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Introduction

Rare events

Rare events have increasingly become relevant in the comprehension of problems arising from

several domains of science [26, 20, 14, 1]. Indeed, many phenomena occurring in nature involve

rare trajectories in dynamical systems and usually the most interesting events are not the typical

ones. For example, in order to study chaotic planetary systems, one can rely on the observation

of present conditions (within a range of observational error) to infer information about the past

and the future. Depending on the initial state, trajectories can differentiate a lot and deviate

from their standard behavior: in this context, the large deviations theory is an important tool

for making realistic predictions, based on a statistical study of the evolution process. Another

case of interest of large deviations is provided by molecular dynamics (and, in a similar way, by

supercooled liquid and glasses) which is characterized by long periods of fluctuations around

metastable configurations. Sometimes (rare) activation events happen: since they deserve

attention as essential steps for chemical reactions, it is useful to have numerical methods for

simulating the dynamics in a controlled way, without having to wait for their spontaneous

appearance. Further fields of study of large deviations concern rogue waves and the transport

of energy in a sample, which can be hindered or facilitated by exceptional trajectories.

Those examples could be tackled in principle by simulating for a long time the true dynamics;

however this procedure is not feasible for complex large-scale systems. Most of the time, the

smartest strategy for the investigation of such phenomena is to use algorithms able to properly

change the probability of rare events in order to make them less infrequent: among such class

of schemes, we find Monte Carlo methods [6, 32, 31] and the umbrella sampling technique

[52, 42], which is widely used in computational chemistry when standard numerical strategies

are unable to provide insight. From the mathematical point of view, the main challenge when

we speak of rare events, is to find an analytical expression of the so-called rate function, which

represents the exponential rate of decay of the examined event probability. Generally, the exact

computation of the rate function is hard to perform and, for this reason, one of the possible

goals of the aforementioned algorithms is to provide a numerical approximation of the function

via an iterative procedure. The theory of large deviations can be a priori applied to any kind

of event exhibiting an atypical behavior: this also includes the random graphs framework [7],

which is also a central topic of this thesis.
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4 Introduction

Random Graphs models

In recent years, much attention has been devoted to the study of complex networks [44, 43] for

analyzing problems in a wide class of fields such as information networks (e.g., World Wide Web,

citation networks between academic papers), technological networks (e.g. Internet), biological

networks (e.g. neural networks) and social networks. These last, are very popular nowadays

and owe their name to the fact that they are used for modeling interactions between people

such as friendships relationships rather than other kind of shared features. The mathematical

tool used for modeling networks are graphs, which are objects consisting in a set of nodes (or

vertices), which represent the agents of the interactions and a set of edges, which represent the

possible connections between the vertices. Often, real world networks share common features,

such as the so-called small world property, which, roughly speaking, means that given any two

nodes, there is a high probability that they are connected by a short chain of edges. Another

common property of real world networks is that they are scale free, namely the majority of

vertices have few connections, whereas the number of vertices with high connections decays

slowly. If we aim at modeling a network using random graphs, we have to choose the model of

graph which suits the properties we want to study. For example, the simplest random graph

one can build is the dense Erdös-Rényi one (originally defined in [25]): in this model, the

connections between the nodes are present with constant probability p. Due to its simplicity, it

is not suitable for representing real networks, however, despite its trivial formulation, it gives

rise to complex scenarios when we start measuring the large deviations of some observable

defined on it.

Large deviations on random graphs

The theory of Large Deviations can be applied to random graphs, for example every time we

look at the event that a selected observable, defined on the graph, deviates from its expected

value, when the number of nodes grows to infinity. The large deviation theory pursues two

main goals: finding the probability of observing the atypical event but also investigating the

structures which realize the deviation from the expected behavior (see [14]). The observable

on which we want to focus our study is the number of triangles of a dense Erdös-Rényi random

graph: the problem of deriving a large deviation principle for the upper tails of such quantity

has been widely studied in literature and only a few question are still open [15]. For what

concerns the lower tails, the state-of-art is less exhaustive and there are more gaps to fill [55].

A possible strategy used for studying both cases is to merge the Erdös-Rényi model into a

wider one, the so-called Exponential Random Graph model [5]. It is based on the definition of

an Hamiltonian which collects some desirable structures of the graph one wants to measure,

such as the number of regular subgraphs properly normalized. For the purpose of studying the

deviations of triangles, the suitable Hamiltonian should weigh the number of triangles properly

normalized and the number of edges of the graph. In this context, it is possible to define “a

pressure”and, according to the choice of the parameter which tunes the density of triangles,
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to explore the so-called replica symmetric phase or replica breaking one. The first region has

been fully characterized and the expression of the pressure is known in this regime; the second

one is hard to explore and it’s here that our investigation inserts.

Contribution of this thesis

In this thesis, a Monte Carlo method for the approximation of the scaled cumulant generating

function of an additive observable is presented. Such function is strictly connected to the the-

ory of large deviations since, when it is possible to apply the Gärtner-Ellis theorem, it turns

out to be the Legendre transform of the rate function. Hence, it is possible to recover the first

from the second and vice-versa. Moreover, it can be shown that the pressure of an Exponential

Random Graph with Hamiltonian including only triangles and edges (properly normalized),

coincides, up to an additive constant, with the scaled cumulant generating function of the

number of triangles of a dense Erdös-Rényi random graph. In other words, the knowledge of

the scaled cumulant generating function allows to provide answers on the replica breaking re-

gion mentioned in the paragraph above. The Monte Carlo method we focus on, which is called

Cloning algorithm and was originally introduced in [29] and further in [28], uses an approach

relying on population dynamics: it is based on the evolution of a family of copies of the system

which are replicated or killed in such a way that atypical trajectories are favored.

The aim of this thesis is twofold: on one hand, we devise an extended version of the algorithm

which works on growing-size graphs and keeps trace of the additive observable number of tri-

angles of an Erdös-Rényi random graph; on the other hand, we explore the replica breaking

region using three main strategies, among which the extension of the method appears.

Our first contribution consists in providing a formal analysis of the standard version of the

method, stressing its strict connection with branching processes, together with numerical sim-

ulations on some simple models, which highlight the robustness of the algorithm.

In our second contribution we develop a modified version of the standard Cloning algorithm,

which implements a dynamics over growing-size graphs. This strategy consists in looking at

an Erdös-Rényi graph of size n as the result of an additive process in which, starting from a

small and fixed size, a node is added at each step and connected (or not) to the previous ones

with probability p. Since the connections are done with independence this process effectively

builds a dense Erdös-Rényi graph. This formulation allows to write in an incremental way the

observable one is interested in: it suffices to keep trace of its variations as long as the dynamics

goes on. Firstly, we have tested the method on the simplest case of the edge observables, thus

showing that the algorithm perfectly converges to the expected curve (which, in this context,

is easy to derive). Secondly, we have moved on the triangle observable, tuning, as a starting

approach, the parameter of the scaled cumulant generating function in such a way as to work

in the so-called replica symmetric regime, where its analytical expression is known and, hence,
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we have a comparison term for simulations. The major difficulty of the implementation relies

on the fact that the method, being devised for running on spaces of graphs which become

bigger and bigger, is time consuming. Despite this obstacle, it is still possible to appreciate

the convergence of the method to the analytic result even if with less accuracy with respect

to the edge case. Finally, still maintaining the setting on the replica symmetric region, we

have formulated a heuristic argument, based on a mean-field approximation, for motivating

the convergence of the method to the limiting curve.

In our third contribution we push the analysis towards the unresolved region, called replica

breaking : concretely, this coincides with properly tuning the parameter related to triangles.

In this part, the goal of our research is to numerically investigate the structure of the scaled

cumulant generating function, whose analytical expression is not known here. Moreover, since

the problem of recovering it configures as a variational one on a certain space of symmetric,

measurable functions, we aim at finding the structure of the optimizers. We have tackled the

problem using three different strategies: first of all, via a well-known optimization method,

called Projected Gradient algorithm applied to a discretization of the problem; secondly, using

the extended version of the Cloning method previously introduced and, finally, through an

analysis of the functional (namely the objective function to optimize) over a specific class of

functions. This third approach is motivated by the fact that we had an initial guess on the

structure of one possible optimizer (in this region, it is not known if it is unique or not).

Organization

The thesis is organized as follows. In Chapter 1, we introduce the reader to the main defini-

tions and theorems concerning the large deviations and the Markov chains theories. We have

summarized the preliminaries required for the subsequent discussion. In Chapter 2, we present

the Cloning algorithm in its standard setup: we make an analysis of the method stressing its

connection with branching processes and we provide some numerical applications which high-

light its effectiveness. In Chapter 3, we describe the state-of-art related to the large deviations

theory of the triangle observable, keeping the focus on the dense Erdös-Rényi model. We char-

acterize the replica symmetric phase and the replica breaking one for both the rate function

and the scaled cumulant generating function and we highlight the open points related to this

last region. This chapter basically collects results taken from [18, 17, 19, 15]. In Chapter 4

we present the extended version of the Cloning method, devised for working of growing-size

spaces of graphs. We provide the results of simulations for the edge observable and for the

triangle one, working on the replica symmetric setting. Finally, we give a heuristic argument

for motivating the convergence of the Cloning algorithm to the expected curve (which is known,

in this regime). In Chapter 5 we go back to the open problems concerning the replica breaking

region and, making use of three different strategies, we tackle the challenge of investigating the

behavior of the scaled cumulant generating function here.



Notations

• i.i.d: identically distributed random variables.

• P (·, ·) the transition probability of a Markov chain.

• Pn,p the dense, Erdös-Rényi distribution of a graph of size n.

• E
ER
p the expectation with respect to the Erdös-Rényi measure.

• {Gn,p}n a sequence of Erdös-Rényi random graphs

• Gn,p the space of all Erdös-Rényi random graphs of size n.

• {Gn}n a sequence of exponential random graphs.

• H(Gn) the Hamiltonian corresponding to the exponential random graphs model.

• H1 the edge subgraph and H2 the triangle subgraph.

• X(n) the adjacency matrix of a graph of size n, with elements {Xij}i,j=1,...,n.

• T (X(n)) the number of triangles of a graph of size n.

• E(X(n)) the number of edges of a graph of size n.

• W̃ the space of all graphons equipped with the cut distance δ�(·, ·).

• f̃ the elements of the space W̃ .

• P̃α(·, ·) the tilted probability of the Cloning algorithm.

• Pα(·, ·) the normalized transition probability of the Cloning algorithm.

• k(·) the reproduction rate of each clone in the Cloning algorithm.

• µ(α) the scaled cumulant generating function.

• I(r) the large deviations rate function.

• Ip(r) the Bernoulli relative entropy.
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8 Notations

• Ωn the set of all symmetric adjacency matrices of an Erdös-Rényi random graph of size

n, with null elements on the diagonal.

• < x, y >=
∑n

i=1 xiyi the scalar product, with x, y ∈ R
n.



Chapter 1

Introduction to large deviations

1.1 Motivations

The theory of large deviations is strictly related to rare events, since it deals with the expo-

nential rate of decay of their probabilities, seen as a function of some parameter, such as the

temperature of a chemical reaction or a critical noise perturbing a dynamical system. There

are many examples, ranging from chemistry ([26]) to turbulence in fluids ([20]) and from theory

of random networks ([14]) to economics ([1]), which show that the most interesting situations

from the scientific point of view, are not the typical ones but those which are in some sense

more difficult to observe, predict and control. For instance, molecular dynamics provides an

example of large deviations problem: this is the case of the amorphous state of the glass, whose

molecules are described as frozen in a disordered state such that, if we wait a time long enough

(of the order of the universe age) the rare thermal fluctuation are able to move the atoms and,

in the long, to run the system in a regular status. As described in [14] for the probabilistic

framework, the theory of large deviations has developed powerful tools for dealing with linear

functionals of independent random objects. For what concerns non-linearity, there is still room

for strengthening the mathematical background and we mention the work of Chatterjee [16]

among the scientific contributions in this direction. Non- linearity arises in a natural way when

we analyze real world networks. For example, in the case of social networks, a natural question

is the following: if A is a friend of B and C is a friend of B, is there an increased probabil-

ity that C will be a friend of A? If this is the case, then the system satisfies the clustering

property. Thus, clustering deals with the probability of finding triangles, whose number is a

nonlinear functional of the variables that define the network. Furthermore, imagine that you

are interested in quantifying the probability that a selected substructure of your network (for

example the aforementioned number of triangles), exceeds its average value when the number

of interacting agents becomes bigger and bigger. This is an example of large deviation prob-

lem, since we look at the probability that a certain observable deviates from its typical value.

From the mathematical point of view, solving a large deviation problem consists in finding the

9



10 Chapter 1 Introduction to large deviations

exponential rate at which the probability of the atypical event we are interested in, decreases:

this coincides with finding a specific function, called rate function which owes its name from

this fact. A part from some standard and easy examples, in the majority of cases the direct

computation of such function is not easy to perform and one has to rely on numeric simulations

such as Monte Carlo methods (we quote [29] and [28] among the wide group of papers which

treat this topic).

1.2 Large deviations results

This section introduces some useful definitions and results of large deviation analysis that will

be fundamental for the subsequent discussion. A more exhaustive overview of these topics can

be found in [21],[22],[24]. The crucial problem when we deal with large deviations is to find a

function which satisfies the so-called large deviation principle: we start providing the general

formulation of it.

Let X be a Polish space, i.e a complete, separable metric space, equipped with the distance

d : X ×X → [0,+∞). As a preliminary step, we recall the definition of lower semi-continuous

function.

Definition 1.1 ([22], Definition III.1). [Lower semi-continuity] The function f : X 7−→
[−∞,+∞] is lower semi-continuous if it satisfies any of the following properties:

(i) lim infn→+∞ f(xn) ≥ f(x) for all (xn)n, x such that xn → x in X .

(ii) limε→0 infy∈Bε(x) f(y) = f(x) with Bε(x) = {y ∈ X : d(x, y) < ε}.

(iii) f has closed level sets, i.e, f−1([−∞, c]) = {x ∈ X : f(x) ≤ c} is closed for all c ∈ R.

We recall the following property of lower semi-continuous functions:

Proposition 1.1 ([22], Lemma III.3). A lower semi-continuous function attains a minimum

on every non-empty, compact set.

Lower semi-continuity is a necessary property for a function to be a rate function, as we can

see from the definition below:

Definition 1.2 ([22], Definition III.5). [Rate function] The function I : X 7−→ [0,+∞] is called

a rate function if:

a) I 6≡ +∞;

b) I is lower semi-continuous;

c) I has compact level sets.
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At this point we are ready to state the large deviation principle (LDP):

Definition 1.3 ([22], Definition III.6). [LDP] A sequence of probability measures Pn on X is

said to obey a large deviation principle with speed n and rate function I if

a) I is a rate function in the sense of Definition 1.2;

b) for any closed set C ⊂ X :

lim sup
n→+∞

1

n
ln Pn(C) ≤ − inf

r∈C
I(r); (1.1)

c) for any open set O ⊂ X :

lim inf
n→+∞

1

n
ln Pn(O) ≥ − inf

r∈O
I(r). (1.2)

Remark 1.1. Consider now a non-empty subset Γ ⊂ X and denote by Γ̄ the closure of Γ and

by Γo the interior of Γ: since Γo ⊆ Γ ⊆ Γ̄, assuming conditions b) and c), the following chain

of inequalities holds:

− inf
r∈Γo

I(r) ≤ lim inf
n→+∞

1

n
ln Pn(Γo) ≤ lim inf

n→+∞

1

n
ln Pn(Γ) ≤ lim sup

n→+∞

1

n
ln Pn(Γ) ≤ lim sup

n→+∞

1

n
ln Pn(Γ̄)

≤ − inf
r∈Γ̄

I(r),

where the first inequality and the last one derive from (1.1) and (1.2).

It follows that if Γ ⊂ X is such that

inf
r∈Γ̄

I(r) = inf
r∈Γo

I(r)

then

lim
n→+∞

1

n
ln Pn(Γ) = − inf

r∈Γ
I(r),

that is the standard way we are used to interpreting the large deviation principle.

Theorem 1.1 ([22], Theorem III.8). Let Pn satisfy the LDP. Then the associated rate function

is unique.

In general, for a given random sequence (Xn)n, there are three different approaches whereby

proving that it satisfies a large deviation principle: the direct way consists in showing that the

probability distribution of (Xn)n satisfies a large deviation principle, according to Definition

1.3. The second one, the indirect method, consists in finding certain functions of (Xn)n which

allow to work out a large deviation principle for the starting random sequence. Finally the

third approach, known as contraction method, allows to relate the random sequence (Xn)n to
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another one which satisfies a large deviation principle and then infer from this a large deviation

principle for (Xn)n. One of the main results of large deviation theory, the so-called Gärtner-

Ellis theorem, makes part of the indirect strategies for deriving an LDP without knowing the

distribution of the random variable: before stating the theorem, we introduce the underlying

setup, strictly following [24]. Let W = {Wn;n = 1, 2, . . . } be a sequence of random vectors

which are defined on probability spaces (Ωn,An, Pn) and which take values in R
d. We define a

family of so-called, moment generating functions

µn(α) =
1

an
lnEn

(
e<α,Wn>

)
n = 1, 2, . . . , α ∈ R

d, (1.3)

where {an;n = 1, 2 . . . } is a sequence of positive numbers tending to infinity, En(·) denotes the

expectation with respect to Pn and < ·, · > indicates the Euclidean inner product on R
d. The

function

µ(α) := lim
n→∞

µn(α) = lim
n→+∞

1

an
lnEn

(
e<α,Wn>

)
n = 1, 2, . . . , α ∈ R

d, (1.4)

provided it exists, is called scaled cumulant generating function.

The following hypothesis are assumed to hold:

(a) each function µn(α) is finite for all α ∈ R
d;

(b) µ(α) exists for all α ∈ R
d and is finite.

For example, hypothesis (a) and (b) are satisfied when Wn is the nth partial sum of X1, . . . ,Xn

i.i.d random vectors taking values in R
d, i.e when Wn ≡ Sn :=

∑n
i=1Xi, n = 1, 2, . . . , and

E(e<α,X1>) is finite for all α ∈ R
d. In this case, with an = n we have

µn(α) =
1

n
lnE(< α,Wn >) = lnE(< α,X1 >) = µ(α).

Cramer’s theorem states that the distributions of Wn
n on R

d have a large deviations property

with rate function

I(r) = sup
α∈Rd

{< α, r > −µ(α)}, r ∈ R
d, (1.5)

where I(r) is the Legendre transform of µ(α). We recall the definition below:

Definition 1.4 (Legendre-Fenchel transform). The Legendre-Fenchel transform of a function

f : Rd 7−→ R is a function g : Rd 7−→ R defined by

g(r) = sup
x∈Rd

{< r, x > −f(x)}, r ∈ R
d. (1.6)

This transform can be denoted in a compact form by g = f∗.

When hypothesis (a) and (b) hold, it is possible to generalize Cramer’s theorem to the non i.i.d

setting, thanks to the Gärtner-Ellis theorem, reported below.
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Theorem 1.2 ([24], Theorem II.6.1). [Gärtner-Ellis Theorem] Assume hypothesis (a) and (b).

Let Qn be the distribution of Wn
an

on R
d and let

I(r) = sup
α∈Rd

{< α, r > −µ(α)}, r ∈ R
d, (1.7)

where µ(α) is defined in (1.4). Then, the following conclusions hold:

i) I(r) is convex, lower semi-continuous and non-negative. I(r) has compact level sets and

infr∈Rd I(r) = 0.

ii) The upper large deviation bound is valid:

lim sup
n→+∞

1

n
ln Qn(C) ≤ − inf

r∈C
I(r) for each closed set C ∈ R

d. (1.8)

iii) Assume in addition that µ(α) is differentiable for all α. Then, the lower deviation bound

is valid:

lim sup
n→+∞

1

n
ln Qn(O) ≥ − inf

r∈O
I(r) for each open set O ∈ R

d. (1.9)

Hence, if µ(α) is differentiable for all α, then (1.9), parts (i) and (ii) imply that {Qn;n =

1, 2 . . . } satisfies a large deviation principle with rate function I(r).

As described in [22], the Legendre transform of the moment generating function naturally arises

as lower bound in the large deviation principle using the exponential Chebyshev’s inequality

and optimizing over the parameter. If that also holds for the upper bound (which is the most

difficult part), then the rate function must be the Legendre transform and (1.7) holds.

Remark 1.2. The Legendre transform of the scaled cumulant generating function yields func-

tions that are necessarily convex: this is due to the fact that µ(α) is always convex and the

Legendre transform of a convex function is convex. Moreover, when µ(α) is differentiable, the

Legendre transform yields to strictly convex functions, namely convex functions with no linear

parts (we refer to Section 26 of [48] for the proof). However, there is a priori no reason why

rate functions should be convex.

Using a shorthand notation we can resume that if I(r) is convex then I(r) = µ∗(α) whereas

if I(r) is not convex I(r) 6= µ∗(α). The opposite, i.e µ(α) = I∗(r), is always true. We report

some properties of the scaled cumulant generating function, which could be helpful in clarifying

how its critical issues reflect on the rate function and vice-versa. We refer to [53] for a detailed

analysis:

a) µ(0) = 0 (this follows by the definition);

b) µ(α) is convex so it can be non-differentiable only at isolated points;

c) if I(r) is strictly convex then µ(α) is differentiable;
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d) if I(r) is not convex (or it is convex with linear parts) then µ(α) has at least one non-

differentiable point;

e) if µ(α) is differentiable then the value α such that µ′(α) = r has the property that

α = I ′(r). This duality property between the rate function and the scaled cumulant

generating function can be also expressed saying that the slopes of µ(α) correspond to

the abscissas of I(r) and vice-versa.

Finally, we quote a general statement from [53] that can be helpful in characterizing the

Legendre-Fenchel transform in this context of large deviations theory: such result is described

in [53] with explicative examples and the proof can be found in [48] (see also Chap VI of [24]

and [51]).

Proposition 1.2 ([53], Result 2). If I(r) is not convex, the Legendre-Fenchel transform of

µ(α) does not yields I(r), rather it yields the convex envelope of I(r).

As a direct consequence of Remark 1.2 emerges that non-convex rate functions can not derive

from the application of the Gärtner-Ellis theorem and the breakdown of the theorem for this

case relies on the differentiability of µ(α). What about the inverse operation? Is it possible to

recover the scaled cumulant generating function once the rate function is known? The answer

is yes, and the result is provided by the the Varadhan’s theorem (firstly introduced in [54]),

which is a generalization of the Laplace’s method (or Laplace’s approximation) and gives the

asymptotic behavior of a large class of integrals. The formulation below is taken from [22].

Theorem 1.3 ([22], Theorem III.3). [Varadhan’s Theorem] Let Pn be a sequence of probability

measures which satisfy the large deviation principle with rate function I. Let f : X 7−→ R be a

continuous function that is bounded from above, where X is the Polish space introduced at the

beginning of the paragraph. Then

lim
n→+∞

1

n
ln

∫

X
Pn(x)enf(x)dx = sup

x∈X
[f(x) − I(x)]. (1.10)

Let us apply the result to a generic sequence (Wn)n of random vectors with values in R
d, for

reading the displayed formulation in a more familiar way: equation (1.10) becomes

lim
n→+∞

1

n
lnE(enf(Wn)) = lim

n→+∞

1

n
ln

∫

Rd

Pn(r)enf(r)dr = sup
r∈Rd

[f(r) − I(r)], (1.11)

where we recall that Pn(r) represents the probability distribution of Wn. Furthermore, for a

fixed α ∈ R
d if we set f(α) =< α, r >, with r ∈ R

d, in (1.11) we get, recalling definition (1.4),

µ(α) = sup
r∈Rd

[< α, r > −I(r)], α ∈ R
d. (1.12)

In other words, as a direct consequence of Varadhan’s theorem, it is always possible to re-

cover the scaled cumulant generating function once that the rate function is known, whereas
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the opposite operation is allowed only under proper differentiability hypothesis on the scaled

cumulant generating function. This represents a crucial point one has to take into considera-

tion in making use of the Gärtner-Ellis theorem for the derivation of the large deviation rate

function.

Generally the dissertation on large deviations starts from the simplest setting of independent

identically distributed (i.i.d) random variables and then generalizes to the non-independent

case. We recall that the first derivation of the large deviation principle for non-independent

sequences concerns the discrete-time Markov chains. In these processes the probability of each

event depends on the state attained at the previous one, so we lose the independence while

maintaining the simplicity of the overall dynamics.

1.3 Basic results on Markov chains

In this part, we report a few basic definitions and properties of discrete-time Markov chains

which will turn to be useful throughout Chapter 2.

Definition 1.5 (Discrete time Markov chain). Let (Ω,A,P) be a probability space and let

(Xi)i≥ 0 a sequence of random variables defined on Ω and mapping into the finite space S =

{1, . . . , N}. If for all positive integers k and all x0, x1, . . . , xk+1 ∈ S

P(Xk+1 = xk+1|Xk = xk, . . . ,X0 = x0) = P(Xk+1 = xk+1|Xk = xk), (1.13)

then the sequence (Xi)i≥ 0 is called a finite state, discrete Markov chain.

The space S of all possible states is called phase space or alphabet : the matrix of transition

probabilities (from state x ∈ S to state y ∈ S) at time k ∈ N, is denoted by P and it is a

N × N matrix (called transition matrix ) with elements p(x, y), where

p(x, y) = P(Xk+1 = y|Xk = x), x, y ∈ S.

Such elements must satisfy the properties

p(x, y) ≥ 0
∑

y∈S

p(x, y) = 1.

A realization (or path) of the process up to time k is a sequence (x0, x1, . . . , xk) ∈ Sk+1: if the

process at time 0 starts from the probability distribution ν, namely ν(x0) = P(X0 = x0), then

the probability associated to a realization is

P
X [x1, . . . , xk] := P(X0 = x0,X1 = x1, . . . ,Xk = xk) = ν(x0)p(x0, x1) . . . p(xk−1, xk)

= ν(x0)

k−1∏

i=1

p(xi, xi+1). (1.14)
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When we deal with Markov processes, it often happens to make use of the power of the transition

matrix in order to describe the evolution of the system, hence it is convenient to fix a notation

for it: we denote by P (n) the nth power of the matrix and by p(n)(x, y) its elements. The

distribution at time n+ 1 of the chain is the row vector ν(n+1) with components

ν(n+1)(y) = P(Xn+1 = y) =
∑

x∈S

ν(n)(x)p(x, y),

that is, in matrix form, ν(n+1) = ν(n) · P , where this last notation denotes the vector-matrix

product. Iteration of this equality yields

ν(n+1) = ν · P (n+1). (1.15)

It is useful to recall the following definitions:

Definition 1.6 (Stationary measure). A vector π = {π(x)}x∈ S is called an invariant measure

of the stochastic matrix P , if:

π(x) ∈ (0, 1] ∀x ∈ S,
∑

x∈S

π(x) = 1

and

π(y) =
∑

x∈S

π(x)p(x, y), (1.16)

that is

π = π · P. (1.17)

Definition 1.7 (Reversible measure). Let P be a transition matrix and π a strictly positive

probability vector on S. The pair (P, π) is called reversible if the detailed balance condition

π(x)p(x, y) = π(y)p(y, x) (1.18)

holds for all x, y ∈ S.

Remark 1.3. Note that the sum of (1.18) over x yields
∑

x∈S

π(x)p(x, y) =
∑

x∈S

π(y)p(y, x) = π(y)
∑

x∈S

p(x, y) = π(y),

so we recover the stationarity condition (1.16). This implies that each reversible measure is

also stationary.

A special property of non-negative matrices which brings a lot of advantages when we deal with

Markov chains, is irreducibility: this condition guarantees that the distribution of the Markov

chain reaches a steady state, i.e a limiting distribution as long as the time runs. We recall the

definition below:
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Definition 1.8 ([21], Section 3.1). [Irreducibility] A matrix P with non-negative entries p(x, y)

is called irreducible if there exists an n0 ∈ N such that

min
(x,y)

p(n0)(x, y) > 0. (1.19)

As we mentioned above, the fact that the Markov chain reaches a stationary distribution in the

limit, is a crucial turning point for the analysis of dynamical systems which evolve according

to this process and it is a fundamental property when we resort to simulations. The theorem

which guarantees the achievement of a steady state of the Markov chain, is the Ergodic theorem:

among its hypothesis, the irreducibility condition of the transition matrix appears. We report

the statement below, since we will exploit ergodicity for all the models proposed in Chapter 2.

Theorem 1.4 ([50], Theorem 1). [Ergodic Theorem for the Markov chains] Let P = {p(x, y)}(x,y)∈S2

be the transition matrix of a chain with a finite state space S = {1, . . . , N}.

(a) if the matrix is irreducible, then there are numbers π(1), . . . , π(N) such that

π(y) > 0 ∀y ∈ {1, . . . , N},
∑

y∈S

π(y) = 1 (1.20)

and

p(n)(x, y) → π(y) as n→ +∞ (1.21)

for every x ∈ S.

(b) Conversely, if there are numbers π(1), . . . , π(N) which satisfy (1.20) and (1.21), then the

matrix is irreducible.

(c) The numbers (π(1), . . . , π(N)) satisfy the equations

π(y) =
∑

x∈S

π(x)p(x, y), y ∈ {1, . . . , N}. (1.22)

Note that equations (1.22) represent the stationary condition introduced in Definition 1.6. The

reason of this terminology is that the distribution π is unchanged as the time passes. In fact,

putting as starting distribution in (1.15) the stationary one, namely ν = π, and observing that

π = π · P (n+1), we get

ν(n+1)(y) = π(y) = ν(y) ∀ y ∈ S.

Furthermore, the stationary distribution is unique. In fact, suppose that another stationary

distribution π̃ = (π̃(1), . . . , π̃(N)) does exist: the stationarity condition implies

π̃ = π̃ · P (n)

or, equivalently

π̃(y) =
∑

x∈S

π̃(x)p(n)(x, y), y ∈ {1, . . . , N}.



18 Chapter 1 Introduction to large deviations

Since p(n)(x, y) → π(y) as n→ +∞ (see (1.21)), in the limit we get

π̃(y) =
∑

x

π̃(x)π(y) = π(y),

thus showing the uniqueness. As a final consideration, from

lim
n→∞

ν(n+1)(y) = lim
n→∞

∑

x

ν(x)p(n)(x, y) =
∑

x

ν(x) lim
n→∞

p(n)(x, y) = π(y),

one can observe that the starting distribution ν does not affect the limiting behavior of the

Markov chain, hence it is convenient to fix as starting distribution the stationary one.

As we have seen, the irreducibility of the transition matrix, reflects on the Markov chain

different properties: it is convenient to mention another theorem which highlights some other

features of irreducible matrices, the Perron- Frobenius theorem. To be precise, the theorem

requires that, given a matrix P with non-negative entries p(x, y), for any couple of indices (x, y)

there exists n0 = n0(x, y) ∈ N such that p(n0)(x, y) > 0. Note that such condition is weaker

than the one expressed by Definition 1.8, in fact it is implied by it.

Theorem 1.5 ([21], Theorem 3.1.1). [Perron-Frobenius] Let P = {p(x, y)}(x,y)∈S2 be an irre-

ducible matrix. Then P possesses an eigenvalue ρ such that:

a) ρ > 0 is real;

b) for any eigenvalue λ of P, |λ| ≤ ρ;

c) there exist left and right eigenvectors corresponding to the eigenvalue ρ that have strictly

positive coordinates;

d) the left and right eigenvectors ΛL
ρ and ΛR

ρ corresponding to the eigenvalue ρ are unique

up to a constant multiple;

e) for every x ∈ S and every φ = (φ(1), . . . , φ(|S|)) such that φ(y) > 0 for all y ∈
{1, 2, . . . , |S|},

lim
n→+∞

1

n
ln




|S|∑

y=1

p(n)(x, y)φ(y)


 = lim

n→+∞

1

n
ln




|S|∑

x=1

φ(x)p(n)(x, y)


 = ln(ρ). (1.23)

Proof. For the complete proof we refer to [49]. Here we are especially interested in property e).

Let α := supx ΛR
ρ (x), β := infx ΛR

ρ (x) > 0, γ := supy φ(y), δ := infy φ(y) > 0, where notation

Λ
(·)
ρ (x) denotes that we are considering the component x of the vector. Then, for all (x, y) ∈ S2,

γ

β
p(n)(x, y)ΛR

ρ (y) ≥ p(n)(x, y)φ(y) ≥ δ

α
p(n)(x, y)ΛR

ρ (y). (1.24)
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The right inequality in (1.24) yields

lim
n→+∞

1

n
ln




|S|∑

y=1

p(n)(x, y)φ(y)


 ≥ 1

n
lim

n→+∞
ln


 δ
α

|S|∑

y=1

p(n)(x, y)ΛR
ρ (y)




= lim
n→+∞

1

n
ln

[
δ

α

]
+ lim

n→+∞

1

n
ln




|S|∑

y=1

p(n)(x, y)ΛR
ρ (y)




= lim
n→+∞

1

n
ln
[
P (n) · ΛR

ρ

]
(x) = lim

n→+∞

1

n
ln
(
ρnΛR

ρ (x)
)

= ln(ρ).

Similarly, using the left inequality in (1.24), it follows that:

lim
n→+∞

1

n
ln




|S|∑

y=1

p(n)(x, y)φ(y)


 ≤ ln(ρ),

and finally

lim
n→+∞

1

n
ln




|S|∑

y=1

p(n)(x, y)φ(y)


 = ln(ρ).

A similar argument leads to prove the second equality in (1.23):

lim
n→+∞

1

n
ln




|S|∑

x=1

φ(x)p(n)(x, y)


 = ln(ρ).

We conclude this introductory part reconnecting to large deviations theory, more precisely, as

we mentioned at the beginning of the chapter, to large deviations on discrete Markov chains,

which is the simplest example of non i.i.d sequence.

1.3.1 Large deviations on Markov chains

Consider a finite state Markov chain (Xi)i≥ 1 taking values in a finite space S = {1, 2, . . . , N};

according to the notation introduced in (1.14), we denote by P[x1, . . . , xn] the probability of a

realization. The hypothesis under which we work are

Xi ∈ S with |S| = N

X1,X2 . . . is Markov with transition matrix P = {p(x, y)}(x,y)∈ S2 (1.25)

p(x, y) > 0 ∀x, y ∈ S.

The ergodic theorem for the Markov chains guarantees the existence of a unique stationary

distribution (see Theorem 1.4) which we indicate by π = (π(1), . . . , π(N)): we recall that
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π(y) > 0 ∀y ∈ S. Moreover, we choose π as starting distribution of the Markov chain

(Xi)i≥ 1.

In order to study the large deviation principle for finite state Markov chains, it is convenient

to introduce another sequence of i.i.d random variables (Yi)i≥ 1 with distribution equal to the

stationary one, π. First of all, let us define the following object, called pair empirical measure

L2
n =

1

n

n∑

i=1

δ(Xi,Xi+1),

where δ denotes the Dirac function, with periodic boundary conditions Xn+1 = X1: it takes

values in the space

M =



ρ = {ρ(x, y)}(x,y)∈ S2 ∈ [0, 1]N

2
:

N∑

x,y=1

ρ(x, y) = 1,

N∑

y=1

ρ(x, y) =

N∑

y=1

ρ(y, x) ∀x ∈ S





which turns into a Polish space equipped with the total variation distance

d(µ, ρ) =
1

2

N∑

x,y=1

|µ(x, y) − ρ(x, y)| µ, ρ ∈ M.

The key observation is now that the probability of a realization P
X [x1, . . . , xn] of the Markov

chain, is a functional of L2
n modulo boundary terms. More precisely:

P
X [x1, . . . , xn] = π(x1)p(x1, x2) . . . p(xn−1, xn) =

π(x1)

p(xn, xn+1)
e
∑n

i=1 ln p(xi,xi+1)

=
π(x1)

p(xn, xn+1)
e
∑

(x,y)∈S2
∑n

i=1 δ(Xi,Xi+1)
(x,y) ln p(x,y)

=
π(x1)

p(xn, xn+1)
en
∑

(x,y)∈S2 L2
n[x1,...,xn](x,y) ln p(x,y)

(1.26)

where L2
n[x1, . . . , xn] is the pair empirical measure associated to the realization (x1, . . . , xn).

We can repeat the procedure for the random variables (Yi)i≥,1 thus getting:

P
Y [x1, . . . , xn] =

n∏

i=1

π(xi) = e
n
∑

(x,y)∈S2 L2
n[x1,...,xn](x,y) ln π(y)

(1.27)

Combining (1.26) with (1.27) we get:

dPX

dPY
[·] = O(1)e

n
∑

(x,y)∈S2 L2
n[·](x,y) ln

p(x,y)
π(y) = O(1)enF (L2

n[·]) (1.28)

where

F (ρ) :=
∑

(x,y)∈S2

ρ(x, y) ln
p(x, y)

π(y)

and ρ ∈ M . Equation (1.28), giving the Radon-Nikodym derivative of P
X [·] with respect to

P
Y [·], allows to turn questions about (Xi)i≥ 1 into questions about (Yi)i≥ 1, thus simplifying the

setup, being (Yi)i≥,1 i.i.d random variables.

Now we are ready to state the LDP for discrete-time Markov chains:
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Theorem 1.6 ([22], Theorem IV.3). Let (Xi)i≥ 1 be a Markov chain and assume that hypothesis

(1.25) hold. Then the family defined by

PX
n := P

X(L2
n ∈ ·)

satisfies the LDP on M with speed n and rate function

IP (ρ) =
∑

(x,y)∈S2

ρ(x, y) ln
ρ(x, y)∑

z ρ(x, z)p(x, y)
.

Proof. For any Borel set B ⊂ M , from (1.28) follows that

1

n
ln PX

n (B) =
1

n
ln

∫

B
P
X(L2

n ∈ dρ) = O

(
1

n

)
+

1

n
ln

∫

B
enF (ρ)

P
Y (L2

n ∈ dρ).

The proof can be deduced by combining two facts:

(a) from the theory of large deviations for i.i.d sequences (in particular from Theorem II.8

in [22]), follows that P Y
n := P

Y (L2
n ∈ ·) satisfies an LDP on M with speed n and rate

function

Iπ(ρ) =
∑

(x,y)∈S2

ρ(x, y) ln
ρ(x, y)∑

z ρ(x, z)π(x, y)
; (1.29)

(b) as a direct consequence of Varadhan’s Theorem 1.3 we know that PX
n satisfies an LDP

on M with speed n and rate function

IP (ρ) = Iπ(ρ) − F (ρ) =
∑

(x,y)∈S2

ρ(x, y) ln
ρ(x, y)∑

z ρ(x, z)p(x, y)
,

where the computation directly follows from expressions (1.29) and (1.3.1).





Chapter 2

A Monte Carlo method for large

deviations: the Cloning algorithm

In this chapter we present the core of our research, i.e a new computation strategy, The Cloning

algorithm, to evaluate the probability of rare events: the method has been introduced in [29]

and further developed in [28]. Cloning is a Monte Carlo method which allows to numerically

approximate the scaled cumulant generating function defined in (1.4) using an approach relying

on population dynamics. When Gärtner-Ellis theorem holds, the derivation of the rate function

is just one step away. The algorithm is based on the evolution of a family of copies of the

system which are replicated or killed in such a way as to favor the realization of the atypical

trajectories. Our first contribution, provided in this chapter, is developing a formal analysis of

the method, with a specific focus on its strict connection with branching processes, together

with some simple and original applications which clarify the implementation of the scheme and

highlight its effectiveness. The outline of the chapter is the following: Section 2.1 is divided

in two parts, since we preliminarily introduce the setup we are interested in, namely large

deviations on additive functionals, and after we present the method, with a specific focus on its

connection with branching processes. In Section 2.2 we present some illustrative applications

of the algorithm and, as a further validation of the method, the related simulations results,

thus showing agreement between numerical and analytical computation.

2.1 The Cloning Algorithm

2.1.1 Large deviations for additive functionals

In order to introduce the algorithm, we consider the general setup of a system which evolves

according to a Markovian dynamics, as introduced in Section 1.3. Given a discrete Markov

chain (Xn)n≥ 0 taking values in a finite space S with cardinality |S| < +∞, we are interested

in studying the large deviation properties of physical quantities FT that are additive in time,

23
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namely such that they can be written as

FT =

T−1∑

n=0

f(Xn,Xn+1), (2.1)

where f is a function defined on S × S and taking real values.

Example 2.1. For example, consider a one dimensional lattice with N sites. Imagine that a

particle, occupying one site, can jump to the right, to the left or stay still on its position. For

a specific transition x0 −→ x1, where x0, x1 ∈ {1, . . . , N} are the nearest neighbors sites, we

can define

f(x0, x1) =





1 a particle jumps to the right

0 nothing happens

−1 a particle jumps to the left

, (2.2)

which can be interpreted as a flux of particles.

In particular we are interested in computing the probability of having a current per unit of

time. From the theory of large deviations, more precisely rearranging the content of Theorem

1.3 in an informal way, we expect the following exponential behavior:

P

(
FT

T
≈ r

)
= e−T [I(r)+o(1)].

When the Gärtner-Ellis theorem holds, the rate function I(r) can be expressed in terms of

Legendre transform of the scaled cumulant generating function µ(α) defined as:

µ(α) = lim
T→+∞

1

T
lnE(eαFT ).

We are going to state Theorem 2.1, which shows that the scaled cumulant generating function

of the observable FT is differentiable, hence it is possible to apply the Gärtner-Ellis theorem,

thus deriving the large deviations rate function of FT . Moreover, the theorem shows that

the scaled cumulant generating function can be written in a closed form as the logarithm of a

spectral radius. Before stating the theorem, it is convenient to introduce a non-negative matrix

P̃α, α ∈ R whose elements are:

p̃α(x, y) := p(x, y)eα f(x,y), (x, y) ∈ S2, (2.3)

where P is the transition matrix of the Markov chain. Because the quantities eα f(x,y) are always

positive, P̃α is irreducible as soon as P is. Let ρ(α) denote the Perron-Frobenius eigenvalue

of the matrix P̃α. The next theorem, shows that ln ρ(α) coincides with the scaled cumulant

generating function µ(α).
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Theorem 2.1 ([21], Theorem 3.1.2). Let (Xn)n≥ 0 be a finite state Markov chain possessing

an irriducible transition matrix P and starting distribution ν. For every r ∈ R, define:

I(r) := sup
α∈R

{α r − ln ρ(α)},

where ρ(α) is the spectral radius of the matrix P̃α defined in (2.3). Then FT defined in (2.1)

satisfies the large deviation principle with the convex rate function I(·).

Proof. Define

µT (α) :=
1

T
lnE(eαFT ).

In order to prove the statement and derive the large deviations rate function of FT , we want

to use the Gärtner-Ellis theorem, so we have to check that the limit

µ(α) = lim
T−→+∞

µT (α)

exists for every α ∈ R and that the limit function µ(·) is finite and differentiable everywhere in

R. Developing computations and recalling definition (2.3), we get:

µT (α) =
1

T
lnE(eαFT ) =

1

T
ln
∑

x0... xT

ν(x0)p(x0, x1) . . . p(xT−1, xT )eα f(x0,x1) . . . eαf(xT−1,xT )

=
1

T
ln
∑

x0,xT

ν(x0)p̃(T )
α (x0, xT ) =

1

T
ln
∑

x0

ν(x0)
∑

xT

p̃(T )
α (x0, xT ). (2.4)

Introducing the unitary vector φ = (1, . . . , 1), equation (2.4) can be equivalently written as

1

T
ln
∑

x0

ν(x0)
∑

xT

p̃(T )
α (x0, xT ) =

1

T
ln
∑

x0

ν(x0)
∑

xT

p̃(T )
α (x0, xT )φ(xT ). (2.5)

We now set

xmin := argmin
x

[ν(x)
∑

xT

p̃(T )
α (x, xT )φ(xT )]

xmax := argmax
x

[ν(x)
∑

xT

p̃(T )
α (x, xT )φ(xT )],

thus getting the following inequalities:

1

T
ln


|S|ν(xmin)

∑

xT∈S

p̃(T )
α (xmin, xT )φ(xT )


 ≤ µT (α)

≤ 1

T
ln


|S|ν(xmax)

∑

xT∈S

p̃(T )
α (xmax, xT )φ(xT )



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and

1

T
ln(|S|ν(xmin)) +

1

T
ln


∑

xT∈S

p̃(T )
α (xmin, xT )φ(xT )


 ≤ µT (α)

≤ 1

T
ln(|S|ν(xmax)) +

1

T
ln


∑

xT∈S

p̃(T )
α (xmax, xT )φ(xT )


 .

Since P̃α is irreducible, part e) of Theorem 1.5 holds (with φ = (1, . . . , 1)). Therefore, computing

the limit for T → +∞, we get:

µ(α) = ln ρ(α). (2.6)

Finally, we remark that, being P̃α a positive matrix, as direct consequence of Perron-Frobenius

theorem, we have that ρ(α) is a simple root of the characteristic equation of the matrix P̃α,

hence it is differentiable with respect to α (and this reflects on µ(α)).

Theorem 2.1 shows that the scaled cumulant generating function of the observable (2.1) reduces

to the logarithm of the spectral radius of P̃α.

2.1.2 The method

The computation of µ(α) = ln ρ(α) in a closed form is often difficult, especially if the cardinality

of the sample space is very large. To overcome this difficulty, it is useful to have numerical

methods which allow to compute (at least approximately) the scaled cumulant generating

function. In the following, we present a Monte Carlo method, called Cloning algorithm, which

pursues this aim. The method was firstly introduced in [29] and further developed in [28]. We

start from the definition of µ(α):

µ(α) = lim
T→+∞

1

T
lnE(eαFT ) = lim

T→+∞

1

T
ln

∑

(x0,x1,...,xT )∈ST+1

ν(x0)p̃α(x0, x1) . . . p̃α(xT−1, xT ),

where we have used definition (2.3) for the tilted dynamics. Since the matrix P̃α is not stochas-

tic, i.e
∑

y∈S p̃α(x, y) 6= 1, we define a new dynamics described by the matrix Pα, whose

elements are:

pα(x, y) =
p̃α(x, y)

k(x)
, (2.7)

where k(x) :=
∑

y∈S p̃α(x, y) =
∑

y∈S p(x, y)eα f(x,y) is a normalization factor. Using definition

(2.7) we can write µ(α) as follows:

µ(α) = lim
T→+∞

1

T
ln

∑

(x0,...,xT )∈ST+1

ν(x0)k(x0)pα(x0, x1) . . . k(xT−1)pα(xT−1, xT ) (2.8)

= lim
T→+∞

1

T
ln

∑

(x0,xT )∈ S2

ν(x0)Rα
(T )(x0, xT ) = lim

T→+∞

1

T
ln ||ν · R(T )

α ||1, (2.9)
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where we have defined:

Rα(x, y) := k(x)pα(x, y). (2.10)

Note that, as a consequence of the Ergodic Theorem for Markov chains 1.4, the choice of the

starting distribution ν(x) does not affect limit (2.8).

The aforementioned formulation leads us to a break point: in the next paragraph we intro-

duce some results that will turn to be useful to reconnect expression (2.9) with the branching

processes framework. For this reason we insert here a brief digression on such kind of processes.

2.1.3 Overview on branching processes

The branching process is a model of population growth which owes its name to the fact that

members can reproduce and die causally thus creating a diagram of offspring which realizes

a family tree. In this paragraph, we describe the process following the dissertation presented

in [27]. Consider a starting population of size N0 whose individuals belong to the same type.

The ith member of the population (with i ≤ N0) gives birth, independently from the others,

to a random number of direct successors, say Zi, where Zi are i.i.d random variables with

distribution

P(Z = k) = p(k) with p(k) ≥ 0, k ≥ 0,

+∞∑

k=0

p(k) = 1

and with expectation

r := E(Z) =
∑

k

k p(k).

After this reproduction phase, we get a first generation of descendants of size N1 and each of

them bears a progeny whose size distribution is governed by p. Iterating the scheme, we get

that the nth generation, of size Nn, is composed of individuals of the (n-1)st, each of whose

gives birth to k descendants with probability p(k): this procedure realizes an integer valued

Markov chain (Ni)i=1,...,n, since the size of each population only depends on the previous step.

At time n it is described by the random variable

Nn =

Nn−1∑

i=1

Zi. (2.11)

The following proposition, concerning the expectation of Nn, is taken from [27] (Section 3).

Proposition 2.1. The conditional expectation of Nn, given N0, is:

E(Nn|N0) = N0 r
n. (2.12)

Proof. In order to prove the statement we proceed by induction, so we first consider the case

n = 1. We have:

E(N1|N0) = E

(
N0∑

i=1

Zi

∣∣∣∣∣N0

)
= N0E(Z1) = N0 r.
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We now assume, as induction hypothesis, that (2.12) holds for n. The following equalities hold:

E(Nn+1|N0) = E (E(Nn+1|NnNn−1 . . . N0)|N0) = E(E(Nn+1|Nn)|N0) = E

(
E

(
Nn∑

i=1

Zi

∣∣∣∣∣Nn

)∣∣∣∣∣N0

)

where we have used, respectively, the tower property, the Markov property and the definition of

the process. Combining the fact that E
(∑Nn

i=1 Zi|Nn

)
= Nnr since, as effect of the conditioning,

the size of the population Nn is known, with the induction hypothesis (2.12), the following chain

of equalities holds:

E

(
E

(
Nn∑

i=1

Zi

∣∣∣∣∣Nn

)∣∣∣∣∣N0

)
= E(Nn r|N0) = rE(Nn|N0) = rn+1N0.

We can generalize this development to multi-type branching processes, so to the case in which

each member of the population can give birth to 0 < |S| < +∞ different mutant forms,

independently with respect to the other. In a parallel way with the one-type process, we

denote by pi(k1, . . . , k|S|) the probability that the individual of type i gives birth to k1 children

of type 1, k2 children of type 1, ..., k|S| children of type |S|. We have:

pi(k1, . . . , k|S|) ≥ 0,

+∞∑

k1,...,k|S|=1

pi(k1, . . . , k|S|) = 1 ∀i = 1, . . . , |S|.

The size of the population at time n is a random vector

Nn = (Nn(1), Nn(2), . . . , Nn(|S|)) (2.13)

where Nn(j), 1 ≤ j ≤ |S|, is the number of individuals of type j at time n. The evolution of

the size of each family is described by

Nn+1(j) =

|S|∑

i=1

Nn(i)∑

l=1

Zl
(i,j) (2.14)

where Z(i,j) represents the number of individuals of type j which are offspring of an individual

of type i and its distribution is

P(Z(i,j) = kj) = pi(kj)

whereas Z
(i,j)
l with l = 1, . . . , Nn(i) are Nn(i) i.i.d copies of Z(i,j) with distribution pi(kj).

At the same way, (Z
(i,1)
l , . . . , Z

(i,|S|)
l ), with l = 1, . . . , Nn(i) are Nn(i) i.i.d copies of the vector

(Z(i,1), . . . , Z(i,|S|)) with distribution pi(k1, . . . , k|S|). More precisely:

P(Z(i,1) = k1, . . . , Z
(i,|S|) = k|S|) = pi(k1, . . . , k|S|) with ki ≥ 0, ∀ i = 1, . . . , |S|.
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We collect in the matrix R the average offspring:

R(i, j) := E(Z(i,j)). (2.15)

The following proposition, taken from [27] (Section 5), generalizes Proposition 2.1 to the multi-

type case.

Proposition 2.2. Let Nn be the random vector defined in (2.13). The expectation of Nn,

conditioned to N0, is given by:

E(Nn|N0) = N0R
(n),

where R(n) denotes the nth power of the matrix.

Proof. We prove that for each j ∈ {1, . . . , |S|}

E(Nn(j)|N0) =

|S|∑

k=1

N0(k) r(n)(k, j) (2.16)

by induction. We first consider the case n = 1: recalling that N1(j) can be expressed through

(2.14), we have

E(N1(j)|N0) = E




|S|∑

i=1

N0(i)∑

l=1

Zl
(i,j)

∣∣∣∣∣N0


 =

|S|∑

i=1

E




N0(i)∑

l=1

Zl
(i,j)

∣∣∣∣∣N0


 =

|S|∑

i=1

N0(i) r(i, j).

We now assume that (2.16) holds for n and we prove it for n+ 1:

E(Nn+1(j)|N0) = E(E(Nn+1(j)|N0N1 . . . Nn)|N0) = E(E(Nn+1(j)|Nn)|N0) (2.17)

where we have used, respectively, the tower property and the Markov one. Moreover, recalling

(2.16), we can proceed from (2.17) as follows:

E


E




|S|∑

i=1

Nn(i)∑

l=1

Zl
(i,j)

∣∣∣∣∣Nn



∣∣∣∣∣N0


 = E




|S|∑

i=1

E




Nn(i)∑

l=1

Zl
(i,j)

∣∣∣∣∣Nn



∣∣∣∣∣N0


 = E




|S|∑

i=1

Nn(i)r(i, j)

∣∣∣∣∣N0




=

|S|∑

i=1

r(i, j)E(Nn(i)|N0) (2.18)

where we have exploited the fact that E

(
∑Nn(i)

l=1 Zl
(i,j)

∣∣∣∣∣Nn

)
= Nn(i)E(Z

(i,j)
1 ), since the con-

ditioning on Nn provides information on Nn(i) and, in addiction, E(Z
(i,j)
1 ) = E(Z(i,j)), having
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Z
(i,j)
1 the same distribution of Z(i,j). At this point, we can use the induction hypothesis, thus

getting from (2.18):

|S|∑

i=1

r(i, j)E(Nn(i)|N0) =

|S|∑

i=1

r(i, j)

|S|∑

k=1

N0(k)r(n)(k, i) =

|S|∑

k=1

N0(k)

|S|∑

i=1

r(n)(k, i)r(i, j)

=

|S|∑

k=1

N0(k)r(n+1)(k, j).

Having reached the end of this digression on branching processes, we can switch again to the

computation of the scaled cumulant generating function introduced at the beginning of the

section, since we left as open point its connection with such processes. In order to recap, we

recall the expression of the scaled cumulant generating function:

µ(α) = lim
T→+∞

1

T
ln

∑

(x0,...,xT )∈ST+1

ν(x0)k(x0)pα(x0, x1) . . . k(xT−1)pα(xT−1, xT ) (2.19)

= lim
T→+∞

1

T
ln

∑

(x0,xT )∈S2

ν(x0)Rα
(T )(x0, xT ) = lim

T→+∞

1

T
ln ||ν · R(T )

α ||1.

The following proposition holds:

Proposition 2.3. Consider a multi-type branching process with |S| species which evolve ac-

cording to the dynamics described by Pα. Let N0(x0) be the number of individuals at time 0 in

configuration x0 and M0 :=
∑|S|

x0=1 N0(x0) the initial size of the population. Then

µ(α) = lim
T→+∞

1

T
ln
MT

M0
, (2.20)

where MT := E(
∑

xT∈S NT (xT )|N0) is the average size of the population at time T .

Proof. We denote by N0(x0) the number of individuals at time 0 in configuration x0 and by

M0 :=
∑|S|

x0=1 N0(x0) the starting number of individuals.

As a direct consequence of the Ergodic theorem, the starting distribution of the Markov chain

does not affect the limiting behavior so that we can choose ν(x0) = N0(x0)
M0

. The expression of

µ(α) becomes:

µ(α) = lim
T→+∞

1

T
ln

∑

(x0,xT )∈S2

N0(x0)

M0
Rα

(T )(x0, xT ). (2.21)

In order to conclude, we identify Rα(x, y) = k(x)pα(x, y) defined in (2.10) with the average

number E(Z(x,y)) of individuals of type y coming from an individual of type x (see (2.15)) and

we apply Proposition 2.2, thus getting

µ(α) = lim
T→+∞

1

T
ln
∑

xT∈S

E(NT (xT )|N0)

M0
= lim

T→+∞

1

T
ln

E(
∑

xT∈S NT (xT )|N0)

M0
= lim

T→+∞

1

T
ln
MT

M0
.
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The idea of the algorithm is to simulate the average involved in the definition of the scaled

cumulant generating function using a family of initial conditions belonging to the phase space,

interpreted as a population of individuals, over which a dynamics is implemented. Sometimes

we will refer to these individuals with the term clones. The dynamics can be interpreted as the

natural evolution of the member of a population into a mutant form, as it happens in multi-type

branching processes, where the probability of each transition is described by the matrix Pα (2.7).

This step, whereby all individuals change their state, is called evolution. After having evolved,

each individual can reproduce giving life to offspring or die, thus vanishing from the population:

this corresponds to the so-called cloning phase and, for each clone x, the rate of reproduction

is regulated by the normalization factor k(x). The two steps described up to now allow to

reproduce formula (2.19), indeed note that each factor of the product
∏T−1

t=0 k(xt)pα(xt, xt+1)

can be interpreted as a sequence of steps in which the individual reproduces (according to

k(xt)) and evolves (according to pα(xt, xt+1)), following an atypical trajectory which derives

from the tilted dynamics.

In order to avoid an explosion of the population, a renormalization phase is also added. It

consists in uniformly sampling from the family, after the cloning phase, a number of individuals

equal to the starting size of the population, thus selecting the configurations favored by the

dynamics and avoiding numerical difficulties (due to possible large sizes of the population).

Summarizing, formula (2.20) is implemented via the following steps:

a) We start with M0 conditions of the space S which represent a family of initial systems:

such family of possible states can be read as a bunch of starting conditions over which

we implement the sum (2.19).

b) Each clone evolves according to probability Pα(·, ·).

c) Each clone in configuration x is then replicated and gives birth to a number of offspring

equal to {
⌊k(x)⌋ + 1 with probability k(x) − ⌊k(x)⌋
k(x) = ⌊k(x)⌋ otherwise

(2.22)

where ⌊k(x)⌋ represents the greatest integer less than or equal to k(x). In case that

k(x) = 0 the clone is killed and it doesn’t leave offspring.

Since MT ≈M0e
T (ln ρ(α)+o(1)) would explode (ρ(α) > 1) or vanish (0 < ρ(α) < 1) exponentially

fast, a renormalization step is also added.

d) Once that the clones have evolved and reproduced, the total number of copies is brought

back to M0, uniformly choosing M0 clones among those present after the evolution and
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reproduction step. At each step τ , after the cloning phase, it is convenient to keep trace

of the rescaling factor Sτ := Mτ
Mτ−1

, so that

µT (α) =
1

T
ln
MT

M0
=

1

T
ln

(
MT

MT−1

MT−1

MT−2
. . .

M2

M1

M1

M0

)
=

1

T
ln (ST · ST−1 . . . S1)

=
1

T

T∑

τ=1

ln(Sτ ).

The method, resumed in Algorithm 1, proceeds by repeating iteratively the four steps above:

µ(α) is estimated by computing

µT (α) =
1

T

T∑

τ=1

ln(Sτ ).

Remark 2.1. A considerable simplification of the scheme occurs when the cloning rates have

all the same expression, say k̄, i.e they are independent from the state of the system. In such

case from (2.8) we get:

µ(α) = lim
T→+∞

1

T
ln(k̄)T + lim

T→+∞

1

T
ln

∑

(x0,...,xT )∈ST+1

ν(x0)pα(x0, x1) . . . pα(xT−1, xT ) = ln(k̄).

(2.23)

Equation (2.23) puts the accent on the strict connection between the partition function of the

model and the scaled cumulant generating function; such relation can be rephrased saying that

the core of the method is actually the numerical approximation of a partition function.

2.2 Applications and numerical results

In order to provide a further analysis of the algorithm, we now focus our attention on some

simple applications, thus showing the performances of the method. We set two main scenarios

basing on the chosen dynamics, a random walk over the integers and the Ehrenfest’s diffusion,

and we specialize the additive observable FT to them. The dynamics is described by birth and

death Markov chains on a finite space S = {0, 1, 2, . . . , N} and we refer to the setup defined in

Section 1.3.

2.2.1 Birth and death chains

Birth and death chains are a particular case of discrete-time Markov chains where transitions

allowed consist in only two types: births which increase the state of the system by one and

deaths which make the opposite operation. Let

px = P(Xn+1 = x+ 1|Xn = x)

qx = P(Xn+1 = x− 1|Xn = x),
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Algorithm 1 Cloning method

Choose a family of initial conditions (clones) M0 according to a starting distribution ν and fix

α ∈ R and a positive integer T .

FOR τ = 1, 2, . . . , T

EVOLUTION. Make each clone evolves according to the dynamics described by (2.7).

CLONING. Reproduce each member of the population according to the integer rate (2.22).

SAMPLING. Bring back to M0 the total number of copies of the system and keep trace of

Sτ = Mτ
Mτ−1

.

END

Approximate the scaled cumulant generating function with

µT (α) =
1

T

T∑

τ=1

ln(Sτ ).

be, respectively, the probability that the state of the system turns from x into x+ 1 (px) and

the probability that it changes from x to x− 1 (qx). Furthermore, let 1− qx− px the likelihood

that no move is made. In the following we analyze three types of birth and death chains which

differ in the choice of both the configurations space S and the dynamics.

General case: S = N0

We first consider the case of a birth and death process with probabilities depending on the state

of the system and we impose the detailed balance to find the reversible stationary distribution:

π(x)px = π(x + 1)qx+1 =⇒ π(x) = π(x− 1)
px−1

qx
.

Thus

π(x) =

x−1∏

k=0

pk
qk+1

π(0) with π(0) =

(
+∞∑

x=0

x−1∏

k=0

pk
qk+1

)−1

, (2.24)

assuming that the series converges.

Reflecting boundary conditions on S = [0, 1, . . . ,N ]
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An example of birth an death chain is obtained by considering a particle performing a random

walk with reflecting conditions on N + 1 sites: the barrier, located at the edges of the interval

[0, N ], makes each particle bounce on the previous position. In this case probabilities do

not depend on the particular configuration, so we have probability p of moving to the right

(one step forward), probability q of moving to the left (one step backward) and probability

1 − px − qx = 1 − q − p of staying still on the configuration. We impose again the detailed

balance in order to find the stationary distribution:

π(x)p = π(x + 1)q =⇒ π(x+ 1) =
p

q
π(x), x ∈ {0, . . . , N}

π(x) =

(
p

q

)x

π(0)

with π(0) =
(∑N

x=0

(
q
p

)x)−1
=

(
1−
(

q
p

)N+1

1− q
p

)−1

; if we specialize to the case p = q, from the

detailed balance we get:

π(x) =
1

N + 1
.

Therefore the invariant and reversible measure of this model is:

π(x) =




π(0)

(
p
q

)x
if p 6= q

1
N+1 if p = q

. (2.25)

Periodic boundary conditions on S = [0, 1,. . . ,N ]

A variation on the theme of the reflective random walk is the cyclic random walk. A particle

jumps, according to constant probabilities, on N+1 sites spread over a Torus, T[0,N ], numbered

from 0 to N : with probability p the particle moves on the right, with probability q it moves on

the left and with probability 1 − p − q it remains on the site where it is located. In this case

we note that, in addition to the condition

π(x)p = π(x+ 1)q, x = 0, . . . , N − 1

which implies π(x) =
(
p
q

)x
π(0), we have the closing bond π(N)p = π(0)q, that is

π(N) =

(
p

q

)N

π(0) = π(0)
q

p
. (2.26)
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Equation (2.26) is satisfied only if p = q, thus, detailed balance is possible only in this case. If

p 6= q, in order to find the stationary distribution, we exploit definition π = π · P that reads

as:

π(x) = π(x− 1)qx + π(x)(1 − px − qx) + π(x + 1)px

which specialized to px = p and qx = q yields

π(x) = π(x− 1)p + π(x)(1 − p− q) + π(x+ 1)q. (2.27)

From (2.27) it is immediate to check that the uniform measure is stationary. In case p 6= q,

the detailed balance is not satisfied and we don’t have a reversible measure. Summarizing, the

uniform distribution is invariant for any p 6= q and it is reversible only in the case p = q:

π(x) =

{
1

N+1 if p = q, reversible
1

N+1 if p 6= q, not reversible
.

Ehrenfest’s diffusion model

A stochastic model of diffusion was proposed by P. and T.Ehrenfest in [23]: N particles num-

bered from 1 to N are spread over two urns, denoted by A and B. The dynamics evolves as

follows: a random number is extracted from the set S = {0, 1, 2, . . . , N} and the corresponding

ball is moved from the urn to which it belongs, to the other one, except for the case where

0 is extracted, in which the configuration of the system does not change. The state of the

system can be described at a macroscopic level by the number of balls that are in A (or B).

Denoting by x the state in which x balls are located in urn A (and N−x in urn B), the possible

transitions of the system at each instant of time are: x → x + 1, x → x − 1 and x → x. The

dynamics evolves according to the transition probabilities p(x, x), p(x, x+ 1), p(x, x− 1) which

correspond, respectively, to the moves: “ the system is not changed” , “ the number of particles

in urn A is incremented by one”, “ the number of particles in urn A is decremented by one.”

Since p(x, y) represents the conditional probability that the event y occurs given that the event

x occurred at the previous step, we can precisely establish the likelihood of each transition. The

passage x → x + 1 only happens when a particle positioned in B is extracted: the probability

of this transition is p(x, x + 1) = N−x
N+1 , since we have N − x balls lying in B. The transition
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x → x− 1 occurs when the number returned by the experiment labels a particle belonging to

A, thus we have p(x, x − 1) = x
N+1 . Finally, it remains the case that, being extracted 0, the

system does not change the configuration: this happens with probability p(x, x) = 1
N+1 . Such

probabilities can be written in a (N + 1 ×N + 1) square stochastic transition matrix that we

report below:

P =




1
N+1

N
N+1 0 · · · · · · · · · 0

1
N+1

1
N+1

N−1
N+1 · · · · · · . . . 0

0 0 2
N+1

1
N+1

N−2
N+1 · · · 0

...
...

...
...

...
...

...

0 0 · · · · · · N−1
N+1

1
N+1

1
N+1

0 0 · · · · · · 0 N
N+1

1
N+1




. (2.28)

Remark 2.2. The setup described above, corresponds to a birth and death chain with tran-

sition probabilities depending on the state of the system:

px := P(Xn+1 = x + 1|Xn = x) =
N − x

N + 1
(2.29)

qx := P(Xn+1 = x− 1|Xn = x) =
x

N + 1
. (2.30)

Proposition 2.4. The stationary measure of the Ehrenfest’s model is the binomial distribution:

π(x) ∼ Bin

(
N,

1

2

)
.

Proof. Using (2.24) with px (2.29) and qx (2.30) we find:

π(x) =
N · (N − 1) · · · N − (x− 1)

x · (x− 1) · · · 1
π(0) =

N !

x!(N − x)!
π(0) =

(
N

x

)
π(0)

where π(0) can be derived by condition: 1 =
∑N

x=0 π(x) = π(0)
∑N

x=0

(N
x

)
= 2Nπ(0), which

returns π(0) = 2−N . Hence, the resulting distribution is π(x) =
(N
x

)
2−N which is the binomial

distribution with N proofs and success probability equals to 1
2 .

The Gallavotti-Cohen formula

Before turning to numerical tests, we present a meaningful property of the scaled cumulant

generating function which arises from the application of the Gallavotti-Cohen fluctuation the-

orem to additive path functionals. When the observable (2.1) is chosen in a specific way, the

theorem highlights a symmetry property on the scaled cumulant generating function (see [36]).

The following proposition makes this statement precise.
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Proposition 2.5. Let (Xn)n≥0 be a Markov chain with irreducible transition matrix P. Choos-

ing as particular observable FGC
T =

∑T−1
n=0 f

GC(Xn,Xn+1) where fGC(x, y) = ln p(x,y)
p(y,x) , with

x, y ∈ S. Then:

µGC(α) = µGC(−1 − α),

where we denote by µGC the cumulant generating function corresponding to FGC
T .

Proof. In order to prove the symmetry, being µGC(α) connected to the spectral radius of P̃α

(as we can see from (2.6)), we recall the definition of the matrix:

p̃α(x, y) = p(x, y)

(
p(x, y)

p(y, x)

)α

.

First we consider P̃ T
α , i.e the transposed matrix of P̃α, with elements p̃Tα(x, y):

p̃Tα(x, y) = p̃α(y, x) = p(y, x)

(
p(y, x)

p(x, y)

)α

,

then we consider P̃−1−α:

p̃−1−α(x, y) = p(x, y)
p(y, x)

p(x, y)

(
p(y, x)

p(x, y)

)α

= p(y, x)

(
p(y, x)

p(x, y)

)α

showing the symmetry property:

P̃ T
α = P̃−1−α.

Denoting by ρ(α) the spectral radius of P̃α and and remarking that a matrix and its transposed

have the same spectrum (so the same spectral radius), we have that ρ(α) = ρ(−1 − α). Thus,

recalling that µ(α) = ln ρ(α), the theorem is proved.

Proposition 2.6. Proposition 2.5 becomes empty, i.e µGC(α) = 0, when the stationary mea-

sure is reversible.

Proof. We start considering the definition

µ(α) = lim
T−→+∞

1

T
E(eαFT )

with FT =
∑T−1

n=0 f(xn, xn+1). If we set f(x, y) = ln p(x,y)
p(y,x) we get:

µ(α) = lim
T−→+∞

1

T
E

(
e
α
∑T−1

n=0 ln
p(xn,xn+1)

p(xn+1,xn)

)
.

We can now exploit the hypothesis of reversibility, writing the detailed balance:

p(xn, xn+1)

p(xn+1, xn)
=
π(xn+1)

π(xn)
,
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so we can observe that

T−1∑

n=0

ln
p(xn, xn+1)

p(xn+1, xn)
=

T−1∑

n=0

ln
π(xn+1)

π(xn)

= − lnπ(x0) + lnπ(x1) + lnπ(x2) − lnπ(x1) · · · − lnπ(xT−1) + lnπ(xT )

which is a telescopic sum in which all terms cancel except for the first and the last one. We

finally get:

FT = − lnπ(x0) + lnπ(xT ).

Since E(eα[− lnπ(x0)+lnπ(xT )]) is bounded, we can conclude that:

µ(α) = lim
T−→+∞

1

T
E(eα[− lnπ(x0)+lnπ(xT )]) = 0.

2.2.2 Numerical tests on the periodic random walk

This paragraph aims at applying the algorithm to the random walk with periodic boundary

conditions. The tests performed include as observable the function f defined in (2.2). For a

clearer application of the algorithm we report the setting we use for the tests. The space of

the states consists of the set S = {0, . . . , N} whereas the transition matrix is

P =




1 − p− q p 0 . . . q

q 1 − p− q p . . . 0
...

...
...

...
...

p 0 . . . q 1 − p− q



.

Furthermore we consider:

i) the observable FT =
∑T−1

n=0 f(Xn,Xn+1) with

f(x, y) =





+1 if y = x+ 1, i.e the particle jumps to the right

−1 if y = x− 1, i.e the particle jumps to the left

0 otherwise.

(2.31)

Note that f(xn, xn+1), with xn ∈ S and xn+1 ∈ {xn, xn− 1, xn + 1}, is a sequence of i.i.d

random variables taking values in the set {+1,−1, 0}.

ii) The cloning rates k that, in this case, do not depend on the specific state of the clone:

k = 1 − p− q + p eα + q e−α.
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iii) The matrix Pα which contains the evolution of the dynamics:

Pα =




1−p−q
k

p eα

k 0 · · · · · · · · · q e−α

k
q e−α

k
1−p−q

k
p eα

k · · · · · · . . . 0
...

...
...

...
...

...
...

0 0 · · · · · · q e−α

k
1−p−q

k
p eα

k
p eα

k 0 · · · · · · 0 q e−α

k
1−p−q

k




.

In case of i.i.d random variables, the computation of µ(α) is straightforward:

µ(α) = lim
T−→+∞

1

T
lnE

(
eα
∑T−1

n=0 f(Xn,Xn+1)
)

= lim
T−→+∞

1

T
lnE

(
T−1∏

n=0

eαf(Xn,Xn+1)

)
= lim

T−→+∞

1

T
ln

T−1∏

n=0

E

(
eα f(Xn,Xn+1)

)

= lim
T−→+∞

1

T
ln
[
E(eαf(X0,X1))

]T
= lnE(eαf(X0,X1)) = ln

(
p eα + q e−α + 1 − p− q

)
.

(2.32)

Figure 2.1 shows the result of simulations on the model when p = q and when p 6= q; the total

number of sites considered is N = 50 whereas the starting size of the population is M0 = 500.

The performances improve as long as the number of initial conditions and iterations grows.

However, it is not known if there is an optimal choice of T and M0 which maximizes the

accuracy of the numerical approximation while minimizing the computational effort. In order

to get a perfect match as in Figure 2.1 we fixed T = 1000.

Preserving the same dynamics, parameters can be adjusted in order to appreciate the symmetry

property of the scaled cumulant generating function described in Proposition 2.5. According

to its hypothesis we have

fGC(x, y) = ln

(
p(x, y)

p(y, x)

)
=





ln
(
p
q

)
if y = x+ 1

ln
(
q
p

)
if y = x− 1

0 otherwise

, (2.33)

the matrix P̃α turns into:

P̃α =




1 − p− q p
(
p
q

)α
0 . . . q

(
q
p

)α

q
(
q
p

)α
1 − p− q p

(
p
q

)α
. . . 0

...
...

...
...

...

p
(
p
q

)α
0 . . . q

(
q
p

)α
1 − p− q



,

and the cloning rates take the form:

k = p

(
p

q

)α

+ q

(
q

p

)α

+ 1 − p− q.
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Figure 2.1: Approximation of the scaled cumulant generating function (2.32) via the Cloning

algorithm: the dotted line represents the output of the simulation whereas the continuous one

is the analytic result (2.32). The tests have been made using p = 1
3 , q = 1

9 (left) and p = q = 1
3

(right).

Finally the expected curve is given by the proposition below:
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Figure 2.2: Approximation of the scaled cumulant generating function µGC(α) with p = 1
3 and

q = 1
9 : the dotted line, which represents the algorithm approximation, perfectly matches the

expected curve.

Proposition 2.7. Let FGC
T =

∑T−1
n=0 f

GC(Xn,Xn+1) be the Gallavotti-Cohen osservable (2.33).

The resulting scaled cumulant generating function is:

µGC(α) = µ

(
α ln

(
p

q

))
. (2.34)
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Proof.

µGC(α) = lim
T−→+∞

1

T
lnE(eα

∑T−1
n=0 fGC(Xn,Xn+1)) = lim

T−→+∞

1

T
lnE(eα ln p

q

∑T−1
n=0 f(Xn,Xn+1))

= µ

(
α ln

p

q

)
,

where f is defined in (2.31).

Remark 2.3. Note that the random walk with reflecting boundary conditions is trivial, in the

sense that µ(α) and µGC(α) are null. This is a direct consequence of the reversibility of the

stationary measure (see (2.25)), combined with Propositions 2.6 and 2.7.

Figure 2.2 shows the result of the simulations when the method is applied to the observable

(2.34) with p 6= q. When p = q the function vanishes, as a direct consequence of its definition.

The algorithm has been run using T = 1000, M0 = 500 and N = 50.

An analogous analysis can be drawn by considering the Ehrenfest’s diffusion: the principal

difference with the periodic random walk consists in the fact that the flux FT is not made of

i.i.d random variables, hence we use a different strategy, which leans on Theorem 2.1, in order

to find the scaled cumulant generating function.

2.2.3 Numerical tests on the Ehrenfest’s diffusion

In this paragraph we apply the Cloning algorithm to the Ehrenfest’s diffusion using three

different additive observables; we give a synthetic overview of the setting in each case and we

compare the expected results with the numerical ones, thus giving a further evidence of the

robustness of the algorithm. The phase space S = {0, 1, . . . , N} is the same for all tests whereas

differences between models are due to the choice of FT . Note that, in this setup, f(xn, xn+1)

is not a sequence of i.i.d random variables because the probability at the present step depends

on the previous one.

In order to find an analytical expression of µ(α) to compare with, we exploit relation 2.6, thus

moving the goal on computing the spectral radius of P̃α. The procedure followed for pursuing

this aim is described below:

a) build the matrix for lower cases, namely N = 1, 2, 3, identifying the maximum eigenvalue

and generalize its structure for the N -dimensional case, thus getting the candidate ρ(α).

b) Compute the eigenvectors associated to the spectral rays of the lower cases (N = 1, 2, 3)

and repeat the strategy generalizing to the N dimensional case, thus getting u, i.e the

eigenvector corresponding to ρ(α).

c) As a final step check that relation P̃αu = ρ(α)u is verified: this assures that the guessed

candidate is effectively an eigenvalue and, if the components of its eigenvector u are all

positive, the Perron-Frobenius theorem guarantees that it is the spectral radius.
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We start proposing the first flux we dealt with by analogy with the periodic random walk, i.e

the symmetric flux.

Symmetric flux

Consider the following parameters:

i) the observable FT,1 =
∑T−1

n=0 f(Xn,Xn+1) with

f(x, y) =





+1 if y = x+ 1, i.e particles in urn A increase

−1 if y = x− 1, i.e particles in urn A decrease

0 if y = x, i.e nothing happens;

(2.35)

ii) the cloning rates k(x) which, in this case, depend on the particular state of the clone:

k(x) =
N − x

N + 1
eα +

x

N + 1
e−α +

1

N + 1
;

iii) the matrix Pα which contains the normalized dynamics, with elements:

pα(x, x) =
1

(N + 1)k(x)
, pα(x, x + 1) =

(N − x)eα

(N + 1)k(x)
, pα(x, x− 1) =

x e−α

(N + 1)k(x)

with x = 0, . . . , N.

The scheme described above leads to a spectral radius equal to one. Remembering relation

(2.6), we can conclude that:

Proposition 2.8. The rate function of the flux (2.35) and its Legendre transform for the

Ehrenfest’s model are:

I(r) = sup
α
α r = +∞

µ(α) = ln(1) = 0.

We now propose a second flux, which exhibits an asymmetry devised for avoiding the trivial

result implied by the symmetric one.

Asymmetric flux

Consider the following quantities:

i) the observable FT,2 =
∑T−1

n=0 f(Xn,Xn+1) with

f(x, y) =





+2 if y = x+ 1, i.e the number of particles in urn A increase

−1 if y = x− 1, i.e the number of particles in urn A decrease

0 if y = x, i.e nothing happens;

(2.36)
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ii) the cloning rates k(x) which still depend on the state of the clone:

k(x) =
N − x

N + 1
e2α +

x

N + 1
e−α +

1

N + 1
;

iii) the matrix Pα containing the normalized dynamics, with elements:

pα(x, x) =
1

(N + 1)k(x)
, pα(x, x + 1) =

(N − x)e2α

(N + 1)k(x)
pα(x, x− 1) =

x e−α

(N + 1)k(x)

with x = 0, . . . , N.

The model leads to a spectral radius equal to ρ(α) = 1+Ne
α
2

N+1 . In conclusion:

Proposition 2.9. The scaled cumulant generating function and the rate function for the flux

(2.36) in Ehrenfest’s model are respectively:

µ(α) = ln

(
1 +N e

α
2

N + 1

)
(2.37)

I(r) = 2r ln

(
2r

N(1 − 2r)

)
+ ln[(1 − 2r)(N + 1)]

where I(r) is the Legendre transform of µ(α).

Flux dependent on the state

As a conclusive variation of the observable, we propose a flux which contains the dependence

on the state of the system. Consider:

i) the observable FT,3 =
∑T−1

n=0 f(Xn,Xn+1) with

f(x, y) =





−2x
c if y = x+ 1, i.e particles in urn A increase

2x
c if y = x− 1, i.e particles in urn B decrease

1 if y = x, i.e nothing happens

(2.38)

where c ∈ R;

ii) the cloning rates k(x):

k(x) =
N − x

N + 1
e

−2α x
c +

x

N + 1
e

2αx
c +

eα

N + 1
;

iii) the matrix Pα:

pα(x, x) =
eα

(N + 1)k(x)
, pα(x, x + 1) =

(N − x)e
−2α x

c

(N + 1)k(x)
pα(x, x− 1) =

x e
2αx
c

(N + 1)k(x)

with x=0,. . . ,N.
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Figure 2.3: Approximation of the scaled cumulant generating function (2.37) (left) and (2.39)

(right): the pictures correspond to parameters N = 16, T = 1000, M0 = 500.

Once again, we can repeat the scheme stated at the beginning of the paragraph which leads to

the spectral radius ρ(α) = eα+N e
α
c

N+1 . In analogy with the previous cases, we can drawn the same

conclusions on the scaled cumulant generating function, resumed by the proposition below:

Proposition 2.10. The scaled cumulant generating function and the rate function for the flux

(2.38) in Ehrenfest’s model are respectively:

µ(α) = ln

(
eα +N e

α
c

N + 1

)
(2.39)

I(r) =
cr

c− 1
ln

(
N(−1 + cr)

c(1 − r)

)
− ln

(
1

N + 1

{[
N(−1 + cr)

c(1 − r)

] c
c−1

+N

[
N(−1 + cr)

c(1 − r)

] 1
c−1

})

Simulations showed in Figure 2.3 confirm the agreement with the expected result; once again,

in order to approach with a good accuracy the the analytic curve we fix the number of iterations

to T = 1000 with a starting population of M0 = 500 clones. The total number of particles

among the two urns is N = 16.

The purpose of the applications described in this last section was to illustrate how the al-

gorithm works and to give an idea of how to recover and set the parameters. The method

presented in this chapter inspired our research challenge, that is extending the strategy to a

more complex scenario, the random graphs framework, in order to infer information on the

scaled cumulant generating function. The next chapter aims at giving an overview of this

specific context, merging the large deviation theory into the landscape of random graphs and

highlighting the open problem we want to tackle: as we will see, the additive observables we

deal with, keep trace of some selected structures as long as the graph evolves.



Chapter 3

Large Deviations on random graphs

The purpose of this chapter is to provide an insight into the main results about large deviations

of dense Erdös-Rényi random graphs, when we consider as observable the number of triangles.

The aforementioned model represents the simplest example of random graph one can build and

is characterized by the fact that each edge is present in an independent way with probability

p. Originally defined in [25], it has been the subject of several investigations and one of the

most studied class of graphs in literature, even if, due to its simplicity, it is not a proper tool

for modeling real networks.

On the other side, the theory of Large Deviations studies the probabilities of rare events and

the conditional probabilities of events, given that some rare event occurred: when applied to

random graphs framework it gives rise to complex and surprising scenarios, despite of the basic

structure of the starting model. For example, if we choose as observable the number of triangles

of a graph, the two typical questions one could aim at answer concern

a) the probability of observing an atypical number of triangles

b) the structure of the graph which realizes such deviation.

The first problem was firstly investigated in the work of Chatterjee and Dey ([17]) but a crucial

turning point was given by Chatterjee and Varadhan ([19]), who made use of the theory of

graph limits for merging the problem in a more general framework, in which the rate function

can be obtained as the solution of a variational problem. Using this general setup, it is also

possible to tackle the second question and investigate how the graph looks like using a proper

notion of distance.

This chapter aims at giving an excursus on the known results concerning the free energy and

the rate function of the Erdös-Rényi model when the observable considered is the number of

triangles. Furthermore we aim at giving a clear picture of the unresolved region of the free

energy which we want to investigate. The outline of the chapter is the following: Section 3.1 is

devoted to graph limit theory ( which is the preliminary basis for studying large deviations via

the variational approach) and main results on large deviations of dense Erdös-Rényi random

45
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graphs. Section 3.2 focuses on Exponential Random Graphs (which include the Erdös-Rényi

as a particular case) and gives an overview of the state-of-art concerning the free energy of the

resulting model. In the final part of this last section we provide an argument to connect the

scaled cumulant generating function of the number of triangles of a dense Erdös-Rényi graph,

with the free energy resulting from an Exponential Random Graph model (with parameters

properly tuned). We conclude by highlighting the purpose of our research with the related

open points.

3.1 Graph limit theory and large deviations

3.1.1 Random graphs

This paragraph is devoted to recall some notions that will be used throughout the chapter. A

graph G is an object defined by a couple (V(G), E(G)), where V(G) denotes the set of vertices

(otherwise called nodes) and E(G) represents the set of edges, i.e the possible connections

between the nodes. Given two vertices {i, j} ∈ V(G) we say that the couple (i, j) belongs to

E(G) if a link is present between them. The set of vertices is typically denoted by its cardinality,

for example V(G) = [n], if the number of vertices runs from 1 to n. The total amount of edges

of G will be denoted by E(G), namely E(G) := |E(G)| and, in a parallel way, the total number

of vertices by |V(G)|. One of the characterizing quantities of the vertices is their degree, namely

the number of edges incident to them: if we denote by di the degree of vertex i, the one of the

whole graph will be ln :=
∑

i∈ [n] di. We recall that when we consider the degree of a vertex,

self loops (namely edges which start and end on the same vertex) are counted twice. When

each vertex has the same degree the graph is called regular.

We can move forward with the nomenclature saying that a graph is called directed when the

edges point at a precise direction, meaning that the underlying relation can be read in one

verse, otherwise it is called undirected: typically, in directed graphs, the edges are drawn with

arrows in order to make explicit the sense of connection. Finally, by the term simple graph, we

intend an undirected graph without self loops and no multiple edges, i.e edges incident to the

same two vertices. It is also convenient to introduce the definition of bipartite graph, since we

will frequently refer to this terminology throughout the thesis. First, we recall that, in graph

theory, an independent set is a set of vertices of the graph, no two of which are adjacent. This

means that for any pair of vertices belonging to the set, no edge is present between the two

nodes.

Definition 3.1 (Bipartite graph). A graph G is called bipartite if it is possible to split the set

of vertices V(G) in two independent sets, A(G) and B(G), such that every edge belonging to

E(G) connects a vertex of A(G) to a vertex of B(G).

An important characterization of bipartite graphs involves the notion of cycle: given an alter-

nating sequence of vertices and edges, say x0, e1, x1, e2, . . . , el, xl where ei = xi−1xi, 0 < i ≤ l,
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we say that W := x0x1 · · · , xl is a walk of length l. A cycle is a walk W such that l ≥ 3,

x0 = xl and the vertices xi, 0 < i < l are distinct from each other and from x0 [8].

Theorem 3.1 ([8],Theorem 4). A graph is bipartite if and only if it has no odd cycles, namely

cycles of odd length.

From the mathematical point of view, it is convenient to represent graphs using the so-called

adjacency matrices, which consist in 0 − 1 elements which denote, respectively, the absence

or the presence of a connection between two nodes. In this thesis, adjacency matrices will be

denoted by {Xij}i,j=1...,n and, according to the model of graph they represent, they embody

specific features: for example, when the graph is undirected and with no self loops they are

symmetric and with null elements on the diagonal. There exists a disparate variety of models

of graphs and some of them turn to be useful for describing real networks.

As we mentioned on the introduction, one of the simplest random graph model, is the Erdös-

Rényi one ([25],[30]): we recall that in this graph, each pair of nodes is connected with proba-

bility p. If p stays fixed as long as the graph grows its dimension (n), we speak of dense case

whereas if we choose p = c
n , where c is a constant, we get the sparse case. In this last model,

the degree of a random vertex of the graph has Binomial distribution Bin
(
n− 1, c

n

)
, that

converges to a Poisson, Poiss(c), when n → +∞. Another famous model is the preferential

attachment one, which describes a graph growing in time ([2],[9]): vertices, connected to a fixed

number of edges, are sequentially added to the graph and edges are connected to the receiving

vertex with probability proportional to its degree. Another famous model is the generalized

random graph in which each vertex i ∈ [n] receives a weight ωi: given the weights, edges are

present in an independent way but the occupation probabilities, say pij, are not the same for

all the edges but depend on the weights of the vertices involved. As described in [5], since this

model is essentially tree-like, it does not consider the reciprocity observed in real social net-

works. One network model that attempts to incorporate reciprocity and follows the statistical

mechanics approach, is the Exponential Random Graph model. It is based on the definition of

an Hamiltonian for weighting the probability measure on the space of graphs. Such measure,

which is the Gibbs one, assigns higher probability to graphs which correspond to desiderable

properties.

Finally, we quote another model which can be used for describing the behavior of social net-

works, that is the random intersection graph ([34]): in this model a random subset Sv of a

given set S is assigned to vertex v and two vertices v and w are connected only if the set they

belong to, intersect.

3.1.2 Preliminary results on graph limit theory

The theory of graph limits was firstly introduced by Laszlo Lovász and coauthors in [39], [38],

[11], [12], [13] : in this section we give a brief review of such theory, with the main definitions

and basic results. We strictly refer to the formalism used by Chatterjee in [15] and [17]. To
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start with, we consider a family of graphs {Gn}n of size n, where n goes to infinity: among

all possible topics that can be studied on the evolution of such family, one can be interested

in identifying specific patterns and counting some selected structures, such as the density of a

given subgraph, as long as n grows. In order to provide an answer to this need, we first introduce

the notion of homomorphisms between graphs: it is a proper tool for counting patterns since,

given two graphs, it maps the edges of the former into the ones of the latter.

Definition 3.2 ([15], Definition 3.1). Let H and G be two simple graphs: a map ϕ : V(H) 7−→
V(G) is an homomorphism if and only if (ϕ(i), ϕ(j)) ∈ E(G) for all (i, j) ∈ E(V ).

Let |Hom(H,G)| denote the number of homomorphisms from H in G: this is not exactly the

amount of copies of H in G but it is a multiple of it if H is a complete graph. For example, when

H is a triangle, we have |Hom(H,G)| = 6T (G), where T (G) denotes the number of triangles

of the graph G (indeed, the three vertices of the triangles can be labeled in six possible ways);

when H is an edge, we have |Hom(H,G)| = 2E(G). When we normalize |Hom(H,G)| we get

the homomorphism density:

Definition 3.3 ([15], Definition 3.2). Let H and G be finite simple graphs. The homomorphism

density of H in G is defined as

t(H,G) :=
|Hom(H,G)|
|V(G)||V(H)|

. (3.1)

We remark that, since the maximum number of homomorphisms from a graph of k vertices

into a graph of n vertices is nk, such density properly belongs to [0, 1].

We now move the focus back to the sequence of growing graphs {Gn}n: suppose that we want

to analyze the evolution of the density of a given simple graph H over the sequence {Gn}n,

thus studying the limit behavior of t(H,Gn), that we call t(H). In order to read information

on such limit element Lovász and coauthors introduced a proper object: the graphon (or graph

limit) whose definition is reported below.

Definition 3.4 (Graphon, [15]). Let W be the space of all bounded measurable functions

[0, 1]2 7−→ [0, 1] that satisfy f(x, y) = f(y, x) for all x, y ∈ [0, 1]. We refer to the elements

of these space as graphons or graph limits.

Intuitively the idea is to map the limit graph on the unitary square: the coordinates (x, y) on

[0, 1]2 represent the equivalent of a couple of vertices whereas f(x, y) denotes the probability

of connecting x with y.

For example, the graph limit associated to the dense Erdös-Rényi random graph with parameter

p, is the constant function identically equal to p.

Remark 3.1 ([18]). Observe that a simple graph G of size n can be read as a graphon by

defining

fG(x, y) =

{
1 if (⌈nx⌉, ⌈ny⌉) is an edge of G

0 otherwise
, (3.2)
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where the symbol ⌈·⌉ denotes the ceiling function. Moreover, we observe that fG is a Borel

measurable function and fG(x, y) = fG(y, x).

As a consequence of Remark 3.1, the space of graphs turns out to be a subset of the space of

graphons. It is now possible to define a distance between the elements of this last space, the

so-called cut distance.

Definition 3.5 (Cut Distance, [17]). For any f, g ∈ W we define the distance

δ�(f, g) := sup
S,T⊆[0,1]

∣∣∣∣
∫

S×T
[f(x, y) − g(x, y)] dx dy

∣∣∣∣ . (3.3)

At this point a remark is in order: note that, thinking in terms of graphs, it is enough to

relabel the vertices for getting an object which, a priori is different, but has substantially the

same properties of the starting one. As the graphs can be identified up to permutations, the

same consideration can be applied to graphons, which can be classified in a parallel way up to

bijections, thus grouping them in equivalence classes.

Definition 3.6 ([15], Section 3.3). A measure-preserving bijection of [0, 1] is a map σ :

[0, 1] 7−→ [0, 1] such that σ is a bijection and, for any Borel set S, the Lebesgue measures

σ(S) and σ−1(S) are both equal to that of S.

Definition 3.7 (Equivalence relation). Let Σ the space of all measure-preserving bijections

σ : [0, 1] 7−→ [0, 1]: we say that f(x, y) ∼ g(x, y) (namely f is equivalent to g) if it exists σ̄ ∈ Σ

such that

g(x, y) = f(σ̄(x), σ̄(y)) =: fσ̄(x, y). (3.4)

The quotient space with respect to this equivalence relation is denoted by W̃ and we indicate by

f̃ the equivalence class of f . The quotient space has some interesting properties, for example,

it can be equipped with the natural extension of the cut distance:

δ�(f̃ , g̃) := inf
σ̄1,σ̄2∈Σ

(fσ̄1(x, y), gσ̄2(x, y)),

for any f̃ , g̃ ∈ W̃ , thus becoming a metric space. Furthermore:

Theorem 3.2 ([40], Theorem 5.1). The metric space (W̃, δ�) is compact.

The framework defined up to now outlines the starting problem of properly devising a limit

for t(H,Gn) but the definition of convergence still lacks: before switching to it, we need to

introduce the notion of subgraph density, namely the density of a fixed subgraph on a graphon.

Such definition naturally emerges by noting that, thanks to expression (3.2) of fG, it is possible

to write the homomorphism density (3.1) in terms of the graphon ([15], Exercise 3.1):

t(H,G) =

∫

[0,1]k

∏

(i,j)∈E(H)

fG(xi, xj)dx1 · · · dxk. (3.5)

As a direct consequence of (3.5), we introduce the following definition:
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Definition 3.8 (Subgraph density, [17]). Take a simple graph H with V(H) = [k] and f ∈ W;

the subgraph density of H in f is defined as

t(H, f) :=

∫

[0,1]k

∏

(i,j)∈E(H)

f(xi, xj)dx1 · · · dxk. (3.6)

For example if H is a triangle, (3.6) reads as follows:

t(H, f) :=

∫ 1

0

∫ 1

0

∫ 1

0
f(x, y)f(y, z)f(z, x) dx dy dz. (3.7)

Proposition 3.1. The subgraph density t(H, ·) is continuous for any finite simple graph H.

It is now possible to precise the notion of convergence:

Definition 3.9 ([17]). A sequence of graphs {Gn}n is said to converge to f in W, if for every

finite, simple graph H,

lim
n→∞

t(H,Gn) = t(H, f).

Given a graphon f and a measure-preserving bijection σ̄ ∈ Σ, it is possible to show that

t(H, f) = t(H, fσ̄)

and, from the equality displayed above and the fact that f̃ = {fσ̄|σ̄ ∈ Σ} immediately follows

that

t(H, f) = t(H, f̃), f ∈ f̃ . (3.8)

We stress that it is crucial to keep in mind relation (3.8) in order to avoid ambiguities in the

notation during the dissertation of the following part of this thesis.

3.1.3 Large deviations

Throughout all this section we will refer to large deviations of dense Erdös-Rényi random graphs

sequences {Gn,p}n, where each graph Gn,p belongs to the space Gn,p. We recall that, according

to this model, each node of the graph is connected or not, with independence, respectively with

probability p and 1 − p and this probability does not depend on the size n of the graph. Let

X(n) = {Xij}i,j=1,...,n be the symmetric adjacency matrix of an Erdös-Rényi random graph:

each random variable Xij ∈ {0, 1} has a Bernoulli distribution of parameter p and denotes

the presence (Xij = 1) or absence (Xij = 0) of the edge. We precise that the diagonal of the

adjacency matrix is null since loops are not allowed and that each matrix X(n) lives in a space

Ωn with cardinality |Ωn| = 2(n2). We denote by Pn,p the Erdös-Rényi measure: given a graph

with adjacency matrix X(n), it is defined as follows

Pn,p(X
(n)) := p

∑
i<j≤n Xij (1 − p)(

n
2)−

∑
i<j≤ n Xij = (1 − p)(

n
2)ehpE(X(n)), (3.9)
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having settled hp := ln p
1−p and recalling that by E(X(n)) =

∑

i<j≤n

Xij we indicate the total

number of edges of the graph. In the following, the expectation with respect to this measure

will be denoted by E
ER
p (·).

For a fixed p ∈ (0, 1), let Ip(x) : [0, 1] 7→ [0, 1] be the Bernoulli relative entropy

Ip(x) := x ln
x

p
+ (1 − x) ln

1 − x

1 − p
.

It is possible to extend Ip(x) to W for any f ∈ W as follows:

Ip(f) =

∫

[0,1]2
Ip(f(x, y))dxdy =

∫

[0,1]2

[
f(x, y) ln

(
f(x, y)

p

)
+ (1 − f(x, y)) ln

(
1 − f(x, y)

1 − p

)]
dxdy.

(3.10)

We recall that the function is defined with continuity over the whole interval [0, 1] by setting

Ip(0) = Ip(1) = 0 and this convention also extends to Ip(f).

Remark 3.2. The Bernoulli relative entropy (3.10) which takes as argument a graphon f ∈ W,

can be extended to the space W̃ by defining Ip(f̃) := Ip(f): in other words, with notation Ip(f̃)

we simply mean that the function is computed in a representative element f of the equivalence

class f̃ .

Another important property of Ip(f) is that it is a convex function and, as a consequence, its

extension Ip(f̃) on the space W̃ is lower-semicontinuous with respect to the cut metric ([19],

Lemma 2.1).

Since the main task of this paragraph is to provide an overview on the main large deviations

results for the sequence {Gn,p}n, we start reporting the definition of large deviation principle,

however a preliminary remark is in order.

Remark 3.3 ([18]). The Erdös-Rényi random graph Gn,p induces, respectively, a probability

distribution Pn,p on the space W through the map Gn,p 7−→ fGn,p and a probability distribution

P̃n,p on W̃ through the map Gn,p 7−→ fGn,p 7−→ f̃Gn,p = G̃n,p.

Large Deviation Principle (LDP) for dense ER random graphs [19]. The following

theorem gives a Large Deviation Principle for the measure P̃n,p induced by the Erdös-Rényi

random graph on the quotient space W̃ of graphons equipped with the cut metric.

Theorem 3.3. ([19], Theorem 2.3) For any fixed p ∈ (0, 1), the sequence P̃n,p obeys a large

deviation principle on the space W̃ with rate function defined in (3.10).

More precisely, for any closed set F̃ ⊆ W̃ :

lim sup
n→+∞

2

n2
ln P̃n,p(F̃ ) ≤ − inf

f̃∈F̃
Ip(f̃) (3.11)

and for any open set Ũ ⊆ W̃ :

lim inf
n→+∞

2

n2
ln P̃n,p(Ũ ) ≥ − inf

f̃∈Ũ
Ip(f̃). (3.12)
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As we have done before for a generic sequence {Gn}n, we can consider the subgraph density

of a simple graph H on the sequence of dense Erdös-Rényi graphs {Gn,p}n and look for the

probability that such density exceeds a given threshold: what can be said about the exponential

rate of decay of such probability? A first general answer is provided by Theorem 3.4.

Large deviation principle for subgraphs densities [19]. Consider the subgraphs density

(3.6) and define

φ+(H, p, r) = inf{Ip(f̃) : f̃ ∈ W̃ , t(H, f̃) ≥ r, r ∈ [0, 1]}, (3.13)

φ−(H, p, r) = inf{Ip(f̃) : f̃ ∈ W̃ , t(H, f̃) ≤ r, r ∈ [0, 1]}, (3.14)

where W̃ is the space of graphons andH is a fixed subgraph. Since Ip(f̃) is lower semicontinuous

in the space W̃ under the metric δ�, the infimum is always attained. The following theorem,

specialized to the Erdös-Rényi model, shows how the search of the rate function turns into a

variational problem. In case of dense Erdös-Rényi graphs, due to the independent, identical

distribution of the edges, it is possible to show that E(t(H,Gn,p)) = pE(H). Such consideration

explains why pE(H) turns out to be the candidate threshold to compare with, when we speak

of large deviations.

Theorem 3.4 ([15], Theorem 6.3). Let {Gn,p}n a sequence of random graphs belonging to the

Erdös-Rényi model with p ∈ (0, 1). Then

lim
n→∞

2

n2
lnP(t(H,Gn,p) ≥ rE(H)) = −φ+(H, p, r), r > p, (3.15)

lim
n→∞

2

n2
lnP(t(H,Gn,p) ≤ rE(H)) = −φ−(H, p, r), r < p. (3.16)

Let

a) F̃+(H, p, r) be the set of minimizers of Ip(f̃) subject to the constraint t(H, f̃) ≥ rE(H),

b) F̃−(H, p, r) be the set of minimizers of Ip(f̃) subject to the constraint t(H, f̃) ≤ rE(H).

Depending on the structure of minimizers we can distinguish two different regions:

The symmetric phase. We say that r is in the symmetric phase if F̃+(H, p, r) contains

only constant functions. Similarly, for r < pE(H) we say that r is in the symmetric phase if

F̃−(H, p, r) consists of constant functions.

The symmetry breaking phase. We say that r is in the symmetry broken phase if F̃+(H, p, r)

contains non-constant graphons. Similarly, for r < pE(H) we say that r is in the symmetry bro-

ken phase if F̃−(H, p, r) consists of non-constant graphons.

The next large deviation result we need to introduce, requires the notion of convex mino-

rant. For this reason, we make a brief digression on the geometric properties of Ip(·): this is

the content of the following lemma.
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Lemma 3.1 ([41], Lemma A.1). The function x 7→ Ip ( γ
√
x) with domain (0, 1) is convex for

0 < γ ≤ 1. If γ > 1 and

p ≥ p0(γ) :=
γ − 1

γ − 1 + e
γ

γ−1

(3.17)

then the function is also convex. If γ > 1 and 0 < p < p0(γ), then the function has exactly

two inflection points, with a region of concavity in the middle. Finally the function has infinite

derivatives at both endpoints of (0, 1).

If we specialize to the case γ = 2 we can work out from Lemma 3.1 that the function Ip(
√
x)

is convex when p ≥ p0 = 1
1+e2 , whereas it has two inflection points when p < p0. The convex

minorant is get replacing the concave part with a linear part which consists of a segment

between the two inflection points, as shown in Figure 3.1.

Figure 3.1: Convex minorant of Ip(
√
r): the concave part between the two inflection points r21

and (1 − r1)
2 is replaced by the red, dotted line.

Keeping in mind the definition of convex minorant, we can characterize the large deviations of

upper tails of triangles (for the Erdös-Rényi, dense model) through the following theorem.

Theorem 3.5 ([41], Theorem 1.1). Fix 0 < p ≤ r < 1 and let H be a finite, simple, regular

graph of degree d ≥ 2. Let {Gn,p}n a sequence of random graphs drawn from the Erdös-Rényi

distribution.

(i) If the point (rd, Ip(r)) lies on the convex minorant of the function Ip(x
1/d) then

lim
n→∞

1(n
2

) lnP(t(H,Gn,p) ≥ rE(H)) = −Ip(r)

(ii) If the point (rd, Ip(r)) does not lie on the convex minorant of the function Ip(x1/d) then

lim
n→∞

1(n
2

) lnP(t(H,Gn,p) ≥ rE(H)) > −Ip(r)
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Proposition 3.2. When H is a triangle (d = 2), the symmetric phase corresponds to the

following regions:

a) if p ≥ 1
1+e2

≈ 0.1192 then r ∈ [p, 1) (this immediately follows from Lemma 3.1 and item

(i) of Theorem 3.5);

b) if p < 1
1+e2

≈ 0.1192 then r ∈ [p, r1] ∪ [1 − r1, 1) where r1 is the unique solution of

ln
r

1 − r
− (1 − 2r) ln

p

1 − p
= 0 r ∈ (0, 1/2).

This last condition is recoverable from [41, Lemma A.2].

The breaking phase consists of all points (p, r) such that (r2, Ip(r)) does not lie on the convex

minorant: sticking to the notation given in [41], we denote such region by B2. The set is

represented in Figure 3.2(a); Figure 3.2(b) puts the accent on the replica symmetric region

(the blue one) and on its the profile which was guessed to be the optimal one before the work

of Lubetzky and Zhao [41] (dotted line). Furthermore, the figure reports the critical values

introduced in Proposition 3.2 and the threshold p0 = 1
1+e2 .

Rearranging statement (i) of Theorem 3.5 we can say that if the point (r2, Ip(r)) lies on the

(a) (b)

Figure 3.2: Replica breaking region (3.2(a)) and phase diagram for the upper tails of triangle

density (3.2(b)). The dotted line on the phase diagram represents the first, not optimal profile

splitting the two regions (replica breaking and replica symmetric) given in the first work of

Chatterjee and Dey ([17]). Both pictures are taken from [41].

.
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convex minorant of Ip(
√
x), then

lim
n→∞

1(n
2

) lnP(t(H,Gn,p) ≥ rE(H)) = lim
n→∞

1(n
2

) lnP

(
T (Gn,p)(n

3

) ≥ r3

)
(3.18)

= lim
n→∞

1(n
2

) lnP

(
T (Gn,p)

n
≥ r3

6

)
= −Ip(r) (3.19)

where
T (Gn,p)

n denotes the normalized number of triangles of the graph or, equivalently (using

formulation given in [19] where the correction terms of the limit are computed)

P

(
T (Gn,p)

n
≥ r3

6

)
= exp

(
−n2 Ip(r)

2

(
1 +O(n−

1
2 )
))

. (3.20)

The problem of deriving a large deviation principle for the upper tails of triangles of a dense

Erdös-Rényi model was initially faced by Chatterjee and Dey in [17]. The rate function was

proved to be the relative Bernoulli entropy in a precise region which they called replica sym-

metric: roughly speaking the required condition for things to work was to choose p > 2

2+e
3
2

.

Such interval of p, however, was not the optimal one: the precise characterization, summed up

in Proposition 3.2, is due to the work of Lubetzky and Zhao [41] and it’s also extended to a

generic regular subgraph.

For what concerns the rate function of the lower tails of triangles of the dense Erdös-Rényi

graph, we refer to [55] (Theorem 2.1). The main result basically states that there are two

curves depending on p that we denote by r̄(p) and r(p) (such curves are found in [55], at

least partially, through a numerical approach) which mark three regions: the one which lies

above r̄(p) characterizes the replica symmetric, the one which lies below r(p) characterizes the

replica breaking whereas the region included between r(p) and r̄(p) is unresolved. Again, for

the replica breaking region, the analytic expression of the rate function is unknown whereas

it coincides with the Bernoulli relative entropy above r̄(p). Figure 3.3 portrays the overview

given in this section.

3.2 Exponential Random graphs and limiting free energy

The purpose of this paragraph is to define the Exponential Random Graph model providing the

main results on the limiting free energy: in order to present this summary, we strictly follow

[18]. This section is, at a first glance, disjoint from the large deviations context but, as we will

argue at the end of the paragraph, such topics are deeply related.

Let Gn the space of simple graphs on n vertices: for a fixed graph Gn ∈ Gn one can define a

probability measure, more precisely the Gibbs one, starting from the Hamiltonian

H(Gn) :=
k∑

i=1

βit(Hi, Gn), (3.21)
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Figure 3.3: Phase diagram for triangle density: the symbol < denotes the replica breaking

phase, the symbol = indicates the replica symmetric one, whereas the region denoted by ? is

unresolved (more precisely it is not known if replica symmetric, replica breaking or both occur

in it). The picture is taken from [55].

where βi are real parameters, Hi are simple graphs (for example H1 is the edge subgraph and

H2 is the triangle subgraph) and t(Hi, Gn) is the homomorphism density defined in (3.1). The

function H(Gn) is sometimes called sufficient statistic. On this model, we define the probability

distribution

P(Gn) =
eH(Gn)

Zn
, (3.22)

where Zn is the normalizing partition function.

Even if in the standard setting the Hamiltonian weighs the regular subgraphs of the graph

Gn (e.g. triangles and edges), it is possible to introduce a more general approach in which

the Hamiltonian (3.21) is a continuous, bounded function on the space (W̃ , δ�) which takes as

argument the equivalence class of a graphon. In fact, we know that it is always possible to map

elements of Gn into elements of W̃. In this context we can define the pressure

ψn(β) =
1

n2
ln
∑

G̃n∈W̃

en
2H(G̃n) (3.23)

and give the following theorem:
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Theorem 3.6 ([18], Theorem 3.1). Let H : W̃ 7→ R be a bounded continuous function and let

I(f̃) :=

∫

[0,1]2
I(f(x, y))dxdy =

∫

[0,1]2
f(x, y) ln (f(x, y)) + (1 − f(x, y)) ln (1 − f(x, y)) dxdy

(3.24)

be the natural extension of the entropy to the space W̃. Then,

ψ(β) := lim
n→∞

ψn(β) = sup
f̃∈W̃

(
H(f̃) − 1

2
I(f̃)

)
. (3.25)

Furthermore, the set of maximizers F∗ ⊆ W̃ is non-empty and compact.

In the same way as we did for problem (3.13), we can distinguish two regions basing on the set

maximizers F∗: we say that the Exponential Random Graph is in the replica symmetric phase

if F∗ only consists of constant functions. If the elements of the set are non-constant functions

we say that the graph is in the replica breaking phase. The two next paragraphs are devoted

to separately analyze these two regimes.

Even if the statement of Theorem 3.6 involves a general bounded, continuous H(G̃n), for the

subsequent discussion we will focus on the model given by Hamiltonian (3.21). More precisely,

we denote by

H(G̃n) =
k∑

i=1

βit(Hi, Gn), (3.26)

the natural extension of H(Gn) defined in (3.21) to the space of graphons and we consider

ψn(β) as given in (3.23).

Remark 3.4. We stress that the mapping between H(Gn) and H(G̃n) can be made more

explicit by the following considerations. First, note that Gn can be seen as a graph limit fGn

as specified in Remark 3.1: at this point H(Gn) reads as

H(fGn) =

k∑

i=1

βit(Hi, f
Gn),

where t(Hi, f
Gn) is the subgraph density defined in (3.8). Finally, recalling relation (3.8), we

have t(Hi, f
Gn) = t(Hi, f̃

Gn) = t(Hi, G̃n), being f̃Gn = G̃n.

Under the hypothesis that the coefficients {βi}i=2,...,k in (3.26) are non-negative, we will see

in the next paragraph that the graph is in the replica symmetric region and the variational

problem (3.25) becomes a scalar problem.

3.2.1 Replica symmetric phase

The core results concerning the free energy when the replica symmetric occurs involve a sim-

plified form of the variational problem which turns into a scalar one and the discussion of its
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possible solutions as long as the parameters change. This is the content of the statements

below.

Theorem 3.7 ([18], Theorem 4.1). Suppose that {βi}i=2,...,k are non-negative and H(G̃n) is

chosen as in (3.26): then

lim
n→∞

ψn(β) = sup
0≤u≤ 1

[
k∑

i=1

βiu
E(Hi) − 1

2
I(u)

]
(3.27)

where

I(u) := u ln(u) + (1 − u) ln(1 − u). (3.28)

Proof. The proof can be found in [18, Theorem 4.1].

The possible scenarios which emerge solving the scalar problem (3.27) are collected in the

following theorem:

Theorem 3.8 ([18], Theorem 4.2). Let Gn be an Exponential Random Graph with sufficient

statistic H defined in (3.26). Furthermore we assume that {βi}i=2,...,k are non-negative. Then

a) If the maximization problem (3.27) is solved at a unique value u∗, then Gn is indistin-

guishable from the Erdös-Rényi random graph Gn,u∗ in the large limit, in the sense that

G̃n converges to the constant function u∗ in probability as n→ +∞;

b) Even if the maximizer is not unique, the set U of maximizers is a finite subset of [0, 1]

and

min
u
δ�(G̃n, ũ) → 0 in probability as n→ +∞,

where ũ is the image of the constant function u in W̃ and u is randomly picked from the

set of maximizers U according to some probability distribution.

In both cases the Exponential Random Graph Gn, when n is sufficiently large, looks like an

Erdös-Rényi random graph.

Item (a) of theorem (3.8) was firstly proved by Bhamidi et al. in specific window of parameters

called high temperature regime (see [5], Theorem 7.1); in such region the scalar problem has

a unique solution and the resulting free energy is smooth. It is worth while reporting the

statement, since it will turn to be useful in Chapter 4 and its formulation could help in focusing

the limiting behavior of the Exponential Random Graph from another angle. We define

ϕ(u) :=

k∑

i=1

2E(Hi)βiu
E(Hi)−1, (3.29)

noticing that this function is involved in the first derivative of (3.27) with respect to u. The

following theorem holds:
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Theorem 3.9 ([5], Theorem 7). Let Gn be an Exponential Random Graph with sufficient

statistic (3.26). Assume that parameters {βi}i=2,...,n are non-negative and such that equation
eϕ(u)

1+eϕ(u) = u has a unique solution. Moreover let {X1,ξ ,X2,ξ, . . . ,Xξ−1,ξ} be an arbitrary collec-

tion of ξ − 1 edges (ξ − 1 ∈ N). Then for all (x1, . . . , xξ−1) ∈ {0, 1}ξ−1

|P(X1,ξ = x1,X2,ξ = x2, . . . ,Xξ−1,ξ = xξ−1) − (u∗)
∑ξ−1

i=1 xi(1 − u∗)ξ−1−
∑ξ−1

i=1 xi | n→+∞→ 0,

where u∗ solves eϕ(u)

1+eϕ(u) = u.

As a direct consequence of Theorem 3.8 follows that the conclusion of Theorem 3.9 can be drawn

for the more general setting in which the parameters {βi}i=2,...,n are simply non-negative: the

role of the unique solution of equation eϕ(u)

1+eϕ(u) = u is played by the optimizer, u∗, of the scalar

problem (3.27).

Remark 3.5. If we specialize Hamiltonian (3.26) restricting to the case k = 2, so we only

consider triangles and edges density, we get:

H(G̃n) =
2β1E(Gn)

n2
+

6β2T (Gn)

n3
, (3.30)

where we recall that E(Gn) and T (Gn) respectively denote the number of edges and triangles

of Gn and the coefficients multiplied by β1 and β2 appear since, when H is complete, the

homomorphism density counts subgraphs multiple times (more precisely two times when Hi is

an edge and six times when it’s a triangle). Setting

6β2 := α, 2β1 := hp = ln
p

1 − p
(3.31)

with p ∈ (0, 1), statistic (3.30) reads

H(G̃n) =
hpE(Gn)

2n2
+
αT (Gn)

6n3
. (3.32)

Remark 3.6. Note that the free energy (3.25), when H(G̃n) is chosen as in (3.30), can be

written as:

ψ(α) =
1

2
sup
f̃∈W̃

[
α
t(H2, f̃)

3
+ hp t(H1, f̃) − I(f̃)

]
,

or, equivalently (absorbing
hp

2 t(H1, f̃) into I(f̃)
2 )

ψ(α) =
1

2
sup
f̃∈W̃

[
α
t(H2, f̃)

3
− Ip(f̃)

]
− ln(1 − p)

2
, (3.33)

where Ip(f̃) is the Bernoulli relative entropy defined in (3.10).
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When we are in replica symmetric regime, thanks to Theorem 3.7 the variational problem (3.33)

turns into:

ψ(α) =
1

2
sup

0≤u≤ 1

[
α
u3

3
− Ip(u)

]
− ln(1 − p)

2
α ≥ 0. (3.34)

In the following theorem, we consider the scalar problem present in equation (3.34).

Theorem 3.10. Consider the scalar problem

sup
0≤u≤1

(
α
u3

3
− Ip(u)

)
, α ≥ 0. (3.35)

The following statements hold:

a) The stationary points of (3.35) are found solving the fixed-point equation

eαu2+hp

eαu2+hp + 1
= u. (3.36)

b) If p ≥ 2
2+e3/2

≈ 0.31 then (3.36) has a unique solution, u∗(hp, α), which represents the

maximum of (3.35). Furthermore u∗(hp, α) is continuous in α and sup0≤u≤1

(
αu3

3 − Ip(u)
)

is a differentiable function of α.

c) If p < 2
2+e3/2

≈ 0.31 then there exists an interval [α1, α2] such that (3.36) has more than

one solution when α ∈ [α1, α2].

d) When p < 2
2+e3/2

≈ 0.31, the maximum of (3.35) is reached at a unique u∗(hp, α), except

for a single value of α, that we call ᾱ, where the maximum is attained at two distinct

u∗(hp, ᾱ). Furthermore u∗(hp, α) is discontinuous function of α (jump at ᾱ ∈ (α1, α2))

and, as a consequence, sup0≤u≤1

(
αu3

3 − Ip(u)
)
is not differentiable at ᾱ.

We discuss the statements point by point:

a) Equation (3.36) is simply get deriving (3.35) with respect to u and rearranging terms in

order to isolate the unknown.

b) The full study of equation (3.36) is made in [17]: in particular here it’s proved that above

the threshold p̄ = 2
2+e3/2

equation (3.36) has a unique solution. In order to show that

u∗(hp, α) is continuous in α, we display the geometric argument proposed by Lubetzky

and Zhao in [41]. By the change of variable u := 3
√
x, problem (3.35) can be written as

follows:

sup
0≤x≤1

(
α
x

3
− Ip( 3

√
x)
)
, α ≥ 0. (3.37)

The following proposition gives a geometric characterization of the maxima and it is

drawn from a discussion on the discontinuity of the solution u∗(hp, α) provided in [41].
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Proposition 3.3. x∗ maximizes (3.37) if and only if the tangent to the function x 7→
Ip( 3

√
x) at x∗ has slope α

3 and lies below the curve.

Proof. If the tangent to the function x 7→ Ip( 3
√
x) at x∗ has slope α

3 and lies below the

curve then the following condition holds

Ip(
3
√
x) ≥ α

3
(x− x∗) + Ip(

3
√
x∗) (3.38)

and, rearranging terms, it follows that

α

3
x− Ip(

3
√
x) ≤ α

3
x∗ − Ip(

3
√
x∗), (3.39)

so x∗ is a maximum.

Vice-versa, if x∗ is a maximizer, then it is a stationary point and hence satisfies α
3 =

I ′p( 3
√
x∗), so the slope of the tangent line in x∗ must be α

3 . Furthermore, since x∗ is a

maximum, it still holds inequality (3.39) (and consequently (3.38)), so the tangent lies

below the curve Ip( 3
√
x).

For any α ∈ R, there is a unique lower tangent y = α
3 (x−x∗)+Ip( 3

√
x∗) to the curve Ip( 3

√
x)

in x∗: furthermore, from Lemma 3.1 we know that if p ≥ 2

2+e
3
2

, as in our hypothesis,

Ip( 3
√
x) is convex and the maximizer x∗ of (3.37) is unique.

As a consequence, as α grows, the related tangent point x∗ = u∗3 does the same, moving

on the smooth, convex curve Ip( 3
√
x).

c) if p < 2

2+e
3
2

, it exists an interval [α1, α2] in which one can find more than one solution

of (3.36): the proof, with the precise characterization of these two values, is given in [17,

Lemma 12].

Here, we just report how to recover α1 and α2: for a fixed hp < h̄ = ln(2) − 3
2 (which

corresponds to p̄ = 2

2+e
3
2

) one can find two distinct solutions, 0 < a1(hp) < 1
2 < a2(hp),

of equation

ln(x) +
1 + x

2x
+ hp = 0

which lead to

α1 =
(1 + a1)3

2a1
(3.40)

α2 =
(1 + a2)3

2a2
. (3.41)

The possible cases are the following:

- If α ∈ (α1, α2) there are three solutions of (3.36)
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- if α = α1 or α = α2 there are two solutions of (3.36).

- α /∈ [α1, α2] there is one solution of (3.36).

In general, among all the solutions of (3.36), there is a unique stationary point which

realizes the maximum except for a special value of α, say ᾱ(hp) ∈ (α1, α2), which cor-

responds to two maxima (there is not a closed form for ᾱ(hp); in order to find out such

value one must resort to simulations). Figure 3.2(a) shows how the critical parameter

ᾱ(hp) changes as hp varies (blue curve). The picture also represents α1(hp) and α2(hp)

given by equations (3.40) and (3.41) (red curves). We recall that the inner region delim-

ited by such red curves corresponds to three solutions of the fixed-point equation, among

which we can select one maximizer except for the case in which the parameters of the

optimization problem (3.35) lie on ᾱ(hp) and we have two maximizers.

d) The proof of point (d) is given in [47, Proposition 3.2] starting from a maximization

problem for the more general function

l(u, β1, β2) = β1u+ β2u
k − Ip(u)

2
, β1 ∈ R, β2 ≥ 0, (3.42)

where k is an integer greater or equal to two.

Note that choosing (β1, β2) = (
hp

2 ,
α
6 ) and k = 3, one recovers (up to the constant 1

2 ) the

scalar problem (3.35). Keeping the focus on this setting, Radin and Yin proved that, for

a fixed p, the limiting free energy, has a first order phase transition in correspondence of

the critical value ᾱ(hp), introduced in item c). Figure 3.2(a) represents the curve ᾱ(hp) as

a function of hp: it lies between α1(hp) and α2(hp) expressed by equations (3.40), (3.41)

(the so-called V-shaped region) and ends in a critical point (hcp, α
c) = (ln(2) − 3

2 ,
27
8 )

which realizes a second order phase transition. Figure (3.2(a)) represents the V-shaped

region with the phase transition ᾱ(hp) whereas Figure (3.2(b)) shows the discontinuity

of the solution u∗
(
hp

2 ,
α
6

)
crossing the critical value ᾱ

(
hp

2

)
.

Remark 3.7. From items b) and d) in Theorem 3.10, it follows that the scalar problem (3.35)

has a unique solution for any p and any α ≥ 0: in fact, even when the critical α realizes

two maxima, we can pick at random one of them according to item b) of Theorem 3.8. More

precisely from (3.34) follows

ψ(α) =
1

2

{
sup

0≤u≤ 1

[
α
u3

3
− Ip(u)

]
− ln(1 − p)

}
= α

u∗3

6
− Ip(u∗)

2
− ln(1 − p)

2
, α ≥ 0 (3.43)

where u∗ solves (3.36).

Geometrical interpretation of the Phase transition

An accurate description of the phenomenon of the phase transition in terms of triangles density

is given by Chatterjee and Diaconis and formalized in [18](Theorem 5.1): we briefly summarize
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(a) (b)

Figure 3.4: V-shaped region (3.2(a)) (picture from [47]) and discontinuity of the solution

u∗
(
hp

2 ,
α
6

)
crossing the critical value ᾱ

(
hp

2

)
. (3.2(b)) (picture from [18])

.

the picture. The expected number of triangles is the first derivative of the free energy ψ(α),

given in (3.43), with respect to α: this means that if u∗(hp, α) shows a jump, the average

number of triangles behaves the same. More precisely, crossing the critical value ᾱ(hp), which

corresponds to two maximizers u∗1(hp, ᾱ) and u∗2(hp, ᾱ) of (3.35), the model switches from a

lower density of triangles to an higher one, skipping intermediate structures. A geometric

interpretation of the phenomenon is provided below and Figure 3.5 gives an intuition of it.

First of all, looking at the scalar problem (3.35), we recall that, using the change of variable

u := 3
√
x, the phase transition happens when Ip( 3

√
x) is not convex (this corresponds to p <

p0(3), whose equation is given in (3.17)). Furthermore from Proposition 3.3 we know that, in

this specific setting, the tangent line in both maxima x∗1 and x∗2 has the same critical slope ᾱ
3

and lies below Ip( 3
√
x). The storyline of the optimal solution passes through three steps: first,

the maximizer is unique and grows with α as long as α reaches the critical value ᾱ(hp); at this

special value the scalar problem has two maximizers and the tangent line touches Ip( 3
√
x) at

x∗1 and x∗2, as shown in Figure 3.5. After the critical value the maximizer turns to be unique

again but it jumps over the interval (x∗1, x
∗
2) and goes on growing continuously with respect to

α. Figure 3.6 gives another evidence of the phase transition for p = 0.2: the maximizer (alias

the density of triangles) passes from being close to 0.1 to being close to 0.9. In this case the

critical value is ᾱ ≈ 4.75. Note that in Figure 3.6 the three values of α chosen for the pictures,

lie inside the interval (α1, α2), where α1 and α2 can be recovered through equations (3.40) and

(3.41). In fact, in both cases we can observe that there are three solutions of the fixed-point

equation (3.36) (right column of Figure 3.6).
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Figure 3.5: Geometrical argument for the phase transition (picture from [41]).

All the conclusions drawn up to now, concern the replica symmetric region and lean on the

hypothesis of Theorems 3.7 and 3.8 of having an Hamiltonian H(G̃n) =
∑k

i=1 βit(Hi, Gn)

with non- negative coefficients {βi}i=2,...,k: Chatterjee and Diaconis proved that the replica

symmetric phase also occurs when such coefficients are negative but small enough in absolute

value. The next theorem makes this statement precise.

Theorem 3.11 ([18], Theorem 6.1). Consider the Exponential Random Graph with sufficient

statistic H(G̃n) =
∑k

i=1 βit(Hi, Gn). Suppose that {βi}i=1,...,k are such that

k∑

i=2

|βi|E(Hi)(E(Hi) − 1) < 2, (3.44)

where E(Hi) is the number of edges of Hi. Then the conclusions of Theorems 3.7 and 3.8 hold

for this vector of parameters (β1, . . . , βk).

In particular, when we consider H2, i.e triangles, recalling that β2 = α
6 (from (3.31)) and

E(H2) = 3, condition (3.44) reads

|α| < 2. (3.45)

Remark 3.8. An important remark is in order: when we start considering negative values of

α, the solution of the fixed-point equation (3.36) which realizes the maximum is lower than p.

Note that such solution represents the average density of triangles. Thinking in terms of large

deviations, this means that we are looking at the lower tails of triangles. Moreover the solution

of (3.36) is unique when α is negative and this can be worked out observing that the function

ϕ(u) := eαu2+hp

eαu2+hp+1
− u, with u ∈ (0, 1), crosses the abscissas axis (in fact, note that ϕ(0) > 0

and ϕ(1) < 0) and that it has a negative first derivative: dϕ(u)
du = 2αϕ(u)(1 − ϕ(u)) − 1 < 0, if

α < 0.
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Figure 3.6: Representation of the function αu3

3 − Ip(u)− log(1−p) involved in the optimization

problem (3.43) (left) and graphical representation of the fixed-point equation which arises from

the problem (right). We can observe that the maximum is close to 0.1 (first row) up to ᾱ ≈ 4.75,

at which the function is optimized at two values (central row). Above ᾱ, which corresponds to

a phase transition, the maximum is close to 0.9 (bottom row).
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3.2.2 Replica breaking

Up to now we have investigated the behavior of the free energy when the vector of parameters β

lies in the replica symmetric region but what happens when the coefficients {βi}i=2,...,k are not

positive neither sufficiently negative and small in absolute value? We quote the two following

theorems, proved in [18], which describe the behavior of the Exponential Random Graph when

the statistic H only consists of triangles and edges and parameters are chosen as in (3.31).

To be precise, we work in the following setting:

H(G̃n) =
1

2

[
α
t(H2, f)

3
+ hp t(H1, f)

]
(3.46)

and we want to maximize H(f) − I(f)
2 .

Theorem 3.12 ([18], Theorem 6.2). Consider the Exponential Random Graph with sufficient

statistic (3.46): then for any given value of p there exists a positive constant C(hp), sufficiently

large, so that whenever α ≤ −C(hp), H(f) − I(f)
2 is not maximized at any constant function.

Consequently, if Gn is an Exponential Random Graph with this sufficient statistic, then there

exists ε > 0 such that

lim
n→∞

P(δ�(G̃n, C̃) > ε) = 1,

where C̃ is the set of constant functions. In other words, Gn does not behave like and Erdös-

Rényi random graph, in the large limit.

Proof. We follow the proof given by Chatterjee and Diaconis in [18]. To start with, fix p and

define γ := −α
6 . We recall that, with a few algebraic steps, one can write the statistic H using

the relative entropy Ip(f) in the following way:

H(f) − 1

2
I(f) = −γ t(H2, f) − 1

2
Ip(f) − 1

2
ln(1 − p), (3.47)

so that the variational problem reads

ψ(γ) = sup
f∈W

[
H(f) − 1

2
I(f)

]
= sup

f∈W

[
−γ t(H2, f) − 1

2
Ip(f) − 1

2
ln(1 − p)

]
. (3.48)

The proof is made by contradiction: we start supposing that α is negative (so that γ is positive)

and that the constant function f(x, y) = u maximizes H(f) − 1
2I(f). Then, we turn the

maximization problem into a minimization one, thus getting:

min
f∈W

[
γ t(H2, f) +

1

2
Ip(f)

]
= γ u3 +

1

2
Ip(u).

The considerations that follow aim at showing that it is possible to find out a best optimizer,

thus leading to an absurd.

From the optimality condition of u it follows that γ u3+ 1
2Ip(u) ≤ γ x3+ 1

2Ip(x) ∀x ∈ [0, 1] and
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this implies u ∈ (0, 1) (indeed, we can exclude the extremal values because the first derivative

in such points is infinite). Furthermore, the stationarity condition yields

0 =
d

dx

(
γ x3 +

1

2
Ip(x)

) ∣∣∣∣∣
x=u

= 3γu2 +
1

2
ln

(
u(1 − p)

p(1 − u)

)
(3.49)

and, rearranging terms,

u2 = − 1

6γ
ln

(
u(1 − p)

p(1 − u)

)
. (3.50)

From (3.50) follows that, since u ∈ (0, 1) and p ∈ (0, 1), limγ→+∞ u(γ) = 0. As a consequence

lim
γ→+∞

min
0≤ x≤ 1

(
γ x3 +

1

2
Ip(x)

)
=
Ip(0)

2
=

1

2
ln

1

1 − p
. (3.51)

We now separately consider the so-called bipartite graphon

g0,p(x, y) :=

{
0 if (x, y) ∈

[
0, 12
]2 ∪

[
1
2 , 1
]2

p if (x, y) ∈
[
0, 12
]
×
[
1
2 , 1
]
∪
[
1
2 , 1
]
×
[
0, 12
] ; (3.52)

for almost every (x, y, z) it realizes a null density of triangles, indeed g0,p(x, y)g0,p(y, z)g0,p(z, x) =

0 and consequently t(H2, g0,p) = 0. Recalling that Ip(p) = 0, so restricting to the subsets of

[0, 1] where g0,p(x, y) = 0, the integral of the Bernoulli relative entropy immediately follows:

∫ 1

0

∫ 1

0

Ip(g0,p(x, y))

2
dx dy =

1

2

(
1

4
Ip(0) +

1

4
Ip(0)

)
=

1

4
ln

1

1 − p
. (3.53)

Since 1
4 ln 1

1−p <
1
2 ln 1

1−p the conclusion is that the constant function u can not be the minimizer

of γ t(H2, f) + 1
2Ip(f).

The final part of the statement follows from Theorem 3.2 in [18] and the compactness of W̃ .

In order to complete the scenario we also report the following theorem which describes the

limiting behavior of the free energy when α→ −∞. It is a special case of Theorem 7.1 in [18]

when we consider the sufficient statistic (3.46), namely when we deal with parameters hp and

α (which respectively tune the density of edges and triangles) settled in (3.31).

Theorem 3.13 ([18], Theorem 7.1). For a fixed p, consider the sufficient statistic (3.46) with

edges and triangles and let F∗(α) be the set of maximizers of the variational problem

sup
f̃∈W̃

[
H(f̃) − I(f̃)

2

]
.

Then

lim
α→−∞

sup
f̃∈F∗(α)

δ�(f̃ , g̃0,p) = 0

and

lim
α→−∞

ψ(α) =
1

4
ln

1

1 − p
. (3.54)
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Roughly speaking, the unique maximizer of the variational problem, in the negative limit for

α, is the bipartite graphon. Furthermore the bipartite graphon is the function which minimizes

the relative entropy Ip(f) among all graphons with a null density of triangles. This is formalized

by the following theorem.

Remark 3.9. The bipartite graphon (3.52) preserves the same properties of the bipartite graph

of Definition 3.1. Since in bipartite graphs the number of odd cycles is null, also bipartite

graphons must be characterized by a null density of odd regular subgraphs. As a consequence

the density triangles t(H2, g0,p) is null.

Theorem 3.14 ([18], Theorem 7.3). Let g0,p(x, y) be the function defined in (3.52), take p ∈
(0, 1) and let H2 be a triangle: if f is any element of W which minimizes Ip(f) among all f

such that t(H2, f) = 0, then f̃ = g̃0,p.

The last proposition we report, highlights that a necessary condition for a representative ele-

ment f ∈ f̃ for being a maximizer of the variational problem

sup
f̃∈W̃

1

2

[
α
t(H2, f̃)

3
+ hp t(H1, f̃)

]
− I(f̃)

2
= sup

f̃∈W̃

1

2

[
α
t(H2, f̃)

3
− Ip(f̃) − log(1 − p)

]
, (3.55)

is to solve equation (3.56).

Theorem 3.15 ([18], Theorem 6.3). If f̃ ∈ W̃ maximizes α
3 t(H2, f̃) − Ip(f̃) then any repre-

sentative element f ∈ f̃ must satisfy for almost all (x, y) ∈ [0, 1]2,

f(x, y) =
eα
∫ 1
0 f(x,z)f(z,y)dz+hp

eα
∫ 1
0 f(x,z)f(z,y)dz+hp + 1

α ∈ R. (3.56)

Moreover, any maximizing function must be bounded away from 0 and 1.

We remark that (3.36) is the scalar version of (3.56): moreover, if we choose f(x, y) identically

equal to any of the solutions of (3.36) when α ∈ R, we have that (3.56) is verified. In conclusion,

such constant functions belong to the stationary points of the functional α
3 t(H2, f̃) − Ip(f̃).

Proof. Let h be a bounded symmetric measurable function from [0, 1]2 into R. For each u ∈ R

define

fu(x, y) := f(x, y) + uh(x, y). (3.57)

First, suppose that the maximizer f is bounded away from 0 and 1. Then, if u is sufficiently

small, fu belongs to the space of graphons W and, since f is an optimizer, the following

inequality holds:
α

3
t(H2, fu) − Ip(fu) ≤ α

3
t(H2, f) − Ip(f).

In particular,

∂

∂ u

(
α t(H2, fu)

3
− Ip(fu)

) ∣∣∣∣∣
u=0

= 0. (3.58)



Exponential Random graphs and limiting free energy 69

The derivative is given by
∂

∂ u

α

3
t(H2, fu) − ∂

∂ u
Ip(fu),

where

∂

∂ u
t(H2, fu) =

∂

∂ u

∫ 1

0

∫ 1

0

∫ 1

0
fu(x, y)fu(y, z)fu(z, x)dxdydz

=

∫ 1

0

∫ 1

0

∫ 1

0

∂ fu(x, y)

∂ u
fu(y, z)fu(z, x) + fu(x, y)

∂ fu(y, z)

∂ u
fu(z, x) + fu(x, y)fu(y, z)

∂ fu(z, x)

∂ u
dxdydz

= 3

∫ 1

0

∫ 1

0

∂ fu(x, y)

∂ u

∫ 1

0
fu(y, z)fu(z, x)dxdydz

= 3

∫ 1

0

∫ 1

0
h(x, y)

∫ 1

0
fu(y, z)fu(z, x)dxdydz,

and

∂ Ip(fu)

∂ u
=

∫ 1

0

∫ 1

0

∂

∂ u
Ip (f(x, y) + uh(x, y)) dxdy =

∫ 1

0

∫ 1

0
h(x, y) ln

(
fu(x, y)(1 − p)

p(1 − fu(x, y))

)
dxdy.

Imposing condition (3.58), it can be concluded that for any measurable function h(x, y) :

[0, 1] → R must hold:

∫ 1

0

∫ 1

0
h(x, y)

(
α

∫ 1

0
f(y, z)f(z, x)dz − ln

(
f(x, y)(1 − p)

p(1 − f(x, y))

))
dxdy = 0. (3.59)

In particular, choosing h(x, y) =
(
α
∫ 1
0 f(y, z)f(z, x)dz − ln

(
f(x,y)(1−p)
p(1−f(x,y))

))
(which is a bounded

function since f is bounded by hypothesis) the conclusion of the theorem follows. As a final

step, we remove the assumption that f is bounded away from 0 and 1 and we prove the theorem

under the hypothesis that f ∈ W is a generic maximizer.

For each u ∈ [0, 1] and a fixed ω ∈ (0, 1) we define

fu,ω(x, y) := (1 − u)f(x, y) + umax{f(x, y), ω}. (3.60)

We observe that fu,ω(x, y) is a symmetric bounded measurable function from [0, 1]2 → [0, 1]

and
∂ fu,ω(x, y)

∂ u
= max{f(x, y), ω} − f(x, y) = (ω − f(x, y))+, (3.61)

where notation (·)+ denotes the positive part of the argument. Using the same strategy of the

first part of the proof, we get:

∂

∂ u
t(H2, fu,ω) = 3

∫ 1

0

∫ 1

0

∂ fu,ω(x, y)

∂ u

∫ 1

0
fu,ω(y, z)fu,ω(z, x)dxdydz

∂ Ip(fu,ω)

∂ u
=

∫ 1

0

∫ 1

0

∂ fu,ω(x, y)

∂ u
ln

(
fu,ω(x, y)(1 − p)

p(1 − fu,ω(x, y))

)
dxdy.
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Finally, using (3.61), we obtain:

∂

∂ u

(α
3
t(H2, fu,ω) − Ip(fu,ω)

) ∣∣∣∣∣
u=0

=

∫ 1

0

∫ 1

0

(
α

∫ 1

0
f(y, z)f(z, x)dz − ln

(
f(x, y)(1 − p)

p(1 − f(x, y))

))
(ω − f(x, y))+dxdy

=

∫ 1

0

∫ 1

0

(
α

∫ 1

0
f(y, z)f(z, x)dz + hp − ln

(
f(x, y)

1 − f(x, y)

))
(ω − f(x, y))+dxdy

≥
∫ 1

0

∫ 1

0

(
−C − ln

(
f(x, y)

1 − f(x, y)

))
(ω − f(x, y))+dxdy,

where C is a positive constant depending on hp (we recall that hp = ln p
1−p), α, H1 and H2. If

ω is so small that

−C − ln
ω

1 − ω
> 0 (3.62)

and f(x, y) < ω then

∂

∂ u

(α
3
t(H2, fu,ω) − Ip(fu,ω)

) ∣∣∣∣∣
u=0

> 0

on a set of positive Lebesgue measure. In conclusion f(x, y) ≥ ω almost everywhere and

this prove that the maximizer must be bounded away from zero. In order to prove that the

maximizer is bounded away from one, the same argument can be used with fu,ω(x, y) :=

(1 − u)f(x, y) − u(f(x, y) − ω)+.

3.2.3 From the Exponential Random graph to Erdös-Rényi

Up to now, we have analyzed the Exponential Random Graph model quoting the main results

concerning the free energy. In this paragraph we want to bring the focus back to the scaled

cumulant generating function defined in (1.4), when the observable is the normalized number of

triangles of a dense Erdös-Rényi random graph, underlining the connection between these two

functions. To begin with, we stress the link between the Exponential Random Graph and the

Erdös-Rényi model. The parallelism is suggested by the comparison between the Erdös-Rényi

measure

Pn,p(X
(n)) = (1 − p)(

n
2)ehpE(X(n)) (3.63)

and the Exponential Random Graph probability distribution

P(X(n)) =
eH(X(n))

Zn
: (3.64)

setting H(X(n)) := hpE(X(n)) and checking that Zn = 1

(1−p)(
n
2)

it is possible to map (3.63) into

(3.64). The control can be easily done using the Newton binomial, (a+b)M =
∑M

k=0

(
M
k

)
akbM−k,
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with a = ehp and b = 1:

Zn =
∑

X(n)∈Ωn

ehp H(X(n)) =

(n2)∑

k=0

((n
2

)

k

)
ehpk = (1 + ehp)(

n
2) =

(
1 +

p

1 − p

)(n2)
=

(
1

1 − p

)(n2)
.

Speaking in terms of the sufficient statistic (3.21), which we report here

H(Gn) =
k∑

i=1

βit(Hi, Gn),

we get the Erdös-Rényi model when we include only edges in the Hamiltonian and we set the

related parameter to hp, in other words when β = (hp, 0, . . . , 0).

Exploiting this connection we want to highlight the link between the free energy defined in

(3.25) and the scaled cumulant generating function. We recall that, when the Gärtner Ellis

theorem holds, it is the Legendre transform of the rate function. We report the definition

below, using the notation E
ER
p (·) for denoting the expectation with respect to the measure

(3.63) (according to the terminology fixed at the beginning of Subsection 3.1.3):

µ(α) = lim
n→+∞

1(n
2

) lnE
ER
p (eα

T (X(n))
n ) = lim

n→+∞

1(n
2

) ln
∑

X(n)∈Ωn

eα
T (X(n))

n Pn,p(X
(n)) (3.65)

= lim
n→+∞

1(n
2

) ln
∑

X(n)∈Ωn

eα
T (X(n))

n ehpE(X(n))(1 − p)(
n
2) = ln(1 − p) + 2ψ(α) (3.66)

= sup
f̃∈W̃

(
α t(H2, f̃)

3
− Ip(f̃)

)
, (3.67)

where we have used expression (3.33) for ψ(α). Moreover, we recall that Pn,p(X
(n)) is the Erdös

measure defined in (3.9), hp = ln p
1−p and α ∈ R. Note that, thanks to Theorem 3.7, when α is

such that replica symmetric occurs, i.e when α > −2, (3.67) reads

µ(α) = α
u∗3

3
− Ip(u∗), α > −2 (3.68)

where u∗ is the solution of (3.36).

When the Gärtner Ellis theorem holds, it is possible to switch from the rate function to the

scaled cumulant generating function (alias the free energy) simply computing the Legendre

transform. What happens when Gärtner Ellis theorem does not hold?

In Subsection 3.1.3 we quoted a large deviation result for the upper tails of triangles of the

Erdös-Rényi model (Theorem 3.5), distinguishing between the replica symmetric region and

the replica breaking one, according to the domain of the rate function argument. Such result

refers to the variational problem (3.13). At the same time the Erdös-Rényi random graph

can be seen as a particular case of a wider class of graphs, the exponential ones, where once
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again it is possible to read these two regions solving another variational problem, (3.67), a

priori different from (3.13). Maintaining the focus on the Erdös-Rényi model and keeping

in mind the strict connection between the scaled cumulant generating function and the free

energy stressed in (3.66), it comes natural to think that, known the window of parameters for

which the replica breaking occurs in the large deviations setting, it is possible to switch to the

corresponding replica breaking region for the scaled cumulant generating function of triangles,

properly mapping the parameters. Unfortunately this is not always true and the possibility

of reading the same information on the rate function and on the free energy does not follow

straightforward. In order to give an intuition of this statement, we recover to the argument

proposed by Lubetzky and Zhao in [41]. We recall that, as seen in Subsection 3.1.3, the replica

breaking phase when we speak in terms of large deviations principle, consists of all points (p, r)

such that (r2, Ip(r)) does not lie on the convex minorant of x 7→ Ip(
√
x) (recall from Lemma

3.1 that the function Ip( γ
√
x) is not convex if γ > 1 and p < p0(γ)): we called this region B2.

On the other side we know from the geometrical interpretation given in Subsection 3.2.1 that

the solution of the scalar variational problem (3.35) jumps over the concave part of Ip( 3
√
x)

as long as α overcomes the critical value ᾱ. By analogy with B2, we denote by B3 the set

of points (p, r) such that (r3, Ip(r)) does not lie on the convex minorant of x 7→ Ip( 3
√
x). It

can be proved that B2 ⊂ B3 (Lemma A.5 of [41]): in other words, the replica breaking phase

entirely lies inside the region B3 which is never visited by the solution of the scalar problem,

or equivalently by the solution of the fixed-point equation (3.36) which returns the maximum.

In conclusion, when α is positive and we are consequently looking at deviations of upper tails,

we can precisely identify a broken symmetry region for the parameter r of the rate function

whereas, looking at the sufficient statistic (3.32), there is replica symmetry everywhere and the

free energy can be obtained solving the scalar problem (3.35).

Final overview and open problems

In order to conclude, we report a brief summary of Chapter 3 in order to give an overview of

the scenario:

a) The graph limit theory allows us to describe and study the behavior of a graph when its

size grows to infinity. It makes use of symmetric measurable functions called graphons

used to represent the limit of a graph: such functions live in a space equipped with a

metric, where it is possible to define a distance and the equivalence relation (3.4).

b) Using the space of graphons it is possible to derive a large deviation principle for the

upper tails of triangles of an Erdös-Rényi random graph (dense case) and identify two

regions, the symmetric phase and the breaking one: the first is characterized by a rate

function which coincides with the Bernoulli relative entropy Ip(r) and this holds in a

precise window of the parameter r. For what concerns the replica breaking regime, only

a lower bound of the rate function is known.
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Turning to lower tails it is still possible to identify such two regions and we refer to [55]

for an insightful overview.

c) In a parallel way one can discuss the limiting behavior of the free energy of an Expo-

nential Random Graph: this class of graph includes as a specific case the Erdös-Rényi

model. Keeping the focus on this context, the scaled cumulant generating function of the

normalized number of triangles, coincides with the free energy of an Exponential Random

Graph (with parameters properly tuned and statistic made of triangles and edges) up to

an additive constant (see (3.66)).

d) The analytic expression of the free energy (and consequently of the scaled cumulant

generating function) is known when the parameter α which tunes the triangle density

is positive, slightly negative or when it goes to minus infinity. Furthermore when α lies

below a negative constant −C(hp) which depends on p (recall Theorem 3.12), the solution

of the variational problem (3.67) is no more the constant function. This coincides with

the unresolved region. At this point it is important to highlight that, speaking in terms

of large deviations, when α is negative we are looking at the lower tails of triangles: there

is always this parallelism between the rate function and the free energy but, when we are

in replica breaking regime, how to switch from the characterization of the former into the

one of the second, still rests an open problem.

From the summary above a few open questions arise:

a) Looking at the variational problem (3.67), is it possible to find out an expression of the

scaled cumulant generating function when α ≤ −C(hp)? What is the structure of the

maximizer below such threshold of α?

b) When we look at both the upper and lower tails of triangles, what is the analytic form

of the rate function in the replica breaking region?

c) In replica breaking regime, is it possible to translate the properties of the rate function

in terms of the free energy and vice-versa?





Chapter 4

Extended version of the Cloning

algorithm

4.1 Presentation of the extended method

In this section, we introduce an extended version of the Cloning algorithm, described in Chapter

2 in its original setting. To recap, the standard approach of the method consists in computing

the scaled cumulant generating function of an additive observable FT =
∑T−1

n=0 f(Xn,Xn+1) via

the formula

µ(α) = lim
T→+∞

1

T
ln

∑

(x0,...,xT )∈ST+1

ν(x0)k(x0)pα(x0, x1) . . . k(xT−1)pα(xT−1, xT ),

where the sum
∑T−1

n=0 f(Xn,Xn+1) is split and hidden into the transition probabilities pα(·, ·)
and (Xn)n≥ 0 is a finite state Markov chain taking values on a space S. Such formula is imple-

mented through a population dynamics scheme which starts from a bunch of initial conditions

with distribution ν(·) and makes them evolve with probability pα(·, ·) and clone according to a

rate k(·). We recall that the scheme is resumed in Algorithm 1. The core idea of this chapter

is that a priori the method can be applied to a generic additive observable, in particular to the

number of subgraphs of a dense Erdös-Rényi random graph. In this context, this section aims

at

a) providing a modified version of the Cloning algorithm based on a dynamics which evolves

on Erdös-Rényi, growing-size matrices;

b) showing a simple application of this extended version of the method to the observable

number of edges.

75
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4.1.1 A dynamics between growing-size matrices

We start introducing a Markovian dynamics between adjacency matrices which grow their size

of one unit per step. More precisely, the graph at volume n is thought as obtained by a

sequence of steps, each of them corresponding to the addition of a vertex. The new vertex is

connected to the other ones independently with probability p. Along this growing-size process,

one can keep trace of one selected additive observable which plays the role of FT , defined in

(2.1) for the standard approach. For example, one can choose as observable the number of a

fixed subgraph of the evolving graph, such as the number of edges or triangles. We consider a

sequence (X(n))n, with X(n) ∈ Gn,p and transition probabilities P (·, ·) on Gn−1,p ×Gn,p and we

introduce the set of vectors with whom we fringe the matrix X(n−1):

Ln = {Yn = (X1,n,X2,n, . . . ,Xn−1,n, 0)|Xi,n ∈ {0, 1}, i = 1 . . . , n− 1}. (4.1)

If Yn ∈ Ln, let X(n) = X(n−1) ∨ Yn ∈ Gn,p be the matrix fringed with the vector Yn, i.e a new

graph obtained from X(n−1) adding a vertex (n) with new connections expressed by Yn.

On Ln, we have the probability measure ρn defined as:

ρn(Yn) = p|Yn|(1 − p)(n−1)−|Yn| (4.2)

= (1 − p)(n−1)ehp|Yn| (4.3)

with hp = ln p
1−p and

|Yn| =

n−1∑

i=1

Xi,n. (4.4)

Then, the transition probability between two graphs is defined as follows:

P (X(n−1),X(n)) =

{
ρn(Yn), if exists Yn ∈ Ln such thatX(n) = X(n−1) ∨ Yn
0, otherwise.

(4.5)

4.1.2 Compatibility condition for Erdös-Rényi measures

In general, we say that the measures γn defined on the space Gn,p, n = 2, 3, . . ., are compatible

if ∑

Yn∈Ln

γn(X(n−1) ∨ Yn) = γn−1(X
(n−1)), n = 3, 4 . . . . (4.6)

It is possible to show that this condition is satisfied from the Erdös-Rényi measure with pa-

rameter p that we recall below:

Pn,p(X
(n)) = (1 − p)(

n
2)ehpE(X(n))

with hp = ln p
1−p . The first member of (4.6) can be written as follows:

∑

Yn∈Ln

Pn,p(X
(n−1) ∨ Yn) = (1 − p)(

n
2)
∑

Yn∈Ln

ehpE(X(n−1)∨Yn). (4.7)
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Observing that

E(X(n−1) ∨ Yn) = E(X(n−1)) + |Yn|
the sum (4.7) can be written as:

∑

Yn∈Ln

ehpE(X(n−1)∨Yn) =
n−1∑

ℓ=0

(
n− 1

ℓ

)
ehpE(X(n−1))+ℓ = ehpE(X(n−1))

n−1∑

ℓ=0

(
n− 1

ℓ

)
ehpℓ, (4.8)

since there are
(n−1

ℓ

)
vectors of Ln of length ℓ. Recalling the definition of hp and using the

Newton binomial, (4.8) becomes

∑

Yn∈Ln

ehpE(X(n−1)∨Yn) = ehpE(X(n−1)) 1

(1 − p)n−1
.

Finally, substituting in (4.7) we get
∑

Yn∈Ln

Pn,p(X
(n−1)∨Yn) = (1−p)(n2)−(n−1)ehpE(X(n−1)) = (1−p)(n−1

2 )ehpE(X(n−1)) = Pn−1,p(X
(n−1)),

which shows, according to definition (4.6), that the Erdös-Rényi probabilities are compatible.

Note that the compatibility can be also inferred noting that, thanks to independence, the

Erdös-Rényi probability satisfies the condition:

Pn,p(X
(n−1) ∨ Yn) = p|Yn|(1 − p)(n−1)−|Yn|Pn−1,p(X

(n−1)),

where p|Yn|(1 − p)(n−1)−|Yn| is the connection probability between the vertex n and the graph

X(n−1). Recalling definition (4.2) we get:

Pn,p(X
(n−1) ∨ Yn) = ρn(Yn)Pn−1,p(X

(n−1))

and this condition implies the compatibility:
∑

Yn∈Ln

Pn,p(X
(n−1) ∨ Yn) =

∑

Yn∈Ln

ρn(Yn)Pn−1,p(X
(n−1)) = Pn−1,p(X

(n−1)),

being
∑

Yn∈Ln
ρn(Yn) = 1.

Remark 4.1. Note that given a sequence of vectors (Yξ)ξ≥3 with Yξ ∈ Lξ and X(2) ∈ G2,p it

is always possible to recursively build X(n) = X(2) ∨ Y3 ∨ · · · ∨ Yn. Moreover, applying (4.2),

we get another representation of the Erdös-Rényi probability:

Pn,p(X
(n)) = P2,p(X

(2))

n∏

ξ=3

ρξ(Yξ) (4.9)

= P2,p(X
(2))P (X(2),X(3)) · · ·P (X(n−1),X(n)). (4.10)

Vice-versa, given X(n) ∈ Gn,p, one can determine (not in an unique way) a sequence of vectors

which generates the graph X(n), Pn,p(X
(n)) can be computed as in (4.9) and the product is

independent on the choice of the sequence.
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4.1.3 An easy case: the Cloning algorithm applied to the edges observable

Having defined the additive dynamics, we can now apply the algorithm to the edges observable

of a dense Erdös-Rényi random graph, for reproducing the scaled cumulant generating function.

First, we recall that the graph at size n can be recursively built in the following way:

X(n) = X(2) ∨ {X13,X23} ∨ {X14,X24,X34} ∨ · · · ∨ {X1n,X2n, . . . ,Xn−1,n}. (4.11)

Note that each term of decomposition (4.11) is a vector Yξ ∈ Lξ introduced in (4.1) (with

ξ = 3 . . . , n), where the last element is omitted, since it is null. The quantity we are interested

in, can be written in an incremental way as reported below:

E(X(n)) = E(X(2)) +
n∑

ξ=3

|Yξ|.

We recall that the Cloning algorithm implements a discrete time dynamics described by a

Markov chain: in the present case the trajectory is given by the decomposition (4.11) and the

transition probabilities P (X(ξ−1),X(ξ)) by the Erdös Rényi distribution (then with indepen-

dence). According to (4.9), (4.3) and decomposition (4.11), we have:

Pn,p(X
(n)) = ehpX12(1 − p)ehp(X13+X23)(1 − p)2 · · · ehp(X1n+···+Xn−1n)(1 − p)n−1. (4.12)

It is now important to explicitly recall the scaled cumulant generating function which we want

to reproduce:

µ(α) = lim
n→+∞

1(n
2

) lnE
ER
p (eαE(X(n))) = lim

n→+∞

1(n
2

) ln
∑

X(n)∈Ωn

eαE(X(n))
Pn,p(X

(n))

= lim
n→+∞

1(
n
2

) ln
∑

X(n)∈Ωn

eαE(X(n))ehpE(X(n))(1 − p)(
n
2),

Using decomposition (4.11) and the Erdös-Rényi distribution written in form (4.12), we get:

µn(α) =

1(n
2

) ln
∑

X12

∑

X13,X23

∑

X14,X24,X34

· · ·
∑

X1n,X2n,...,Xn−1n

eαX12eα(X13+X23)eα(X14+X24+X34) · · · eα(X1n+···+Xn−1n) · · ·

· · · ehpX12(1 − p)ehp(X13+X23)(1 − p)2ehp(X14+X24+X34)(1 − p)3 · · · ehp(X1n+···+Xn−1n)(1 − p)n−1.

(4.13)

Note that in (4.13), we can recognize the transition probabilities of the original dynamics, given

by the Erdös Rényi measure:

P (X(ξ−1),X(ξ)) = p|Yξ|(1 − p)(ξ−1)−|Yξ| = (1 − p)(ξ−1)ehp|Yξ|, ξ ∈ {3, . . . , n}. (4.14)
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Rearranging expression (4.13) of µn(α) we get:

µn(α) =

1(n
2

) ln
∑

X12

ehpX12(1 − p)
∑

X13,X23

eα(X13+X23)ehp(X13+X23)(1 − p)2
∑

X14,X24,X34

eα(X14+X24+X34)ehp(X14+X24+X34)(1 − p)3 · · ·

· · ·
∑

X1n,X2n,...,Xn−1n

eα(X1n+···+Xn−1n)ehp(X1n+···+Xn−1n)(1 − p)n−1 (4.15)

and expression (4.15) suggests how to define the tilted measure of the dynamics, i.e:

P̃α(X(ξ−1),X(ξ)) := eα |Yξ|p|Yξ|(1 − p)(ξ−1)−|Yξ|, ξ ∈ {3, . . . , n}. (4.16)

At this point, in order to get the transition probability of the Markov chain, we have to

normalize, thus we define:

Pα(X(ξ−1),X(ξ)) :=
P̃α(X(ξ−1),X(ξ))

k(X(ξ−1))
, (4.17)

where k(X(ξ−1)) is the partition function:

k(X(ξ−1)) :=
∑

X1,ξX2,ξ...Xξ−1,ξ

eα(X1,ξ+···+Xξ−1,ξ)ehp(X1,ξ+···+Xξ−1,ξ)(1 − p)ξ−1 (4.18)

=

ξ−1∑

|Yξ|=0

(
ξ − 1

|Yξ|

)
eα|Yξ|p|Yξ|(1 − p)(ξ−1)−|Yξ| = (p eα + 1 − p)ξ−1. (4.19)

Finally, using all the quantities defined up to now, namely P̃α(·, ·), Pα(·, ·) and the normalization

factor k(·), we can write the moment generating function as follows:

µn(α) =

=
1(
n
2

) ln
∑

X12

∑

X13,X23

∑

X14,X24,X34

· · ·
∑

X1n,X2n,...,Xn−1n

ehpX12(1 − p)
P̃α(X(2),X(3))

k(X(2))
k(X(2))

P̃α(X(3),X(4))

k(X(3))
k(X(3)) · · ·

· · · P̃α(X(n−1),X(n))

k(X(n−1))
k(X(n−1))

=
1(n
2

) ln
∑

X12

∑

X13,X23

∑

X14,X24,X34

· · ·
∑

X1n,X2n,...,Xn−1n

ehpX12(1 − p)Pα(X(2),X(3))k(X(2))Pα(X(3),X(4))k(X(3)) · · ·

(4.20)

· · ·Pα(X(n−1),X(n))k(X(n−1)).

Note that the expression of the rates (4.19) can be put into (4.20) yielding the product
∏n−1

k=2 k(X(k)) = (p eα+1−p) (n−2)(n−1)
2 which can be brought out from the sum, since it does not

depend on the adjacency matrices. Moreover, ln
(∏n

k=2 k(X(k))
)

= (n−2)(n−1)
2 ln(p eα + 1 − p)
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and, in the limit, this is the only part which does not vanishes, thanks to the term (n−2)(n−1)
2

which has the same speed of
(n
2

)
. In conclusion we get

µ(α) = ln(p eα + 1 − p),

which is the function the method should reproduce.

In a parallel way as we have done in Subsection 2.1.2, we describe how the scheme performs

the numerical approximation of the objective function, mapping the standard approach into

this new one. The observable over the time FT , defined in (2.1), is replaced by the additive

observable which takes into account the increment of the selected subgraph, in this specific

case the number of edges. For the following description, let us denote by X(ξ−1) a generic

matrix of size ξ − 1 involved in the algorithm. The starting population consists in a family

of adjacency matrices of size two which grow their size by one vertex at each step. This

makes part of the evolution phase, in which two events happen: each matrix evolves in a wider

space (and this concretely corresponds to fringing the starting matrix X(ξ−1) with a vector

Yξ ∈ Lξ) and the new vertex is connected (or not) to the others according to probability (4.17).

After the evolution step, a cloning phase occurs: each adjacency matrix leaves a number of

offspring expressed by its rate k(X(ξ−1)) (properly turned into integer according to the rule

of the standard method). Finally, the normalization step rests the same: we uniformly pick a

number of matrices equal to the starting population and the cycle restarts. Summarizing:

a) A family of M2 adjacency matrices of size two, drawn from the Bernoulli distribution of

parameter p constitutes the starting population of the method. Such matrices represent

the so-called clones.

b) Each clone evolves in a wider space and the new vertex is connected (or not) to the others

according to probability Pα(·, ·) given in (4.17), but remains to be eventually connected

to future vertices.

c) Each clone in configuration X(ξ−1) is then replicated and gives birth to a number of

offspring equal to its rate

k(X(ξ−1)) =

{
⌊k(X(ξ−1))⌋ + 1 with probability k(X(ξ−1)) − ⌊k(X(ξ−1))⌋
⌊k(X(ξ−1))⌋ otherwise

where ⌊k(X(ξ−1))⌋ represents the integer part of k(X(ξ−1)). In case that k(X(ξ−1)) = 0

the clone is killed and it does not leave offspring.

d) Once that the clones have evolved and reproduced, the total number of copies is brought

back to M2, uniformly choosing M2 clones among those present after the evolution and

reproduction step. Recall that M2 represents the size of the family, not the size of the
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graphs involved, which is equal to two only at the first step. At each step ξ− 1, after the

cloning phase, it is convenient to keep trace of the rescaling factor Sξ−1 :=
Mξ−1

Mξ−2
, so that

µn(α) =
1(
n
2

) ln
Mn

M2
=

1(
n
2

) ln

(
Mn

Mn−1

Mn−1

Mn−2
. . .

M4

M3

M3

M2

)
=

1(
n
2

) ln (Sn · Sn−1 . . . S3)

=
1(n
2

)
n∑

ξ=3

ln(Sξ).

The algorithm proceeds by repeating iteratively the three steps above: µ(α) is estimated by

computing

µn(α) =
1(n
2

)
n∑

ξ=3

ln(Sξ).

The whole scheme is resumed in Algorithm 2 for a fixed α ∈ R and p ∈ (0, 1).

Algorithm 2 Extended Cloning algorithm

Consider a family of M2 adjacency matrices of size two drawn from a Bernoulli distribution of

parameter p. Choose some n ∈ N.

For ξ = {3 . . . , n} compute µn(α) as follows:

1. Evolve each matrix of the population according to the transition probability

Pα(X(ξ−1),X(ξ));

2. Reproduce each matrix according to the average rate k(X(ξ−1)) (if the rate is null, the

clone is killed, otherwise, it leaves offspring), where

k(X(ξ−1)) =

{
⌊k(X(ξ−1))⌋ + 1 with probability k(X(ξ−1)) − ⌊k(X(ξ−1))⌋
⌊k(X(ξ−1))⌋ with probability 1 −

(
k(X(ξ−1)) − ⌊k(X(ξ−1))

)
⌋
.

3. Extract a number of individuals equal to the starting one, M2, with uniform probability

from those survived after the phase 2;

4. Compute Sξ =
Mξ

Mξ−1
so that Sn · · · S1 = Mn

M2
.

End

At the end of the cycle, approximate µ(α) with

µn(α) =
1(n
2

)
n∑

ξ=3

ln(Sξ).

Remark 4.2. Note that there are two parameters which determine the accuracy of the method:

the number of iterations, which, in this case, coincides with the volume of the graphs involved
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in the process and the initial size of the population M2, which represents a sample of the whole

space of states. Clearly, the more the number of iterations grows, the more the limiting behavior

of the graph is accurate; at the same time, the bigger the initial population is, the better the

average involved in the definition of µ(α) is approximated. At the best of my knowledge, no

study on how the choice of the parameters reflects on the error of the algorithm is present in

the state-of-art.

Remark 4.3. The description of the implementation scheme leads to a practical remark: we

can notice that, for a fixed ξ ∈ {3, . . . , n}, the sum involved in the reproduction rate (4.18)

runs over ξ − 1 possible elements which correspond to the components of the fringing vector.

To be precise, the generic reproduction rate k(X(ξ−1)), in this case does not depend on the

whole adjacency matrix but only on the new possible connections. As a further simplification,

for the edge observable, the rate can be written in the closed form (4.19). For this reason, it

is unnecessary to carry on through simulations a population of matrices: the only information

we need is to know how many connections are possible at each step and to assign a probability

to each case. In other words all simulations can be run replacing the adjacency matrices

with integers (namely we perform a Markov process on N) and this considerably simplifies the

implementation.

At this point, all the quantities we need for running the algorithm are defined and the returned

output is shown in Figure 4.1: the curve reproduced by the method fits the expected one with

a very good accuracy. When the structure of the observable gets more difficult and we lose the
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Figure 4.1: Numerical approximation of the scaled cumulant generatig function for the edge

observable: pictures show different values of p. The dotted line represents the algorithm output,

whereas the blue continuous one, the expected curve. For a final size of the graph n = 300 we

get a very good approximation of the objective function.

independence of its additive components, the computation of the scaled cumulant generating

function is not easy to perform. It is the case of the triangle observable, which despite its

apparent simplicity, gives rise to different and complex scenarios in such estimation.
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4.2 Investigation of the replica symmetric phase

4.2.1 The Cloning Algorithm applied to the triangle observable

The main purpose of this section is to apply the extended version of the Cloning algorithm to

the dense Erdös-Rényi model for the approximation of the scaled cumulant generating function

of the triangle observable (properly normalized). As we have seen in Chapter 3, such function

is strictly related to the free energy of an Exponential Random Graph with a statistic including

only triangles and edges. According to the choice of the parameter which tunes the triangles

density, we explore the so-called replica symmetric phase or the replica breaking one. In this

section, we implement the extended Cloning method introduced in Subsection 4.1.1 working in

replica symmetric regime and we provide a heuristic argument concerning its convergence to

the analytic result.

We start addressing the problem

Problem 4.1. Solve

µ(α) = sup
f∈W

[
α t(H2, f)

3
− Ip(f)

]
, α > −2 (4.21)

where f(x, y) : [0, 1]2 → [0, 1] is measurable and symmetric.

Thanks to Theorems 3.8 and 3.11, Problem 4.1 turns into the scalar one

µ(α) = sup
0≤u≤ 1

[
α
u3

3
− Ip(u)

]
, α > −2 (4.22)

returning as solution

µ(α) = α
u∗3

3
− Ip(u∗),

where u∗ solves the fixed-point equation (3.36). As we mentioned at the beginning of the

chapter, despite the extended version of the method can be applied to a generic additive

observable, we want to focus our attention on triangles, for reproducing the related scaled

cumulant generating function in the replica symmetric region. For a graph of size n, the number

of triangles has the form T (X(n)) = 1
6

∑n
i,j,k=1XijXjkXki: note that the triplets involved in this

last sum are not independent since they can potentially share common factors. We recall that it

is possible to see the graph at size n as the union of random vectors according to decomposition

(4.11). With the same spirit used for edges, we can write the number of triangles of a generic

graph X(ξ), leaning on the information of the previous step:

T (X(ξ)) = T (X(ξ−1)) + θξ−1,ξ, (4.23)
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where the term θξ−1,ξ represents the partial increment of triangles in the passage from the

graph X(ξ−1) to the graph X(ξ). It has the following expression:

θξ−1,ξ =
1

2

ξ−1∑

i,j=1

X
(ξ−1)
ij X

(ξ)
jξ X

(ξ)
ξ i , (4.24)

where the factor X
(ξ)
jξ X

(ξ)
ξ i can be interpreted as a wedge with base in i and j and common

vertex in ξ. The derivation of expression (4.24) is reached through the computations below:

T (X(ξ)) =
1

6

ξ∑

i,j,l=1

X
(ξ)
ij X

(ξ)
jl X

(ξ)
li =

1

6

ξ∑

i=1

ξ∑

j=1

[
ξ−1∑

l=1

X
(ξ)
ij X

(ξ)
jl X

(ξ)
li +X

(ξ)
ij X

(ξ)
jξ X

(ξ)
ξ i

]

=
1

6

ξ∑

i=1




ξ∑

j=1

ξ−1∑

l=1

X
(ξ)
ij X

(ξ)
jl X

(ξ)
li +

ξ∑

j=1

X
(ξ)
ij X

(ξ)
jξ X

(ξ)
ξ i




=
1

6

ξ∑

i=1



ξ−1∑

j=1

ξ−1∑

l=1

X
(ξ)
ij X

(ξ−1)
jl X

(ξ)
li +

ξ−1∑

l=1

X
(ξ)
iξ X

(ξ)
ξ l X

(ξ)
li +

ξ−1∑

j=1

X
(ξ)
ij X

(ξ)
jξ X

(ξ)
ξ i +X

(ξ)
iξ X

(ξ)
ξξ X

(ξ)
ξ i




=
1

6

{
ξ−1∑

i=1

ξ−1∑

j=1

ξ−1∑

l=1

X
(ξ−1)
ij X

(ξ−1)
jl X

(ξ−1)
li +

ξ−1∑

j=1

ξ−1∑

l=1

X
(ξ)
ξ j X

(ξ−1)
jl X

(ξ)
lξ +

ξ−1∑

i=1

ξ−1∑

l=1

X
(ξ)
iξ X

(ξ)
ξ l X

(ξ−1)
li

+

ξ−1∑

l=1

X
(ξ)
ξξ X

(ξ)
ξ l X

(ξ)
lξ +

ξ−1∑

i=1

ξ−1∑

j=1

X
(ξ−1)
ij X

(ξ)
jξ X

(ξ)
ξ i +

ξ−1∑

j=1

X
(ξ)
ξ j X

(ξ)
jξ X

(ξ)
ξξ +

ξ−1∑

i=1

X
(ξ)
iξ X

(ξ)
ξξ X

(ξ)
ξ i

+X
(ξ)
ξξ X

(ξ)
ξξ X

(ξ)
ξξ

}
.

In conclusion, recalling that the elements on the diagonal are null (since self loops are not

allowed), the expression displayed above reduces to:

T (X(ξ)) =
1

6

ξ−1∑

i,j,l=1

X
(ξ−1)
ij X

(ξ−1)
jl X

(ξ−1)
li +

1

6

ξ−1∑

i,l=1

X
(ξ)
iξ X

(ξ)
ξ l X

(ξ−1)
li

+
1

6

ξ−1∑

j,l=1

X
(ξ)
ξ j X

(ξ−1)
jl X

(ξ)
lξ +

1

6

ξ−1∑

i,j=1

X
(ξ−1)
ij X

(ξ)
jξ X

(ξ)
ξ i

= T (X(ξ−1)) +
1

2

ξ−1∑

i,j=1

X
(ξ−1)
ij X

(ξ)
jξ X

(ξ)
ξ i .

Remark 4.4. For simplifying the notation, in the following the triplet XijXjξXξ i will replace

X
(ξ−1)
ij X

(ξ)
jξ X

(ξ)
ξ i .
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Thanks to the incremental formulation, the total number of triangles up to size n can be

expressed as

T (X(n)) = T (X(2)) +

n−1∑

ξ=2

θξ,ξ+1 =
1

2

n−1∑

ξ=2

ξ∑

i,j=1

XijXj,ξ+1Xi,ξ+1 (4.25)

(observe that T (X(2)) = 0), whereas the normalized number of triangles can be expressed in

two ways.

a) The first way derives from (4.25):

T (X(n))

n
=

1

n

n−1∑

ξ=2

θξ,ξ+1 =
1

2n

n−1∑

ξ=2

ξ∑

i,j=1

XijXj,ξ+1Xi,ξ+1

b) The second way leans on a telescopic sum and relation (4.23):

T (X(n))

n
=

n−1∑

ξ=2

T (X(ξ+1))

ξ + 1
− T (X(ξ))

ξ
=

n−1∑

ξ=2

T (X(ξ))

ξ + 1
+
θξ,ξ+1

ξ + 1
− T (X(ξ))

ξ

=

n−1∑

ξ=2

θξ,ξ+1

ξ + 1
− T (X(ξ))

ξ(ξ + 1)
. (4.26)

As we have already done for the edges, it is important to recall the objective function we want

to reproduce:

µ(α) = lim
n→+∞

1(n
2

) lnE
ER
p (eα

T (X(n))
n ) = lim

n→+∞

1(n
2

) ln
∑

X(n)∈Ωn

eα
T (X(n))

n Pn,p(X
(n)) (4.27)

= lim
n→+∞

1(n
2

) ln
∑

X(n)∈Ωn

eα
T (X(n))

n ehpE(X(n))(1 − p)(
n
2). (4.28)

Using expression (4.26) for the normalized number of triangles and (4.12) for the Erdös-Rényi

measure, we can develop (4.27) as follows:

µn(α) =

1(n
2

) ln
∑

X12

∑

X13,X23

∑

X14,X24,X34

· · ·
∑

X1n,X2n,...,Xn−1n

e
α

(
θ2,3
3

−T (X(2))
2· 3

)

e
α

(
θ3,4
4

−T (X(3))
3· 4

)

· · · e
α

(
θn−1,n

n
−T (X(n−1))

n (n−1)

)

· · · ehpX12(1 − p)ehp(X13+X23)(1 − p)2ehp(X14+X24+X34)(1 − p)3 · · · ehp(X1n+···+Xn−1n)(1 − p)n−1.

(4.29)

Note that, being hp = ln p
1−p , we can read in (4.29) the transition probabilities of the original

dynamics, described by the Erdös Rényi measure (recall (4.3) and (4.5)):

P (X(ξ−1),X(ξ)) = ehp|Yξ|(1 − p)(ξ−1), ξ ∈ {3, . . . , n}.
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Rearranging expression (4.29) of µn(α) we get:

µn(α) =

1(n
2

) ln
∑

X12

ehpX12(1 − p)
∑

X13,X23

e
α

(
θ2,3
3

−T (X(2))
2· 3

)

ehp(X13+X23)(1 − p)2
∑

X14,X24,X34

e
α

(
θ3,4
4

−T (X(3))
3· 4

)

ehp(X14+X24+X34)(1 − p)3 · · ·

· · ·
∑

X1n,X2n,...,Xn−1n

e
α

(
θn−1,n

n
−T (X(n−1))

n (n−1)

)

ehp(X1n+···+Xn−1n)(1 − p)n−1 (4.30)

and we arrive to define the tilted measure of the dynamics:

P̃α(X(ξ−1),X(ξ)) := e
α

(
θξ−1,ξ

ξ
−T (X(ξ−1))

ξ(ξ−1)

)

ehp|Yξ|(1 − p)(ξ−1), ξ ∈ {3, . . . , n}.

Finally, we normalize the tilted measure thus getting the new transition probabilities of the

Markov chain:

Pα(X(ξ−1),X(ξ)) :=
P̃α(X(ξ−1),X(ξ))

k(X(ξ−1))
,

where k(X(ξ−1)) is the partition function:

k(X(ξ−1)) :=
∑

X1,ξX2,ξ...Xξ−1,ξ

e
α

(
θξ−1,ξ

ξ
−

T (X(ξ−1))
ξ(ξ−1)

)

ehp(X1,ξ+···+Xξ−1,ξ)(1 − p)ξ−1. (4.31)

In conclusion the scaled cumulant generating function can be written as follows:

µn(α) =

=
1(n
2

) ln
∑

X12

∑

X13,X23

∑

X14,X24,X34

· · ·
∑

X1n,X2n,...,Xn−1n

ehpX12(1 − p)
P̃α(X(2),X(3))

k(X(2))
k(X(2))

P̃α(X(3),X(4))

k(X(3))
k(X(3)) · · ·

· · · P̃α(X(n−1),X(n))

k(X(n−1))
k(X(n−1))

=
1(n
2

) ln
∑

X12

∑

X13,X23

∑

X14,X24,X34

· · ·
∑

X1n,X2n,...,Xn−1n

ehpX12(1 − p)Pα(X(2),X(3))k(X(2))Pα(X(3),X(4))k(X(3)) · · ·

· · ·Pα(X(n−1),X(n))k(X(n−1)).

Remark 4.5. Observe that the product
∏n−1

ξ=2 k(X(ξ)) returns, up to the constant (1 − p)(
n
2),

the partition function of the Exponential Random Graph with statistic including edges and

triangles and parameters α and hp: Zn =
∑

X(n)∈Ωn
eα

T (X(n))
n

+hpE(X(n)).

4.2.2 A turning point for the implementation

Looking at the reproduction rate (4.31), one can immediately observe that, for a selected

ξ ∈ {3, . . . , n}, the sum involved in the computation of the partition function, runs over 2ξ−1
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possible vectors and hence attained configurations in the passage from X(ξ−1) to X(ξ). Note

that 2ξ−1 coincides with the number of dispositions (admitting repetitions), of 0 and 1 over

ξ − 1 sites. As a consequence, the computation of the partition function, i.e the cloning rate,

is numerically unaffordable from the numerical point of view when the global size of the graph

is pushed too further. Furthermore, note that the partial increment of triangles from size

ξ − 1 to size ξ, namely 1
2

∑ξ−1
i,j=1X

(ξ−1)
ij X

(ξ)
jξ X

(ξ)
ξ i , strongly depends on the whole structure of

the adjacency matrix up to the step ξ − 1 and, as a consequence, we need to record in the

code all adjacency matrices involved. Since we can not transfer on the integers the information

we are interested in (as we have done for the edge observable, see Remark 4.3), the numerical

computation of the reproduction rate is hard to perform and simulations are allowed only for

small sizes of graphs. A remarkable improvement in the computational complexity would be

done by finding the way for counting the adjacency matrices which lead to the same increment,

thus performing the sum (4.31) in a most efficient way. Even if this intuition looks promising,

the combinatorics underlying this goal is very complex. We provide an example below.

Figure 4.2: Upper row: structures of the subgraphs that we have to count in X(ξ−1) (from

left to right) in order to know how many times, adding three edges, we get an increment of

respectively 3,2,1,0 triangles. The same information is provided by the picture in the lower

row, for the case in which four possible connections are added.

Example 4.1. Assume that, in the passage from the matrix X(ξ−1) to X(ξ), the vector Yξ
used for fringing X(ξ−1) and containing all possible connections, has three edges in positions

k1, k2, k3 ∈ {1, . . . , ξ−1} with k1 6= k2 6= k3 6= k1 (recall that the last element of Yξ is null). In

other words, make the hypothesis that the elements of the vector Yξ = (X1,ξ,X2,ξ, . . . ,Xξ−1,ξ, 0)

are such that

X
(ξ)
i,ξ =

{
1 if i = k1, k2, k3

0 otherwise
, i ∈ {1, . . . , ξ − 1}.

As a consequence, the increment of triangles θξ−1,ξ =
∑ξ−1

i,j>iX
(ξ−1)
ij X

(ξ)
jξ X

(ξ)
iξ can be written as

follows:

θξ−1,ξ =

ξ−1∑

i,j>i

X
(ξ−1)
ij 1

{(i,j)|X
(ξ)
jξ X

(ξ)
iξ =1}

= X
(ξ−1)
k1,k2 +X

(ξ−1)
k1,k3 +X

(ξ−1)
k2,k3 . (4.32)
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From (4.32) it is evident that θξ−1,ξ ∈ {0, 1, 2, 3} and the precise value depends on the structure

of the matrix X(ξ−1).

Repeating the reasoning for a vector Yξ with four edges indexed by different integers k1, k2, k3, k4 ∈
{1, . . . , ξ − 1}, we get the increment:

θξ−1,ξ = X
(ξ−1)
k1,k2 +X

(ξ−1)
k1,k3 +X

(ξ−1)
k2,k3 +X

(ξ−1)
k1,k4 +X

(ξ−1)
k2,k4 +X

(ξ−1)
k3,k4

which belongs to the set {0, . . . , 6}.

In general, we can say that, if m ∈ {1, . . . , ξ − 1} denotes the number of edges present in the

vector Yξ, the increment θξ−1,ξ belongs to the set {0, . . . ,
(
m
2

)
}. Note that the maximum number

of triangles which can be created is reached when m = ξ − 1, namely the fringing vector Yξ is

the unitary one, a part from the last null element: moreover, note that
(ξ−1

2

)
is the maximum

number of edges possible for the starting graph X(ξ−1).

From the geometrical point of view, it turns out that if we want to know how many configu-

rations (among the 2ξ−1 possible ones) bring the same increment, θ, of triangles, we have to

count the number of subgraphs of X(ξ−1) with m vertices and θ edges. Such structures are

represented in Figure 4.2 for m = 3 (upper row) and m = 4 (lower row).

In conclusion, the starting goal of simplifying the computation of the rate function (4.19) by

grouping the configurations bringing the same information, is hard to reach, since the problem,

even in its geometrical form, still has an high complexity.

4.2.3 Numerical results

We now move on numerical results. We recall from Subsection 3.2.3 that the scaled cumulant

generating function of the triangle observable in the Erdös-Rényi dense model, coincides, up

to an additive constant, with the free energy of an Exponential Random Graph with statistic

including triangles and edges. When we are in replica symmetric regime

µ(α) = α
u∗3

3
− Ip(u∗), α > −21, (4.33)

where u∗ optimizes the scalar problem (4.22) and Ip(·) is the Bernoulli relative entropy. Figures

4.3 and 4.4 show, for different values of p, that the method converges to the expected curve,

despite the small size of graphs (note however the scale n2 in (4.28)). Moreover for smaller

sizes, such as n = 3, 4 a direct computation of the moment generating function is possible

1To be precise, replica symmetric regime extends up to a negative value of α which could be lower than −2,

as mentioned by Theorem 3.12. However, in this part we restrict to this region, where replica symmetric occurs

for sure.
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Figure 4.3: Numerical approximation of the scaled cumulant generating function of the triangle

observable in the interval [0, 1] (α varies with step 0.1): the pictures show different values of

p. The dotted line represents the output of the method for different sizes n of the graphs

involved, whereas the continuous blue line represents the analytic result. As the size grows, the

dotted line approaches the limiting curve. For n = 3, 4 an exact computation of the moment

generating function is possible and we use it as a comparison term (such exact functions are

represented in the picture through the red and pink continuous lines). The starting size of the

family used for reproducing the pictures is M2 = 1000.
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line represents the output of the method for different sizes n of the graphs involved, whereas

the continuous pink line represents the analytic result. As the size grows, the dotted line

approaches the limiting curve. The starting size of the family used for reproducing the pictures

is M2 = 1000.
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(µ3(α) and µ4(α) are drawn in Figure 4.3). For example

µ3(α) =
1(3
2

) ln
∑

X12

ehpX12(1 − p)
∑

X13X23

e
α
3
(X12X13X23)ehp(X12+X23)(1 − p)2

=
1(3
2

) ln
(
p(1 − p2 + p2e

α
3 ) + 1 − p

)

and, with a more complex scenario, an analogous computation can be performed for deriving

µ4(α). A part from the numerical evidence shown by Figures 4.3 and 4.4, it is possible to

provide a heuristic argument of the convergence based on a mean field approximation which

turns out to be exact in the graph large size limit. This strategy has already been explored

in [45] and in [17], in order to prove that the quantities Lij :=
∑

k 6=i,j
XikXjk

n , namely the

normalized number of wedges, satisfy a set of mean field equations.

4.2.4 A mean field approximation with a cubic interaction

In this paragraph, we argue the convergence of the extended version of the Cloning algorithm

(resumed in Algorithm 2) to the scaled cumulant generating function (4.33) of the normalized

number of triangles. We stress that the conclusion holds in replica symmetric regime.

As a first step, in order to compute limn→+∞ µn(α), we can write more explicitly the expression

of µn(α) reported in (4.30), thus getting:

µn(α) =

1(n
2

) ln
∑

X12

ehpX12(1 − p)
∑

X13,X23

e
α

(∑2
i,j=1 XijXj3Xi3

2· 3
− 1

6

∑2
i,j,k=1 XijXjkXki

2· 3

)

ehp(X13+X23)(1 − p)2·

·
∑

X14,X24,X34

e
α

(∑3
i,j=1 XijXj4Xi4

2· 4
− 1

6

∑3
i,j,k=1 XijXjkXki

3· 4

)

ehp(X14+X24+X34)(1 − p)3 · · ·

· · ·
∑

X1n,X2n,...,Xn−1n

e
α

(∑n−1
i,j=1

XijXjnXin

2·n
− 1

6

∑n−1
i,j,k=1

XijXjkXki

n· (n−1)

)

ehp(X1n+···+Xn−1n)(1 − p)n−1 (4.34)

and the derivation so far is exact. At this point we recall Theorem 3.9 which basically states

that, when the size of the Exponential Random Graph grows to infinity, the distribution of

any finite subgraph is the Erdös-Rényi one, namely the connections become asymptotically

independent. This consideration should support the following substitution, which consists in a

mean-field approximation:

Xij 7−→
1

ξ − 1

ξ−1∑

m1=1

Xm1ξ (4.35)

Observe that, when n is large enough, the two variables Xij and 1
ξ−1

∑ξ−1
m1=1Xm1ξ have the

same expectation and V ar( 1
ξ−1

∑ξ−1
m1=1Xm1ξ) = 1

ξ−1X1ξ → 0 when ξ → +∞. The advantage
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of using the mean field approximation (4.35) relies on the possibility to write the exponents in

(4.34) in a simplified way, as we show below:

∑ξ−1
i,j=1XijXjξXiξ

2ξ
− 1

6

∑ξ−1
i,j,k=1XijXjkXki

ξ(ξ − 1)
=

1

2ξ(ξ − 1)

ξ−1∑

i,j,m1=1

Xm1ξXjξXiξ −
1

6ξ(ξ − 1)

ξ−1∑

i,j,k=1

[
ξ−1∑

m1=1

Xm1ξ

ξ − 1

ξ−1∑

m2=1

Xm2ξ

ξ − 1

ξ−1∑

m3=1

Xm3ξ

ξ − 1

]
=

1

2ξ(ξ − 1)

ξ−1∑

i,j,m1=1

Xm1ξXjξXiξ −
1

6ξ(ξ − 1)

1

(ξ − 1)3

[
ξ−1∑

m1=1

Xm1ξ

ξ−1∑

m2=1

Xm2ξ

ξ−1∑

m3=1

Xm3ξ

]
ξ−1∑

i,j,k=1

1,

(4.36)

ξ ∈ {3, . . . , n}. At this point, note that the term 1
(ξ−1)3 simplifies with the sum

∑ξ−1
i,j,k=1 1 and

we finally get:

1

2ξ(ξ − 1)

ξ−1∑

i,j,m1=1

Xm1ξXjξXiξ −
1

6ξ(ξ − 1)

ξ−1∑

m1,m2,m3=1

Xm1ξXm2ξXm3ξ =
1

3ξ(ξ − 1)

ξ−1∑

i,j,k=1

XiξXjξXkξ,

(4.37)

where, in the last passage, the indices are again called with the familiar notation i, j, k. Using

expression (4.37) for the exponents, we reach a simplified version of µn(α), which we call µ̃n(α):

µ̃n(α) : =
1(
n
2

) ln
∑

X12

ehpX12(1 − p)
∑

X13,X23

e

α
3· 2

(∑2
i,j,k=1 Xi3Xj3Xk3

3

)

ehp(X13+X23)(1 − p)2·

·
∑

X14,X24,X34

e

α
4· 3

(∑3
i,j,k=1 Xi4Xj4Xk4

3

)

ehp(X14+X24+X34)(1 − p)3 · · ·

· · ·
∑

X1n,X2n,...,Xn−1n

e

α
n(n−1)

(∑n−1
i,j,k=1

XinXjnXkn

3

)

ehp(X1n+···+Xn−1n)(1 − p)n−1.

Finally we pass to the limit, thus getting:

lim
n→+∞

µ̃n(α) = lim
n→+∞

1(n
2

) ln
∑

X12

ehpX12(1 − p)
n−1∏

ξ=2

∑

{Xiξ+1}i=1,...,ξ∈{0,1}ξ

e
α

(
∑ξ

i=1
Xiξ+1)

3

3ξ2
+hp

∑ξ
i=1 Xiξ+1(1 − p)ξ

= lim
n→+∞

1(n
2

) ln

n−1∏

ξ=2

∑

{Xiξ+1}i=1,...,ξ∈{0,1}ξ

e
α(

∑ξ
i=1

Xiξ+1)
3

3ξ2
+hp

∑ξ
i=1 Xiξ+1(1 − p)ξ.

(4.38)
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Making use of the change of variable m :=
∑ξ

i=1 Xiξ+1

ξ we can turn the sum in (4.38) into
∑

mNξ(m)eξ[
α
3
m3+hpm](1−p)ξ, where Nξ(m) can be interpreted as the number of configurations

having a given instantaneous magnetization m. Such number can be expressed through a

binomial coefficient whose behavior for large ξ is given in terms of the entropy function of a

Bernoulli process: Nξ(m) =
( ξ
ξm

)
= eξ[−I(m)+o(1)], where I(m) = m ln(m) + (1 −m) ln(1 −m).

To leading exponential order in ξ, the partition function can be written as displayed below:

lim
n→+∞

µ̃n(α) = lim
n→+∞

1(n
2

) ln
n−1∏

ξ=2

∫ 1

0
eξ{α

3
m3−Ip(m)+o(1)}dm, (4.39)

where we recall that Ip(m) = m ln m
p + (1 −m) ln 1−m

1−p . The integral involved in (4.39) can be

evaluated using the Laplace’s method, to get as final result the function

lim
n→+∞

µ̃n(α) = lim
n→+∞

1(n
2

) ln

n−1∏

ξ=2

eξ supm{α
3
m3−Ip(m)+o(1)} = lim

n→+∞

1(n
2

) ln e(
n
2) supm{α

3
m3−Ip(m)}

= sup
m

[α
3
m3 − Ip(m)

]
(4.40)

which coincides with the scalar problem related to the triangles observable in replica symmetric

regime. As a further check observe that deriving (4.40) with respect to m we get

∂

∂m

{α
3
m3 − Ip(m)

}
= 0 ⇒ αm2 =

∂Ip(m)

∂m
, (4.41)

where
∂Ip(m)
∂m = ln m(1−p)

p(1−m) . Rearranging (4.41) we recover the well-known fixed-point equation

eαm2+hp

eαm2+hp + 1
= m, (4.42)

which yields the scaled cumulant generating function

lim
n→+∞

µ̃n(α) =
α

3
m∗3 − Ip(m

∗),

where m∗ satisfies (4.42). In conclusion, thanks to the substitution (4.35), we have recovered

the scaled cumulant generating function of the normalized number of triangles in the replica

symmetric regime (see (4.33)).



Chapter 5

Investigation of the replica breaking

phase of the Exponential Random

graph

Throughout Chapter 4, we focused our attention on the replica symmetric regime: now we want

to switch to the replica breaking one, namely we want to numerically investigate the following

problem:

Problem 5.1. Solve

sup
f∈W

[
α t(H2, f)

3
− Ip(f)

]
(5.1)

where f(x, y) : [0, 1]2 → [0, 1] is symmetric and α ≤ −2.

The interest in such investigation is motivated by the fact that the state-of-art (presented in

Chapter 3) provides a solution to this problem only for positive or slightly negative values of

α (Theorems 3.8, 3.11) and for the limit α → −∞ (Theorem 3.13), but very little is known

when α ≤ −2. To be precise, it has been proved in Theorem 3.12 that there exists a negative

threshold, called −C(hp), below which the solution of Problem 5.1 stops being the constant

one, hence, strictly speaking, the replica breaking regime starts below −C(hp). Focusing on

this behavior, we recall question a) we asked at the end of Chapter 3:

“Is it possible to find out an expression of the scaled cumulant generating function of the trian-

gle observable when α ≤ −C(hp)? What is the structure of the maximizer below such threshold

of α?”

In order to tackle the question, we investigate Problem 5.1 via three approaches:

93
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a) using a numerical optimization method (Projected Gradient);

b) using the extended version of the Cloning algorithm;

c) investigating the behavior of the variational problem when the solution is supposed to be

the generalized bipartite graphon:

g(a)pi,pb
(x, y) =

{
pi if (x, y) ∈ [0, a]2 ∪ [a, 1]2

pb if (x, y) ∈ [0, a] × [a, 1] ∪ [a, 1] × [0, a]
, (5.2)

where pi, pb, a ∈ [0, 1].

We start from the first strategy.

5.1 Projected Gradient method

5.1.1 Introduction to the Projected Gradient method

Gradient methods are by far the most standard and popular iterative schemes aimed at solving

problem

min
x∈Γ

h(x) (5.3)

where Γ ⊂ R
n is a non-empty, closed and convex set and h : Γ 7−→ R is a continuously differen-

tiable function over Γ. When Γ = R
n and therefore there are no restrictions on the unknown

variable x, one speaks of unconstrained optimization, otherwise of constrained optimization.

Many of these methods lean on the so-called iterative descent idea, which consists in generating

a sequence of iterates {x(k)}k∈N in such a way that h is decreased at each step. The legitimate

hope is that this iterative procedure will eventually lead to approach a global minimum or, at

least, a stationary point of h. The decrease in the objective function is imposed by moving

along a descent direction with a sufficiently small positive steplength, which can be kept fixed

or may vary at each iteration: there exist different strategies aiming at adapting the choice of

the steplength in order to improve the convergence rate of gradient methods while maintaining

an affordable computational demand.

Definition 5.1. A vector x∗ ∈ Γ is a stationary point of h over Γ if

∇h(x∗)T (y − x∗) ≥ 0, ∀ y ∈ Γ. (5.4)

Definition 5.2. A vector d ∈ R
n is a descent direction for h at the point x ∈ R

n if

< ∇h(x), d >< 0.
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Algorithm 2 Gradient Projection (GP) method

Choose the starting point x(0) ∈ Γ, set the parameters β, δ ∈ (0, 1), 0 < τmin < τmax.

FOR k = 0, 1, 2, . . .

STEP 1. Choose τk ∈ [τmin, τmax].

STEP 2. Compute the projection y(k) = PΓ(x(k) − τk∇h(x(k)));

if y(k) = x(k), then x(k) is a stationary point and GP stops.

STEP 3. Define the descent direction d(k) = y(k) − x(k).

STEP 4. Set λk = 1.

STEP 5. Backtracking loop:

IF h(x(k) + λkd
(k)) ≤ h(x(k)) + βλk < ∇h(x(k)), d(k) > THEN

go to STEP 6

ELSE

set λk = δλk and go to STEP 5.

ENDIF

STEP 6. Set x(k+1) = x(k) + λkd
(k).

END

Generally speaking, a gradient method is an iterative algorithm which, starting from an initial

guess x(0) ∈ R
n, generates a sequence of the form

x(k+1) = x(k) + τkd
(k), k = 0, 1, 2, . . . (5.5)

where d(k) is a descent direction at x(k) and τk is a positive parameter, denominated steplength

in the aforementioned discussion. A simple and well studied algorithm for the solution of the

constrained optimization problem (5.3) is the Gradient Projection (GP) method, whose general

iteration is given by

x(k+1) = x(k) + λkd
(k) =

= x(k) + λk

(
PΓ(x(k) − τk∇h(x(k))) − x(k)

)
, (5.6)

where λk ∈ (0, 1] is the linesearch parameter, τk is a positive steplength and PΓ is the standard

Euclidean projection onto Γ. The linesearch parameter is determined by means of a backtrack-

ing loop where the so-called Armijo rule is imposed (this approach is called along the feasible

direction): such rule is expressed by inequality

h(x(k) + λkd
(k)) ≤ h(x(k)) + βλk < ∇h(x(k)), d(k) >
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which guarantees the sufficient decrease of the objective function and is imposed at step 5.

of Algorithm 2. The described scheme generates a sequence with stationary limit points, as

proved in [4, Proposition 2.3.1, Proposition 2.3.3]. Furthermore, when the objective function

is convex and admits at least one minimum point, the convergence of the whole sequence (5.6)

to a solution of problem (5.3) is established in [33].

5.1.2 Application of the Projected Gradient method and numerical results

In this subsection we apply the projected gradient method to the discretized variational problem

(5.1) turned into a minimization problem. Note that the function h considered in Subsection

5.1.1 is the functional
α t(H2, f)

3
− Ip(f), f ∈ W. (5.7)

We introduce a discrete analogous of the space of graphons W: since each element of the space

is a symmetric function f(x, y) : [0, 1]2 7−→ [0, 1], we represent f by a n × n matrix with

elements {fi,j}i,j=1,...,n ∈ [0, 1], thus discretizing the square [0, 1]2. Actually, note that thanks

to Theorem 3.15 we can restrict the research of the minimum on functions bounded away from

zero and one, so we introduce the bond fij ∈ [ε, 1 − ε] for some ε > 0. Moreover, we add the

condition fij = fji which imposes the symmetry. Let us denote by R
n×n the space of n × n

real matrices and define

Γε := {f ∈ R
n×n : fij = fji, fij ∈ [ε, 1 − ε] ∀i, j and for some ε > 0}. (5.8)

The discretized version of (5.7) reads

D(α)
n (f) :=

1

n2


−α

3n

n∑

i,j,k=1

fijfjkfki +
n∑

i,j=1

(
fij ln

fij
p

+ (1 − fij) ln
1 − fij
1 − p

)
 , α ≤ −2, f ∈ Γε

(5.9)

and yields the minimization problem

Problem 5.2. For α ≤ −2 solve

min
f∈Γε

1

n2


−α

3n

n∑

i,j,k=1

fijfjkfki +

n∑

i,j=1

(
fij ln

fij
p

+ (1 − fij) ln
1 − fij
1 − p

)
 . (5.10)

The legitimate hope is that Problem 5.2 converges to the continuous one when n → +∞.

The convergence of the GP method to a stationary point, even in absence of convexity of the

objective function, is proved in [46, Theorem 1],[10] under the assumption that the objective

function satisfies the so-called Kurdyka-Lojasiewicz inequality (KL) ([35],[37]) and its gradient
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is L-Lipschitz continuous. Such property was originally proved for real analytic functions and

turns out to hold true for a large class of functions such as p norms, Kullback-Leibler divergence

and indicator functions of box plus equality constraints. Coming back to our application,

the objective function D
(α)
n (f) is real analytic and, thus, it satisfies the Kurdyka-Lojasiewicz

property, whereas the L-Lipschitz continuity is guaranteed by the compactness of Γε: therefore

the GP method converges to a stationary point when applied to Problem 5.2. In order to

implement the scheme, beside the discretized objective function defined in (5.9), we need the

expression of the gradient: for each m, l ∈ {1, . . . , n} its generic element takes the form

D
(α)
n (f)

∂ fml
= − α

3n3

∑

i,j,k

∂

∂ fml
fijfjkfki +

1

n2

∑

i,j

∂

∂ fml

(
fij ln

fij
p

+ (1 − fij) ln

(
1 − fij
1 − p

))

= − α

3n3

n∑

i,j,k=1

[
∂ fij
∂ fml

fjkfki + fij
∂ fjk
∂ fml

fki + fijfjk
∂ fki
∂ fml

]
+

1

n2

n∑

i,j=1

[
∂ fij
∂ fml

ln
fij
p

− ∂ fij
∂ fml

ln
1 − fij
1 − p

]

= − α

3n3

n∑

i,j,k=1

fjkfki1[i=m,j=l] + fijfki1[j=m,k=l] + fijfjk1[k=m,i=l] +
1

n2

n∑

i,j=1

ln
fij(1 − p)

p(1 − fij)
1[i=m,j=l]

− α

3n3




n∑

k=1

flkfkm +

n∑

i=1

fimfli +

n∑

j=1

fljfjm


+

1

n2
ln

(
fml(1 − p)

p(1 − fml)

)

=
1

n2

[
−α
n

n∑

k=1

flkfkm + ln

(
fml(1 − p)

p(1 − fml)

)]
. (5.11)

Remark 5.1. From (5.11), note that −α
n

∑n
k=1 flkfkm + ln

(
fml(1−p)
p(1−fml)

)
= 0 is the discretized

version of (3.56) and, when flm, for any l,m ∈ {1, . . . , n}, is identically equal to the solution

of the fixed-point equation (3.36), the gradient vanishes.

5.1.3 Numerical results

The goal of this section is to investigate the structure of the minimizers of Problem 5.2 by

applying the GP method to the discretized functional (5.9). We recall that α is negative and

precisely α ≤ −2. At a macroscopic level, we can draw the following conclusions:

a) simulations highlight the presence of two kind of minimizers: the constant ones and those

who exhibit a chessboard pattern. Such minima are revealed for all values of α tested

and constant functions turn out to be numerically equivalent to the solution, u∗, of the

fixed-point equation (3.36) that we recall below:

eαu2+hp

eαu2+hp + 1
= u, (5.12)

where hp = ln p
1−p .
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b) Chessboard structures are different and their patterns strongly depend on the initial

condition of the method. However, all the structures revealed by the algorithm for the

negative α tested, approximate the bipartite graphon

g0,p(x, y) =

{
0 if (x, y) ∈

[
0, 12
]2 ∪

[
1
2 , 1
]2

p if (x, y) ∈
[
0, 12
]
×
[
1
2 , 1
]
∪
[
1
2 , 1
]
×
[
0, 12
] ,

as we will argue.

c) There exists a critical value of α below which the optimizer of D(α)
n (f) stops being the

constant solution and starts being a chessboard one.

We provide the details of the analysis below. Being interested in the solution of Problem 5.1

for α → −∞, here we consider two negative cases, which are significant because they show a

change in the structure of the optimizer: α = −109 and α = −110, for p = 0.4.

Description of numerical results

Figures 5.1, 5.2, 5.3 show the stationary solutions found by Algorithm 2 for the variational

problem (5.2), starting from 12 different conditions when p = 0.4 and α = −110. Figures

5.4, 5.5, 5.6 return the same information when p = 0.4 and α = −109. The method has been

implemented using a 40× 40 grid and two different choices of τk (put side by side in each figure):

in the first case the steplength is fixed whereas in the second one it has been settled using the

Barzilai-Borwein rules [3]. Such rules allow to update the steplength at each iteration in order

to converge faster to a stationary point; the downside of this approach is that the objective

function can not be explored as thoroughly as with a fixed (and small) steplength.

The two choices of the steplength together with the initial conditions, bring to light different

stationary points: let us denote by f∗ such solutions. All constant functions get from the

twelve starting conditions and present in Figures 5.1, 5.2, 5.3 (blue frames) are approximately

equal to f∗1 ≈ 0.120082 with D(−110)
40 (f∗1 ) ≈ 0.255916. All chessboard patterns present in

the same figures numerically realize the same value of D(−110)
40 , hence we denote by f∗2 this

class of solutions and we have D(−110)
40 (f∗2 ) ≈ 0.255361. Figures 5.4, 5.5, 5.6 provide the same

information but with α = −109. In this case, all constant functions are approximately equal to

f∗1 ≈ 0.120486 with D(−109)
40 (f∗1 ) ≈ 0.255336 and the chessboard patterns provide a functional

value D(−109)
40 (f∗2 ) ≈ 0.255356.

Characterization of constant functions

Note that for both α = −109 and α = −110 the constant solution f∗1 coincides with the

numerical solution of the fixed-point equation (5.12) up to the sixth decimal digit.
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u∗(α) Constant solution f∗1 Chessboard solution f∗2 D(α)
40 (f∗1 ) D(α)

40 (f∗2 )

α = −109 0.120486 0.120486 pi ≈ 0.000114, pb ≈ 0.398829 0.255336 0.255356

α = −110 0.120082 0.120082 pi ≈ 0.000100, pb ≈ 0.399100 0.255916 0.255361

Table 5.1: Stationary solutions returned by the GP method for p = 0.4 and α = −109,−110.

Characterization of chessboard structures

We can observe that chessboard stationary solutions shown in Figures 5.1, 5.2, 5.3, 5.4, 5.5, 5.6

exhibit different patterns. We recall that they are obtained, for p = 0.4, starting from twelve

initial conditions with, respectively, α = −109 and α = −110. Table 5.1 resumes the numerical

response: we have denoted by pi and pb the two values respectively assumed by the light blue

and the dark blue frames of the chessboards (this notation is coherent with definition (5.2)).

Despite their diversity, chessboard solutions share two main peculiarities: the first one is that

they assume two values close to 0 and p, thus reminding the bipartite graphon

g0,p(x, y) =

{
0 if (x, y) ∈

[
0, 12
]2 ∪

[
1
2 , 1
]2

p if (x, y) ∈
[
0, 12
]
×
[
1
2 , 1
]
∪
[
1
2 , 1
]
×
[
0, 12
] (5.13)

(however, we notice from Table 5.1 that, when α = −110, the pair (pi.pb) is closer to (0, p)

than the pair obtained for α = −109).

The second one is that, when they are passed as argument to the discretized functional D(α)
40 (f),

they return a good approximation of the continuous functional:

−α t(H2, g0,p)

3
+ Ip(g0,p) = − ln(1 − p)

2
≈ 0.255412 ∀α,

since t(H2, g0,p) = 0.

It is evident from simulations that a similarity between the chessboard patterns and the bipar-

tite graphon (5.13) arises, if only because the discretized functional D(α)
40 (f∗2 ) (α = −109,−110)

approximates the continuous one.

Moving on exact results, thanks to Proposition 5.2, we can work out the membership of all

chessboard structures taking values 0 and p to the same equivalence class of the bipartite

graphon g0,p with respect to relation (3.4), thus justifying, at least partially, the numerical

results.

Before stating Proposition 5.2, we introduce two properties portraying a specific class of pat-

terns. Consider two subsets A and Ac (where Ac denotes the complement of A) of [0, 1] with

the two following properties:

a) |A| = |Ac| = 1
2 where | · | denotes the Lebesgue measure;

b) A and Ac cover the whole of [0, 1] and they are disjoint up to sets of null Lebesgue

measure.
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Figure 5.1: Stationary solutions of Problem 5.2 for p = 0.4 when α = −110; the picture

reproduces, respectively, the starting condition (left column), the solution found by the method

GP with the Barzilai-Borwein steplength (central column) and the solution found with the

fixed steplength (right column). The blue frame denotes the constant function f∗1 ≈ 0.120082

whereas the chessboard patterns take values pi ≈ 0.000100 (light blue) and pb ≈ 0.399100

(dark blue). The chessboard solution is the best optimizer when α = −110.
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Figure 5.2: Stationary solutions of Problem 5.2 for p = 0.4 when α = −110; the picture

reproduces, respectively, the starting condition (left column), the solution found by the method

GP with the Barzilai-Borwein steplength (central column) and the solution found with the

fixed steplength (right column). The blue frame denotes the constant function f∗1 ≈ 0.120082

whereas the chessboard patterns take values pi ≈ 0.000100 (light blue) and pb ≈ 0.399100

(dark blue). The chessboard solution is the best optimizer when α = −110.
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Figure 5.3: Stationary solutions of Problem 5.2 for p = 0.4 when α = −110; the picture

reproduces, respectively, the starting condition (left column), the solution found by the method

GP with the Barzilai-Borwein steplength (central column) and the solution found with the

fixed steplength (right column). The blue frame denotes the constant function f∗1 ≈ 0.120082

whereas the chessboard patterns take values pi ≈ 0.000100 (light blue) and pb ≈ 0.399100

(dark blue). The chessboard solution is the best optimizer when α = −110.
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Figure 5.4: Stationary solutions of Problem 5.2 for p = 0.4 when α = −109. The blue frame

denotes the constant function f∗1 ≈ 0.120486 whereas the chessboard patterns take values

pi ≈ 0.000114 (light blue) and pb ≈ 0.398829 (dark blue). The panel shows, in the order,

the starting condition and the solutions respectively get using the Barzilai-Borwein and the

constant steplength. The constant solution is the best optimizer when α = −109.
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Figure 5.5: Stationary solutions of Problem 5.2 for p = 0.4 when α = −109; the picture

reproduces, respectively, the starting condition (left), the solution found by the method GP

with the Barzilai-Borwein steplength (center) and the solution found with the fixed steplength

(right). The blue frame denotes the constant function f∗1 ≈ 0.120486 whereas the chessboard

patterns take values pi ≈ 0.000114 (light blue) and pb ≈ 0.398829 (dark blue). The constant

solution is the best optimizer when α = −109.
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Figure 5.6: Stationary solutions of Problem 5.2 for p = 0.4 when α = −109; the picture

reproduces, respectively, the starting condition (left), the solution found by the method GP

with the Barzilai-Borwein steplength (center) and the solution found with the fixed steplength

(right). The blue frame denotes the constant function f∗1 ≈ 0.120486 whereas the chessboard

patterns take values pi ≈ 0.000114 (light blue) and pb ≈ 0.398829 (dark blue). The constant

solution is the best optimizer when α = −109.
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Figure 5.7: Stationary solutions of Problem 5.2 for p = 0.4 when α = −109; the picture

reproduces, respectively, the starting condition (left), the solution found by the method GP

with the Barzilai-Borwein steplength (center) and the solution found with the fixed steplength

(right). The blue frame denotes the constant function f∗1 ≈ 0.120486 whereas the chessboard

patterns take values pi ≈ 0.000114 (light blue) and pb ≈ 0.398829 (dark blue). The constant

solution is the best optimizer when α = −109.

The following proposition holds:

Proposition 5.1. Take A and Ac with the properties a) and b) listed above. Define the function

g(x, y) :=

{
0 if (x, y) ∈ [A× A] ∪ [Ac × Ac]

p if (x, y) ∈ [A× Ac] ∪ [Ac × A].
(5.14)

Then

g(x, y)g(y, z)g(z, x) = 0 ∀(x, y, z).

Moreover ∫ 1

0

∫ 1

0
Ip(g(x, y)) = − ln(1 − p)

2
.

Proof. If (x, y) ∈ Ac × Ac or (x, y) ∈ A× A then g(x, y) = 0 and the the result follows. Let’s

start from (x, y) ∈ A× Ac so that g(x, y) = p.

In order to take a value of g(y, z) different from 0, we have to choose (y, z) ∈ Ac × A and

necessarily follows, in the end, that (z, x) ∈ A × A thus leading to g(z, x) = 0. It follows

straightforward by the symmetry of g(x, y) that the same conclusion holds starting from (x, y) ∈
Ac × A.

For what concerns the relative entropy, a direct computation leads to:
∫ 1

0

∫ 1

0
Ip(g(x, y)) =

∫ ∫

A×A
Ip(0) +

∫ ∫

Ac×Ac

Ip(0) + 2

∫ ∫

A×Ac

Ip(p) =
Ip(0)

2
=

1

2
ln

1

1 − p

= − ln(1 − p)

2
.
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An immediate consequence of Proposition 5.1 is that for any g defined as in (5.14), α t(H2,g)
3 −

Ip(g) = −Ip(g) = ln(1−p)
2 .

The following example shows that a particular configuration for which properties a) and b) hold,

is the chessboard. This helps to justify why the class of functions with this pattern returned

by the GP method, which we called f∗2 , approximates ln(1−p)
2 . In fact, having f∗2 values close to

0 and p, we can lean on Proposition 5.1 for explaining the reason of this numerical evidence.

−130 −125 −120 −115 −110 −105 −100 −95
−0.27

−0.265

−0.26

−0.255

−0.25

−0.245

−0.24

α

p=0.4

 

 

F
u

n
ct

io
n

al

-D
(α)
40 (f

∗), f∗ from GP

α
u∗3(α)

3 − Ip(u
∗(α))

−475 −470 −465 −460 −455 −450 −445 −440
−0.113

−0.1125

−0.112

−0.1115

−0.111

−0.1105

−0.11

−0.1095

−0.109

α

F
u

n
ct

io
n

al

p=0.2

 

 

-D
(α)
40 (f

∗), f∗ from GP

α
u∗3(α)

3 − Ip(u
∗(α))

−85 −80 −75 −70 −65 −60 −55
−0.37

−0.365

−0.36

−0.355

−0.35

−0.345

−0.34

−0.335

−0.33

−0.325

−0.32

α

F
u

n
ct

io
n

al

p=0.5

 

 

-D
(α)
40 (f∗), f∗ from GP

α
u∗3(α)

3 − Ip(u
∗(α))

−65 −60 −55 −50 −45 −40 −35 −30
−0.52

−0.5

−0.48

−0.46

−0.44

−0.42

−0.4

α

F
u

n
ct

io
n

al

p=0.6

 

 

-D
(α)
40 (f∗), f∗ from GP

α
u∗3(α)

3 − Ip(u
∗(α))

Figure 5.8: Plot of −D(α)
40 (f∗) as a function of α, where f∗ is the stationary solution returned

by the Gradient Projection method (black, dotted line), overlapped with the function αu∗3(α)
3 −

Ip(u∗(α)), where u∗(α) solves (5.12) (continuous, blue line). The sign of D(α)
40 (f∗) is changed

to be consistent with the original maximization (and not minimization) Problem 5.1.

Example 5.1 (Chessboard). For a fixed n ∈ N = {1, 2, . . . }, let V n = {0, 2, 4, . . . , 2n − 4} be

the set of even integers of cardinality |V n| = 2n

2 − 1. Note that the case n = 1 is empty by

definition. Set

A :=

[
0,

1

2n

] ⋃

k∈V n

[
2

2n
+ k

1

2n
,

2

2n
+ (k + 1)

1

2n

]
(5.15)
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and let Ac be the complement set of A on [0, 1].

When n = 1, since V 1 is empty, we have A =
[
0, 12
]
.

When n = 2 we have that |V 2| = 1, consequently V 2 = {0} and

A =

[
0,

1

4

]
∪
[

2

4
,

2

4
+

1

4

]
=

[
0,

1

4

]
∪
[

1

2
,

3

4

]
, (k = 0).

When n = 3 we have |V 3| = 3 and consequently V 3 = {0, 2, 4} and

A =

[
0,

1

8

] [
2

8
,
2

8
+

1

8

]
∪
[

2

8
+

2

8
,
2

8
+

3

8

]
∪
[

2

8
+

4

8
,
2

8
+

5

8

]
=

[
0,

1

8

]
∪
[

1

4
,

3

8

]
∪
[

1

2
,
5

8

]
∪
[

6

8
,
7

8

]
, (k = 0, 2, 4).

One can check that the two properties a) and b) are satisfied: in fact |A| = 1
2n + 1

2n

(
2n

2 − 1
)

= 1
2

and, by construction, A and Ac are disjoint, with |Ac| = 1
2 .

Observe that, setting A as in (5.15), the function g(x, y) defined in (5.14) assumes a chessboard

structure, with a number of frames depending on the fixed n.

As a further step, we quote the following proposition, which identifies all the functions defined

in (5.14) up to bijections and is extracted from the proof of Theorem 7.3 in [18]:

Proposition 5.2. All the functions defined under the hypothesis of Proposition 5.1, belong to

the same equivalence class of the bipartite graphon (5.13), according to the equivalence relation

(3.4).

Figure 5.8 shows how −D(α)
40 (f∗) changes as a function of α when it is computed on the best

optimizer found by the Gradient Projection method for p = 0.4, p = 0.2, p = 0.5 and p = 0.6

(α varies with unitary step). The sign of D(α)
40 (f∗) is negative in the plot, since Problem 5.2 is

formulated as a minimization one, while we want to be consistent with the original maximization

Problem 5.1. Note that respectively around α = −110, α = −455, α = −69 and α = −47 the

optimal solution f∗ of D(α)
40 switches from the constant one f∗1 (approximating the fixed-point

equation (5.12)) to one of the chessboard functions f∗2 ascribable to the generalized bipartite

graphon g
(a)
pi,pb with pi ≈ 0, pb ≈ p and a = 1

2 .

We now turn to the second approach of our investigation, namely the numerical response

returned by the extended Cloning algorithm introduced in Section 4.1.

5.2 Application of the Cloning algorithm

The second approach we use to investigate the behavior of the scaled cumulant generating

function in the large, negative limit of α, is the Cloning algorithm. It is in order to remark

that the method is not meant for running through large values of such parameter, since it is

a population dynamics scheme whose reproduction rates are exponential in α and then they

explode or vanish very fast. For this reason, simulations show criticalities when the probability

of the graph p grows above 0.6 because the number of triangles and edges, combined with the
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size of α makes the population die very soon. Moreover, as can be worked out from simulations

of Subsection 5.1.3 (Figure 5.8) and as we will see in Section 5.3, the negative threshold, brought

to light by our numerical investigation, which discriminates between the constant solution and

a different one in Problem 5.1, seems to steeply decrease (or increase, in absolute value) as

long as p does the same. For the reasons mentioned above, we have selected for simulations the

two intermediate values p = 0.4 and p = 0.5. Figure 5.9 shows the scaled cumulant generating

function reproduced by the method for n = 10, n = 12, n = 15 when p = 0.4 (top) and p = 0.5

(bottom). We recall that the algorithm implements a growing-size dynamics where n coincides

with the volume of the graphs belonging to the population of the last iteration. Both pictures

reproduce a wider interval, respectively [−150, 7] and [−82, 7] (on the right) and a zoomed one,

[−150, 0] and [−82, 0] (on the left).
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Figure 5.9: Numerical approximation of the scaled cumulant generating function of the triangle

observable reproduced by the Cloning algorithm for p = 0.4 (top) and p = 0.5 (bottom). The

picture also shows the function αu∗3(α)
3 − Ip(u∗(α)), where u∗(α) solves (5.12) (pink curve) and

its asymptote ln(1−p) (blue curve) together with the known asymptote of the scaled cumulant

generating function 1
2 ln(1 − p) (black curve).
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Figure 5.10: Average density of odd cycles per population when p = 0.4 (left) and p = 0.5

(right).

Note that the figure also includes the function αu∗3(α)
3 − Ip(u∗(α)), where u∗(α) solves (5.12)

(pink, continuous curve) and its asymptote ln(1−p) (blue curve); moreover, the picture reports

the correct asymptote of the scaled cumulant generating function which is known from Theorem

3.13 and is equal to 1
2 ln(1 − p). Since the core of the information is carried by the population

of graphs, it is also possible to check out some other observables such as the density of odd

cycles, as long as α decreases. We recall from Remark 3.9 that, when such number vanishes,

the graph is bipartite and then this observable potentially provides information on the kind of

graphs belonging to the population. We also remind the reader that each run of the algorithm

involves, for a fixed α, a starting family of clones, according to Algorithm 2. Figure 5.10 shows

the average density of odd cycles per population for p = 0.4 and p = 0.5 as long as α decreases:

the starting size of the family used for reproducing the picture is M2 = 1000. Note that, for all

sizes of graphs n = 10, n = 12, n = 15, such average number flattens to zero when α decreases.

Another quantity that it possible to monitor is the average density of triangles per population,

as α varies; in fact we know that in replica symmetric such density must be numerically close

to the solution u∗ of the fixed-point equation (5.12) whereas in replica breaking we have no

information. If we expect, below a critical threshold, to go towards a bipartite graphon g0,p
(which is reached, however, only in the limit α → −∞), then, crossing such value, we should

observe a decrease in the density of triangles, which is null in g0,p. Figure 5.11 shows the

average density of triangles per population when p = 0.4 and p = 0.5: in the first case, for

n = 15, it is possible to appreciate that, approximately around α = −110 the density flattens

towards zero (note the coherence with the critical threshold revealed by Figure 5.8 for p = 0.4)

whereas in the positive, or slightly negative, range of α, the density sticks to the expected one,

namely the one known for the replica symmetric regime. When n = 12, as natural, the triangle

density recovered from the population, approaches the expected one in a worst way. For what
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Figure 5.11: Average density of triangles per population when p = 0.4 (top) and p = 0.5

(bottom). The picture reports the statistic for n = 12 (left), n = 15 (middle) and n = 10,

n = 12, n = 15 together (right)

concerns p = 0.5, the statistic is presented in the same way as p = 0.4 but the information on

the null density, that we expect to observe around α = −67, is less legible.

5.3 Optimization of the functional over the class of generalized

bipartite graphons

We conclude our analysis via the third approach, i.e starting from the study of functional (5.1)

and restricting the research of the solution on the set of graphons {g(a)pi,pb}pi,pb,a, where g
(a)
pi,pb is

defined in (5.2). To be precise we tackle the problem

Problem 5.3. Solve

sup
{g

(a)
pi,pb

}pi,pb,a

[
α t(H2, g

(a)
pi,pb)

3
− Ip(g

(a)
pi,pb

)

]
, α ≤ −2 (5.16)
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which turns into

Problem 5.4. Solve

sup
pi,pb,a∈[0,1]

[
α t(H2, g

(a)
pi,pb)

3
− Ip(g

(a)
pi,pb

)

]
, α ≤ −2. (5.17)

We know from Theorem 3.12 that there exists a sufficiently negative constant below which

the solution of Problem 5.1 stops being the constant one (corresponding to the Erdös-Rényi

graphon). In this last part of our investigation, by addressing Problem 5.4, we want to analyze

the behavior of the solution when we absorb the constant graphon into a more general structure,

with a further degree of freedom. Indeed, the subset of graphons R = {g(a)pi,pb(x, y)| a, pi, pb ∈
[0, 1]} ⊂ W contains both the constant graphon (obtained by setting pi = pb) and the general-

ized bipartite graphon (5.2). We further remark that any constant graphon is represented by

infinitely many elements of R, those with fixed pi = pb and arbitrary value of a. In this setting,

we aim at answering the following questions:

a) Even if we restrict the investigation on the specific class of graphons {g(a)pi,pb}pi,pb,a, is it

visible that the optimizer stops being the constant function below a critical value of α?

If yes, what is the value of the threshold?

b) What happens to the structure of the graphon (namely at the parameters pi, pb, a) below

such value of α?

In the following discussion, the (negative) threshold which differentiates among the homoge-

neous solution and the inhomogeneous one, will be called αc(hp). Unfortunately, we do not

have any proof that the transition in R is the real transition occurring in the whole space

W and that αc(hp) coincides with the negative constant −C(hp) mentioned by Theorem 3.12.

However, some evidence for the equality of the two critical points will be obtained by inter-

twining the numerical results of the present section with the ones of Section 5.1.

In order to make
α t(H2,g

(a)
pi,pb

)

3 − Ip(g
(a)
pi,pb) explicit, it is convenient to write (5.2) as follows:

g(a)pi,pb
(x, y) = pi

(
1[0,a]× [0,a] + 1[a,1]× [a,1]

)
+ pb

(
1[0,a]× [a,1] + 1[a,1]× [0,a]

)
(5.18)

Using expression (5.18) and developing computations we get

t(g(a)pi,pb
,H2) =

∫ 1

0

∫ 1

0

∫ 1

0
g(a)pi,pb

(x, y)g(a)pi,pb
(y, z)g(a)pi,pb

(z, x)dxdydz

= p3i [a
3 + (1 − a)3] + 3p2bpia(1 − a)2 + 3p2bpia

2(1 − a) (5.19)
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and, for what concerns the Bernoulli relative entropy,

Ip(g(a)pi,pb
) =

∫ 1

0

∫ 1

0
Ip(g

(a)
pi,pb

(x, y))dxdy = 2a(1 − a)Ip(pb) + [a2 + (1 − a)2]Ip(pi). (5.20)

Combining (5.19) and (5.20) the resulting function reads:

α
t(g

(a)
pi,pb ,H2)

3
− Ip(g(a)pi,pb

) =

=
α

3
{p3i [a3 + (1 − a)3] + 3p2bpia(1 − a)2 + 3p2bpia

2(1 − a)} − 2a(1 − a)Ip(pb) − [a2 + (1 − a)2]Ip(pi)

=: Fα(pi, pb, a). (5.21)

Remark 5.2. We observe that, since the Bernoulli relative entropy is defined by continuity

over the interval [0, 1] by setting Ip(0) = Ip(1) = 0, the function Fα(pi, pb, a) is continuous

and the supremum over [0, 1]3 is always reached. In conclusion there is at least one triplet

(p∗i , p
∗
b , a

∗) of optimizers.

Remark 5.3. The function Fα(pi, pb, a) enjoys, with respect to the variable a, a reflectional

symmetry around 1
2 , being Fα(pi, pb, a) = Fα(pi, pb, 1 − a).

In conclusion, the Problem (5.4) turns into

max
pi,pb,a∈[0,1]

Fα(pi, pb, a) =

max
pi,pb,a∈[0,1]

α

3
{p3i [a3 + (1 − a)3] + 3p2bpia(1 − a)2 + 3p2bpia

2(1 − a)} − 2a(1 − a)Ip(pb) − [a2 + (1 − a)2]Ip(pi).

(5.22)

In the next paragraph, we will address problem (5.22) looking for

Fα(p∗i , p
∗
b , a

∗) = max
pi,pb,a∈[0,1]

Fα(pi, pb, a). (5.23)

5.3.1 Gradient computation and solutions analysis

The computation of the gradient of the function (5.21) with respect to (pi, pb, a) leads to the

following system, describing the condition ∇Fα(pi, pb, a) = 0:





α
[
p2i (3a(a− 1) + 1) + ap2b(1 − a)

]
− (a2 + (1 − a)2) ln

(
pi(1−p)
p(1−pi)

)
= 0 (a)

2a(1 − a)
[
pipbα− ln

(
pb(1−p)
p(1−pb)

)]
= 0 (b)

(2a− 1)
[
α(p3i − p2bpi) + 2(Ip(pb) − Ip(pi))

]
= 0 (c)

,
α ≤ −2.

pi, pb, a ∈ [0, 1]

(5.24)
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Existence condition of the solutions

In order that system (5.24) admits a solution, observe from equation (a) that it must be

(a2 + (1 − a)2) ln
(
pi(1−p)
p(1−pi)

)
≤ 0, otherwise, since α ≤ −2, all the terms turn out to be strictly

negative. This condition yields ln
(
pi(1−p)
p(1−pi)

)
≤ 0 and consequently pi(1−p)

p(1−pi)
≤ 1, which implies

pi ≤ p. (5.25)

We now separately discuss the possible solutions of system (5.24) according to the choice of a.

Case a = 1

If we set a = 1, system (5.24) becomes:




αp2i − ln

(
pi(1−p)
p(1−pi)

)
= 0 (a)

α(p3i − p2bpi) + 2(Ip(pb) − Ip(pi)) = 0 (c)
, α ≤ −2. (5.26)

Note that, equation (a) coincides with the fixed-point equation eαu2+hp

eαu2+hp+1
= u, whose solution

u∗ is unique when α is negative (see Remark 3.8). Substituting pi = u∗ in equation (c) we get:

α(u∗3 − u∗p2b) + 2(Ip(pb) − Ip(u∗)) = 0. (5.27)

Let us define Cα(pb) := 2Ip(pb) − αu∗p2b + αu∗3 − 2Ip(u∗): in order to find the possible zeros

of the function, we observe first of all that it is convex, since it is a combination of −αu∗p2b
(note that −α > 0 since α is negative) and 2Ip(pb) which are convex. Moreover, the minimum

of Cα(pb) is attained at pb = u∗ and this last conclusion is justified by

dCα(pb)

dpb
= 0 ⇒ eαu∗pb+hp

eαu∗pb+hp + 1
− pb = 0, (5.28)

being hp = ln p
1−p . We already know that a possible solution of equation (5.28) is pb = u∗:

it is, as expected, the unique one, being the function Dα(pb) := eαu∗pb+hp

eαu∗pb+hp+1
− pb strictly

decreasing and crossing the abscissas axis. Combining the fact that the minimum of Cα(pb) is

attained at pb = u∗ with the convexity of the function Cα(pb) and with the fact that u∗ is such

that Cα(u∗) = 0, we can conclude that u∗ is the unique zero of the function. To summarize,

we have found that the unique possible solution of system (5.26) when a = 1, is the pair

(p∗i , p
∗
b) = (u∗, u∗). Moreover, it is in order to stress that, when pi = pb = u∗, the generalized

bipartite graphon (5.2) coincides with the Erdös-Rényi graphon identically equal to u∗. Finally

note that u∗ < p so the solution is acceptable.
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Case a = 0

As we have observed in Remark 5.3, the function shows a symmetry around 1
2 , hence the same

conclusions drawn for the case a = 1 can be drawn for the case a = 0.

Remark 5.4. We observe that when a = 1 or a = 0 it is natural that the model falls back into

the Erdös-Rényi one. In fact, in correspondence of these two extremal values of a, the graphon

g
(a)
pi,pb respectively turns into g

(1)
pi (when a = 1) or g

(0)
pb (a = 0) and its structure becomes no

longer bipartite. Moreover observe that, taking for example a = 1, the function Fα(pi, pb)

reduces to Fα(pi) = α
3 p

3
i − Ip(pi) and the maximization problem maxpi∈[0,1]

α
3 p

3
i − Ip(pi) is the

standard scalar problem one has to solve in replica symmetric for recovering the scaled cumulant

generating function of the normalized number of triangles. The computation of the eigenvalues

of the Hessian matrix of Fα(pi, pb, a) allows to check that the pair (u∗, u∗) corresponds, as

expected, to a maximum. This turns out to be true for any a and, in particular, for a = 1 and

a = 0, which are the cases discussed up to now.

Case a 6= 1
2 , 0, 1
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Figure 5.12: Plot of Gα(pb) for different values of p: each picture shows that the function is

concave and its unique zero, which also coincides with its maximum, is attained at pb = u∗

(black star). In each picture, for a fixed p, we overlap the plot of Gα(pb) for different values of

α. The plot is defined over the interval of pb expressed by condition (5.30).

In this case, system (5.24) becomes:





α
[
p2i (3a(a− 1) + 1) + ap2b(1 − a)

]
− (a2 + (1 − a)2) ln

(
pi(1−p)
p(1−pi)

)
= 0 (a)

pipbα− ln
(
pb(1−p)
p(1−pb)

)
= 0 (b)

α(p3i − p2bpi) + 2(Ip(pb) − Ip(pi)) = 0 (c)

, α ≤ −2.

(5.29)
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Domain of pb: From equation (b) we can make pi = 1
αpb

ln pb(1−p)
p(1−pb)

explicit and check when

the condition 0 ≤ pi ≤ 1 is satisfied. Inequality 1
αpb

ln pb(1−p)
p(1−pb)

≥ 0 implies ln pb(1−p)
p(1−pb)

≤ 0 (since

α is negative) and hence pb ≤ p. Inequality 1
αpb

ln pb(1−p)
p(1−pb)

≤ 1 implies pb ≥ 1
α ln pb(1−p)

p(1−pb)
. In

conclusion we get the bond
1

α
ln
pb(1 − p)

p(1 − pb)
≤ pb ≤ p. (5.30)

Substituting the expression of pi in (c), we recover the following equation:

α

[(
1

αpb
ln
pb(1 − p)

p(1 − pb)

)3

− pb
α

ln
pb(1 − p)

p(1 − pb)

]
+ 2

[
pb ln

pb
p

+ (1 − pb) ln
1 − pb
1 − p

− 1

αpb
ln
pb(1 − p)

p(1 − pb)
ln

(
1

pα pb
ln
pb(1 − p)

p(1 − pb)

)

−
(

1 − 1

α pb
ln
pb(1 − p)

p(1 − pb)

)
ln

(
1

1 − p

[
1 − 1

αpb
ln
pb(1 − p)

p(1 − pb)

])]
= 0. (5.31)

Let us call Gα(pb) the first member of (5.31). Note that, when 1
α ln

(
pb(1−p)
p(1−pb)

)
≤ pb ≤ p (as

expressed in condition (5.30)) all the logarithms are well defined. Since equation Gα(pb) = 0 is

hard to solve, we have done a numerical investigation, which has led to conclude that Gα(pb)

turns out to be a concave function whose unique zero coincides with pb = u∗ as shown in Figure

5.12. In conclusion, the pair (pi, pb) = (u∗, u∗) is the unique solution of system (5.29) that we

have numerically found. Note that such pair of solutions, when substituted in equation (a),

leads to (2a2 − 2a + 1)
(
αu∗2 − ln

(
u∗(1−p)
p(1−u∗)

))
= 0 which is verified ∀ a. In other words, we

can again remark that when pi = pb = u∗, the generalized bipartite graphon g
(a)
pi,pb assumes

everywhere the constant value u∗ and the parameter a loses its meaning.

Up to now, the optimization over the parameters of g
(a)
pi,pb has uniquely led to the constant

function identically equal to u∗, which corresponds to a maximum (see Remark 5.4). It still

rests to analyze the case a = 1
2 .

Case a = 1
2

We finally consider the case a = 1
2 : making this substitution, system (5.24) becomes:




α
[
p2i
4 +

p2b
4

]
− 1

2 ln
(
pi(1−p)
p(1−pi)

)
= 0 (a)

1
2

(
α pbpi − ln

(
pb(1−p)
p(1−pb)

))
= 0 (b)

, α ≤ −2, (5.32)

whereas the function (5.21) takes the following form:

Fα

(
pi, pb,

1

2

)
=
α

3

(
p3i
4

+
3

4
p2bpi

)
− 1

2
Ip(pb) −

1

2
Ip(pi).

Description of numerical results

We have performed a numerical investigation of the solutions of (5.32) and, by checking the

eigenvalues of the Hessian matrix, we have selected the pairs corresponding to a maximum.
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Figure 5.13: Upper panel: the left picture represents the optimizers (p∗i (α), p∗b (α)) of

Fα

(
pi, pb,

1
2

)
as functions of α ∈ [−150, 0], where α varies with unitary step and p = 0.4.

The pictures in the middle and in the right columns show the behavior of p∗b(α) and p∗i (α) in

the zoomed interval [−150,−110]. Lower panel: the same data of the upper panel for p = 0.5,

α ∈ [−90, 0] and α ∈ [−90,−69] (zoomed pictures).

Among all the maxima found, we have then identified the best optimizer of Fα

(
pi, pb,

1
2

)
.

Figure 5.13 shows the pairs of optimizers (p∗i (α), p∗b (α)) of Fα(pi, pb, a) when α varies with

unitary step. The upper panel shows the case p = 0.4 in the interval [−150, 0] (left column)

and in the zoomed one [−150,−110] (central and right column); the lower panel shows the

same data for p = 0.5 in the interval [−90, 0] and [−90,−69] (zoomed visual). The central and

right columns of Figure 5.13 show that p∗i (α) and p∗b(α) are two slowly varying function that

converge to the limits 0 and p whereas the left column of Figure 5.13, gives an evidence of the

fact that, for fixed p, the function α→ (p∗i (α), p∗b (α)) drastically changes its trend, respectively

around αc(hp) = −110 for p = 0.4 and αc(hp) = −69 for p = 0.5. More precisely, crossing

αc(hp) from above, the first two components of the optimizer (p∗i (α), p∗b(α), 12) stop being equal

to u∗(α) and (p∗i (α), p∗b (α)) jumps towards the point (0, p). Further evidence of this transition

is given in Figure 5.14 where the curves α→ Fα

(
p∗i (α), p∗b(α), 12

)
and α→ αu∗3(α)

3 − Ip(u∗(α))

are displayed together with the asymptote of the scaled cumulant generating function of the

normalized number of triangles, which is known thanks to Theorem 3.13 (red, continuous line).

This figure shows that there is a value of α at which the two curves separate one from the other.
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Figure 5.14: Left and central column: plot of Fα(p∗i (α), p∗b (α), 12 ) as a function of α, together

with the function αu∗3(α)
3 − Ip(u∗(α)), respectively for p = 0.4 and p = 0.5 (pink continuous

line). The horizontal red line represents the asymptotic value of function µ(α) as α → −∞.

Right column: zoom on the interval [−150,−110] for the case p = 0.4.

This is the critical value αc(hp) at which the curve α→ (p∗i (α), p∗b (α)) makes the jump visible

in Figure 5.13 (left column). Note that Figure 5.15 further clarifies this behavior: it shows how

the maximum of the function Fα(pi, pb,
1
2), passes from lying on the interior to being close to

the edge, crossing αc(hp).

We report a summary of the described results below, in order to shed additional light to the

observed behavior. We recall that we refer to the case a = 1
2 .

Critical threshold

The left and central column of Figure 5.14 give an evidence of the fact that there is a value of

α at which Fα

(
p∗i , p

∗
b ,

1
2

)
departs from αu∗3(α)

3 − Ip(u∗(α)). Crossing this critical value, which

we have called αc(hp), the sequence of optimizers (p∗i (α), p∗b (α)) makes the jump visible both

in Figure 5.13 (left column) and in Figure 5.15. The critical values αc(hp) turn out to be

approximately −110 and −69, respectively for p = 0.4 and p = 0.5. Note that other thresholds

are reported in Table 5.2 for different values of p whereas Figure 5.16 shows the fitting curve

of the data.

Above the critical threshold

Above the critical threshold, Fα

(
p∗i , p

∗
b ,

1
2

)
perfectly suits αu∗3(α)

3 − Ip(u
∗(α)), namely the pair

of optimizers coincides with p∗i (α) = p∗b(α) = u∗(α). We recall that αu∗3(α)
3 − Ip(u∗(α)) is

related to the scalar problem characterizing the replica symmetric regime.
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Figure 5.15: Top: jump of the pair of optimizers (p∗i (α), p∗b(α)) of Fα(pi, pb,
1
2) when α passes

from −109 to −110 and p = 0.4 (yellow point). Bottom: jump of the pair of optimizers

(p∗i (α), p∗b(α)) when α passes from −68 to −69 and p = 0.5.
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Fitting curve: |αc(hp)| ≈ 17.4p−2

Figure 5.16: fitting curve of

data present in Table 5.2.

p αc(hp)

0.05 -7580

0.1 -1861

0.12 -1286

0.15 -817

0.2 -455

0.3 -199

0.4 -110

0.5 -69

0.6 -47

0.7 -34

0.8 -25

0.9 -19

0.98 -17

Table 5.2: critical values of

α as a function of p.

Below the critical threshold

Below the critical threshold, the pairs of optimizers (p∗i (α), p∗b (α)) squeeze towards (0, p) as

long as α decreases, without never really reach neither 0 or p (note that this is coherent with

Theorem 3.15 which states that the maximizer of Problem 5.1 must be bounded away from

zero). As can be inferred from the picture, below αc(hp), the function Fα(p∗i , p
∗
b ,

1
2) seems
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to settle in at the asymptote, 1
2 ln(1 − p), of the scaled cumulant generating function of the

normalized number of triangles. Note that Fα(0, p, 12) = −1
2Ip(0) = 1

2 ln(1 − p) which is the

equation of the asymptote mentioned above.

However we remark that, below the critical value of α, the asymptote of the scaled cumulant

generating function is never really reached by the function Fα

(
p∗i , p

∗
b ,

1
2

)
, since the optimal

pair of parameters assumes values which are close, not equal to 0 and p. This can be also

appreciated by looking at the right column of Figure 5.14, which shows a zoomed visual of

Fα(p∗i , p
∗
b ,

1
2 ) on the interval [−150,−110] together with the asymptote of µ(α).
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Figure 5.17: Plot of the curves resulting from the investigation with the GP method (black

dotted curve) and from the numerical analysis of Problem 5.4 (red dotted curve) overlapped

with αu∗3(α)
3 − Ip(u∗(α)) (continuous blue curve characterizing the replica symmetric regime).

In order to summarize, we provide an answer to the questions we asked at the beginning

of this Subsection. More precisely, the investigation of Problem 5.4 has led to the following

conclusions:

a) the optimization over the parameters (pi, pb, a) has brought to light that the case a = 1
2

seems to be the interesting one, if we want to observe a pair of optimizers (p∗i (α), p∗b(α))

different from the constant solution u∗(α). Setting a = 1
2 , we have observed that, above

a critical and negative value of α (which depends on p), the optimal triplet of parameters

which maximizes Fα(pi, pb, a) coincides with
(
u∗(α), u∗(α), 12

)
: in other words we recover

the constant solution which characterizes the replica symmetric regime. Speaking of

critical values, it is possible to give a numerical estimation of them (which depends on p)

and the values that we have found are collected in Table 5.2. Note that the critical values

of α found in this subsection, perfectly agree with the ones revealed by the Projected

Gradient method introduced in Subsection 5.1.1, which had no initial bias concerning

the structure of the optimizer (see Figure 5.8, cases p = 0.4 and p = 0.5). As a further
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evidence, we show in Figure 5.17 the perfect match between the numerical curve returned

by the GP method (−D(α)
40 (f∗)) and the one obtained from the analysis of the variational

problem over the subclass of generalized bipartite graphons (Fα(p∗i (α), p∗b(α), 12)).

b) Below the critical threshold, the maximizers differentiate and p∗i (α) and p∗b(α) respectively

become closer and closer to 0 and p, as long as α decreases.

As a general consideration, we stress that, for each p, the constant αc(hp) that we have found

through simulations is for sure less or equal to the critical one, −C(hp), mentioned by Theorem

3.12: however, we strongly believe that they should coincide, since the simplest way for the

constant graphon to break its structure is to split in a bipartite one.
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Rare events are widely studied in several scientific fields, since the most interesting aspects of

natural phenomena are not the typical ones but those which are in some sense more difficult to

observe, predict and control. The theory of large deviations has developed mathematical tools

for computing the probability that a certain event deflects from its average behavior. From the

practical point of view, the derivation of the rate function is difficult to perform and it could

be helpful to resort to simulations. However, the approach of simulating the true dynamics

is time consuming, since by definition, rare events are difficult to observe. Helpful numerical

tools for investigating rare events are Monte Carlo methods, which are tailored for weighting

the probabilities in such a way that the they become less infrequent. This thesis inserts in this

context by presenting a Monte Carlo method, called Cloning algorithm, for the approximation

of the so-called scaled cumulant generating function: it is strictly related to the theory of

large deviations since, when the Gärtner-Ellis theorem holds, it coincides with the Legendre

transform of the rate function. Our contribution consists in devising an extended version of

the Cloning algorithm, which is specifically tailored for working on random graphs, aiming

at approximating the scaled cumulant generating function of some additive observable which

we measure on them. In this thesis, the method is applied to the dense Erdös-Rényi model,

considering as observable the number of triangles. A very complex large deviations theory is

hidden behind the simplicity of this problem and some questions are still open. Keeping the

focus on the dense Erdös-Rényi model, this thesis also aims at investigating the unresolved

region concerning the scaled cumulant generating function of such observable.

First, we introduced the standard version of the Cloning algorithm, providing a formal

analysis of its formulation. In particular, we highlighted its strict connection with branching

processes, which can be intuitively forecast from the fact that the method follows a population

dynamics approach in which each individual is reproduced or killed according to some rate. We

tested the scheme on some simple models, the random walk and the Ehrenfest diffusion, where

the dynamics was described by birth and death chains on a finite space of configurations, for

reproducing the scaled cumulant generating function of an additive observable. These simple

applications brought to light the effectiveness of the method, since simulations return the

objective function with a very good accuracy.

Second, we devised an extended version of Cloning algorithm designed for working on the

121
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random graphs setting. This new approach consists in implementing a dynamics on growing-

size spaces of graphs where, starting from a chosen size, typically small, a vertex is added and

then connected to the previous ones. On the grounds of this process, we specialized to the

dense Erdös-Rényi model connecting the edges at each step with independence according to

probability p. The main advantage of this strategy consists in the fact that it is possible to

keep trace in an incremental way of the observable one wants to measure along the process.

First, we tested this new version of the Cloning algorithm on the edge observable, which is

the simplest one, since the independence of the random variables involved allows different

simplifications. For example, it is possible to implement the dynamics without involving the

adjacency matrices in the code, since all the information necessary for running the method

can be transferred on integers, thus reducing the computational cost. Simulations results are

favored by this strategy, which allows to run the method along several iterations, and they

return an optimal approximation of the objective function, which, in this case, is simple to

derive. For what concerns the triangle observable, things are more complex: due to the lack of

independence it is necessary to involve adjacency matrices in the process; however, the most

complex part consists in computing the reproduction rate of each member of the population.

This number, coincides with a partition function which, in the triangles case, sums over an

exponential number of terms at each step (we recall that matrices grow their size of one unit per

iteration). A significant simplification would be obtained by finding a smart way for counting

all the matrices related to the same increment of triangles, in order to perform the sum over

less terms. The combinatorics underlying this goal is however very complex. As a first step,

we run simulations on the so-called replica symmetric region where the analytical expression

of the scaled cumulant generating function is known and can be used as a comparison term.

Despite the aforementioned difficulty, simulations, possible for small sizes of the graphs, show

interesting results and reveal the progressive convergence of the method to the limiting curve.

Keeping the setting on the replica symmetric region, we finally provided a heuristic argument

on the convergence, which turns out to be exact when the number of nodes of the graphs grows

to infinity.

We finally moved the investigation on the replica breaking region, which is unresolved, since

the expression of the scaled cumulant generating function is not known here: this regime is

revealed when α is negative, where α is the parameter which tunes the triangles density. For

both replica symmetric and replica breaking regions, the analytical computation of the scaled

cumulant generating function coincides with solving a variational problem over a certain space

of measurable, symmetric functions called graphons. The only information we have on replica

breaking regime, is the fact that the solution of the problem stops being the constant one (which,

instead, characterizes the replica symmetric phase) and changes its structure. The breaking

point must correspond to a sufficiently negative value of α, below which starts the unresolved

window. Moreover we know that, in the negative limit of α, the unique optimizer is the so-

called bipartite graphon with parameters 0 and p. Leaning on the variational formulation, we

proposed three strategies for investigating such controversial region. In the first approach, we
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studied the problem by means of a well-known optimization method, the Gradient Projected

one: the downside of this approach consists in the fact that the output of the algorithm strongly

depends on the initial condition and, in case of non-convex functions, it does not guarantee

the convergence at a minimum. It is however possible to show that, even in lack of convexity,

the method, applied to the discretized optimization problem, converges to a stationary point.

Despite the aforementioned criticalities, the Projected Gradient algorithm returns promising

results. To recap we can say that:

a) the method brings to light the existence of different stationary points, which, however, can

be grouped in two classes: the constant solution, which is always a stationary point for the

variational problem, independently from the choice of the regime (replica symmetric or

replica breaking one) and a collection of functions with a chessboard structure assuming

values pi ≈ 0 and pb ≈ p which approximate the bipartite graphon with parameters 0

and p.

b) from numerical results is clearly appreciable that there exists a critical value of α, crossing

which the optimizer switches from the constant function to a chessboard one, assuming

values pi ≈ 0 and pb ≈ p.

As a second strategy of investigation, we run the extended version of the Cloning algorithm:

the method is not meant for coping with large absolute values of α, since the reproduction

rates of the population are exponential in α and then they could explode or vanish very fast.

For this reason, simulations do not reveal significant features of the objective curve, however

something can be worked out by monitoring both the average density of triangles and of odd

cycles per population. More precisely:

a) for a fixed p, we observed that the average density of triangles followed the typical trend

of replica symmetric regime, up to a certain negative constant and then it drifted towards

zero. Such behavior could let forecast the passage between a homogeneous structure to

another one, where triangles are progressively suppressed from the graph. It is in order to

point out that the algorithm deals with graphs and not graphons, however, if we expect

to go towards a bipartite structure, the progressive disappearance of odd cycles, and

hence of triangles, is exactly what we should see. The average density of triangles starts

approaching zero from a value of α which is comparable with the critical one revealed

by the Gradient Projection method and corresponding to the change of optimizer of the

variational problem. In such sense, the response of this investigation is coherent with the

one returned by the Gradient Projection method.

b) An analogous consideration can be drawn for the average density of odd cycles: simula-

tions show a decreasing trend of such quantity as long as α decreases.

As a final strategy, we performed an analysis of the variational problem over a specific class of

generalized bipartite graphons with generic parameters pi, pb, a. This choice was motivated by
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the guess that the natural way for the constant function for changing its structure was to split

in a bipartite one. Optimizing over the parameters we observed that the only way for finding

stationary points different from the constant solution (with pi = pb), was to settle a = 1
2 . This

specific choice again revealed that, crossing a critical value of α, the optimizer of the variational

problem, which is the homogeneous function up to such threshold, breaks its structure in a

generalized bipartite one with parameters pi and pb respectively close to 0 and p.

Two conclusive remarks are in order:

1) all the critical values of α revealed, for a fixed p, by the Gradient Projection method and

by the third analysis of the functional coincide (in both numerical approaches α varies

with unitary step);

2) below the critical threshold, the values of pi(α) and pb(α) returned by the Gradient

Projection method and by the analysis of the functional, are close, not equal to 0 and

p. Moreover pi(α) and pb(α) progressively approach these two benchmarks as long as α

decreases. In particular, for finite α, the fact that pi does not vanish is coherent with

what we know from the theory.

Our conjecture

As a final conclusion emerging from the investigation of the replica breaking regime, we conjec-

ture the following behavior of the variational problem returning the scaled cumulant generating

function of the triangle observable: for a fixed p, below a negative critical threshold αc(hp),

the optimizer switches from the constant function to the generalized bipartite graphon with

parameter pi(α) ≈ 0, pb(α) ≈ p and a = 1
2 . Moreover, pi(α) and pb(α) respectively converge

to 0 and p in the negative limit of α, thus recovering the expected result. This conjecture is

portrayed in Figure 5.18.

Figure 5.18: Representation of the conjectured solution of Problem 5.1.
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Future work

Future work will concern two main aspects. First of all, the research of a more efficient im-

plementation strategy aimed at reducing the computational cost of the extended Cloning algo-

rithm. This approach can be twofold: on one hand we can look for a smart way of addressing

the combinatorics underlying the computation of the cloning rate, thus performing the related

sum in a more efficient way. On the other hand, we can go on the direction of making a change

on the dynamics, for example allowing only one connection per iteration and consequently up-

dating the variation of the increment. This approach requires more steps, more precisely
(
n
2

)

instead of n, if n is the final size of the graph we want to reproduce. The hope is that this

strategy could bring an improvement, introducing simplifications on the computation of the

reproduction rates.

Finally, as a second goal, we aim at proving the thesis conjectured above, concerning the

expression of the scaled cumulant generating function in the unresolved region.





Appendix A

Matlab code for the extended

Cloning algorithm

1 t ic ;

2 clear a l l ;

3 close a l l ;

4 rand( ’ seed ’ ,123) ;

5 cu r r en tFo lde r=pwd;

6

7 %Main

8 %Var iab l e s d e c l a ra t i on

9 %Main v a r i a b l e s :

10 %dim in ( i n t e g e r ) − s i z e o f the graphs in the i n i t i a l popu la t i on .

11 %M 2 ( i n t e g e r ) − i n i t i a l s i z e o f the popu la t i on o f graphs .

12 %N ( i n t e g e r ) − number o f i t e r a t i o n s .

13 %a l f a ( vec tor ) − vec tor o f parameters o f the s . c . g enera t ing f c t

.

14 %p graph ( i n t e g e r ) − p r o b a b i l i t y o f the dense ER graph .

15 %mu ( vec tor ) − r a t i o .

16 %muAlfa ( vec tor ) − s . c . g enera t ing f c t f o r each a l f a .

17 %ra t e s ( vec tor ) − reproduc t i on ra t e s .

18 %seq ( array ) − random s t a r t i n g popu la t i on o f M 2 01−matr ices .

19 %num ( vec tor ) − i n t e g e r s numbers from 1 to the sum of ra t e s .

20 %popu l a t i o n e x t r ( vec tor ) − e x t r a c t e d popu la t i on .

21 %sum r ( i n t e g e r ) − sum of a l l r a t e s .

22 %rates cum ( i n t e g e r ) − cumulat i ve sum of the vec tor ra t e s .

23 %d i s p o s i t i o n ( array ) − p o s s i b l e e v o l u t i o n s o f a graph .

24 %prob cumsum ( array ) − cumulat i ve sum of the t r an s i t i o n prob .
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25 %ra t e i n t ( i n t ) − reproduc t i on i n t e g e r ra t e o f the graph .

26

27 %Support ing v a r i a b l e s :

28 %S ,min , p , element , d i f f −( i n t e g e r v a r i a b l e s )

29 %Graph , Graph base −(matr ices )

30

31 dim in= 2 ;

32 M 2=1000;

33 N=10;

34 p graph =0.4;

35 a l f a = −3:0.5:7;

36

37 %I n i t i a l i z a t i o n o f v e c t o r s and arrays

38 muAlfa= zeros (1 , length ( a l f a ) ) ;

39 num=zeros (1 ,M 2) ;

40 r a t e s=zeros (1 ,M 2) ;

41 seq= c e l l ( 1 ,M 2) ;

42 p op o l a z i on e e x t r= c e l l ( 1 ,M 2) ;

43

44 %I n t i a l i z a t i o n o f the popu la t i on o f graphs

45 Graph base=zeros ( dim in , d im in ) ;

46 for l =1:M 2

47 element=randsample ( [ 0 1 ] , 1 , true , [ (1 − p graph ) p graph ] ) ;

48 Graph=Graph base ;

49 Graph (1 ,2 )=element ;

50 seq {1 , l}= Graph ;

51 end

52

53 for a=1: length ( a l f a )

54 disp ( a ) ;

55 %i n i t i a l i z e popu la t i on to seq .

56 popu lat ion=seq ;

57 mu= zeros (1 ,N) ;

58 for n=1:N

59 S=M 2 ;

60 %Evolu t ion & Computation o f reproduc t i on ra t e s

61 for l =1: length ( popu lat ion )

62 [ d i s p o s i t i on , prob cumsum , r a t e i n t ]= Dispo ( popu lat ion

{1 , l } , p graph , a l f a ( a ) , N+dim in ) ;

63 r a t e s ( l )=r a t e i n t ;
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64 %ex t r a c t a t r an s i t i o n p r o a b a b i l i t y

65 p=rand ( ) ;

66 di f f= p−prob cumsum ;

67 min= find ( dif f <=0,1) ;

68 evo lu t i on pop=d i s p o s i t i o n {1 ,min} ;

69 %add the column as soc i a t e d to the e vo l u t i on

70 popu lat ion {1 , l }=[ popu lat ion {1 , l } evo lut ion pop ’ ; zeros

(1 , length ( evo lu t i on pop ) +1) ] ;

71 end

72

73 sum r=sum( r a t e s ) ; %new s i z e o f the popu la t i on

74

75 i f ( sum r==0)

76 fpr intf ( ’ popu lat ion s i z e n u l l : e x i t at time t= %d\n ’ , n

) ;

77 disp ( a l f a ( a ) ) ;

78 e x i t ;

79 end

80

81 %Extrac t M 2 numbers between 1 and sum r

82 for kk=1:M 2

83 num( kk )=f loor (1+rand ( ) ∗( sum r−1) ) ;

84 end

85 rates cum = cumsum( r a t e s ) ;

86

87 %rates cum a l l ows to know in which p a r t i t i o n the e x t r a c t e d

numbers f a l l

88 for i i = 1 : M 2

89 ind min= find (num( i i )−rates cum <= 0 ,1) ;

90 p op u l a t i on e x t r {1 , i i }= popu lat ion {1 , ind min } ;

91 end

92

93 %i f a l l c l one s have been k i l l e d , e x i t

94 i f ( isempty ( p op u l a t i on e x t r ) )

95 fpr intf ( ’ popu lat ion s i z e n u l l : e x i t at time t= %d\n ’ , n

) ;

96 disp ( a l f a ( a ) ) ;

97 e x i t ;

98 end

99
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100 %update the popu la t i on

101 popu lat ion=p op u l a t i on e x t r ;

102

103 %pa r t i a l v a l u e s o f the s c a l e d cumulant genera t ing func t i on

104 mu(n)= S/sum( r a t e s ) ;

105 S=sum( r a t e s ) ;

106 end

107

108 %sca l e d cumulant genera t ing func t i on

109 muAlfa ( a )= −(1/nchoosek ( (N+dim in ) , 2 ) ) ∗sum( log (mu) ) ;

110 %c l e a r v a r i a b l e s b e f o r e the c y c l e s t a r t s again

111 clear mu;

112 clear p op u l a t i on e x t r ;

113 clear popu lat ion ;

114 end

115 %p l o t

116 plot ( a l f a , muAlfa , ’ ∗g ’ ) ;

117 xlabel ( ’ \alpha ’ , ’ FontSize ’ ,20 , ’ FontWeight ’ , ’ bold ’ , ’ Color ’ , ’ r ’ ) ;

118 ylabel ( ’ \mu(\ alpha ) ’ , ’ FontSize ’ ,20 , ’ FontWeight ’ , ’ bold ’ , ’ Color ’ , ’ r ’ ) ;

119 t i t l e ( s t r c a t ( ’p=’ , num2str ( p graph ) ) , ’ FontSize ’ ,20) ;

120 legend ({ s t r c a t ( ’ Cl N=’ ,num2str (N+dim in ) ) } , ’ FontSize ’ ,20 , ’ Locat ion ’

, ’ northwest ’ ) ;

121 %

=========================================================================

122 % End of Main .m f i l e

123 %

=========================================================================

1 function [ d i s p o s i t i on , prob cumsum , r a t e i n t ]= Dispo ( graph , p graph ,

a l f a , N)

2 % Dispo

3 % This func t i on computes :

4 % 1) the array o f p o s s i b l e d i s p o s i t i o n s a s s oc i a t e d to a graph o f

the

5 % graph

6 % 2) the cumulat i ve sum vec tor o f the t r an s i t i o n p r o b a b i l i t i e s

7 % 3) the i n t e g e r ra t e a s s oc i a t e d to the graph

8 %
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9 %

10 % SYNOPSIS

11 % [ d i s po s i t i o n , prob cumsum , r a t e i n t ] = Dispo ( graph , p , a l f a , N)

12 %

13 % INPUT

14 % graph ( upper t r i an g u l a r matrix ) − graph o f the popu la t i on

15 % p graph ( doub le ) − p r o b a b i l i t y o f the ER graph

16 % a l f a ( doub le ) − parameter o f the s c a l e d c . g .

f c t

17 % N ( i n t e g e r ) − f i n a l s i z e o f the graph

18 %

19 % OUTPUT [ d i s po s i t i on , prob cumsum , r a t e i n t ]

20 % d i s p o s i t i o n ( array ) − array o f d i s p o s i t i o n s ( p o s s i b l e t r a n s i t i o n s

o f graph )

21 % prob cumsum ( vec tor )− cumulat i ve vec tor o f the t r an s i t i o n

p r o b a b i l i t i e s

22 % r a t e i n t ( i n t e g e r ) − i n t e g e r ra t e a s s oc i a t e d to the graph

23

24 n=s ize ( graph , 1 ) ;

25 vec tor=ones (1 , n) ;

26 d i s p o s i t i o n=c e l l (1 ,2ˆn ) ;

27 v e c t o r p t r an= zeros (1 ,2ˆ n) ;

28

29 v e c t o r p t r an (1) =(p graphˆn) ∗exp( a l f a ∗sum(sum( graph ) ) /N) ;

30 cont =1;

31 vector supp=vector ;

32 d i s p o s i t i o n {1 , cont}=vector ;

33

34 for i =1:n

35 C=nchoosek ( 1 : n , i ) ;

36 num righe=s ize (C, 1 ) ;

37 for j =1: num righe

38 %crea te the d i s p o s i t i o n

39 cont=cont +1;

40 indexes=C( j , : ) ;

41 vec tor ( indexes ) =0;

42 d i s p o s i t i o n {1 , cont}=vector ;

43 num ones=sum( vec tor ) ;

44 num zeros=n−num ones ;

45 %increment o f t r i a n g l e s
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46 increment= vector ∗( graph∗ vector ’ ) ;

47 v e c t o r p t r an ( cont )=(p graph ˆ( num ones ) ) ∗exp( a l f a ∗ increment/N)

∗(1−p graph ) ˆ( num zeros ) ;

48 vec tor=vector supp ;

49 end

50 clear C;

51 end

52 r a t e n on i n t=sum( v e c t o r p t r an ) ;

53 prob cumsum= cumsum( v e c t o r p t r an / r a t e n on i n t ) ;

54 prand= rand ( ) ;

55 r a t e i n t= f loor ( r a t e n on i n t+ prand ) ;

56 end

57 %

=========================================================================

58 % End of Dispo .m f i l e

59 %

=========================================================================



Bibliography
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