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Introduction

In the Standard Model (SM) of particle physics, lepton flavor universality (LFU) is an

accidental symmetry broken only by the Yukawa interactions. Differences between processes

involving the the three lepton families originate from the different masses of the charged

leptons. Further deviations from LFU would be a signature of physics processes beyond

the SM. Standard Model extensions give additional interactions, implying in some cases a

stronger coupling with the third generation of leptons. Semileptonic decays of b hadrons

(hadrons containing a b quark) provide a sensitive probe to such new physics effects. The

presence of additional charged Higgs bosons, vector boson (e.g. W ′) or leptoquarks [1–3],

required by such SM extensions, can have significant effect on the semileptonic decay rate

of B0 → D∗−τ+ντ . Since uncertainties due to hadronic effects cancel to a large extent, the

SM prediction for the ratios between branching fractions of semitauonic decays of B mesons

relative to decays involving lighter lepton families, such as R(D∗−) = B(B0→D∗−τ+ντ )
B(B0→D∗−µ+νµ )

and

R(D−) = B(B0→D−τ+ντ )
B(B0→D−µ+νµ )

, are known with an uncertainty at the percent level [4–6]. The

combination of experimental measurements of R(D(∗)) performed by BaBar[7, 8], Belle

[9, 10] and LHCb [11] observing the channel where the τ decays in leptons or in one prong

particle [12], gives a deviation from the SM prediction of about 4 σ . In particular, all

measurements are consistently above the SM prediction. It is therefore important to perform

additional measurements in this sector in order to improve the precision and confirm or

disprove this deviation.

This thesis presents a measurement of R(D∗−), using τ hadronic decay with three charged

particles (3-prong) in the final state, i.e. τ+→ π+π−π+(π0)ντ , by using the full data sample

collected by LHCb in 2011-2012. The study of the 3-prong τ decay mode is complementary

to the existing measurements, based on τ semileptonic and 1-prong decays and leads to

higher signal to noise ratio and better statistical significance. In particular the 3-prong τ

decay allows to reconstruct the τ decay vertex, useful to discriminate between signal and

background sources and reconstruct the kinematics of the τ and B decays, due to a single

neutrino in each of them.

The final aim of this thesis is to measure the ratio:
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R(D∗−) =
B(B0→ D∗−τ+ντ)

B(B0→ D∗−µ−νµ)
. (1)

Experimentally, what is measured is

K (D∗−)≡ B(B0 → D∗−τ+ντ)

B(B0 → D∗−3π)
=

Nsig

Nnorm

εnorm

εsig

1

B(τ+ → 3πντ)+B(τ+ → 3ππ0ντ)
,

(2)

where 3π ≡ π+π−π+, εsig and εnorm are the efficiencies for the signal and normalization de-

cay modes, respectively. The absolute branching fraction is obtained as B(B0→D∗−τ+ντ)=

K (D∗−)×B(B0 → D∗−3π), where the branching fraction of the B0 → D∗−3π decay is

taken as external input. Measuring a ratio of branching ratios is useful to cancel theoretical

and experimental uncertainties on luminosity, cross sections and hadronization probabilities

(see Chapter 7).

A measurement of R(D∗) can be obtained taking the branching fractions of the normal-

ization channel and the semi-muonic decay as external inputs. In this way the equation will

be:

R(D∗−) = K (D∗−)× B(B0→ D∗−π+π−π+)

B(B0→ D∗−µ−νµ)
. (3)

The signal chosen for this study is defined according to the following decay chain:

B0 →D∗−τ+ντ

→֒ π+π−π+(π0)ντ

→֒ π−D0

→֒ K+π− (4)

In the normalization channel the same D∗− decay chain is required. The visible final state for

signal consists of two pions plus a kaon originating from the D∗− decay chain, which is fully

reconstructed, and three pions from the τ decay; the additional two neutrinos are not detected.

The τ decay vertex is reconstructed through a fit to the three pion tracks. Because of the

presence of a neutrino, the momentum and energy of the τ are not known, but they can be

estimated based on the separation of the τ and the B decay vertices, and energy conservation.

This thesis is organized as follows. In Chapter 1, an overview of the theoretical framework

is given. The LHCb detector and a general view of the LHCb software framework are

described in Chapter 2. The subsequent chapters (i.e. 3 to 7) are dedicated to the selection

and the study of the B0→ D∗−τ+ντ decay including the measurement of R(D∗−). The next
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chapters are structured as follows. Chapter 3 describe the data and Monte Carlo used to

perform the analysis (Sec. 3.1), along with corrections applied on MC in order to match

data (Sec. 3.2), and the filtering and trigger selection applied to the Monte Carlo and data

samples (Sec. 3.3, 3.4). In Chapter 4, signal selection and background suppression strategies

are illustrated, including in Sec. 4.3 isolation criteria used to search for and veto additional

neutral and charged particles. Section 4.4 describes the decay reconstruction in the signal

and background hypotheses necessary to determine the variables that are used in the fit

performed for determining the signal yield. The Sec. 4.5 describes a multivariate analysis

used to supress the further background due to double charm decays (B → D∗−D decays)

whose composition if fully discussed in Chapter 5. Finally the determination of the signal

yield is presented in chapter 6 including the description of the fit model and the estimation of

experimental bias. Systematic uncertainties are then illustrated in Chapter 7.

The novel technique presented in this thesis can be applied to all the other semitauonic

decays and also allows isolation of large signal samples with high purity, which can be

used to measure angular distributions and other observables proposed in the literature to

discriminate between SM and new physics contributions.





Chapter 1

Theory of lepton flavour universality in

semileptonic decays

1.1 The Glashow-Weinberg-Salam model

In 1967/68, Weinberg and Salam unified weak and electromagnetic interactions by applying

the Higgs mechanism to the SU(2)×U(1) gauge theory (known as the Georgi-Glashow

model). The general idea is that weak interactions are mediated by gauge bosons (W , Z),

which are at first massless. The lagrangian for the theory also containes terms for massless

elctrons, muons and neutrinos, and is introduced with a non-vanishing vacuum expectation

value for the Higgs field. The resulting spontaneous symmetry breaking gives masses to

quarks, charged leptons, and to the gauge bosons, but not to photons and neutrinos. The

SU(2) group corresponds to weak interaction with coupling constant g and gauge fields

Aa
µ . The U(1)Y group corresponds to the hypercharge with coupling constant g′ and gauge

field Bµ . The Higgs part of the lagrangian for the Glashow-Weinberg-Salam model (GWS

model[13–15]) is

L = T +V = (Dµφ)†Dµφ +µ2φ †φ −λ (φ †φ)2 (1.1)

where Dµφ = (∂µ + igT aAa
µ ig′Y Bµ)φ with φ =

(

φ+

φ 0

)

, Y = 1
2

and T a as the weak isospin

matrices.

The Higgs potential V (φφ †)=−µ2φ †φ +λ (φ †φ)2 has a minimum when φφ † = µ2/λ 2 ≡
v2/2, where

√
v/2 is the vacuum expectation value (VEV) of φ(v ≈ 246GeV ).
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Because the ground state is infinite degenerate, it is possible to arbitrarily choose

< φ >=

(

0

v/
√

2

)

(1.2)

v has units of mass, and it is the only parameter in the Standard Model which is not dimen-

sionless. The SU(2) group generator for spin 1/2 particles can be expressed as Pauli matrices:

T a = 1
2
σa. It follows that:

1

2
σ1 < φ >=

(

0 1/2

1/2 0

)(

0

v/
√

2

)

=

(

v/2
√

2

0

)

̸= 0

1

2
σ2 < φ >=

(

0 −i/2

i/2 0

)(

0

v/
√

2

)

=

(

−iv/2
√

2

0

)

̸= 0

1

2
σ3 < φ >=

(

1/2 0

0 −1/2

)(

0

v/
√

2

)

=

(

0

−v/2
√

2

)

̸= 0

1

2
I < φ >=

(

1/2 0

0 1/2

)(

0

v/
√

2

)

=

(

0

v/2
√

2

)

̸= 0

(1.3)

All the generators are in broken in GWS. However, one linear combination of these generators

remains unbroken:

T 3 +Y = (
1

2
σ3 +

1

2
I)

(

0

v/
√

2

)

= 0 (1.4)

It is easy to show that this unbroken U(1) is the electric charge.

Q = T 3 +Y =

(

1/2 0

0 −1/2

)

+

(

1/2 0

0 1/2

)

=

(

1 0

0 0

)

(1.5)

That means that φ =

(

φ+

φ 0

)

has the electric charge as indicated before.
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Therefore the symmetry spontaneous breaking for the GWS model is SU(2)×U(1)Y →
U(1)EM. Now there are three broken generators:

T 1 =
1

2
σ1

T 2 =
1

2
σ2

T 3 −Y =
1

2
σ3 − 1

2
I (1.6)

For this reason there are three Goldstone bosons in the GWS model. In order to compute

the mass induced by the spontaneous symmetry breaking we have to promote the global

symmetry to a local symmetry and rewrite the field as:

φ =
1√
2
(h+ v)e[iT

1π1+iT 2π2+i(T 3−Y )π3]

(

0

1

)

(1.7)

Taking into account the gauge invariance and gauging away the three Goldstone bosons π1,

π2 and π3 we have:

φ → 1√
2
(h+ v)

(

0

1

)

(1.8)

Substituting it into the Eqn. 1.1, we obtain:

L = (Dµφ)†Dµφ (1.9)

=
1

2
∂µh∂ µh+

1

8
[(−gA3

µ +g′Bµ)
2 +g2(A1

µA1µ +A2
µA2µ)](h+ v)2 (1.10)

Hence the fields A1
µ and A2

µ have acquired a mass

M2
A1

= M2
A2

=
1

4
g2v2 ≡ M2

W (1.11)

This is the mass of the W bosons generated by gauge fields A1
µ and A2

µ . We can also find that

the field −gA3
µ +g′Bµ has also acquired a mass. To find the mass of this field, we need first

to normalize the field:

Zµ =
1

√

g2 +g′2
(gA3

µ −g′Bµ) (1.12)

where the normalization factor comes from < Zµ |Zν >= δµν .
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Then the lagrangian 1.10 can be rewritten in terms of the Zµ field:

L =
1

8
[(g2g′2)ZµZµ +g2(A1

µA1µ +A2
µA2µ)](h+ v)2 (1.13)

This implies that the field Zµ acquires a mass

M2
Z =

1

4
(g2g′2)v2 (1.14)

The ortogonal combination, field 1√
g2+g′2

(g′A3
µ +gBµ), has no mass term, corresponding

to the photon in the GWS model. As a result the details about how the massive particles

emerge through the spontaneous symmetry breaking in the GWS model has been illustrated.

The gauge field A1
µ , A2

µ and Zµ have eaten the Goldstone bosons π1, π2 and π3 to acquire the

mass of W and Z bosons. The other Goldstone boson remains massless and it is interpreted as

photon. It is also possible to see that the photon and the Z particle are both linear combination

of A3
µ and Bµ fields. Thus it is possible to write this in matrix form:

(

Zµ

Aµ

)

=

(

cosθw −sinθw

sinθw cosθw

)(

A3
µ

Bµ

)

(1.15)

where cosθw = g√
g2+g′2

and sinθw = g′√
g2+g′2

. θw is called weak mixing angle.

Therefore in the tree level, we can relate the mass of the W boson and the mass of the Z

boson by the weak mixing angle:

MW = MZcosθw (1.16)

Eqns. 1.11 and 1.14 relate the W and Z bosons masses to some basic parameters of the theory:

g, g′, −µ2 and λ . These relations allow the masses of W and Z bosons to be determined in

term of three experimentally well known quantities:

1. Fine structure constant: α = e2/4πε0h̄c

2. Fermi coupling constant: GF/(h̄c)3

3. Weak mixing angle: θw

The parameter v in Eqns. 1.11 and 1.14 can be expressed in terms of GF as v = (GF

√
2)−1/2.

The parameters g and g′ can be written in terms of electric charge and weak mixing angle as

gsinθw = g′cosθw = e. The W and Z bosons masses can be interpreted in terms of the above



1.2 The Cabibbo-Kobayashi-Maskawa matrix 9

three basic physical quantities:

MW =

(

απ

GF

√
2

)1/2
1

sinθw
, MZ =

(

απ

GF

√
2

)1/2
2

sin2θw
(1.17)

1.2 The Cabibbo-Kobayashi-Maskawa matrix

In the SM with SU(2)×U(1) as the gauge group of electroweak interactions, both quarks

and leptons are assigned to be left-handed doublets and right-handed singlets. The quark

mass eigenstates are not the same as the weak eigenstates, and the matrix relating these bases

was defined for six quarks, and given an explicit parametrization by Kobayashi and Maskawa

in 1973 [16]. This generalizes the four-quark case, where the matrix is described by a single

parameter, the Cabibbo angle.

By convention, the mixing is often expressed in terms of a 3 × 3 unitary matrix V

operating on the charge −e/3 quark mass eigenstates (d, s and b):







d′

s′

b′






=







Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb













d

s

b






(1.18)

There are several parametrizations of the Cabibbo-Kobayashi-Maskaya (CKM) ma-

trix [17]. A “standard” parametrization of V utilizes three mixing angles θ12, θ23, θ13 and a

CP-violationg phase δ13

V =







c12c13 s12c13 s13e−iδ13

−s12c23 − c12s23s13eiδ13 c12c23 − s12s23s13eiδ13 s23c13

s12s23 − c12c23s13eiδ13 −c12s23 − s12c23s13eiδ13 c23c13






(1.19)

with ci j = cosθi j and si j = sinθi j for the “generation” label i, j = 1,2,3. This has distinct

advantages of intepretation, for the rotation angles are defined and labeled in a way which

relate to the mixing of two specific generations, and if one of these angles vanishes, so does

the mixing between those two generations; in the limit θ23 = θ13 = 0, the third generation

decouples, and the situation reduces to the usual Cabibbo mixing of the first two generations,

with θ12 identified as the Cabibbo angle. The real angles θ12, θ23, θ13 can all be made to lie

in the first quadrant by an appropriate redefinition of quark field phases.

The standard parametrization can be approximated in a way that emphasizes the hiearchy

in the size of the angles, knowing experimentally that s12 ≫ s23 ≫ s13. Setting λ ≡ s12, the
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sine of the Cabibbo angle, one can express the other elements in terms of powers of λ , the

so-called Wolfenstein parameterization [18],







1−λ 2/2 λ Aλ 3(ρ − iη)

−λ 1−λ 2/2 Aλ 2

Aλ 3(1−ρ − iη) −Aλ 2 1






+O(λ 4), (1.20)

with A, ρ and η real numbers that were intended to be of order unity, and where

s12 = λ =
|Vus|

√

|Vud|2 + |Vus|2
(1.21)

s23 = Aλ 2 = λ

∣

∣

∣

∣

Vcb

Vus

∣

∣

∣

∣

(1.22)

s13eiδ =V ∗
ub = Aλ 3(ρ + iη) (1.23)

This approximate form is widely used, especially for B physics, but care must be taken,

especially for CP-violating effects in K physics, since the phase enters in Vcd and Vcs through

terms that are higher order in λ . Another parameterization has been advocated [19] that

arise naturally where one builds model of quark masses in which initially mu = md = 0.

With no phases in the third row or third column, the connection between measurements

of CP-violating effects for B mesons and single CKM parameters is less direct than in the

standard parametrization.

Using the independently measured CKM elements mentioned above, the unitarity of

the CKM matrix can be easily checked. We obtain |Vud|2 + |Vus|2 + |Vud|2 = 0.9996 ±
0.0005 (1st row), |Vcd|2+ |Vcs|2+ |Vcb|2 = 1.040±0.032 (2nd row), |Vud|2+ |Vcd|2+ |Vtd|2 =
0.9975± 0.0022 (1st column), and |Vus|2 + |Vcs|2 + |Vts|2 = 1.042± 0.032 (2nd column),

respectively [20]. For the second row, a slightly better check is obtained subtracting the sum of

the first row from the measurement of Σi, j=u,c,d,s,b|Vi j|2 from the W leptonic branching ratio,

yielding |Vcd|2 + |Vcs|2 + |Vcb|2 = 1.002±0.027. The sum of the three angles, α +β + γ =

(183+7
−8)

◦, is also consistent with the SM expectation, where:

β = arg

(

−VcdV ∗
cb

VtdV ∗
tb

)

, α = arg

(

− VtdV ∗
tb

VudV ∗
ub

)

(1.24)

γ = arg

(

−VudV ∗
ub

VcdV ∗
cb

)

(1.25)

The CKM matrix elements can be most precisely determinated by a global fit that uses

all available measurements and imposes the SM constraints. The results for the Wolfenstein
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Fig. 1.1 95% CL constraints on the ρ̄, η̄ plane.

parameters are

λ = 0.22506±0.00050, A = 0.911±0.026, (1.26)

ρ = 0.124+0.019
−0.018, η = 0.356±0.011 (1.27)

The allowed ranges of the magnitudes of all nine CKM elements are

V =







0.97434+0.00011
−0.00012 0.22506±0.00050 0.00357±0.00015

0.22492±0.00050 0.97351±0.00013 0.0411±0.0013

0.00875+0.00032
−0.00033 0.0403±0.0013 0.99915±0.00005






(1.28)

Fig. 1.1 shows the constraints on the ρ̄, η̄1 plane from various measurements and the global

fit result. The shaded 95% CL regions all overlap consistently around the global fit region.

1.3 The theory of semileptonic decays

The amplitude of the semileptonic decay of a meson MQq into a state containing a meson Mq′q

can be written as a term proportional to the product of a leptonic current Lµ and a hadronic

current Hµ [6]. If the exchanged four-momentum q = p− p′ between the two mesons of

1where ρ̄, η̄ are rescaled in the Wolfenstein parametrization and are defined as ρ̄ = ρ(1− λ 2/2) and

η̄ = η(1−λ 2/2)
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momenta p and p′ is much smaller than the mass MW of the W± boson, the amplitude can be

written in the following way:

M =−i
GF√

2
VQq′L

µHµ (1.29)

The leptonic current is given by

Lµ = l̄γµ(1− γ5)νl (1.30)

while the hadronic current is

Hµ = ⟨Mq′q(p′)| jH
µ |MQq(p)⟩ (1.31)

where jH
µ can be expressed in term of the Lorentz-invariant quantities that are combinations

of pµ + p′µ , qµ and q2. Since the two mesons interact also strongly, the hadronic current will

contain some terms that parameterize in the non-pertubative QCD effects. These terms are

called form factors, they depend on the given initial and final state and they are measurable

experimentally.

Several methods exist to calculate these form factors, one of them is the Heavy Quark

Effective Theory (HQET).The calculation of the branching ratio of B0→ D∗−τ+ντ using

HQET is performed in Sec. 1.4.

1.4 Standard Model expectation for B(B0 →D(∗)−τ+ντ)/B(B0 →
D(∗)−ℓ+νℓ)

An effective weak hamiltonian for b → cℓν̄l transitions can be written as follows [6]

He f f =
4GFVcb√

2
Jbc,µ ∑

ℓ=e,µ,τ

(ℓ̄γµPLνℓ)+h.c. (1.32)

where Jbc,µ is the effective SM b → c charged current

Jbc,µ = c̄γµPLb (1.33)

In the SM, the decays (B0 →D(∗)−ℓ+ν) (ℓ= µ,τ) differ only due to the mass of the lepton.

The differential rate of the B0 → D(∗)−ℓ+ν decay as a function of the decay kinematics is
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given by:

d2Γℓ

dq2dcosθ
=

G2
F |Vcb|2q2

256π3m2
B

(

1− m2
ℓ

q2

)2

×
[

(1− cosθ)2|H+(q
2)|q2 +(1+ cosθ)2|H−(q

2)|2 +2sin2θ |H0(q
2)|+

m2
ℓ

q2

(

sin2θ(|H+(q
2)|2 + |H−(q

2)|2)+2|Hs(q
2)−H0(q

2)cosθ |2
)

]

(1.34)

where q2 is the squared mass of the ℓν system, θ is the angle between the D∗ and the ℓ in

the ℓν rest frame. The HX are the hadronic currents, which in the SM are given by:

HSM
± (q2) = (mB +mD∗)A1(q

2)∓ 2mB

mB +mD∗
|p|V (q2),

HSM
0 (q2) =

1

2mD∗
√

q2

[

(m2
B −m2

D∗ −q2)(mB +mD∗)A1(q
2)− 4m2

B|p|2
mB +mD∗

A2(q
2)

]

,

HSM
s (q2) =

2mB|p|
√

q2
A0(q

2) (1.35)

where A0(q
2), A1(q

2), A2(q
2) and V (q2) are hadronic form factors defined by

⟨D∗(pD∗ ,εα)|c̄γµb|B(pB)⟩=
2iV (q2)

mB +mD∗
εµναβ ε∗ν pα

B p
β
D∗ , (1.36)

⟨D∗(pD∗ ,εα)|c̄γµγ5b|B(pB)⟩= 2mD∗A0(q
2)

ε∗ ·q
q2

qµ +(mB +mD∗)A1(q
2)

×
(

ε∗µ − ε∗ ·q
q2

qµ

)

−A2(q
2)

ε∗ ·q
mB +mD∗

×
(

(pB + pD∗)µ − m2
B −m2

D∗

q2
qµ

)

(1.37)

where εα are the helicity basis vector of the D∗ meson.

Integrating Eqn. 1.34 over θ gives the rate of B → D(∗)ℓ+ν as a function of q2

dΓℓ

dq2
=

G2
F |Vcb|2|p|q2

96π3m2
B

(

1− m2
ℓ

q2

)2[

(|H+(q
2)|2 + |H−(q

2)|2 + |H0(q
2)|2)

×
(

1+
m2
ℓ

2q2

)

+
3

2

m2
ℓ

q2
|Hs(q

2)|2
]

(1.38)
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The ratio of rates of the B0→ D∗−τ+ντ and B0→ D∗−µ+νµ decays as a function of q2 is

then given by

RD∗(q2) =
dΓτ/dq2

dΓℓ/dq2
=

(

1− m2
τ

q2

)2[(

1− m2
τ

2q2

)

+
3

2

m2
τ

q2

|Hs(q
2)|2

|H+(q2)|2 + |H−(q2)|2 + |H0(q2)|2
]

(1.39)

for ℓ= e,µ .

At a given point in the phase space, the only difference between B0 → D∗−τ+ντ and

B0→ D∗−µ+νµ is given by the helicity suppressed form factor term. Averaging Eqn. 1.47

across phase space results in a lower value of RD∗ , due to the considerably reduced phase

space available to the B0→ D∗−τ+ντ .

The form factors are calculable using HQET technique. Defining the velocity transfer

w ≡ vB · vD∗ =
m2

B +m2
D∗ −q2

2mBmD∗
(1.40)

the process is described by a single universal form factor

hA1
(w) = A1(q

2)
1

M

2

w+1
(1.41)

and the ratios R1, R2 and R0

A0(q
2) =

R0(w)

M
hA1

(w),

A2(q
2) =

R2(w)

M
hA1

(w),

V (q2) =
R1(w)

M
hA1

(w) (1.42)

where M =
√

mBmD∗/(mB +mD∗). In the heavy quark limit [21], the variation of these form

factors with w is given by

hA1
(w) = hA1

(1)[1−8ρ2z+(53ρ2 −15)z2 − (231ρ2 −91)z3],

R1(w) = R1(1)−0.12(w−1)+0.05(w−1)2,

R2(w) = R2(1)+0.11(w−1)−0.06(w−1)2,

R0(w) = R0(1)−0.11(w−1)+0.01(w−1)2, (1.43)
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where z = (
√

w+1−
√

2)/(
√

w+1+
√

2) and ρ2 is the slope of the Isgur-Wise function.

The factor of hA1
(1) is common to all of the hadronic currents in Eqn. 1.47, and RD∗ does

not therefore depend on the value of hA1
. Three of the four remaining parameters have been

measured [22] using B0→ D∗−ℓ+ν decays, with averages:

ρ2 = 1.401±0.033 R1(1) = 1.401±0.033 R2(1) = 0.854±0.020 (1.44)

The R0(1) parameter has not been measured, as B0→ D∗−µ+νµ decays offer minimal

sensitivity to this parameter due to the helicity suppression. This parameter must therefore be

taken from theoretical calculations, such as those using HQET. The resulting SM expectation

for RD∗ is 0.252±0.003 [6, 23, 4], with dominant uncertainty arising from the calculation of

the R0(1) parameter. For D∗ decays, recent papers [5, 24] argue for larger uncertainties, up

to 4%.

Measurements of R(D0,−) and R(D∗−,0) and their averages R(D) and R(D∗) have

been reported by the BaBar [8, 7] and Belle [9, 10] collaborations in final states involving

electrons or muons from the τ decay. The LHCb collaboration measured R(D∗) [25] with

results compatible with those from BaBar, while the result from the Belle collaboration is

compatible with the SM within 1 standard deviation. In all of the above measurements, the

decay of the τ lepton into a muon, or an electron, and two neutrinos was exploited. More

recently, the Belle collaboration published a measurement [10] with events tagged using

semileptonic decays, compatible with the SM within 1.6 standard deviations. A simultaneous

measurement of R(D∗) and of the τ polarization, using hadronic tagging and reconstruction

of the τ− → π−ντ and τ− → ρ−ντ decays, was published by the Belle collaboration [12, 26].

The average of all these R(D∗) measurements is in tension with the SM expectation at

3.3 standard deviations. All these R(D(∗)−,0) measurements yield values that are above

the SM predictions with a combined significance of about 4 standard deviations [27]. It is

therefore crucial to confirm or disprove this result by performing more measurements as the

one performed in this thesis.

1.5 New Physics in B0 → D(∗)−τ+ντ

At the end of the Sec. 1.4 it has been shown that the experimental measurements of R(D∗)

disagree with the SM expectation. This means that New Physics (NP) interactions could

be involved in such processes. The decay of B mesons into a τ lepton in the final state,

can exhibit NP contributions not present in processes with light leptons. The large τ mass



16 Theory of lepton flavour universality in semileptonic decays

can reduce the helicity suppression of certain semileptonic decay amplitudes which are not

observable in decays with light leptons in the final state [6].

To have NP leading to charged lepton helicity suppression in B0→D∗−τ+ντ , it is possible

to add a total derivative of a scalar operator to the effective current J
µ
bc, so that the 1.33

charged current becames:

J
µ
bc = c̄γµPLb+gSLi∂ µ(c̄PLb)+gSRi∂ µ(c̄PRb), (1.45)

where the first term correspond to the SM charged current, while gSL,SR are dimensionful

NP couplings. If the NP contributions are associated with a high NP scale Λ ≫ vEW , then

gSL,SR ∼ 1/ΛNP.

Only the Hs helicity amplitude is affected by these NP quark charged currents, becoming:

Hs(q
2) = HSM

s

[

1+(gSR −gSL)
q2

mb +mc

]

, (1.46)

where HSM
s is the SM amplitude defined in Eqn. 1.35. In this way the ratio of B0→ D∗−τ+ντ

to B0→ D∗−µ+νµ becomes:

RD∗ = RSM
D∗ +AD∗Re(gSR −gSL)+BD∗ |gSR −gSL|2, (1.47)

Similarly for B0→ D−ℓ+νℓ decays

RD = RSM
D +ADRe(gSR −gSL)+BD|gSR −gSL|2, (1.48)

B̄ → Dτ−ν̄τ B̄ → D∗τ−ν̄τ

R(D(∗))SM 0.297±0.017 0.252±0.003

AD(∗) (GeV 2) −3.25±0.32 −0.230±0.029

BD(∗) (GeV 4) 16.9±2.0 0.643±0.085

Table 1.1 Dependence of R(D(∗)) in the 2HDM according to Eqs. 1.47 and 1.48 B̄ → Dτ−ν̄τ and

B̄ → D∗τ−ν̄τ decays: the values of R(D(∗)), the parameters A and B with their uncertainties.

Table 1.1 lists the values of AD(∗) and BD(∗), which are determined by averaging over

B0 and B− decays. The uncertainty estimation includes the uncertainties on the mass ratio

mc/mb and the FF parameters.

Hence, a measurement of RD∗ and RD can provide constraints on NP parameters. There

are several NP candidate models which can be tested in B0 → D∗−τ+ντ decay, such as
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the two Higgs doublet model, the leptoquark model, models with new tensor mediators or

coloured scalars. In a 2HDM of type II one Higgs doublet couples to down quarks and

charged leptons, while another one gives the masses to the up quarks. Then the only free

additional parameters are tanβ = vu/vd (the ratio of the two vacuum expectation values) and

the mass of the charged Higgs boson, mH± . In this case the charged Higgs contribution to

B → τν interfer destructively with the SM. Thus, an enhancement of B(B → τν) is only

possible if the absolute value of the charged Higgs contribution is bigger than two times

the SM one, which is in conflict with B → Dτν . Hence, a 2HDM of type II cannot explain

R(D∗) and R(D) simultaneously [28]. The difference between the two 2HDMs is that in

the type III model both Higgs doublets couple to up and down quarks. In addition in the

2HDM-III framework the gSL and gSR parameters are not constrained between each other.

The BaBar results on RD and RD∗ show that the 2HDM-II is exluded at 99.8% confidence

level, while the type-III model can account for the deviation from the SM simultaneously,

but a significant portion of the parameters space is excluded by the analysis of q2 spectra.

The remaining models are based on new type of particles, like leptoquarks which are

hypothetical particles carrying both baryon number (B) and lepton number (L) and allow

the interactions between the two particle types, tensor operator or coloured scalars (weak

doublets with fractional electric charged). Another important NP model is the Minimal

Supersymmetric Model (MSSM) in which fermions have bosonic superpartners (sfermions),

and bosons have fermionic superpartners (bosinos). A recent theoretical work [29] shows

a possible explaination of the R(D∗) and other semileptonic anomalies using two scalar

leptoquarks (LQs) with the same mass and coupling to fermions related via a discrete

symmetry: an SU(2)L singlet and an SU(2)L triplet, both with hypercharge Y =−2/3.





Chapter 2

The LHCb detector

The LHCb detector at the CERN Large Hadron Collider (LHC) is a forward single arm

spectrometer covering an angular region from 10 mrad to 300 mrad along the LHC beam line

corresponding to a pseudorapidity1 range 2 < η < 5. The layout of the detector is shown in

Fig. 2.1. The coordinate system is a (O,x,y,z) reference frame centered at the collision point,

the z axis is along the beam line and the y axis is along the vertical.

The LHCb detector is made of several subdetectors, each one dedicated to a specific task.

2.1 VErtex LOcator

The VErtex LOcator (VELO) [30] is the first stage of the detector. The VELO provides

precise measurements of tracks close to the proton-proton interaction region. The VELO is

made of two halves, each containing 21 modules composed of two semi-circular silicon strip

sensors. The location of the modules inside the VELO is shown in Fig. 2.2. Each module

consists of two 300 µm thick sensors allowing for measurements of the r and φ coordinates

along the direction of the beam. The sensors are placed along the z direction, mounted in a

vessel that maintains vacuum by a thin aluminum wall. This is done in order to minimize

the material traversed by charged particles before they cross the sensor while protecting the

sensors from the RF (radio frequency) waves produced by the beam. The track coordinates

are used to reconstruct vertices from beauty and charmed hadrons as well as the primary

pp collision vertex to allow for measurements of decay times and impact parameters. This

information is crucial to discriminate signatures of heavy flavour decays from background.

The global performance of the VELO must meet criteria such as having a signal noise ratio

greater than 14, efficiency of at least 99% from tracks that traverse at least 4 sensors, and a

1The pesudorapidity, η is defined as: η =−ln(tan(Θ/2)), where Θ is the polar angle of a particle, relative

to the beam axis.
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Fig. 2.1 The LHCb detector seen from the side.
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spatial resolution of 5 µm for 100 mrad tracks. In order to cover the angular acceptance of

the downstream detectors, the VELO has the ability to detect particles with pseudorapidity

in the range 1.6 < η < 4.9 coming from primary vertices in the range |z| < 10.6 cm. The

resolution on the position of a vertex is 13 µm in the (x,y) plane and 71 µm along the z axis.

The resolution σIP on the impact parameter (the minimum distance of a track to a primary

vertex) is a function of the transverse momentum of the track pT . The resolution σIP in

fuction of the transverse momentum is shown in Fig. 2.3.

Fig. 2.2 Schematic of the Velo detector

2.2 Tracking System

An overview of the LHCb tracking system is shown in Fig. 2.4. It consists of tracking

subdetectors, positioned both downstream and upstream of the magnet in order to measure

the momenta of the charged particles. LHCb uses a warm dipole magnet with a bending

power of about 4Tm and a peak strenght of 1.1 T; its polarity can be switched in order to

minimize systematic effects in the tracking. The upstream detector is the Trigger Tracker

(TT) composed of four layers of silicon strips. Three tracking stations (T1-T3) are located
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Fig. 2.5 Relative momentum resolution versus momentum for long tracks in data obtained using J/ψ

decays.

2.3 Cherenkov detectors (RICH I and II)

The Ring Imaging Cherenkov (RICH) detectors provide particle identification information

that is particularly important to distinguish between different types of charged hadrons, i.e.

pions, kaons and protons. The ability for LHCb to be able to separate pions from kaons in B

hadron decays is essential to the experiment. Two RICH detectors are installed in order to

cover the full momentum range of charged particles. RICH 1 covers the 1-60 GeV/c range,

using aerogel and C4F10 radiators. RICH 2 is able to cover the higher momentum range

15-100 GeV/c, using CF4 radiators. Charged particles passing through the RICH detectors

are identified by their Cherenkov angle as shown in 2.6. Focusing of Cherenkov light is

achieved by spherical and flat mirrors to reflect the image out of the spectrometer acceptance.

Hybrid Photon Detectors (HPD) are used to detect Cherenkov photons with 200-600 nm

wavelenght.
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and the distance to the beampipe. This has the advantage that allows to have a constant ET

scale. The HCAL tubes operate at a higher gain than those for the ECAL due to the light

yield at the HCAL being smaller by a factor 30. The four detectors use a variable lateral

segmentation as it is shown in Fig. 2.7.

 Outer  section : 

 Inner section : 

 121.2 mm cells 

  2688  channels 

  40.4 mm  cells 

  1472  channels 

  Middle section : 

  60.6 mm cells 

  1792 channels 

 Outer  section : 

 Inner section : 

   262.6 mm  cells 

   608  channels 

    131.3 mm  cells 

   860  channels 

Fig. 2.7 Lateral segmentation of the SPD, PS, ECAL (left) and HCAL (right). Only one quarter of the

detector front face is represented, but the number of cells correspond to the entire detector plane.

2.5 The muon chambers

Muon identification is crucial to LHCb experiment, as muons are present in the final states

of many B decays. Moreover, muons from semi-leptonic b decays provide a tag of initial

state flavour of accompanying neutral B mesons. In addition, the study of rare B decays

such as flavour-changing neutral current decays, may reveal new physics beyond the standard

model. The muon system of LHCb consists of five stations M1 to M5 installed along the

beam axis and provides information for the high transverse momemtum muon trigger at level

0 and muon identification for the high level trigger and offline analysis. The five stations are

made of Multi Wire Proportional Chambers (MWPC) with the exception of the inner part

of M1, where the particle flow is higher, which is made of triple Gas Electron Multiplier

(GEM). The M1 stage, placed in front of the calorimeters, improves the tranverse momentum

measurement in the trigger. The muon trigger relies on muon track reconstruction and

requires a hit in all five stations. The other stations are located at the end of the line just

behind the HCAL. The M2 to M5 stations are interleaved with 80 cm thick iron absorbers

in order to stop hadrons. The total thickness of the full muon system corresponds to 20

nuclear interaction lenghts which means that only muon with a minimum momentum of 6

GeV/c can cross the five stations. Stations M1 to M4 have high spatial resolution in the x

coordinate which is used to define track direction and calculate the tranverse momentum of

muon candidates with a resolution of 20%. The main purpose of stations M4 and M5 is to

identify penetrating particles. Figure 2.8 shows the organisation of the five stations. Each

detector is split into rectangular logical pads whose dimensions define the x and y resolution.
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Figure 7 Side view of the muon system in the y z
Fig. 2.8 Side view of the muon system in the y,z plane.

2.6 The LHCb trigger system

The LHCb trigger system is used to lower the data output rate from the beam crossing rate of

10 MHz down to a few kHz. Its architecture consists of two levels, the first level trigger (L0)

and the High Level Trigger (HLT). L0 is implemented in hardware and uses input from the

calorimeter and muon systems. It reduces the rate of crossings with at least one inelastic pp

interaction to below 1.1MHz, at which the whole detector can be readout by the front-end

(FE) electronics. The full trigger system2 is summarised in Fig. 2.9. The HLT consist of a

software application that runs on a dedicated computing farm. It reduces the rate of accepted

events to about 5kHz, and all such events are written to storage. The events written to

storage are processed with a more accurate alignment and calibration of sub-detectors, and

with reconstruction software that is more elaborate and allows for more redundancy than is

possible in the HLT. This last part of reconstruction and subsequent event selection will be

referred as off-line reconstruction and selection.

2In Run2 the trigger system workflow is slightly different [31]
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L0Hadron, L0Muon and L0Dimuon. In the analysis discussed in this thesis L0Hadron and a

global event trigger called L0Global are used (described in the Sec. 3.4).

The events are selected in two independent ways by the hardware trigger:

• TOS: the signal candidate triggers the L0 trigger lines (trigger on signal, TOS);

• TIS: Any particle in the event, irrespective if it is part of the signal candidate or not,

passes any of the L0 trigger lines (trigger independent of signal, TIS).

2.6.2 The software trigger

The software trigger of LHCb, referred to as the HLT, is made of two stages: HLT1 and

HLT2. Whereas a partial reconstruction is performed at the HLT1 level using information

from the vertexing and tracking system, a full reconstruction of the event is made at HLT2

level using information from all the subdetectors. The HLT1 performs the reconstruction

of the primary vertices (PVs) and the search for secondary vertices. A preliminary track

reconstruction is also performed. PVs are reconstructed by searching for five tracks coming

from the same point with an uncertainty of ±300µm along the z axis. The track impact

parameter with respect to the primary vertex can be determined and used to reject events.

The vertex corresponding to the minimum IP value is set as the origin vertex of the track,

Therefore, it is possible to determine if the track is originating from a primary or a secondary

vertex. The quality of the vertex reconstruction is also computed from the number of hits

in the VELO used to reconstruct the track. This vertex quality is expressed as a χ2 value.

High pT tracks are also reconstructed at the HLT1 level. A preliminary measurement of

the tranverse momentum of the tracks is done using the residual magnetic field in the TT

stations. A full reconstruction of the event is done at the HLT level which is completely

configurable. A large number of selection lines in the HLT2 trigger selection are tailored

for specific physics analyses. There are exclusive lines dedicated to a particular decay as

well as inclusive lines based on topological requirements. The selections applied by these

lines are either simples cuts or more complex methods using multivariate analyses such as

Boosted Decision Trees. The HLT-trigger reduces the incoming 1 MHz rate at the output of

the L0-trigger to a few kHz rate which is recorded on disk.

2.7 LHCb software

The detection of proton-proton collisions in LHCb is only the first step to perform physics

analysis. In the following some information are given about the simulation, the reconstruction

and other technicalities useful to perform analyses within the LHCb experiment.
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The production of simulated Monte Carlo (MC) samples involves several phases such as

generation, digitisation, reconstruction and several software packages are involved. The first

three steps are unique of the MC production, the reconstruction is in common with the real

data taking.

The software framework Gaudi [32] is used for the generation and data processing. It

ensures availability of all LHCb tools and algorithms across the experiment and enforces

global consistency of LHCb analyses. Its main components can be separated in:

• Generation: The LHCb software package Gauss [33] is responsible for the generation

of Monte Carlo (MC) simulation data. In this step, the primary pp beams collisions

are generated using PYTHIA [34] and the decays of b hadrons are simulated with the

EvtGen package [35].

• Simulation: The interaction of the generated particles with the detector is simulated

with Geant4 toolkit [36].

• Digitisation: The response of the LHCb detector to the generated particles is handled by

the Boole application [37]. The digitised output is the MC equivalent of real measured

data. From this point, both data and MC pass through the same reconstruction chain.

• Reconstruction (see Sec. 2.7.1): The Brunel application [38] handles the reconstruction

of the digitised output of the detector responses. Signal hits in the detector are

clustered and associated tracks are constructed. Particle properties such as momentum

are determined and PID (Particle Identification) measurements are performed. The

output of Brunel is a full reconstructed dataset stored in “Data Storage Tape” (DST)

files.

• Analysis: Offline analyses are performed using the DaVinci software package [39]. The

DaVinci application allows for reconstructed particles to be combined and determines

primary and secondary vertices as well as kinematic quantities, such as invariant

masses of decayed particles and their distance of flight.

Individual algorithms store their produced data in a Transient Event Store (TES), which is

consecutively used as an input location for the following process. A global condition database

containes all parameters required for the current running conditions of the experiment. A

schematic overview of the LHCb processing applications and data flow is shown in Fig. 2.10.
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are found either by extrapolating the VELO tracks into the T station and looking for

matching hits, or by matching directly the VELO tracks with T tracks; TT hits are then

added. Upstream tracks are found by extrapolating VELO tracks into the TT while the

downstream tracks combine T tracks with TT information.

2. The second step of the track reconstruction is the track fitting that in LHCb is done

with a Kalman filter[40] that takes into account effects from multiple scattering and

energy loss due to ionisation.

3. Ghost tracks are then removed based on the ghost probability, the output of a neural

network that takes as input various variables such as the track χ2 and the number of

hits in each subdetector. The ghost probability response is calibrated on simulated

events to be the rejection rate of ghost tracks (e.g. 30% of all the ghost tracks have a

ghost probability of less 0.3).

4. The last step of the track reconstruction is the clone killing which consists of removing

tracks that are also subtracks of other tracks, for example a VELO track used to build a

long track.

The reconstruction efficiency for charged tracks that pass through the full tracking system

varies as function of the kinematics of the tracks and the occupancy of the detector. It is

above 95% as shown in Fig. 2.11.
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Fig. 2.11 Track reconstruction efficiency for long tracks for 2012 and 2015, nominal data taking

period.
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2.7.2 Particle identification

Particle identification (PID) at LHCb is performed using information from the RICH detectors,

the calorimeter system and the muon system. The PID of a single track can be obtained in

a Cherenkov detector by measuring the Cherenkov angle and knowing the momentum of

the track. Since the most abundant particles in pp collisions are pions, the general approach

is a likelihood minimisation procedure that starts by assuming all particles are pions. The

overall event likelihood, computed from the distribution of photon hits, the associated tracks

and their errors, is then calculated for this set of hypotheses. Then, for each track in turn,

the likelihood is recomputed changing the mass hypothesis to e, µ , π , K and proton, whilst

leaving all other hypotheses unchanged. The change in mass hypothesis amongst all tracks

that gives the largest increase in the event likelihood is identified, and the mass hypothesis

for that track is set to its preferred value. This procedure is then repeated until all tracks have

been set to their optimal hypotheses, and no further improvement in the event likelihood is

found. In LHCb these variables are called PIDK, PIDp etc. where the first mass hypothesis

tested is that of a kaon or a proton while the second mass hypothesis is always a pion.

A second class of PID variables are commonly used: ProbNNx. They are the output of

a neural network that takes as an input the various PIDx variables and also complementary

information from all the subdetectors including the tracking detectors. The output is a

variable between zero and one that can be interpreted as absolute probability of a particle to

have a certain PID. On average the efficiency to correctly identify a kaon is ∼95% with a

misidentification probability to identify a pion as a kaon of ∼5%[41] (Figure 2.12).
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Fig. 2.12 Kaon identification efficiency and pion misidentification rate as measured using data, as a

function of track momentum. Two different ∆logL (K −π) requirements have been imposed on the

samples, resulting in the open and filled marker distributions, respectively.

The identification of a track as a muon is mainly based on the muon system. A boolean

variable called isMuon is set to true based on the association of hits around the extrapolated

trajectory of the track in the muon system. A search is performed within rectangular windows;

the size of these windows in each muon station and the number of stations required to have hits

are optimised to maximise the efficiency and, at the same time, provide low misidentification

probabilities. On average the probability to correctly identify a muon is ∼97% (shown in

Fig. 2.13), with a probability to misidentify a hadron (pion, kaon or proton) as a muon is

between 1% and 3%.
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Fig. 2.13 Efficiency of the muon candidate selection based on the matching of hits in the muon system

to track extrapolation, as a function of momentum for different pT ranges.

2.7.3 Selection

In an LHCb analysis the selection usually involves three steps:

• trigger selection: decides which events are interesting enough to be saved for later

analysis. Details of the LHCb trigger have been given in Sec. 2.6;

• stripping selection: is the centralised selection of interesting events after the recon-

struction. A stripping line contains the instructions for reconstructing the particles of

interest from the reconstructed stable particles and the corresponding selections to be

applied. A group of stripping lines selecting similar events is collected into a stream

and their output is saved in a common file;

• offline selection: is the term used to refer to the end-user selection on the events which

passed trigger and stripping selections.

The trigger and stripping selections used in this analysis are detailed in Chapter 3. The offline

selection criteria are discussed in Chapter 4.



Chapter 3

Data and Simulation

3.1 Monte Carlo and data samples

This analysis is performed on the full dataset collected by LHCb in pp collisions during the

first run (Run1) of the LHC, corresponding to an integrated luminosity of 3 f b−1 (1 f b−1 at√
s = 7TeV in 2011 and 2 f b−1 at

√
s = 8TeV in 2012). A number of simulated samples are

used in order to understand and parametrize backgrounds, and to evaluate signal efficiencies

during the various analysis steps. In all generated samples, the six charged tracks considered

in this analysis, i.e., the pion from the D∗− decay, the kaon and the pion from the D̄0 decay,

and the three additional pions, are required to be within the LHCb acceptance. These samples

have been generated for 2011 and 2012 detector conditions. Signal events, where the τ

lepton decays in three charged pions and a neutrino, are generated according to the TAUOLA

model [42, 43]. Another sample of B0 → D∗∗−τ+ντ is used to study contributions from

decays involving excited charm mesons. A sample corresponding to the normalization mode

B0 → D∗3π is also used.

The simulated background modes include an inclusive bb̄ sample where b-hadron decays

in final states containing a D∗− meson and three charged pions plus anything else are gener-

ated, reconstructed and filtered. Other than requiring particles in the LHCb acceptance, the

filtering step also includes soft kinematic cuts on the momentum and transverse momentum

of the daughter particles (to be greater than 1 GeV/c and 150 MeV/c respectively, except

for the transverse momentum of the soft pion which has to be greater than 100 MeV/c) and

the D0 (greater than 1.5 GeV/c). This sample includes also signal and other backgrounds

due to semi-inclusive B → D∗D
(∗),+,0
(s)

decays. Other semi-inclusive samples are generated

and filtered, where B0, B+ and B0
s generically decay to D∗Xc with Xc = D0, D+, D+

s , DsJ or

D+K0, which subsequently give three charged hadrons and extra particles in the final state,

either through de-excitation or decay of the ground stated meson.
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The filtering steps in the above inclusive and semi-inclusive samples, require that the

generated and simulated events pass the stripping selection criteria (Sec. 3.3). Either, two

trigger lines L0Muon [44] or L0Hadron are required. For the HLT1, the single track trigger

or the muon lines are required, while the topological HLT2 line [45] must have fired (HLT2

lines used in the analysis are explained in Sec. 3.4.3). The events satisfying the above criteria

are then written on storage.

3.2 Reweighting of signal decay

3.2.1 Form factors

Signal samples were generated with the ISGW2 model [46], which does not fully reproduces

the differential distribution in terms of the kinematical variables of the decay. A reweighting

of events is therefore performed in order to match the distributions predicted by the CLN

parameterization [21], which is more accurate nd widely used. The XslFF package [47]

is used to implement such a reweighting. The values of the form factor ratios R1(1) =

1.404±0.032 and R2(1) = 0.854±0.020 at zero recoil, as well as the slope of the Isgur-Wise

function ρ2 = 1.205±0.015±0.021, are taken from their world averages, including their

correlations ρ(ρ2,R1) = 0.566, ρ(R1,R2) =−0.759, ρ(R2,ρ
2) =−0.807. The calculation

shown in Ref [6] is used to compute the scalar form factor ratio at zero recoil and its

uncertainty R0(1) = 1.14± 0.11. The effect of signal events reweighting from ISGW2 to

the CLN parameterization is shown in Figure 3.1, for MC truth variables. The angular

variables and the τ momentum do not change appreciably, while the shapes of the momentum

transferred to the τ+ντ system, q2, and the invariant D∗−τ+ mass distribution are affected.

3.2.2 PID reweighting

A correction to the Monte Carlo samples has been made in order to match the Particle

Identification (PID) performance observed on data. This has been made using the PIDCalib

tool [48] within the LHCb analysis framework, which provides access to the calibration

samples of electrons, muons, pions, kaons and protons. This tool is used to perform two

different tasks:

• production of weights per event for given PID requirements

• apply corrections to PID variables in MC samples

The cuts considered for the reweighting are:
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Cut Value

B0

m(D∗πππ) 2500-5600 MeV/c2

DIRA > 0.995

Max. DOCA < 0.15 mm

D∗

pT > 1250 MeV/c

Vertex χ2/DOF < 25

m(D∗−D0) 135-150 MeV/c2

m(D0π) 1960-2060 MeV/c2

D0

pT > 1600 MeV/c

Vertex Distance χ2 > 50

DIRA > 0.999

Vertex χ2/DOF < 10

m(Kπ) 1825-1905 MeV/c2

Max. DOCA < 0.5 mm

Max. DOCA χ2 < 15

τ

m(πππ) 400-3500 MeV/c2

min[m(ππ)] < 1670 MeV/c2

DIRA > 0.99

Vertex χ2 < 25

Max. DOCA < 0.15 mm

At least two pions pT > 300 MeV/c2

At least two pions IP χ2 > 5

τ daughter pions

pT > 250 MeV/c

IP χ2 > 4

Track χ2/DOF < 3

PIDK < 8

Ghost probability < 0.4

D0 daughters

pT > 250 MeV/c

p > 2000 MeV/c

pT (K)+ pT (π) > 1200 MeV/c

Kaon PIDK > -5

Pion PIDK < 8

Track χ2/DOF < 3

IP χ2 > 4

Ghost Probability < 0.4

Slow Pion

pT > 110 MeV/c

Track χ2/DOF < 3

Ghost Probability < 0.6

Table 3.1 Cuts used in the stripping selection. The variables DIRA, Max. DOCA, IP χ2 correspond

respectively to the cosine of the angle between the momentum of the particle and the direction of

flight from the best PV to the decay vertex, the maximum distance of closest approach between all

possible pairs of particles and the χ2
IP on the related PV.

The efficiencies of the stripping selection on B0 → D∗−3π , B0 → D∗−τ+(→ 3π)ντ

and B0 → D∗−τ+(→ 3ππ0)ντ , evaluated on Monte Carlo, are equal to 1.289%, 0.823%

and 0.757% respectively. In order to explain the difference of the stripping efficiency

between signal and normalization, the efficiencies in the intermediate steps are reported in
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Table 3.2. The step which mostly affects the stripping efficiency difference between signal

and normalization is the selection of the D∗ and the 3π , since the kinematics of the slow pion

and the 3π system are different between the two channels.

Intermediate step εsig (%) εnorm (%) εsig/εnorm Relative eff.

D0 selection 55.4 56.0 0.988 0.988

D∗ candidates 25.6 27.9 0.917 0.929

D∗ selection 18.6 21.7 0.856 0.933

3π candidates 25.5 28.6 0.891 0.891

3π selection 16.4 18.4 0.891 1

D∗ 3π candidates 8.9 11 0.81 –

D∗ 3π selection 2.6 3.4 0.76 0.94

Hlt1 selection 0.826 1.382 0.598 0.96

Table 3.2 List of efficiencies of each intermediate step in stripping selection.

3.4 Trigger

The trigger [49] consists of a hardware stage, based on information from the calorimeter

and muon systems, followed by a software stage, in which all charged particles with pT >

500(300)MeV are reconstructed for 7 TeV (8 TeV) data. At the hardware trigger stage,

candidates are required to have a muon with high pT or a hadron, photon or electron with

high transverse energy. The software trigger requires a two-, three-, or four-track secondary

vertex with significant displacement from any PV consistent with the decay of a b hadron, or a

two-track vertex with a significant displacement from any PV consistent with a D0 → K+π−

decay. In both cases, at least one charged particle must have a transverse momentum

pT > 1.7GeV/c and must be inconsistent with originating from any PV. A multivariate

algorithm [50] is used for the identification of secondary vertices consistent with the decay

of a b hadron. Secondary vertices consistent with the decay of a D0 meson must satisfy

additional selection criteria, based on the momenta and transverse momenta of the D0 decay

products (p > 5GeV/c and pT > 800MeV/c), and on the consistency, as a loose requirement,

of the D0 momentum vector with the direction formed by joining the PV and the B0 vertex.

In this analysis the following trigger requirements have to be satisfied:

• TOS Hadron trigger on the D∗ candidate (called L0_Hadron_TOS) or TIS trigger on

B0 candidate (called L0_Global_TIS);
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• HLT1 trigger executed for all events accepted by L0 and that have at least one track that

satisfies a number of track quality criteria [51] (called Hlt1TrackAllL0), required on

the stripping line;

• HLT2 topological line that requires two-, three-, or four-track secondary vertex with

significant displacement from any PV consistent with the decay of a b hadron, or

a two-track vertex with a significant displacement from any PV consistent with a

D0 → K+π− decay.

The properties of the L0Hadron trigger can be studied using the TIS-TOS method in

which the efficiency of the L0 hadronic trigger line can be computed as:

εTOS =
ηT IS&TOS

ηT IS

where ηT IS is the number of candidates selected by the TIS trigger line and ηT IS&TOS is

the number of events selected by both.

In our case the L0 trigger is about splitted equally between B0_L0Global_TIS and

B0_L0Hadron_TOS events. The events under study in addition must have passed the HLT2

triggers.

3.4.1 L0 trigger efficiency

The main driver of the efficiency of the L0Hadron trigger is the 3π system transverse

momentum. Fig. 3.7 shows the efficiency of the L0Hadron trigger as function of this

transverse momentum rising almost linearly from 20% to 100% for transverse momentum

range from 1 to 15 GeV/c. The efficiency is measured on data (black) and MC (red) using

a D+
s sample reconstructed in the 3π mode in the detached vertex topology (described in

Sec. 4.1). The agreement between data and MC is good at high pT but not at low pT (Fig. 3.8).

The same pattern can be seen when measuring the efficiency with the D∗ 3π samples, but

the disagreement at low pT is smaller. The ratio between the two efficiencies partially

cancel these differences. To measure the correction factor due to the partial cancellation, the

efficiency of the L0Hadron trigger as been computed using the TIS-TOS method as function

of the SPD multiplicity described in Sec. 3.4.2.

3.4.2 L0 trigger efficiency correction due the SPD multiplicity

The L0 trigger efficiency for L0Hadron_TOS and L0Global_TIS events is determined as

a function of the number of hits in the SPD detector. To perform this study, events at the
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B0 → D∗−3π exclusive peak are selected in data and Monte Carlo. The efficiencies as a

function of SPD multiplicity for the two triggers are determinated by computing:

εL0Hadron_TOS =
L0Hadron_TOS && L0Global_TIS

L0Global_TIS
(3.1)

εL0Global_TIS =
L0Hadron_TOS && L0Global_TIS

L0Hadron_TOS
. (3.2)

In order to match the efficiencies observed in data, the L0Hadron_TOS efficiency must

be multiplied by a factor 0.93 and the L0Global_TIS efficiency by a factor 1.12, due to a

mismatch bewtween data and MC L0Hadron trigger efficiency as function of the multiplicty

of the event which good estimator is the number of SPD hits [51]. Since the fraction of

L0Global_TIS events in signal and normalization are different, this correction translates to a

factor of 0.97±0.01 in the ratio εnorm

εsig
.

In Fig. 3.9, the SPD multiplicity is shown for data and MC (exclusive B0 → D∗−3π

simulation). On the top figure, the data and MC SPD multiplicity distributions are compared

for all events (black), L0Hadron_TOS (red), L0Global_TIS (green) and L0Hadron_TOS

&& L0Global_TIS (blue). In the middle figure, the number of hits in the SPD detector is

scaled by a factor 1.4 in order to match the shape observed on data. In the bottom figure, the

L0Hadron_TOS and L0Global_TIS trigger efficiencies are corrected by the factors 0.93 and

1.12, respectively. Those factors are used to reweight the Monte Carlo in order to match the

data.

3.4.3 HLT2 trigger efficiency

In the analysis, events are selected to pass any topological trigger line [52]. In addition,

two different HLT2 trigger requirements are exploited, based on the D∗ candidate and on

the topological trigger of the B candidate. The former uses tight cuts to identify the D∗

decay chain and especially to select the D0 decay, whereas the topological trigger on the B

candidate is based on the D0 selection and a global event topology, characteristic of two-,

three- or four-body B decays. Fig. 3.10 show the D0 mass peak for the D0 trigger in red and

topological trigger in blue after the stripping requirements. The D0 tail is smaller for the D0

trigger than for the Topo trigger. The two trigger lines select a large fraction of common

events but have also significant distinct contributions, as can be seen in Tab 3.3, which shows

the number of selected events by each trigger line on the B0→ D∗−τ+ντ signal Monte Carlo.

The efficiency of the topological trigger is significantly larger than that of the D0 trigger.
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Fig. 3.9 Comparison between the SPD multiplicity between data (full points) and Monte Carlo

(dashed histograms). In each figure, the total number of events is shown in black, the L0Hadron_TOS

are shown in red, the L0Global_TIS in green and L0Global_TIS && L0Hadron_TOS events are

shown in blue (full points data, dashed histogram MC). Top: SPD multiplicity without any correction.

Middle: the SPD multiplicity in Monte Carlo is scaled by a factor 1.4. Bottom: L0Hadron_TOS and

L0Global_TIS efficiencies in the Monte Carlo are corrected in order to match the data.
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mass, D∗− 3π invariant mass, and 3π decay time. The D0 trigger efficiency drops as function

of the 3π and D∗ 3π masses and is very inefficient for the D∗−D+
s events. Reversely, the

topological trigger efficiency is low at low masses. The reverse behaviour is observed as a

function of q2 and 3π decay time. Although trigger effects largely cancel out due to usage

of the D∗− 3π normalisation channel, it is essential to have a trigger efficiency as flat as

possible as function of the 3π mass. This is achieved by using the OR of these two trigger

lines (green curve), which in addition enhances the trigger efficiency on the D∗−τ+ντ signal

with respect to the topological trigger by a significant amount, as shown in Table 3.3.
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Fig. 3.11 Efficiency for different trigger requirements as a function of the transferred momentum, q2,

to the τντ system (top left), the 3π invariant mass (top right), the D∗3π invariant mass (bottom left),

and the 3π decay time (bottom right), for D∗3πX inclusive Monte Carlo.

Figure 3.12 shows the trigger efficiency as a function of the examined variables, for data

and Monte Carlo, as well as the ratio between the two efficiencies. A small variation of

this ratio is observed, and a correction on the ratio of Monte Carlo efficiencies for signal

and normalization is applied in order to match the data efficiency as follows. Since, in the

normalization channel, all events have a D∗− 3π mass equal to the B mass of 5.279 GeV, one

has to compute the ratio between the HLT2 trigger efficiency for that mass, and the average

efficiency for signal events, obtained by convoluting the observed slope in Fig. 3.12 with the

D∗− 3π mass distribution. Using the D∗− 3π mass distribution obtained on the signal sample
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generated with Tauola tuned on BaBar experiment results [53], the convoluted average of

the HLT2 efficiency is 0.9892 while the HLT2 efficiency for B0 →D∗− 3π is 0.9895 when

taking the central value for HLT2 variation as function of the D∗− 3π mass, and the error on

the slope to compute the error. The correction factor is thus equal to 1.000±0.005.

 / ndf 2χ  0.4791 / 8
p0        0.080± 1.021 
p1        0.012768±0.007241 − 

)4/c2(GeV2q
0 2 4 6 8 10

E
ff
ic

ie
n

c
y

0

0.2

0.4

0.6

0.8

1

1.2

 / ndf 2χ  0.4791 / 8
p0        0.080± 1.021 
p1        0.012768±0.007241 − 

 / ndf 2χ  0.4791 / 8
p0        0.080± 1.021 
p1        0.012768±0.007241 − 

Data Trig

MC

Ratio DataTrig/MC

trigger_topo or trigger_Dst

q2

 / ndf 2χ  0.335 / 8
p0        0.1017± 0.9941 
p1       05− 7.77e±05 −1.06e− 

)πππM(
600 800 1000 1200 1400 1600 1800 2000 2200

E
ff
ic

ie
n

c
y

0

0.2

0.4

0.6

0.8

1

1.2

 / ndf 2χ  0.335 / 8
p0        0.1017± 0.9941 
p1       05− 7.77e±05 −1.06e− 

 / ndf 2χ  0.335 / 8
p0        0.1017± 0.9941 
p1       05− 7.77e±05 −1.06e− 

Data Trig

MC

Ratio DataTrig/MC

trigger_topo or trigger_Dst

tau_M

 / ndf 2χ  1.046 / 8

p0        0.2071± 0.9785 

p1       05− 5.013e±07 − 3.073e

)πππM(D*
3000 3500 4000 4500 5000 5500

E
ff

ic
ie

n
c
y

0

0.2

0.4

0.6

0.8

1

1.2

 / ndf 2χ  1.046 / 8

p0        0.2071± 0.9785 

p1       05− 5.013e±07 − 3.073e

 / ndf 2χ  1.046 / 8

p0        0.2071± 0.9785 

p1       05− 5.013e±07 − 3.073e

Data Trig

MC

Ratio DataTrig/MC

trigger_topo or trigger_Dst

B0_M

 / ndf 2χ  0.6589 / 8
p0        0.0570± 0.9949 
p1        72.36±29.26 − 

 decay time (nsec)π3
0 0.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014 0.0016 0.0018 0.002

E
ff

ic
ie

n
c
y

0

0.2

0.4

0.6

0.8

1

1.2

 / ndf 2χ  0.6589 / 8
p0        0.0570± 0.9949 
p1        72.36±29.26 − 

 / ndf 2χ  0.6589 / 8
p0        0.0570± 0.9949 
p1        72.36±29.26 − 

Data Trig

MC

Ratio DataTrig/MC

trigger_topo or trigger_Dst

TauCTAU

Fig. 3.12 Trigger efficiency as a function of q2 (top left), 3π invariant mass (top right), D∗−3π

invariant mass (bottom left) and τ decay time (bottom right). Red and green dots represent data and

inclusive D∗− 3π Monte Carlo, respectively. Black dots represent the ratio between data and Monte

Carlo while the red line is the result of a fit performed with a polynomial of order one.





Chapter 4

Selection criteria and multivariate

analysis

The signal selection proceeds in two main steps. First, the dominant background, consisting

of candidates where the 3π system originates from the B0 vertex, called prompt hereafter,

is suppressed by applying a 3π detached-vertex requirement. Second, the double-charm

background (decays of the type B0 → D∗−D0,B0 → D∗−D+,B0 → D∗−D+
s ) is suppressed

using a multivariate analysis (MVA). This is the only background with the same vertex

topology as the signal.

This chapter is organized as follows. After a summary of the principles of the signal

selection in Sec. 4.1, the categorization of the remaining background processes is given in

Secs. 4.1.1 and 4.1.2. This categorization motivates the additional selection criteria that have

to be applied to the tracks and vertices of the candidates in order to exploit the requirement

of vertex detachment in its full power. The selection used for the normalization channel is

described in Sec. 4.2. Section 4.3 describes the isolation tools used to take advantage of the

fact that, for the τ+ → 3πντ channel, there is no other charged or neutral particle at the B0

vertex beside the reconstructed particles in the final state. Section 4.4 details the kinematic

techniques used to reconstruct the decay chains in the signal and background hypotheses.

Finally, the MVA that is used to reduce the double-charm backgrounds is presented in Sec. 4.5

and, in Sec. 4.6, the background composition at various stages of the selection process is

illustrated.
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4.1 The detached-vertex topology

Two main categories of events have to be distinguished, depending on whether the 3π system

comes from the same vertex (but not necessarily from the same parents) or one pion originates

from a second different vertex. The former category can be split according to the origin of

the 3π system: τ lepton, charmed mesons D0, D+ and D+
s , or directly from a B particle such

as B0, B+, B0
s or Λ 0

b . The dominant background in the analysis is B0→ D∗−π+π−π+X and

is suppressed by a set of cuts, reported in Tab. 4.1. The most important cut is the first in the

table, which will be referred to as detached vertex cut; it requires that the distance between

the 3π and the B0 vertices along the beam direction, ∆z ≡ z(3π)− z(B0) (where the B0 vertex

is reconstructed using the DecayTreeFitter tool [54]), is greater than four times its uncertainty,

σ∆z. This leads to a rejection of the prompt background by three orders of magnitude, as

shown in Fig. 4.1. The average B0 decay length is 16 mm while the mean separation B0−τ is

3 mm. Some of the other cuts are topological, such as two requirements, one on the τ+ flight

z∆
σz/∆

8− 4− 0 4 8 12 16 20

C
an

d
id

at
es

 /
 0

.1

1

10

210

3
10

410

→
LHCb simulation

Xπππ*D

DX*D

ντ*D

Fig. 4.1 Distribution of the distance between the B0 vertex and the 3π vertex along the beam direction,

divided by its uncertainty, obtained using simulation. The grey area corresponds to the prompt

background component, the cyan and red areas to double-charm and signal components, respectively.

The vertical line shows the 4σ requirement used in the analysis to reject the prompt background

component.

distance (with respect to the PV) along the z-axis (with a 10σ significance) and one in the

transverse plane. Another important requirement is that the D0 and the pions from τ+ must

not originate from the PV, so a cut on the Impact Paramenter (IP) with respect to the PV is

applied. The D0 and the τ+ must originate from the same PV in order to reconstruct particles

that belong to the same decay chain. One cut on the χ2 of the 3π vertex is applied in order

to select a well reconstructed τ+ vertex. Cuts on ProbNNpi for the three pion candidates

are required in order to suppress misidentified kaons. Furthermore, a single candidate per
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event is required in order to remove events where several track candidates may form a 3π

vertex. The main background for our analysis are very common B0 →D∗D+
s decays, where

the D+
s decays into 3 pions + anything else. The D+

s is a very abundant source of 3π final

states through two types of decays :

• D+
s → ISπ+ or ISρ+ where at least two of the three pions originate from the decay

chain of an intermediate state IS: η ,η ′,φ or ω

• D+
s → M 3π where M is is again an intermediate state K0,η ,η ′,φ or ω

In both types of decays, five charged particles will be present frequently in the final state: in

the former case, mostly though η ′→ ηπ+π− followed by η → π+π−π0 or π+π−γ , in the

latter case via basically any IS decay to π+π− X. This true 5-prong background is especially

harmful since it produces 6 3π combinations when all tracks are seen, and 2 or 3 when 1

track is missed. It must therefore be rejected with an high efficiency. It is therefore very

convenient to exploit the high multiplicity of combinations produced by this background to

kill it by asking only one combination per event, which is an obvious feature of any exclusive

event such as B0 →D∗τν , B0 →D∗ 3π or B0 →D∗D+
s .

The efficiency of the detached vertex cut has been evaluated on the various MC samples,

keeping separated, when possible, the simulation with 2011 conditions from the 2012 one.

The distributions of the other variables used in the selection are plotted in Figs. 4.2, 4.3

for the various MC samples. Generally good agreement is observed. The efficiencies are

reported in Tab. 4.2.

Variable Cut Targeted background

pT(π), π from 3π > 250 MeV/c All

[z(3π)− z(B0)]/σ(z(3π)−z(B0)) > 4 prompt

[z(3π)− z(PV)]/σ(z(3π)−z(PV)) > 10 charm

r3π ∈ [0.2,5.0]mm spurious 3π

χ2
IP(D

0) > 10 charm

χ2
IP(π), π from 3π > 15 combinatorial

PV(D0) = PV(3π) charm/combinatorial

number of B0 candidates = 1 all

3π vertex χ2 < 10 combinatorial

∆m ≡ m(D∗−)−m(D0) ∈ [143,148]MeV/c2 combinatorial

Table 4.1 List of the selection cuts. See text for further explanation.
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Fig. 4.2 Distributions of the variables used in the first selection (1).
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Fig. 4.3 Distributions of the variables used in the first selection (2).
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4.1.1 Background with detached-vertex topology

The double-charm B→ D∗−DX decays are the only other B decays with the same vertex

topology as the signal. Fig. 4.1 show the dominance of the double-charm background over

the signal after the detached-vertex requirement, on simulated events. Fig. 4.4 shows the 3π

invariant mass data distribution after the vertex-detachement requirement, where peaking

structures corresponding to the D+
s → 3π decay, a very important control channel for this

analysis, and to the D+→ 3π decay, are clearly visible.
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Fig. 4.4 Distribution of the 3π mass for candidates after the detached-vertex requirement. D+ and

D+
s mass peaks are clearly visible. The rest of the spectrum is due to D+

s and D+ unreconstructed

particles in the final states. For further details see Sec. 5.1.

4.1.2 Background from other sources

Requirements additional to the detached vertex one are needed to reject spurious background

sources with vertex topologies similar to the signal. The various background sources are

classified to distinguish candidates where the 3π system originates from a common vertex

and those where one of the three pions originates from a different vertex.

• Background category where the 3π system stems from a common vertex:

– the 3π system either comes from the decay of a τ lepton or a D0, D+, D+
s or Λ+

c

hadron. In this case, the candidate has the correct signal-like vertex topology.

Alternatively, it comes from a misreconstructed prompt background candidate

containing a B0, B+, B0
s or Λ0

b hadron. The detailed composition of these different

categories at the initial and the final stage of the analysis is described in Sec. 4.6.
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• Background category where the 3π system don’t originate from a common vertex:

– In this case, the D∗− and the 3π systems are not daughters of the same b hadron.

The 3π system originates from one of the following sources: the other b hadron

present in the event (B1B2 category); the decay of the charm hadrons produced

at the PV (charm category); another PV; an interaction in the beam pipe or in the

detector material. The 3π background not originating from the same vertex is

dominated by candidates where two pions originate from the same vertex whilst

the third may come directly from the PV, from a different vertex in the decay

chain of the same b hadron, from the other b hadron produced at the PV, or from

another PV. Due to the combinatorial origin of this background, there is no strong

correlation between the pion pair and the third pion.

4.2 Selection of the normalization channel

The B0→ D∗−3π normalization channel is selected by requiring the D0 vertex to be located

at least 4σ downstream of the 3π vertex along the beam direction. All other selection criteria

are identical to that of the signal case, except for the fact that no cut on the output of the

MVA analysis (described in Sec. 4.5) is applied to the normalization channel. Figure 4.5

shows the D∗− 3π invariant mass spectrum after all these requirements. Moreover, the high

purity of this sample of exclusive B0 decays allows the validation of the selection efficiencies

derived using simulation.
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Fig. 4.5 Distribution of the D∗−3π mass for candidates passing the selection criteria of the normaliza-

tion channel.
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4.3 Isolation requirements

The selection criteria described in the previous sections are efficient in removing backgrounds

where the three pions originate from a B decay, where other particles are misidentified as

pions, and combinatorial background. The remaining background is due to B decays where

the three pions (or some of them) are produced from the decay of a particle with significant

lifetime, such as D+
s , D0 or D+ mesons. This background is suppressed by exploiting the

fact that additional charged and/or neutral particles are produced in conjunction with the

observed candidate. The isolation algorithms used to accomplish this task are described in

the following.

4.3.1 Charged isolation

A charged-isolation algorithm ensures that no extra tracks are compatible with either the B0

or 3π decay vertices. It is implemented by counting the number of charged tracks having pT

larger than 250MeV/c, χ2
IP with respect to the PV larger than 4, and χ2

IP(3π) and χ2
IP(B

0),

with respect to the vertex of the 3π and B0 candidates, respectively, smaller than 25. The

candidate is rejected if any such track is found. As an example, the performance of the

charged-isolation algorithm is determined on a simulated sample of double-charm decays with

a D0 meson in the final state. In cases where B0 → D∗−D0K+(X), with D0 → K−3π(X), two

charged kaons are present in the decay chain, one originating from the B0 vertex and the other

from the D0 vertex. For these candidates, the rejection rate is 95%. The charged-isolation

algorithm has a selection efficiency of 80% on a data sample of exclusive B0 → D∗−3π

decays. This sample has no additional charged tracks from the B0 vertex, therefore it is

similar at first order to the signal as far as charged-isolation properties are concerned. This

value is in good agreement with the efficiency determined from simulation.

It is possible to reverse the isolation requirement to provide a sample of candidates from

the inclusive D0 decay chain, where a D0 meson decays into K−3π and the charged kaon has

been found as a nearby track. Figure 4.6 shows a clear D0 signal when computing the K−3π

invariant mass. This control sample is used to determine the properties of the B→ D∗−D0(X)

background in the final fit that determines the signal yield.

4.3.2 Neutral isolation

Background candidates with additional neutral particles present in their decay chain are

suppressed by using the energy deposited in the electromagnetic calorimeter in a cone

R =
√

∆η +∆φ < 0.3 units around the direction of the 3π system. For this rejection method
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Fig. 4.6 Distribution of the K−3π mass for D0 candidates where a charged kaon has been associated

to the 3π vertex.

to be effective, the amount of collected energy in the region of interest must be small when no

neutral particles are produced in the B0 meson decay. Candidates where the B0 meson decays

to D∗−3π , with D∗−→ D0π−, are used as a check. Figure 4.7 compares the distributions of

the D∗−3π invariant mass with and without the requirement of an energy deposition of at

least 8GeV in the electromagnetic calorimeter around the 3π direction. Since it is known

that no neutral particles are emitted in this decay, the inefficiency of the algorithm can be

estimated by the ratio of the yields of the two spectra within ±30MeV/c2 around the B0

mass, and is found small enough to allow the usage of this method. The energy deposited

in the electromagnetic calorimeter around the 3π direction is one of the input variables to

the MVA described below, used to suppress inclusive D+
s decays to 3π X, which contain

photons and π0 mesons in addition to the three pions. Photons are also produced when D+
s

excited states decay to their ground state. The use of this variable has an impact on signal:

the τ+→ 3ππ0ντ decay has an efficiency roughly one half with respect to that of the 3π

mode. This is reflected in the lower efficiency after the BDT cut for the 3ππ0 decay mode

with respect to 3π mode, as seen in Table 4.2.
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Fig. 4.7 Distribution of the D∗−3π mass (blue) before and (red) after a requirement of finding at least

8GeV of energy in the electromagnetic calorimeter around the 3π direction.
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4.4 Reconstruction of the decay kinematics

Due to the precise knowledge of the D0, 3π and B0 decay vertices, it is possible to recon-

struct the decay chains of both signal and background processes, even in the presence of

unreconstructed particles, such as two neutrinos in the case of the signal, or neutral par-

ticles originating at the 3π vertex in the case of double-charm background. The relevant

reconstruction techniques are detailed in the following.

4.4.1 Reconstruction in the signal hypothesis

The missing information due to the two neutrinos emitted in the signal decay chain can be

recovered with the measurements of the B0 and τ line of flight (unit vectors joining the B0

vertex to the PV and the 3π vertex to the B0 vertex, respectively) together with the known B0

and τ masses. This enables the reconstruction of the complete decay kinematics of both the

B0 and τ decays to be performed, up to two two-fold ambiguities. The τ momentum in the

laboratory frame is obtained as

|p⃗τ |=
(m2

3π +m2
τ)|p⃗3π |cosθτ,3π ±E3π

√

(m2
τ −m2

3π)
2 −4m2

τ |p⃗3π |2 sin2 θτ,3π

2(E2
3π −| p⃗3π |2 cos2 θτ,3π)

, (4.1)

where θτ,3π is the angle between the 3π system three-momentum and the τ line of flight;

m3π , |p⃗3π | and E3π are the mass, three-momentum and energy of the 3π system, respectively;

and mτ is the known τ mass. Eq. 4.1 yields a single solution, in the limit where the opening

angle between the 3π and the τ directions takes the maximum allowed value

θ max
τ,3π = arcsin

(

m2
τ −m2

3π

2mτ |p⃗3π |

)

. (4.2)

At this value, the argument of the square root in Eq. 4.1 vanishes, leading to only one solution,

which is used as an estimate of the τ momentum. The same procedure is applied to estimate

the B0 momentum

|p⃗B0 | =
(m2

Y +m2
B0)|p⃗Y |cosθB0,Y ±EY

√

(m2
B0 −m2

Y )
2 −4m2

B0 |p⃗Y |2 sin2 θB0,Y

2(E2
Y −| p⃗Y |2 cos2 θB0,Y )

, (4.3)

where Y represents the D∗τ system, by defining
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θ max
B0,Y = arcsin

(

m2
B0 −m2

Y

2mB0 |p⃗Y |

)

. (4.4)

Here, the three-momentum and mass of the D∗τ system are calculated using the previously

estimated τ momentum

p⃗Y = p⃗D∗ + p⃗τ , EY = ED∗ +Eτ , (4.5)

where p⃗D∗ and p⃗τ are the three-momenta of the D∗− and the τ candidates, and ED∗ and Eτ

their energies. Using this method, the rest-frame variables are determined with sufficient

accuracy to retain their discriminating power against double-charm backgrounds, as discussed

in Sec. 6.1. Figure 4.8 shows the difference between the reconstructed and the true q2 ≡
(pB0 − pD∗)2 = (pτ + pντ )

2. No significant bias is observed and an average resolution of

1.2GeV2/c4 is obtained. The relative q2 resolution (18% full-width half-maximum) in

terms of RMS, is comparable with the LHCb analysis using a lepton in the final state [11]

(≈15%–20% full width at half maximum).
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Fig. 4.8 Difference between the reconstructed and true q2 variables, observed in the B0 → D∗−τ+ντ

simulated signal sample after partial reconstruction.
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Using the computed momentum in Eqn. 4.1 it is possible to extract the decay time of the

3π system as follows:

β =
|pτ |
Eτ

γ =
1

√

1−β 2

L =
√

(τx −Bx)2 +(τy −By)2 +(τz −Bz)2

tτ =
Lc

βγ
(4.6)

where Eτ is the energy of the τ , τx,y,z and Bx,y,z are the coordinates of the τ and B endvertices,

c is the speed of light. The distribution and resolution of the computed decay time are shown

in figure 4.9.
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Fig. 4.9 Left: Reconstructed τ decay time (blue) as compared with the true value (red) for signal

Monte Carlo. Right: Resolution on the τ decay time.

4.4.2 Reconstruction in the B0 → D∗D+
(s)

hypothesis

In the B0→ D∗−D+
s decay the following equation can be written (momentum conservation,

see Fig. 4.10):

|p⃗B|ûB = |p⃗D+
s
|ûD+

s
+ p⃗D∗ , (4.7)

where p⃗B, p⃗D+
s

and p⃗D∗ are the momenta of the mesons involved in the decay, and ûB, ûD+
s

their unit vectors.

Starting from this relation and applying some vectorial algebra, it is possible to reconstruct

the values of |p⃗B| and |p⃗D+
s
| in two different ways, that will be called “vectorial” and “scalar”
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Fig. 4.11 The profile of the correction dz in function of the 3π mass. The chosen fitting function is a

parabola.

the profile of −dz = vtxz(B
0)− vtxT RUE

z (B0), the correction on the B0 vertex position along

z, as function of the 3π mass.

A parabolic function has been chosen in order to fit this profile, and, after fitting, the

dependence can be expressed in the following way:

−dz = 3.0346−0.00439605 ·m(3π)+1.6 ·10−6[m(3π)]2, (4.10)

with dz in mm and m(3π) in MeV/c2.

The effect of the dz correction on the B0 vertex (z component) resolution is shown in

Figure 4.12. Even if the resolution does not improve very much, it is quite evident that the

mean of the (true_vtxz− reco_vtxz)/true_vtxz distribution is closer to 0 after the correction.

This correction allows to recompute the B0 vertex position, in order to get new momentum

values at a next-level of approximation. They are called PB,vn, PB,sn, PDs,vn and PDs,sn, and

they are calculated by using (4.8a), (4.9a), after plugging in the new directions ûB,n and ûD+
s ,n

.

Another set of variables which can be reconstructed by using PB,v(s,vn,sn) and ûB(B,n) are the

squared D+
s masses built in the various hypotheses, m2

Ds,v(s,vn,sn), which are calculated using

the nominal B0 and D∗− masses. This variables will be useful in defining a D+
s mass region

for the training of the MVA. Figure 4.13 shows the 3πN mass distribution obtained on a
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Fig. 4.12 Resolution on B0 vertex (z component) on inclusive D∗3π MC sample, before and after the

correction dz.

sample enriched in B→ D∗−D+
s (X) decays, with D+

s → 3πN, by means of the output of the

MVA. A peaking structure originating from D+
s and D∗+

s decays is clearly visible. Due to the

presence of two neutrinos at different vertices, signal decays are not handled well by partial

reconstruction method, which therefore provides a useful discrimination between signal

and background due to B→ D∗−D+
s (X) decays. However, this method cannot discriminate

the signal from background due to B→ D∗−D0(X) and B→ D∗−D+(X) decays, where two

kaons are missing at the B0 and 3π vertices.

4.5 Multivariate analysis

Three features are used to reject the double-charm background: the different resonant

structures of τ+→ 3πντ and D+
s → 3πX decays, the charged and neutral isolation (Sec. 4.3)

and the different kinematic properties of signal and background candidates (Sec. 4.4.2).

To suppress double-charm background, a set of 18 variables is used as input to a MVA

based upon a Boosted Decision Tree (BDT)[55, 56].

This set includes:

Variables related to the partial reconstruction (8 variables)

Reconstruction of the observed event can be performed into two possible scenarios:
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Fig. 4.13 Distribution of the reconstructed 3πN mass observed in a data sample enriched by B →
D∗−D+

s (X) candidates.

• Reconstruction as a background event: under this scenario, the event is recon-

structed as B0→ D∗D
(∗)
(s)

(see Section 4.4.2). Six variables stemming from this

reconstruction are included in the BDT.

1. PBsn
: the B0 momentum reconstructed using the scalar product method, using

the corrected B0 vertex;

2. ln| PBv

B0
P
|: the ratio between the reconstructed B momentum and the visible

one;

3. ln|PBvn

B0
P
|: the ratio between the reconstructed B momentum and the visible

one, using the corrected B0 vertex;

4. ln|PBsn−PBvn

PBvn
|: the normalized difference between the different estimates of

the B0 momentum;

5. mN2v: the squared mass of the reconstructed neutral vector;

6.
√

|mDs2vn|: the reconstructed mass of the D
(∗,∗∗)
(s)

system.

• Reconstruction as a signal event: the event is reconstructed as a signal event, (see

Section 4.4.1). Two variables are incorporated:

1. PB −Pτ −PD∗−: the energy of the neutrino emitted at the B vertex;

2. ln(χ2
B0): the χ2 of the reconstruction of the event in this hypothesis.

The neutral and charged isolation (5 variables)

Background events where the 3π system is coming from D+
s decays are often accom-

panied by a large neutral energy coming from the rest of the D+
s decay. This neutral

energy is searched in cones around the 3π system. The neutral cone variables have
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already been described in Section 4.3.2. Three variables related to neutral energy are

included in the BDT:

1. Mult(τ)0.4nc: the multiplicity of neutral objects in a cone of 0.4 opening (defined

in the ∆φ , ∆η reference frame) centered around the 3π vector;

2. Pz(τ)0.4nc: the sum of the neutral energy contained in the cone of 0.4 opening;

3. Pz(τ)0.3nc: the sum of the neutral energy in a cone of 0.3 opening.

Even if the tau and the B0 vertices are required to be isolated from additional charged

tracks, we include in the BDT two variables provided by the charged isolation algo-

rithm, i.e. Mult(τ)0.2cc and Pz(τ)0.2cc, which are the multiplicity of charged objects

and the energy in a cone of 0.2 opening centered around the 3π vector.

The π+π− dynamics (2 variables)

The Q-value available to the π+π− pair in the η → π+π−π0 and η ′→ ηπ+π− decay

chain is less than 400MeV, so the π+π− invariant mass in these decays is bound to be

constrained between 278MeV and 400MeV. Therefore, many π+π− from D+
s decays

where η and η ′ abound will exhibit this distinctive low mass enhancement. On the

other hand, the τ → 3πν decay is a pure a1 channel which itself decays exclusively to

ρπ [57]. The maximum value for the two possible π+π− states will therefore exhibit a

ρ peak for the signal and a peak at much lower mass for the background. The minimum

and maximum values for the π+π− masses have been included in the BDT.

Kinematics (3 variable)

The kinematics variables ρ(B0)1, E(τ) (the energy of the 3π system) and m(B0)

(the mass of the six tracks system) have also been included. m(B0) is a powerful

discriminant against backgrounds where the τ lepton originates from D+
s decays and

from events where the 3 pions do not come from the same vertex.

The BDT is trained using simulated samples of signal and double-charm background

decays. Figure 4.14 shows the normalized distributions of the four input variables having the

largest discriminating power for signal and background namely: the minimum and maximum

of the masses of oppositely charged pions, min[m(π+π−)] and max[m(π+π−)]; the neutrino

energy, approximated as the the difference of the moduli of the momentum of the B0 and the

sum of the moduli of the momenta of D∗− and τ reconstructed in the signal hypothesis, and

the D∗−3π mass. The BDT response for signal and background is illustrated in Fig. 4.15.

1The distance (cylindrical) from the end vertex of the B0 and the related primary vertex.
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Fig. 4.14 Normalized distributions of (top left) min[m(π+π−)], (top right) max[m(π+π−)], (bottom

left) approximated neutrino energy reconstructed in signal hypothesis, and (bottom right) the D∗−3π

mass in simulated samples.

The B → D∗−D+
s (X), B → D∗−D0(X) and B → D∗−D+(X) control samples, described

in Sec. 5, are used to validate the BDT. Figure 4.16 show the comparison of a subset of BDT

input variables. There is a significant discrepancy between MC and control sample for the

distributions. This can be explained by the fact that the background structure in data and MC

are different, and no background subtraction is performed. Also, no MC reweightings are

performed.

In Figure 4.17 the normalized distributions of the input BDT variables for the D∗−D0X

control sample are shown. The agreement is pretty good for most of the variables. The

discriminating power of this variable is small, so we do not expect big effects if it is not very

well modelled in a subdominant background.

The same comparison is done for the D∗−D+X component is reported in Figure 4.17 The

agreement is pretty good, similarly to what happens for the D∗−D0X component.

The signal yield is determined from candidates in the region where the BDT output is

greater than −0.075. According to simulation, this value gives the best statistical power in
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Fig. 4.15 Distribution of the BDT response on the signal and background simulated samples.

the determination of the signal yield. Candidates with the BDT output less than −0.075

are highly enriched in D+
s decays and contain very little signal, as shown in Fig. 4.15, and

represent about half of the total data sample. They are used to validate the simulation of

the various components in D+
s → 3πX decays used in the parameterization of the templates

entering in the fit that determines the signal yield, as explained in Sec. 5.1. No BDT cut is

applied in the selection for the normalization channel.

4.6 Composition of the selected samples and efficiencies

Figure 4.19 shows the composition of an inclusive sample of simulated events, generated

by requiring that a D∗− meson and a 3π system are both part of the decay chain of a bb pair

produced in a proton-proton collision before the detached-vertex requirement, at the level of

the signal fit, and with a tighter cut corresponding to BDT output greater than 0.031. In the

histograms, the first bin corresponds to the signal representing only 1% of the candidates

at the initial stage, and the second to prompt candidates, where the 3π system originates

from the b-hadron decay. The latter constitutes by far the largest initial background source.

The following three bins correspond to cases where the 3π system originates from the decay

of a D+
s , D0 or D+ meson, respectively. The plot in the middle corresponds to the BDT

output greater than −0.075 used in the analysis to form the sample in which the signal

determination takes place. One can see the suppression of the prompt background due to

the detached-vertex requirement, and the dominance of the D+
s background. The bottom

plot shows for illustration the sample composition with a tighter BDT output cut. The D+
s
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Fig. 4.16 Comparison of the BDT variables between D∗−DsX component of background MC and

D∗−DsX control sample.
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Fig. 4.17 Comparison of the BDT variables between D∗−D0X component of background MC and

D∗−D0X control samples (1).
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Fig. 4.18 Comparison of the BDT variables between D∗−D+X component of background MC and

D∗−D+X control samples (1).
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contribution is now suppressed as well. The signal fraction represents more than 30% at this

stage. Figure 4.19 also allows contributions due to decays of other b hadrons to be compared

with those due to B0 meson decays.
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Fig. 4.19 Composition of an inclusive simulated sample where a D∗− and a 3π system have been

produced in the decay chain of a bb pair from a pp collision. Each bin shows the fractional contribution

of the different possible parents of the 3π system (blue from a B0, yellow for other b hadrons): from

signal; directly from the b hadron (prompt); from a charm parent D+
s , D0, or D+ meson; 3π form a B

and the D0 from the other B (B1B2); from τ lepton following a D+
s decay; from a τ lepton following a

D∗∗τ+ντ decay (D∗∗ denotes here any higher excitation of D mesons). (Top) After the initial selection

and the removal of spurious 3π candidates. (Middle) For candidates entering the signal fit. (Bottom)

For candidates populating the last 3 bins of the BDT distribution (cf. Fig. 6.1).

Table 4.2 presents the efficiency of the various selection steps, both for signal and

normalization channels.
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Requirement Absolute efficiencies (%) Relative efficiencies (%)

D∗−3π D∗−τ+ντ D∗−3π D∗−τ+ντ

3πντ 3ππ0ντ 3πντ 3ππ0ντ

Geometrical acceptance 14.65 15.47 14.64

After:

initial selection 1.382 0.826 0.729

spurious 3π removal 0.561 0.308 0.238 40.6 37.3 32.6

trigger requirements 0.484 0.200 0.143 86.3 65.1 59.9

vertex selection 0.270 0.0796 0.0539 55.8 39.8 37.8

charged isolation 0.219 0.0613 0.0412 81.2 77.0 76.3

BDT requirement - 0.0541 0.0292 - 94.1 74.8

PID requirements 0.136 0.0392 0.0216 65.8 72.4 74.1

Table 4.2 Summary of the efficiencies (in %) measured at the various steps of the analysis for simulated

samples of the B0 → D∗−3π channel and the B0 →D∗−τ+ντ signal channel for both τ decays to 3πντ

and 3ππ0ντ modes. No requirement on the BDT output is applied for D∗−3π candidates. The relative

efficiency designates the individual efficiency of each requirement.





Chapter 5

Study of double-charm candidates

The fit that determines the signal yield uses templates that are taken from simulation. It is

therefore of paramount importance to verify the agreement between data and simulation

for the remaining background processes. Control samples from data are used wherever

possible for this purpose. The relative contributions of double-charm backgrounds and their

q2 distributions from simulation are validated, and corrected where appropriate, by using

data control samples enriched in such processes. Inclusive decays of D0, D+ and D+
s mesons

to 3π are also studied in this way.

5.1 The D+
s decay model

The branching fraction of D+
s meson decays with a 3π system in the final state, denoted as

D+
s → 3πX is about 15 times larger than that of the exclusive D+

s → 3π . This is due to the

large contributions from decays involving intermediate states such as K0
S , η , η ′, φ , and ω

mesons, which are generically denoted with the symbol R in the following. The branching

fractions of processes of the type D+
s → Rπ+ are well know, but large uncertainties exist for

several decays, such D+
s → R(→ π+π−X)π+π0 and D+

s → R3π .

The τ lepton decays through the a1(1260)+ resonance, which leads to the ρ0π+ final

state [58]. The dominant source of ρ0 resonances in D+
s decays is due to η ′→ ρ0γ decays. It

is therefore crucial to control the η ′ contribution in D+
s decays very accurately. The shape of

the η ′ contribution in the min[m(π+π−)] distribution, is clearly visible in Fig. 5.1. It exhibits

a double peaking structure: at low mass, due to the endpoint of phase space for the charged

pion pair in the η → π+π−π0 and η ′ → ηπ+π− decays and, at higher mass, a ρ0 peak. The

shape of this contribution is precisely known since the η ′ branching fractions are known to

better than 2%. The precise measurement of the low-mass excess on data therefore enables

the control of the η ′ contribution in the sensitive ρ region.
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The D+
s → 3πX decay model is determined from a data sample enriched in B→ D∗−D+

s (X)

decays by requiring a value of the BDT output less than −0.075. The distributions of

min[m(π+π−)] and max[m(π+π−)], of the mass of the same-charge pions, m(π+π+), and

of the mass of the 3π system, m(3π), are simultaneously fit with a model obtained from

simulation. The fit model is constructed from the following components:

• D+
s decays where at least one pion originates from the decay of an η meson; the

D+
s → ηπ+ and D+

s → ηρ+ components are in this category.

• D+
s decays where, in analogy with the previous category, an η ′ meson is involved.

• D+
s decays where at least one pion originates from an intermediate resonance other

than η or η ′; these are then subdivided into Rπ+ and Rρ+ final states; these decays

are dominated by R = ω , φ resonances.

• Other D+
s decays, where none of the three pions originates from an intermediate state;

these are then subdivided into K03π , η3π , η ′3π , ω3π , φ3π , τ+(→ 3π(N)ντ)ντ , and

3π nonresonant final states, Xnr. Regarding the tauonic D+
s → τ+ντ decay, the label N

stands for any potential extra neutral particle.

Templates for each category and for the non-D+
s candidates are determined from B → D∗−D+

s (X)

and B → D∗−3πX simulation samples, respectively. Figure 5.1 shows the fit results for the

four variables. The fit measures the η and η ′ inclusive fractions very precisely because, in the

min[m(π+π−)] histogram, the low-mass peak is the sum of the η and η ′ contributions, while

only the η ′ meson contributes to the ρ0 region. The ratio between decays with a π+ and a ρ+

meson in the final state is not precisely determined because of the limited sensitivity of the

fit variables to the presence of the extra π0. The sensitivity only comes from the low-yield

high-mass tail of the 3π mass distribution which exhibits different endpoints for these two

types of decays. Finally, the kinematical endpoints of the 3π mass for each R3π final state

enable the fit to determine their individual contributions, which are presently either poorly

measured or not measured at all. The D+
s → φ3π and D+

s → τ+(→ 3π(N)ντ)ντ branching

fractions, known with a 10% precision, are fixed to their measured values [20].

The fit is in good agreement with the data, especially in the critical min[m(π+π−)]

distribution. The fit parameters and their ratios, with values from simulation, are reported in

Table 5.1. These are used to correct the corresponding contributions from simulation. In the

final fit performed in the high BDT output region, the shape of each contribution is scaled

according to the ratio of candidates in the two BDT regions, which is taken from simulation.
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Fig. 5.1 Distributions of (top left) min[m(π+π−)], (top right) max[m(π+π−)], (bottom left) m(π+π+),
(bottom right) m(π+π−π+) for a sample enriched in B→ D∗−D+

s (X) decays, obtained by requiring

the BDT output below a certain threshold. The different fit components correspond to D+
s decays

with (red) η or (green) η ′ in the final state, (yellow) all the other considered D+
s decays, and (blue)

backgrounds originating from decays not involving the D+
s meson.

The fit determines that (47.3±2.5)% of the D+
s decays in this sample contain η and η ′

mesons with an additional charged pion, (20.6± 4.0)% contain φ and ω mesons with an

additional charged pion and (32.1±4.0)% are due to R3π modes.

This last contribution is dominated by the η3π and η ′3π modes.

5.2 The B0→ D∗−D+
s (X) control sample

Candidates where the D+
s meson decays exclusively to the π+π−π+ final state give a pure

sample of B → D∗−D+
s (X) decays. This sample includes three types of processes:1

1In this Section, D∗∗ and D∗∗
s are used to refer to any higher-mass excitations of D∗− or D+

s mesons decaying

D∗− and D+
s ground states.
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D+
s decay Relative Correction

contribution to simulation

ηπ+(X) 0.156 ± 0.010

ηρ+ 0.109 ± 0.016 0.88 ± 0.13

ηπ+ 0.047 ± 0.014 0.75 ± 0.23

η ′π+(X) 0.317 ± 0.015

η ′ρ+ 0.179 ± 0.016 0.710 ± 0.063

η ′π+ 0.138 ± 0.015 0.808 ± 0.088

φπ+(X), ωπ+(X) 0.206 ± 0.02

φρ+, ωρ+ 0.043 ± 0.022 0.28 ± 0.14

φπ+, ωπ+ 0.163 ± 0.021 1.588 ± 0.208

η3π 0.104 ± 0.021 1.81 ± 0.36

η ′3π 0.0835 ± 0.0102 5.39 ± 0.66

ω3π 0.0415 ± 0.0122 5.19 ± 1.53

K03π 0.0204 ± 0.0139 1.0 ± 0.7

φ3π 0.0141 0.97

τ+(→ 3π(N)ντ)ντ 0.0135 0.97

Xnr3π 0.038 ± 0.005 6.69 ± 0.94

Table 5.1 Results of the fit to the D+
s decay model. The relative contribution of each decay and the

correction to be applied to the simulation are reported in the second and third columns, respectively.

• B0 → D∗−D
(∗,∗∗)+
s decays, where a neutral particle is emitted in the decay of the

excited states of the D+
s meson. The corresponding q2 distribution peaks at the squared

mass, (pB0 − pD∗)2, of the given states.

• B0
s → D∗−D+

s X decays, where at least one additional particle is missing. This category

contains feeddown from excited states, both for D∗− or D+
s mesons. The q2 distribution

is shifted to higher values.

• B0,− → D∗−D+
s X0,− decays, where at least one additional particle originates from

either the B0,− decay, or the de-excitation of charm-meson resonances of higher mass,

that results in a D∗− meson in the final state. These additional missing particles shift

the q2 distribution to even higher values.

The B→ D∗−D+
s (X) control sample is used to evaluate the agreement between data

and simulation, by performing a fit to the distribution of the mass of the D∗−3π system,

m(D∗−3π). The fitting probability density function P is parameterized as

P = fc.b. Pc.b.+
(1− fc.b.)

∑i fi
∑

j

f jP j (5.1)
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Parameter Simulation Fit Ratio

fc.b. — 0.014 —

fD+
s

0.54 0.594±0.041 1.10±0.08

fD∗+
s0

0.08 0.000+0.040
−0.000 0.00+0.50

−0.00

fD+
s1

0.39 0.365±0.053 0.94±0.14

fD+
s X 0.22 0.416±0.069 1.89±0.31

f(D+
s X)s

0.23 0.093±0.027 0.40±0.12

Table 5.2 Relative fractions of the various components obtained from the fit to the B → D∗−D+
s (X)

control sample. The values used in the simulation and the ratio of the two are also shown.

where i or j = {D+
s ; D∗+

s ; D∗+
s0 ; D+

s1; D+
s X ; D+

s X , s}. The fraction of combinatorial back-

ground, fc.b., is fixed in the fit. Its shape is taken from a sample where the D∗− meson and the

3π system have the same charge. Each component i is described by the probability density

function Pi, whose shapes are taken from simulation. The parameters fi are the relative

yields of B0 → D∗−D+
s , B0 → D∗−D∗

s0(2317)+, B0 → D∗−Ds1(2460)+, B0,+ → D∗−D+
s X

and B0
s → D∗−D+

s X decays with respect to the number of B0 → D∗−D∗+
s candidates. They

are floating in the fit, and fD∗+
s

= 1 by definition.

The 1D fit result on m(D∗−3π) along with the projections of the signal fit variables, is

shown in Fig. 5.2 and reported in Table 5.2, where a comparison with the corresponding

values in the simulation is also given, along with their ratios. The measured ratios, including

the uncertainties and correlations, are used to constrain these contributions in the final fit.

5.3 Other control samples

The main background component in the analysis is due to events containing a charm particle

with a non-negligible lifetime. This is the case of decays involving D+
s , D0 and D+ mesons.

The B → D∗D+
s decay background composition has been discussed in Sec. 5.1. In this

section, control samples of B → D∗−D0(X) and B → D∗−D+(X) decay modes are studied

into final states corresponding to D0,+→ K−,03π(π0) modes.

5.3.1 B → D∗−D0(X) control samples

The agreement between data and simulation is validated in the D0 case by using a control

sample where the isolation algorithm identifies a kaon with charge opposite to the total

charge of the 3π system, and compatible with originating from the 3π vertex. The mass of

the K−3π system must be compatible with the known D0 mass. This method provides a pure

sample of B→ D∗−D0X decays. The m(D∗K−3π), q2, 3π decay time and BDT distributions
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Fig. 5.2 Results from the fit to data for candidates containing a D∗−D+
s pair, where D+

s → 3π . The fit

components are described in the legend. The figures correspond to the fit projection on (a) m(D∗−3π),
(b) q2, (c) 3π decay time tτ and (d) BDT output distributions.
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for such events are shown in Fig. 5.3 for real and simulated data. A clear systematic trend in

the m(D∗K3π) and q2 distributions is present. This discrepancy indicates a bad description

of the B→ D∗−D0X dynamics by the Monte Carlo.
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Fig. 5.3 Comparison between data (black points) and the D∗−3πX inclusive Monte Carlo (red) for the

M(D∗K3π) (top left), q2 (top right), 3π decay time (bottom left) and BDT (bottom right) distributions

for the B → D∗−D0X control sample. The combinatorial background, described by the wrong-sign

events from the corresponding stripping line, is shown in green. The discrepancy observed in the q2

distribution is corrected by applying a linear function correction to the D0 component of the Monte

Carlo.

To correct for this discrepancy, the ratio data/MC of the q2 distribution is determined

for events with m(D∗−K−3π)< 4.9GeV/c2, shown in Fig. 5.4. A first order polynomial

is used to fit such ratio and the resulting correction is applied to the D0 component of the

D∗−3πX inclusive Monte Carlo, which is used to create the template used in the fit to extract

the D∗−τ+ντ signal. The difference in the results with and without the correction is treated

as a source of systematic uncertainty. A comparison of the four distributions is done after the

correction. This is shown in Fig. 5.5, where a better agreement between data and MC is seen.
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Fig. 5.4 Ratio data/MC on the q2 distribution for events from the B → D∗−D0X control sample. The

fit to a linear function is shown in red, and it is applied as a correction to the D0 component of the

Monte Carlo.

5.3.2 B → D∗−D+(X) control samples

A pure sample of B→ D∗−D+(X) decays is obtained by inverting the PID requirement on

the negative pion of the 3π system, assigning to this particle the kaon mass and selecting

3π candidates with mass compatible with the known D+ mass. As in the B→ D∗−D0(X)

control sample, disagreement betwen data and simulation is found. The m(D∗−K−π+π+),

q2, 3π decay time and BDT distribution are shown in Fig. 5.6.

The limited size of this sample does not allow the determination of a specific correction.

The same correction found in the B→D∗−D0(X) case is therefore applied, since the dominant

decay B→ D∗−DK is identical for both cases. The distributions after applying the correction

are shown in Fig. 5.7.

The difference between the distribution with and without the correction is accounted for

in the study of the systematic uncertainties.
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Fig. 5.5 Comparison between data (black points) and the D∗−3πX inclusive Monte Carlo (red)

for the M(D∗K3π) (top left), q2 (top right), 3π decay time (bottom left) and BDT (bottom right)

distributions for the B → D∗−D0X control sample after applying the correction on the q2 distribution.

The combinatorial background, described by the wrong-sign events from the corresponding stripping

line, is shown in green.
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Fig. 5.6 Comparison between data (black points) and the D∗−3πX inclusive Monte Carlo (red) for

the M(D∗−K−π+π+) (top left), q2 (top right), 3π decay time (bottom left) and BDT (bottom right)

distributions for the B → D∗−D+X control sample. The combinatorial background, described by the

wrong-sign events from the corresponding stripping line, is shown in green. It is worth to note the

large decay time observed due to the long D+ lifetime.
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Fig. 5.7 Comparison between data (black points) and the D∗−3πX inclusive Monte Carlo (red) for

the M(D∗−K−π+π+) (top left), q2 (top right), 3π decay time (bottom left) and BDT (bottom right)

distributions for the B → D∗−D+X control sample after applying the correction on the q2 distribution.

The combinatorial background, described by the wrong-sign events from the corresponding stripping

line, is shown in green.





Chapter 6

Determination of the signal and

normalization yields

6.1 The fit model

The yield of B0 →D∗−τ+ντ decays is determined from a three-dimensional binned maximum

likelihood fit to the distributions of q2, 3π decay time (tτ ) and BDT output. Signal and

background templates are produced with eight bins in q2, eight bins in tτ , and four bins in

the BDT output, from the corresponding simulation samples. The model used to fit the data

is summarized in Table 6.1 where k = 1+FDs
+FD∗

s0
+FD′

s1
+FB0,+

Ds
+F

B0
s

Ds
. In the table,
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Fit component Normalization

B0 → D∗−τ+(→ 3πντ)ντ Nsig × fτ→3πν

B0 → D∗−τ+(→ 3ππ0ντ)ντ Nsig × (1− fτ→3πν)

B → D∗∗τ+ντ Nsig × fD∗∗τν

B → D∗−D+X fD+ ×NDs

B → D∗−D0X different vertices f
v1v2

D0 ×Nsv
D0

B → D∗−D0X same vertex Nsv
D0

B0 → D∗−D+
s NDs

× fD+
s
/k

B0 → D∗−D∗+
s NDs

×1/k

B0 → D∗−D∗
s0(2317)+ NDs

× fD∗+
s0
/k

B0 → D∗−Ds1(2460)+ NDs
× fD+

s1
/k

B0,+ → D∗∗D+
s X NDs

× fD+
s X/k

B0
s → D∗−D+

s X NDs
× fD+

s X ,s/k

B → D∗−3πX NB→D∗3πX

B1B2 combinatorics NB1B2

Combinatoric D∗− NnotD∗

Table 6.1 Summary of fit components and their corresponding normalization parameters. The first

three components correspond to parameters related to the signal.

• Nsig is a free parameter accounting for the yield of signal candidates.

• fτ→3πν is the fraction of τ+ → 3πντ signal candidates with respect to the sum of the

τ+ → 3πντ and τ+ → 3ππ0ντ components. This parameter is fixed to 0.78, according

to the different branching fractions and efficiencies of the two modes.

• fD∗∗τν , fixed to 0.11, is the ratio of the yield of B → D∗∗τ+ντ decay candidates to the

signal decays. This yield is computed assuming that the ratio of the decay rates lies

between the ratio of available phase space (0.18) and the predictions of Ref.[6] (0.06),

and taking into account the relative efficiencies of the different channels.

• Nsv
D0 is the yield of B → D∗−D0X decays where the three pions originate from the same

vertex (SV) as the the D0 vertex. The D0 → K+π−π+π−(π0) decays are reconstructed

by recovering a charged kaon pointing to the 3π vertex in nonisolated events. The

exclusive D0 → K+π−π+π− peak is used to apply a 5% Gaussian constraint to this

parameter, accounting for the knowledge of the efficiency in finding the additional

kaon.
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• f
v1v2

D0 is the ratio of B → D∗−D0X decays where at least one pion originates from the

D0 vertex and the other pion(s) from a different vertex, normalized to Nsv
D0 . This is the

case when the soft pion from a D∗− decay is reconstructed as it were produced at the

3π vertex.

• fD+ is the ratio of B → D∗−D+X decays with respect to those containing a D+
s meson.

• NDs
is the yield of events involving a D+

s . The parameters fi defined in Sec. 5.2, are

used after correcting for efficiency.

• NB→D∗3πX is the yield of B → D∗−3πX events where the three pions come from the B

vertex. This value is constrained by using the observed ratio between B0 → D∗−3π

exclusive and B → D∗−3πX inclusive decays, corrected for efficiency.

• NB1B2 is the yield of combinatorial background events where the D∗− and the 3π system

come from different B decays. Its yield is fixed by using the yield of wrong-sign events

D∗−π−π+π− in the region m(D∗−π−π+π−)> 5.1 GeV/c2.

• NnotD∗ is the combinatorial background yield with a fake D∗−. Its value is fixed by

using the number of events in the D0 mass sidebands of the D∗− → D0π− decay.

6.2 Fit results

The results of the three-dimensional fit are shown in Table 6.2 and Fig. 6.1.
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Parameter Fit result Constraint

Nsig 1296±86

fτ→3πν 0.78 0.78 (fixed)

fD∗∗τν 0.11 0.11 (fixed)

Nsv
D0 445±22 445±22

f
v1v2

D0 0.41±0.22

NDs
6835±166

fD+ 0.245±0.020

NB→D∗3πX 424±21 443±22

fD+
s

0.494±0.028 0.467±0.032

fD∗+
s0

0+0.010
−0.000 0+0.042

−0.000

fD+
s1

0.384±0.044 0.444±0.064

fD+
s X 0.836±0.077 0.647±0.107

fD+
s X ,s 0.159±0.034 0.138±0.040

NB1B2 197 197 (fixed)

NnotD∗ 243 243 (fixed)

Table 6.2 Fit results for the three-dimensional fit. The constraints on the parameters fD+
s

, fD∗+
s0

, fD+
s1

,

fD+
s X and fD+

s X ,s are applied taking into account their correlations.
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6.2.1 Fit results
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Fig. 6.1 Projections of the three-dimensional fit on the (a) 3π decay time, (b) q2 and (c) BDT output

distributions. The fit components are described in the legend.

A raw yield of 1336 decays translates into a yield of Nsig = 1296±86 B0→ D∗−τ+ντ decays,

after a correction of −3% due to a fit bias is applied, as detailed in Sec. 6.3. Figure 6.2 shows

the results of the fit in bins of the BDT output. The two most discriminant variables of the

BDT response are the variables min[m(π+π−)] and m(D∗−3π).
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Fig. 6.2 Distributions of (left) tτ and (right) q2 in four different BDT bins, with increasing values of

the BDT response from top to bottom. The fit components are described in the legend.

Figure 6.3 shows the fit results projected onto these variables. A good agreement with

data and the post-fit model is found. The fit χ2 is 1.15 per degree of freedom, after taking

into account the statistical fluctuation in the simulation templates, and 1.8 without. The

statistical contribution to the total uncertainty is determined by performing a second fit where

the parameters governing the templates shapes of the double-charmed decays, fD+
s

, fD∗+
s0

,

fD+
s1

, fD+
s X , fD+

s X ,s and f
v1v2

D0 , are fixed to the values obtained in the first fit. The quadratic
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difference between the uncertainties provided by the two fits is taken as systematic uncertainty

due to the knowledge of the B → D∗−D+
s X and B → D∗−D0X decay models, and reported in

Table 7.1.
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Fig. 6.3 Projection of the fit results on (left) min[m(π+π−)] and (right) m(D∗−3π) distributions. The

fit components are described in the legend.

The results from the nominal fit are used to extrapolate the fit components into the low

BDT output. The distributions for min[m(2π)], max[m(2π)], m[D∗3π] and m[3π] are shown

in Fig. 6.4 in which a general good agreement is exhibited.
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Fig. 6.4 Projection of the nominal fit results to the low bdt region in min[m(2π)], max[m(2π)],
m[D∗3π] and m[3π].

6.3 Kernel Density Estimator

Due to the limited size of the simulation samples used to build the templates, the existence

of empty bins in the templates introduces potential biases in the determination of the signal

yield that must be taken into account. To study this effect, a method based on the use of

kernel density estimator (KDE) [59] is used. For each simulated sample, a three-dimensional

template density function is produced. Each KDE is then transformed in a three-dimensional

template, where bins that were previously empty may now be filled. These new templates are

used to build a smoothed fit model. The fit is repeated with different signal yield hypotheses.

The results show that a bias is observed for low values of the generated signal yield that

decreases when the generated signal yield increases, as shown in Fig. 6.5. For the value

found by the nominal fit, a bias of +40 candidates is found, and is used to correct the fit

result.
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Fig. 6.5 Difference between the signal yield from the fits and the generated yield with respect to the

generated value. At the nominal value, the fit bias is +40 events, which must be used to correct the

signal yield obtained in the nominal fit.

6.4 Normalization through the B0→ D∗−3π exclusive peak

Figure 4.5 shows the D∗− 3π mass after the selection of the normalization sample (see

Sec. 4.2). A clean B0 peak is seen. In order to determine the normalization yield, a fit is

performed in the region between 5150 and 5400 MeV/c2. The signal component is described

by the sum of a Gaussian function and a Crystal Ball function [60]. An exponential function

is used to describe the background. The result of the fit is shown in Fig. 6.6. The total

obtained yield is 17808± 143. The fit is also performed with alternative configurations,

namely with different fit range or requiring a common mean value of the signal functions in

the 7 and 8 TeV data samples. The maximum differences between signal yields in alternative

and nominal configurations are 14 and 62 for 2011 and 2012 data samples respectively, and

are used to assign systematic uncertainties to the normalization yields.
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Fig. 6.6 Fit to the m(D∗−3π) distribution after the full selection in the (left)
√

s = 7 TeV and (right) 8

TeV data samples.

Figure 6.7 shows the m(3π) distribution for candidates with D∗− 3π mass between 5200

and 5350 MeV/c2 for the full data sample. The spectrum is dominated by the a1(1260)+

resonance but also a smaller peak due to the D+
s → 3π decay is visible and is subtracted.

A fit with the sum of a Gaussian function modeling the D+
s mass peak, and an exponential

describing the combinatorial background, is performed to estimate this D+
s contribution,

giving 151±22 candidates. As a result, the number of normalization decays in the full data

sample is Nnorm = 17 657±143(stat)±64(syst)±22(sub), where the third uncertainty is

due to the subtraction of the B0 → D∗−D+
s component.
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Fig. 6.7 (left) Distribution of m(3π) after selection, requiring m(D∗−3π) to be between 5200 and

5350MeV/c2; (right) fit in the mass region around the D+
s .
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6.5 Correction factors

Several corrections factors have to be applied in order to get a measurement of K (D∗−).

Three of them are due to the fact that, in the Monte-Carlo simulation used to compute

the respective efficiencies for the signal and the normalization channels, some imperfec-

tions observed in the simulation with respect to the data, namely the efficiency of the L0S

TOS hadron, and the efficiency of the HLT2 trigger, may not cancel exactly in the ratio

between signal and normalization simulations. The fourth one is due to the SPD correction

to the normalization MC efficiency, arising from the fact that data and MC disagree in

the TOS-nonTOS proportions on the B0 peak used for normalization, which is due to an

underestimation of the SPD multiplicity in MC, multiplicty which is driving the efficiency of

the TIS (ie non TOS) triggers. Finally, we have to take into account the small feed-down from

B0
s →D∗τνK0 events due to the B0

s → D+
s
∗∗

τν channel wher the D+
s
∗∗

decays to D∗K0. We

did not include this feed-down in the D∗∗ fraction used in the global fit below in order to keep

the D∗∗ contribution from B0 and B+ identical to what is observed in B-factories, where no

B0
s contribution is present. The PID correction factor is equal to 1. since the PID efficiencies

are taken directly from the data, with the PIDCAlib system. The first two other corrections

factors, the L0hadron correction and the HLT2 correction, are described in Sec. 3.3 and 3.4

respectively. The initial size of the data/MC correction ranges from 10% to 25% but the

residual size is in the ratio much smaller in all cases. The correction factors multiplying the

number of expected events are:

• L0 hadron correction is 0.995±0.01

• the HLT2 correction factor is 1.00±0.005

• the SPD correction is 1/(0.97±0.01)

• feed-down from B0
s 1.03±0.015

Overall, the global correction factor to the number of expected events is 1.056±0.025.

6.6 Determination of K (D∗−)

The result

K (D∗−) = 1.97±0.13(stat)±0.18(syst),

is obtained using Eq. 2. The ratio of efficiencies between the signal and normalization

modes, shown in Table 4.2, differs from unity due to the softer momentum spectrum of the
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signal particles and the correspondingly lower trigger efficiency. The effective sum of the

branching fractions for the τ+→ 3πντ and τ+→ 3ππ0ντ decays is 13.81%±0.076% [20].

This includes the 3π mode (without K0), a very small feeddown from τ five-prong decays, the

3ππ0 mode(without K0), and only 50% of the 3ππ0π0 mode due to the smaller efficiency of

this decay mode. This latter contribution results in a 1% correction (see Sec. 7.1). The event

multiplicity, measured by the scintillating-pad detector, affects the efficiency for the fraction

of the data sample which is triggered at the hardware trigger level by particles in the event

other than those from the D∗−τ+ντ candidate. An imperfect description of this multiplicity

in the simulation does not cancel completely in K (D∗−). The correction factor also includes

a small feeddown contribution from B0
s → D∗∗−

s τ+ντ decays, where D∗∗−
s → D∗−K0, that is

taken into account according to simulation.

As a further check of the analysis, measurements of K (D∗−) are performed in mutually

exclusive subsamples, obtained by requiring different trigger conditions and center-of-mass

energies. All of these results are found to be compatible with the result obtained with the full

sample.



Chapter 7

Systematic uncertainties

The systematic uncertainties on K (D∗) are divided in four categories, related to: the

knowledge of the signal model, including τ decay models; the modeling of the various

background sources; possible biases in the fit procedure due to the limited size of the

simulated samples; trigger selection efficiencies, external inputs, and particle identification

efficiency.

7.1 Signal model uncertainties

7.1.1 τ branching fractions

An uncertainty of 0.01 is assigned to the knowledge of the ratio B(τ+ → 3ππ0ντ)/B(τ+ →
3π(π0)ντ), taking into account the relative efficiencies. A fit is performed with this fraction

gaussianly constrained to 0.78±0.01. A second fit is done fixing the fraction to the value

found by the first fit. The squared difference between the uncertainties of the two fits is taken

as the systematic uncertainty due to the signal composition, resulting in a 0.7% systematic

uncertainty.

7.1.2 Form factors

To estimate the systematic uncertainty due to the knowledge of the B0 → D∗− form factors, a

study based on simulated pseudoexperiments is performed. A total of 100 fits to generated

samples is done varying the values of the parameters R1(1), R2(1), ρ2 [6] which represent

the fraction of each spin-configuration in the form factor templates. The parameters are

gaussianly varied using their uncertainties and correlations. The parameter R0(1) = 1.14±
0.11 is varied assuming it is not correlated with the other parameters. A systematic uncertainty
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of 0.7% on the signal yield is obtained by taking the standard deviation of the distribution of

the fitted signal yields.

7.1.3 τ polarization

The effect of the τ polarization is studied separately for τ+ → 3πντ and τ+ → 3ππ0ντ .Due

to the a1(1260) dominance observed in the channel τ+ → 3πντ , the sensitivity to the

polarization is negligible, therefore no systematic uncertainty is assigned to this effect in this

channel. For the τ+ → 3ππ0ντ decay mode, the signal is simulated in two configurations:

using either the Tauola model or a pure phase space model. The effect of the τ polarization

is evaluated by multiplying the efficiency by the ratio of the distributions generated with the

two configurations. This produces a change in the efficiency of 1.5%. This value, scaled

by the relative fraction of the τ+ → 3ππ0ντ component with respect to the total, gives a

systematic uncertainty of 0.4%.

7.1.4 Other τ decays

Other τ decays could contribute to the signal yield. They are either decays with three charged

tracks in the final states (Kππ , KKπ , ππππ0π0) or 5 charged tracks, all of them having very

small branching fractions compared to the τ+ → 3π(π0)ντ mode. The study of a dedicated

simulation sample with inclusive τ decays indicates an effect of 1% due to other decays

which do not correspond to the τ decay channels used in this analysis. This is assigned as a

systematic uncertainty.

7.1.5 B → D∗∗τντ and Bs → D∗∗
s τντ

The B → D∗∗τντ fraction used for the nominal fit, 0.11, is assigned a 40% uncertainty, based

on the results of an auxiliary study of B−→ D1(2420)0τ+ντ decays, where D1(2420)0 →
D∗−π+. This results in a systematic uncertainty on the signal yield of 2.3%. An additional

systematic uncertainty of 1.5% due to the B0
s → D∗∗

s τ+ντ decays contribution is assigned,

under the assumption that the yield of these decays in the simulation has an uncertainty of

50%, determined to be the upper limit from a study performed on simulated data.

7.2 Background-related systematic uncertainties

This section lists the systematic uncertainties due to the modelling of different background

sources, such as the D+
s decay model, double-charm and combinatorial contributions.
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7.2.1 D+
s decay model

Candidates in the low BDT output region are used to correct the composition of D+
s decays

in simulation. From the fit to this data sample corrections are obtained, which are used to

generate 1000 alternative D+
s templates for each D+

s component in the nominal 3D fit. Each

alternative template is produced by gaussianly varying the nominal template accounting

for the uncertainty and correlations between the D+
s sub-components. These alternative

templates are employed to re-fit the data and to estimate the systematic uncertainty. The

difference between the signal yield of the alternative and the nominal fits, divided by the

yield of the nominal fit, is fitted with a Gaussian function in order to obtain the systematic

uncertainty which is found to be 2.5%.

7.2.2 Double-charm decay model

The kinematic variables expected to be significantly correlated with the fit variables are:

m(D∗3π), m(3π), min[m(π+π−)], max[m(π+π−)] and m(π+π+) invariant masses. The

corresponding effect on the fit result of these variables is empirically studied by varying

the distributions using a quadratic interpolation method: for each template, two alternative

templates are produced, with a variation of ±1σ . with respect to the nominal template. Then,

the fit enables the interpolation between the nominal and the alternative templates to be made

with a linear weight. Each nuisance parameter is allowed to float in the range [−1,+1] and a

loose Gaussian constraint with σ = 1 is included. This method is used to compute systematic

uncertainties due to the knowledge of the templates shape. The corresponding systematic

uncertainty is of 2.9%. A systematic uncertainty of 2.6% is due to the composition of the

B → D∗−D+
s X and B → D∗−D0X decays, as mentioned in Sec. 6.1.

7.2.3 Prompt background

The systematic uncertainty due to the knowledge of the shape of the residual prompt back-

ground component is estimated by applying the interpolation technique described previously

to the corresponding template. When combined with the knowledge of the normalization of

this background, this gives an overall uncertainty of 2.5%.

7.2.4 Combinatorial background

The interpolation technique used to compute the systematic uncertainties relative to the

double-charm decay model and the prompt background is also employed to assess the

systematic uncertainty due to the shape of the combinatorial background. The result in the
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change of the signal yield provides a systematic uncertainty of 0.7%. Another systematic

uncertainty is due to the normalization of this background. This uncertainty is computed by

performing the fit with a 30% Gaussian constraint around the nominal value. The resulting

difference with the nominal fit is 0.1% and it is assigned as systematic uncertainty.

7.3 Fit-related systematic uncertainties

This section lists the systematic uncertainties related to a possible bias in the fit procedure

and the size of the simulation samples.

7.3.1 Fit bias

The study performed using kernel density estimation method has been repeated using different

smoothing parameters. A difference in the signal yield of 1.3% is assigned as systematic

uncertainty due to the fit bias.

7.3.2 Systematic due to the size of the simulation samples

In order to estimate the systematic uncertainty due the limited size of the simulation samples,

a boostrap method is used. Each template from the nominal model is used to produce new

templates sampled from the originals by using a bootstrap procedure [61] (random selection

with replacement), varied bin-by-bin according to a Poisson distribution. This procedure is

repeated 500 times. A Gaussian fit to the distributions of signal yields provides a 4.1% effect

taken as the systematic uncertainty due to the template statistics.

7.4 Uncertainties related to the selection

In this section systematic uncertainties related to the selection criteria are listed. Such

uncertainties derive from the choice of the trigger strategy, to the online and offline selection

of the candidates, to the normalization and external inputs, and to the efficiency of the particle

identification criteria.

7.4.1 Trigger efficiency

The trigger efficiency is studied as a function of the two most important variables in this

analysis that are τ3π and m(D∗3π) , the latter being highly correlated with q2. Corrections

on the τ3π and m(D∗3π) distributions due to different trigger efficiency between data and
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simulation are applied. This gives a change on the number of signal candidates of 1.0%

for the τ3π and 0.7% for the m(D∗3π) corrections. The sum in quadrature of these two

contributions is taken as systematic uncertainty related to the trigger efficiency. An additional

1% systematic uncertainty arises from a mismatch between data and simulation in the

distribution of the detector occupancy of the event.

7.4.2 Online and offline selection

The relative efficiency between the signal and the normalization channels is precisely mea-

sured on simulation. Discrepancies between data and simulation, due to offline selection

criteria, introduce a 2% of systematic uncertainty. A 1% systematic uncertainty is assigned

on the charged isolation criterium, due to differences observed between the B0 → D∗−τντ

and the B0 → D∗−3π simulations.

All selection cuts, except the detached vertex topology requirement, are common to the

signal and normalization channels. Their efficiency are therefore directly determined on data

using the B0 → D∗3π mass peak and no systematics uncertainty is assigned. To compute the

systematic uncertainty attributed to the knowledge of the relative efficiences corresponding

to the different signal and normalisation vertex topologies, the vertex error distribution is

splitted in three regions: between −4 and −2σ , between −2 and 2σ and between 2 and

4σ . Then a ratio between the number of candidates in the outer regions and the number of

candidates in the inner region is computed for the candidates which have m(D∗3π) in the

exclusive B0 → D∗−3π peak. The same is done for the candidates outside the B0 → D∗−3π

peak, which are assumed to have a signal-like behavior. The procedure is repeated for data,

and the ratio between data and simulation provides a 2% systematic uncertainty.

7.4.3 Normalization and external inputs

The normalization channel consists of exactly the same final state and is treated exactly as the

signal for trigger, selection, particle identification, charged and neutral isolation, and vertex

requirements. This allows to limit differences between data and simulation. The systematic

uncertainty on the normalization yield, determined using different fit configuration, is equal

to 1%. The statistical error attached to the normalization yield is included in the statistical

uncertainty.
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7.4.4 Particle identification

Simulation is corrected in order to match the performance of particle identification criteria

measured in data. Correction factors are applied in bins of momentum, pseudorapidity

and global event multiplicity. To assess the systematic uncertainty due to the choice of

binning scheme used to correct simulation, two new schemes are derived from the default

one with half and twice the number of bins, the default configuration consisting of six bins in

momentum, six in pseudorapidity and three in the global event multipliciy. The correction

procedure is repeated with these two alternate schemes, leading to a systematic uncertainty

due to particle identification of 1.3%.

7.5 Summary of systematic uncertainties

The precise knowledge of the branching fraction for the normalization channel B0 → D∗−3π

is crucial for the measurement of R(D∗). From the weighted average of the measurements by

the LHCb [62], BABAR [63],and BELLE [64] collaborations, the B(B0 → D∗−π+π−π+)

is known with 7% accuracy [20]. A 2% uncertainty coming from the knowledge of the

B0 → D∗−µ+νµ branching fraction is added in quadrature to obtain a 7.3% total uncertainty

on R(D∗) due to external inputs.

Table 7.1 summarizes the systematic uncertainties on the measurement of the ratio

B(B0 → D∗−τ+ντ)/B(B0 → D∗−3π). The total uncertainty is 9.1%. For R(D∗−), a 7.3%

systematic uncertainty due to the knowledge of the external branching fractions is added.
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Contribution Value in %

B(τ+→ 3πντ)/B(τ+→ 3π(π0)ντ) 0.7
Form factors (template shapes) 0.7
τ polarization effects 0.4
Other τ decays 1.0
B → D∗∗τ+ντ 2.3
B0

s → D∗∗
s τ+ντ feeddown 1.5

D+
s → 3πX decay model 2.5

D+
s , D0 and D+ template shape 2.9

B → D∗−D+
s (X) and B → D∗−D0(X) decay model 2.6

D∗−3πX from B decays 2.8
Combinatorial background (shape + normalization) 0.7
Bias due to empty bins in templates 1.3
Size of simulation samples 4.1
Trigger acceptance 1.2
Trigger efficiency 1.0
Online selection 2.0
Offline selection 2.0
Charged-isolation algorithm 1.0
Normalization channel 1.0
Particle identification 1.3
Signal efficiencies (size of simulation samples) 1.7
Normalization channel efficiency (size of simulation samples) 1.6
Normalization channel efficiency (modeling of B0 → D∗−3π) 2.0
Form factors (efficiency) 1.0
Total uncertainty 9.1

Table 7.1 List of the individual systematic uncertainties for the measurement of the ratio B(B0 →
D∗−τ+ντ)/B(B0 → D∗−3π).





Conclusion

In conclusion, the ratio of branching fractions between the B0 → D∗−τ+ντ and the B0 →
D∗−3π decays is measured to be

K (D∗−) = 1.97±0.13(stat)±0.18(syst),

where the first uncertainty is statistical and the second systematic. Using the branching

fraction B(B0 → D∗−3π) = (7.214±0.28)×10−3 from the weighted average of the mea-

surements by the LHCb [62], BABAR [63], and BELLE [64] collaborations, a value of the

absolute branching fraction of the B0→ D∗−τ+ντ decay is obtained

B(B0 → D∗−τ+ντ) = (1.42±0.09(stat)±0.13(syst)±0.054(ext))×10−2,

where the third uncertainty originates from the limited knowledge of the branching fraction

of the normalization mode. The precision of this measurement is comparable to that of

the current world average of Ref. [20]. The first determination of R(D∗−) performed

by using three-prong τ decays is obtained by using the measured branching fraction of

B(B0 → D∗−µ+νµ) = (4.88±0.10)×10−2 from Ref. [27]. The result

R(D∗−) = 0.291±0.019(stat)±0.026(syst)±0.013(ext)

is one of the most precise single measurements performed so far. It is 1.1 standard devia-

tions higher than the SM prediction (0.252±0.003) of Ref. [6], and consistent with previous

determinations. An average of this measurement with the LHCb result using τ+→ µ+νµντ

decays [25], accounting for small correlations due to form factors, τ polarization and

D∗∗τ+ντ feed-down, gives a value of R(D∗−) = 0.310±0.0155(stat)±0.0219(syst), con-

sistent with the world average and 2.2 standard deviations above the SM prediction. A

summary of the status of the R(D∗−) measurements perfomed by BaBar, Belle and LHCb is

shown in Figure 7.1. Figure 7.2 displays the R(D) vs. R(D∗) measurements and the current

theoretical predictions, indicating a 4.1σ discrepancy between theory and experiment.
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0.1 0.2 0.3 0.4

*)D(R

BaBar hadronic tag
PRD 88 (2013) 072012

 0.018± 0.022 ±0.332 

Belle hadronic tag
PRD 92 (2015) 072014

 0.015± 0.038 ±0.293 

Belle SL tag
PRD 94 (2016) 072007

 0.011± 0.030 ±0.302 

Belle 1-prong
PRL 118 (2017) 211801

 0.027± 0.035 ±0.270 

LHCb muonic
PRL 115 (2015) 111803

 0.030± 0.027 ±0.336 

LHCb 3-prong
LHCb-PAPER-2017-017

 0.029± 0.019 ±0.291 

LHCb average
 0.022± 0.016 ±0.310 

Fajfer et al. (SM)
PRD 85 (2012) 094025

 0.003±0.252 

Fig. 7.1 Status of the measurements of R(D∗) performed by BaBar, Belle and LHCb, including the

results of this analysis, and the SM prediction.

The novel technique presented in this thesis, allowing the reconstruction and selection

of semitauonic decays with τ+ → 3π(π0)ντ transitions, can be applied to all the other

semitauonic decays, such as those of B+, B0
s , B+

c and Λ 0
b . This technique also allows isolation

of large signal samples with high purity, which can be used to measure angular distributions

and other observables proposed in the literature and opens new opportunities in the search of

new physics effects in semileptonic B decays.
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