscape, oil and territory, oil and infrastructure, oil and nature, oil and cultural heritage;

• part III uses analytical tools from the field of urban research to interpret the effects of urban and territorial transformations caused by the energy industry during the two industrial revolutions. Also in this case, the research has tried to differentiate the types of analysis in such a way as to find synergies with other disciplines. The territorial transformations of the first industrial revolution in the Ruhr case study have been narrated through a historical literature that has allowed to define and cartographically represent the main industrialization and urbanization trends of the fundamental phases.

Later, two polycentric models, consolidated respectively during the first and second industrial revolution, were analyzed from an urban-territorial point of view in order to outline how the different organizational structure of the coal and oil energy industry has generated different territorial hierarchies that have led to different urban models. Subsequently, some foundations were laid to open the reflexion on the possible urban model of the third industrial revolution based on renewable energy sources. Some innovative renewable energy production technologies have therefore been explored, through technical and engineering literature, which have made it possible to establish the potential of using industrial waste, such as exhaust fumes, as indirect energy sources;

• part IV deals with the administrative-policy issue of managing transregional planning for the recovery of oil meshes, identifying in the *Regional Districts* a possible scale of territorial governance. A new narrative for oil infrastructure must federate the territories around a shared vision for their reconversion: **up-sourcing** elevates the role of previous oil meshes to *green energy backbones*. Once the analytical part of the study has been accomplished, while stressing the complexity of the topic and the necessity to integrate multiple disciplines in order to have a global understanding of the underlying problems, the research continues in its experimental design part, that is to say the construction of such alternative development scenarios as required by the *research by design* methodology. Again, we want to stress the enrichment that other disciplines and competences could bring to the definition of the framework conditions for our scenarios:

• part V tackles the definition of the constraints and assumptions for the two scenarios, emphasizing both the common elements, namely the **up-sourcing** narrative, and the differences that will lead to the development of very different visions. Subsequently, the two scenarios will be developed and described in a comparable way through representation tools appropriate to this pre-project phase, then through functional diagrams, axonometries and evocative images of possible **OIL**AND**SCAPES**;

• the assessment process of the two scenarios is addressed in part VI, through a preliminary definition of common criteria by which the proposed scenarios are compared. Afterwards, the research examines the design role of scenarios construction within the territorial planning process, proposing to reverse the traditional use of *feasibility studies* to confirm the functioning of planning tools, and use them to inform planning tools. This shift would make it possible to focus on some potentials that may arise on trans-regional scales (that are not currently recognized by a territorial planning defined by administrative boundaries), such as the case explored of synergies between oil meshes sites. The research therefore concludes by proposing a trans-regional planning tool, that is to say the *Green Infrastruture Synergic Programming* instrument, for the integration of oil meshes within the concept and design of green infrastructure.

In the light of the above, my research aims to contribute to the desired cultural shift that allows us to consider the *energy issue* not only as a technical field, but also as a multidisciplinary research area, where also architects can provide their design skills, using the *feasibility study* as an interdisciplinary and propaedeutic tool for a more sensitive territorial planning.

As a conclusion, but with no air of presumption, I would like to quote Edgar Morin (1999) according to whom "the architect's knowledge is the result of the confluence of multiple disciplines, as architects are prepared to face hybrid, complex, interdisciplinary and multiscalar situations".

Bibliography

PART I

Bélanger, P. (2012). Landscape infrastructure: Urbanism beyond engineering. Lecture held on May 8th, 2012 at the EPFL in Lausanne. [Online] 8th May. Available from: http://archizoom.epfl.ch/op/edit/page-101622-en.html [Accessed: June 20th, 2016].

Bélanger, P. (2017). Landscape as infrastructure. A base primer. New York: Routledge.

Bhatia, N. (2013) Harvesting Urbanism through territorial logistics, in Bhatia, N., Casper, M. (eds.). *The Petropolis of tomorrow*. New York: Actar Publishers. p.273-286.

Bhatia, N. et al. (2016). *Re-wiring territories*, in Volume n. 47 (1), Amsterdam: Archis. p.79-86.

Burtynsky, E. (2003). *Manufactured landscapes: The Photographs of Edward Burtynsky.* New Have: Yale University Press.

Burtynsky, E. (2009). Oil. Göttingen: Steidl Verlag.

Corbellini, G. (2013). Progettare l'amnesia, in: Marini, S., Santangelo, V. (eds) (2013), *Recycland*, Roma: Aracne Editrice. p.25-29

Corboz, A. (1983). The land as palimpsest, in Diogène n. 121, janvier-mars 1983. p.14-35.

Corner, J. (1999). The Agency of Mapping: Speculation, Critique and Invention, in Corner, J., Bick Hirsc, A. (eds.) (2014). *The Landscape Imagination. Collected Essays of James Corner 1990-2010.* New York: Princeton Architectural Press.

Dewey, J. (1939). Logic. The theory of Inquiry. New York: Holt, Rinehart and Winston.

Ferrari, M., Malaguti, A., Verde, A. (2007). *TERRITORI RICOMBINANTI*. *Inerzie e potenzailità nei territori a basso carico antropico attarversati dal corridoio 5*. Tesi di Laurea in Architettura, Relatore: Prof. G. Franz, Co-relatore: Arch. M. Bonizzi, Anno Accademico 2006-2007, Biblioteca della facoltà di Architettura di Ferrara.

Georgescu-Roegen, N. (1971). The Entropy Law and the Economic Process. Cambridge, Massachusetts: Harvard University Press.

Georgescu-Roegen, N. (1970). The Entropy Law and the Economic Problem. in Georgescu-Roegen (1976). *Energy and Economic Myths. Institutional and Analytical Economic Essays.* New York: Pergamon Press. Gorz, A. (1977). Écologie et liberté. Paris: Galilée.

Governa, F. (1997). Il milieu urbano. L'identità territoriale nei processi di sviluppo, Milano: Franco Angeli.

Gregory, S. A. (1966). Design Science, in Gregory, S. A. (ed.). *The Design Method.* London: Butterworth.

Hein, C. (2013). Between oil and water. The logistical petroleumscape, in Bhatia, N., Casper, M. (eds.). *The Petropolis of tomorrow*. New York: Actar Publishers. p.478

Illich, I. (1973). Énergie et équité. Paris: Éditions du Seuil.

Ivancic, A. (2010). Energyscapes. Barcelona: Gustavo Gili.

Latz, P. (2001). Landscape Park Duisburg-Nord: the metamorphosis of an industrial site, in Kirkwood, N. (ed.). *Manufactured Sites. Rethinking the Post-Industrial Landscape.* London & New York: Taylor & Francis.

Maugeri, L. (2006). L'era del petrolio. Mitologia, storia e futuro della più controversa risorsa del Mondo. Milano: Feltrinelli. p.104.

Maugeri, L. (2012). Oil: The next revolution. The unprecedented upsurge of oil production capacity and what it means for the world. [Online] June 2012. Available from: http://belfercenter.ksg.harvard.edu/files/Oil-%20The%20Next%20Revolution.pdf. [Accessed: 21th March 2016].

McDonough, W., Braungart, M. (2002). Cradle to cradle. Remaking the Way We Make Things. New York: North Point Press.

Meadows, D. et al. (1972). The Limits to Growth. New York: Universe Books.

Petrini, F. (2012). La crisi energetica del 1973. Le multinazionali del petrolio e la fine dell'età dell'oro (nero), in Contemporanea (3), luglio 2012. Bologna: Il Mulino editore. p.445-473.

Rifkin, J. (2011). The Third Industrial Revolution: How lateral power is transforming energy, the economy and the world. New York: Palgrave Macmillan.

Roggema, R. (2017). Research by Design: Proposition for a Methodological Approach, in Urban Science 2017, 1 (1), 2, Basel: MDPI. [Online].

Available from: http://www.mdpi.com/search?q=&authors=roggema&article_ t y p e = & j o u r n a l = u r b a n s c i & s e c t i o n = & s p e c i a l_ issue=&volume=&issue=&number=&page=&search=Search. [Accessed: October 31st, 2017]

Ruiz, R. (2013). The Chagos Archipelago. Oil islands, in Bhatia, N., Casper, M. (eds.). *The Petropolis of tomorrow*. New York: Actar Publishers. p.68-79.

Schwab, K. (2016). *The Fourth Industrial Revolution*. New York: Penguin Random House.

Schön, D. A. (1983). The Reflexive Practitioner. New York: Basic Books.

Sijmons, D. (2014). Landscape and Energy. Designing Transition. Rotterdam: nai010publishers.

Viganò, P. (2012). Les territoires de l'urbanisme. Le projet comme producteur de connaissance. Genève: MetisPresses.

Waldheim, C. (2011). Urbanism after form, in Pamphlet Architecture 30 - Coupling. Strategies for Infrastructural Opportunism. New York: Princeton Architectural Press.

PART II

Bélanger, P. (2012). Landscape infrastructure: Urbanism beyond engineering. Lecture held on May 8th, 2012 at the EPFL in Lausanne. [Online] 8th May. Available from: http://archizoom.epfl.ch/op/edit/page-101622-en.html [Accessed: June 20th, 2016].

Berque, A. (1990). Médiance. Des milieu en paysages. Montpellier: Gip Reclus.

Bhatia N. (2013). Harvesting urbanism through territorial logistics, in: Bhatia N, Casper M.(eds). *The Petropolis of Tomorrow*. New York: Actar Publishers.

Bhatia, N. et al. (2016). *Re-wiring territories*, in Volume n. 47 (1), Amsterdam: Archis. p.79-86.

Branzi, A. (2006). Weak and diffuse modernity: the world of projects at the beginning of the 21st century. Milano: Skira.

Bruzzone, M. (2015). La riscoperta del Petrolio a Vallezza. Conservare e trasmettere la cultura tecnologica, scientifica e antropologia di una antica miniera, in Bruzzone, M. (ed.). *Paesaggi culturali e progetto. Verso il Parco Museo del Petrolio a Fornovo di Taro.* Genova: Sagep Editori.

Bruzzone, M. (2015). Un bene comune che si chiama paesaggio. Sinergie tra luoghi e memorie per il patrimonio culturale, in Bruzzone, M. (ed.). *Paesaggi culturali e progetto. Verso il Parco Museo del Petrolio a Fornovo di Taro.* Genova: Sagep Editori.

Bruzzone, M. (2015). Verso il Parco scientifico e tecnologico del Petrolio. progetti di crescita per il paesaggio, in Bruzzone, M. (ed.). *Paesaggi culturali e progetto. Verso il Parco Museo del Petrolio a Fornovo di Taro*. Genova: Sagep Editori.

Castells, M. (1973). La question urbaine. Paris: François Maspero.

Corboz, A. (1983). The land as palimpsest, in Diogène n. 121, janvier-mars 1983. p.14-35.

Correa, F. (2013). Alternative Post-Oil cities, in: Bhatia N, Casper M.(eds). *The Petropolis of Tomorrow*. New York: Actar Publishers.

Dematteis, G. (1995). Progetto implicito. Il contributo della geografia umana alle scienze del territorio. Milano: Franco Angeli.

European Commission (2013). Commission Staff Working Document. Technical information on Green Infrastructure (GI). [Online] 6th May. Available from: http://ec.europa.eu/environment/nature/ecosystems/index_en.htm. [Accessed: 5th August 2017]. Governa, F. (1998). Il milieu come insieme di beni culturali e ambientali, in Rivista Geografica Italiana n.105, p.85-93.

Farinelli, F. (2003). Geografia. Un'introduzione ai modelli del mondo. Torino: Piccola Biblioteca Einaudi.

Giovarini, C. (2015). Il petrolio in Italia: origine e sviluppo, in Bruzzone, M. (ed.). *Paesaggi culturali e progetto. Verso il Parco Museo del Petrolio a Fornovo di Taro.* Genova: Sagep Editori.

Governa, F. (1997). Il milieu urbano. L'identità territoriale nei processi di sviluppo, Milano: Franco Angeli.

Governa, F. (2001). La dimensione territoriale dello sviluppo socio-economico locale: dalle economie esterne distrettuali alle componenti del milieu, in Magnaghi, A. (ed.), Rappresentare i luoghi. Metodi e tecniche. Firenze: Alinea.

Hein, C. (2013). Between oil and water. The logistical petroleumscape, in Bhatia, N., Casper, M. (eds.). *The Petropolis of Tomorrow*. New York: Actar Publishers.

Howard, E. (1898). To-morrow: A Peaceful Path to Real Reform. London: Swan Sonnenschein & Co., Ltd.

Magnaghi, A. (1998). Il patrimonio territoriale: un codice genetico per lo sviluppo locale autosostenibile, in Magnaghi A. (ed.), *Il territorio degli abitanti. Società locali e autosostenibilità*. Milano: Dunod.

Massarente, A. (2015). Processi identitari nei paesaggi industriali. Modelli spaziali, strategie insediative, sviluppo locale, in Bruzzone, M. (ed.). *Paesaggi culturali e progetto. Verso il Parco Museo del Petrolio a Fornovo di Taro*. Genova: Sagep Editori.

Oliva, E. (2014). *La crisi della raffinazione*. L'Indro. [Online] 18th March. Available from: http://www.lindro.it/la-crisi-della-raffinazione/. [Accessed: 6th March 2016].

Rifkin, J. (2011). The Third Industrial Revolution: How lateral power is transforming energy, the economy and the world. New York: Palgrave Macmillan.

Unesco (2016). Operational Guidelines for the Implementation of the World Heritage Convention. [Online] 26th October. Available from: http://whc.unesco.org/en/guidelines/. [Accessed: 6th August 2017].

Vergnaud-Giepp, I., Weinling, D. (2015). Il Museo Francese del Petrolio di Merkwiller-Pechelbronn, culla dell'industria petrolifera mondiale (translated by Roberta Borghi), in Bruzzone, M. (ed.). *Paesaggi culturali e progetto. Verso il Parco Museo del Petrolio a Fornovo di Taro.* Genova: Sagep Editori.

PART III

Bagnasco, A. (1977). Tre Italie. La problematica territoriale dello sviluppo economico *italiano*. Bologna: Il Mulino.

Basniev et al. (2010). Underground hydrogen storage problems in Russia. In Stolten, D., Grube, T. (eds) *18th World Hydrogen Energy Conference 2010 – Proceedings of the WHEC*, May 16-21 2010, Essen. Forschungszentrum Jülich GmbH, Zentralbibliothek, Verlag. [Online]. Available from: http://juser.fz- juelich.de/record/135540/files/HS1_pp_Bas_Basniev_rev0610.pdf. [Accessed: May 19th, 2017]

Branzi, A. (2006). Weak and diffuse modernity: the world of projects at the beginning of the 21st century. Milano: Skira.

Branzi, A. (2010). For a post-environmentalism: seven suggestions for a new Athens Charter, in Mostavavi, M., Doherty, G. (eds.). *Ecological urbanism*. Zurich: Lars Müller Publishers.

Burlew, J. S. (1953). *Algal Culture. From laboratory to pilot plant.* Washington: Carnegie Institution of Washington Publication 600.

Calabi, D. (1979). Territorio, insediamenti e infrastrutture negli ultimi cent'anni, in Mancuso, F., Mioni, A. (ed). *I centri storici del Veneto*. Cinisello Balsamo: Silvana.

Caldiron, C. (2013). La centrale ENEL di Porto Tolle: una storia di danno ambientale. Tesi di Laurea in Pianificazione Urbanistica e Territoriale, Relatore: Prof.ssa Stefania Tonin, Co-relatore: Dott.ssa Claudia Guidorzi, Anno Accademico 2012-2013, Biblioteca dell' Istituto Universitario di Architettura di Venezia. [Accessed: July 14th, 2016]

Chisti, Y. (2008). Response to Reijnders: Do biofuels from microalgae beat biofuels from terrestrial plants?, in *Trends in Biotechnology*, 26(7). p. 351-352.

Corbo, P. et al. (2011). Hydrogen Fuel Cells for Road Vehicles. London: Springer.

De Geyter, X. (2002). *After sprawl.* Research on the contemporary city. Antwerp: NAI Publishers.

De Rita, G., Galdo, A. (2001). Capolinea a Nordest. Venezia: Marsilio.

Dousková, l. et al. (2009). Utilization of distillery stillage for energy generation and concurrent production of valuable microalgal biomass in the sequence: Biogas-cogeneration-microalgae-products. *Energy Conversion and Management*.

Friedman, Y. (1978). L'architecture de survie. Où s'invente aujourd'hui le monde de demain. Paris: Casterman.

Hötker, D. (1988). Ruhr Region, in Van Der Cammen, H. (ed.). Four metropolises in Western Europe. Development and urban planning of London, Paris, Randstad Holland and the Ruhr region. Assen: Van Gorcum.

International Energy Agency (2013). *Technology Roadmap: Carbon Capture adn Storage.* Paris: OECD/IEA. [Online]. Available from: www.iea.org [Accessed: June 5th, 2017]

IEAGHG (2013). CO₂pipeline infrastructure. Report 2013/18. [Online]. Available from: http://ieaghg.org/docs/General_Docs/Reports/2013-18.pdf. [Accessed: June 5th, 2017]

Indovina, F. (1990). La città diffusa, in Indovina, F. (ed.) (2009). *Dalla città diffusa all'arcipelago metropolitano*. Milano: Franco Angeli. p. 47-64.

Indovina, F. (2003). La metropolizzazione del territorio. Nuove gerarchie territoriali, in Indovina, F. (ed.) (2009). *Dalla città diffusa all'arcipelago metropolitano*. Milano: Franco Angeli.

Indovina, F. (2005). La nuova dimensione urbana: l'arcipelago metropolitano, in Indovina, F. (ed.) (2009). *Dalla città diffusa all'arcipelago metropolitano*. Milano: Franco Angeli.

Latz, P. (2001). Landscape Park Duisburg-Nord: the metamorphosis of an industrial site, in Kirkwood, N. (ed.). *Manufactured Sites. Rethinking the Post-Industrial Landscape.* London & New York: Taylor & Francis.

Mazzitelli, A. (2010). *Produzione di energia ed elettricità da alghe.* Tesi di Laurea in Ingegneria Chimica, Relatore: Stefano Consonni, Correlatore: Ing. Federico Viganò, Politecnico di Milano. [Accessed: June 13th, 2017]

Mignard, D. et al. (2016). Seasonal storage of hydrogen in a depleted natural gas reservoir. International Journal of Hydrogen Energy, 41(12). p.5549-5558. doi: 10.1016/j.ijhydene.2016.02.036

Nagase, H. et al. (1998). Improvement of microalgal NOx removal in bubble column and airlift reactors, in *Journal of fermentation and bioengineering*, 86(4). p.421–423.

Porchia, F. (2012). L'evoluzione del porto industriale di Marghera dalle origini al secondo dopoguerra (1917 – 1963). Insediamenti, cicli produttivi, trasformazioni territoriali tra passato e futuro. Tesi di Dottorato in Scienze Soriche, Supervisore: Prof. Giovanni Luigi Fontana, Università degli Studi di Padova. [Accessed: January 15th, 2016]

Prossek, A. et al. (2009). Atlas der Metropole Ruhr. Vielfalt und Wandel des Ruhrgebiets im Kartenbild. Germany: Emons.

Rabindran, P. et al. (2011). Intregrity Management Approach to Reuse of Oil and Gas Pipelines for CO_2 Transportation. in Conference Proceedings of the 6th Pipeline Technology Conference held in Hannover (April, 4th-5th 2011). [Online]. Available from: https://www.pipeline-conference.com/abstracts/integrity-management-approach-reuse-oil-and-gas-pipelines-co2-transportation. [Accessed: June 20th, 2017]

Reicher, C. et al. (2011). Schichten einer Region (Layers of a region. Pieces of Maps on the Spatial Structure of the Ruhr). Berlin: Jovis.

Reulecke, J. (1984). The Ruhr: centralization versus decentralization in a region of cities, in Sutcliffe, A. (ed.). *Metropolis 1890-1940*. London: Mansell Publishing Limited.

Rifkin, J. (2011). The Third Industrial Revolution: How lateral power is transforming energy, the economy and the world. New York: Palgrave Macmillan.

Ros, M. et al. (2014). Start of a CO_2 Hub in Rotterdam: connecting CCS and CCU. in *Energy Procedia* 63 (2014). Amsterdam: Elsevier. [Online].

Available from: https://www.researchgate.net/publication/272380887_Start_ of_a_CO2_Hub_in_Rotterdam_Connecting_CCS_and_CCU. [Accessed: November 19th, 2017].

Roverato, G. (1996). L'industria del Veneto: storia economica di un caso regionale. Padova: Esedra.

Roverato, G. (2008). Il lungo processo dell'industrializzazione, in Longo, O., Favotto, F., Roverato, G. (eds.). *Il modello Veneto tra storia e futuro*. Padova: Il Poligrafo. p. 1-28.

Savino, M. (1998). Governare la complessità. Il Veneto come caso esemplificativo, ma non paradigmatico, in Indovina, F. (ed.) (2009). *Dalla città diffusa all'arcipelago metropolitan*. Milano: Franco Angeli. p. 65-80.

Secchi, B. (1996). Un'interpretazione delle fasi più recenti dello sviluppo italiano, in Clementi, A. (ed.). *Infrastrutture e piani urbanistici*. Roma: palombi.

Secchi, B. and Viganò, P. (2012). De horizontale metropool, in Dejemeppe, P. and Périlleux (ed.) (2012). *Brussel 2040. Drie visies voor een metropool*, Brussel: Brussels Hoofdstedelijk Gewest.

Sellari, P. (2011). *Uno sguardo alle ferrovie italiane nell'Ottocento postunitario*, in Studi e Ricerche socio-territoriali (1) Napoli.

Sijmons, D. (2014). Landscape and Energy. Designing Transition. Rotterdam: nai010publishers.

Steinberg, H.G. (1967). *Sozialräumliche Entwicklung und Gliederung des Ruhrgebietes.* Bad Godesberg: Bundesforschungsanstalt für landeskunde und raumordnung selbstverlag.

Tosi, M.C. et Munarin, S. (2001). Tracce di città. Esplorazioni di un territorio abitato: l'aerea veneta. Milano: Franco Angeli.

Uttke, A. et al. (2008). *International Building Exhibition Emscher Park. The projects 10 years later.* Essen: Klartext Verlag.

Viganò, P. (2015). La métropole horizontale, in *Cahier spécial de Tracés,* supplément à *Tracés* n.21, 06 novembre 2015, Zurich: Espazium.

PART IV

Bélanger, P. (2012). Landscape infrastructure: Urbanism beyond engineering. Lecture held on May 8th, 2012 at the EPFL in Lausanne. [Online] 8th May. Available from: http://archizoom.epfl.ch/op/edit/page-101622-en.html [Accessed: June 20th, 2016].

Infussi, F. (1992). Giuseppe Samonà: una cultura per conciliare tradizione e innovazione. in Di Biagi, P., Gabellini, P. (eds.). *Urbanisti italiani*. Bari: Laterza.

Rifkin, J. (2011). The Third Industrial Revolution: How lateral power is transforming energy, the economy and the world. New York: Palgrave Macmillan.

Samonà, G. et al. (1961). Piano comprensoriale dei comuni del Polesine. Relazione introduttiva. Documents accessed at Archivio progetti IUAV, Venice. [Accessed: July 15th, 2016]

Tavola, M. (2013). Analisi progettuale di un impianto mini idroelettrico inserito in un sistema di approvigionamento idrico. Tesi di Laurea Specialistica in Ingegneria Energetica, Academic Tutor: Prof. Fabio Rinaldi, Corporate Tutor: Ing. Costantino Anghileri, Anno Accademico 2012-2013, Politecnico di Milano. [Accessed: April 25th, 2017]

PART V

Barca, F., Casavola, P. (eds.) (2014). Strategia Nazionale per le Aree Interne: definizione, obiettivi, strumenti e governance. Materiali UVAL n.31 (2014). Roma: Collana Materiali Uval.

Caldiron, C. (2013). La centrale ENEL di Porto Tolle: una storia di danno ambientale. Tesi di Laurea in Pianificazione Urbanistica e Territoriale, Relatore: Prof.ssa Stefania Tonin, Co-relatore: Dott.ssa Claudia Guidorzi, Anno Accademico 2012-2013, Biblioteca dell' Istituto Universitario di Architettura di Venezia. [Accessed: July 14th, 2016]

ENEA (2013). Sistemi per la produzione di microalghe a fini di riciclo di digestato e fornitura di biomassa per biogas. Report Ricerca di Sistema Elettrico - Accordo di Programma Ministero dello Sviluppo Economico - ENEA. [online] Available from: http://www.enea.it/it/Ricerca_sviluppo/documenti/ricerca-di-sistema-elettrico/biomasse/2012/rds-2013-177.pdf. [Accessed: September 24th, 2017]

ENEL (2015). Invito a manifestare interesse per la riqualificazione e acquisizione del sito industriale Enel di Porto Tolle. Dossier informativo. [online] Available from: https://corporate.enel.it/it/futur-e.html. [Accessed: August 22nd, 2016]

Massarente, A. (2016). Progettando il programma Un'esperienza di ricerca progettuale per la rigenerazione urbana di un'area postindustriale. in Massarente, A., Verde, A. (eds.). *Intersezioni urbane. Indagini e proposte per la rigenerazione urbana di un'area postindustriale.* Ferrara: ArcDesPress.

Neufert, E. (2013). Enciclopedia pratica per progettare e costruire. Milano: Hoepli.

PAT (1994). Norme tecniche di attuazione del Piano di Assetto del Territorio, Comune di Porto Tolle. [online] Available from: http://www.comune. portotolle.ro.it/web/portotolle/ufficio-urbanistica;jsessionid=62B05E BBC60DDE36B34193BD2ECCC0E7.liferay1?p_p_id=ALFRESCO_ MYPORTAL_CONTENT_PROXY_WAR_myportalportlet_INSTANCE_ u1Iw&p_p_lifecycle=1&p_p_state=normal&p_p_mode=view&p_p_col_ id=column-3&p_p_col_count=2&template=/regioneveneto/myportal/ html-generico-detail&uuid=237c01b0-ffd0-4f5a-8fa2-cdd6a2e79676. [Accessed: August 29th, 2017]

PdA (1994). Norme tecniche di attuazione del Piano d'Area Delta del Po, Regione Veneto. [online] Available from: https://www.regione.veneto.it/web/ptrc/ delta-del-po. [Accessed: August 25th, 2017]

PRG (2003). Norme tecniche di attuazione del Piano Regolatore Generale - Centri abitati, Comune di Porto Tolle Veneto. [online] Available from: https://sac2.halleysac. it/c029039/zf/index.php/trasparenza/index/index/categoria/168. [Accessed: August 28th, 2017] **PRG (2003).** Norme tecniche di attuazione del Piano Regolatore Generale - Zone agricole, Comune di Porto Tolle Veneto. [online] Available from: https://sac2.halleysac. it/c029039/zf/index.php/trasparenza/index/index/categoria/168. [Accessed: August 28th, 2017]

PTCP (2012). Norme tecniche del Piano Territoriale di Coordinamento Provinciale, Provincia di Rovigo. [online] Available from: http://www.pianificazione. provincia.rovigo.it/nqcontent.cfm?a_id=2438. [Accessed: August 27th, 2017]

PTRC (1992). Norme tecniche del Piano Territoriale Regionale di Coordinamento, Regione Veneto. [online] Available from: http://ptrc.regione.veneto.it/ptrcvigente-1992. [Accessed: August 25th, 2017]

Quaglia, T. et al. (2011). Aree protette e sviluppo sostenibile. Un piano per la conservazione della biodiversità e lo sviluppo dell'economia locale nel delta del Po. Regione Veneto. [online] Available from: https://www.regione.veneto.it/static/www/agricoltura-e-foreste/natreg.pdf. [Accessed: August 19th, 2017]

Sijmons, D. (2014). Landscape and Energy. Designing Transition. Rotterdam: nai010publishers.

Viganò, P. (2012). Les territoires de l'urbanisme. Le projet comme producteur de connaissance. Genève: MetisPresses.

PART VI and CONCLUSIONS

Baumann, Z. (2003). Modernità liquida. Roma-Bari: Laterza

Caldiron, C. (2013). La centrale ENEL di Porto Tolle: una storia di danno ambientale. Tesi di Laurea in Pianificazione Urbanistica e Territoriale, Relatore: Prof.ssa Stefania Tonin, Co-relatore: Dott.ssa Claudia Guidorzi, Anno Accademico 2012-2013, Biblioteca dell' Istituto Universitario di Architettura di Venezia. [Accessed: July 14th, 2016]

ITACA (2013). *Linee guida per la redazione di studi di fattiblità.* [online] Available from: http://www.itaca.org/documenti/news/LG%20ITACA%20 SDF_Completo_240113.pdf. [Accessed: October 22nd, 2017]

Morin, E. (1999). La tête bien faite. Paris: Seuil.

Samonà, G. et al. (1961). Piano comprensoriale dei comuni del Polesine. Relazione introduttiva. Documents accessed at Archivio progetti IUAV, Venice. [Accessed: July 15th, 2016]

Figure credits

PART I

- Fig. 1 Ferrari, Malaguti, Verde, 2007
- Fig. 2 Ferrari, Malaguti, Verde, 2007
- Fig. 3 © Edward Burtynsky, courtesy Metivier Gallery, Toronto / Flowers Gallery, London
- Fig. 4 © Edward Burtynsky, courtesy Metivier Gallery, Toronto / Flowers Gallery, London
- Fig. 5 from the film "Deserto Rosso" (1964) by Michelangelo Antonioni
- Fig. 6 from the film "Deserto Rosso" (1964) by Michelangelo Antonioni
- Fig. 7 from the film "Deserto Rosso" (1964) by Michelangelo Antonioni
- Fig. 8 http://www.petropia.org/info/
- Fig. 9 http://www.petropia.org/info/
- Fig. 10 Sijmons, D. (2014). Landscape and Energy. Designing Transition. Rotterdam: nai010publishers
- Fig. 11 Sijmons, D. (2014). Landscape and Energy. Designing Transition. Rotterdam: nai010publishers
- Fig. 12 Sijmons, D. (2014). Landscape and Energy. Designing Transition. Rotterdam: nai010publishers
- Fig. 13 Sijmons, D. (2014). Landscape and Energy. Designing Transition. Rotterdam: nai010publishers
- Fig. 14 Bhatia, N. (2016). Re-wiring territories, in Volume 47 (1), Amsterdam: Archis. p.79-86.
- Fig. 15 www.adrioninterreg.eu/index.php/about-program/cooperation-area/
- Fig. 16 Gas and oil pipelines in Europe document, http://www.europarl.europa.eu/RegData/ etudes/note/join/2009/416239/IPOL-ITRE_NT(2009)416239_EN.pdf (p.35)
- Fig. 17 www.compoundchem.com/2014/09/01/benzene-derivatives-in-organic-chemistry/
- Fig. 18 elaborated by the author, source: Corine Land Cover 2012 www.eea.europa.eu
- Fig. 19 elaborated by the author, source: Corine Land Cover 2012 www.eea.europa.eu
- Fig.20 elaborated by the author, source: Corine Land Cover 2012 www.eea.europa.eu
- Fig.21 elaborated by the author, source: Corine Land Cover 2012 www.eea.europa.eu
- Fig.22 elaborated by the author, source: Corine Land Cover 2012 www.eea.europa.eu
- Fig.23 elaborated by the author, source: Corine Land Cover 2012 www.eea.europa.eu
- Fig.24 elaborated by the author, source: Corine Land Cover 2012 www.eea.europa.eu
- Fig.25 elaborated by the author, source: Corine Land Cover 2012 www.eea.europa.eu
- Fig.26 © Edward Burtynsky, courtesy Metivier Gallery, Toronto / Flowers Gallery, London
- Fig.27 Google Earth 2017
- Fig.28 Google Earth 2017
- Fig.29 © Edward Burtynsky, courtesy Metivier Gallery, Toronto / Flowers Gallery, London
- Fig.30 Google Earth 2017
- Fig.31 Google Earth 2017
- Fig.32 http://www.econote.it/2015/03/06/eltjon-valle-petrolia/
- Fig.33 Google Earth 2017
- Fig.34 Google Earth 2017

- Fig.35 © Edward Burtynsky, courtesy Metivier Gallery, Toronto / Flowers Gallery, London
- Fig.36 Google Earth 2017
- Fig.37 Google Earth 2017
- Fig.38 © Edward Burtynsky, courtesy Metivier Gallery, Toronto / Flowers Gallery, London
- Fig.39 Google Earth 2017
- Fig.40 Google Earth 2017
- Fig.41 © Edward Burtynsky, courtesy Metivier Gallery, Toronto / Flowers Gallery, London
- Fig.42 Google Earth 2017
- Fig.43 Google Earth 2017
- Fig.44 Enel Futur-E programme, Porto Tolle documentation https://corporate.enel.it/it/futur-e/impianto/porto-tolle/porto-tolle-documentazione.html
- Fig.45 Google Earth 2017
- Fig.46 Google Earth 2017
- Fig.47 elaborated by the author, source: Corine Land Cover 2012, Prospectus of hydrocarbon reserves: https://www.prio.org - Petroleum Dataset v1.2; Refineries location and productivity: http://globalenergyobservatory.org; On-shore oil fields location: Wikipedia – Oil fields in Italy, Slovenia, Croatia, Serbia, Albania, Greece
- Table I
 European Commission (2013). Commission Staff Working Document. Technical information on Green Infrastructure (GI). [Online] 6th May. Available from: http://ec.europa.eu/ environment/nature/ecosystems/index_en.htm.
- Fig.48 www.antonini-foto.it
- Fig.49 https://commons.wikimedia.org/wiki/File:Ticino_letto_Galliate.jpg
- Fig.50 www.ilgiorno.it/pavia
- Fig.51 https://vivoinlomellina.wordpress.com
- Fig.52 http://www.bioecogeo.com/33206-2/
- Fig.53 https://www.zainoo.com/it/guida-italia/veneto/rovigo/delta-del-po
- Fig.54 www.mosevenezia.eu
- Fig.55 www.mosevenezia.eu
- Fig.56 http://enistoria.eni.com
- Fig.57 http://enistoria.eni.com
- Fig.58 http://bari.repubblica.it/cronaca
- Fig.59 Lilia Candida WWF Taranto
- Fig.60 https://commons.wikimedia.org/wiki/File:Gela_zona_industriale_dall%27alto.JPG
- Fig.61 https://commons.wikimedia.org/wiki/File:Sughereta_Niscemi06.jpg
- Fig.62 http://siracusa.gds.it
- Fig.63 Lamberto Rubino
- Fig.64 https://commons.wikimedia.org/wiki/File:Kraljevica_2010_0728_02.JPG
- Fig.65 https://commons.wikimedia.org/wiki/File:Stara_Baška.jpg
- Fig.66 www.tportal.hr
- Fig.67 Goran Safarek www.balkanrivers.net
- Fig.68 http://www.econote.it/2015/03/06/eltjon-valle-petrolia/
- Fig.69 Enrico Porfido

- Fig.70 https://www.flickr.com/photos/unep_dc/8900418979/in/album-72157633831209853
- Fig.71 Alessandro Pracucci
- Fig.72 https://zarifopoulos.com/portfolio/elpe/?lang=en
- Fig.73 http://www.panoramio.com/photo/88755795
- Fig.74 http://www.stager.gr/index.php/gr/works
- Fig.75 www.tripinview.com/en/places/residential/55736/greece-attica-central-attica-aspropirgos
- Fig.76 www.vice.com/gr/article/53z378/ta-oryxeia-tis-dei-katapinoun-xoria-stin-ptolemaida
- Fig.77 http://mashable.com/2014/11/12/lignite
- Fig.78 https://en.wikipedia.org/wiki/Amyntaio_Power_Plant#/media/File:Amyndeo,_Florina_ prefecture,_Greece__Lignite_power_station_and_lignite_mines_-_01_cropped.jpg
- Fig.79 http://blogs.agu.org/landslideblog/2017/06/13/amyntaiou-2/
- Fig.80 http://www.musee-du-petrole.com/historique/
- Fig.81 http://www.musee-du-petrole.com/informations-pratiques/horaires-et-tarifs/
- Fig.82 Bruzzone, M. (ed.) (2015). Paesaggi culturali e progetto. Verso il Parco Museo del Petrolio a Fornovo di Taro. Genova: Sagep Editori.
- Fig.83 Bruzzone, M. (ed.) (2015). Paesaggi culturali e progetto. Verso il Parco Museo del Petrolio a Fornovo di Taro. Genova: Sagep Editori.
- Fig.84 www.museodelpetrolio.it
- Fig.85 http://doc.mode.unibo.it/content/un-parco-museo-del-petrolio-e-delle-energie-vallezza
- Fig.86 Bhatia, N. (2016). Re-wiring territories, in Volume 47 (1), Amsterdam: Archis. p.79-86.
- Fig.87 Bhatia, N. (2016). Re-wiring territories, in Volume 47 (1), Amsterdam: Archis. p.79-86.
- Fig.88 Bhatia, N. (2016). Re-wiring territories, in Volume 47 (1), Amsterdam: Archis. p.79-86.
- Fig.89 http://www.armellecaron.fr/works/les-villes-rangees/
- Fig.90 http://www.armellecaron.fr/works/les-villes-rangees/
- Fig.91 Steinberg, H.G. (1967). Sozialräumliche Entwicklung und Gliederung des Ruhrgebietes.
 Bad Godesberg: Bundesforschungsanstalt für landeskunde und raumordnung selbstverlag.
- Fig.92 Steinberg, H.G. (1967). Sozialräumliche Entwicklung und Gliederung des Ruhrgebietes. Bad Godesberg: Bundesforschungsanstalt für landeskunde und raumordnung selbstverlag.
- Fig.93 Steinberg, H.G. (1967). Sozialräumliche Entwicklung und Gliederung des Ruhrgebietes. Bad Godesberg: Bundesforschungsanstalt für landeskunde und raumordnung selbstverlag.
- Fig.94 Steinberg, H.G. (1967). Sozialräumliche Entwicklung und Gliederung des Ruhrgebietes.
 Bad Godesberg: Bundesforschungsanstalt für landeskunde und raumordnung selbstverlag.
- Fig.95 http://www.diva-gis.org
- Fig.96 Steinberg, H.G. (1967). Sozialräumliche Entwicklung und Gliederung des Ruhrgebietes.
 Bad Godesberg: Bundesforschungsanstalt für landeskunde und raumordnung selbstverlag.
- Fig.97 Steinberg, H.G. (1967). Sozialräumliche Entwicklung und Gliederung des Ruhrgebietes.
 Bad Godesberg: Bundesforschungsanstalt für landeskunde und raumordnung selbstverlag.
- Fig.98 elaborated by the author
- Fig.99 Steinberg, H.G. (1967). Sozialräumliche Entwicklung und Gliederung des Ruhrgebietes.
 Bad Godesberg: Bundesforschungsanstalt für landeskunde und raumordnung selbstverlag.
- Fig. 100 elaborated by the author

- Fig. 101 Steinberg, H.G. (1967). Sozialräumliche Entwicklung und Gliederung des Ruhrgebietes.
 Bad Godesberg: Bundesforschungsanstalt für landeskunde und raumordnung selbstverlag.;
 Corine Land Cover 2012
- Fig.102 elaborated by the author
- Fig. 103 Becher, B., Becher, H. (1971). Die Architektur der Förder- und Wassertürme. München: Prestel - Verlag München.
- Fig. 104 Becher, B., Becher, H. (2010). Bergwerke und hütten. München: Schirmer Mosel
- Fig.105 elaborated by the author
- Fig. 106 www.metropoleruhr.de
- Fig.107 Michael Latz http://www.landezine.com/index.php/2011/08/post-industrial-landscape-architecture/
- Fig. 108 Andreas Kipar, Land srl, http://www.aiapp.net/krupp-park-essen-germania/
- Fig.109 elaborated by the author
- Fig. 110 www.route-industriekultur.de
- Fig. III Guntram Walter, www.route-industriekultur.de
- Fig. 112 Michael Gohl, www.route-industriekultur.de
- Fig. 113 Sascha Kreklau, www.route-industriekultur.de
- Fig. 114 Guntram Walter, www.route-industriekultur.de
- Fig. 115 Guntram Walter, www.route-industriekultur.de
- Fig. I 16 http://oma.eu/projects/zollverein-masterplan
- Fig. 117 Anselm Van Sintfliet, http://oma.eu/projects/zollverein-kohlenwaesche
- Fig. 118 Thomas Willemsen, https://www.zollverein.de/angebote/sanaa-gebaeude
- Fig. 119 Jochen Tack, https://www.zollverein.de/angebote/werksschwimmbad
- Fig. I 20 Amalie Wright

http://architecturenow.co.nz/articles/future-park-imagining-tomorrows-urban-parks/

- Fig. 121 Latz + Partners https://www.latzundpartner.de/en/projekte/postindustrielle-landschaften/landschaftsparkduisburg-nord-de/
- Fig.122 Latz + Partners

https://www.latzundpartner.de/en/projekte/postindustrielle-landschaften/landschaftsparkduisburg-nord-de/

Fig.123 Latz + Partners

https://www.latzundpartner.de/en/projekte/postindustrielle-landschaften/duisburg-nordsinterpark/

Fig. 124 Latz + Partners

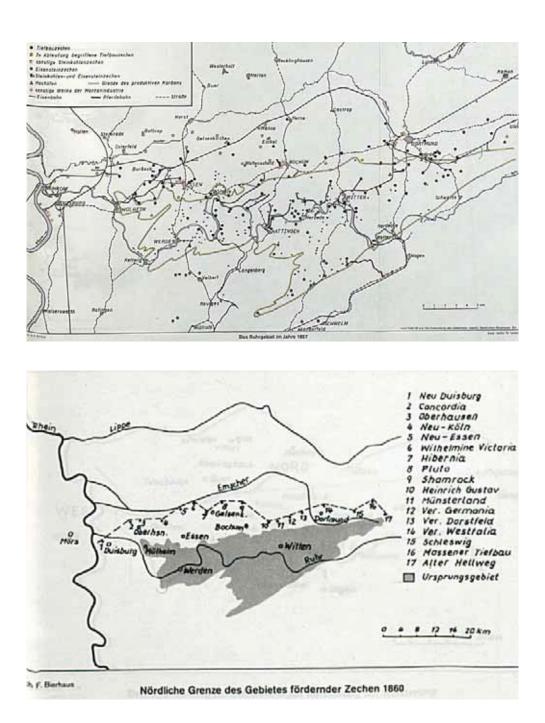
https://www.latzundpartner.de/en/projekte/postindustrielle-landschaften/duisburg-nordwasserpark/

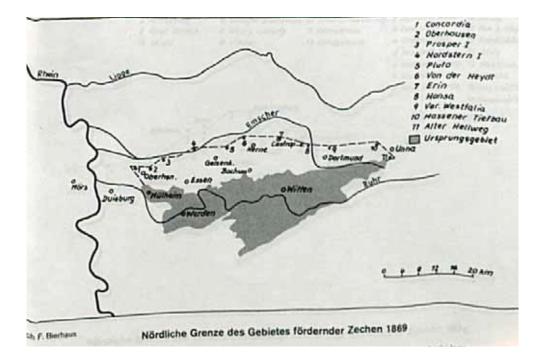
- Fig. 125 Latz + Partners https://www.latzundpartner.de/en/projekte/postindustrielle-landschaften/duisburg-nordbahnpark/
- Fig. 126 elaborated by the author
- Fig. 127 elaborated by the author

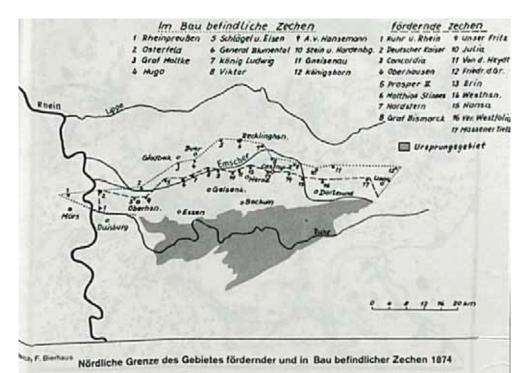
- Fig. 128 http://www.rfi.it/rfi/LINEE-STAZIONI-TERRITORIO/Nelle-regioni/Veneto
- Fig. 129 elaborated by the author
- Fig. 130 elaborated by the author
- Fig.131 elaborated by the author
- Fig. 132 elaborated by the author
- Fig. 133 elaborated by the author
- Fig. 134 elaborated by the author
- Fig. 135 Sijmons, D. (2014). Landscape and Energy. Designing Transition. Rotterdam: nai010publishers
- Fig. 136 https://www.espazium.ch/la-mostra-metropoli-orizzontale-alla-biennale-di-venezia
- Fig. 137 Branzi, A. (2006). Weak and diffuse modernity: the world of projects at the beginning of the 21st century. Milano: Skira
- Fig. 138 Branzi, A. (2006). Weak and diffuse modernity: the world of projects at the beginning of the 21st century. Milano: Skira
- Fig. 139 Branzi, A. (2006). Weak and diffuse modernity: the world of projects at the beginning of the 21st century. Milano: Skira
- Fig.140 www.iea.org
- Fig. 141 www.iea.org
- Fig.142 www.iea.org
- Fig.143 www.iea.org
- Fig.144 www.iea.org
- Fig.145 www.iea.org
- Fig. 146 www.iea.org
- Fig.147 www.iea.org
- Fig. 148 www.iea.org
- Fig.149 www.iea.org
- Fig.150 www.iea.org
- Fig.151 www.iea.org
- Fig.152 www.iea.org
- Fig.153 www.iea.org
- Fig.154 www.iea.org
- Fig.155 www.iea.org
- Fig.156 www.iea.org
- Fig.157 www.iea.org
- Fig. 158 www.iea.org
- Fig.159 www.iea.org
- Table 2 Mazzitelli, A. (2010). Produzione di energia ed elettricità da alghe. Tesi di Laurea in Ingegneria Chimica, Relatore: Stefano Consonni, Correlatore: Ing. federico Viganò, Politecnico di Milano.
- Fig. 160 https://en.wikipedia.org/wiki/Botryococcus_braunii
- Fig. 161 http://www.huffingtonpost.co.uk/2016/01/07/what-is-chlorella-green-algae-_n_6940872. html

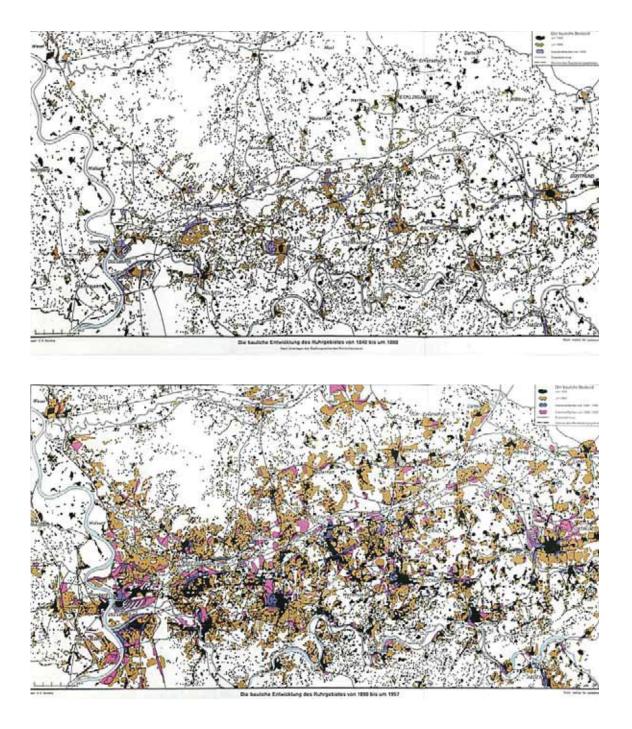
- Fig. 162 https://it.wikipedia.org/wiki/Dunaliella
- Fig.163 http://www.seaweed.ie/aquaculture/kelp_china.php
- Fig. 164 https://www.researchgate.net/publication/278410003_Study_of_the_flow_mixing_in_a_ novel_ARID_raceway_for_algae_production
- Fig. 165 https://en.wikipedia.org/wiki/Photobioreactor
- Fig.166 Bing Maps
- Fig. 167 https://commons.wikimedia.org/wiki/File%3ASeaweed_farm_uroa_zanzibar.jpg
- Fig.168 http://miraclesproject.eu
- Fig. 169 https://www.d-factoryalgae.eu
- Fig. 170 http://co2degrees.com/learn-more/resources
- Table 3 IEAGHG (2013). CO2 pipeline infrastructure. Report 2013/18
- Fig. 171 http://co2degrees.com/learn-more/resources
- Fig. 172 Ros, M. et al. (2014). Start of a CO2 Hub in Rotterdam: connecting CCS and CCU. in Energy Procedia 63 (2014). Amsterdam: Elsevier.
- Fig. 173 Ros, M. et al. (2014). Start of a CO2 Hub in Rotterdam: connecting CCS and CCU. in Energy Procedia 63 (2014). Amsterdam: Elsevier.
- Fig. 174 http://co2degrees.com/learn-more/resources
- Fig. 175 http://www.hydrogenious.net/en/2016/04/successful-completion-network-modularhydrogen-plant-energy-storage/
- Fig. 176 http://www.kbbnet.de/en/teaserwidgets/storable-energy/
- Fig. 177 http://www.kbbnet.de/en/teaserwidgets/storable-energy/
- Fig. 178 elaborated by the author
- Fig. 179 Bing Maps
- Fig. 180 Bing Maps
- Fig. 181 Bing Maps
- Fig. 182 Bing Maps
- Fig. 183 Bing Maps
- Fig. 184 Bing Maps
- Fig. 185 Bing Maps
- Fig. 186 elaborated by the author
- Fig. 187 elaborated by the author
- Fig. 188 elaborated by the author
- Fig. 189 elaborated by the author
- Fig. 190 elaborated by the author
- Fig. 191 elaborated by the author
- Fig. 192 elaborated by the author
- Fig.193 elaborated by the author
- Fig. 194 elaborated by the author
- Fig. 195 elaborated by the author
- Fig. 196 elaborated by the author
- Fig. 197 elaborated by the author
- Fig. 198 elaborated by the author

- Fig. 199 http://www.ilgiornaledelpo.it/tag/365-po-river-system/
- Fig.200 elaborated by the author
- Fig.201 Quaglia, T. et al. (2011). Aree protette e sviluppo sostenibile. Un piano per la conservazione della biodiversità e lo sviluppo dell'economia locale nel delta del Po. Regione Veneto.
- Fig.202 Quaderni Ca' Vendramin Periodico del laboratorio internazionale delta e lagune, n. 0, ottobre 2009, Fondazione Ca' Vendramin.
- Fig.203 Quaglia, T. et al. (2011). Aree protette e sviluppo sostenibile. Un piano per la conservazione della biodiversità e lo sviluppo dell'economia locale nel delta del Po. Regione Veneto.
- Fig.204 Quaderni Ca' Vendramin Periodico del laboratorio internazionale delta e lagune, n. 2, ottobre 2013, Fondazione Ca' Vendramin.
- Fig.205 Quaderni Ca' Vendramin Periodico del laboratorio internazionale delta e lagune, n. 2, ottobre 2013, Fondazione Ca' Vendramin.
- Fig.206 Quaglia, T. et al. (2011). Aree protette e sviluppo sostenibile. Un piano per la conservazione della biodiversità e lo sviluppo dell'economia locale nel delta del Po. Regione Veneto.
- Fig.207 Quaderni Ca' Vendramin Periodico del laboratorio internazionale delta e lagune, n. 2, ottobre 2013, Fondazione Ca' Vendramin.
- Fig.208 Quaderni Ca' Vendramin Periodico del laboratorio internazionale delta e lagune, n. 2, ottobre 2013, Fondazione Ca' Vendramin.
- Fig.209 PTRC (1992). Norme tecniche del Piano Territoriale Regionale di Coordinamento, Regione Veneto.
- Fig.210 PTRC (1992). Norme tecniche del Piano Territoriale Regionale di Coordinamento, Regione Veneto.
- Fig.211 PdA (1994). Norme tecniche di attuazione del Piano d'Area Delta del Po, Regione Veneto.
- Fig.212 PTCP (2012). Norme tecniche del Piano Territoriale di Coordinamento Provinciale, Provincia di Rovigo.
- Fig.213 PTCP (2012). Norme tecniche del Piano Territoriale di Coordinamento Provinciale, Provincia di Rovigo.
- Fig.214 PTCP (2012). Norme tecniche del Piano Territoriale di Coordinamento Provinciale, Provincia di Rovigo.
- Fig.215 PTCP (2012). Norme tecniche del Piano Territoriale di Coordinamento Provinciale, Provincia di Rovigo.
- Fig.216 PTCP (2012). Norme tecniche del Piano Territoriale di Coordinamento Provinciale, Provincia di Rovigo.
- Fig.217 PTCP (2012). Norme tecniche del Piano Territoriale di Coordinamento Provinciale, Provincia di Rovigo.
- Fig.218 PRG (2003). Norme tecniche di attuazione del Piano Regolatore Generale, Comune di Porto Tolle Veneto.
- Fig.219 PAT (1994). Norme tecniche di attuazione del Piano di Assetto del Territorio, Comune di Porto Tolle.
- Fig.220 PAT (1994). Norme tecniche di attuazione del Piano di Assetto del Territorio, Comune di Porto Tolle.

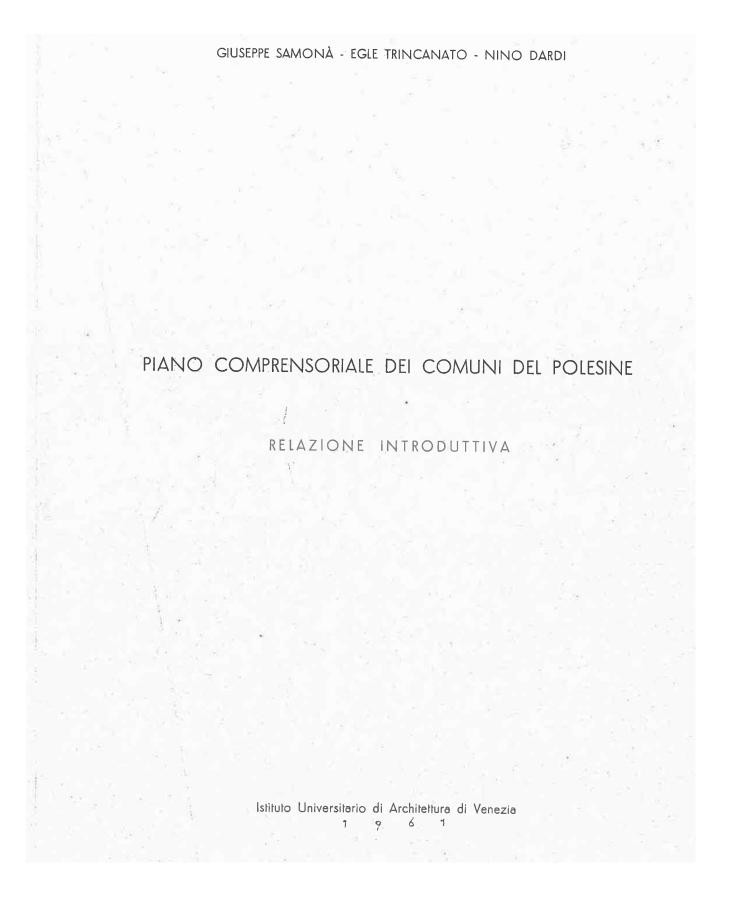

- Fig.221 PAT (1994). Norme tecniche di attuazione del Piano di Assetto del Territorio, Comune di Porto Tolle.
- Fig.222 ENEL (2015). Invito a manifestare interesse per la riqualificazione e acquisizione del sito industriale Enel di Porto Tolle.
- Fig.223 ENEL (2015). Invito a manifestare interesse per la riqualificazione e acquisizione del sito industriale Enel di Porto Tolle.
- Fig.224 ENEL (2015). Invito a manifestare interesse per la riqualificazione e acquisizione del sito industriale Enel di Porto Tolle.
- Fig.225 ENEL (2015). Invito a manifestare interesse per la riqualificazione e acquisizione del sito industriale Enel di Porto Tolle.
- Fig.226 ENEL (2015). Invito a manifestare interesse per la riqualificazione e acquisizione del sito industriale Enel di Porto Tolle.
- Fig.227 ENEL (2015). Invito a manifestare interesse per la riqualificazione e acquisizione del sito industriale Enel di Porto Tolle.
- Fig.228 ENEL (2015). Invito a manifestare interesse per la riqualificazione e acquisizione del sito industriale Enel di Porto Tolle.
- Fig.229 ENEL (2015). Invito a manifestare interesse per la riqualificazione e acquisizione del sito industriale Enel di Porto Tolle.
- Fig.230 ENEL (2015). Invito a manifestare interesse per la riqualificazione e acquisizione del sito industriale Enel di Porto Tolle.
- Fig.231 ENEL (2015). Invito a manifestare interesse per la riqualificazione e acquisizione del sito industriale Enel di Porto Tolle.
- Fig.232 ENEL (2015). Invito a manifestare interesse per la riqualificazione e acquisizione del sito industriale Enel di Porto Tolle.
- Fig.233 ENEL (2015). Invito a manifestare interesse per la riqualificazione e acquisizione del sito industriale Enel di Porto Tolle.
- Fig.234 elaborated by the author
- Fig.235 elaborated by the author
- Fig.236 elaborated by the author
- Fig.237 elaborated by the author
- Fig.238 elaborated by the author
- Fig.239 elaborated by the author
- Fig.240 elaborated by the author
- Fig.241 elaborated by the author
- Fig.242 elaborated by the author
- Fig.243 elaborated by the author
- Fig.244 Barca, F., Casavola, P. (eds.) (2014). Strategia Nazionale per le Aree Interne: definizione, obiettivi, strumenti e governance. Materiali UVAL n.31. Roma: Collana Materiali Uval.
- Fig.245 http://www.agenziacoesione.gov.it/it/arint/; elaborated by the author
- Fig.246 http://www.agenziacoesione.gov.it/it/arint/; elaborated by the author
- Fig.247 http://www.agenziacoesione.gov.it/it/arint/; elaborated by the author
- Fig.248 http://www.agenziacoesione.gov.it/it/arint/; elaborated by the author


- Fig.249 Provinces of Ferrara, Rovigo, Venice, and Padua websites; elaborated by the author
- Fig.250 University of Padua website; elaborated by the author
- Fig.251 www.geapartners.ch
- Fig.252 Carbon neutral energy productive cycle during the first phase
- Fig.253 elaborated by the author
- Fig.254 elaborated by the author
- Fig.255 elaborated by the author
- Fig.256 elaborated by the author
- Fig.257 elaborated by the author
- Fig.258 elaborated by the author
- Fig.259 elaborated by the author
- Fig.260 elaborated by the author
- Fig.261 elaborated by the author
- Fig.262 elaborated by the author
- Fig.263 elaborated by the author
- Fig.264 elaborated by the author
- Fig.265 elaborated by the author
- Fig.266 https://corporate.enel.it/it/futur-e/impianto/alessandria/concordo-di-idee.html
- Fig.267 https://corporate.enel.it/it/futur-e/impianto/alessandria/concordo-di-idee.html
- Fig.268 https://corporate.enel.it/it/futur-e/impianto/alessandria/concordo-di-idee.html
- Fig.269 https://corporate.enel.it/it/futur-e/impianto/alessandria/concordo-di-idee.html
- Fig.270 https://corporate.enel.it/it/futur-e/impianto/alessandria/concordo-di-idee.html
- Fig.271 https://corporate.enel.it/it/futur-e/impianto/alessandria/concordo-di-idee.html
- Fig.272 Samonà, G. et al. (1961). Piano comprensoriale dei comuni del Polesine. Relazione introduttiva. Documents accessed at Archivio progetti IUAV, Venice.
- Fig.273 Samonà, G. et al. (1961). Piano comprensoriale dei comuni del Polesine. Relazione introduttiva. Documents accessed at Archivio progetti IUAV, Venice.
- Fig.274 elaborated by the author


Annexes


PART I

Annex I Steinberg, H.G. (1967). Sozialräumliche Entwicklung und Gliederung des Ruhrgebietes. Bad Godesberg: Bundesforschungsanstalt für landeskunde und raumordnung selbstverlag.



PART IV

Annex 2 Samonà, G. et al. (1961). Piano comprensoriale dei comuni del Polesine. Relazione introduttiva. Documents accessed at Archivio progetti IUAV, Venice.

La situazione dell'economia italiana sopporta ancora le conseguenze di un secolo di incertezze e spesso di errori che durante il ventennio fascista culminarono nel protezionismo del le grosse imprese operanti in un mercato artificialmente ristretto dalla rete dei dispositivi autarchici. Talchè, solo da poco tempo, nel settore industriale sono stati parzialmente rimossi taluni difetti della condizione monopolistica delle nostre principali attività imprenditoriali esasperate dal fascismo, mentre una conoscenza meno imperfetta dei parametri dell'attuale sistema economico va acquistando un prestigio sempre maggiore di forza progressiva.

I nostri mercati, soprattutto con la spinta del mercato comune, si sono già ampliati e vanno incrementando maggiormente l'attività industriale. Ma è ancora molto lungo il cammino da percorrere per conquistare una efficenza produttiva capace di equilibrare i gravi scompensi della nostra economia territoriale: La mancanza di equilibrio che ancora esiste fra reddito agricolo e reddito industriale richiede infatti altri massicci interventi in questo ultimo settore per provoca re ulteriori assorbimenti di sovrapopolazione agricola da parte delle più adatte attività imprenditoriali.

Il rapporto fra prodotto industriale e prodotto agricolo è in Italia ancora di gran lunga inferiore a quello di molti altri paesi europei; bastano pochi confronti a dimostrarlo: valore della produzione industriale in Italia 2,5 volte quello della produzione agricola, in Germania sei volte, in Inghilterra dodici volte. D'altra parte una ulteriore espansione dell'industria italiana dovrebbe essere controllata da una vigile pianificazione a tutti i livelli, invece di realizzarsi come è avvenuto fino ad oggi per saltuarie e in apparenza occasionali localizzazioni di attività economi che e dei lavori pubblici conseguenti.

Occorrerebbe, infatti, che questa incrementazione delle industrie fosse avviata servendosi delle direttive programmatiche di un piano di larga massima per gli investimenti al livello na zionale nei diversi settori economici e in quello conseguente delle opere pubbliche, entrambi legati ad un esame profondo della situazione del territorio in rapporto alle gravi mancanze di equilibrio che si verificano nell'area economica e sociale. Un tale esame consentirebbe di distinguere meglio per regioni le caratteristiche economico-sociali e le zone secondo cui tali caratteristiche possono essere raggruppatè e, formare un certo numero di comprensori regionali con una determi nata organicità di situazioni in rapporto ai criteri da adottare per il potenziamento dello sviluppo urbanistico ed economico. Tale potenziamento sarebbe affidato ai Comuni o a un loro raggruppamen to, per quel che riguarda la fase risolutiva delle localizzazioni da adottare e da attuare, e sarebbe invece assimilato dal potere centrale per quel che riguarda le indicazioni orientative che, tramite la regione, dovrebbero costituire la base concreta delle decisioni del vertice per il programma periodico degli investimenti alla scala nazionale.

Purtroppo in Italia non siamo ancora pervenuti a questo livello dell'organizzazione sociale, anche se i piani territoriali di coordinamento e quelli di sviluppo economico dimostrano che, sia pur lentamente, si tende a realizzare il decentramento e la pianificazione organizzata su diverse scale, da quella nazionale a quella comunale, coordinate ai vari livelli per finalità di interesse pubblico. Dobbiamo perciò contentarci di risplvere in forma settoriale alcuni problemi ur-

- 1 -

genti per la società italiana di oggi sforzandoci di vederli in un quadro più vasto possibile di interessi pubblici che eviti la saltuarietà degli interventi occasionali e consenta di realizzare senza scosse la trasformazione funzionale dai piani settoriali già predisposti ai piani comprensorialic e a quelli della regione quando il passo più avanti nelle strutture segnate dalla costituzione potrà essere fatto .

Nel l'ambito di questi concetti ci proponiamo dunque, di stabilire l'indirizzo metodologico per formare il progetto di un piano delle terre del Polesine tesso dovrebbe costituire mezzo fondamentale di rinascita e di collaborazione fra tutti i Comuni compresi in questo territorio e dovrebbe far parte integrante del comprensorio che include la regione orientale padana. In questo grande territorio sanebbe infatti possibile l'integrazione equilibrata di tutte le influenze di natura prevalentemente economica., con un piano ben organizzato, che sappia creare i presupposti per chè tali influenze agiscano da strumento moltiplicatore della attrazione naturale esercitata sulle attività industriali dal sistema idroviario della regione stessa. Per raggiungere questa finalità il piano dovrebbe progettare un programma di opere pubbliche che abbiano come cardine fondamentale il corso del Po. (

In realtà esiste un certo numero di progetti che si occupano della sistemazione idraulica della regione orientale padana. 'Si tratta in genere di studi che legano la sistemazione del Po ad un programma economico che riguarda sia i trasporti con natanti di forte tonnellaggio per via fluviale., sia lo sfruttamento delle acque per l'installazione di centrali idroelettriche e sia., in senso più generico., la possibilità di installare sulle sponde o nelle immediate vicinanze del fiume o di canali navigabili ad esiso collegati, altre attività industriali.

Tuttavia questi progetti, fra i quali alcuni assai ben studiati-, si limitano a indicare la soluzione più o meno completa dei problemi idraulici per la sistemazione fluviale e le sue conseguenze economiche soprattutto nel ramo dei trasporti per via d'acqua. Alcuni di questi studi sono molto scrupolosi nella analisi dei vari aspetti di tale sistemazione e nel mostrare la misura e il limite dei vantaggi economici., in realtà notevoli, che offrono i trasporti per via fluviale rispetto a quelli per via di terra ma trascurano ogni altro problema che esuli dalle questioni di carattere idraulico. I Sono cioè progetti che, pur estendendosi a un comprensorio che abbraccia una parte della Lombardia fino a Vilano-, una parte dell'Emilia e una parte del Veneto fino alle foci del Po-tra lasciano materialmente ogni rapporto operativo con fattori che, in questo comprensorio potrebbero contribuire alla completezza del discorso in sede economica e sociale e alla evidenza dei suoi straordinari vantaggi in tali settori.

In sostanza questi progetti non riportano le proprie deduzioni di natura idraulica nel quadro di tutte le attività del grande territorio della regione orientale padana e della necessitàdelle genti che vi sono insediate. Invero alcuni progetti fanno qualche accenno alle caratteristiche di tale quadro, ma si tratta proprio di accenni generici, non portati mai al lívello delle deduzioni strumentalmente utili per una attuazione realistica.

Questa attuazione, per essere realistica, dovrebbe infatti partire dal presupposto di considerare tutti i problemi del Polesine per risolverli nel loro insieme. Si potrebbero in talmodo offrire i dati e gli strumenti di una realizzazione di strutture economicamente vantaggiose anche negli sviluppi delle attività imprenditoriali.

Pertanto lo studio che ci proponiamo di fare con la collaborazione di tutti i Comuni del

Polesine, riguardo proprio questa possibilità di tatole promificazione del problemi della zona e di presentazione della loro convenienza economica globale. Esso è percrè del tutto originale fra le proposte fatte per questo territoric. Noi vagliamo, croè, includere tutti i problemi di questa terra depressa e risolverli con un piano che ne approfondisca i caratteri economici e urbanistici e la laro suscettibilità allo sviluppo che può essere grandissimo ed economicamente redditizio solo che i problemi stessi siano definiti nel loro valore complessivo.

La grande singelarità di questa terra, che fa parte di due regioni, consiste nel più straordinario contrasto che si possa immaginare fra le sue grandiose possibilità naturali di sviluppo produttivo e la degradata condizione della suo economia. Contrasto che deriva dal fatto che questa terra è minata proprio dagli stessi fenomeni naturali che sorebbero tanto favor evoli ad un aumentato tenore produttivo, se organizzati secondo una appropriata funzionalità e che invece, non essendo dominati per conseguire tale scopo, manifestano la loro potenza in forma distruttiva in vece che produttiva, e incombono con una continua minacica sulle popolazioni, paralizzandone le iniziative e provocando l'esodo continuo e irref enobile dei più giavani in altre località meno minacciate e più produttivo.

Sono pertanto evidenti le ragioni di urgenza che spingono all'immediato superamentodi questa situazione paradossole. I Fra queste ragioni è preminente il problema dei flussi migratori cho ogni anno da queste terre riversano sui grossi centri del triangolo industriale migliaia di persone in cerca di lavoro. (Queste forze lavoro, in cerca di prima o di nuova occupazione, si diffondono in tutti i rami dell'attività urbana gravandone spesso non positivamente le prestazioni e impegnando ogni farma di servizio pubblico con un troppo pieno che tende a lagorarne l'efficienza; imentre potrebbero essere utilmente impiegate nei luoghi di provenienza del Polesine, qualora vi si potesse sviluppare in senso favorevole quell'ampia forza naturale delle acque secondo quanto hanno dimostrato i lavori fondamenteli giò inizieti nei fiumi. Potrebbe in tal caso trovare soddisfacimento u na situazione più generale di quella che esiste in tale zona in quanto se fosse pienamente organizzata in forma produttiva, non solo si potrebbero arrestare i flussi migratori, impegnando vantaggiosamente le classi lavoratrici del Polesine, ma si potrebbero assorbire altre forze lavoro, da locolità vicine, o da terre in cui è conveniente l'allontanomento di un certo numero di lavoratori che non si possono, come nel Polesine, impiegare in modo vantaggioso sul territorio in cui vivano. L'avvenire in Italia si dimostrerà tanto più favorevole ad un prospero sviluppo del benessere ge nerale, quanto più oculate, ponderate e organizzate saranno le forme di avviamento migratorio del le classi lavoratrici do un territorio all'altro.

I provvedimenti per equilibrare questa situazione sono dunque da considerare urgenti in tutto il nostro poese, ma qui, data l'importanza del fenomeno migratorio, sono urgentissimi Infatti, esaminando il ropporto fre i dati demografici forniti dall'ISTAT nel 1951 e quelli che obbia ma potuto avere relativi al 1961 per i 15 Comuni che patrebbero assere inclusi in un piono territoriale del Polesine (12 nello provincia di Rovigo: Adria, Antono, Contarina, Corbola, Donada, Lo rea, Papozze, Pettorazza Grimani, Porte Tolle, Rosolina, Taglio di Po; Villanova Marchesona, e 3 in provincia di Venezia: Cavarzere, Cona e Chiaggia i si constata che in questo decennio si è

. 4 .

verificato nella popolazione globale il grave decremento di 35098 persone su 192961: cioè il 16 per cento della popolazione residente dei Comuni dal 1951 ad oggi ha abbandonato queste terre. Se vogliamo essere ancora più significativi, possiamo aggiungere che in un decennio si è raggiunta la punta massima del 33,65 per cento dei decrementi nel Comune di Cona.

Un ulteriore depauperamento di popolazioni residente sarebbe pertanto gravissimo, cree rebbe cioè condizioni di vuoto, di invecchiamento e di instabilità di popolazione così estese edimponenti, da paralizzare ogni iniziativo concreta per la riorganizzazione produttiva di questa terra. Essa non potrebbe certo più uscire dalla situazione già gravissima in cui si trova oggi, anche per le caratteristiche preoccupanti della sua popolazione, che presenta gravissime percentuali di analfabeti. Tale fenomeno non farà che aggravarsi negli: anni successivi, se non si pone rimedio, operando sul posto con mezzi radicali: e rivoluzionari che diano a queste genti, in queste terre, una struttura capace di mutare lo stato di disagio in benessere con le risorse di un lavoro produttivo. Se invece continuasse l'emigrazione che accoglie stabilmente solo i non analfabeti e fissa nel : terreno d'origine come peso morto gli: analfabeti, la popolazione stabile sarebbe caratterizzata da una percentuale sempre crescente di forze lavoro in capace di qualificarsi per mancanza dei primi rudimenti della educazione oggi indispensabile in qualunque lavoro anche non qualificato.

Questo quadro, invero, poco favorevole della situazione attuale del Polesine, è aggravato dalla insistente minaccia delle acque che nei periodi di piena tendono ancora, sia pur con minor pericolo, a debordare o a rompere le arginature come è avvento con quelle del Po, nei 1951, quando esse portarono desolazione e morte in una grandissima estensione di queste terre. D'altra parte, come si è già detto, l'inserimento del Polesine in un processo di sviluppo economico sarebbe notevolmente favorito dalle straordinarie condizioni naturali della zona, dove l'acqua apportatrice di distruzione se imbrigliata e giustamente incanalata potrebbe non solo garantire le genti da ogni pericolo di piena, ma assicurare la continua navigabilità del Po e probabilmente anche di un tratto del fiume Adige portando in questa terra una richezza che può essere solo paragonabile a quella creata dal Reno nella Germania Occidentale e nell'Olanda.

L'urgenza dei provvedimenti dipende, dunque, anzitutto, dalla possibilità di eliminare una volta per sempre ogni forma di minaccia da parte dei fiumi. Dipende altresì dal fatto che se si vuol agire pianificando integralmente questo territorio, per inserirlo in un processo di sviluppo e conomico tale da garantirvi l'afflusso di grossi capitali nell'attività imprenditoriale si dovrebbe dimostrare la convenienza di questo tipo di impiego e la possibilità di renderlo tanto più redditi zio quanto più vasto ed integrale esso si presenti nel realizzare strutture predisposte da un piano

Tutto ciò deve far parte di un programma di opere pubbliche inquadrate nel piano stes so che ne faccia vedere chiaramente la grandiosità, la convenienza e l'attuabilità in rapporto d le esigenze reali. Queste coinvolgono i settori dell'economia più favorevoli allo sviluppo delle risorse naturali con una struttura adatta ed equilibrata alla situazione del Polesine come zona che concluda un comprensorio, una regione fluviale a cui appartiene la Lombardia, quale formidabile elemento motore di produttività con la sua potenza industriale. Se non agissimo in tempo d'altra parte non potremno impedire che si realizzino opere pubbliche in contrasto con questi nostri intendimenti. Dobbiamo tuttavia affrettarci nell'azione, se non vogliamo che, nel giro di pochi annipossano realizzarsi opere, per esemplo, autostrade già schematicamente in progetto, secondo un tracciato non corrispondente alla necessità funzionali: del nostro piano e delle strutture che in esso vo: mmo incrementare per il futuro benessere del Polesine.

Giunti a questo, mi sembra utile accennare alla stato dei lavori per la sistemazione in draulica del fiume Po che è fondamentale, come vedremo, per qualunque progetto di piano territo riale e di sviluppo economico da proporre nel Polesine.

Po; la navigabilità del fiume è enormemente progredita negli ultimi anni, anche se, indubbiamente sistemato in vasta misura nel tratto di 130 Km. da foce Adda a foce Mincio. I più rilevanti problemi di sistemazione si ponevano proprio in questo tratto dove l'alveo di magra non coincideva con quello di piena, in quanto il letto di piena era larghissimo (la distanza tra gli: argini toccava anche i 5 Km) e conseguentemente quello di magra tendeva a divagare tra le sponde, corrodendo le dife se e depositando sabbie vaganti. I lavori di sistemazione provvedono appunto, alla creazione di un canale largo m. 214 entro il quale il fiume mantiene una profondità costante di m. 🔬 🦄 necessaria. per il transito di natanti da 1350 tonn. Il percorso del fiume viene così reso stabile senza che ciò ce Adda e foce Mincio sta il livello più arretrato delle opere nel corso a valle, dove, pur essen 🔅 i lavori di dragaggio da compiere ai fini navigatori, di modesta entità essi devono inserirsi in un complesso di opere volte a restringere l'alveo......Per i lavori necessari nel tratto a valle si dovrà affrontare uno spesa di circa 15 miliordi, mentre la spesa complessiva ancora necessaria per completare la sistemazione del tratto foce foce-Mincio ascende a 13 miliardi J. J. Se la navigabilità del Po sta per raggiungere in tutto il corso da Cremona a mare lo stesso grado di sviluppo, è evidente che ove il sistema idroviario padano debba gravitare sul Po è indispensabile per tutti i tratti della rete che il fiume sia reso al più presto completamente navigabile......1. 👘 👘

- 5 -

- 6 -

A determinate condizioni i costi idroviari sono nettamente inferiori a quelli per via terra. Il costo del trasporto idroviario è influenzato dal nolo e dai costi a terra. Il nolo è a sua volta influenzato dalla portata del natante e dal suo grado di utilizzazione. Il tipo di natante che si è dimostrato più idoneo fino ad oggi è il tipo così detto europeo da 1350 tonn.

Tralasciando i dettagli sul problema della navigazione fluviale ci interessa mettere in evidenza le localizzazioni strutturali previste dal piano per potenziare al massimo il rendimento e conomico del sistema idroviario esistente, che fa perno sulla totale navigabilità del Po e sulla parziale navigabilità dell'Adige dopo le opere di sistemazione idraulica. A questo scopo bisogna, anzitutto, sottolineare la necessità di un grandioso porto canale all'imbocco del Po come quello pensato dalla Società Simpo (Sistemazione Idraulica Medio Padana Orientale). (Si deve altresì tener conto che un porto di questo genere deve essere costruito in modo da avere dimensioni adeguate alla navigabilità oceanica, oltre chè a quella del Po e alla possibile industrializzazione delle sue rive. La navigabilità del Po include d'altra parte quella dei canali: Mincio-Cremona e Ticino Mincio che porta sulle acque del Po una grossa quota del traffico dei trasporti industriali della Lombardia. Le dimensioni del porto devono dunque necessariamente adeguarsi alla grandiosità di questi traffici, basandoci mon solo sul fattore merci trasportare per idrovia, per quanto grandioso possa essere il loro flusso, bensì anche sulle comunicazioni più veloci ed elastiche per via terra e ferrovia. Il porto canale alla foce deve dunque avere fondali capaci di accogliere i natanti oceanici di più grosso tonnellaggio. Siamo anzi disposti ad affermare che, in sostanza, solo se si concepisce un porto così grandioso ed attrezzato per tutte le funzioni che vi possono convergere, cioè un porto che possa paragonarsi ai grandi porti del nord Europa, noi avremo la possibilità di dimostrare l'efficacia e l'efficienza di qualunque impiego di capitale che possa intervenire attivamente a incrementare le strutture produttive di questo porto e le sue adiacenze industrializzate. In tal senso dunque i trasporti per via terra e ferrovia assumono a loro volta una importanza fondamentale, assicurando al porto industriale sulla foce del Po caratteristiche di elevata convenienza economica, capaci di assicurare in tutto il territorio del Polesine un processo di sviluppo economico, con una rapida ed alta efficienza produttiva, e di trasformare questa zona depressa e disertata in una terra ricca di attività industriali e commerciali. U

Occorre in sostanza pensare ad una struttura generale non semplicistica, ma concepita come un insieme in cui al sistema fluviale di navigazione e al suo porto di sbocco si associno adeguate grandi linee di comunicazioni per via terra, provenienti dai gangli più importanti della vita economica italiana e una linea ferroviaria con un tracciato più razionale e completo di quello attuale. 'L'intelaiatura di queste grandi comunicazioni dovrebbe essere la base di partenza sia per il porto che per il sistema delle zone industriali. Esse possono infatti essere previste con l'efficienza e la grandiosità corrispondente alla notevole dimensione dei grandi trasporti idroviari, solo se anche l'intelaiatura delle comunicazioni per via terra è proporzionata alla scala di questi trasporti. Ma tutto questo, ovviamente, non basta alla vita dei Comuni del Polesine, che ha bisogno di profonde trasformazioni per adeguarsi alla granda scala dei problemi di sviluppo e a quella delle strutture e infrastrutture che ne garantiscono l'efficienza. Iln altri termini i 15 Comuni che fanno parte del Polesine devono tutti trovare una loro giusta integrazione con il sistema: porto, autostrade, ferrovia, grandi impianti industriali.

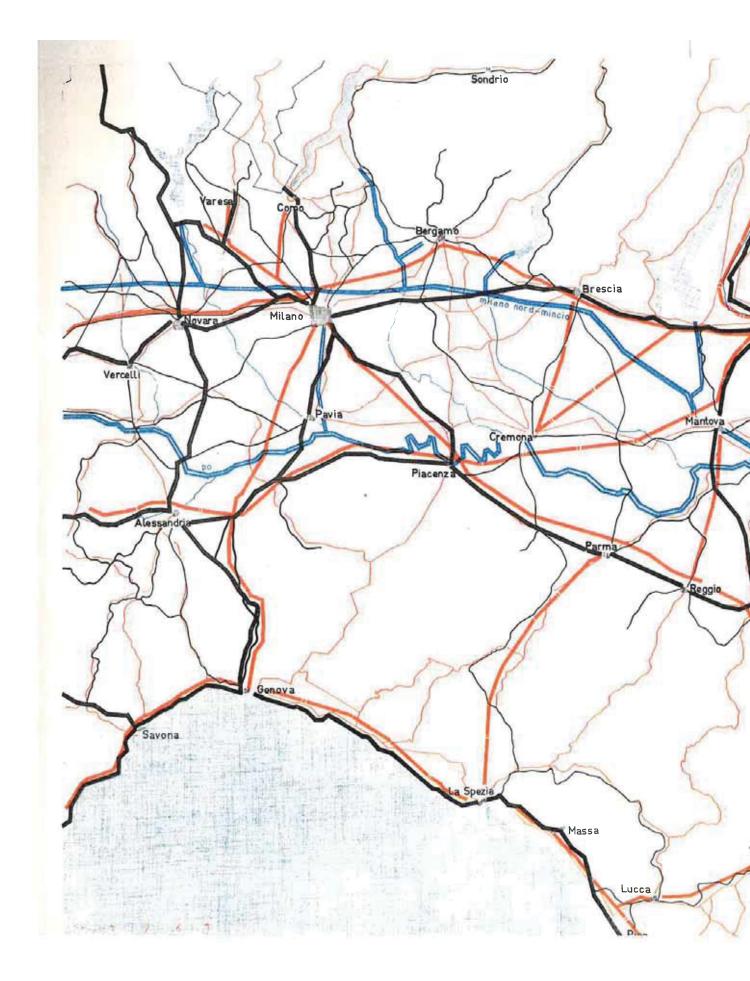
In questa terra piatta, solcata da fiumi e da canali, e malsicura, la situazione di un sistema viario che si adegui a quello delle vie d'acqua, non trova ostacoli naturali difficili per organizzare i propri tracciati nella forma più appropriata sia alle necessità della navigazione sul fiume Po, sia a quelle delle industrie che vi intestano e che possono trovare vantaggio dal sistema via acqua, ferrovia e vie di terra e sia, finalmente, alla necessità dei centri urbani dei vari Comuni, che, pur dovendo espandersi nelle direzioni più logiche in rapporto alla nuova configurazione dettata dalle grandi strutture e infrastrutture, conserveranno, in certo senso almeno, il loro fulcro principalenell'attuale sede.

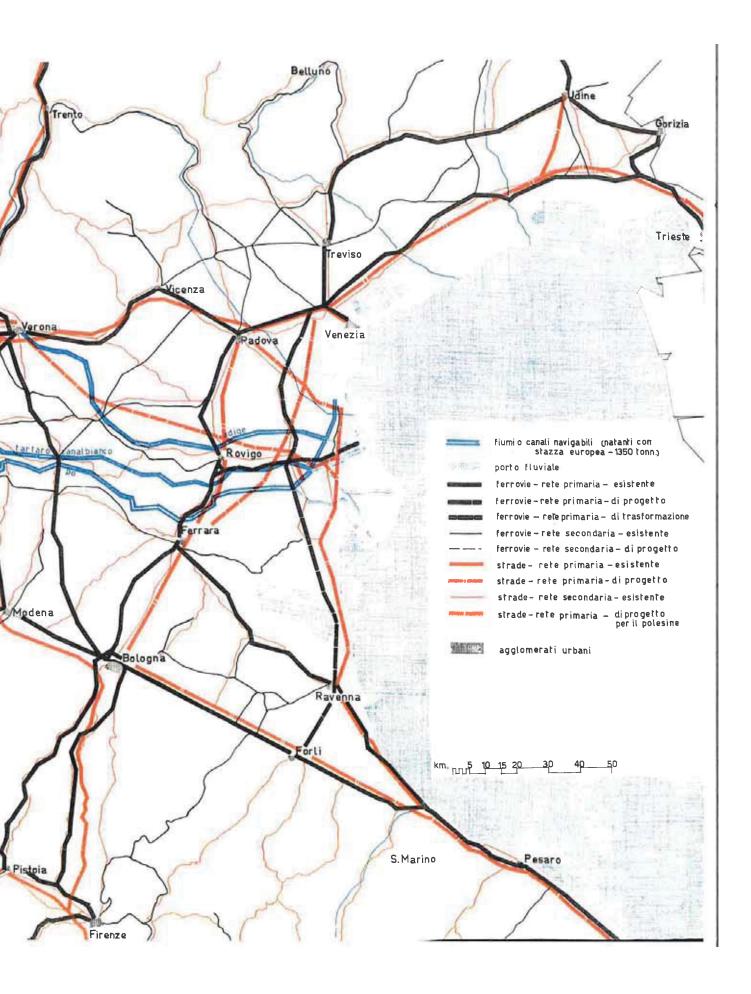
Si tratta di prevedere uno schema generale di quel che potrà essere il Polesine così trasformato. Esso diventerà l'insieme di più insediamenti comunali, che tenderanno ad estendersi nel senso più organico e funzionale per formare unità organizzate intorno alle grandiose strutture del porto e del sistema delle comunicazioni. In esso confluiranno attività di ogni genere a cui la struttura industriale darà indubbiamente un carattere decisivo nella determinazione di una nuova torma di paesaggio, insieme a quelle grandiose strutture di carattere pubblico e a tutte le altre attività terziarie di questo nuovo centro urbano concepito in estensione anzichè in concentrazione.

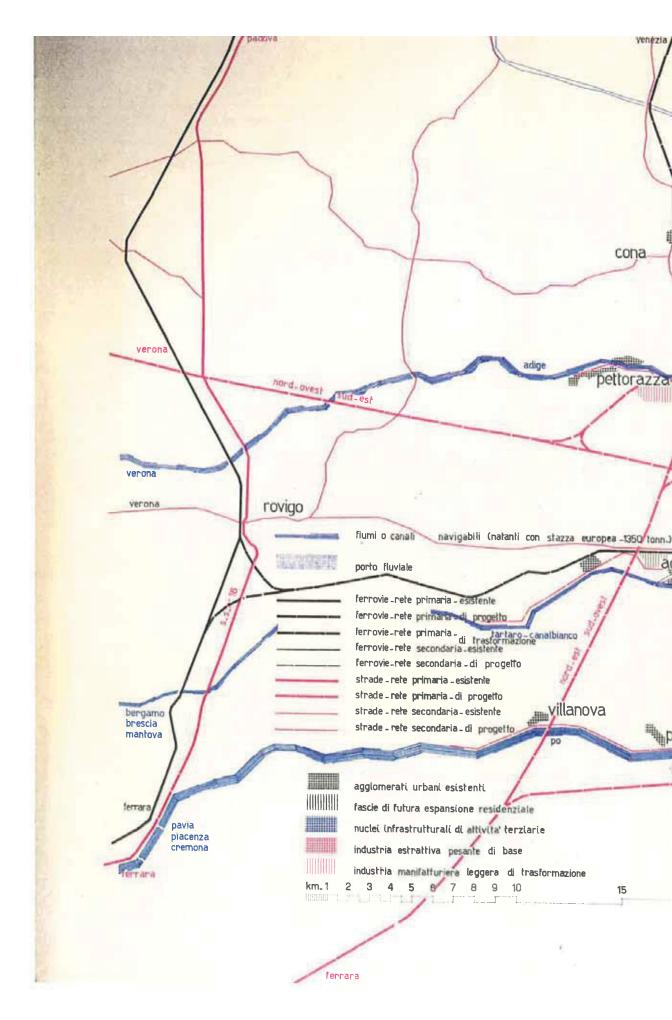
E' necessario però che questo insieme sia organizzato, che costituisca unità attraverso i legami funzionali dei nuovi diversi elementi. Bisogna che crei un grandioso insieme metropolitano che, coinvolgendo tutti i comuni, determini una conurbazione guidata in modo che non vi si formino le dense concentrazioni delle attuali metropoli, gli addensamenti di strutture e di popolazioni che costituiscono la fase degenerativa delle attuali città. 'Questo addensamento caratteristico della città murata, della città chiusa e statica era il segno organico di altre civiltà. 'Oggi i parametri della nostra vita economica, delle nostre relazioni sociali hanno raggiunto dimensioni così vaste in tutte le zone del mondo rispetto a un solo punto di esse che le città non dovrebbero essere più chiuse come quelle di un tempo. 'Purtroppo esse hanno invece oltrepassato il limite di ogni ragionevole possibilità di sviluppo delle complesse attività umane per mantenere la forma accentrata e sono sempre più anaconistiche nel bisogno prepotente di spazio non soddisfatto che presentano come fattore principale di una integrazione e di una vita associata per adattamenti.

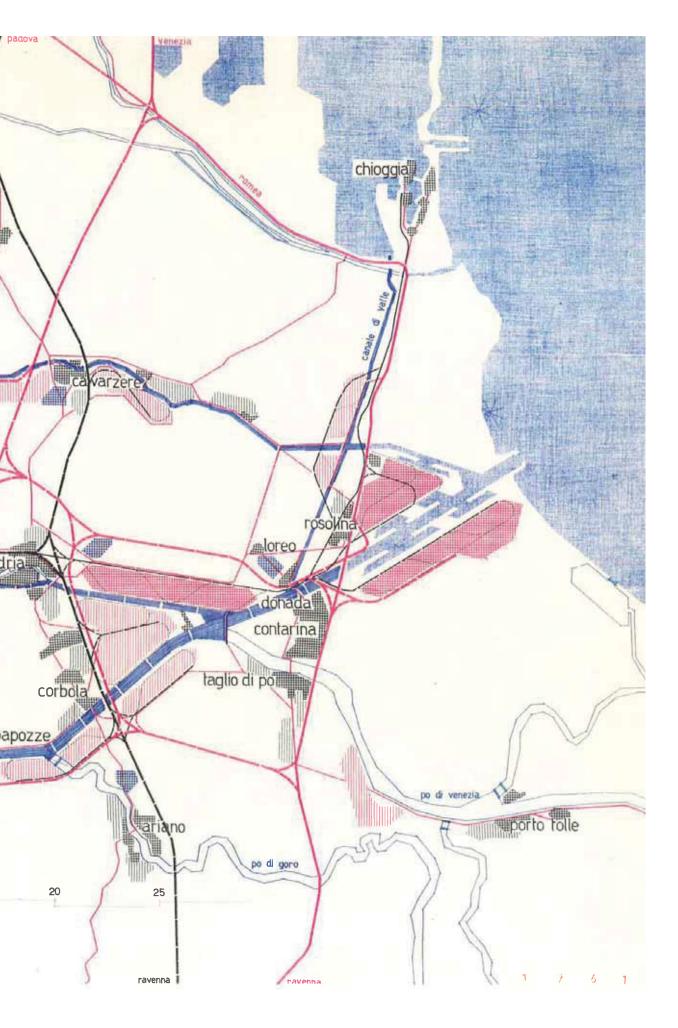
Noi nel Polesine vogliamo costituire un insieme metropolitano che non ricalchi questo errore, ripetendo una configurazione urbana assolutamente disadatta alle necessità della nostra vita presente. L'insieme metropolitano del Polesine dovrà essere uno dei primi del mondo ad offrire l'esempio di una campagna urbanizzata, cioè di una città territorio grandiosissima, ma organizzata come struttura aperta, che faccia perno su alcune grandi strutture fondamentali, talune delle quali: sono state già da noi individuate in questo progetto di massima, cioè: porto, grandi arterie di circolazione; e altre saranno il frutto della ulteriore fatica della nostra progettazione. Essa dovrà mettere a punto, insieme alla localizzazione delle industrie, quegli altri legami indispensabili allo sviluppo e alle molteplici attività delle genti impegnate in esso, cioè anzitutto le attività terziarie del : commercio e poi quelle di carattere tecnico e amministrativo e infine le attività culturali: e di svago. Sulla ubicazione di tali strutture opportunamente decentrata e sulla loro dimensione si dovrà

pronunciare in modo fondamentale il progetto che definisce i pilastri su cui l'insieme di questo va sto programma futuro per una nuova metropoli troverà i punti di partenza per realizzarsi.


Dopo questa sintetica esposizione di concetti fondamentali bastano poche brevi note il· Iustrative per spiegare lo schema del progetto nei grafici che fanno parte della relazione.


Il primo fatto strutturale importante del Piano è costituito dalle due strade fondamentali che collegano l'area del Polesine interessata dalle future attrezzature essenziali dei diversi Comuni con i gangli principali della regione veneta lombarda ed emiliana ;la prima collega il Polesi ne all'autostrada del Sole innestandosi in essa in prossimità di Bologna-,passando tangenzialmente a sud di Ferrara-,raggiunge la Romea a nord-ovest di Chioggia-,la seconda s'incrocia con questa prima grande arteria-,attraversa con percorso normale alla sponda adriatica le terre del Polesine e raggiunge il porto canale collegandosi a sua volta con la Romea.


In queste trame stradali si innestano le arterie trasversali che costituiscono la rete di circolazione fondamentale della nuova grande zona metropolitana delle terre del Polesine risorto dove troveranno ragione di lavoro e di insediamento centinaia di migliaia di abitanti.


Di esse fa parte il nuovo tracciato ferroviario che oltre a collegare in maniera più fun. zionale i vari comuni del Polesine, fra laro_,e con le grosse fascie industriali.,prosegue con una nuova linea ferrata a sud collegandosi a Ravenna con la linea Adriatica. La trama principale circolatoria dunque lega questo nuovo grande territorio metropolitano del Polesine nella direzione nord-sud reciprocamente con Venezia e Ravenna creando una Venezia-Ravenna diretta che passerà per il Polesine¹ nella direzione est-ovest.,mediante canali e grandi arterie stradali-,rilega il Polesine alle principali città della Lombardia-,dell'Emilio e del Veneto mentre il Tartaro Canal Bianco rimane un canale interno per installazione di industrie e, in parte, bacino interno di attracco di natanti. In modo particolare crea nel Polesine il Porto di Verona con la complementarietà della strada di grande comunicazione che unisce a occidente di Verona l'autostrada Milano-Verona-Padova-Venezia, con il porto canale sul Po e con la possibilità di rendere navigabile l'Adige nel tratto Verona-Adriatico facendolo sboccare nel porto-canale suddetto del Po:.

In queste terre lungo i bordi dell'Adige e soprattutto del Po e nelle adiacenze di questi corsi d'acqua, per mezzo di bacini interni e di canali., lo schema presentato indica l'ubicazione delle grosse fascie industriali che faranno parte di questa nuova grandissima città organizzata secondo una aggregazione di spazi per strutture e infrastrutture decentrate e fra loro complementari per localizzazione, aventi un particolare carattere nell'insieme del nuovo territorio metropolitano di cui dovrà essere puntualmente definita la forma e l'unità essenziale.

Annex 3	Statistical data obtained from ISTAT (www.istat.it) used as .csv file in QGIS program for
	cartographic analysis

65 (2015) (2015) 10 0	1383 19,3	1914 18,3	2877 24,5	3934 27,3	1227 19,7 11442 23.0	770 23,5	2530 24,2 24,2	3586 23,7	2742 21,9	906 21,8	1471 24,2	1305 18,7 6A5 72 0	5620 21,6	2914 16,9	4683 21,8	8865 22.9	6675 24,7	2310 19,9	1291 18,5	2184 17,8	6206 24,6 797 17.0	1643 19,8	2586 20,2	8677 20,8	2751 15.6 2751 15.6	2827 21,8	3774 20,0	6738 24,2	508 22.0	934 19,7	2797 27,5	1869 18,7 2991 2271	404 17,4	1104 20,8	1120 18,0	493 18,7	1675 23,8	382 21.4	419 20,6	297 20,5	2.976 18.8	268 18,9	649 26,1	1154 16,3	1242 16,0	1310 21,7	946 25,1	2189 18,5	918 15,9	356 22,9	402 16,2	1844 21,2 1586 18.5	220 20,3	617 16,5 497 18.9	339 18,5	184 24,2 64 37.7	821 19,8	927 22,8	2064 19.1	1046 19,6	2416 20,9 610 18.6	1284 15,2	1481 21,3	907 24,8	644 20,5	576 22,8 1084 23.7	794 18,1	1584 17,9	1091 14,5	1831 21,1 1831 21,1	605 16,4
% Pendolarismo co. 2	52,7					50,6	49,7	51,1	49,5	54,7	50,2	54,6	47,5	55,8	55,1	52,9	51,5	53,5	53,5	56,7	48,4	54,6	56,3	51,6	58.9	50,8	56,1	51,8	53,2	52,3	48,3	57,0	58,5	51,6	55,8	55,4	50,3	56,6	53,0	53,5	56.5	56,5	51,2	58,9	57,1	52,6	53,0	58,1	55,2	53,6	53,7	52,2	51,0	55,1	57,9	53,8	57,1	52,4	56,8	56,5	55,6	59,8	51,0	53.1	58,7	52,3	57,9	53,1	56,4	51,8	55,0
FS 2011	0 3774	0 5567	0 727	0 6631	0 3347	0 1662	0 5191	0 7715	0 6182	0 2275	0 3055	0 380%	0 12370	0 9637	1 11846	1 20519	1 13936	1 6218	0 3734	0 69.45	0 12203	1 452/	1 7195	1 21587	0 10379	1 65.82	0 10590	1 1438/	0 4080	0 2475	1 127826	0 5698	0 1357	0 2742	0 3470	0 146	0 3537	0 1010	0 1076	0 773	0 1842	0 803	0 1275	0 4157	1 4419	0 4385	0 1998	0 6866	0 3195	0 832	0 133/	0 4539	0 552	0 2056	0 1061	0 405	0 2370	0 2129	0 2/12	0 3013	0 1765	0 5041	0 35.45	0 1975	0 1840	0 1321	0 253(0 4695	0 4233	1 4490	0 2030
cuole Ind_DEA	0	0	0	0 0	1 0	0	0 0	1	00	0	0 0	0 0	0	0	0	0	1 1		0	0	1 0	0	0	1	0 0	0 0	0	0	0 0	0	1 1	0 0	0	0 0	0	0 0	0	0 0	0	0	0 0	0	0	1 0	0	00	0	0 0	0 0	0	0 0	0 0	0	0 0	0	0 0	0	1 0	0 0	0 0	0 0	0	0.	1 1	0	0 0	0	0 0	0	0	0 0
e Classificazione n Comuni Aree Interne 201 Ind_3	423 C - Cintura	50 C - Cintura	33 D - Intermedid	13 C - Cintura	47 D - Intermedid 47 D - Intermedid	19 C - Cintura	32 D - Intermedio 87 C - Cintura	28 B - Polo intero	60 D - Intermedid 80 C - Cintura	76 D - Intermedia	67 C - Cintura	75 C - Cintura 82 C - Cintura	37 E - Periferico	01 C - Cintura	02 C - Cintura	11 B - Polo intero	37 A - Polo	32 D - Intermedid	14 D - Intermedia	42 C - Cintura	17 C - Cintura	78 C - Cintura	26 C - Cintura	77 D - Intermedia	65 C - Cintura	75 D - Intermedid	79 C - Cintura	36 B - Polo intero	20 C - Cintura 20 C - Cintura	06 D - Intermedia	11 A - Polo	76 C - Cintura 46 F - Parifarino	78 C - Cintura	85 D - Intermedia	08 C - Cintura	08 D - Intermedio	47 D - Intermedia	55 C - Cintura	13 C - Cintura	02 C - Cintura	2b E - Perrerico 57 C - Cintura	63 D - Intermedia	33 E - Periferico	73 C - Cintura 73 C - Cintura	02 C - Cintura	25 D - Intermedid 78 C - Cintura	76 C - Cintura	88 C - Cintura 63 C - Cintura	74 C - Cintura	73 D - Intermedio	94 D - Intermedia	03 D - Intermedid 27 C - Cintura	35 C - Cintura	08 C - Cintura 42 D - Intermedid	13 C - Cintura	02 E - Periferico	70 C - Cintura	53 D - Intermedid	93 C - Cintura 71 C - Cintura	18 C - Cintura	386 A - Polo 408 C - Cintura	30 E - Periferico	1121 C - Cintura	13 A - Polo 44 F - Periferino	472 D - Intermedio	58 D - Intermedid 51 C - Cintura	91 D - Intermedid	63 C - Cintura	01 C - Cintura	49 C - Cintura 46 C - Cintura	35 C - Cintura
Rifiuto tot pro capite Kg) 2011	7,2 4								7,3 5	10,6 4	5,6 4	8,0	11,3 11,3	6,8 5	5,8 5,8	8,1 5	6,6 5	12,5 4	12,9 5	7,2 4	8,4 4	11,0	4,8 3	11/4	5,5 14	10,5 3	8,0	9,7	11,0 3	7,1	12,5 6	8.4 17	6,9 6	10,5 3	11,2 4	6,2 3	10,8 14	9,4 4	10,7 4	5,5	8,5 b 11.7 b	11,3 4	12,1 6	10,2 3	15,3 4	11,1 4	6,4 4	10,7 3	9,4 4	6,7 3	10,8 4	13,1 4	11,6 3	6,8 6 14.1 4	12,6 3	5,8 5,5 5	6,4 3	13,8 10	5,5 8,9 8,9	8,9 4	12,5 3	8,8	9,4 11		4,4	4,6 8.7 4	11,8 2	15,2 3		3,2 3 16,5 4	
Pop. Resid. % Po Straniera Strar (2015) 2015)	5,5 513	30,6 580		5,2 1090	5,8 695	7,2 295	2,8 192	2,3 1494	0,0 916 • n 920	2,1 440	3,6 3.43	3/6 556	1,2 2941	3,3 1169	5,5 1242	1,5 3160	5,0 1773	1450	0,2 900	5,7 877	8,8 2122	910 910	5,1 617	4,9 4771	2,3 1142 8.0 1142		42,8 1510		152 844	9,2 338	5,2 33111	4,8 1088 6.9 1142	160	3,6 559	1/0 669	5,5 164	3,3 757	5.7 168	5,7 217	3,3 80	13 1864	1,8 161	5,4 300	5,3 722	1,8 1182	1 1 636	3,2 240	3,7 1267	1,4 544	104 104	3,0 268	4,0 1139 3.4 1088	2,6 126	1,3 255	230	16 16	3,6 264	5,0 559	3,9 1061	4,2 473	2,6 1446	5,3 739	2,6 652	1983	7,4 139	5,1 115 1 2 ADS	2,5 517	5,2 1347	9,1 1063	4,2 1397 6,3 1433	3,0 865
Densità Imprese attive imprendit (1mpr. att/su (2011)			1333,0 35	873,0 6	350,0 15 3470.0 15	197,0 9	623,0 2	1269,0 52	957,0 10 675.0 107	309,0	422,0 15	909,0 200 0	3300,0 32	1106,0 43	1322,0 65	1935,0 19	2100,0 46	712,0 15	544,0 30	917,0 45	1926,0 18	564,0 15	793,0 46	3543,0 44	1067.0 35	878,0 12	1426,0 42	1510,0 100	130.0 /2	351,0 5	22947,0 55	705,0 54	392,0 35	385,0 13	453,0 22	174,0 6	765,0 13	82,0 6	121,0 6	83,0	328,0 31293.0 31	66 0/66	280,0	437,0 25	537,0 51	428.0 12 428.0 11	286,0 8	814,0 83 aca 0 25	444,0 34	97,0 7	191,0 15	593.0 25 593.0 25	100,0 12	357,0 21 261.0 8	109,0	15.0	295,0 8	503,0 35	330,0 18	355,0 14	245.0 12	517,0 35	794,0 12	586.0 B	231,0 12	120,0 6 334.0 11	263,0 12	515,0 25	475,0 15	634,0 16	232,0 8
Superfide comune Km2	2,6 87,6	0,0 23,6 3 6 21 3	6,9 153,8	3,9 140,4	6,9 22,1 6.3 187.9	0,0 21,3	3,1 66,8	2,4 24,3	8,3 95,5 1 5 6 3	0,0 9,6	2,2 31,1	2,0 10,2	4,8 96,4	1,7 25,5	1.4 20,2	1.8 99.1	1,7 45,6	3,4 44,9 2 5 24.7	1,5 18,0	1,2 20,1	2,1 102,3	1,6 28,3	2,2 17,2	1,5 78,9	3.0 28.1	2,0 68,0	1,9 33,3	2,6 15,0	1,3 8,8 0.0 11.4	2,3 38,0	2,3 415,9	3,5 12,9 8.3 44.7	2,0 9,9	0,0 28,3	5,2 18,9	2,3 26,9	5,0 57,3	0,0 26,4	19,5 18,0	0,0 9,0	4,1 54,8 2.6 41.3	1,9 26,0	4,7 51,6	3,9 24,2 3,9 17,3	2,1 10,4	3,4 47,3	0,0 34,8	3.9 34.4	2,6 12,9	2,1 12,3	5,7 10,1	3,0 42,8 4.7 20.9	0,0 7,9	4,3 16,7 3.6 31.0	0,0 16,1	3,0 32,0 2.7 36.9	2,4 34,2	4,6 14,4	2.3 49.5	2,1 25,0	2,9 69,8 0.0 16.7	2,8 14,6	5,7 63,2	5.0 69.3	2,4 18,6	4,3 19,7		1,9 20,5		3,1 38,8	1,8 29,1
Diff. Turismo Percentuale Permanenza 2014-2004 Media 2014	6	10	-7	9-	14	2	» 0	m	2-2	1	4	11	6	34	8 +	4 00	4	10	13	26	0 •	0 00	6	10	15	9	2	13	10	9	-2	10	11	с, 4	o7 6	7	5	-5	1	9	14	6	÷.	13	29	6 r	- 8 <u>9</u>	31	29	16	10	14	3	40	12	-5	9	19	η α	4	11	36	15	1	9	29		16	8	c	20
1 2014 Diff 2014-2004	82 7	444 41	2- 92	103 -7	265 -12	154 4	156 1	622 18	131 -3	432 -3	195 7	685 79	270 23	676 171	1066 78	391 10	593 20	259 23	388 45	610 126	246 1	293 23	744 58	530 47	629 83	191 10	567 10	1858 220	200 18	125 10	636 -16	303 28	235 23	188 6	329 26	98 6	123 6	146 -2	113 1	161 9	384 48	55 4	48 -2	409 48	746 166	153 14	108	1215 99 378 90	448 101	126 17	247 23	203 12 411 52	137 4	223 27 27 24	114 12	24 -1	121 7	283 46	219 16	213 219	197 20	576 151	110 14	54 02	168 9	158 29	208 -1	432 60	302 75	223 14	127 21
Densità 2004 Densi	0 75	1 403	78	5 110	3 277	2 150	156	4 604	1044	434	2 188	15.0	247	4 504	987	381	4 573	236	343	6 484	246	270	9 685	484	546	5 181	557	1638	9 182	118	2 65.2	4 685 0 275	211	3 182	303	7 92	116	1 149	2 112	5 153	336	50	50	360	580	162	8 118	1116	347	109	224	5 359	4 132	2 196	3 102	5 25 7 8	6 114	5 237	3 202	4 204	0 177	425	36	1 316	5 160	155	209	5 372	227	210	9 106
Differenza Percentuale 2005-2015 2005-2015	612	1003 1	- 09-	-971	-1504	56	-222	519	-201	99-	118	846	2451 1	4364 3	1670	1107	932	1016 1	794	2545 2	61	686	1003	3743 1	2368 1	658	338	3191 1	196	219	-6672	1193 1	236 1	179	508	182	660 1	-18	41	77	1933 1	88	-6	864 1	1695 2	-120	-321	988 0FU2	1324 3	212 1	210	492	38	412 1	213	-50	240	247	306	219	309 1	2209 3	740 1	230	162	576 3	-35	1248 1	1892 3	513	602 1
Popolazione al 1 Gennalo 2005 - Totale	168 6556																																																			599 8207 582 7481																			
					+										-						+							+							+		+				+		_									8699		+							+						+		+		
Descrizione Comune	Campagna Lupia	Campolongo Maggiore	Caorle	Cavarzere	Ceggia	Cinto Caomaggiore	Concordia Sagittaria	Dolo	Eraclea Elacco d'Artino	Fossalta di Piave	Fossalta di Portogruaro	Foss	Jesolo	Marcon	Martellago	Mira	Mirano	Musile di Piave	Noventa di Plave	Pianiga	Portogruaro	Quarto d'Altino	Salzano	San Don'Ê di Piave	San Michele al Tagliame. Santa Maria di Sala	San Stino di Livenza	Scorz	Spinea	Stra Teglio Veneto	Torre di Mosto	Venezia	Vigonovo Cavallino-Trenorti	Affi	Albaredo d'Adige	Arcole	Badia Calavena	Bardolino	Bevilacqua	Bonavigo	Boschi Sant'Anna	Bosco Uniesanuova Bovolone	Brentino Belluno	Brenzone sul Garda	Buttapletra	Caldiero	Caprino Veronese	Castagnaro	Castel d'Azzano	Cavaion Veronese	Cazzano di Tramigna	Cerro Veronese	Cologna Veneta Colognola ai Colli	Concamarise	Costermano	Erb	Erbezzo Ferrara di Monte Baldo	Fumane	Garda	Grezzana	llasi	Isola della Scala Isola Rizza	Lavagno	Lazise	Malnesine	Marano di Valpolicella	Minerhe	Montecchia di Crosara	Mon teforte d'Alpone	Mozzecane	Nogara	23054 Nogarole Rocca
Codice Comune	27002	27003	27005	27006	27007	27009	27010	27012	27013	27015	27016	27017	27019	27020	27021	27023	27024	27025	27027	27028	27029	27031	27032	27033	27035	27036	27037	27038	27040	27041	27042	27043	23001	23002	23004	23005	23006	23008	23009	23010	23012	23013	23014	23016	23017	23018	23020	23021	23023	23024	23026	23027	23029	23030	23032	23033	23035	23036	23038	23039	23040	23042	23043	23045	23046	23047	23049	23050	23051	23053	23054

% over 65 (2015)	19,4	19,8	23,1	18,4	18,1	17,9	19,7	15,4	20,9	18,6	16,5	23.4	20,5	21,1	20,0	19,3	19,7	22,8	20,0	18,6	16,8	26,0	23,7	21,2	19,1	19.8	24,9	14,8	17,4	15,5	19.7	17,1	16,8	24,4	18,4	24,1	22,1	18,9	23,4	22,3	26.3	23,3	16,7	19,3	21,6	18,3	17,3	20,6	21,1	21,8	20,6	20,5	24,9	23,1	21,0	21.6	21,4	18,8	20,8	20,0	22,0	18,5	14,9	18,1	13,8	22,8	17,3	20,3	20,0	24,0	25,1	24,6	24,6
over 65 (2015)	244	909	2365	1309	365	681	544	241	769	3944	845	5256	3038	122	029	2273	508	309	1420	2758	2971	584	718	1043	227	154	64645	734	454	1541	6542	2567	833	728	4665	1084	114	900	847	704	1032	605	1457	1125	3512	2670	2106	1189	335	1671	1014	1116	1003	464	4231	2226	1152	1374	1714	1424	973	872	307	1581	1483	721	1572	3/0	388	481	1774	4345	2278
K Pendolarismo	56,4	54,3	47,9	57,9	54,8	54,3	51,0	53,1	50,0	52,5	57,3	50.2	54,8	50,1	23, L	55,2	55,0	48,7	55,9	58,6	56,6	47,9	44,1	54,1	54,0	53.5	50,1	53,0	54,3	58,6	56.5	57,8	51,7	5/12 21/3	53,6	48,5	49,4 EA 2	55,4	49,2	52,6	49.9	53,8	56,8	52,9	54,2	57,0	56,5	54,8	52,3	52,4	52,7	54,5	49,7	49,9	54,7	53.7	51,4	55,5	54,4	55,0	53,3	55,0	54,1	56,4	55,8	52,4	58,7	49,6	51,7	49,2	51,3	51,8	50,8
Pendolarismo	0 710	0 1662	1 4906	0 4125	0 1196	0 2067	0 1406	0 832	0 1072	1 11140	0 2940	0 13343	0 8132	0 289	0 10201	1 6494	0 1415	0 661	0 3972	0 8707	0 10015	0 1077	0 1335	0 2666	0 1492 0 82.00	0 416	1 130288	0 2630	0 1416	0 5838	1 18778	0 8658	0 2555	0 1713	0 13591	0 2180	0 916	0 2640	0 1783	0 1656	1 1959	0 1396	0 4945	0 3701	0 88.20	1 8330 0 1629	1 6893	0 3163	0 830	0 4007	0 2457	0 2963	0 781	0 1002	1 11016	0 5545	0 2763	4054	0 4489	0 3910	0 2358	0 2596	0 1112	0 4929	0 42.49	0 1660	0 5335	0 3621	0 1004	0 988	1 1410	1 9150	1 4716
Pud_FS	0	0	1	0	0	0	0	0 0	0 0	0	0	0 0	0	0	0 0	0	0	0 0	0	0	0 0	0	0	0	0 0	0	1	0	0	0 0	1	0	0		0	0	0 0	0	0	0 0	0	0	0	0	0	0 0	1	0	0	0	0 0	0	0 0	0		0 0	0	0,	10	0	0 0	0	0	0	0	0	0	0 0	0	0	0 0	1	G
cuole Ind_DEA	0	0	0	0	0	0	0	0	0 0	0	0	0 0	0	0	0 -	0	0	00	0	0	0 0	0	0	0	0 0	0	1	0	0	0 0	0	0	0 •	- 0	0	0	0 0	00	0	00	0	0	0	00	0	0 0	1	0 0	00	0	00	0	00	0	1	1	0	0,	- 0	0	00	00	0	0	0	0	00	0	0	00	00	1	-
Classificazione Comuni Aree Interne 2014 Ind_sc	- Untura - Intermedia	- Cintura	C - Cintura	- Cintura	- Cintura	- Intermedia	- Cintura	- Intermedio	- Intermediq - Cintura	- Cintura	- Intermedia	- Cintura	- Cintura	- Intermedio	- Cintura	- Intermedio	- Periferico	- Intermedia	- Cintura	- Cintura	- Cintura	- Cintura	- Intermedia	- Cintura	- Cintura - Cintura	- Periferico	- Polo	- Intermedio	- Intermedic	- Cintura	- Polo	- Cintura	- Intermedid	- Untura	- Cintura	- Cintura	- Cintura	- Untura	- Cintura	- Intermedio - Cintura	- Cintura	- Cintura - Cintura	- Polo	- Cintura	- Intermedio	- Cintura	- Cintura	- Cintura	- Intermedia - Cintura	- Cintura	- Polo	- Intermedio	- Intermedio	- Cintura	- Intermedio	- Cintura	- Cintura	- Cintura	- Polo	Cintura													
Rifiuto totale pro capite (in Kg) 2011	334 0	483 0	823 0	369 0	369 0	287 C	3710	267 C	378 0	446 0	345 C	454 0	440	423	D TOE	403	410 E	785 0	419 0	479 0	433 0	416 0	695 C	411 0	391 0	423 E	517 /	349 0	334 0	385 0	452 4	476 0	356 [376 Г	410 0	324 0	388 0	340 0	381 C	403 0	423 0	413 0	355 0	349 1	410 0	373 0	440	385 0	343 0	370 0	383 0	358 0	373 0	319 0	495 4	517 0	306	363 0	368 0	462 C	387 0	317 0	340 0	449 0	343 0	341 0	370 0	291 0	587 0	278 0	374 0	564 4	2 021
% Pop. Resid. F Straniera p (2015)	17,8	7,0	12,6	8,8	6,8	10,4	19,3	6,6	7.5	19,4	10,2	10.0	12,1	3,8	5,4 6,1	11,1	7,5	9,6	8,0	10,0	9,7	9,2	13,1	6,8	13.9	1.8	14,4	12,6	7,5	10/4	10.8	10,0	14,1	10,5	6,3	6,8	1,9	3,9	8,4	1,5	12.4	4,8	11,5	6,8	13,1	9,5		9,3	4,8		4,8	4,5	88	3,6	7,6	5'7	6,2	9,8	11.8	10,2	2,2	12,9	4,2	7,2	14,5	3,9	6,9	11.6	8,3	11,2	12.4	7,8	70
Pop. Resid. 9 Stranlera S sup) (2015) (5,0 224		54,6 1289											3,3 22		0,7 1300	4,7 193	4,5 130 1 8 A5	1,6 570	7,5 1484	3,1 1715 4.8 500				6,3 426 5,7 2071		19,2 37578		5,4 195		27 3586	9,9 1502	6,2 698	0C07 54	9,4 1588	3,2 305	2,0 36	6,1 185	8,1 304	7,4 48	7.2 489	0,1 125	3,7 1001	202 202 1.2 473	4,9 2129	5.2 1381 5.3 238		38,4 536	9/2 9/6	7,5 784	9,5 224 1 9 446	1,5 246	6,1 139 6.3 337	7,1 73	7,5 1537	6.6 955	7,9 333	7,9 714	9,9 977	2,9 726	4,4 96	1,3 609	2,1 87	7,5 632	3,5 1/26		7,4 623						
Densità imprendit (impr.att/																5,0	5,0	0/2	1,0 2	2,0 2	m				-		1				1.0	0,0	5,0	0 - 0	3,0 9	7,0 1	0,0	5,0 2	2,0	0,0	0.0	9,0 1	3,0	3 1	1227,0 9.	5,0		506,0 3	2°0	0,0 3	317,0 1	3,0 3	0 2 0	0'0	9,0	0.0	3,0	3,0	2 70	3,0 6	3,0	301,0 2	9,0 1	3,0 4	9 C		00	000		00	000	4 m	
une Km2 (2011)	3,6 68,0														17		43,4 206,			80			46,3 356		26,9 17. 64.0 100		2					54,9 1090			1,2 2103,0		0.0	13,6 354							12,9 122						21 2 31: 21 2 46'																7,6 657,					1	1
Sup	4,7 4 D,0 1	2,1	2'3 T	2,4	2,2	0,0	9,8	0,0	5,2 4,1 3	2,7 3	2,0 2	1,6	1,7 3.	3,6	1 6	2,6 2	3,2 4	8,1 2	1,7 2	2,0	2,3	0,0	4,3 4	2,5	4,1 6.0 6.0	3.5	2,1 19	0,0	3,0	1,6	1.8	2,5 5	0,0	1,4	2,0 2	0,0	2,9	0'0	5,3 3.	2,5	6.5	0,0	1,9	5,9 0,0	3,0 1	1,6 2		10,4 1	0'0	3,1	0,0	5,0 1	0,0	2,4	1,6	1.2 2.	1,7 4	1,8	2.0	0,0	1 0	4,4	0,0	2,2	17	1,1 2	1,9	2.6	0,0	0,0	0,0	2.2	V C
Turismo Permanenza Media 2014	5	23	10	4	n 00	10	t m	6 0	-i o	13	1	4	14	0	/ 6	10	2	7 4	p 4	80	18	4 4	20	2	7	3	4	26	44	35	0 6	15			26	9-	0 -	12	-6		5	T I	18	11	9	8	7	4	7-	9	6 0	÷1	1- 12	5	m	8	-2	6	7 8	5	4	16	14	13	20 4	0	10	17	m	÷	99 X	0	
Diff. Percentuale 04 2014-2004	5	63	4/ 51	14	0 00	19	2	13	-1	74	2	11	52	0	17	47	1	-1 -	13	26	65	14	11	2	7	F 0	54	48	4 3	84 8	48	36	16	0 00	46	14	0 0	37	-6		31	2	2 :	22	75	91	37	18	7-	28	23	-5	-8	-5	18	32	ņ	40	30	36	80 00	45	22	68	66	0	48	0	m		11	1	
4 Diff 2014-2004	92	40	561	85	18	10	40	5 27	23	28	02	50	27	51	41	8	59	148	13	364	30	10	65	32	33	41	308	38	88 :	24	80	73	46	80	2 66	20	48	49	04	29	30	56	27	58	58	41	77	139	62	21	287	51	104	02	49	25	27	96 Sr	3 8	94	43	35	79	86	86	32	517	32 56	24	32	29	50	2
1 Densità 2014			211 2										75 4	51	1 1 1 1 1 1	53	58	47	24 00 3	37 3	65 96	14	54	30	896	42	53 13	89	12	40	32 5	37 2	30	C/ C/	52 11	22 2	48	12 3	10 1	28	61 6	54 1	53	36 3	83 12	77	41 5	20	11 1	94 5	53 23	56 3	12 87 3	07 1	31 5												469 5						
Densità 2004		23 23		. 3	1 1	9	+ +	6.	- -	13 5	1	3 2	12 3	1	2 2	10	1	2 2	5	80	18	4 4	80	1	7	3 17	0 12	26	0, 1	35		15 2	2 4	0 -	27 9	-6 2	0 -	12 0	-5 1	1	-5	2 1	17	3 17	7 11	20	7 5	5	1 1	5	1 2	-2	13	4	4 0	8	-2	8	- m	4 7	4	16 2	14 1	13 5	50 10	0	4 -	17 13	3	1	- v	0	1
Diff. Percentuale 2005-2015			1246	90	48	28	71	129	14	16	67	12	98	7	47	8	29	28	11	1047	57	87	33	88	177	15	57	20	76	29	2725	28	20	43	5375	71	4	101	10	18	26	55	74	15	1060	14	02	252	0	81	98	-88	22	94	734	19	34	26	16	75	65	649	52	30	8 8	15	866	11	58	9	32	80	1
al Differenza 2005-2015														0								1 9	3 2:				38 1057												Ŷ	2 1	-2	2							20				1				Ľ								6 12								
I Popolazione a 1 Gennaio 2005 - Totale	8 118	248	2 1409	7 692	1 203	7 347	6 268	143	2 212 378	6 1881	4 506	1 2221	9 1323	7 57	1 1262	6 1065	3 254	1 132	1 680	6 1379	7 1502	9 233	6 279	0 486	1 258	1171	5 25906	394	7 268	5 739	5 3052	3 1305	6 462	202 C	5 1999	5 476	5 185 0 705	5 425	7 383	1 313	8 415	7 254	3 742	4 657	4 1520	1220	4 1139	2 552	8 157	1 727	a 426	7 552	2 169	210	2 1941	9 952	2 550	1 677	1 263	5 683	426	1 407	5 180	3 770	0 631	7 315	2 822	9 516	2 188	200	298 298	5 1759	939
Popolazione al Popolazione al 1 gennaio 1 Gennaio Di 2015-Totale 2005-Totale 20	125	306	10/1	712.	2181	380.	275t	156.	3762	2122(513.	4121	14825	57.	17971	11754	257.	135	1117	1484	1768	2245	3021	493	276	111	26012	496	260.	995. Font	33246	1498	494.	0667	2536.	449.	185	4765	362.	315.	3925	259.	870.	349.	1626	2704	12194	577.	1585	765.	466.	543.	157.	2010	2015.	10315	537.	730.	8246	710	4421	434	205	873.	7610	316;	909.	6025	194;	200	274	1767	927t
escrizione Comune			Pescantina Peschiera del Garda	onese			Roverchiara							4 San Mauro di Saline		ella							086 Torri del Benaco																						28016 Cadoneghe						28026 Cartura 28027 Casale di Scodosia																						
Codice Comune	23056 F	23057	23059 P	23060	120022	23063	23065	230661	23068 5	23069	23070	23071 5	23073	23074 5	21052	23077 5	23078 S	23079	23081 5	23082	23083 5	23085 1	23086	23087	23088	23090	23091	23092	23093	23094	23096	23097 2	23098 2	28002	28003	28004	28005 /	28007 4	28008 1	28009 1	28011 6	28012 1	28013 1	28014	28016 (28017 \	28019 0	28020 (28022 0	28023 (28026 1	28028 (28029	28031 (28032 0	28034 (28035 (28036	28038 5	28039	28040	28042 0	28043 (28044 1	28045	28047 1	28048 1	28050 1	28051	28052	28053 1	28055	28056

% over 65 5) (2015)	23 18,9 23 18,9	/1 25,3 44 25,3	90 20,4 49 26,0	07 22,3	bi 18,7 D6 21,2	29 16,2	83 22,8	53 20,4 70 21,2	818 16,6	33 20,1 52 21.2	59 20,2	11 16,7	35 18,4	91 19,7	42 17,5 56 17,5	61 19,9	01 19,3 06 16.5	49 26,0	99 17,5	05 22.7	47 24,9	43 21,5	73 17,0 96 19,1	16 21,4	21 17,3 07 20.4	56 21,5	54 11,9	21,9 21,6 21,9 21,6	60 19,7	31 19,1	35 23,9	65 16,5	45 24.9 45	89 17,5	52 25,3	93 24,9	49 22,1	86 27,5 86 26.7	91 19,2	02 26,4 94 25,1	36 24,4	22 25,7	61 26,8	52 26,7 52 23,1	46 26,2	75 25,4 80 30,4	02 28,2 04 0	80 25,9	55 24,6 nn 38.0	87 24,7	45 25,1 10 26,2	23 25,3	77 24,0 48 21,2	90 27,0 27,0	38 34,5	97 24,7	82 21,6	97 18,0 54 25.7	35 22,2	58 23,5 17 26.7	L/ 20,7 62 22,7	33 23,4	76 24,9	48 30,2	60 22,5 80 73 5	22 20,4
over 65 (201)	2123	9 534	1 6	5 250	,6 420	200	9	77 27		m	5	2 17.		.3	-	,5	,7 14(,1 17	16(,8	19		,8 1316		.8	5	.0	,0 2560	~ *	24 57 24 52		,3 10/6			0	,2 23-	2 2	5	7 2	,5 2	,1 12(1)	6,	4 8	9	5 5 5	7 2	,9 10 10	,4 0 2/	5 80	2 2	.1 30	5	,2 44	,7 24.	5,5	,4 8	,1 35	.6 14	,0 122(4 7 7 7	80	,0 20:	5	,6 110	5
% Pendolari	1 56,2								4 54,6														23,4 54,6					0 53.0																3 50,9	4 47	0 50	45						2 46,3 4 56,5													
Pendolarismo 2011	63.21	10532	212	613	1002	132	199	190	269/	271	142	3535	740	254	410	121	13.71	105	1240	325	205	484	457	33.7	2382	114	288	490	741	1265	122	5951	349	530	9659	142	555	12.7	79	13.8	460	193	132	187	116	82	112	74	1334	11	101	587	1652	16	919	82	205	510	308	2611	22.20	207	400	130	250	114
Ind_FS		2 -	00		- 0						0				50		00							0		0		50				0		0			0									50		50															50			
Ind_DEA		1	0 0	0	1	00	0	0	0	00	0	00	0	0	0 0	0	00	0	0		0	0	0	0	00	0	0	0 0	0	0	0	0	00	0	10	0	0	00	0	00	0	00	0	0	0	00	00	00	00	0	0 0	0	0	0,	10	0	0	00	0	1	0	0	0	-	00	0
nd_scuole		1	0 0	1	1	0 0		00	0	0 0	0	00	0	0	0 0	0	0 0	0	0	0	0	0	0	0	00	0	0	0 0	0	0	0	0	00	0		0	1	00	0	00	0	00	0	00	0	00	00	00	00		0 0	0	0	0	0	0	0	00	0	1	0	0	00	0	00	0
Classificazione Comuni Aree Interne 2014 1	- Cintura	- Untura	- Cintura - Cintura	- Cintura	- Cintura	- Cintura	- Intermedio	- Cintura - Cintura	- Intermedio	- Cintura - Cintura	- Cintura	- Cintura	- Cintura	- Cintura	- Cintura - Cintura	- Cintura	- Cintura	- Cintura	- Cintura	- Cintura	- Cintura	- Intermedio	- Cintura	- Cintura	- Cintura - Cintura	- Cintura	- Cintura	- Cintura - Cintura	- Cintura	- Cintura	- Cintura	- Cintura	- Cintura - Cintura	- Cintura	- Polo	- Cintura	- Cintura	- Intermedia	- Cintura	- Intermedio	- Cintura	- Cintura - Intermedio	- Intermedio	- Intermedio	- Cintura	- Cintura - Cintura	- Cintura	- Cintura - Cintura	- Cintura	- Cintura	- Intermedio	- Cintura	- Cintura - Cintura	- Intermedio	- Cintura	- Intermedia	- Cintura	- Cintura	- Intermedia	- Polo	- Cintura	- Cintura	- Untura	- Intermedio	- Cintura	- Cintura
Rifiuto totale pro capite (in 0 Kg) 2011 Ir	461 C	2444 C	448 C	369 0	479 C	360 0	413 0	519 C	374 D	365 C	393 C	342 C	394 C	371 C	262 C	476 C	387 C	408 C	411 C	450 0	403 C	447 D	369	377 C	349 C	420 C	366 C	413 C	325 C	443 C	431 C	373 C	273 C	510 C	480 A	465 C	496 C	391 D	366 C	490 0	389 C	505 D	419 D	344 C 344 C	527 C	386 C	541 C	378 C	484 C	343 0	363 0	481 C	384 C 421 C	485 D	475 0	335 D	400 0	341 C	761 D	601 A	441 C	409 0	433 D	488 D	431 C	470 C
% Pop. Resid. RH Straniera pr (2015) Kg	11,8	15,8	5,8 9,8	8,4	11,9	3,6	15,5	5,7	8,7	9,9	6,0	13,7	9,6	8,4	9.9	5,4	6,4	3,5	10,1	7,4	7,1	5,5	14,3	6,0	8.6	3,8	8,7	2,1	7,1	7,6	2,9	6,4	8,8	5,3	6,0	6,1	11,3	12,8	13,5	15,3	13,6	14,1	11,5	15,3 6,1	7,2	5,3 8,2	9,0	4,5	8,6	10,2	9.1	9,6	a'c 6'6	8,5	4,8	3,9	10,5	3,8	4,6	10,0	7,4	3,5	3,9	9,1	5,7	6,9
Pop. Resid. %1 Straniera Str (2015) (20	1325	33268	226	944	2353	127	601	208	427	1593	165	1404	1262	379	713	124	466	75	1039	527	301	501	1201	368	380	82	406	19	925	1735	99	645	147	480	1197	171	1199	171	204	117	132	606	325	267 225	178	157	225	364 66	231	160	221	1153	351	154	75	62	427	83	296	5232	58 85	138	302	256	293 67	191
Densità Pop imprendit Stra (impr.att/sup) (20	163,2	256,6	3,7	19,9	2.5,5 55,5	22,2	18,6	10,8	14,2	28.8	20,6	40,0	48,7	16,6	30.6	12,1	43,0	3,6	61,9	81.2	17,1	23,5	66,8	25,2	29,4	11,5	23,0	2.9	46,5	60,3	10,5	29,7	33,5	24,4	13,0	7′6	21,0	3,2	14,9	5,2	4,5	22,4	3,9	3,9	8,5	3,4	7,0	3,7	9,8	3,7	3.5	16,4	13,0	6,7	3,8	4,1	16,9	9,8	10,7	42,2	4,2	7,3	10,7	5,2	9,5 0,5	16,4
Imprese attive imp (2011) (imy	1156,0	23870,0	305,0	815,0	1982,0	219,0	202,0	264,0	393,0	397.0	221,0	755,0	1175,0	297,0	233,0	154,0	600,0 178.0	116,0	839,0	824,0	339,0	732,0	736,0	475,0	333.0	196,0	378,0	0'66	926,0	2010,0	168,0	711,0	327,0	649,0	1479,0	194,0	936,0	69,0	91,0	56,0	64,0	265,0	149,0	217,0	158,0	148,0	127,0	82,0	205,0	0'06	155,0	903,0	230,0	118,0	82,0	88,0	277,0	113,0	801,0	4594,0	66,0	227,0	839,0	182,0	306,0	192,0
Superfide Imp comune Km2 (201	7,1	93,0	13,2	40,9	35,7	9,8	10,9	24,5	27,7	14,5	10,7	18,9	24,1	17,9	18.0	12,7	14,0	31,9	13,5	10,1	19,8	31,2	11,0	18,9	30,7	17,0	16,4	17.1	19,9	33,3	16,0	24,0	20,4	26,6	113,4	19,9	44,5	21,4	6,1	37.7	14,4	11,8	37,9	30,2	18,5	31,9	18,1	22,0	21,0	24,4	18,4	55,1	17,7	17,6	21,5	21,5	16,4	11,5	74,7	108,8	15,8	31,0	78,7	35,1	32,1	11,7
nza 114	1,3	2,1	0,0	3,1	3,7	0,0	0'0	1,6	5,7	1,4	0'0	0,0	2,2	0'0	0,0	0'0	0,0	0,0	1,4	0'0	1,2	7,2	0'0	5,3	2,1	2,7	194,7	0.0	2,1	3,5	0'0	5,6	0,0	4,6	2,4	1,8	2,1	0,0	0'0	0,0	0'0	0'0	0'0	0'0	0'0	5,9	0,0	3,9 0,0	2,5	0'0	32,8	6,9	6,3 0,0	2,2	2,5	0,0	1,1	0,0	8,1	1,9	0'0	3,7	3,1	2,4	3,3	0'0
	27	n 0	μĻ	9	0	28	0	0	17	51 6	5	18	10	2	14	0	4	4	5	× +	9		9 23	2	14	ŵ	31	510	9	11	0 1-	18	61 0	7	ŵ Ş	- -	Ļ	40	~	<u>1- 1</u>	-1	÷ 4	6-	9 1-	L-	φ φ	ţį.	9	2 4	, ų	φ «		γņ	9	-7	φų	p 0	37	07-	2 5	4 4	2	<i>•</i> 0	- q		φ
Diff. Percentuale Diff 2014-2004 2014-2004	334	0	00 rj	15	48	72	· 8	100	25	142	11	84	51	5	21	0	19	-2	63	10	-15	18	86	80	42	4	89	n 0	38	68	-10	64	6 7	23	9	-2	-2	ŵ r	17	9 9	-1	4 17	L-	4 Q	ij,	-14	-16	7 4	ŵ ri	9 9	φ <	ń,	ý ý	9	6	ΰ	÷	52	0	=	i ù	2	» 0	e eo		12
à 2014 Diff 20	1590	2270	293	275	322 554	331	355	148	178	359	258	542	547	253	2.28	182	519	66	758	11/1	213	290	760	326	418 231	127	284	81	653	681 2.71	140	421	167	341	176	140	239	62	248	70	67	362	75	61 122	133	60	138	152	129	3 3	118	217	200	103	369	75	248	192	87	479	73	129	138	80	161	176
nsit	1256		285	260	304 506	259	356	147	153	331	246	458	497	248	381	182	499 215	69	695	689	22.7	271	673	319	375	131	216	54	615	613	150	35.8	421	319	182	142	241	65	231	76	67	365	82	65 132	143	66	154	71	132	99	125	220	98 205	109	78	80	249	140	86	469	76	126	129	88	163	188
Densità	25	n 0	e ci	5	10	28	0	. 1	17	14	4	19	10	2	13	0	4	-3 5	6	× 0	9		12	m :	11	ŵ	33	13	9	11	0 1-	18	19	7	ŵ ţ	-2	÷	5 5	10	00 r;	1	<u>ب</u> ا	φ	-1	1-	-10	φο	0 9	<i>7</i> 4	, m	φ	-2	ŵ ŵ	9	51 6-	9	-1	38	, e	m r	ņ 4	2	9 ŗ	- q	ŵ.	+
a Percentuale 5 2005-2015	2254 2254	389	-27	507	1778	704	15	39	723	421	108	315	1152	110	360	8	259	-74	865	17	-261	593	3/1	175	1272	-66	1148	-1	766	2261	-164	1569	-23	597	-707	-54	-83	-40	125	-100	11	55	-247	-268	-173	-201	-261 15	-90	-57	49	-131	-225	-307 -93	-109	-148	-107	-53	-48.4	165	1287	-45	69	-43	-288	-140	-145
ne al Differenza ale 2005-2015	9003	0821	3756	0758	8019	2555	3853	2656	4207	4110	2659	8617 5966	2053	4413	26823	2308	6986 1975	2189	9399	7068	474	8441	7467	5978	1535	2234	3515	926	2235	0421	2407	8522	3416	8468	0669	2839	0719	1398	1391	834	958	1730	3082	1853 3951	2634	2111	2754	1559	2756	1616	2302	2188	3875 3623	1927	1706	1714	4128	1602	6303	0883	1198	3925	5118 8394	3098	5303	2209
Popolazione al Popolazione al 1 gennaio 1 Gennaio Dii 2015-Totale 2005-Totale 20	257 0	210 210	344	265 10	797 11	259 259	868	628	930	120 120	767	225	205 1.	523	232	316	245 (115	264 3	805	213	034	372	153	440	168	663	925	001	682 20	243	160	393	065	962 20	785	636 10	332	516	764	696	287	835	744 683	461	910	493	469	669	567	171	963 1.	530	818	228 TI	607	075	209	468 (170 50	153	994 8	351 3	810	163	064
Popolazion 1 gennaio 2015 - Tota	12	211	miei	11	19	e 6	100																																																											
9	9	oau		е								Pertiche	pari	-	Colle	d'Adige	we di Sacco															ana	osampiero			0							9					0 F			uchella					ic		ne				nezze				bbo
crizione Comur	8 Noventa Padovana	jova	rnumia cenza d'Adige	zzola sul Brent	ve di Sacco	Nerara	rtelongo	rzonovo	/olon	colongo	etto	Giorgio delle	Martino di Lu	h Pietro in Gu	Thetro Vimini Ta Giistina inv	nta Margherita	11'Angelo di Pic 1'Flana	tt "Urbano	onara	esino	nghella	00	mbolo	reglia	baseleghe	bana	ggiano	scovana hizzolo d'Este	odarzere	Sonza	a ter corre	lafranca Padov.	anova di Cam	e Carrare	ria van not Distoria	ru" Polesine	dia Polesine	gnolo di Po	aro	tto Vario	nda	telmassa	stelnovo Bariai	egnano	bola	sta di Kovigo spino	arolo	ssi nelle Polesi	tta Polesine ha	vello	rida Veneta	ndinara	29030 Loreo 29031 Lusia	klara	Chiobelio	ttorazza Grima.	esella	ntecchio Polesi to Tolle	iolina	vigo	ara \Bellino	Martino di Ve	enta rilo di Po	centa	adose	anova del Ghei
Codice Comune Descrizi	28058 Nov	28060 Pad	28061 Per 28062 Piac	28063 Pia.	28065 Piov	28066 Pol- 28067 Pon-	28068 Pon	28070 Por 28070 Poz	28071 Rov	28072 Rut 28073 Sace	28074 Salk	28075 San 28076 San	28077 San	28078 San	280/9 Sar	28081 San	28082 San 28083 San	28084 San	28085 Sac	28087 Sole	28088 Star	28089 Tec	28091 Ton	28092 Tor	28093 Tre 28094 Trib	28095 Urb	28096 Veg	2809/ Ves 28098 Viet	28099 Vig.	28100 Vig.	28102 VIII:	28103 VIII	28104 VIII 28105 Vo'	28106 Duc	29001 Adi	29003 Arg	29004 Bac	29005 Bag 29006 Bag	29007 Bos	29008 Cal. 29009 Can	29010 Can	29011 Cas 29012 Cas:	29013 Cas	29015 Cert 29015 Cert	29017 Cor	29019 Cos	29021 Fic.	29022 Free 29023 Fras	29024 Fra.	29026 Gav	29027 Gia 29028 Gia	29029 Len	29030 Lusi 29031 Lusi	29032 Me	29034 Pap	29035 Pet	29037 Pole	29038 Por. 29039 Port	29040 Ros	29041 Rov 29047 Sala	29043 San 29043 San	29044 San	29045 Stit	29047 Trev	29048 Vill. 29049 Vill.	29050 Vill

% over 65 (2015)	23,4	18,0 18,4	13,0	17,0	18,1 25,4	18,9	19,5	20,4	17,1	20,5	18,3	14,4	20.8	21,6	16,6	22,8	17,9	17,2	16,6	17,7	22,5	29,9	23,7	20,0	20,8	16,9	21,4	19.9	19,2	21,6	16,4	18,2	18,0	17,8	30,2	21,5	22,4	24,8	19,0	21,6	20,5	19,0	19,6	19,5	17,8	17,8	18,6	23,3	15,3	21,6	21,0	31,2	21,1	19,6	27,3	18,7	25,5	22,0	17,2	20,4	20,6	17,9	19,3	14,9 22.6	20,1
over 65 (2015)		4 254 1 383										6 568	2 2191 5 535														2	1 772						2 1807				3 667	0 1824	0 3015 2 649	3 530	4 1253 4550	8 985	1 566 6 673	5 322	6 489 8 1974	9 597		9 473		1 1890 c 700	5 243	-	5 854	1 157 8 655	5 523 3 077	2 1653	5 957 4 2713	0 2489	1 134	5 212	8 213	3 329	5 245 7 1325	1 726
% Pendolari		0 797 56,4 0 1146 55,1										0 2432 61,					0 2069 57,2 0 2183 57,3		0 1749 59,	0 7403 57,0				0 6840 56,					0 339 48,3						0 102 47,	0 3137 55,2		0 1381 51,	0 5675 59,	0 7384 53, 0 1984 55,	0 1457 56,	1 3720 56, 0 12806 54	0 2801 55,	0 1602 55, 0 1813 53	0 1094 60,	0 1586 57, 0 5114 55	0 1795 55,	0 929 52, 0 4531 59,	0 1881 60,5	0 722 62, 00 2768 54,	0 4778 53,		0 1181 54,8 0 4335 52,0	0 2426 55,	0 260 45, 0 1725 55.	0 1581 56, 0 3380 56	0 3573 55,	0 2105 48, 0 8170 56.	0 8106 56,	0 4481 55, 0 336 51,	0 550 53,	0 4069 53,	0 892 52,	0 959 58, 0 3146 53.	0 1990 55,
Ind_DEA		0 0	0	0	0 0		0	0 -	10	0	0 0	0	0 0	0	0 0	0	0 0	0	0	0	0	0 0	0	0	0	0	0	0 0	0	0 0	0	0 0	0	00	0	0	0	0	0	0 0	0	0 0	0	0 0	0	0 0	0	00	0	00	00	0	0 0	0	0 0	00	0	00	0	0 0	0	0	0	0	0
Classificatione Comuni Aree Interne 2014 Ind_scuole	Periferico 0	Cintura 0 Intermedid 0	Intermedid 0	Intermedia 0	Cintura 0 Cintura 0	Intermedic 1	Intermedic 0	Intermedic 0	Cintura 0	Cintura 0	Cintura 0	Intermedia 0	Cintura 0 Cintura 0	Cintura	Cintura 0	Cintura 0	C - Cintura 0	Cintura	Cintura 0	Intermedic 0	Cintura 0	Cintura 0	Intermedia 0	Cintura 0	Cintura 0	Intermedia 0	Cintura 0	Cintura 0	Periferico 0	Periferico 0 Cintura 0	Cintura	Cintura 0	Cintura	Cintura 0	Intermedia 0	Cintura 0	Cintura	Intermedia 0	Cintura 0	Cintura 0	Cintura	Cintura 0	Cintura 0	Cintura 0	Cintura 0	Cintura 0	Intermedia 0	Intermedid 0 Cintura 0	Intermedio 0	Cintura 0	Cintura 1 Intermedia	Intermedia 0	Cintura 0 Cintura 0	Cintura 0	Cintura 0	Cintura 0	Intermedia 0	Periferico 0 Cintura 0	Cintura	Periferico 0	Intermedia 0	- Intermedid 0	Cintura 0	Intermedia 0	Cintura
Rifiuto totale Cl pro capite (in Co Kg) 2011	521 E	331 D	318 D	217 D	314 C	380 D	284 D	373 D	331 C	351 C	367 C	307 D	354 C	265 C	401 C	385 C	336 C	391 C	318 C	320 D	302 C	303 C	398 D	304 C	351 C	295 D	404 C	277 C	361 E	332 C	239 C	295 D	367 C	335 C	443 D	320 C	297 C	285 D	332 C	355 C	351 C	367 C	329 C	291 C	307 C	308 C	329 D	402 D 298 C	322 D	370 C	433 C	297 D	357 C	372 C	339 D 399 C	369 C	323 D	649 E	428 C	458 E	218 D	268 D	381 C	219 D 325 B	337 C
% Pop. Resid. Stranlera 2015)		4,1 7,0																											0/0						2,8	6,2	8,2	4,8	7,1	6,1				3,7	6,6	2,6	13,3		8,9		11,7	2,6	2,3	8,3	2.7	8,3	2,7	5,8	8,6	<01 0,9	2,5	7,1	11,8	18,1	7.2
Pop. Resid. Straniera (2015)		9 58											2 750				3 276		-			9 158	3 73	1138	9 1270	5 173	1 1006	5 172	4	3 49 3 618	1 18	3 113	2 455	1 624		1 352				3 857	1 73	3 938	1 233	3 107	3 120	5 72	3 428		3 275		1053	3 20	1 50	363	9 58	3 233	7 172	252 252	1252	6 6		1 84			259
Densità imprendit (impr.att/sup)		7,5											53,2				38,3			42,2		2,5	6,8	39,0	87,9	2,5	56,4	c'7 18.5	1,5	17.8	8,4	5'6	15,2	24,4				6,1	51,8	33,8	26,1	25,3	26,1	9,5	6,9	22,5	23,8	40,2	13,8	56,2		3,3	32,4	10,3	23,7	17,8	6,7	5,2	51,0	1,6				32,9	
Imprese attive (2011)		101,0											845,0				335,0	1278,0						918,0			-	281.0	52,0		67,0			645,0			-		•	1236,0		-								43,0														447.0	
Superficie comune Km2	133,8	20,2	11,1	15,1	41,6	34,2	8,1	19,5	1,14	21,8	8,4	12,2	22.7	11,5	30,0	9,7	8,7	12,7	11,6	22,6	4,7	34,8	26,9	23,6	10,5	30,2	20,0	15.2	35,2	47,9	8,0	12,4	15,0	26,5	18,8	22,8	14,6	34,3	12,7	36,5	7,4	21,5	14,4	17.4	13,6	8,4	6,9	14,0	14,4	8,2	22,9	12,6	5,0	28,6	43,6	11,3	60,2	78,1	24,3	28,3	6,1	15,5	23,1	4,1	. e
Turismo Permanenza Media 2014	4,2	7 4,6 1 4,2	2 0,0	0,0	3.3	3,0	6 0,0	3,4	1,9	2,4	0'0	3 2,5	2,3	0'0	2,4	3 2,5	2.6	1,7	3,1	3,0	0'0	7'7	1 2,4	1,9	2,0	3 22,7	8,8	3.0	1 2,3	2 4,1	0'0	0,0	1,9	8,2	6,6	3,9	1 0,0	3,5	1,9	2,2	1 2,7	9,1	3 0,0	0,0	0'0	14,9	0'0	2.1	0'0	0'0	2,4	0'0	4,1	8,6	3 2.8	0'0	3,3	8,1	4,7	2 2,7	0,0	4,2	7 3,2	0,0	0.0
Diff. Percentuale 4 2014-2004		1	6		× Ŧ	10	7	1 0	1	6	10	1 23	0 4	-	2	2	4 8	90	21-			4 S	-	7	1	7 -1	4	+ 0	7		10	8 0	4	20	2	5	0 m	7 .	6	6 4	2 m	9	5 1		24	3.	0 m	2 0	6	0 4	4		2 2	1			-10	5		1 1	m c	7 67	5	0 7	5 00
Diff 2014-2004	00	9	3 2	5 .	00 90	m		1 2	10	1 1	10	5 6	4 .	2	9 .	8	6 4	10	4 4	2 5	6 -1		, H	2 4	2 2	5	9 2	, , 4		0 10	9	1 10	1	9	- -	0	2 - 2		6 2	1 1	5 00	2 2	8	1	1 0 1	1 7	5 2	6	50	1	1 2	- 12	4 0		4	9	± ±	9 6	5	33 10	89 5	-1	4	0	
Densità 2004 Densità 2014		90 96 101 103									347 25	264 325		114 115	307 36	87 8	390 414 414	1044 115	230 25	555 57	568 55	31 2		486 513			615 69	256 25	21 21	256 26	100 106	144 15 25.2 25	240 25	320 38	13 1	24.4 25	258 25	85 7	727 75	363 38	345 34	282 30	336 34	122 12	129 13	249 32	322 34	122 12 469 49	179 21	117 12 618 62	369 39	63 6	390 429 646	153 15	304 31	236 24	120 10	51 56 667 679	543 59		171 16	74 74 7	7 79	379 399 444	598 59
fferenz 05-201		15 1										711 22		7			210 6		279 10			1		645 6					-27 -4				223 6			141 3				662 5									487 19			-20 -3				144 5		339 8					$\left \right $	60 298 5	
spolazione al Gennaio Di 105 - Totale 20	1449	1314 2064	10616	2297	3439	24765	926	4224	41/32	8315	2972	3235	2647	1310	9199	843	3404	13236	2674	12578	2632	3457	2250	11434	10843	1583	13580	3910	729	3793	798	1764	3578	8448	248	5541	3783	2915	9228	13279	2556	6040	4825	2896	1762	2092	2975	7210	2603	4978	8488	199	1937 8029	4364	2991	2655	7189	4004	13216	589	1047	1156	1830	5561	3645
Popolazione al Popolazione al 1gennaio 2015-Totale 2005-Totale 20	14591	1414 2079	12084	2252	3234	25926	866	4594	6547	8724	3182	3946	11327	1317	11068	819	3614	14692	2953	12991	2618	3294	2174	12079	11281	1373	13983	3888	702	2380	840	1876	3801	10141	215	5682	3716	2691	9622	13941	2589	5601 23655	5019	2907	1809	2753	3209	1784 7646	3090	5069	8996 200c	779	2155 8334	4368	3092	2799	6477	4343	14482	80/5	1028	1187	1705	1639	3614
escrizione Comune	orto Viro	gugliaro Ibettone	donte Itavilla Vicentina	dtissimo	rcugnano risiero	rzignano	oiago sigliano Veneto	arbarano Vicentino	elssano del Grappa folzano Vicentino	ireganze	ressanvido	rogliano	aldogno altrano	alvene	amisano Vicentino tamnialia dei Rerici	ampolongo sul Brenta	larr lartiellann	assola	astegnero	dstergoritoer to hiampo	hiuppano	ismon del Grappa cogollo del Cengio	onco	ornedo Vicentino	costatosara reazzo	respadoro	bueville	nego ara Vicentino	ezo	allio ambellara	sambugliano	ŝrancona ŝri signano di Zorco	srumolo delle Abbadesse	iola Vicentina achi	astebasse	ongare	ugo di Vicenza	usiana Anto	Aarano Vicentino	Aarostica Aason Virentino	Aolvena	Aontebello Vicentino Aonteochio Maggiore	Aontecchio Precalcino	Aonte di Malo Aontegalda	Aontegaldella	Aonteviale Aonticello Conte Otto	Aontorso Vicentino	Aossano Aussolente	lanto	logarole Vicentino love	loventa Vicentina	bedemonte	Planezze Plovene Rocchette	² ojana Maggiore	Posina Pove del Grappa	Pozzoleo ne	dumo v centimo decoaro Terme	Roana Romano d'Ezzelino	los"	4ossano Veneto Rotzo	Salcedo	sandrigo san Germano del Berici	ian Nazario	ŝan Pietro Mussolino Santorso	san Vito di Leguzzano
Codice Comune	290	24001 / 24002 / 240002 / 240002 / 240002 / 240000000000	240.	2400	2400	240	240	240.	2401	240.	2401	240.	2401	240.	240.	240.	240.	240;	240.	240.	240.	240	240.	240.	2405	240:	240.	2400	240	240	240	240	240	240	2405	240.	2405	240.	2405	240.	240	240.	240t	240.	240€	240.	240(240	240.	240	240.	240;	240	240.	240	240	240	2405	240	240	240.	240	240	24094 24095	2405

% over 65 215) (2015)	010 19,2	481 18,3 3313 23.6	388 20,0	16,8	.857 14,5 .999 20,5	133 24,8	18,8	5948 26,3	375 28,6 70.6 24.4	494 27,0	504 20,8	368 19,1	17,2	191 13,7	141 18,0 1342 19.7	128 16,4	732 16,4	968 16,2	17,8	1118 23,7	213 19,8	0018 15.9	429 19,3	225 21,7	653 21,8	754 19,3	654 17,7 681 19.8	632 23,4	077 20,2	007 25,8	1511 21,4	059 23,5	347 22,3	871 22.3	148 19,7	044 17,4 603 22.7	453 23,7	921 17,8 (465 24,2	802 19,0	384 14,9	897 17,8	1059 20,7	1736 18,6 615 21.1	782 23,2	847 24,0 847 19.9	299 21,3	793 17,7	571 20,8	592 23,3	476 21,9 847 18,8	880 22,7	403 16,6	529 20,4	520 18,1	158 15,9 158 20,7	483 22,2	1377 20,0	.026 20,6 398 22.6	412 14,8	514 23,1 (550 14,9	908 20,3	1185 17,7 538 19.5	19,8 19,8 19,8	271 23,8
		58,4 481 51.3 9313					57,6	51,7 (49,6 51 5	50,8	52,6	56,0	57,6	59,6	55.1	55,9	56,3	56,2	57,4	49,6	56,6	59.0	51,7	52,7 7	53,1	52,8	55,4	48,4	56,8	48,3	55,5	51,8	50,4	52,8	56,6	52,2	52,0	54,9 52,5						49,7	53,2 (54,4	55,2	53,8	52,1	53,4	53,2	57,1 3	54,2	56,2	56,7	51,7	56,4	54,3 2	56,7	56,7	55,4	56,4	54,4	52,3
no % Pendolari	984	531	025	194	419 661	254	68.42	670	651 1678	929	2.75	079	551	829	433	836	517	354	198	336	331	707	152	7531	586	062	2042	306	021	885	3910	331	049	760	2.95	125	183	2845 3181	342	241	931	704	419	677	738	763	472	4.79	565	25 14	063	569	055	724	292	124	523	354	396	124	920	777	806	790
Pendolarismo 2011	5 E	1 20	0 10	00	1 12	00	10	0 13 4	0 0	00	1	10	0 0	0	00	0	00	0 33	4 4	0 0	0	0 0	0	1 17	10	0	0 0	0	00	1 16	1 33	0 23	0	0 0	3.	0 0	0	1 3: 24	0	1 22	0	0 27	0	0	1 14	0	1 10	0 0	0	0 0	0	0 12	0 44	0	00	0 0	1 0	00	0 25	0 0	0	0 0	0 0	0 2:
Ind_FS	0	0	0		0 0	0 0	000	0	0 0	0	0	10	0	0	00	0	0 0	0	0 0	0	0	0 0	0	1	0	0	0 0	0	0 0	0	0 0	0	0	0 0	0	0 0	0	0 0	0	0	0	0	0 0	0	00	0	1	0	0	1	0	0	0	0	00	00	0	0 0	0	00	0	0 0	0	0
Ind_DEA	00	1	0		1	0 0	000	1	00	0	0 +	10	0 0	0	00	0	0 0	0	0 0	00	0	00	0	1	00	0	0 0	0	0 0	1	0 0	0	0	0 0	0	0 0	0	00	0	0	0	0	0 0	0	00	0	1	0	- 0	0	0	0	0	0	00	00	00	00	0	00	0	0 0	00	0
Ind_scuole																																																																
Classificazione Comuni Aree Interne 2014	C - Cintura D - Intermedi	C - Cintura B - Polo intere	C - Cintura	C - Cintura	C - Cintura C - Cintura	D - Intermedi	C - Cintura	C - Cintura	D - Intermedi	C - Cintura	C - Cintura	D - Intermedi	C - Cintura	C - Cintura	D - Intermedi C - Cintura	C - Cintura	C - Cintura C - Cintura	C - Cintura	C - Cintura	C - Cintura D - Intermedi	C - Cintura	C - Cintura C - Cintura	C - Cintura	A - Polo	D - Intermedi	D - Intermedi	D - Intermedi D - Intermedi	D - Intermedi	D - Intermedi	D - Intermedi	C - Cintura	C - Cintura	C - Cintura	D - Intermedi D - Intermedi	D - Intermedi	C - Cintura D - Intermedi	C - Cintura	C - Cintura C - Cintura	D - Intermedi	C - Cintura C - Cintura	D - Intermedi	C - Cintura C - Cintura	C - Cintura D - Intermedi	D - Intermedi	C - Cintura C - Cintura	D - Intermedi	A - Polo C - Cintura	D - Intermedi	C - Cintura	D - Intermedi D - Intermedi	C - Cintura	C - Cintura	C - Cintura	C - Cintura	C - Cintura C - Cintura	C - Cintura	C - Cintura	C - Cintura D - Intermedi	C - Cintura	D - Intermedi C - Cintura	C - Cintura	D - Intermedi	C - Cintura D - Intermedi	D - Intermedi
Rifiuto totale pro capite (in Kg) 2011	349	455	489	330	423 386	743	461	345	291	345	294	280	311	367	275	293	356	316	310	265	328	332	352	412	309	307	334	374	275	396	339	363	322	346	299	310	333	311 323	308	272	285	317	329	250	458	278	348	291	323	316	284	332	354	369	319	309	348	377 316	289	254	357	343	276	317
% Pop. Resid. 1 Straniera 1 (2015) 1	15,6	4,5	10,2	5,6	15,2	2,2	10,1	10,0	5,0	6,1	7,3	5,1	8,5	15,9	5,1	10,5	15.8	6,2	C 11	74'T	8,2	5,2	11,4	10,2	11,7	17,4	14,6	12,3	10,0	15,9	8,6	15,5	10,6	12,6	10,4	7.5	11,4	9,9	13,8	11,8	20,0	6,7	13.6	11,6	8,5	3,2	5,3	14,7	6'6	12,8 16,3	10,7	8/8	11,6	17,9	10,4	16,4	7,7	11,8	11,7	6,9	5,5	11.4	11,1	3,7
Pop. Resid. % Straniera S: (2015) (2	1061	5241	197	415	3702	12	1195	2649	110	111	10217	66	522	222	349	721	1438	368	621	326	916	676	253	3404	350	680	540	333	531	5554	607	269	643	462	607	7111 778	969	573	583	1096	1007	343	397	391	2346	45	237	1769	679	2609	413	1938	870	1502	960	356	1298	1160	1111	153	787	953	774	197
Densità Pc imprendit St (impr.att/sup) (2	17,8	16,3	7,7	32,7	55,2	4,6	55,1	3.3,2	6, 6, 6 8, 6	3,0	6,2	5,9	30,5	49,5	3,9	27,8	33,0	11,8	18,2	26,8	36,5	33,2	16,3	63,5	11,1	7,3	10,9	6,3	17,5	100,2	16,0	18,9	16,3	22,5	10,3	29,4	17,3	21,2	9,6	27,2	10,8	14,4	10,5	8,2	41,0	6,4	26,9	14,8	14,4	43,3	22,5	39,4	19,8	18,7	40,6	13,3	48,3	43,0	28,6	25,7	16,3	19.6	28,7	15,7
De Imprese attive in (ir	445,0	3251.0	122,0	512,0	990,0 2620,0	64,0	1029,0	1519,0	78,0	78,0	11676.0	137,0	481,0	147,0	35,0	610,0	273,0	391,0	468,0	297,0	725,0	894,0	143,0	3277,0	210,0	205,0	217,0	181,0	380,0	3644,0	420,0	336,0	432,0	638,0 315,0	364,0	179.0	498,0	362,0 517,0	259,0	632,0	293,0	372,0	546,0	254,0	312.0	73,0	316,0	204,0 978.0	505,0	1832,0 278,0	241,0	1500,0	541,0	0'909	72,0	161,0	1115,0	818,0	711,0	153,0 789,0	1004,0	395,0	512,0	302,0
Superfide Im comune Km2 (20	23,9	12,0	15,8	15,7	17,9	13,9	18,7	50,2	23,9	25,8	21,9	23,2	15,8	3,0	9,0	21,9	8,3 25.4	33,1	25,8	11,1	19,9	26,9	8,8	51,6	19,0	28,2	19,9	28,8	21,8	36,4	26,2	17,8	26,6	28,3	35,4	14,6	28,8	20,2	27,1	23,3	27,1	25,9	28,8	30,9	46,3 25,3	11,5	11,8	13,8	35,0	42,4 18,8	10,7	38,1	27,3	32,4	22,3	12,1	23,1	19,0	24,9	30,6	61,8	27,6	17,8	19,3
Turismo Permanenza Sup Media 2014 con		0,0	2,6	8,0	2,4	4,8	2,9	10,7	0,0	8,8	2,6	3,4	1,8	0'0	21,8	2,2	0,0	3,4	2,3	5,0	0'0	6,8	3,9	2,4	2,8	2,2	2,8	1,9	2,0	2,2	3,4	2,3	2,6	2,1	0'0	3,3	2,1	2,5	0,0	3,3	3,9	1,8	1,9	2,9	1,5	3,5	2,4	2,3	2,7	2,4	1,9	2,4	3,1	3,3	2,1	2,2	1,6	3.0	2,5	2,5	4,5	0,0	0'0	2,0
Diff. Turi Percentuale Perr 2014-2004 Mee	17	7 6	5	24	14	-10	141	4	-12	o 6	0	-2	5	'n	6-	80	50	14	10	5	5	14	-	0	5	17		m	1	-2	6 6	0	m	0 0	4	2 0	-7	90	e, î	9	13	6	6	4 89	15	41	13	0 -	0	2		10	10	12	9-	1	5	υņ	17	1 6	13	00 O	10	5
Diff. Perco Diff 2014-2004 2014	41	15	9	92	143	40	26	-21	r; 4	P	2 +	-7	20	12	89 EE	22	20	22	28	20	28	57	17	0	4	20	4 12	2	31	-20	14	1	80	24	9	19	ŝ	16	4	34	22	11	27	n ở	21	ήţ	44	10	0	43	ŝ	54	26	29	-15	+1 5	36	53	55	31	26	19	35	12
à 2014 Diff 2	285	219	123	472	715 1235	38	637	527	55	71	111	83	390	469	87	313	359	180	304	425	562	480	253	644	158	139	185	94	245	961	2.68	253	228	318	165	410	213	257 249	156	352	186	198	325	109	599	123	381	200	196	482 239	362	577	274	259	150	179	732	518	382	362	231	243	392	277
1 2004 Densit	244	204	117	380	626 1092	43	611	548	62	78	109	85	370	457	95 463	291	451	158	277	404	535	423 737	236	645	154	118	173	91	242	981	263	252	220	162	159	392	217	241 249	152	312 364	164	308	298	118	591	128	337	199	195	439 227	35.7	524	248	230	165	178	+cc 696	495	328	331	206	224	358	264
Centuale 5-2015 Densit	17	8 6	5	24	14	-12	141	- 4	-11	ρφ	+ C	-2	9	m	6	80	18	15	111	5	9	14	-	1	5	17	-1	m	1	-2	77	* 0	4	6 0	m	5	-7	80	m ţ	10	14	5	8 4	r op	14	ŵ I	13	-i-	-5	6 9	7 7	11	е ч	11	-7	1	9 7	νņ	16	9	12	10	10	4
Per 200	978	184	95	1414	1561 2706	-74	490	-102.8	-158	-160	23	-42	334	36	-79	483	524	759	762	210	604	1389	151	427	72	569	-38	77	77	-662	157	0	242	-9	189	261	-120	382	108	817	611	256	726	-289	439 518	-44	517	-25	-107	238	60	2098	201	839	-61	18	977	466	1331	36 912	1555	592 1156	636	190
one al bifferenza stale 2005-2015	5840	2439 38638	1842	5974	11258 21623	610 c7eA	11395	27483	1470 3556	1989	2403	1970	5827	1356	863	6377	3794 8592	5214	7082	4500	10575	11367	2076	32831	2917	3336	3479	2623	5243	35625	6888	4501	5807	3919	5634	5731 3068	6242	4800 6045	4112	8446	4426	4854	8631 2810	3661	27281 3732	1447	3964	2774	6948	4262	3817	19898	7285	7560	10894 824	2154 AEON	4350	9390	8186	2190	12738	6102	6357	5144
Popolazione al Popolazione al Igennaio 1 Gennaio Differ 2015-Totale 2005-Totale 2005-3	5818	2623	1937	7388	4329	536	1885	6455	1312	1829	2426	1928	5161	1392	784	6860	9116	5973	7841	4710	1179	2932	2227	3258	2989	3905	3687	2700	5320	4963	7045	4501	6049	9014 3910	5823	5992 2051	6122	5182 6054	4220	9330	5037	5110	9357 29/10	3372	4250	1403	1332 4481	2749	6841	4500	3877	1996	7486	8399	763	2172	8689	9856 1764	9517	2226	4293	2032	5032	5334
Popolazio 1 gennaio 2015 - Tot		é			2		-	10			11	1	+		+									m '						e,															2		n .		-	2		2			-		Ā				-	f	-	
crizione Comune	cedo 3g0	Schiavon Schio	agna	izzo	ze sul Brenta ene	sezza del Cimone	ri di Quartesolo	tagno	Valdastico	stagna	o d'Astico	3ga	averla	meghedo	lano	vole	ade	so del Grappa	da di Piave	pella Maggiore	bonera	tale sul Sile inr	telcucco	telfranco Veneto	aso del Tomba	salto	adolmo	on di Valmarino	logn a limharto	regliano	dignano	spano del Grappa	cetta del Montello	ra di Soligo ina	tanelle	nte anna	arine	vera del Montello lega di Sant'Urbano	go al Monticano	ana	nsu en el	reno di Plave ser	serada sul Piave	-De	gliano Veneto 1 astier di Treviso	nfumo	ntebelluna	riago della Battaglia ta di livenza	vesa della Battaglia	1 Oderzo 2 Ormelle	oße	serrito del Gi appa	ferobba	te di Piave	tobuffol	sagno	ganziol	into di Treviso ontolo	ana	vine Lago ve Pio X	ncade	gareda Riaoin di Callalta	Fior	- Pietro di Feletto
Codice Comune Descriz	24097 Sar 24098 Sar	24099 Sch 24100 Sch	24101 Sol.	24103 Sov	24104 Tei 24105 Thi	24106 Tot	24108 Tot	24111 Val	24112 Vak	24114 Val	24115 Vei	24117 Vili	24118 Vil	24120 Zer	24121 Zov 24122 Zug	26001 Alt	26002 Art 26003 Aso	26004 Boi	26005 Bre	26007 Cap	26008 Car	26009 Car 26010 Cas	26011 Cas	26012 Cat	26014 Cav	26015 Ces	26017 Cirr	26018 Cist	26019 Cor	26021 Cor	26022 Col 26023 Col	26024 Cre	26025 Crc	26026 Fai 26027 Foli	26028 For	26029 For 26030 Ere	26031 Gai	26032 Giá 26033 Goi	26034 Go	26036 Lor	26037 Ma	26039 Ma	26040 Ma	26042 Mi	26043 Mc 26044 Mo	26045 Mc	26045 Mo	26048 Mc	26050 Net	26051 Ode 26052 Orn	26053 Or:	26055 Pae	26056 Per	26058 Por	26059 Po. 26060 Por	26061 Por	26063 Pre	26064 Qu 26065 Ref	26066 Res	26067 Rev 26068 Rie:	26069 Roi	26070 Sal	26072 San	26073 Sar.

% over 65 (2015) 19.7	18,5	15,1	20,7	21,6	21,9	20,0	26,5	25,6	25,1	19,2	20,9	22,8	26,8	19,0	15,9	28,0	28.9	21,3	30,1	31,5	27,6	29,2	25,0	28,1	29,1	28,1	21,8	28,2	32,2	24,2	29,6	28,5	29,0	28,5	26,7	27,4	26,7	27,0	25,1	24,1	26.8	27,3	23,5	24,2	25,6	24,4	22,7	21.7	21,3	25,9	23,2	21,1	31,3	21,9	29,5	25,7	18,2	22,6	25,1	24,5	22,8	20,6	24,6	21,4	27,8	23,5	24,4	23,0	21,9	21,8
over 65 (2015)	1697	1121	646	1348	2215	2389	1176	21443	2646	1347	793	4107	7615	343	1799	6165	4260	7627	3656	5287	36923	823	1237	662	2040	1863	2159	3409	1061	1860	1121			3467														1504	1178	99832	4282	2799	9549	754	559	884	818	4085	5217	3622	3084	1360	1207	1163	2370	920	17022	1001	1967	1485
endolarismo	57,4	55,8	52,3	52,4	53,1	52,8	48,1 56 9	47,9	50,7	56,3	54,3	53,5	48,8	55,2	57,3	48,4	42,3	52,6	47,0	46,5	50,4	46,8	44,5	51,0	44,5	51,6	53,4	47,1	42,0	53,4	51,0	51.3	45,9	49,5	49,8	50,6	51,2	46.9	49,4	52,6	50.7	49,0	51,0	54,6	51,2	53,7	54,9	53,8	56,1	49,0	54,3	58,7	45,4 51,4	56,4	46,0	51,2	56,3	54,9	52,7	55,5	53,5	54,9	54,9	53,6	49,4	51,8	53,7	51,9	55,3	52,3
Pendolarismo % 2011 P4	0 5277	0 4137	0 1633	0 32.70	0 5383 1 6367	0 6314	0 2139	1 40063	0 5338	0 3939	0 2061	1 9629	1 13866 0 55,83	966 0	0 6468	1 10669	0 7187	0 18840	0 5702	0 7786	1 67414	0 1318	0 2331	0 1204	0 3116	0 1/04	1 5297	1 5686	0 1382	0 4114	0 1929	0 2164	0 4292	0 6029	0 1385	0 3887	0 1368	1 5382	1 4872	0 3937	0 4169	1 15937	1 78379	0 3151	1 6234 0 1582	0 2402	0 6738	0 3728	0 3094	1 189064	0 10003	0 7792	1 18610	0 1945	0 873	1 1765	0 2528	0 9895	1 10968	0 82.03	1 7231	0 3629	0 2699	1 2908	0 1097	1 2033	1 37422	0 2254	0 4967	1 3561
Ind_DEA Ind_FS	000	0 0	0 0	0	00	0	00	1	0	00	0	0	0 0	0	0	0	0	1	0 0	0	1	00	0 11	0	0	0 0	0	0	00	0	0	0 0	0	0	0 0	0	0	0 0	0	0	10	1	0 -	0	00	0	0	0	1	1	1	0	0 0	0	00	0	0	0	0	00	0	0	00	0	00	0	1	0	0	0
azione Aree 2014 Ind_scuole medio	ura 0	ura 0	rmedic 0	rmedia	ura 0	rmedia 0	imedia 0	1	rmedia 1	imedia 0	ura	ura 0	imedia 1	rmedia 0	ura 0	b intero	nintero 1	b intero 1	imedia 1	rmedia 0	1	rmedid 0	ura 0	ura 0	rmedid 0	ura 0	ura	ura 0	ura 0	ura	ura 0	ferico 0	ura	ura 0	ura 0	ura	rmedio 0	ura 0	o intero 0	ura 0	ura 0	1	ura 0	ura 0	ura 0	ura	ura 0	ura 0	ura 0	1	bintero 1	ura 0	terico 0 ura 1	ura 0	ferico 0	ferico 0	ura 0	ura 1	ura 0	ura 0 rmedio 1	o intero 0	ura 0	ferico 0	ura 0	ferico 0 ura 0	rmedia	forion 0	ferico 0	ura	ura 0
Rifiuto to pro capit Kg) 2011	330		251	345	422	386	287	475	378 D - Inte	307 D - Intermet	331 C - Cin	400 C - Cin	351 D - Inte 328 C - Cin-	362 D - Intermed	297 C - Cin	623 B - Pol	593 B - Pol	527 B - Pol	682 D - Inte 1544 B - Pol	490 D - Inte	694 A - Pol	446 D - Inte	466 C - Cin	430 C - Cin	417 D - Into	526 C - Cin 520 C - Cin	426 C - Cin	444 C - Cin	479 C - Cin	575 C - Cin	405 C - Cin	763 F - P.er	450 C - Cin	723 C - Cin	633 C - Cin 610 C - Cin	484 C - Cin	705 D - Inte	1285 C - Cin	717 B - Pol	702 C - Cin	/38 A - P01 644 C - Cin	633 A - Pol	764 A - Pol	621 C - Cin	740 C - Cin 862 C - Cin	618 C - Cintura 618 C - Cintura	545 C - Cin	396 C - Cin	958 C - Cin	562 A - Pol	497 B - Pol	697 C - Cin	697 C - Cin	719 C - Cin	640 E - Per 816 D - Inte	469 E - Per	1104 C - Cin	506 C - Cin	793 C - Cin	716 C - Cin 642 D - Inte	518 B - Pol	931 C - Cin	715 E - Per	479 C - Cin	548 E - Peri 728 C - Cin	491 D - Inte	660 A - Pol	563 E - Peri 563 E - Peri	480 C - Cin	502 C - Cin
% Pop. Resid. Stranlera [2015] 17.6	11,6									15,5			9,8	13,7	5,3	10,4	8,6	11,3	6,4	4,7	9,4	5,4	4,3	5,4	4,6	10,3	9,6	13,1	5,3	4,9	5,0	8,0	6,5	10,2	10.5	9,4	8,3	6,21	15,8	8,2	12.8	11,8	12.1	10,7	11,3	13,7	10,8	11,8	8,1	15,0	8,8	8,8	11,6	9,4	13.2	6,5	8,0	8,0	8,8	115	15,5	9,4	10,3	14,1	6,2	10,3	10,3	8,7	8,4	10,8
Pop. Resid. Pop. Pop. Pop. Pop. Pop. Pop. Pop. Pop	28,0 1064	27,5 1110	8,5 259	23,6 698	51,1 778	22,3 1818	12,7 323 74.8 993	11183	13,5 1036	21,9 1087 183 2057												6,2 152					6,1 951		3,7 176 111 637		6,8 188		2,1 604				1,7 222																153,0 102 163,0 4194		3,5 142 1 1 160		14,4 359 17.0 505		11,8 1824	36,2 896 6 9 667	6,9 2091	20,9 620	505 505	7,0 766	3,7 138	2,9 403		6,1 380 6,1 380		
attiv 3.45	551	249	153	475	696	982	304	437	851	573,0	280,0	916,0	278,0	112,0	0'006	347,0	748.0	2154,0	837,0 25,45.0	975,0	10860,0	139,0	343.0	152,0	604,0	363.0	488,0	759,0	161,0 386.0	390,0	273,0	268,0	194	825	156	483	146	1/9	647	463	4815	2927	035	352	344	232	1026	393	426	39723	1300	1422	2826	226	157			1451									5102			
Superfide comune Km2 4 21.0	0,0 19,8		3,1 18,0						62,9	0,0 26,2	0,0 13,4		3,3 82,8		26,1	311,7	174.8	64,7	170,0	157,0	405,2	22,4	34.4	22,7	84,3	173.3	80,2	126,6	43,2	42,0	40,3	33.7	93,8	106,8	10.0	194,3	84,4	32,4	60,2	35,1	24.5	117,1	37,2	44,3	46,3	26,0	36,6	45,5	51,1	140,9	120,2	40,8	96,6	82,0	45,3	47,3	28,6	30,9	148,4	35,7	102,8	24,2	58,7	37,2	39,7	77,4	205,0	52,4	53,8	74,5
Turismo Permanenza Media 2014 5	9	9		2 2	6 0	2 20	-5	2	Ŷ		9	3	m 0	20	54																																																							
Diff. Percentuale Diff 2014-2004 2014-2004	65	22		0	14	13	-10	26	6-	7	16	16	-12	4	83																																																							
à 2014 Diff 20	464	371	173	310	535	271	186	1505	167	268	283	590	343	190	433																																																							
Densità 2004 Densit: 23.1	399	349	172	305	521	258	196	1479	177	261	267	574	355	185	350																																																							
Diff. Percentuale 2005-2015	11				7	3	4) <u>(</u>		17			,			23	C :		17		ųψ		., .			7	9 Y	23	7	-10	11	7	4 4		7	3	5 7	Ŷ						Ĩ	<u> </u>	11		10	191	20		17		17 01	10	4 11		50	101	Û	w u		1			2	17		7 77	14	
fferenza 05-2015 1 5	1239						-225		-208	218	186	442	606- 606	33	2135	68	-/42	4362	-749	-1100	1775	-82	476	4	-321	-10/	1844			992										532						216							-156 1782		-75									-23			3468 75			
opolazione al Gennaio 005 - Totale	7948	6973	3087	6171	9767	11367	4671	82112	10735	6783	3612	17567	29317	1771	9146	21971	15579	31475	12883	17859	131907	2898	4480	2355	7331	5762	8077	12158	3663	6707	3924	4709	9835	11739	16169	7740	2843	26858	9207	6952	7919	31927	146989	5441	10723	4256	11128	5990	4593	374425	16167	12351	34451	3129	1973	3266	3731	16478	19654	13704	12527	5886	4928	5450	2257	3966	66170	4442	7911	6491
Popolazione al Popolazione al 1 Popolazione al 1 Di 0 1 1 1 0 <td< td=""><td>9187</td><td>7411</td><td>3121</td><td>6244</td><td>10137</td><td>11951</td><td>4446</td><td>83652</td><td>10527</td><td>7001</td><td>3798</td><td>18009</td><td>28408</td><td>1804</td><td>11281</td><td>22039</td><td>14724</td><td>35837</td><td>12134</td><td>16759</td><td>133682</td><td>2816</td><td>4956</td><td>2359</td><td>7010</td><td>3300 6308</td><td>9921</td><td>12085</td><td>3291</td><td>7699</td><td>3781</td><td>3828</td><td>9343</td><td>12184</td><td>16/4/</td><td>7689</td><td>2671</td><td>390.05</td><td>9869</td><td>7484</td><td>8226</td><td>32501</td><td>158911</td><td>5768</td><td>12170</td><td>4472</td><td>12265</td><td>5/39</td><td>5520</td><td>386181</td><td>18426</td><td>13271</td><td>36233</td><td>3448</td><td>1216</td><td>3445</td><td>4489</td><td>18036</td><td>20821</td><td>14770</td><td>13504</td><td>6605</td><td>4914</td><td>5427</td><td>11565</td><td>3921</td><td>69638</td><td>4347</td><td>8985</td><td>6813</td></td<>	9187	7411	3121	6244	10137	11951	4446	83652	10527	7001	3798	18009	28408	1804	11281	22039	14724	35837	12134	16759	133682	2816	4956	2359	7010	3300 6308	9921	12085	3291	7699	3781	3828	9343	12184	16/4/	7689	2671	390.05	9869	7484	8226	32501	158911	5768	12170	4472	12265	5/39	5520	386181	18426	13271	36233	3448	1216	3445	4489	18036	20821	14770	13504	6605	4914	5427	11565	3921	69638	4347	8985	6813
escrizione Comune an Polo di Plave	26075 Santa Lucia di Piave	an Vendemiano an Zenone degli Ezzelini	armede	ernaglia della Battaglia	ilea	usegana	arzo revienano	reviso	26087 Vald obbiad ene	26088 Vazzola 26089 Verdala an	6090 Vidor	(6091 Villorba	26092 Vittorio Veneto	6094 Zenson di Piave	6095 Zero Branco	8001 Argenta	8003 Bondeno	8004 Cento	8005 Codigoro 8006 Comarchio	8007 Copparo	8008 Ferrara	38009 Formignana 28010 Iolonda di Caucia	18011 Lago santo	18012 Masi Torello	18014 Mesola	8015 Mirabello 8017 Octallato	38018 Poggio Renatico	8019 Portomaggiore	8020 Ro 8021 Sant'A mosting	8022 Vigarano Mainarda	8023 Voghiera	18024 Tresigallo 8025 Goro	8027 Fiscaglia	9001 Alfonsine	9002 Bagnacavalio 9003 Raenara di Romaena	9004 Brisighella	9005 Casola Valsenio	900b Castel Bolognese 9007 Cervia	3008 Conselice	9009 Cotignola	011 Fusignano	012 Lugo	01.4 Massa Lombarda 01.4 Ravenna	015 Riolo Terme	016 Russi 017 Sant'Aarta sul Santarno	018 Solarolo	001 Anzola dell'Emilia	003 Baricella	005 Bentivoglio	006 Bologna	008 Budrio	7009 Calderara di Reno	37010 Camugnano 37011 Casalecchio di Reno	7012 Casal fiumanese	37013 Castel d'Alano 37014 Castel del Rio	7015 Castel di Casio	016 Castel Guelfo di Bologna	019 Castel Maggiore	020 Castel San Pietro Terme	37021 Castenaso 37022 Castielione dei Penoli	024 Crevalcore	025 Dozza	027 Gaggio Montano	028 Galliera	029 Granaglione 030 Granarolo dell'Emilia	031 Grizzana Morandi	7032 Imola	3/034 Loiano in Belvedere 37034 Loiano	7035 Malabergo	37036 Marzabotto

% over 65 51 (2015)	03 21,8	04 26,5	50 21.3	32 22,3	85 21,5	96 25,7 13 24 5	93 27,0	75 18,8 15 25.6	82 21,0	78 22,9	82 21,3	70 18,8	24,6 24,6	05 23,7	98 21,7 08 21 5	02 20,6	30 26,2 04 19.6	75 20,2	21 19,6	05 18,0	87 21,0 30 3	65 26,0	70 76.7	04 15,1	56 22,1 47 25.0	60 22,0	66 22,5	17 20.1 20.1	76 21,7	47 22.0	17 22,7	21 38,1 64 22.2	90 20,8	66 21,6 69 21.7	16 22,2	22 33,6	37 20,1	50 18,4	74 18,7	35 19,0	30 21,2 03 21,5	61 21,9	24,9	02 23,4	11 20,9 87 34.0	53 17,9	34 16,1 96 19,3	18 22,5	29 19,3	67 20,0 85 19.3	25 24,4	51 28,3 51 28,3	91 23,5	25 18,6 25 29.1	11 19,0	48 33,7 38 23,6	67 31,2	51 19,5 11 20,2	58 21,5	52 23,1 73 23,6	04 31,1	33,2 02 29,8	54 20,0	75 20,2	39 22,0	01 20/2
			52,6 1199 55.1 2350					9.1 11	6,8 17	3,5 1.8 8/	4,3 25	7,4 13	1.0 38	4,6 4/	8.1 10	4,8 20	5 9 20	3,8 10	3.1 2.7	4,9 19	4,8 11 6.4 11	0,3 10	7,6 31	0,4	6,4 18	5,0 21	1,6	5.7 52	4,1 1/	2.9 1/	3,5 34	2.7 20	5,9 21	3,4 25	6,1 25	1,6 2	2,1 34/	6,0 11	3,4 8,8 27	7,9 15	5,4 2/	3,5 55	0,1 11	4,9 10	3,5	5,4	55,5 16	2,1 7	4,7 65	5,6 25 4.9 21	3,9 17	2,3 20	0,8 36	7.3 31	8,5 65	0.7	4,3	54,6 10	6,1 13	2,7 437 2,7 437	8,3	5,4 4,7 10	5,3 31	9,9 6,9	3,4 35	4,5
% Pendolari																																																																		
Pendolarismo 2011	494	180	3173	325	748	931	246	503	480	1655	657	418	393	1016	1503	532	170	285	296	582	305	206	1103	921	474	539	198	1442	366	322 347	803	26	588	735	735	52	8942	350	873	468	619	1357	223	235	182	233	488	36.00	1788	825	381	458	862	986	2004	201	123	9616 2736	354	9766	37	150	874	111	93.2	CC
st bu	0	0	00	1	10	- 0	1	0 -	1	- 0	1	0 +		0		0	0	0	00	0	00	0	00	0	0		0		0	00	0	00	0	0	0	0		0,	10	0	0	0	00	0	00	0	00	0		00	0	00		00	0	00	0	00	0,		0	00	0	0		2
nd DEA	0	0	00	0	00	00	1	0 0	0	- 0	0	0	0 11	0		0	0 0	0	0 0	0	0 0	0	0	0	0 -	10	0	0	0	0 0		0 0	1	0 0	0	0 0	1 0	0	0	0	0	1	00	0	0 0	0	00	0 -		0 0	0	0 0	0	0 0	0	00	0	0 0	0,		0	00	0	0		>
d scuole In	0	0	00	0	0 0	00	0	0 0	0		10	0	0	0		0	0 0	0	0 0	0	0 0	0	0	0	0	0	0	-	0	0 0		0 0		00	0	0 0	1	0	0	0	0	1	0 0	0	0 0	0	00	0 -	• 0	0 0	0	00	1	0 0	0	0 0	0	0 0	0,		0	0 0	0	0		4
Classificazione Comuni Aree Interne 2014 In	Cintura	- Cintura - Periferico	559 D - Intermedid 443 D - Intermedid	- Intermedia	- Cintura - Polo intero	Cintura	Periferico	- Cintura - Intermedio	Cintura	- Polo	Cintura	Cintura	- Intermedid	- Cintura	Cintura	Cintura	- Intermedio	Cintura	- Intermedia	Cintura	- Cintura	Periferico	Cintura	- Intermedia	822 C - Cintura	Cintura	Intermedio	Cintura	Cintura	- Intermedid	- Intermedio	- Ultraperife	Cintura	Cintura	Cintura	Periferico	- Polo	Cintura	Cintura	Cintura	- Intermedio	Cintura	- Periferico	Cintura	- Intermedio	Cintura	- Cintura - Cintura	C - Cintura	Cintura	- Cintura	765 C - Cintura	- Cintura - Periferico	- Polo intero	- Cintura - Periferico	Cintura	- Periferico	Periferico	- Cintura - Intermedio	- Cintura	- Polo	Periferico	Periferico	Cintura	Periferico	Periferico	 Intermediq
Rifiuto totale Cla pro capite (in Co Kel 2011	500 C	818 E -	559 D	541 D	507 B	664 C	536 E -	546 C	533 C.	582 A 504 C-	463 C	609 C	203 0	475 C	534 C	679 C	613 D 770 C-	769 C	731 E -	617 C	743 C	782 E -	773 C	639 D	822 C	1539 C.	665 D	927 C-	686 C	725 D	885 D	751 F	832 C	730 C	743 C	751 E -	703 A	702 C	990 C	749 C	933 C -	764 C	631 E - Perifi 690 E - Perifi	703 C	585 D 593 E -	569 C	737 C- 813 C-	788 C	531 C	732 C 736 C-	765 C	741 E -	584 8	840 C	604 C	548 E	760 E -	793 C - 604 D -	607 C	701 A -	680 E	503 E 604 E	452 C	488 E -	738 E	nleva
% Pop. Resid. Rif Straniera pre (2015) Ke	8,4	10,8	11,0	10,0	5,4	7,7	12,2	5,8 8.6	9,3	8,8	11,0	13,2	14.5	7,1	11,4	12,1	10,5	16,7	9.3	10,8	15,3	8,8	8,7	7,3	11,3	9,3	9,7	12.8	16,7	9,9	13,9	6,4	8,6	15,0	6,2	6,5	17,5	14,8	11,0	9,7	10,7	8,1	11,7	6,6	5,1	12,2	10,0	16,2	13,7	12,4	13,8	14,3	13,3	8,5	6,8	6,0	L'L	11,0	9,7	15,5	8,3	11,9	10,3	L'6	12,0	14,4.4
Pop. Resid. %I Straniera Str (2015) (20	38	410	662	642	725	1348	582	375	792	2460	1327	963 00r	1115	1324	3462	1173	355	890	118	1144	863	360	1660	1106	951	806	373	3321	1134	582 826	2090	1929	908	2205	819	82	30050	928	1635	787	1192	2051	523 138	281	175	512	1016	516	4476	1357	980	340	2085	1453	2338	116 410	213	551	614	3729 28640	81	399	1628	216	2101	24/1
Densità Pop imprendit Stra (impr.att/suo) (20	14,8	8,0 6,4	4,2	8,2	12,1	13,9	11,9	13,1	22,22	15,5	10,1	10,6	871	45,4	15.5	25,6	3,0	16,1	3.9	17,8	13.4	3,6	34,5	18,3	19,4	52,2	6,9	19.7	10,1	10,1	17,7	12.0	33,8	14,5	22,6	1,1	14,2	26,9	43,6	19,3	40,1	41,6	3.1	8,5	6,0	26,9	15,5	6,4	16,7	51,8	13,5	9,8	6,2	53,3	5,5,5	5.9	4,3	40,6	11,7	96,7	3,2	3,4	13,3	3,3	10,4	3,4]
attive	638	307	447 847	534	1131	1494	403	354	675	2758	663	368	537	1712	2429	689	224	291	386	778	341	325	1302	1060	679	688	364	1529	239	383	939	75	825	840	1047	102	16003	606	1098	438	811	2083	312	323	326	282	604	145	1716	1163	361	320	649	152	2595	181 286	274	354	316	17714	66	273	734	161 01c	1488	4+4-7
Superfide Imprese	43,1	48,3	105,3 74.7	65,0	21,5	107,1	33,9	45,6 66.5	30,4	114,4	62,9	34,8	59.9	37,7	1/8/1	26,9	75,6	18,1	30.4	43,6	24,4	89,6	37,7	58,1	35,0	17,0	53,1	77.5	23,6	35.7	52,9	61,6	24,4	58,1	46,3	96,3	44,7	22,6	25,2	22,7	20,2	50,0	67,3 53,4	37,8	45,0	10,5	38,9	22,7	102,5	22,4	26,8	41,0	105,1	39.1	46,7	95,5	63,9	32,6	27,0	137,1 183,2	31,2	81,0	55,3	60,4	143,7	1c'a/
enza						+									+																												+																						$\left \right $	
Diff. Turismo Percentuale Perman 2014-2004 Media 2																																																																		_
DI P4																																																																		-
msità 2014 Di																																																																		-
ensità 2004 De																																																																		-
Diff. Percentuale 2005-2015 D	9	νņ	10	7	20	50 0	0	18	27	12	14	14	2 2	13	6	11	22	00	13	14	11	4	20	14		9	6	9 18	12	2 8	4	-14	10	80 4	0 00	-12	c 11	11	14	16	9	6	0 0	9	n w	18	9	4	20	17	0	00	. 2 .	4 4	11	-10	÷.	29	L .	n n	5	ς Ν	16	ņ ģ	6	7
ffer en za 05-2015	492		550												3559	956	1813			1323																					950		ľ		-314		745				80	11	374	705	3379			1137				81			1377	4.4
polazione al iennaio D 05 - Totale 21	8249	3905 3905	5478 10758	6003	11194	16591	4795	7082	6681	30045	10616	6409	7352	16446	26803	8758	3340	4920	1350	9287	5120	4257	15933	13407	8294	9229	3525	21953	6049	5462	14400	976	9592	12793	12098	1432	155191	5632	13041	6990	10223	23332	4443 2063	4045	3247	3555	8274 8044	3061	27324	12724	7072	8813	15354	1335	30893	2137 4017	3004	3870	5901	22817 180110	927	3280	13572	2455	16083	14612
Popolazione al Popolazione al 1 gennaio 1 Gennaio Di 2015- Totale 2005- Totale 20	8741	3788	6028	6414	13449	17461	4781	8357	8472	31980	12095	7283	7714	18625	30362	9714	3392	5315	5623 1268	10610	5658	4099	19160	15255	8411	9810	3854	25905	6787	6576	15036	842 9318	10535	13761	13116	1257	171655	6261	14862	8094	11173	25389	4458	4285	3405 3787	4207	8789	3188	32724	11306	7080	3010	15728	17138	34272	3974	2783	5007	6312	24035 185148	976	3361	15804	2238	17460	CC77
Descrizione Comune		Monghidoro	Monterenzio Monte San Pietro	Monzuno	Mordano Ozzano dell'Emilia	Planoro Diava di Canto	Porretta Terme	Sala Bolognese San Renederto Val di Samhro	San Giorgio di Piano	sto															-																						Bomporto Campogalliano						Finale Emilia	Forano Modenese Fiumalho	Formigine	Frassinoro Guiglia	Lama Mocogno	Maranello Marano sul Panaro	Medolla	Mirandola Modena	Montecreto	Mon tetio rin o Mon tese	Non an tol a	Palagano	Pavullo nel Frignano	Pievepelago
Codice Comune	37038	37040	37041	37044	37045	37047	37049	37050	37052	37053	37055	37056	37059	37060	37061	35002	35003	35005	35005	35008	35009	35011	35012	35014	35015	35017	35018	35020	35021	35023	35024	35025	35027	35028	35030	35031	35033	35034	35036	35037	35039	35040	35041 35042	35043	35044	36001	36002	36004	36006	36007	36009	36010	36012	36013	36015	36016	36018	36019 36020	36021	36023	36024	36025	36027	36029	36030	TCNDE

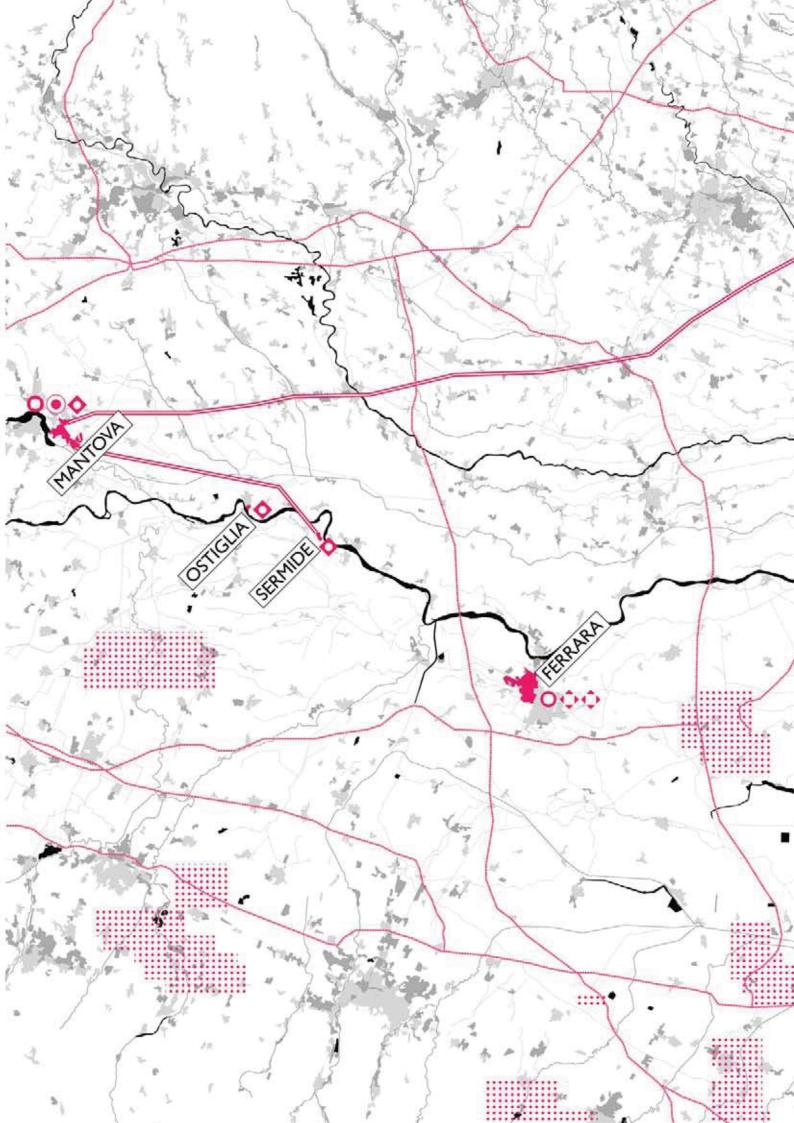
er 65 5)	21.6	19,9	29,7	21,1	22,0	21,3	20,1	31,1	22,7	21,7	25,3	20,5	16,8 75.7	24,2	21,9	24,3	25,0	23,3	20,4	17,3	24,0	20,5	23,1	34,7	34,7	29,1	19,9	26,8	19,2	22,8	28,5	19,5	17,7	21,3	24,6	13,2	21.1	15,9	24,6	23,1	19,0	21,1	19,1	29,4	24,1	26,6	26,8	16,4	22,1	22,9	32,9	24,7	28,7	17,5	20.6	22,1	23,2	16,7	20,0	27,1	24,0	19,9	28,3	19,8
% over % over % over % over % over	814	1238	221	2313	798	8754	1657	785	3452	5489	1541	2292	479	23449	5685	922	2 9507	3075	2168	1354	2411	1432	393	268	277	569	2151	1120	3411	738	547	3814	1846	247	350	454	395	528	1399 8641	34046	782	1972	1927	128	1742	635	581	840	2251	1372	257	1047	377	471	287 661	1054	1214	3868	539	305 3227	840	599	669 2291	1810
		55,0	40,7	55,3	52,3 59.0	52,7	50,7	40,5	52,7	52,3	46,2	55,1	52,5	53,7	49,6	49,9	51,8	52,8	55,6	55,8	52,1	55,7	52,8	37,6	40,1	47,3	55,3	50,4	55,0	52,1	47,1	49,3	51,6	45,5	48,9	53,5	49,2 51.3	51,5	51,1	48,0	48,3 53,5	51,5	53,8	39,9	49,7	46,1	49,1	54,0	52,3	51,2	40,5	47,6	45,5	54,5	56,0	52,8	57,0	54,1	55,0	49,5 54,3	51,8	52,7	45,8 51.4	53,4
	683 1935	34.25	303	60.62	3473	21630	4178	1021	80.30 66.24	13 205	3076	6154	1497	52.038	12915	1896	613 09	6972	5916	29.73	5236	38.79	900	290	345/	923	1998	2104	97.79	1686	903	9614	5382	527	6310	1847	1118	1713	3590	70849	2988	48.09	5411	174	35.88	1350	1067	2764	53.28	3074	317	2014	598	1467	836 1662	2514	7150 2643	12537	1482	8095	1814	1584	1084	48.79
Pendol FS 2011	0	0	00	1	00	0	0	0	00	0	0 0	0	0		1	0 0	1	00	1	0 0	0	0	0	0	0 0	0	0 0	0	1	00	0	+1 +	0	0 +	- 0	0	0 0	0	10		0 0	0	10	0 0	0	00	0	0	00	0	0	00	0	0	00	0	0 0	00	0	0 0	00	0	00	0
DEA Ind_FS	0 0	0	00	0	00	F 1	0	0	0 0	-	0 0	0	0 0	-	0	0 0	1	00	0	0 0	0	0	0	0	0 0	0	0 0	0	0	00	0	0 •	10	0	0 0	0	0 0	0	1	1	0 0	0	0	0 0	0	00	0	0	0 0	0	0	0 0	0	0	00	0	0 0	00	0	0 0	00	0	0 0	0
scuole Ind	0 0	0	00	0	0 0	1	0	0	0	-	0 0	0	0 0	1	1	0 0	1	0 0	0	0 0	0	0	0	0	0 0	0	0 0	0	1 0	0 0	0	0	0	0	0 0	0	0 0	0	1		0 0	0	0	0 0	1	0 0	0	0	1	0	0 0	0 0	0	0	00	0	0 0	10	0	0 0	00	0	0 0	0
Classificazione Comuni Aree Interne 2014 Ind_	eriferico	lintura	eriferico	olo intero	94 C - Cintura 61 C - Cintura	lintura	eriferico	eriferico	Intura	ntermedio	eriferico	üntura	ntermedid	olo	intura	ntermedid	6 A - Polo	in tura	lintura	lin tura	intura	ntermedio	intura	eriferico	eriferico	ntermedio	Intura	eriferico	intura	ntermedio	eriferico	Intura	Intura	ntermedio	intura ntermedid	ntermedio	ntermedid	ntermedio	intura olo	olo	intura	intura	intura ntermedio	eriferico	ntermedio	eriferico ntermedio	eriferico	intura	ntermedio	C - Cintura	ntura	lintura mermedi d	ntermedio	ntermedio	ntermedid	üntura	intura	intura	D - Intermedic	lintura lintura	ntermedic	ntermedio	Intura	intura
Rifiuto totale Class pro capite (in Com Kg) 2011 Inter	523 E - I 567 E - P	591 C- (643 E - P	689 8 - 1	694 C - 1 661 C - 0	737 C- (579 E - F	535 E - F	5/1 C- C	645 D -	485 E - F 587 E - F	627 C- (421 D -	706 A - F	1067 C- (453 D - 1	756 A-H	557 C - 1 748 D - 1	595 C- (849 C - 1	832 C- C	815 D -	408 C - C	681 E - F	810 E - P	- D 080	444 D -	791 E - F	729 C- C	471 D -	701 E - F	894 C- (751 C- C	475 D - 1	465 D - 1	412 D -	389 D - I 485 D - I	391 D -	536 C - 1 937 A - F	742 A - I	545 C- C	745 C- (267 D - I	345 E - F 301 F - P	625 D - 1	405 E - H 597 D - H	685 E - F	697 C- (404 D - 1 453 D - 1	620 C - C	540 D - 1	524 C - 4 359 D - 1	458 D -	458 D - 1	375 D - C	515 C- C	767 C- C	507 C- 6 353 D- 1	358 D - 1	420 C - 1 556 C - C	532 D - 1	378 D - Inte	410 D - 1 425 C - C	543 C- C
% Pop. Resid. Rifiu Stranlera pro [2015] Kg) 3	6.1	12,6	8,5	14,1	11.0	13,7	11,3	7,7	17,6	17,5	14,8	L'L	8,3	9'6	9,1	16,5	12,2	10,0	14,5	12,3	13,5	11,5	8,5	7,0	15,1	5,8	9,8	13,2	16,0	9,5	1'L	13,1	2/07	7,4	11,0	7,2	6,1	9,3	12,3	12,5	9,6 10,2	7,5	9,1	3,0	2'6	5,2	6,2	7,6	14,5	11,3	12,9	13,2	13,4	16,5	13,1	16,2	19,5	21,4	8,5	5,5	14,0	16,0	12,6	13,5
Pop. Resid. %Pc Stranlera Strai (2015) (201	232	785	63	1547	598	5635	928	193	2216	4421	717	864	236	9329	2374	179	14392	1316	1541	1120	1352	800	144	54	121	114	330	552	2839	308	137	2549	728	86	1206	247	138	308	3626	18394	567	703	915	13	701	338	135	387	1478	679	101	557	176	445	195	773	564	4953	228	821	489	481	1306	1232
Densità Pop Imprendit Stra (impr.att/sup) (20	3.1	9,1	1,5	8,5	10,5	106,3	6,4	6,5	31,8	93,8	6,1	13,1	4,9	35,7	70,9	2,2	47,9	39,5	119,3	57,2	5'67 2'6	5,5	3,1 9,4	1,0	5,1	2,8	3,8	1,8	3,0	2,3	1,5	123,1	19,4	4,0	5,0	17,2	6,6	8,0	257,9	116,3	20,0	42,3	44,1 25,3	0,7	14,1	2,8	1,8	11,8	11,0	8,3	2,3	115	3,7	12,9	8,9 4,6	13,6	7,8	43,2	5,5	13,9	8,9	16,7	8,8	8,5
Imprese attive imp (2011) 115	244	261	66	438	270	4082	599	341	947	2145	424	749	149	8910	3203	254	10925	965	927	809	729	544	415	59	462 57	142	981	266	1537	216	182	2236	508	76	66	208	148	162	782 4514	15783	413	905	690	34	589	217	141	409	810	410	35	330	57	218	107	306	360	1815	205	101 939	228	217	198 798	425
Superficie Im comune Km2 (20	79.7	28,5	44,9	51,7	34.6	38,4	94°0	52,5	29,8	22,9	69,4 233.5	57,3	30,2	249,5	45,2	39.0	228,2	24,5	7,8	14,1 73.6	79,1	99,3	6'3	61,1	91,4	50,6	51,5	148,9	23,3	93,4	117,9	18,2	46,8	18,9	19,8	12,1	22,3	20,3	5,4	135,7	34,3 20,7	21,4	27,3	49,7	41,8	69,8 53.1	79,7	34,7	73,5	49,2	15,1	18,8	15,4	15,/	12,0	22,6	42,4 46,3	42,0	37,3	11,6	25,55	13,0	22,5	49,9
Turismo Permanenza Su Media 2014 co																							1																															1										
Diff. Tr. Percentuale Pe 2014-2004 M																																																																
Diff 2014-2004 20																																																																
hensità 2014 D																																																																
Densità 2004																																																																
Diff. Percentuale 2005-2015	9	5	11	5	16	-2	00 0	5.	10	13	8	18	31	4	13	-2	9	10	0	26	44	80	ń œ	<i>L-</i>	-10	L-	11	-i	11	00 U	<u>ν</u>	15	14	1	20	59	21	36	13	10	55	14	7	-13	n m	-7	φ, r	17	-1-	8	-12	4 0	Ļ.	11	-5	F !	17 6	15	9	-1	7	15	ώv	9
ffer en za 05-2015			6 801										671				6760			1024							1315					2561						889					700				-178								-75				151					
Popolazione al 1 Gennalo 2005 - Totale	3571	5900	738	10453	3761 5087	41746	7618	2647	11376	22351	4716	9501	2183	93498	23009	3808	111495	11994	9748	7252	9686	6442	1573	829	889	2103	3040	4223	15952	2992	2017	16956	9144 9144	1144	10778	2176	1873	2437	5241 34682	134700	3609	8226																	2544					
Popolazione al Popolazione al 1.gennalo 1.Gennalo Di 2015-Totale 2005-Totale 20	3773	6223	744	10964	3624 5887	41064	8244	2521	12559	25244	4840	11165	2854	96885	26016	3796	118255	13212	10637	9118 7066	10052	6970	1704	772	799	1953	11587	4175	17771	3233	1918	19517	10429	1158	12910	3451	2272	3326	35127	147578	5586	9340	10065	436	7220	2928 3017	2171	5123	10184	6000	782	4231	1313	2692	3210	4762	5238	23157	2695	1125 14896	3502	3003	2368	9135
													dol Cot																														99020 Verucchio	99021 Casteldelci 99027 Maiolo	99023 Novafetria	99024 Pennabilli 99025 San Leo	99026 Sant'Agata Feltria	99028 Poggio Torriana	20001 Acquaregra sui Chiese 20002 Asola	20003 Bagnolo San Vito	20006 Borgofranco sul Po	20007 Bozzolo 20008 Canneto sull'Onlin	20009 Carbonara di Po	200110 Casalmoro 200111 Casaloldo	20012 Casalromano 20013 Castelbelforte	20014 Castel d'Ario	20015 Castel Goffredo 20016 Castellucchio	20017 Castiglione delle Stiviere	20019 Ceresara	20020 Commessaggio 20021 Curtaton e	20022 Dosolo	20024 Gazoldo degli Ippoliti	20025 Gazzuolo 20026 Goito	20027 Gonzaga

	% over 65		27.6	27,1	25,2	21,0	22,7	19,7	24,5	20,8	18,7	26,9	22,4	23,3	23,0	22,9	23,3	20,4	21,6	26,5	27,7	26,8	27,0	25,2	25,2	25,2	21,7	25,4	26,7	26,0	18,5	22,5	27,1	31,1	26,1	29,7	20,4	24,8	22,6	20,3	25,3	26,4	21,1	22,3
	Iano %	1290	441	13200	1686	153	1784	801	1395	1016	486	1856	1617	249	399	1520	400	481	3533	323	1580	350	687	649	1362	1815	1881	1095	1984	436	1775	281	473	368	1633	463	528	529	4786	4060	517	589	1563	3296
		53.8	46.7	46,0	51,1	54,9	51,8	53,9	52,5	49,8	54,0	48,0	52,0	50,2	51,9	50,9	53,7	49,3	52,8	44,9	47,8	48,9	48,0	50,2	51,2	51,2	51,9	49,7	49,1	50,1	56,9	51,0	49,3	49,1	46,8	43,7	51,4	50,0	50,7	52,2	49,4	46,6	52,3	52,2
	no %	3.46	746	22445	113	101	365	194	2994	128	106	3311	755	53.7	30.2	377	32.1	163	537	547	726	539	221	294	767	580	505	141	541	34.2	158	53.8	361	581	924	582	332	990	209	10457	1009	039	3872	720
	Pendolarismo	2011	C	1 22	е 0	0	0	0	0	0	1	0	0	0	0	1 33	0	1	0	0	0	0	0	0	0	34	0	0 2:	е О	0	0 5	0	0	0	0	0	0	0	1 10	0 10	0 10	0	31	0
	2	2																																										
	200	C	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	C	C	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
Classifications			447 D - Intermedid	513 A - Polo	414 D - Intermedid	583 D - Intermedid	451 C - Cintura	387 D - Intermedid	562 C - Cintura	438 C - Cintura	434 C - Cintura	529 D - Intermedid	531 C - Cintura	601 D - Intermedid	481 D - Intermedid	431 C - Cintura	732 C - Cintura	439 C - Cintura	469 C - Cintura	416 D - Intermedid	532 D - Intermedid	404 D - Intermedid	471 D - Intermedid	579 C - Cintura	483 C - Cintura	449 C - Cintura	430 C - Cintura	494 C - Cintura	464 D - Intermedid	444 C - Cintura	473 C - Cintura	295 C - Cintura	383 D - Intermedid	495 C - Cintura	424 D - Intermedid	448 D - Intermedid	296 C - Cintura	418 D - Intermedid	502 D - Intermedid	515 C - Cintura	436 C - Cintura	447 D - Intermedio	421 D - Intermedid	C - Cintura
Diffuto totalo		453	447	513/	414 [583 [451 0	387 [562 0	438 0	434 0	529 [531 0	601	481	431 0	732 0	439 0	469 0	416	532	404 [471	579 0	483 0	449 (430 0	494 0	464	444 0	473 0	295 0	383 I	495 0	424	448	296 0	418	502	515 0	436	447	421	43710
W Dow Dovid Di		17.5	11.8	14,0	8,1	11,2	10,3	12,9	11,7	11,3	18,5	14,7	10,8	6,4	9,5	14,5	13,2	9,8	7,5	11,3	9,7	8,3	10,3	10,5	9,3	8,6	14,6	10,0	11,0	14,6	7,1	14,3	7,6	9,7	12,9	12,5	9,2	8,3	16,9	18,4	6,7	16,3	8,8	11,7
Don Dodd 001	i e	1086	188	6846	541	82	805	527	666	552	481	1010	111	68	165	964	226	230	1230	138	553	108	261	271	503	621	1270	430	819	245	686	179	133	115	805	195	239	176	3569	3680	137	364	651	1729
	1	23.1	19	81,5	5,3	5,5	12,7	11,7	11,0	11,7	5,4	10,9	8,7	3,3	7,0	8,5	8,1	15,3	30,6	4,9	7,0	5,1	9,8	8,4	8,8	7,0	9'6	7,8	0,4	5,4	25,1	4,3	8,1	4,2	6,0	2,9	16,6	4,4	18,4	16,5	6,6	0'6	13,0	0'6
Doneith	e attive	517	54	5200	480	49	532	302	349	352	135	434	404	42	116	359	102	179	1147	70	318	98	138	215	366	445	602	289	30	86	616	66	137	55	343	76	217	116	1124	1716	95	134	656	631
			28.2	63,8	86,8	8,9	42,0	25,7	31,8	30,0	24,8	39,8	46,6	12,7	16,6	42,3	12,6	11,7	37,4	14,4	45,4	19,0	14,1	25,5	41,6	63,4	63,0	37,3	66'69	16,0	24,5	15,4	16,9	13,0	57,1	26,2	13,1	26,3	61,1	103,8	14,3	14,8	50,5	70,0
	za Superficie																																								_			-
Turdenno		TO7 PIDAL																																										
114	Percentuale	+007-HT07 +																																										
	Percentual	*007-+*T07 III0																																										
	5 100 C 110																																											
	1000 (110																																											
	Percentuale	4	11-	1	9	13	9	20	-2	m	14	¢,	s	17	1	m	e	16	13	4	-2	ŝ	1	Ŷ	4	s	8	0	-7	4	17	2	-5	'n	4	ę.	4	<i>L-</i>	14	13	-1	9	7	9
- Pice	Differenza Per	766	-196	644	-393	82	464	684	-128	157	320	-182	356	159	15	171	52	320	1848	-50	-142	-71	29	-126	231	326	633	-21	-186	-65	1400	22	-95	4	-281	-161	92	-153	2583	2332	-15	125	484	845
la control		1.2	1793	48103	7071	648	7380	3386	5827	4721	2282	7074	6862	910	1722	6470	1662	2037	14521	1267	5847	1378	2514	2702	5177	6867	8047	4327	7607	1745	8195	1229	1843	1247	6533	1720	2498	2286	18551	17691	2057	2107	6915	13943
Donol minor of Donological of	alo 1 Ger		1597	48747	6678	730	7844	4070	5699	4878	2602	6892	7218	1069	1737	6641	1714	2357	16369	1217	5705	1307	2543	2576	5408	7193	8680	4306	7421	1680	9595	1251	1748	1183	6252	1559	2590	2133	21134	20023	2042	2232	7399	14788
Donol	1 gennaio	- CTN7																																										_
		aunu				ovana								01				io	ano					ovano					o Po	delle Segnate	Mantova	del Dosso	fall'Argine										ana	
		20028 Guidizzolo	20029 Magnacavallo	20030 Mantova	20031 Marcaria	20032 Mariana Mantovana	20033 Marmirolo	Medole	Moglia	20036 Monzambano	20037 Motteggiana	Ostiglia	20039 Pegognaga	^o ieve di Coriai	20041 Piubega	20042 Poggio Rusco	20043 Pomponesco	20044 Ponti sul Mincio	20045 Porto Mantovanc	20046 Quingentole	Quistello	20048 Redondesco	Revere	20050 Rivarolo Mantovano	Vodigo	20052 Roncoferraro	20053 Roverbella	20054 Sabbioneta	San Benedetto	San Giacomo c	20057 San Giorgio di Mantova	20058 San Giovanni del Dosso	20059 San Martino dall'Argine	20060 Schiven oglia	20061 Sermide	20062 Serravalle a Po	20063 Solferino	20064 Sustinente	Suzzara	20066 Viadana	20067 Villa Poma	20068 Villimpenta	20070 Volta Mantovana	3orgo Virgilio
	and a second sec	20028 6	20029 A	20030 A	20031 A	20032	20033 1	20034 Medole	20035 Moglia	20036 1	20037 h	20038 Ostiglia	20039	20040 F	20041 F	20042 F	20043 F	20044 F	20045 F	20046 C	20047 0	20048 F	20049 Revere	20050 F	20051 Rodigo	20052 F	20053 F	20054 5	20055 5	20056 5	20057 5	20058 5	20059 5	20060 5	20061 5	20062 5	20063 5	20064 5	20065 Suzzara	20066 \	20067 \	20068 \	20070	20071 L
	100	inon																																										_

List of publications

Biancardi, M., Massarente, A., Verde, A. (2014). Paesaggi culturali agroalimentari nel territorio cordobese. in Apollonio, F. (ed.). Il contributo italiano allo sviluppo culturale in Argentina. Nuove metodologie per la conoscenza e la valorizzazione del patrimonio. Bologna: CLUEB. p. 66-74

Verde, A. (2015). RE-CYCLES. Transnational revitalization of dismissed industrial brownfields in post-socialist cities along the Danube. in Barcelloni, M., Cavalieri, C. (eds.). *The Horizontal Metropolis: A Radical Project*. VIII International PhD Seminar Urbanism & Urbanization / Symposium Latsis EPFL 12-14 October 2015 - Conference Proceedings. p. 356-366


Massarente, A., Verde, A. (eds.) (2016). Intersezioni urbane. Indagini e proposte per la rigenerazione urbana di un'area postindustriale. Ferrara: ArcDesPress

Verde, A. (2016). Costruire scenari di rifunzionalizzazione delle aree industriali dismesse. Le analisi del mercato e il progetto di recupero urbano. in Massarente, A., Verde, A. (eds.). *Intersezioni urbane. Indagini e proposte per la rigenerazione urbana di un'area postindustriale*. Ferrara: ArcDesPress. p. 17-20

Verde, A. (2017). La resilienza come strategia di rifunzionalizzazione per i paesaggi culturali. in Fabbri, R. (ed.). Architettura del Novecento in Argentina. Studi e applicazioni archeometriche per la conoscenza e la salvaguardia del patrimonio di origine italiana. Roma: Edizioni Nuova Cultura. p. 201-210

Verde, A. (2017). OILANDSCAPES. Agro-energy parks to create social inclusion in Adriatic-Ionian oil meshes. in Amer, M., Sotoca, A., Naselli, F. Mohareb, N., Alalouch (eds.). *Energy Procedia, Volume 115*. International Conference - Alternative and Renewable Energy Quest, AREQ 2017, 1-3 February 2017 - Conference Proceedings, Amsterdam: Elsevier. p. 127-138

Verde, A., Massarente, A. (2017). OILANDSCAPES. The reconversion of fossil fuel meshes as "green energy backbones" for the territorial restructuring of the Third Industrial Revolution. in Ferreira, J. A. et al. (eds.). *Spaces of Dialog for Places of Dignity: Fostering the European Dimension of Planning*. AESOP Annual Congress 2017 - Lisbon, 11-14 July 2017 - Conference Proceedings, Universidade de Lisboa. p. 1233-1243

