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Introduction

Optimization algorithms are extensively employed in the resolution of problems that arise in a

wide variety of applied scientific domains.

Many signal reconstruction problems in seismology, biomedicine, acoustics, microscopy and

astronomy can be formulated as inverse problems and tackled by optimizing an appropriate

function dependent on some properties of the unknown signal. In many instances, additional

information can be employed by introducing constraints on the signal to be reconstructed. Most

of the applied inverse problems are large–scale ones and their solution cannot be computed in

a very accurate way by direct methods, thus they are addressed by iterative procedures whose

computing effort is governed by a given tolerance. Some applications, for example in the

biomedical domain, require as a further challenge the determination of solutions in almost real–

time. As a consequence, the definition of numerical optimization methods whose accuracy can

be considered acceptable in a short time has become a crucial issue.

Because of their simple implementation and relatively light computational burden, first–

order methods are often the choice when accuracy requirements on the solution are not severe.

Despite their popularity, one of the major drawback of this class of methods is the slow conver-

gence rate towards the optimal solution; thus, computational techniques able to speed up the

performances of such methods are a stimulating research topic.

Biomedical imaging has received growing attention in the clinical field thanks to the recent

advances in technology and signal processing, so that nowadays it is considered as an own

domain of research.

The development of reconstruction techniques in this field strongly involves mathematical

tools, such as modeling of imaging devices or noise handling procedures. Moreover, the amount

of acquired data is typically large, so that computational load and memory requirements have

to be carefully organized. Furthermore, one of the practical issues in some special biomedical

imaging systems (for example, those related to Computed Tomography) is the limitation on

measurement time, due to the necessity of keeping dose prescriptions low in order to preserve

the wellness of the patient; thus, the reconstruction of high resolution images must deal with

this reduction of the information amount.
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2 Introduction

For all these reasons, first–order numerical methods, based on low storage requirements and

very simple iterations, appear as possible candidates to encounter practical issues arising in this

image reconstruction context.

The research activity presented in this thesis has dealt with the analysis of acceleration tech-

niques for first–order methods in nonlinear constrained optimization and their impact in signal

reconstruction problems arising in some biomedical domains. The work mainly concerned the

study of recent strategies that involve steplengths selection rules and variable metrics induced

by scaling matrices; these techniques make use of tools that are already furnished by the meth-

ods themselves, thus they preserve the agility of the first–order algorithms without increasing

their computational costs. Further work was devoted to the study of regularization methods

for inverse problems, with the aim of extending the aforementioned acceleration techniques to

a wider class of problems.

The thesis is organised in four chapters and could be ideally splitted in two main parts: a first

part where a theoretical framework for first–order optimization methods for inverse problems

is designed and a second one where the algorithms are put into action on applicative problems.

In Chapter 1, we give the generalities of signal restoration problems, providing some details

on the signal formation process and on the noise arising during the data acquisition. Moreover,

we resume the basics of the statistical framework underlying the solution of inverse problems,

focusing particularly on the maximum likelihood approach and on the regularization functionals

which will be employed in the considered biomedical imaging applications.

In Chapter 2, we give a survey of forward–backward methods for constrained optimization

problems, recalling some state–of–the–art algorithm and other methods developed in recent

years. A more accurate analysis is devoted to gradient methods and possible strategies able

to speed up the convergence rate are discussed; in particular, recent techniques based on the

introduction of a variable metric and on the choice of the steplength parameter are detailed for

a classical gradient projection method and for a gradient projection method with extrapolation

step.

In Chapter 3, the first application framework for the methods proposed in Chapter 2 is pre-

sented. The problem concerns the reconstruction of fibre orientation distribution on the cere-

bral white matter from diffusion Magnetic Resonance Imaging data. A recent paper presented

a Spherical Deconvolution–based approach that aims to solve the given problem by means of a

constrained `0 minimization formulation, which envisages to solve a sequence of Least Squares

constrained problems subjected to nonnegativity and sparsity constraints; the variable met-
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ric algorithms described in Chapter 2 (namely the Scaled Gradient Projection (SGP) and the

Scaled Gradient Projection with Extrapolation (Scaled GP_Ex)) are employed to tackle the

described problems and their performances are estimated in comparison with a state–of–the–art

method.

In Chapter 4, several acceleration strategies designed for the SGP algorithm are applied to

a problem of reconstruction of 3D X–ray tomographic images from limited data. The problem

is formulated as the nonnegatively constrained minimization of an objective function expressed

by the sum of a fit–to–data term and a smoothed Total Variation function. The choice of the

data fitting function is strictly related to the noise that affects real Computed Tomography

systems; thus different functionals were considered in order to evaluate the behaviour of the

methods on realistic scenarios. The numerical results obtained on a 3D phantom are presented

and a state–of–the–art method for Computed Tomography problems is considered to perform

comparisons.
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Notations

• R≥0 = {x ∈ R : x ≥ 0} and R>0 = {x ∈ R : x > 0} are the sets of nonnegative and

positive real numbers, respectively.

• R̄ = R ∪ {−∞,+∞} is the extended real numbers set.

• e and 0 denote a vector with all entries equal to 1 and 0, respectively.

• If x,y ∈ R
n, then xTy =

∑n
i=1 xiyi denotes the scalar product.

• If x,y ∈ R
n, then x

y
and x · y denote the component-wise division and product, respec-

tively.

• If x ∈ R
n, x ≥ 0⇔ xi ≥ 0, i = 1, . . . , n. An analogous notation holds for >, ≤, <.

• D ∈ R
m×n denotes a matrix of m rows and n columns.

• In ∈ R
n×n denotes the n× n identity matrix.

• ‖ · ‖ denotes the Euclidean norm: ‖x‖ = ‖x‖2 =
√
xTx.

• ‖ · ‖D denotes the norm induced by a symmetric positive definite matrix D ∈ R
n×n:

‖x‖D =
√
xTDx.

• Given µ ≥ 1, Mµ is the set of all symmetric positive definite matrices with eigenvalues

contained in the interval [ 1µ , µ].

• Given A,B ∈ R
n×n symmetric positive semidefinite matrices, the notation A � B indi-

cates that A−B is positive semidefinite.
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Chapter 1

General techniques for signal and

image reconstruction

Signal reconstruction is a major problem in several domains of applied science, such as, for

instance, seismology, acoustic, astronomy and medical imaging. In many practical cases, it is

expressed as a linear inverse and ill–posed problem; as it is now frequent to process data of the

order of several billions, restoration problems are usually large–scale ones. For all these reasons,

efficient numerical methods need to be applied and, due to the dimension of the unknown signal,

iterative methods represent the most exploited choice, apart from some special instances.

In this chapter we will give a synopsis of literature results concerning imaging restoration

problems, but the ideas and the methods presented can be extended to more general types of

signals. In Section 1.1 we recall the mathematical framework for modelling the reconstruction

problem, followed in Section 1.2 by the description of the statistical approaches that allow to

tackle it. In Section 1.3 we report some regularization approaches devoted to limiting noise

effects on acquired data and in Section 1.4 we list some constraints commonly employed in

reconstruction problems.

1.1 Data restoration

Image reconstruction is a well–known example of ill–posed problem, thus, it requires an accurate

mathematical modeling in order to obtain a proper formulation of the problem. A general

imaging system can be modeled in two parts, as follows:

• a physical apparatus (composed by material components such as sources, mirrors, lenses

etc.), which is capable to convert the radiation (photons, X–rays, microwaves, ultrasounds

etc.) emitted by the object to be imaged into a detectable radiation containing information

about the properties of the object;

9



10 Chapter 1 General techniques for signal and image reconstruction

• a detector which provides measured values of the incoming radiation, thus introducing

sampling and noise.

Image reconstruction techniques are based on an image formation model, which describes the

propagation of the radiation used in the imaging process. The optical image formation is

frequently modelled by the following continuous linear model [10]

ȳ(s) =

∫
H(s, s′)x(s′)ds′ (1.1)

where x(s) denotes a function of the space variables describing the unknown object, ȳ(s) repre-

sents the acquired noise–free image and H(s, s′) is the Point Spread Function (PSF). The term

comes from the assumption that H(·, s′) is the image of a point source located at the point s′.

In fact, if δ(·) indicates the Delta distribution and the object is given by u(s′′) = δ(s′′ − s′),
then from (1.1) one can obtain ȳ(s) = H(s, s′). The effect of the PSF is called blurring and ȳ

is the blurred image.

In many acquisition systems, the PSF is assumed to be space–invariant, i.e. invariant with

respect to translations; in this case, the function H(s, s′) depends only on the difference s− s′
and model (1.1) reduces to

ȳ(s) =

∫
H(s− s′)x(s′)ds′ = (H⊗ x) (s) (1.2)

where ⊗ denotes the convolution product.

Moreover, a discrete version of model (1.2) is required when images are treated as digital

signals. In this case, the unknown object and the PSF will be two vectors x,h ∈ R
n, and the

convolution product can be seen as the matrix–vector product Hx, where H ∈ R
m×n is the

convolution matrix obtained by imposing some specific boundary conditions on the discretised

PSF h [66]. Finally, if we take into account the presence of noise due to recording process and

we consider a nonnegative constant background term b into the model, we can write

y = Hx+ be+ v (1.3)

where y ∈ R
m is the blurred and noisy image and v ∈ R

m represents the additive noise

contribution.

The following standard assumptions can be made on the convolution matrix H:

Hi,j ≥ 0, ∀ i, j, HTe = e, He > 0.

In other words, we assume that each row or column contains at least one nonzero component.

Furthermore, if periodic boundary conditions are employed in model (1.3), i.e. if the two–

dimensional PSF h = {hi,j}j=1,...,n
i=1,...,m is such that

hm+1,j = h1,j , hi,m+1 = hi,1, ∀ i, j



Data restoration 11

then H is block circulant with circulant blocks and the matrix–vector products Hx and HTx

can be efficiently computed by making use of the Discrete Fourier Transform (DFT) and its

inverse (IDFT) [10, 66]. In fact, from the convolution theorem, we have

Hx = IDFT (DFT(h) ·DFT(x))

HTx = IDFT
(
DFT(h) ·DFT(x)

)
,

where α denotes the complex conjugate of α ∈ C. The above matrix–vector products may be

performed with a O(mn log(mn)) complexity by means of the Fast Fourier Transform (FFT)

algorithm implementation [66, 115]. This efficient computation is guaranteed also with other

boundary conditions, such as zero or reflexive conditions, which involve the use of other dis-

crete transforms apart from the DFT [66]. For these reasons, gradient–based reconstruction

algorithms are computationally sustainable, as gradient evaluations typically require matrix–

vector products.

The noise vector v in model (1.3) can be seen as a realisation of a random variable and,

as a consequence, each pixel yi of the acquired image can be seen as a realisation of a random

variable Yi. If we set Y = (Y1, . . . , Ym), the modelling of the system is then related to the

probability density of the multivariate random variable Y . This density depends on the object

x and therefore we will denote it as pY (y;x). The following statements are typically assumed

on Yi and Y [10, 11]:

• the random variables Yi are statistically independent, as follows

pY (y;x) =
m∏

i=1

pYi
(yi;x);

• the expected value of Yi is given by the i–th pixel of the noise–free image, hence

E(Y ) =

∫
y pY (y;x) dy = Hx+ be.

In the following we report two common examples of noise modelling.

Example 1.1 (White Gaussian noise). In this first Example the random variable Y is given

by

Y = Hx+ be+ v

assuming that each component vi of the noise vector v is a realisation of a random variable

with Gaussian distribution of zero mean and standard deviation σ > 0. In this case, the vector

v is a realisation of the multivariate random variable V , whose probability density is

pV (v) =
1

(2πσ2)m/2
exp

(
− 1

2σ2
‖v‖2

)
.
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Therefore the statistical model for the detected image is

pY (y;x) =
1

(2πσ2)m/2
exp

(
− 1

2σ2
‖y − (Hx+ be)‖2

)
.

Example 1.2 (Poisson noise). This Example can describe the noise affecting counting processes,

so that sometimes it is also called photon noise. Each Yi is a Poisson random variable with

expected value given by (Hx+ be)i

Yi ∼ Poisson{(Hx+ be)i)}

As the random variables Yi are statistically independent, in this case the probability density is

a distribution with support the set of nonnegative integers, as each yi is a nonnegative integer.

We have

pY (y;x) =
m∏

i=1

e−(Hx+be)i(Hx+ be)yii
yi!

.

In conclusion, we have a complete model of the process of data formation and acquisition

when we know the imaging matrix H, the background b and the probability density pY (y;x).

1.2 Statistical formulation of image reconstruction problems

Image restoration is an example of inverse problem [10, 63]: if we assume to have a complete

model in the sense previously specified and a detected image y (i.e. a realisation of the random

variable Y ), the image reconstruction problem is to recover an estimate of the unknown object

x̄ corresponding to the image y. A naive approach for this problem is to compute

x = H−1(y − be)

as the solution of the linear system Hx = y− be. Nevertheless, this approach is not applicable

when the matrix H is not invertible, i.e. when the problem is ill–posed, or when H has a

high condition number, i.e. when the problem is ill–conditioned. Cases are known which

employ the direct inversion of the linear model (1.3), for example by means of the filtered back–

projection algorithm in Computed Tomography, but they are rare exceptions. As informations

on statistical properties of the data are available, statistical approaches for this problem arise

quite naturally.

1.2.1 Maximum likelihood approach

The first assumption is on the knowledge of the probability density pY (y;x), thus it is natural

to look for statistical formulations of the image restoration problem. The standard approach is

the so–called maximum likelihood (ML) estimation [103], in which an estimate of the unknown
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object x is any x∗ that maximizes the probability density of y, denominated the likelihood

function of the problem:

x∗ = argmax
x∈Rn

pY (y;x).

Equivalenty, one can minimize the negative logarithm of the probability density. Therefore, the

ML problem may be reformulated in the following alternative way:

x∗ = argmin
x∈Rn

f0(x;y) ≡ −A ln(p(y;x)) +B (1.4)

where A and B are suitable real constants. The function f0 is referred to as the fit–to–data

term, since it measures the distance between the observed data and the one predicted by the

linear model.

Different noise models lead to different fit–to–data functionals f0; we reconsider now the two

examples introduced in the previous section.

Example 1.3 (Gaussian noise). If we set set A = σ2 and B = A/(2πσ2)m/2, we have that

f0(x;y) =
1

2
‖Hx+ be− y‖2 (1.5)

so that the ML approach leads to the classical Least Squares (LS) minimization problem. The

functional in (1.5) is convex and is strictly convex if and only if the equation Hx = 0 has only

the solution x = 0. Furthermore, it has always a global minima, i.e. the LS problem has always

a solution; nevertheless, in the case of image reconstruction the problem is ill–conditioned, since

it is equivalent to the solution of the Euler equation

HTHx = HT (y − x) (1.6)

where the condition number of the matrix H can be very large. In fact, as the matrix H

comes from the discretization of an integral operator, the continuous version of this problem is

ill–posed, which is a starting point of the Tikhonov regularization theory [50, 112].

Example 1.4 (Poisson noise). If we introduce the Kullback–Leibler (KL) divergence of a vector

y from a vector x, defined by

KL(x;y) =

m∑

i=1

(
xi ln

(
xi
yi

)
+ yi − xi

)

we can use Stirling’s formula ln(n!) ≈ n ln(n) − n to obtain the following expression for the

functional f0(x;y)

f0(x;y) = KL(y;Hx+ be) (1.7)

=

m∑

i=1

(
yi ln

(
yi

(Hx+ be)i

)
+ (Hx+ be)i − yi

)
.
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In this case, the domain of f0 is the nonnegative orthant; moreover, the function is convex and

strictly convex if the equation Hx = 0 has only the solution x = 0 [103], it is nonnegative

and locally bounded: thus, it has global minima. Accurate analysis of the properties of this

functional can be found in [85, 86]; in particular, an example can be found in [85] where the

functional doesn’t have a minimum in the classical sense, hence proving the ill–posedness of this

minimization problem. Thus, noise is expected to strongly affect the minima of the discrete

problem; this is typically confirmed by the effect of the noise which is known as checkerboard

effect, related to the fact that many components of the minima are zero.

It is worth noticing that, for the considered types of noise, problem (1.4) is still affected

by the possible ill–conditioning of the matrix H [10] or by ill–posedness. This means that

one should not aim at computing the minimum points of the functional f0, since they do not

provide sensible estimates of the unknown object. In this sense, very efficient methods, such

as second–order methods, pointing directly to the minima, can be risky. On the other hand,

acceptable (regularized) solutions can be provided by first–order methods with early stopping.

1.2.2 Maximum A Posteriori approach

A comprehensive statistical framework is provided by the Bayesian approach [58], in which the

unknown object x is also assumed to be a realisation of a multivariate random variable X.

The probability density of X is the so–called prior, which will be denoted by pX(x). If the

marginal probability pY (y) is introduced, the Bayes theorem allows to compute the conditional

probability of X with respect to the given value y of Y :

pX(x|y) = pY (y|x)pX(x)

pY (y)
.

Thus, some properties of the object (such as smoothness, sharp edges etc.) can be incorporated

in the a priori probability pX(x). The most frequently used priors are the Gibbs–type ones:

pX(x) = c exp (−λf1(x))

where c ∈ R, λ ∈ R>0, and f1 is a functional which is usually convex.

Then, a maximum a posteriori (MAP) estimate of the unknown object is any x∗ that

maximizes the a posteriori probability pX(x|y):

x∗ = argmax
x∈Rn

pX(x|y).

If we assuming that pX(x) is a Gibbs prior, by consider the equivalent formulation of pX(x|y)
with the negative logarithm, we have:

x∗ = argmin
x∈Rn

− ln pX(x|y) = argmin
x∈Rn

(− ln(pY (y|x))− ln(pX(x)) + ln(pY (y)))

= argmin
x∈Rn

f(x;y) ≡ f0(x;y) + λf1(x)
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The function f1 is called regularization functional, which has the role of imposing some properties

on the seeked solution; the constant λ is the regularization parameter, which balances the trade–

off between f0 and f1. It is worth noting that the quality of the reconstructions obtained via a

MAP approach hugely depends on the choice of the regularization parameter λ. In the classical

regularization theory, a wide literature exists on the problem of the optimal choice for the

regularization parameter [50].

1.3 Regularization functionals

In this section we recall some of the most classical regularizers used in image deblurring

and denoising. In the following, the symbol ∇ denotes the discrete gradient operator, i.e.

∇ = (∇T
1 , . . . ,∇T

n )
T where ∇i ∈ R

2×n operates the forward finite differences at the i–th pixel

of the image:

∇ix =

(
xi+1 − xi
xi+m − xi

)

where x ∈ R
n represents a vectorized 2D image with n = m2. A similar definition is given for

the Laplacian operator ∇2.

Tikhonov regularization

Given a linear operator A ∈ R
n×n, the choice

f1(x) =
1

2
‖Ax‖2

is known as Tikhonov regularization [110, 111, 112], whose starting point is the Euler equation

(1.6), rising from the Least Squares formulation. The aim of this kind of regularization is to

emphasize the features of smooth objects. According to the choice of A, we distinguish between

different kind of Tikhonov regularizers:

• A = I (zero–order);

• A = ∇ (first–order);

• A = ∇2 (second–order).

All these functionals are continuously differentiable and convex.

Edge–preserving regularization

In contrast with the Tikhonov regularizers, the Total Variation (TV) functional [102] preserves

discontinuities and edges in the image. The discrete version of Total Variation can be written
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as

TV (x) =
n∑

i=1

‖∇ix‖,

where ∇i is the discretization of the gradient operator at the i–th pixel. Using the notation

introduced in [115], the TV functional can be expressed also as

TV (x) =

n∑

i=1

ψ
(
(xi+1 − xi)2 + (xi+m − xi)2

)
.

with ψ(t) =
√
t. The functional TV (x) is convex; however, it is nondifferentiable at any point

x such that ∇ix = 0 for some i ∈ {1, . . . , n}. Then, in order to remove the singularity of ψ at

the origin and recover differentiability, one can introduce a generalization ψδ for the function

ψ by means of positive threshold δ ∈ R>0. Some common choices for ψδ can be found in [115],

assuming that ψ
′

(t) > 0 for t ≥ 0:

ψδ(t) =
√
t+ δ2 (1.8)

ψδ(t) =





t
δ if t ≤ δ2

2
√
t− δ otherwise

(1.9)

The classical TV can be recovered by choosing δ = 0 in (1.8); formulation (1.8) is also known

as the Hypersurface Potential (HS) functional [115, 29]:

HS(x) =
n∑

i=1

ψδ

(
(xi+1 − xi)2 + (xi+m − xi)2

)
=

n∑

i=1

√
‖∇ix‖2 + δ2.

where δ is considered as a thresholding parameter which tunes the value of the gradient above

which a discontinuity is detected.

1.4 Constraints

In the framework of inverse problems theory it is generally accepted that, if no additional

information on the object is employed, the resulting problem is ill–posed. Indeed, this is the

case for the ML approach, because only information about the noise is used, with possibly the

addition of nonnegativity constraints. In some applications, a priori information can be inferred

from the physics underlying the acquisition process. Additional information of this kind may

be employed by restricting the search of the object x onto a convex set Ω ⊂ R
n:

x∗ = argmin
x∈Ω

f0(x;y) + f1(x).

Among the most typical examples of constraint sets, we recall:
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• the nonnegative orthant: Ω = R
n
≥0, used to impose the nonnegativity on the image pixels;

• conservation of the flux: Ω = {x ∈ R
n :

∑n
i=1 xi = c};

• box constraint: Ω = {x ∈ R
n : ai ≤ xi ≤ bi, i = 1, . . . , n}, when some physical bounds

a, b ∈ R
n are imposed on the object;

• box + linear inequality constraint: Ω = {x ∈ R
n : ai ≤ xi ≤ bi, i = 1, . . . , n,

∑n
i=1 xi ≤ c} .





Chapter 2

Forward–backward methods for

constrained optimization

In the framework of this thesis we are interested in solving constrained optimization problems

of the form

min
x∈Ω

f(x) (2.1)

where Ω ⊂ R
n is a nonempty, closed and convex set and f : Ω → R is a continuously differen-

tiable function over Ω. When Ω = R
n and therefore no restrictions on the unknown variable x

are imposed, one speaks of unconstrained optimization, otherwise of constrained optimization.

The differentiable constrained problem (2.1) can be seen as a particular case of the more

general problem

min
x∈Rn

f(x) ≡ f0(x) + f1(x) (2.2)

where we keep the following hypotheses on the considered functions:

• f1 : Rn −→ R̄ is an extended value function which is proper, convex and lower semicon-

tinuous;

• f0 : Rn −→ R is a continuously differentiable function on an open set Ω0 ⊇ dom(f1).

Formulation (2.2) corresponds to the differentiable constrained problem (2.1) when the term f1

is chosen as the indicator function of the non empty, closed and convex set Ω ⊂ R
n, i.e.

f1(x) = ιΩ(x) =




0, if x ∈ Ω

+∞, if x /∈ Ω.

The chapter starts in Section 2.1 and Section 2.2 with an overview of forward–backward methods

with the aim to describe possible tools to tackle problems of type (2.1) and (2.2), followed

in Section 2.3 by the illustration of possible acceleration techniques for the aforementioned

19
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methods. Finally, two particular variable metric first–order methods involved in subsequent

applications are described in Section 2.4, along with their convergence results.

2.1 Mathematical tools

In this section we recall some definitions and properties of convex and variational analysis that

constitute the theoretical background of successive topics. More extensive and detailed studies

can be found in [98, 99, 118].

Definition 2.1. The domain of a function f : Rn −→ R̄ is the set dom(f) given by

dom(f) := {x ∈ R
n : f(x) < +∞}.

Definition 2.2. A function f : Rn → R̄ is said to be proper if there exists x̄ ∈ R
n such that

f(x̄) < +∞ and f(x) > −∞ for all x ∈ R
n, namely if dom(f) 6= ∅ and f is finite on dom(f).

Definition 2.3. [99, Definition 1.5] A function f : Rn → R̄ is lower semicontinuous at x if

f(x) = lim inf
y→x

f(y) = sup
δ>0

(
inf

y∈B(x,δ)
f(y)

)
. (2.3)

Similarly, f is upper semicontinuous at x if

f(x) = lim sup
y→x

f(x) = inf
δ>0

(
sup

y∈B(x,δ)
f(y)

)
. (2.4)

Therefore, the function f is continuous at x if and only if f is both lower and upper semicon-

tinuous at x.

Definition 2.4. Let D be a symmetric positive definite n× n matrix and Ω ⊂ R
n a nonempty,

closed and convex set. The projection operator PΩ,D : Rn → Ω is defined as

PΩ,D(x) = argmin
y∈Ω
‖y − x‖D = argmin

y∈Ω

(
φ(y) ≡ 1

2
yTDy − yTDx

)
. (2.5)

The next definition concerns the notion of proximal (or proximity) operator that was first

introduced by Moreau in [83]. Here we give its most general definition with respect to a

symmetric positive definite matrix.

Definition 2.5. [55, §2.3] The proximity operator associated to a function f : Rn → R̄ in the

metric induced by a symmetric positive definite matrix D is defined as

proxDf (x) = arg min
z∈Rn

f(z) +
1

2
‖z − x‖2D, ∀x ∈ R

n. (2.6)
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Remark 2.1. If the matrix D = In, we denote proxInf = proxf .

The operator proxDf : Rn
⇒ R

n is a multi–valued map, and for some point x one could

have proxDf (x) = ∅. Nevertheless, existence and uniqueness of the proximal point is ensured by

convexity and lower semicontinuity assumptions.

Proposition 2.1. If f : Rn → R̄ is proper, convex and lower semicontinuous, then proxDf (x)

exists and is unique for all x ∈ R
n.

Proof. The function ϕ(z) = f(z) + 1
2‖z − x‖2D is strictly convex and, thus, it admits at most

one minimum point. Furthermore, since ϕ is also strongly convex, it is coercive and therefore

the minimum point exists and is unique.

Example 2.1. The proximal operator of the indicator function ιΩ with Ω ⊆ R
n non empty,

closed and convex set, coincides with the projection operator (2.5):

proxDιΩ(x) = PΩ,D(x) = argmin
z∈Ω

‖z − x‖2D.

Proximity operators are therefore a generalization of projection operators.

2.2 Forward–backward methods

Forward–backward (FB) algorithms [6, 7, 32, 33] are extensively employed in order to find

solutions for problems of type (2.2). The general iteration of these schemes is the following:

x(k+1) = x(k) + λk

(
proxαkf1

(x(k) − αk∇f0(x(k)))− x(k)
)
, k = 0, 1, 2, . . . (2.7)

where αk ∈ R>0 is a scalar steplength parameter and λk ∈ R≥0 is the so–called relaxation (or

linesearch) parameter. At each iteration, the FB method alternates a forward gradient step on

the differentiable part f0, followed by a backward proximal step on the convex term f1. Some

widespread instances of (2.7) are the following ones:

• the proximal point algorithm [100] for minimizing a nondifferentiable function f1, when

f0 ≡ 0 and λk ≡ 1:

x(k+1) = proxαkf1
(x(k));

• the steepest descent method, when f1 ≡ 0 and λk ≡ 1;

• the gradient projection method, when f1 = ιΩ.

Each iteration (2.7) of a FB method requires the solution of the convex subproblem linked to

the evaluation of the proximal operator at the gradient point. Thus, when employing forward–

backward schemes to problem (2.2) we need to solve a sequence of convex subproblems whose
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solution needs to be expressed in closed–form or, at least, within a certain accuracy, so that the

method can be effective. In the following, the proximal operator will be always assumed to be

known in its exact form.

The following property is crucial for convergence analysis of forward–backward methods and

it will be assumed from now on.

Assumption 2.1. The function ∇f0 : Rn → R
n is L–Lipschitz continuous with L ∈ R>0, i.e.

‖∇f0(x)−∇f0(y)‖ ≤ L‖x− y‖, ∀x,y ∈ R
n. (2.8)

We now start with an overview of forward–backward methods, traditionally classified by

two possible choice of linesearches, a first one in which the linesearch is performed along the arc

and a second one which performs the linesearch along the feasible direction.

2.2.1 Linesearch: along the arc approach

The along the arc approach is obtained by setting λk ≡ 1 in (2.7):

x(k+1) = proxαkf1

(
x(k) − αk∇f0(x(k))

)
. (2.9)

The FB iteration (2.9) can be interpreted as the minimization of a suitable local approxi-

mation of the objective function. In fact, we have

x(k+1) = proxαkf1

(
x(k) − αk∇f0(x(k))

)

= argmin
x∈Rn

1

2αk
‖x− (x(k) − αk∇f0(x(k)))‖2 + f1(x)

= argmin
x∈Rn

f0(x
(k)) +∇f0(x(k))T (x− x(k)) +

1

2αk
‖x− x(k)‖2

︸ ︷︷ ︸
:=qαk

(x)

+f1(x) (2.10)

= argmin
x∈Rn

hαk
(x).

Hence, at each iteration, the function f0 is being replaced by the local quadratic approximation

qαk
, i.e. the linearized part of f0 regularized by a quadratic proximal term, which measures the

local error in the approximation.

Two important instances of the along the arc approach are illustrated by Beck and Teboulle in

[6, 7]. As explained by the authors in [7, Section 1.4.2–1.4.3], when the function f0 is convex,

the convergence analysis of the along the arc scheme (2.9) is strictly related to the property

stated below:

f0(x
(k+1)) ≤ hαk

(x(k+1)), ∀ k ∈ N. (2.11)

According to (2.11), the steplength αk need to be chosen in a way that the approximated function

f0 at the proximal point x(k+1) is majorized by the local approximation hαk
; the Descent Lemma
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stated below shows a relation between the steplength αk to the Lipschitz constant L of ∇f0
which will suggest possible choices for the steplength αk.

Lemma 2.1 (Descent lemma). Let f0 : Rn −→ R be a continuously differentiable function

satisfying Assumption 2.1. Then

f0(y) ≤ f0(x) +∇f0(x)T (y − x) +
L

2
‖x− y‖2, ∀ x,y ∈ R

n.

Proof. Let h : R→ R be such that h(t) = f0
(
x+ t(y−x)

)
, for all t ∈ R. The chain rule yields

dh(t)

dt
= ∇f0

(
x+ t(y − x)

)T
(y − x). Moreover, we have

f0(y)− f0(x) = h(1)− h(0) =
∫ 1

0

dh(t)

dt
dt =

∫ 1

0
(y − x)T∇f0

(
x+ t(y − x)

)
dt

≤
∫ 1

0
(y − x)T∇f0

(
x) dt+

∣∣∣∣
∫ 1

0
(y − x)T

(
∇f0

(
x+ t(y − x)

)
−∇f0(x)

)
dt

∣∣∣∣

≤
∫ 1

0
(y − x)T∇f0

(
x) dt+

∫ 1

0
‖x− y‖ · ‖∇f0

(
x+ t(y − x)

)
−∇f0(x)‖ dt

≤ (y − x)T∇f0
(
x) + ‖x− y‖

∫ 1

0
Lt‖x− y‖ dt

= (y − x)T∇f0
(
x) +

L

2
‖x− y‖2.

If the parameter αk is taken in the interval (0, 1/L], then condition (2.11) is ensured thanks

to Lemma 2.1; now, the subsequent two possibilities arise for the choice of the steplength

parameter.

• If the Lipschitz constant L is known, then αk is chosen as

αk =
1

L
, ∀ k ∈ N.

The method adopting this choice is known as Iterative Soft Thresholding Algorithm (ISTA),

where the name is borrowed from a special instance of Algorithm 1, which is recovered

when f1 = λ‖·‖1 and the proximal operator consequently reduces to the soft–thresholding

operator [27, 43]; the scheme of this method is reported in Algorithm 1.

• If the Lipschitz constant L is not known or cannot be easily computed, a linesearch is

performed in order to ensure condition (2.11). In particular, once the values L0 ∈ R>0,

η > 1 are fixed, the parameter αk is selected as:

αk =
1

Lk
, (2.12)
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where Lk = ηikLk−1 and ik is the smallest nonnegative integer such that

f0(x
(k+1)) ≤ f0(x(k)) + (x(k+1) − x(k))T∇f0(x(k)) +

Lk

2
‖x(k+1) − x(k)‖2, (2.13)

where x(k+1) is computed by means of (2.9) combined with (2.12). Thanks to Lemma 2.1,

the described linesearch is well–defined, as condition (2.13) is satisfied for every Lk ≥ L.

The resulting method is known as ISTA with backtracking and it is resumed in Algorithm

2.

For the sake of simplicity, the following notation is introduced to indicate the proximal

operator in the subsequent Algorithms:

pL(x) = prox 1
L
f1

(
x− 1

L
∇f0(x)

)
.

Algorithm 1 ISTA with constant steplength

Choose the starting point x(0) ∈ dom(f1) and let L ∈ R>0 be the Lipschitz constant of ∇f0.
FOR k = 0, 1, 2, . . .

x(k+1) = pL(x
(k)).

END

Algorithm 2 ISTA with backtracking

Choose the starting point x(0) ∈ dom(f1) and let L−1 ∈ R>0, η > 1.

FOR k = 0, 1, 2, . . .

STEP 1. Compute the smallest nonnegative integer ik such that Lk = ηikLk−1 satisfies

f0(pLk
(x(k))) ≤ f0(x(k)) + (pLk

(x(k))− x(k))T∇f0(x(k)) +
Lk

2
‖pLk

(x(k))− x(k)‖2.

STEP 2. Compute x(k+1) = pLk
(x(k)).

END

Remark 2.2. The sequence of function values {f(x(k))}k∈N produced both by ISTA and ISTA

with backtracking is nonincreasing. In fact, if Lk is chosen via the backtracking rule (2.13) or

Lk ≡ L, we have:

f(x(k+1)) ≤ h1/Lk
(x(k+1)) ≤ h1/Lk

(x(k)) = f(x(k))

where the first inequality follows from STEP 1 of Algorithm 2 and the second one is a con-

sequence of the definition of proximal point (see the quadratic approximation interpretation

2.10).
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Remark 2.3. Since (2.13) holds for Lk ≥ L, then for the ISTA with backtracking it holds that

Lk ≤ ηL for every k ≥ 1, so that

βL ≤ Lk ≤ γL,

where β = γ = 1 for the constant steplength setting and β =
L−1

L
, γ = η for the backtracking

case.

Remark 2.4. The linesearch procedure (2.13) avoids the difficulty of knowing the Lipschitz

constant only partially. In fact, the parameter L is linked on the value of the initial guess L−1

by relation Lk = (
∏k

j=1 η
ij )L−1. As a consequence, a wrong choice of the initial guess L−1

might negatively affect the convergence rate of the whole algorithm. For instance, when L−1 is

taken far from the unknown Lipschitz value, if L−1 is too large a very small steplength could

be used or, if L−1 is too small, the algorithm could encounter a great number of successive

linesearch reductions.

Furthermore, a critical issue of any backtracking procedure for the scheme (2.9) is that any

iteration of the backtracking loop requires a new evaluation of the proximal operator. Thus,

the along the arc approach becomes computationally too expensive when the proximal point

cannot be computed in a reasonable time.

The following Theorem states, under the assumption that f0 is convex, the convergence of

the sequence {x(k)}k∈N generated by the two ISTA methods to a solution of problem (2.2),

along with a sublinear rate of convergence for their function values.

Theorem 2.1. Let f : Rn −→ R̄ be as in problem (2.2), where f0 is convex, continuously

differentiable and satisfies Assumption 2.1, and f1 is proper, convex and lower semicontinuous.

Suppose that (2.2) admits at least one solution. Let {x(k)}k∈N be the sequence generated by

Algorithm 1 or 2. Then

(i) the sequence {x(k)}k∈N converges to a solution of problem (2.2).

(ii) f(x(k))− f(x∗) = O( 1k ) for any solution x∗.

Proof. See [7, Theorem 1.1–1.2].

2.2.2 Linesearch: along the feasible direction approach

The second possible linesearch approach makes use of a relaxation parameter λk in the scheme

(2.7). In this case, the steplength αk is usually chosen either by an adaptive selection rule or

a prefixed formula, while the parameter λk is determined via a backtracking procedure (for

example, by means of the Armijo rule [12, 89], reported in Algorithm 3). The seminal work by
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Algorithm 3 Armijo linesearch algorithm

Let {x(k)}k∈N be a sequence of points in R
n. Choose some δ, β ∈ (0, 1), λ > 0.

1. Set λk = λ. Let d(k) be a descent direction at x(k).

2. If

f(x(k) + λkd
(k)) ≤ f(x(k)) + βλk∇f(x(k))Td(k) (2.14)

Then go to step 3.

Else set λk = δλk and go to step 2.

3. End

Combettes [33] suggested a scheme with variable steplengths variable but they strictly depend

on the value of the Lipschitz constant, accordingly to the following condition:

0 < inf
k∈N

αk ≤ sup
k∈N

αk <
2

L
, (2.15)

whereas the relaxation parameter is bounded above by 1 and bounded away from zero

0 < inf
k∈N

λk ≤ sup
k∈N

λk ≤ 1. (2.16)

A special instance of this scheme has been proposed by Combettes and Pesquet in [32], here

reported in Algorithm 4.

Algorithm 4 Forward–backward method with relaxation parameters and variable steplengths

Choose the starting point x(0) ∈ dom(f1), let L ∈ R>0 be the Lipschitz constant of ∇f0 and

fix ε ∈ (0,min{1, 1/L}).
FOR k = 0, 1, 2, . . .

STEP 1. Choose αk ∈ [ε, 2
L − ε].

STEP 2. Compute y(k) = proxαkf1

(
x(k) − αk∇f0(x(k))

)
.

STEP 3. Choose λk ∈ [ε, 1].

STEP 4. Compute x(k+1) = x(k) + λk(y
(k) − x(k)).

END

Convergence may be proved in the convex case, as stated by the following result.

Theorem 2.2. [33, Theorem 3.4] Suppose that f0 in problem (2.2) is convex, continuously

differentiable and satisfies Assumption 2.1, and f1 is proper, convex and lower semicontinuous.
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Every sequence {x(k)}k∈N generated by Algorithm 4 or, more generally, by any method of type

(2.7) satisfying conditions (2.15)–(2.16), converges to a solution of problem (2.2).

Algorithm 4 features variable steplengths, but the relaxation parameters {λk}k∈N cannot

exceed 1. The variant proposed in [5] and resumed in Algorithm 5 allows for larger relaxation

parameters, at the price of keeping fixed the steplength parameter.

Algorithm 5 Forward–backward method with relaxation parameters and constant steplength

Choose the starting point x(0) ∈ dom(f1), let L ∈ R>0 be the Lipschitz constant of ∇f0 and

fix ε ∈ (0, 3/4).

FOR k = 0, 1, 2, . . .

STEP 1. Compute y(k) = prox 1
L
f1

(
x(k) − 1

L∇f0(x(k))
)
.

STEP 2. Choose λk ∈ [ε, 32 − ε].

STEP 3. Compute x(k+1) = x(k) + λk(y
(k) − x(k)).

END

Theorem 2.3. [5] Suppose that f0 in problem (2.2) is convex, continuously differentiable and

satisfies Assumption 2.1, and f1 is proper, convex and lower semicontinuous. Every sequence

{x(k)}k∈N generated by Algorithm 5 converges to a solution of problem (2.2).

Remark 2.5. The strategies described by Algorithm 4 and 5 can be applied only when the

value of the Lipschitz constant is available. Though, for a large number of problems in signal

and image processing the knowledge of the Lipschitz constant is out of reach. For instance,

the Kullback–Leibler divergence with positive background (see Chapter 1, Example 1.4), which

arises in the context of image denoising with data corrupted by Poisson noise, has a Lipschitz

continuous gradient, but only an above estimation of the Lipschitz parameter is known [67]. In

these cases, the approaches based on steplength selection by backtracking procedures may be

exploited.

We now turn to the original constrained minimization problem (2.1) which is the specific

goal of the analysis and the next chapters’ applications and recall some notions for a simple

and well studied optimization algorithm.

Classical gradient projection methods

The Gradient Projection (GP) is a method well known in literature, which exploits linesearch

along the feasible direction; it is employed in the constrained optimization framework, i.e. when

we consider f1 = ιΩ and proxιΩ(x) = PΩ(x) = argminz∈Ω ‖z − x‖2 (see Example 2.1). The
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Algorithm 6 Gradient Projection (GP) method

Choose the starting point x(0) ∈ Ω, set the parameters β, δ ∈ (0, 1) and 0 < αmin < αmax.

FOR k = 0, 1, 2, . . .

STEP 1. Choose αk ∈ [αmin, αmax].

STEP 2. Compute the projection y(k) = PΩ(x
(k) − αk∇f(x(k)));

if y(k) = x(k), then x(k) is a stationary point and GP stops.

STEP 3. Define the descent direction d(k) = y(k) − x(k).

STEP 4. Set λk = 1.

STEP 5. Backtracking loop:

IF f(x(k) + λkd
(k)) ≤ f(x(k)) + βλk∇f(x(k))Td(k) THEN

go to STEP 6

ELSE

set λk = δλk and go to STEP 5.

ENDIF

STEP 6. Set x(k+1) = x(k) + λkd
(k).

END

general iteration of GP scheme is given by

x(k+1) = x(k) + λkd
(k) =

= x(k) + λk

(
PΩ(x

(k) − αk∇f(x(k)))− x(k)
)
, (2.17)

where λk ∈ (0, 1] is the linesearch parameter, αk is a positive steplength and PΩ = PΩ,In is

the projection operator induced by the matrix In, i.e. the standard Euclidean projection. The

direction d(k) is a descent one at point x(k) whenever d(k) 6= 0, otherwise x(k) is a stationary

point for f . The linesearch parameter λk is determined by means of a backtracking loop where

the Armijo rule (2.14) (or its nonmonotone version (2.42)) is imposed. It is worth stressing the

fact that the projection is computed only once at each iteration of the algorithm. The full GP

scheme equipped with Armijo backtracking rule (2.14) is reported in Algorithm 6.

The stationarity of the limit points of the iterates of the GP method is guaranteed by the

following result.

Theorem 2.4. [12, Proposition 2.3.1] Let {x(k)}k∈N be a sequence generated by Algorithm 6.

Then every limit point of {x(k)}k is stationary.
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Furthermore, the convergence of the whole sequence to a solution of problem (2.1) can be

proved under additional hypothesis.

Theorem 2.5. [68, Theorem 1] Suppose that f is convex and problem (2.1) has at least one

solution. Every sequence {x(k)}k∈N generated by Algorithm 6 converges to a solution of problem

(2.1).

A further hypothesis on the Lipschitz continuity of ∇f allows to evaluate the decreasing

rate of the objective function, obtaining the same performance estimation proved for the ISTA

methods in Theorem 2.1.

Theorem 2.6. Assume the hypothesis of Theorem 2.5. If f has a Lipschitz continuous gradient

on Ω, then

f(x(k+1))− f(x∗) = O
(
1

k

)
.

Proof. See [19, Theorem 3.1][13, Proposition 6.10.2].

The convergence of the GP method is typically slow in practical case, so alternative forms

of this scheme have been proposed in the last years [14, 15, 38, 20] aiming at accelerating its

performances. In particular, the analysis of a recent variant [20] of the GP algorithm will be

detailed in Section 2.4.2.

2.3 Acceleration strategies

Forward–backward methods are generally characterized by slow rate of convergence, as most of

the first–order methods. Nevertheless, their practical simplicity keeps the interest on this type

of schemes quite high, so that different techniques aiming to speed up their convergence can

be found in literature: the addition of an extrapolation step, suitably choices of a steplength

parameter and the adoption of a variable metric in the computation of the proximal operator

(this latter case will be described in Section 2.4).

2.3.1 Inertial/Extrapolation techniques

Extrapolation was first introduced in gradient methods by Polyak in [90], where he studied

the well–known Heavy–Ball method for minimizing strongly convex functions with Lipschitz

continuous gradient:

x(k+1) = x(k) − α∇f(x(k)) + β(x(k) − x(k−1))

with α ∈ R>0, β ∈ [0, 1). The term β(x(k) − x(k−1)) is usually known to as the inertial force

or extrapolation step, and introduces information about the two previous iterates. The set of
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Algorithm 7 FISTA with backtracking

Choose x(0) ∈ dom(f1), L−1 ∈ R>0, η > 1, a > 2. Set y(0) = x(0), t0 = 1.

FOR k = 0, 1, 2, . . .

STEP 1. Compute the smallest nonnegative integer ik such that Lk = ηikLk−1 satisfies

f0(pLk
(y(k))) ≤ f0(y(k)) + (pLk

(y(k))− y(k))T∇f0(y(k)) +
Lk

2
‖pLk

(y(k))− y(k)‖2.

STEP 2. Compute x(k+1) = pLk
(y(k)).

STEP 3. Compute tk+1 =
k + a

a
.

STEP 4. Compute y(k+1) = x(k) +

(
tk − 1

tk+1

)
(x(k) − x(k−1)).

END

the parameter β = 0 reduces to the usual gradient method. The Heavy–Ball method provides

an optimal O(1/k2) rate for strongly convex functions [90], with a negligible additional cost

related to the extrapolation step.

The following variant of the Heavy–Ball method was initially treated by Nesterov in [87] for

gradient methods and subsequently extended to forward–backward methods:

y(k) = x(k) + βk(x
(k) − x(k−1))

x(k+1) = y(k) − α∇f(y(k)).

The two main changes with respect to the Heavy–Ball method are that the extrapolation factor

βk is variable and computed according to a prefixed formula and, furthermore, the gradient

is evaluated at the extrapolated point y(k) instead of x(k) at each iteration. The resulting

algorithm is still optimal, showing an O(1/k2) complexity result for the sequence of the objective

function values.

The aforementioned extrapolated scheme can be applied to forward–backward schemes in

the following way:

y(k) = x(k) + βk(x
(k) − x(k−1))

x(k+1) = proxαkf1
(y(k) − α∇f0(y(k))).

The combination of Nesterov acceleration technique with the forward–backward method ISTA

led to the well–known Fast Iterative Soft Thresholding Algorithm (FISTA) [6, 28] for solving

problem (2.2) (see Algorithm 7). In the FISTA scheme, the parameter βk is chosen as

βk =
tk − 1

tk+1
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where tk ≥ 1, for all k ∈ N. The original selection of Beck and Teboulle in [6], namely

tk+1 =
(
1 +

√
1 + 4t2k

)
/2, guarantees an O(1/k2) convergence rate for FISTA, which improves

the result contained in Theorem 2.1 for ISTA. Nevertheless, this choice for tk does not ensure

the convergence of the iterates {x(k)}k∈N. The rule suggested by Chambolle and Dossal in

[28] allows to prove the strong convergence of the sequence in R
n, preserving the O(1/k2)

complexity result on the sequence of objective function values: the parameter tk in Algorithm

7 is accordingly to the aforementioned rule. The general convergence result is here reported for

the finite dimensional case.

Theorem 2.7. [6, Theorem 4.4][28, Theorem 4.1] Let f : Rn −→ R̄ be as in problem (2.2),

where f0 is convex, continuously differentiable and satisfies Assumption 2.1, and f1 is proper,

convex and lower semicontinuous. Suppose that (2.2) admits at least one solution. Let {x(k)}k∈N
be the sequence generated by Algorithm 7. Then

(i) the sequence {x(k)}k∈N converges to an optimal solution of problem (2.2).

(ii) For every k ≥ 1:

f(x(k))− f(x∗) ≤ 2γL‖x(0) − x∗‖2
(k + 1)2

for any optimal solution x∗.

2.3.2 Steplength selections

We will now describe some possibilities for the choice of the steplength parameter for gradi-

ents methods in the unconstrained optimization framework, which can also be extended to

constrained problems, as we will detail in Section 2.4.

Barzilai–Borwein rules

Classical steplength selection rules (Minimization and Cauchy steepest descent, limited mini-

mization [26] and Armijo (Algorithm 3)) depend on the monotonicity of the function values to

guarantee global convergence of the scheme. The widely known Barzilai–Borwein (BB) rules

[4] exploit a different procedure. In particular, the BB steplengths aim to approximate the

Hessian ∇2f with the diagonal matrices B(αk) = (αkIn)
−1, which are forced to satisfy one of

the following quasi–Newton conditions:

αBB1
k = argmin

α∈R
‖B(α)s(k−1) − z(k−1)‖ (2.18)

αBB2
k = argmin

α∈R
‖s(k−1) −B(α)−1z(k−1)‖, (2.19)



32 Chapter 2 Forward–backward methods for constrained optimization

where we denote s(k−1) = x(k) − x(k−1) and z(k−1) = ∇f(x(k)) − ∇f(x(k−1)). The resulting

steplength values are

αBB1
k =

s(k−1)Ts(k−1)

s(k−1)Tz(k−1)
; αBB2

k =
s(k−1)Tz(k−1)

z(k−1)Tz(k−1)
. (2.20)

The choice of the approximation matrix B(αk) can be motivated as follows. If we consider the

Talyor expansion of ∇f(x(k))

∇f(x(k)) = ∇f(x(k−1)) +∇2f(x(k−1))
(
x(k) − x(k−1)

)
+ o
(∣∣∣∣x(k) − x(k−1)

∣∣∣∣) (2.21)

by discarding the terms of order higher than 1 we can write

∇2f(x(k−1))
(
x(k) − x(k−1)

)
︸ ︷︷ ︸

s(k−1)

= ∇f(x(k))−∇f(x(k−1))︸ ︷︷ ︸
z(k−1)

(2.22)

x(k) − x(k−1)
︸ ︷︷ ︸

s(k−1)

=
(
∇2f(x(k−1))

)−1 (
∇f(x(k))−∇f(x(k−1))

)

︸ ︷︷ ︸
z(k−1)

(2.23)

Thus, properties (2.18) and (2.19) force the matrix B(αk) to approximate the behaviour of

∇2f(xk−1) described in (2.22) and (2.23); this is done by exploiting available informations

from the iterates and the gradient of the objective function of the current and previous step.

Numerical evidence pointed out that the BB rules and their variants are able to greatly

speed up the convergence rate of several methods, for example the Cauchy steepest descent

method, both in the quadratic [4, 56] and non–quadratic case [95]; Barzilai and Borwein [4]

proved the R–superlinear convergence of the steepest descent method equipped with one of the

steplength rule in (2.20) for two–dimensional strictly convex quadratic functions. Moreover,

Raydan [95] established global convergence of the BB methods for the strictly convex quadratic

case with any number of variables and, later, Dai and Liao [40] proved the R–linear convergence

result. As two last results hold also for the Cauchy steepest descent, they cannot be considered

a validation for BB methods efficacy.

The effectiveness of BB methods is detailed in [52, 53] for a quadratic objective function

f(x) =
1

2
xTAx− bTx (2.24)

If we apply the steepest descent method for this case, we can write the gradient g(k) = ∇f(x(k))

as follows

g(k) = Ax(k) − b = Ax(k−1) − b− αk−1Ag
(k−1)

= (In − αk−1A)g
(k−1). (2.25)
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By applying iteratively (2.25), one obtains the following relation

g(k) =




k−1∏

j=0

(In − αjA)


 g(0). (2.26)

A basis of eigenvectors of A will be denoted by {di}ni=1 and the corresponding eigenvalues

by 0 < λ1 < λ2 ≤ . . . ≤ λn−1 < λn; now, the vector g(0) can be expressed in the form

g(0) =
∑n

i=1 µ
(0)
i di with µ

(0)
i ∈ R, i = 1, . . . , n, and we rewrite equation (2.26) as

g(k) =

n∑

i=1

µ
(0)
i




k−1∏

j=0

(In − αjA)


 di. (2.27)

The vector g(k) can also be represented with respect to the eigenvectors di

g(k) =
n∑

i=1

µ
(k)
i di (2.28)

and by comparing (2.28) with (2.27) we obtain the following relation

µ
(k)
i = µ

(0)
i




k−1∏

j=0

(1− αjλi)


 = µ

(k−1)
i (1− αk−1λi) . (2.29)

The following facts can be inferred by recurrence (2.29):

• if µ
(k−1)
i = 0 at the (k − 1)–th iteration, then µ

(h)
i = 0 for all h ≥ k;

• if αk−1 = 1/λi at the (k − 1)–th iteration, then µ
(k)
i = 0.

This corresponds to the fact that, if the first n steps of the steepest descent method are defined

by setting

αk−1 =
1

λk
, k = 1, . . . , n,

then g(n) = 0 and the method converges in at most n steps. For this reason, approximate the

reciprocal of some eigenvalue of the Hessian matrix at each iteration could be a good choice

for the steplength αk. As the eigenvalues of A are usually not known exactly, the idea is to

approximate them with the Rayleigh quotients of the matrix A, defined as

RA(x) =
xTAx

‖x‖2 , ∀ x ∈ R
n \ {0}. (2.30)

This approximation is justified by the fact that any eigenvalue of A is a Rayleigh quotient in

which x is the corresponding eigenvector and, moreover, the minimum and maximum value of
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RA(x) over x coincide with the minimum and maximum eigenvalue of A, respectively:

λ1 = min
x∈Rn

x 6=0

RA(x) = RA(d1) (2.31)

λn = max
x∈Rn

x 6=0

RA(x) = RA(dn) (2.32)

Both BB steplengths can be seen as approximations of the reciprocals of the eigenvalues of

A of the form (2.30), as stated by the following result.

Proposition 2.2. Suppose that f : Rn → R is strictly convex quadratic defined as (2.24), and

let {x(k)}k∈N be generated by a gradient method of the form x(k+1) = x(k) − αk∇f(x(k)). Then

the BB rules can be rewritten as follows

αBB1
k =

g(k−1)Tg(k−1)

g(k−1)TAg(k−1)
= R−1

A (g(k−1)) (2.33)

αBB2
k =

g(k−1)TAg(k−1)

g(k−1)TA2g(k−1)
= R−1

A (A
1
2g(k−1)) (2.34)

where g(k−1) = ∇f(x(k−1)). Furthermore, if λ1 and λn are the smallest and biggest eigenvalue

of A, respectively, then the following property holds

1

λn
≤ αBB2

k ≤ αBB1
k ≤ 1

λ1
. (2.35)

Proof. Since ∇f(x) = Ax − b, the relations As(k−1) = z(k−1) and s(k−1) = −αkg
(k−1) yield

z(k−1) = −αkAg
(k−1). By replacing these relations in αBB1

k we have

αBB1
k =

(
−αkg

(k−1)
)T (−αkg

(k−1)
)

(
−αkg(k−1)

)T (−αkAg(k−1)
) =

g(k−1)Tg(k−1)

g(k−1)TAg(k−1)
. (2.36)

A similar process can be applied to αBB2
k in order to prove (2.34). The Cauchy–Schwartz

inequality implies the following relation

g(k−1)TAg(k−1) ≤
√
g(k−1)Tg(k−1)

√
g(k−1)TA2g(k−1). (2.37)

By taking squares of both sides of (2.37) and dividing it by (g(k−1)TAg(k−1))·(g(k−1)TA2g(k−1))

the inequality αBB2
k ≤ αBB1

k in (2.35) is obtained. The inequalities αBB2
k ≥ 1/λn and αBB1

k ≤
1/λ1 can be inferred from the extremal properties of the Rayleigh quotient (2.31)–(2.32).

The Cauchy steplength [26] for the Steepest Descent (SD) method can be seen as the re-

ciprocal of a Rayleigh quotient as well. Indeed, by computing the derivative of the quadratic

function with respect to α

d

dα
f(x(k) − αg(k)) = −g(k)T

(
A(x(k) − αg(k))− b

)
= −g(k)Tg(k) + αg(k)TAg(k).
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and setting it to 0, we have

αSD
k =

g(k)Tg(k)

g(k)TAg(k)
= R−1

A (g(k)). (2.38)

Nevertheless, the eigenvalues approximations provided by the sequence {1/αBB1
k }k∈N are better

than Cauchy optimal choice [53, 59] approximations: from the recurrence (2.29), we see that

αk ≈
1

λi
⇒





|µ(k)i | � |µ
(k−1)
i |

|µ(k)j | < |µ
(k−1)
j |, if j < i

|µ(k)j | > |µ
(k−1)
j |, if j > i, λj > 2λi.

(2.39)

For the last relation, it can be inferred that small steplengths αk (close to 1/λn) tend to decrease

a large number of eigencomponents, while the reduction is not very effective for components

corresponding to small eigenvalues. The use of large steplengths could successfully reduce those

components, but this could give rise to an increment in the eigencomponents corresponding

to the dominating eigenvalues, which will promote non–monotonic behaviour, both for the

gradient norm and the function value. In order guarantee the monotonic behaviour, the Cauchy

steplengths αSD
k are expected to be small, while the reciprocals of the BB steplengths 1/αBB1

k

can extend over the whole spectrum of A, with the result of forcing each component µ
(k)
i to go

to zero.

Relation (2.39) could also suggest the need of balancing large steplengths with small ones

in order to achieve effective methods. Many novel steplength selection rules, essentially relying

on the alternation of Cauchy and BB steplengths, are based on this idea. For example, we can

find the class of Gradient Methods with Retards (GMR) [57] which, given positive integers m

and qi, i = 1, . . . ,m, set the steplength as follows

αGMR
k =

gT
ν(k)A

ρ(k)−1gν(k)

gT
ν(k)A

ρ(k)gν(k)

(2.40)

where ν(k) ∈ {k, k − 1, . . . ,max{0, k − m}} and ρ(k) ∈ {q1, q2, . . . , qm}. It is worth noting

that steplengths (2.33)–(2.34)–(2.38) are special instances of (2.40). In the GMR class we

can find the Alternate Step (AS) gradient method [97, 37] (in which the Cauchy and BB1

steplengths are used in turns) and the Alternate Minimization (AM) method [41], where the

minimization of the objective function along the line is alternated with the one–dimensional

minimization of the gradient norm. These approaches are all based on a fixed alternation of

the selected rules; recently, new types of rules exhibited better performances, relying on the

idea of adaptively alternating the steplengths on the basis of some switching criterion, such as

the Adaptive Steepest Descent (ASD) method, the Adaptive Barzilai–Borwein (ABB) method
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[120] and its generalizations ABBmin 1 and ABBmin 2 [56]. In particular, the ABBmin 1 method

alternates the two BB rules in the following way

αABBmin 1
k =




min

{
αBB2
j : j = max{1, k −m}, . . . , k

}
, if

αBB2
k

αBB1
k

< τ

αBB1
k , otherwise

(2.41)

where m is a nonnegative integer and τ ∈ (0, 1). The former ABB rule is recovered when

m = 0. The ABBmin 1 strategy generates a sequence of small steplengths with the BB2 rule, in

a way that the successive value generated by the BB1 rule is a suitable approximation of the

reciprocal of some small eigenvalue. The switching criterion in (2.41) is based on the relation

αBB2
k /αBB1

k = cos2 θk−1, where θk−1 is the angle between Ag(k−1) and g(k−1), and allows to

select the steplength αBB1
k , which is the inverse of the Rayleigh quotient RA(g

(k−1)), only when

g(k−1) itself is a sufficiently good approximation of an eigenvector. The R–linear convergence

can be proved for ABB, ABBmin 1 and ABBmin 2 as in [37], as they all are GMR methods;

furthermore, Q–linear convergence for the error norm of the ASD method was proved in [120].

These alternating–based methods have been shown to be capable of further accelerating the

convergence of the standard BB method [56].

For what concerns the non–quadratic problems, due to the non–monotonic behaviour of the

sequence {f(x(k))}k∈N, the BB method requires a linesearch strategy that allows the objective

function to increase at some iterations, and ensures global convergence of the sequence. In [96]

Raydan proposed the nonmonotone linesearch technique devised by Grippo, Lampariello and

Lucidi in [62], which is based on a generalization of the Armijo rule (2.14). In particular, for

given scalars β, δ ∈ (0, 1), ε > 1, γ > 0, and by setting

α
(0)
k =




αBB1
k , if αBB1

k ∈ [1ε , ε]

γ, otherwise

as initial guess, then the steplength αk is chosen as δmkα
(0)
k , where mk is the first nonnegative

integer for which

f(x(k) + δmkα
(0)
k d(k)) ≤ fmax + βδmkα

(0)
k ∇f(x(k))Td(k), (2.42)

is satisfied, where fmax = max
0≤j≤min(k,M−1)

f(x(k−j)) is the maximum value of the objective func-

tion over the last M iterations, being M a prefixed positive integer. The standard Armijo rule

(2.14) is recovered for M equal to 1. This results in a globally convergent scheme (denominated

Global Barzilai and Borwein (GBB) algorithm), as each limit point of its sequence is stationary

for the objective function [96, Theorem 2.1].
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Ritz values based rule

We will now describe a different approach for steplength selection rules, proposed by Fletcher

[54] in the context of steepest descent methods for the quadratic objective function (2.24). This

limited–memory scheme employs the most recent m back gradients

G =
[
g(k−m) . . . g(k−2) g(k−1)

]
(2.43)

to define the next m steplengths αk+i−1, i = 1, . . . ,m. If we apply iteratively (2.25) to the

vector g(k−i) for m− i times, we have

g(k−i) =




k−i−1∏

j=k−m

(In − αjA)


 g(k−m), i = 1, . . . ,m− 1,

that is, the gradient vectors g(k−i), i = 1, . . . ,m, belong to the span of the so–called Krylov

sequence generated from g(k−m)

{
g(k−m), Ag(k−m), A2g(k−m), . . . , A(m−1)g(k−m)

}
. (2.44)

This property allows to write the matrix G by exploiting a special basis of the Krylov se-

quence provided by the Lanczos iterative process [60] applied to the matrix A with starting

vector q1 = g(k−m)/‖g(k−m)‖. Indeed, the Lanczos process generates an orthonormal basis

{q1, q2, . . . , qm} for the Krylov sequence (2.44) and the matrix G can be written as G = QR,

where Q is the n×m orthogonal matrix with columns q1, q2, . . . , qm and R is an m×m upper

triangular matrix which is non singular, provided that the columns of G are linearly indepen-

dent. Furthermore, the columns of the matrix Q are generated by the Lanczos process in such

a way that

Φ = QTAQ,

is a tridiagonal matrix; the eigenvalues of the matrix Φ are called Ritz values and provide special

approximations of the eigenvalues of the matrix A. If m = n, the Ritz values θi, i = 1, . . . ,m,

coincide with the eigenvalues of A while, if m = 1, then Q = q1 = g(k−m)/‖g(k−m)‖ and there

is a unique Ritz value, i.e. the Rayleigh quotient RA(g
(k−1)) on which the BB method is based.

For a general m, the Ritz values lie in the spectrum of A, as each one of them can be seen as the

Rayleigh quotient θi = RA(Qyi) in which yi is an eigenvector associated to θi and, in addition,

the smallest and biggest Ritz values converge to the minimum and maximum eigenvalue of A,

respectively, as m→ n [65].

The Limited Memory Steepest Descent (LMSD) proposed by Fletcher divides the sequence

of the steepest descent method into groups of m iterations denominated sweeps, and selects the

next m steplengths for the current sweep as the reciprocals of the m Ritz values available from

the previous sweep, namely

x(k+i) = x(k+i−1) − αk+i−1g
(k+i−1), i = 1, . . . ,m (2.45)
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where αk+i−1 = (θk+i−1)
−1. The convergence of the LMSD algorithm is proved in the quadratic

case [54], following the arguments in [95] for the BB method; recently, R–linear convergence for

this scheme has been proved in [34]. It is worth noticing that the Ritz values can be computed

without explicitly use of the matrices A and Q. This allows to reduce the computational time

of the LMSD method and to extend the rule to the non–quadratic case, where the matrix A is

not available. Indeed, by rewriting equation (2.25) as follows

g(k) = g(k−1) − αkAg
(k−1)

then it can be rearranged in the matrix form

AG = [G g(k)]Γ (2.46)

where Γ is a (m+1)×mmatrix containing the reciprocals of the corresponding lastm steplengths

Γ =




α−1
k−m

−α−1
k−m

. . .

. . . α−1
k−2

−α−1
k−2 α−1

k−1

−α−1
k−1




.

Combining (2.46) with relation Q = GR−1 yields

Φ = QTAGR−1 = [R QTg(k)]ΓR−1.

By introducing the vector r = QTg(k), that is the vector which solves the linear system RT r =

GTg(k), we obtain

Φ = [R r]ΓR−1. (2.47)

Now one can compute the Cholesky factorization GTG = RTR and solve the upper triangular

linear system RT r = GTg(k) before computing the tridiagonal matrix Φ by means of equation

(2.47), in which the matrices A and Q do not appear.

In the case of a general objective function, the matrix Φ is upper Hessenberg and the

Ritz–like values are obtained by computing the eigenvalues of a symmetric and tridiagonal

approximation Φ̃ of Φ defined as

Φ̃ = diag(Φ) + tril(Φ,−1) + tril(Φ,−1)T , (2.48)

where diag(·) and tril(·,−1) denote the diagonal and the strictly lower triangular parts of a

matrix, respectively. Even though negative eigenvalues of the resulting matrix could arise, they

are discarded from the choice steplengths for the next iterations. Numerical evidence [54] shows

that the LMSD method outperforms the standard Barzilai–Borwein scheme for both quadratic
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and non–quadratic test problems, and the algorithm is competitive with other state–of–the–

art methods, such as the BFGS method or the nonlinear Conjugate Gradient (CG) methods.

Furthermore, in [48] the LMSD approach well compared with efficient alternating BB rules like

ABBmin 1.

Other state–of–the–art steplength selection rules

An important feature of the previous steplength selections is that they can be applied not only

to quadratic problems but also in the case of more general nonlinear optimization problems.

However, the recent literature shows that there are other promising steplength rules designed

for quadratic problems that behave similarly to the BB or Ritz based rules and deserve to

be investigated for possible extension to the general non–quadratic case. Examples of such

steplength rules are the selections SDA and SDC proposed in [44, 45]. The strategy devised

by these methods aims to exploit SD steplengths without asymptotically limiting the search to

two–dimensional space, as in the SD method; thus, a certain number of previously computed

SD steplengths is followed by some constant steplengths, as follows. Given two integers h ≥ 2

and mc ≥ 1, the SDA and SDC steplength are computed as

αk =

{
αSD
k if mod (k, h+mc) < h,

α̂s otherwise, with s = max{i ≤ k : mod (i, h+mc) = h}, (2.49)

where α̂s is a particular steplength built at iteration s by means of αSD
s−1 and αSD

s . Strictly

speaking, the methods make h consecutive exact linesearches and then compute a different

steplength, which is kept constant and applied in mc consecutive iterations. In the SDA method

α̂s = αA
s , where

αA
s =

(
1

αSD
s−1

+
1

αSD
s

)−1

,

while in the SDC method α̂s = αY
s , where

αY
s = 2




√√√√
(

1

αSD
s−1

− 1

αSD
s

)2

+ 4
‖gs‖2(

αSD
s−1‖gs−1‖

)2 +
1

αSD
s−1

+
1

αSD
s




−1

. (2.50)

It is worth noticing that αY
s is the so–called Yuan steplength [117], used in the Dai–Yuan

method. This method alternates some Cauchy steplengths with some Yuan steplengths similarly

to (2.49), with the difference that αY
s is computed at each iteration and it is not constant.

The numerical study reported in [48] shows that the SDC rule shares with the ABBmin 1

and the Ritz rules the ability to efficiently approximate the eigenvalues of the Hessian of the

quadratic objective function, achieving a better performance with respect to the standard BB1

approach.
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2.4 Variable metric techniques

In order to enhance the convergence rate, the general iteration of of forward–backward methods

can be modified by the introduction of a variable metric in the computation of the proximity

operator, as follows: if Dk is a symmetric positive definite matrix, we have

x(k+1) = x(k) + λk

(
proxDk

αkf1
(x(k) − αkD

−1
k ∇f0(x(k)))− x(k)

)
, k = 0, 1, 2, . . . (2.51)

We will refer to this scheme as the Variable Metric Forward Backward (VMFB) algorithm. As

already pointed out in Section 2.2.1 for the case Dk = In, the variable metric forward–backward

step can be seen as the minimization of a local approximation of f at the iterate x(k):

y(k) = proxDk

αkf1

(
x(k) − αkD

−1
k ∇f0(x(k))

)

= argmin
y∈Rn

1

2αk

∥∥∥y − (x(k) − αkD
−1
k ∇f0(x(k)))

∥∥∥
2

Dk

+ f1(y)

= argmin
y∈Rn

∇f0(x(k))T (y − x(k)) +
1

2αk
‖y − x(k)‖2Dk

+
αk

2
‖∇f0(x(k))‖2

D−1
k

+ f1(y)

= argmin
y∈Rn

f0(x
(k)) +∇f0(x(k))T (y − x(k)) +

1

2αk
‖y − x(k)‖2Dk

︸ ︷︷ ︸
:=q(y,x(k))

+f1(y)

= argmin
y∈Rn

h(k)(y,x(k)).

As a consequence, the scaling matrix Dk needs to be chosen in a way that the quadratic model

q(y,x(k)) represents a better approximation than the one defined by the FB method in (2.10),

in order to effectively improve the performances of the FB scheme by the variable metric. For

example, under the hypothesis that f0 is twice continuously differentiable and Dk approximates

the Hessian matrix ∇2f0(x
(k)), the quadratic term q(y,x(k)) can be close to the second order

Taylor expansion of the function f0 at point x(k).

The problem of devising effective and practical techniques to compute the scaling matrix

Dk will be discussed in the following sections.

2.4.1 Gradient Projection methods with extrapolation and scaling matrix

In this section we describe a variable metric forward–backward method with extrapolation

presented in [17] for the solution of problem (2.2) under the following hypotheses, which will

be assumed in this section.

(H1) f0, f1 : R
n −→ R̄ are proper, convex and lower semicontinuous;

(H2) f0 is differentiable with L–Lipschitz continuous gradient on the closed and convex set

Y ⊆ dom(f0) and dom(f0) ⊇ Y ⊇ dom(f1);
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Algorithm 8 Scaled inertial forward–backward method with backtracking

Choose α0 > 0, δ < 1, x(0) ∈ Y . Set x(−1) = x(0) and define a sequence of nonnegative numbers

{βk} and a sequence of operators {Dk}, with Dk ∈Mη, η ≥ 1, such that γ = supk∈N‖Dk‖ <∞.

FOR k = 0, 1, 2, . . .

STEP 1. Extrapolation: y(k) = PY,Dk
(x(k) + βk(x

(k) − x(k−1))).

STEP 2. Set αk = αk−1, ik = 0.

STEP 3. Set x
(k)
+ = proxDk

αkg
(y(k) − αkDk

−1∇f0(y(k))).

STEP 4. Backtracking loop:

IF f(x
(k)
+ ) ≤ f0(y(k)) + 〈∇f0(y(k)),x

(k)
+ − y(k)〉+ 1

2αk
‖y(k) − x

(k)
+ ‖2Dk

THEN

go to STEP 5

ELSE

ik ← ik + 1 αk = δikαk−1 and go to STEP 3.

ENDIF

STEP 5. Set x(k+1) = x
(k)
+ .

END

(H3) problem (2.2) admits at least a solution.

The generic scheme of the method is detailed in Algorithm 8, where Mη denotes the set of all

symmetric positive definite matrices with eigenvalues contained in the interval [ 1η , η] for a η ≥ 1.

This scheme combines a variable metric forward–backward iteration with an extrapolation–

projection step; the steplength parameter αk is adaptively computed by means of a backtracking

procedure, while the extrapolation parameter βk has the form

βk =
θk(1− θk−1)

θk−1
, β0 = 0 , (2.52)

where {θk} ⊂ (0, 1] is a given sequence of parameters. Suitable choices for the scaling operator

Dk will be described in the following.

Algorithm 8 can be considered a generalization of FISTA method described in Algorithm 7:

it enhances the classical FISTA scheme by the introduction of the variable metric induced

by the scaling matrices Dk at each iteration and the projection of the extrapolated point

x(k) + βk(x
(k) − x(k−1)), which allows to handle problems where dom(f0) ⊇ Y does not co-
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incide with the entire space R
n. When Y = R

n, FISTA is recovered by setting Dk = In for all

k ≥ 0.

Algorithm 8 is well defined thanks to assumption (H2), i.e., the backtracking loop terminates

in a finite number of steps. In fact, as the sequence {αk} is non–increasing and the reducing

factor is δ < 1, the following inequalities can be deduced from Lemma 2.1

0 <
δη

L
≤ αk ≤ αk−1 ≤ α0 . (2.53)

The backtracking condition implies that the new iterate x(k+1) satisfies

f(x(k+1)) ≤ f0(y(k)) + 〈∇f0(y(k)),x
(k)
+ − y(k)〉+ 1

2αk
‖y(k) − x(k+1)‖2Dk

. (2.54)

The convergence rate of Algorithm 8 with respect to the objective function values remains

the same of the original FISTA scheme, i.e.

f(x(k))− f(x∗) = O
(

1

k2

)
,

as proved in the results stated in the next paragraph; moreover, the sequence of the iterates

{x(k)} generated by Algorithm 8 weakly converges to a minimizer of problem (2.2).

Convergence analysis

In this paragraph we will denote by {x(k)}k∈N the sequence generated by Algorithm 8 and x∗

any of the solutions of (2.2).

We report here the result that establishes the convergence rate of the method of interest.

Theorem 2.8. [17, Theorem 12] Let {Dk} ⊂ Mη be a sequence of operators satisfying

Dk+1 � (1 + ηk)Dk ∀k ≥ 0 with ηk ∈ R, ηk ≥ 0 such that
∞∑

k=0

ηk <∞ . (2.55)

and assume that {θk}, {βk} are chosen as

θk =

{
1 k = −1, 0
a

k+a k ≥ 1
βk =

{
0 k = 0
k−1
k+a k ≥ 1

(2.56)

with a ≥ 2. Then, there exists a constant C such that

f(x(k))− f(x∗) ≤ C

(k − 1 + a)2
, (2.57)

for all k ≥ 1. In particular C =
a2L

∏k−1
i=1 (1+ηi)‖x

∗−x(0)‖2D1
2ηδ .
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The following result shows the convergence of the iterates to a minimizer of the function f .

Theorem 2.9. [17, Theorem 17] Assume that {θk} and {βk} are chosen as in (2.56) with a > 2

and let {Dk} ⊂ Mη be a sequence of operators satisfying (2.55) and

Dk � (1 + νk)Dk+1 ∀k ≥ 0 with νk ∈ R, νk ≥ 0 such that
∞∑

k=0

νk <∞ . (2.58)

with supk∈N ‖Dk‖ = γ < ∞, {ηk} = O( 1
kp ) and {νk} = O( 1

kp ) with p > 2. Then, the sequence

{x(k)}k∈N weakly converges to a minimizer of f .

Scaling matrix

We report here some hints for the practical choices of proper sequences {Dk} of scaling matrices,

presenting ideas which could guide the adoption of a specific metric.

• The choice of the scaling matrix should be oriented to the improvement of convergence

speed without introducing significant computational costs: for this reason, diagonal scaling

matrices usually represent a good compromise. Furthermore, the variable metric should

record information of some kind about the problem, thus it strongly depends on the

structure of the objective function and on the solution constraints, if any.

• Given a sequence {Dk} of symmetric and positive definite matrices of order n, the following

sufficient conditions guarantee both (2.55) and (2.58)

{
‖D−1

k ‖ ≤ γk
‖Dk‖ ≤ γk

, γ2k = 1 + ζk where ζk ≥ 0 and
∞∑

k=0

ζk <∞ (2.59)

with γk < γ, γ > 1.

Thus, for the practical case of diagonal scaling matrices, conditions (2.59) allow to bound

the matrices’ elements by means of suitable sequences of parameters {ζk}k∈N.

2.4.2 Scaled Gradient Projection methods

The Scaled Gradient Projection (SGP) method was first presented in [20] as an extension of

the GP method (2.17), which is based on the subsequent iteration

x(k+1) = x(k) + λkd
(k) =

= x(k) + λk

(
PΩ,Dk

(x(k) − αkD
−1
k ∇f(x(k)))− x(k)

)
, (2.60)

with the following setting:

• αk is a positive steplength chosen in the bounded interval [αmin, αmax];



44 Chapter 2 Forward–backward methods for constrained optimization

Algorithm 9 Scaled Gradient Projection (SGP) method

Choose the starting point x(0) ∈ Ω, set the parameters β, δ ∈ (0, 1), 0 < αmin < αmax and

µ ≥ 1.

FOR k = 0, 1, 2, . . .

STEP 1. Choose αk ∈ [αmin, αmax], µk ≤ µ and the scaling matrix Dk ∈Mµk
.

STEP 2. Compute the projection y(k) = PΩ,Dk
(x(k) − αkD

−1
k ∇f(x(k)));

if y(k) = x(k), then x(k) is a stationary point and SGP stops.

STEP 3. Define the descent direction d(k) = y(k) − x(k).

STEP 4. Set λk = 1.

STEP 5. Backtracking loop:

IF f(x(k) + λkd
(k)) ≤ f(x(k)) + βλk∇f(x(k))Td(k) THEN

go to STEP 6

ELSE

set λk = δλk and go to STEP 5.

ENDIF

STEP 6. Set x(k+1) = x(k) + λkd
(k).

END

• Dk is a symmetric positive definite matrix whose eigenvalues lie in the bounded interval

[ 1
µk
, µk] with µ ≤ µk ≥ 1;

• the linesearch parameter λk ∈ (0, 1] is determined along the feasible direction by imposing

the Armijo rule (2.14).

The linesearch parameter λk can be determined also by imposing nonmonotone rules [20], but

these cases won’t be discussed in this thesis. The general SGP scheme is reported in Algorithm

9 and it differs from the original GP algorithm by the possibility to employ adaptive strategies

related to the choice of the steplength parameter αk and of the scaling matrix Dk. In the last

few years, the effectiveness of the SGP method has been extensively tested in a variety of image

reconstruction problems arising in microscopy and astronomy frameworks [9, 16, 18, 79, 91, 92].

Convergence analysis

We report here some useful propositions and lemmas that allow to prove the most recent results

on SGP convergence analysis and recall a property which will be used in the following. In this
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paragraph we will denote by {x(k)}k∈N the sequence generated by Algorithm 9 and X∗ the set

of the solutions of (2.2).

Remark 2.6. For any symmetric positive definite D ∈ Mµ we have that D−1 also belongs to

Mµ and
1

µ
‖x‖2 ≤ ‖x‖2D ≤ µ‖x‖2 ∀x ∈ R

n. (2.61)

Lemma 2.2. [19, Lemma 2.1] Let {x(k)}k∈N be a sequence of points in Ω and {d(k)}k∈N be a

sequence of descent directions such that ∇f(x(k))Td(k) < 0 ∀k ∈ N. Suppose that there exists

l ∈ R such that f(x) ≥ l for all x ∈ Ω and that

f(x(k+1)) ≤ f(x(k) + λkd
(k)) ∀k ∈ N. (2.62)

Then we have

0 ≤ −
∞∑

k=0

λk∇f(x(k))Td(k) <∞. (2.63)

Theorem 2.10. [19, Theorem 2.1] Let αmin, αmax, µ be three positive constants such that

0 < αmin ≤ αmax and µ ≥ 1. Let {αk}k∈N ⊂ [αmin, αmax] be a sequence of parameters

and {Dk}k∈N ⊂Mµ. Let {x(k)}k∈N ⊂ Ω be any sequence satisfying property (2.62), where d(k)

is defined in (2.60) and λk is computed with the Armijo linesearch procedure (2.14). If x̄ is a

limit point of {x(k)}k∈N, then x̄ is a stationary point for problem (2.1).

Proposition 2.3. [19, Proposition 2.2] Assume that ∇f satisfies one of the following condi-

tions:

a) ∇f is globally Lipschitz on Ω;

b) ∇f is locally Lipschitz and the set {x ∈ Ω : f(x) ≤ ζ} is bounded for every ζ ∈ R.

Let {x(k)}k∈N be any sequence satisfying the assumptions of Theorem 2.10 and {λk}k∈N the

related steplengths computed by Algorithm 3. Then, there exists a positive constant 0 < λmin ≤ 1

such that

λk ≥ λmin. (2.64)

Lemma 2.3. [19, Lemma 3.1] Let {µk}k∈N, {ζk}k∈N be two sequences of numbers such that

µ2k = 1 + ζk, ζk ≥ 0,

∞∑

k=0

ζk <∞. (2.65)

Then the sequence {θk}k∈N, with θk =
∏k

j=0 µ
2
j , is bounded.
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Convergence results of the SGP sequence to a solution of (2.1) were recently proved in the

convex case [19] by extending the result in [68], with the assumption that the scaling matrices

Dk asymptotically reduce to the identity matrix. Such a requirement can be expressed in terms

of the bounds of the eigenvalues {µk}k∈N, as reported in the following.

Theorem 2.11. [19, Theorem 3.1] Assume that the objective function of (2.1) is convex and the

solution set X∗ is not empty. Let {x(k)}k∈N be the sequence generated by SGP where Dk ∈Mµk

and {µk}k∈N satisfies (2.65). Then the sequence {x(k)}k∈N converges to a solution of (2.1).

Proof. We recall the following basic norm equality, which holds true for any positive definite

matrix E:

‖x− y‖2E + ‖y − z‖2E − ‖x− z‖2E = 2(y − x)TE(y − z) . (2.66)

Let x̂ ∈ X∗. Recalling the definition of y(k) in STEP 2 as y(k) = PΩ,Dk
(x(k)−αkD

−1
k ∇f(x(k))),

from the first–order necessary condition we have that

(y(k) − x(k) + αkD
−1
k ∇f(x(k)))TDk(x− y(k)) ≥ 0 ∀x ∈ Ω .

If we take x = x̂, by adding and substracting the quantities (y(k) − x(k))TDkx
(k) and

αk∇f(x(k))Tx(k) to the previous relation we have

(y(k)−x(k))TDk(x̂−x(k)) ≥ αk∇f(x(k))T (x(k)− x̂)+(y(k)−x(k)+αkD
−1
k
∇f(x(k)))TDk(y

(k)−x(k)).

The convexity of the function f implies f(x̂) ≥ f(x(k)) + ∇f(x(k))TDk(x̂ − x(k)), so that

∇f(x(k))TDk(x
(k) − x̂) ≥ f(x(k))− f(x̂) and

αk∇f(x(k))T (x(k) − x̂) + (y(k) − x(k) + αkD
−1
k ∇f(x(k)))TDk(y

(k) − x(k))

≥ αk(f(x
(k))− f(x̂)) + ‖y(k) − x(k)‖2Dk

+ αk∇f(x(k))T (y(k) − x(k));

the definition of x(k+1) = x(k) + λk(y
(k) − x(k)) yields

αk(f(x
(k))− f(x̂)) + ‖y(k) − x(k)‖2Dk

+ αk∇f(x(k))T (y(k) − x(k))

= αk(f(x
(k))− f(x̂)) + 1

λk
2 ‖x

(k+1) − x(k)‖2Dk
+ αk∇f(x(k))T (y(k) − x(k)).

Thus, the following relation is now proved:

(y(k) −x(k))TDk(x̂−x(k)) ≥ αk(f(x
(k))− f(x̂)) + 1

λk
2 ‖x(k+1) −x(k)‖2

Dk
+αk∇f(x(k))T (y(k) −x(k)).

Now, from the definition of x(k+1) and by applying equality (2.66) with x = x(k+1), y = x(k),

z = x̂ and E = Dk, we can obtain

‖x(k+1) − x̂‖2Dk
= ‖x(k) − x̂‖2Dk

+ ‖x(k+1) − x(k)‖2Dk
− 2(x(k) − x(k+1))TDk(x

(k) − x̂)

= ‖x(k) − x̂‖2Dk
+ ‖x(k+1) − x(k)‖2Dk

− 2λk(y
(k) − x(k))TDk(x̂− x(k)).
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From the convexity of the function f and from the fact that the point x̂ ∈ X∗ is a solution, we

have that

‖x(k) − x̂‖2Dk
+ ‖x(k+1) − x(k)‖2Dk

− 2λk(y
(k) − x(k))TDk(x̂− x(k))

≤ ‖x(k) − x̂‖2Dk
+

(
1− 2

λk

)
‖x(k+1) − x(k)‖2Dk

− 2αkλk∇f(x(k))T (y(k) − x(k)) +

−2λkαk(f(x
(k))− f(x̂))

As λk ≤ 1 and x̂ ∈ X∗, the previous relations result in

‖x(k+1) − x̂‖2Dk
≤ ‖x(k) − x̂‖2Dk

− 2αkλk∇f(x(k))T (y(k) − x(k)) +

−2λkαk(f(x
(k))− f(x̂)) (2.67)

≤ ‖x(k) − x̂‖2Dk
− 2αkλk∇f(x(k))T (y(k) − x(k)).

From the last inequality and from relation (2.61), it follows that

1

µk
‖x(k+1) − x̂‖2 ≤ ‖x(k+1) − x̂‖2Dk

≤ ‖x(k) − x̂‖2Dk
− 2αkλk∇f(x(k))T (y(k) − x(k))

≤ µk‖x(k) − x̂‖2 − 2αkλk∇f(x(k))T (y(k) − x(k)),

so that

‖x(k+1) − x̂‖2 ≤ µ2k‖x(k) − x̂‖2 − 2µkαkλk∇f(x(k))T (y(k) − x(k)).

Since µk ≥ 1 and αk ≤ αmax, the following relation holds true:

‖x(k+1) − x̂‖2 ≤ µ2k‖x(k) − x̂‖2 − 2αmaxµ
2
kλk∇f(x(k))T (y(k) − x(k)).

By repeatedly applying the previous inequality we obtain

‖x(k+1) − x̂‖2 ≤ θk0‖x(0) − x̂‖2 − 2αmax

k∑

j=0

θkj λj∇f(x(j))T (y(j) − x(j)),

where θkj =
∏k

i=j µ
2
j . As µ2j ≥ 1, it results that θkj ≤ θk0 , so that we obtain the following relation

from Lemma 2.3, by setting M ≥ θk0 :

‖x(k+1) − x̂‖2 ≤M‖x(0) − x̂‖2 − 2αmaxM
k∑

j=0

λj∇f(x(j))T (y(j) − x(j)). (2.68)

Lemma 2.2 ensures that {x(k)}k∈N is bounded, so that it has at least one limit point, denoted by

x∞. From Theorem 2.10, x∞ is stationary; moreover, as f is convex, it is a minimum point, i.e.
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x∞ ∈ X∗. Let {x(ki)}i∈N be a subsequence of {x(k)}k∈N which converges to x∞. By applying

the same arguments employed to derive (2.68), for any fixed i ∈ N and for all k ≥ ki we obtain

‖x(k) − x∞‖2 ≤M‖x(ki) − x∞‖2 − 2αmaxM

k∑

j=ki

λj∇f(x(j))T (y(j) − x(j)). (2.69)

Since {x(ki)}i∈N converges to x∞ and −∑∞
j=0 λj∇f(x(j))T (y(j) − x(j)) is a convergent series,

for any ε > 0 there exists a sufficiently large integer ki such that ‖x(ki) − x∞‖2 ≤ ε/2M and

−∑k
j=ki

λj∇f(x(j))T (y(j) − x(j)) ≤ ε/(4Mαmax). Then, it follows from (2.69) that ‖x(k) −
x∞‖2 ≤ ε for all k ≥ ki. Since ε can be chosen arbitrarily small, this means that the whole

sequence {x(k)}k∈N converges to x∞.

The previous theorem gives an easily implementable rule to ensure the theoretical conver-

gence of SGP to a solution.

In the following we report a result that ensures a O(1/k) convergence rate on the objective

function value for the sequence of the iterates of the SGP scheme. This result is similar to the

one reported in Theorem 2.1 for forward–backward methods with linesearch along the projection

arc.

Theorem 2.12. [19, Theorem 3.2] Assume that the hypotheses of Theorem 2.11 hold and, in

addition, that assumption a) or b) of Proposition 2.3 is satisfied. Let f∗ be the optimal function

value for problem (2.1). Then, we have

f(x(k))− f∗ = O(1/k).

Proof. If we define λmin as in Proposition 2.3 and we set a = 2λminαmin, from (2.67) we have

‖x(k+1) − x̂‖2Dk
≤ ‖x(k) − x̂‖2Dk

− 2αkλk∇f(x(k))T (y(k) − x(k)) +

−2λkαk(f(x
(k))− f(x̂))

As ∇f(x(k))T (y(k) − x(k)) and f(x̂)− f(x(k)) are negative quantities, we have

‖x(k) − x̂‖2Dk
− 2αkλk∇f(x(k))T (y(k) − x(k))− 2λkαk(f(x

(k))− f(x̂))
≤ ‖x(k) − x̂‖2Dk

− 2αmaxλk∇f(x(k))T (y(k) − x(k)) + a(f(x̂)− f(x(k))),

so that

‖x(k+1) − x̂‖2Dk
≤ ‖x(k) − x̂‖2Dk

− 2αmaxλk∇f(x(k))T (y(k) − x(k)) + a(f(x̂)− f(x(k))).
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From inequality (2.61), we have that

1

µk
‖x(k+1) − x̂‖2 ≤ ‖x(k+1) − x̂‖2Dk

≤ ‖x(k) − x̂‖2Dk
− 2αmaxλk∇f(x(k))T (y(k) − x(k)) +

+a(f(x̂)− f(x(k)))

≤ µk‖x(k) − x̂‖2 − 2αmaxλk∇f(x(k))T (y(k) − x(k)) +

+a(f(x̂)− f(x(k))).

Thus, by multiplying the last inequality by µk we obtain

‖x(k+1) − x̂‖2 ≤ µ2k‖x(k) − x̂‖2 − 2αmaxµkλk∇f(x(k))T (y(k) − x(k)) +

+µka(f(x̂)− f(x(k))).

From the fact that µk ≥ 1 we have

µ2k‖x(k) − x̂‖2 − 2αmaxµkλk∇f(x(k))T (y(k) − x(k)) + µka(f(x̂)− f(x(k)))

≤ µ2k‖x(k) − x̂‖2 − 2αmaxµ
2
kλk∇f(x(k))T (y(k) − x(k)) + a(f(x̂)− f(x(k))),

which yields

‖x(k+1) − x̂‖2 ≤ µ2k‖x(k) − x̂‖2 − 2αmaxµ
2
kλk∇f(x(k))T (y(k) − x(k)) + a(f(x̂)− f(x(k))).

By repeatedly applying the last inequality we obtain

‖x(k+1) − x̂‖2 ≤ θk0‖x(0) − x̂‖2 − 2αmax

k∑

j=0

θkj λj∇f(x(j))T (y(j) − x(j)) +

+a((k + 1)f(x̂)−
k∑

j=0

f(x(j)))

≤ M‖x(0) − x̂‖2 − 2αmaxM
k∑

j=0

λj∇f(x(j))T (y(j) − x(j)) +

+a((k + 1)f(x̂)−
k∑

j=0

f(x(j))), (2.70)

where, as in the proof of Theorem 2.11, we set θkj =
∏k

i=j µ
2
j and M ≥ θkj . The Armijo rule in

STEP 5 can be rewritten as

−βλk∇f(x(k))Td(k) ≤ f(x(k))− f(x(k+1)).
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Summing the previous inequality for k = 0, ..., j gives

−β
j∑

k=0

λk∇f(x(k))Td(k) ≤∑j
k=0(f(x

(k))− f(x(k+1)))

= f(x(0))− f(x(j+1)). (2.71)

Thanks to inequality (2.71), we have

‖x(k+1) − x̂‖2 ≤ M‖x(0) − x̂‖2 + 2αmaxM

β
(f(x(0))− f(x̂)) +

+a(kf(x̂)−
k∑

j=1

f(x(j))), (2.72)

where we also added the positive quantity a(f(x(0)) − f(x̂)) to the right hand side of (2.70).

Moreover, exploiting the inequality

0 ≤
k∑

j=0

j(f(x(j))− f(x(j+1))) =
k∑

j=1

f(x(j))− kf(x(k+1))

gives

‖x(k+1) − x̂‖2 ≤ M‖x(0) − x̂‖2 + 2αmaxM

β
(f(x(0))− f(x̂)) +

+ak(f(x̂)− f(x(k+1))).

After suitable rearrangement of the terms, the desired thesis is proved:

f(x(k+1))− f(x̂) ≤ M

ak

(
‖x(0) − x̂‖2 + 2

αmax

β
(f(x(0))− f(x̂))

)
.

Scaling matrix choice

The most extensively exploited rule to specify the scaling matrix Dk is provided in [75, 76],

when the solution of problem (2.1) is forced to be nonnegative in each component, namely when

Ω = {x ∈ R
n : x ≥ 0}. This technique is based on the decomposition of the gradient into two

parts:

∇f(x) = V (x)− U(x), V (x) > 0, U(x) ≥ 0. (2.73)

It is worth noticing that this approach can be employed without efforts in the field of image

reconstruction, in which the gradient of the objective function can naturally be decomposed in

the form (2.73) for most of the adopted models.
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If x∗ ∈ Ω is a solution of problem (2.1), then x∗ must satisfy the Karush–Kuhn–Tucker

(KKT) conditions

∇f(x∗)− λ = 0, x∗ ≥ 0, λ ≥ 0, x∗
iλi = 0, i = 1, . . . , n (2.74)

where λ ∈ R
n are the Lagrange multipliers. This implies that

x∗
i∇f(x∗

i ) = 0, i = 1, . . . , n. (2.75)

On the basis of the decomposition (2.73), the n nonlinear equations (2.75) can also be rewritten

as the vectorial fixed point equation

x∗ = x∗ · U(x∗)

V (x∗)
.

By applying the method of successive approximations, fixed an initial guess x(0) > 0, we get

the following iterative algorithm

x(k+1) = x(k) · U(x(k))

V (x(k))

which is equivalent to

x(k+1) = x(k) − x(k)

V (x(k))
· ∇f(x(k)) = x(k) −D−1

k ∇f(x(k))

where D−1
k is a symmetric positive definite matrix of the form

D−1
k = diag

(
x
(k)
1

V1(x(k))
, . . . ,

x
(k)
n

Vn(x(k))

)
. (2.76)

As a consequence, in case of nonnegativity constraints it comes quite natural to address problem

(2.1) by means of a scaled gradient method with steplength equal to 1. Thus, the idea proposed

in [20] and subsequent works is to adopt the matrix (2.76) into Algorithm 9, with the further

request of forcing its eigenvalues to belong to the bounded interval [1/µk, µk], in order to comply

with the convergence assumptions of Theorem 2.11:

(D−1
k )ii = max

{
min

{
x
(k)
i

Vi(x(k))
, µk

}
,
1

µk

}
, i = 1, . . . , n. (2.77)

As well as the choice suggested for Algorithm 8, the matrix D−1
k is diagonal, which avoids to

introduce significant computational costs in the scheme and, in particular, in the computation

of the projection PΩ,Dk
(·).
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Steplength choice

We report in this paragraph some considerations concerning the most exploited choices for

the steplength parameter αk. Due to the large success of the Barzilai–Borwein rules (2.20)

in the context of unconstrained optimization, it came natural to extend the BB–like schemes

described in Section 2.2 to the SGP method. A first extension was conceived for gradient

projection methods in [14], where two GP schemes denominated Spectral Projected Gradient

(SPG) methods were proposed: both schemes were equipped with the choice αk = αBB1
k for

the steplength, the first one performing the linesearch on λk along the arc and the second one

along the feasible direction. Later, the theory is extended to scaled gradient projection methods

in [15], while the practical numerical experiments considered only the non–scaled scheme. A

scaling matrix was first introduced into the determination of the two BB rules in [20], by

imposing the secant equations (2.18)–(2.19) to the matrix B(αk) = (αkD
−1
k )−1, which yielded

to the following rules

αBB1S
k =

s(k−1)TDkDks
(k−1)

s(k−1)TDky(k−1)
; αBB2S

k =
s(k−1)TD−1

k y(k−1)

y(k−1)TD−1
k D−1

k y(k−1)
. (2.78)

Furthermore, inspired by the alternation strategy (2.41) implemented in the framework of non–

scaled gradient methods, in [20] the authors proposed a steplength updating rule for SGP which

adaptively alternates the values provided in (2.78), as detailed in Algorithm 10.

Algorithm 10 is a modification of rule (2.41), where the alternation of the two steplengths

is no more determined by a constant parameter τ as in (2.41), but with a variable threshold

τk. Thus, the choice of τ0 become less important for the SGP performance and, in the authors’

experience, it seems able to avoid the drawbacks due to the use of the same steplength rule in

too many consecutive iterations.

Successively, the limited–memory steplength rule devised in [54] and based on the Ritz–like

values of the tridiagonal matrix (2.48) was transposed into the SGP framework when Ω is the

nonnegativity constraint set, as suggested in [91]. In the extension of the original scheme to the

SGP method, the main change is the definition of a new matrix G̃ that generalizes the matrix

G in (2.43) by taking into account the presence of a scaling matrix and the projection onto the

feasible set. The rule was devised exploiting the fact that applying a scaled gradient method

x(k+1) = x(k)−αkD
−1
k ∇f(x(k)), with Dk symmetric and positive definite, to the minimization

of a function f is equivalent to performing the change of variables x = D
−1/2
k y and addressing

the following scaled problem

min
y∈Rn

f̃(y) ≡ f(D−1/2
k y)

by means of a steepest descent method

y(k+1) = y(k) − αk∇f̃(y(k)) (2.79)
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Algorithm 10 Steplength Selection rule

IF k = 0

set α0 ∈ [αmin, αmax], τ1 ∈ (0, 1) and a nonnegative integer Mα;

ELSE

IF s(k−1)TDky
(k−1) ≤ 0 THEN

α
(1)
k = αmax;

ELSE

α
(1)
k = min

{
αmax,max{αmin, α

BB1S
k }

}
;

ENDIF

IF s(k−1)TD−1
k y(k−1) ≤ 0 THEN

α
(2)
k = αmax;

ELSE

α
(2)
k = min

{
αmax,max{αmin, α

BB2S
k }

}
;

ENDIF

IF α
(2)
k /α

(1)
k ≤ τk THEN

αk = min
{
α
(2)
j , j = max{1, k −Mα}, . . . , k

}
; τk+1 = τk · 0.9;

ELSE

αk = α
(1)
k ; τk+1 = τk · 1.1.

ENDIF

ENDIF

with respect to the variable y [12]. The previous remark led to the idea of applying the

limited-memory scheme to the method (2.79) instead of the scaled version of it and also, as

∇f̃(y(k)) = D
−1/2
k ∇f(x(k)), to store at each iteration the scaled gradient D

−1/2
k g(k) instead of

g(k). Furthermore, the nonnegativity constraint was addressed by looking at the complemen-

tarity condition (2.75) satisfied by the solution of problem (2.1), for which the components of

the gradient related to inactive constraints in the solution need to vanish. A way to force the

minimization over these components is to store the vectors g̃(k) whose j–th entry is given by

g̃
(k)
j =




0 if x

(k)
j = 0,

(
∇f(x(k))

)
j

if x
(k)
j > 0.

(2.80)

The implementation of Fletcher’s rule for the constrained case was then based on the storage
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of the following matrix G̃

G̃ =
[
D

−1/2
k−m g̃(k−m), . . . , D

−1/2
k−1 g̃(k−1)

]
.

The subsequent m Ritz–like values θi, i = 1, . . . ,m, are then computed by following the same

passages included in equations (2.46)–(2.48) with G and g(k) replaced by G̃ and D
−1/2
k g̃(k).

It is worth noticing that, for small m, this generalized limited–memory approach is not much

more expensive than the BB–like schemes previously described. Indeed, if we assume that Dk

is diagonal, each sweep requires

• the computation of m scaled gradients D
−1/2
j g̃(j) and the m×m symmetric matrix G̃T G̃,

which can be performed with m+ (m+ 1)m/2 = (m+ 3)m/2 vector–vector products;

• the Cholesky factorization of G̃T G̃ and the solution of the linear systemRT r = G̃TD
−1/2
k g̃(k),

which are computationally inexpensive if m is a very small number (between 3 and 5).

By contrast, the computation of either the BB1S or BB2S steplengths (2.78) for m iterations

requires 3m vector–vector products. Therefore, if we assume, for example, to choose m = 3,

the limited–memory approach has a computational cost of O(9n) products as well as the two

BB steplengths.
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Application to Spherical Deconvolution

in diffusion MRI

The problem of detecting and tracking fibre paths on the brain is one of the major challenges

in diffusion Magnetic Resonance Imaging (dMRI): in this framework, the random movement

of molecules in the white matter is exploited to gather informations on fibre orientations and

brain connections. This feature is particulary effective for medical applications as it allows to

investigate the structures of the nervous system in vivo and noninvasively.

Several High Angular Resolution Diffusion Imaging (HARDI) approaches have been pro-

posed to provide accurate estimation of fibre populations in a time suitable for clinical appli-

cation. Many investigation methods of this area are based on Spherical Deconvolution (SD),

which models the signal attenuation acquired with dMRI as a convolution between a given

response function and the fibre orientation distribution.

The variable metric methods presented in the previous section are here exploited to solve

the optimization problems deriving from signal reconstruction into this field of application. In

Section 3.1 we state the applicative problem, while in Section 3.2 we detail the settings of the

forward–backward methods that we employed to tackle it; finally, in Section 3.3 we report some

results of the numerical experience.

3.1 Problem formulation

In this section we recall one of the theoretical approaches aimed to recover fibre orientations

in the white matter of the brain. Spherical deconvolution methods [1, 47, 113, 114] rely on

the assumptions that Diffusion Weighted (DW) signals can be expressed as a convolution of a

single fibre response function (RF) with the fibre orientation distribution (FOD). The FOD is

a function on the unit sphere which models the direction and volume fractions of fibres in a

voxel; the RF corresponds to the DW signal of a single fibre compartment. DW signals can be

55
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modeled by the Gaussian Mixture Model [2, 35] for N fibers:

S(s)

S0
=

N∑

j=1

vjexp
[
−b̂
(
βj + αj〈s, rj〉2

)]
(3.1)

where

• S is the DW signal normalized by the non–diffusion weighted MRI signal S0;

• s is the unit vector in the direction of the diffusion gradient;

• for each fibre j = 1, . . . , N , rj is a unit vector along the direction of the j–th fibre and

pointing in a given hemisphere;

• vj is the partial volume corresponding to the j–th fibre compartment;

• b̂ is the diffusion weighting factor;

• βj corresponds to the radial diffusivities and αj to the difference between the longitudinal

diffusivity and βj .

The FOD f can expressed as a linear combination of basis functions [93]

f(r) =
N∑

j=1

vjδ(r + rj) (3.2)

where δ denotes the Dirac delta function on the unit sphere S
2; thus, formulation (3.1) can be

written as [70]
S(s)

S0
=

∫

S2

H
(
〈s, r〉

)
f(r)µ(dr) (3.3)

where H(〈s, r〉) = exp(−b̂(β +α〈s, r〉2)), µ(dr) is the standard measure on the unit sphere and

〈·, ·〉 denotes the Euclidean scalar product.

The problem of recovering the FOD estimation function (3.3) can then be expressed in

discretized linear form [47, 113]

b = Φx+ η (3.4)

where x ∈ R
n is the vector of the FOD coefficients, b ∈ R

m is the vector of the dMRI measure-

ments; Φ = (Φi,j) is a rectangular matrix given by

Φi,j = exp(−b̂(β + α〈si, uj〉2))

which models the convolution operator, with uj are the unit vectors associated with the FOD

sampling points on the unit sphere; η is the acquisition Gaussian noise.



Problem formulation 57

The deconvolution problem (3.4) is intrinsically ill–posed and it is necessary to apply some

regularization schemes to recover a unique solution for the problem. The small number of fibre

directions in each voxel that corresponds to the FOD coefficients xi suggests some inherent

sparsity for problem (3.4) and Compressive Sampling (CS) theory [23] can be exploited by

using sparsity priors as regularizers. Many methods proposed for the solution of problem (3.4)

exploit sparse regularization by means of `1 minimisation [70, 81, 93] and in [36] the authors

propose `0-based approach performing the reconstruction on a voxel–by–voxel level. Recently, a

quantitative comparison was proposed between the latter method and the approach [82] based

on the well–known Iterative Image Space Reconstruction Algorithm [42]. The `0-based work was

extended in [3] where the fibre configuration is solved on all voxels of interest simultaneously,

aiming at taking into account both voxelwise sparsity and the spatial coherence of the fibre

orientation between neighbour voxels. The approaches developed in [36] and [3] produce a

large–scale problem scheme suitable to be tackled by first order methods and an interesting

framework to test variable metrics acceleration techniques introduced in Section 2.4. The general

configuration of the aforementioned `1 minimization procedure is recalled in the following.

According to [36], problem (3.4) considered for a single voxel v on a domain of Λ total voxels

can be reformulated as a constrained `0 minimization problem

min
xv∈Ω

1
2 ‖Φmnxv − bv‖22 , Ω = {xv ≥ 0, ‖xv‖0 ≤ κ} , (3.5)

where Φmn is an m × n sensing matrix, xv ∈ R
n represents the FOD in the voxel indexed v,

b(v) ∈ R
m is the acquired signal corresponding to voxel v, κ is the expected maximum quantity

of fibre populations in v and ‖·‖0 represents the `0 norm of a vector, i.e., the number of nonzero

components of the vector, which is a non convex function. A reweighted `1 minimization

scheme was first introduced in [25] with the aim to tackle `0 minimisation by a sequence of

convex weighted `1 problems of the form

min
x
(t)
v ∈Ω

1
2

∥∥∥Φmnx
(t)
v − bv

∥∥∥
2

2
, Ω =

{
x(t)
v ≥ 0,

∥∥∥x(t)
v

∥∥∥
w(t),1

≤ κ
}
, (3.6)

where the weighted `1 norm is defined by ‖x‖w,1 =
∑

j wj |xj |. At each iteration t of the

sequence, the weights are assigned as an approximation of the inverse values of the solution

w
(t+1)
j ≈ 1/(x

(t)
j + ε), ε > 0. The sequence of weighted `1 problems aims at approximating the

`0 problem at convergence. The approaches described so far can be efficiently solved by means of

the LARS algorithm [49], whose implementation is available in the open–source toolbox named

SPArse Modeling Software (SPAMS) [80]. The idea of exploiting the anatomical coherence of

fibre tracts led to the extension of this method to the whole volume of the brain. According to

[3], if Λ voxels are considered, by concatenating the vectors xv columnwise a vector X ∈ R
N

can be built, whose columns correspond to the FODs of each voxel (N = n×Λ). Signal vectors

bv are concatenated as well producing a vector B ∈ R
M with M = m × Λ and an M × N
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sparse sensing matrix Φ is obtained by repetition of Λ blocks of the matrix Φmn such that

ΦX = [Φmnx(v)]v∈1,...,Λ ∈ R
M . Formulation (3.6) is then solved simultaneously in the entire

brain volume, leading to the following sequence of constrained large–scale problems

min
X(t)∈Ω

F (X(t)) = 1
2

∥∥∥ΦX(t) −B

∥∥∥
2

2
, Ω =

{
X(t) ≥ 0,

∥∥∥X(t)
∥∥∥
W (t),1

≤ K
}
, (3.7)

where
∥∥X
∥∥
W ,1

=
∑N

i=1WiXi and K = κΛ is the estimated maximum number of fibres to be

detected in the whole brain. The weight vectors W (t) are computed at each step t with the aim

to exploit spatial and angular coherence of fibre bundles, i.e. the idea that fibres in "neighbour"

voxel should take similar directions [3].

Problems (3.7) can be seen as special instances of problem (2.1) considered in Chapter 2,

where Ω =

{
X(t) ≥ 0,

∥∥∥X(t)
∥∥∥
W (t),1

≤ K
}

is a closed, convex and nonempty subset of RN

and the function f(X) = 1
2

∥∥∥ΦX(t) −B

∥∥∥
2

2
is the least squares fit–to–data functional.

3.2 Optimization methods

In this section we will describe the implementation details designed for Algorithm 8, Section

2.4.1 (denoted in the following as Scaled GP_Ex) and SGP (Section 2.4.2, Algorithm 9) methods

employed to solve the sequence of problems (3.7). For sake of clarity, we report here the general

iteration of Scaled GP_Ex algorithm

y(k) = x(k) + βk(x
(k) − x(k−1))

x(k+1) = PΩ,Dk
(y(k) − αkD

−1
k ∇f0(y(k))) (3.8)

and of SGP algorithm:

x(k+1) = x(k) + λk

(
PΩ,Dk

(x(k) − αkD
−1
k ∇f(x(k)))− x(k)

)
. (3.9)

3.2.1 Scaling matrix and steplength selection

The variable metric strategies implemented in the numerical tests are reported in the following.

Scaling matrix

We denote as Dρ the set of symmetric positive definite matrices D with eigenvalues τj such that

0 <
1

ρ
≤ τj ≤ ρ, j = 1, . . . , N

and PΩ,D(v) = argminu∈Ω(u− v)TD(u− v).

For both the considered methods, the scaling matrices Di ∈ Dρ are chosen as diagonal matrices



Optimization methods 59

in order to avoid significant computational costs: so, for each iteration i, Di = (Di)j,j =: τ
(i)
j

for j = 1, . . . , N .

As already pointed out in Section 2.4, the assumptions of Theorems 2.8, 2.9, 2.11 and 2.12

are fulfilled when, for any i, the eigenvalues τ
(i)
j of Di are such that

0 <
1

ρi
≤ τ (i)j ≤ ρi, j = 1, . . . , N , ρ2i = 1 + θi ,

∞∑

i=0

θi <∞.

For the convergence of the iterates of Scaled GP_Ex, an additional requirement for the values

of θi is also needed

{θi} = O
( 1

ip

)
, p > 2.

Thus, following the technique described in Section 2.4.2, we decompose the gradient of the

function F as

∇F (X) = V (X)− U(X) , V (X) > 0 , U(X) ≥ 0

by choosing

V (X) = ΦTΦX , U(X) = ΦTB. (3.10)

As a consequence, we equip the SGP and the Scaled GP_Ex algorithms with the following

scaling strategy:

(Di)j,j = max

{
1

ρi
,min

{
ρi,

(z(i))j

(ΦTΦz(i))j

}}
, j = 1, . . . , N, ρi =

√
1 +

γ

ip
.

where z(i) = x(i) for the SGP method, z(i) = y(i) for the Scaled GP_Ex method, γ > 0

and p > 2. This updating rule satisfy the convergence conditions and doesn’t add remarkable

computational cost since the vector ΦTΦz(i) is available from the gradient.

In the numerical experiments of the next section, we set γ = 1013 and p = 2.1.

Steplength selection

For each iteration i, the steplength αi for Scaled GP_Ex is constant or eventually computed

via a backtracking algorithm, while the extrapolation parameter βi is chosen accordingly to the

following rule in order to ensure the convergence of the method:

βi =
i− 1

i+ 2.1
.

The steplength rule introduced in [91] and described in Section 2.4.2 (formulae (2.79) -

(2.80)) is here employed with m = 3

αi+j =
1

θj
, j = 1, 2, 3.

for the determination of SGP steplengths.
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3.2.2 Computation of the projection

The set of feasible points for the solution of problem (3.7) is defined by nonnegativity and linear

inequality constraints; thus, the problem of projecting a point z ∈ R
n onto Ω can be seen as a

particular case of projecting onto a set Ω̃

Ω̃ =
{
x ∈ R

n | a ≤ x ≤ b, ‖x‖W,1 ≤ c
}
=
{
x ∈ R

n | a ≤ x ≤ b, W Tx ≤ c,W ∈ R
n
}
,

(3.11)

defined by box and linear inequality constraints, whose definition is detailed in the following.

Given a nonempty closed convex set S ⊂ R
n and a vector z ∈ R

n, we are interested in

performing the projection in the norm induced by a diagonal symmetric and positive definite

matrix D

‖x‖D =
√
xTDx, D = diag(d) = diag(d1, . . . , dn), di > 0

that is, we need to find

x∗ = PS,D(z) = argmin
x∈S

1

2
‖x− z‖2D = argmin

x∈S
f̃(x) =

1

2
xTDx− zTDx (3.12)

We now show that the solution of problem (3.12) for S = Ω̃ can be found by means of

Algorithm 11, where

Ωeq = {x ∈ R
n | a ≤ x ≤ b,

∑n
i=1Wixi = c} .

Algorithm 11 Projection onto a region defined by a linear inequality and box constraints

Given a point z ∈ R
n, set the vectors a, b ∈ R

n, a ≤ b, W ∈ R
n and the constant c ∈ R.

xbox = max{a,min{b, z}}
IF
∑n

i=1Wi(xbox)i ≤ c

x∗ = xbox

ELSE

x∗ = PΩeq ,D(z)

We first recall the Karush-Kuhn-Tucker (KKT) conditions for the quadratic programming

problem arising from projecting on

Ωeq = {x ∈ R
n | a ≤ x ≤ b,

∑n
i=1Wixi = c}

If x̂ is a local minimizer for problem (3.12) with S = Ωeq, then there exist Lagrange multipliers
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α̂, β̂ ∈ R
n and λ̂ ∈ R such that

∇xL(x̂, α̂, β̂, λ̂) = Dx̂−Dz + λ̂W − α̂+ β̂ = 0, (3.13a)

c−
n∑

i=1

Wix̂i ≥ 0, (3.13b)

x̂ ≥ a, −x̂ ≥ −b, (3.13c)

α̂ ≥ 0, β̂ ≥ 0, (3.13d)

αT (x̂− a) = 0, (3.13e)

βT (b− x̂) = 0. (3.13f)

We now write down the KKT conditions for problem (3.12) with S = Ω̃; if x∗ is a local

minimizer, then there exist Lagrange multipliers α,β ∈ R
n and λ ∈ R such that

∇xL(x∗,α,β, λ) = Dx∗ −Dz + λW −α+ β = 0, (3.14a)

c−
n∑

i=1

Wix
∗
i ≥0, (3.14b)

x∗ ≥ a, −x∗ ≥ −b, (3.14c)

λ≥0, α ≥ 0, β ≥ 0 (3.14d)

αT (x∗ − a) = 0, βT (b− x∗) = 0, (3.14e)

(c−
n∑

i=1

Wix
∗
i )λ = 0. (3.14f)

From (3.14a) we have that

α− β = D(x∗ − z) + λW ≡ ∇f̃(x∗) + λW . (3.15)

Moreover, if we denote I = {i | ai < x∗i < bi} the set of inactive components’ indexes of the

vector x∗ and with Ia = {i | x∗i = ai} and Ib = {i | x∗i = bi} the sets of actives’ ones, from

(3.14d) and (3.15) we have

αi = 0, βi = 0, −[∇f̃(x∗)]i = λWi, i ∈ I,

that is, the i-th component of the gradient is equal to the quantity −λWi for all i ∈ I.
We define the following indexes’ sets with respect to the point z

Z = {i | ai < zi < bi}, Za = {i | zi ≤ ai}, Zb = {i | zi ≥ bi}

We set xbox := max{a,min{b, z}} and we first suppose that
∑

i∈Z Wi(xbox)i ≤ c. By

setting x∗ = xbox, we can choose λ∗ = 0 and we have that α∗
j = 0, β∗j = 0 for j ∈ Z. Moreover,
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α∗
i = Di,i(ai − zi) and β∗i = 0 for i ∈ Za and α∗

i = 0 , β∗i = Di,i(zi − bi) for i ∈ Zb. With these

choices for (x∗, λ∗,α∗,β∗) the KKT conditions (3.14) are satisfied:

[D(x∗ − z) + λ∗W −α∗ + β∗]j = Dj,j(zj − zj) = 0, j ∈ Z
[∇xL(x∗, λ∗,α∗,β∗)]i = Di,i(ai − zi)−Di,i(ai − zi) = 0, i ∈ Za, (3.16a)

[∇xL(x∗, λ∗,α∗,β∗)]i = Di,i(bi − zi) +Di,i(zi − bi) = 0, i ∈ Zb

c−∑n
i=1Wix

∗
i = c−∑Wi(xbox)i ≥ 0 (3.16b)

x∗ ≥ a, −x∗ ≥ −b (3.16c)

λ∗ ≥ 0, α∗ ≥ 0, β∗ ≥ 0, (3.16d)

α∗T (x∗ − a) =
∑

α∗
i (x

∗
i − ai) = 0, β∗T (b− x∗) =

∑
β∗
i (bi − x∗i ) = 0 (3.16e)

(c−∑n
i=1Wix

∗
i )λ

∗ = 0 (3.16f)

We now suppose that
∑
Wi(xbox)i > c and we set x∗ = x̂ = PΩeq ,D(z), λ

∗ = λ̂, α∗ = α̂,

β∗ = β̂. From KKT equations (3.13) we derive

∇xL (x∗, λ∗,α∗,β∗) = 0 (3.17a)

c−∑n
i=1Wix

∗
i = 0

x∗ ≥ a, −x∗ ≥ −b
α∗ ≥ 0, β∗ ≥ 0

α∗T (x∗ − a) = 0, β∗T (b− x∗) = 0.

We now must prove that λ∗ ≥ 0. From (3.17a) we have λ∗W = D(z − x∗) + α∗ − β∗. We

observe that
∑
Wi(xbox)i > c =

∑n
i=1Wix

∗
i , so that

∑
Wi [(xbox)i − x∗i ] > 0. As a consequence,

∃ j | Wj

[
(xbox)j − x∗j

]
> 0, or, equivalently ∃ j | Wj

[
max{aj ,min{bj , zj}} − x∗j

]
> 0. Now

we may have four different scenarios.

I. aj < x∗j < bj and Wj > 0

We have that max{aj ,min{bj , zj}}−x∗j > 0 so that aj < x∗j < max{aj ,min{bj , zj}} ≤ zj .
From α∗

j = 0, β∗j = 0 it follows λ∗ = 1
Wj
Dj,j

(
zj − x∗j

)
> 0.

II. aj < x∗j < bj and Wj < 0

We have that max{aj ,min{bj , zj}}−x∗j < 0 so that bj > x∗j > max{aj ,min{bj , zj}} ≥ zj .
From α∗

j = 0, β∗j = 0 it follows λ∗ = 1
Wj
Dj,j

(
zj − x∗j

)
> 0.

III. x∗j = aj .

We have that α∗
j ≥ 0, β∗j = 0. Since max{aj ,min{bj , zj}} > x∗j = aj , we have that
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max{aj ,min{bj , zj}} ≤ zj ; furthermore,Wj > 0. It follows that λ∗ = 1
Wj

[
αj +Dj,j

(
zj − x∗j

)]
>

0.

IV. x∗j = bj .

We have that α∗
j = 0, β∗j ≥ 0. Since max{aj ,min{bj , zj}} < x∗j = bj , we have that

max{aj ,min{bj , zj}} ≥ zj ; furthermore,Wj < 0. It follows that λ∗ = 1
Wj

[
Dj,j

(
zj − x∗j

)
− β∗j

]
>

0.

Thus, the problem of projecting a point onto the set Ω̃ is reduced to the problem of projecting

onto the set Ωeq, which can be addressed by several linear time algorithms available in the

literature (see e.g. [39]).

3.3 Numerical experiments

We performed our experiments with the aim to evaluate effectiveness of the algorithms equipped

with the acceleration strategies described in Section 2.4 in some synthetic problems. All the

numerical results were obtained on a MacBook Pro equipped with an Intel Core i7 processor

3GHz with 8 Gb of RAM running Matlab (Release 2015a) with its standard settings.

Our tests consisted in solving problems of the form (3.7) derived by applying the reweighted

`1–minimization scheme to the datasets available at https://github.com/basp-group/co-dmri;

each weighted-`1 problem was solved with GP_Ex (Algorithm 7), GP (Algorithm 6), Scaled

GP_Ex (Algorithm 8) and SGP (Algorithm 9) methods, considering GP_Ex as the state-of-

the-art method to perform comparisons.

A volume of Λ = 16 × 16 × 5 voxels, an unknown FOD of n = 201 components, different

acquisition signals of dimensions m1 = 6 and m2 = 15 and a maximum estimated number of

fibre equal to κ = 3 in each voxel were considered. This setting led to assess a sequence of

problems with dimensions M1 = 7680, M2 = 19200, N = 257280 and K = 771840. Different

noise level corrupting the signals were also considered, in particular we used datasets with

SNR = 10, 15, 20.

The experimental setup is summarized as follows. For each problem (3.7)

1. GP_Ex is executed with high accuracy in order to obtain an estimated ground–truth X∗,

by means of the stopping criterion

S(Xk) :=

∥∥F (Xk+1)− F (Xk)
∥∥
2∥∥F (Xk)

∥∥
2

≤ 7 · 10−4 ;

2. GP_Ex is executed again and stopped with a milder tolerance by means of the criterion

S(Xk) ≤ 10−3

providing a solution X̄
∗
;
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3. GP, Scaled GP_Ex and SGP are executed and stopped when

F (Xk) ≤ F (X̄∗
)

where X̄
∗

is the solution issued by GP_Ex at step 2.

In order to evaluate the performance of the methods, we use the following error distances

Err(i) :=
∥∥ΦX(i)−B

∥∥
2
−R∗ , Err(T ) :=

∥∥ΦX(T )−B
∥∥
2
−R∗ (3.18)

where X(i) is the approximation of the solution after i iterations, X(T ) is the approximation

of the solution after T seconds and

R∗ =
∥∥ΦX∗ −B

∥∥
2

with X∗ corresponding to the solution computed by GP_Ex at step 1. Moreover, the Residual

quantity shown in Table 3.1 is defined as ‖ΦX̃ −B‖2, where X̃ is the solution computed by

the methods.

Figure 3.1 and Figure 3.2 show the behaviour of the considered first–order methods with

respect to iterations and time for two different test problems denoted by TP1 and TP2.

The results in Table 3.1 and Figures 3.1 and 3.2 show that better performances can be obtained

when applying the scaled version of both the considered algorithms. In particular, the time

reduction for the fibre orientation estimation problems emphasizes the usefulness of the proposed

scaling strategy in solving large–scale dMRI problems.
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Test Algorithm Residual Iterations Comp. 6= 0 Time (s)

m1 = 6

GP_Ex 8.68775514e+00 439 3141 12.50

SNR = 10 GP 8.68747419e+00 263 2950 9.70

TP1 Scaled GP_Ex 8.68771874e+00 254 2776 5.51

SGP 8.68735279e+00 160 3214 5.16

m1 = 6

GP_Ex 5.68775185e+00 685 5017 23.57

SNR = 10 GP 5.68773235e+00 593 4607 25.95

TP2 Scaled GP_Ex 5.68770834e+00 433 4759 10.51

SGP 5.68769867e+00 452 5073 15.93

m2 = 15

GP_Ex 1.18073857e+01 455 4699 10.87

SNR = 10 GP 1.18073536e+01 265 4557 8.59

TP1 Scaled GP_Ex 1.18073857e+01 207 4384 4.65

SGP 1.18073048e+01 190 4822 6.15

m2 = 15

GP_Ex 1.09324568e+01 649 6591 21.76

SNR = 10 GP 1.09322165e+01 589 6022 24.63

TP2 Scaled GP_Ex 1.09323656e+01 390 6629 9.45

SGP 1.09320978e+01 365 7014 13.07

m2 = 15

GP_Ex 7.83868965e+00 430 6260 10.10

SNR = 15 GP 7.83864069e+00 328 6220 11.99

TP1 Scaled GP_Ex 7.83845331e+00 213 5893 4.88

SGP 7.83740043e+00 185 6151 6.32

m2 = 15

GP_Ex 6.20914135e+00 92 11576 2.27

SNR = 20 GP 6.20761867e+00 44 13574 1.71

TP1 Scaled GP_Ex 6.20887673e+00 40 13168 1.01

SGP 6.20583557e+00 29 13854 1.03

Table 3.1: FOD tests. From left to right: residual value, number of iterations required to meet

the stopping criterion, number of non-negative solution’s components and execution time.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.1: FOD tests, error versus iterations. First row: test problem with m1 = 6 and

SNR =10, TP1 (left) and TP2 (right); second row: test problem with m2 = 15 and SNR =10,

TP1 (left) and TP2 (right); third row: test problem with m2 = 15, SNR =15, TP1 (left) test

problem with m2 = 15, SNR =20, TP1 (right).
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(a) (b)

(c) (d)

(e) (f)

Figure 3.2: FOD tests, error versus computational time. First row: test problem with m1 = 6

and SNR =10, TP1 (left) and TP2 (right); second row: test problem with m2 = 15 and

SNR =10, TP1 (left) and TP2 (right); third row: test problem with m2 = 15, SNR =15, TP1

(left) test problem with m2 = 15, SNR =20, TP1 (right).





Chapter 4

Application to 3D Computed

Tomography

In this chapter we consider an optimization problem arising in 3D X–ray Computed Tomography

(CT) image reconstruction [22, 84] from low sampling acquisitions, i.e., when the CT system

acquires only a reduced set of data. This application has recently received growing attention

in the medical community, since sub–sampling acquisitions have several advantages over the

traditional complete sampling acquisitions in speeding up the imaging process, thus reducing

the exposure to ionizing radiations and increasing the patient safety [21, 61, 94].

In these cases the traditional analytical reconstruction methods such as the Filtered Back–

Projection (called Feldkamp method in 3D [51]) produce images of low quality, with extreme

artifacts and high noise. Iterative Image Reconstruction (IIR) methods are generally preferred

in this framework because they can introduce a priori information about the unknown object

and they can exploit the Compressive Sampling (CS) theory [24] for reconstructing a signal or

an image from a reduced number of acquisitions with respect to the Nyquist theory [61]. The

drawback of IIR algorithms is their higher computational cost with respect to the analytical

methods, but thanks to the dramatic improvement of CPUs speed and the possibility to perform

parallel computation at low cost on GPUs, the time for the IIR algorithms execution is now

acceptable even in the clinical setting [8].

In real applications, the problem has a very large size, of the order of billions, and the

problem solution is very challenging, because in the clinical applications a good image must be

reconstructed in at most 1–2 minutes. For these reasons, the IIR methods are not executed

until convergence, but they are stopped after the desired time. Thus, it is essential to use a

reconstruction algorithm with non–expensive iterations and fast convergence in the very first

iterations. To this end, some suggestions are available in the recent literature: first–order

optimization methods based on accelerated gradient schemes have been proposed in [69, 105,

108], optimization transfer methods have been applied to CT image reconstruction for example

69
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where b ∈ R
Np×Nθ (b > 0) is the vector of recorded projections affected by noise, x ∈ R

Nv

represents the discretization of µ(w) in the Nv voxels of the object (lexicographically ordered

in a vector) and A ∈ R
(Np×Nθ)×Nv is the matrix describing the system geometry. In real

applications, Np is of the order of millions and Nv is of order of few billions and Nθ is of order

101 for sparse tomography. Different algorithms can be found in literature for the computation

of A; we use here the Siddon algorithm [104] based on geometrical ray–tracing. Each element

aθi,j of A represents the length of the intersection of the ray, emitted at angle θ, recorded by pixel

i of the detector, with the voxel j (in this notation, the pixels of the detector and the voxels of

the object are lexicographically ordered in vectors). Moreover, in a reasonable physical setting,

the matrix A has elements greater than zero in each column, because each voxel is projected

at least once onto the detector. In the case of reduced sampling acquisition here considered,

Np ×Nθ < Nv hence the linear system (4.2) has infinite possible solutions. Furthermore, since

the linear system comes from the discretization of the integral equation of the first kind (4.1),

the problem is ill–conditioned and some of the solutions of (4.2) are dominated by noise; thus,

regularization strategies are necessary.

The problem can be reformulated as a penalized optimization problem of the form [106]:

min
x≥0

f(x) = J(x) + λR(x) (4.3)

where J(x) is the fit–to–data function involving the discretization of the continuous integral

imaging model whose expression is related to the kind of noise on the data; R(x) is a regular-

ization function and λ is the regularization parameter.

Since tomographic data are affected by mixed Gaussian and Poisson noise, it is desirable

to be able to efficiently solve problem (4.3) with J(x) equal to the linear Least Squares (LS)

functional, when Gaussian noise is dominant, or equal to the nonlinear Kullback–Leibler (KL)

divergence, when Poisson noise is dominant. The possibility to choose the proper form of J(x)

lies on the real application necessities, as the dominant kind of noise depends on the specific

physical CT system. The function R(x) should reduce the noise, regularize the ill–conditioned

problem arising from the discretization of an ill–posed Fredholm integral equation and impose

some sparsity on the computed solution following the CS theory. Since many medical images

are almost uniform inside the organs, the most widely used regularization function for the CT

problems is the Total Variation (TV) function [64, 107, 109, 106, 105, 108, 116, 73, 101]

TV (x) =

∫

Ω
|∇x|dx (4.4)

that forces the sparsity in the gradient domain of the solution.

Then, the problem can be reformulated as a penalized optimization problem of the form

[106]:

min
x≥0

f(x) = J(x) + λTVβ(x) (4.5)
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where TVβ(x) is a smoothed differentiable version of the TV function defined as [115]:

TVβ(x) =

Nv∑

j=1

√
‖∇xj‖22 + β2 (4.6)

with β a positive small parameter.

For what concerns the fit–to–data function J(x), its expression is related to the noise on the

data. Following a Maximum Likelihood approach [11], if the noise has a Gaussian distribution,

the Least Squares function:

J(x) =
1

2
‖Ax− b‖22 (4.7)

gives the appropriate fit–to–data function, while, if the noise has a Poisson distribution, the

Kullback–Leibler divergence

J(x) =

Np×Nθ∑

i=1




Nv∑

j=1

Aijxj + bg − bi − bilog
∑Nv

j=1Aijxj + bg

bi


 (4.8)

(bg > 0 is the background value) is the suitable term. The noise on the CT data is mixed Poisson

(due to the X–rays particles behaviour) and Gaussian (due to the recording digital system) and

the dominant one depends on the particular system considered. Hence, we consider in this

paper the two different cases in which the fit–to–data term J(x) is defined as in (4.7) or as is

(4.8). In both cases, the objective function of the problem (4.5) is coercive and strictly convex

on the nonnegative orthant, therefore the problem has a unique solution.

Problem discretization

For the discussion in the next section, it is useful to introduce the discretization of the problem

in the 3D setting, by using the notation jx, jy, jz to indicate the indices of a voxel of the discrete

object on the three cartesian axes.

The TVβ(x) function is discretized by forward differences with boundary periodic condi-

tions. Starting from works [115, 119] which deal with bi–dimensional problems, we derive the

expression of the discrete TVβ(x) function in the 3–dimensional case [77]:

TVβ(x) :=
1

2

Nx∑

jx=1

Ny∑

jy=1

Nz∑

jz=1

φ(δ2xjx,jy ,jz) (4.9)

where Nx ×Ny ×Nz = Nv,

δ2xjx,jy ,jz = (xjx+1,jy ,jz − xjx,jy ,jz)2 + (xjx,jy+1,jz − xjx,jy ,jz)2 + (xjx,jy ,jz+1 − xjx,jy ,jz)2

and

φ(t) = 2
√
t+ β2.
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In order to better explain some details of the SGP algorithm presented in the next section, it

is convenient to recall also the form of the (jx, jy, jz) entry of the gradient of TVβ(x):

∂TVβ
∂xjx,jy ,jz

(x) =
1

2

∂

∂xjx,jy ,jz

(
φ(δ2xjx,jy ,jz) + φ(δ2xjx−1,jy ,jz) + φ(δ2xjx,jy−1,jz) + φ(δ2xjx,jy ,jz−1)

)

=
(
φ′(δ2xjx,jy ,jz)(3xjx,jy ,jz − xjx+1,jy ,jz − xjx,jy+1,jz − xjx,jy ,jz+1)

)
+

+
(
φ′(δ2xjx−1,jy ,jz)(xjx,jy ,jz − xjx−1,jy ,jz)

)
+

+
(
φ′(δ2xjx,jy−1,jz)(xjx,jy ,jz − xjx,jy−1,jz)

)
+

+
(
φ′(δ2xjx,jy ,jz−1)(xjx,jy ,jz − xjx,jy ,jz−1)

)
.

4.2 Optimization methods

In this section we describe the updating rules for the scaling matrix Dk and the steplength

αk that allow SGP (Section 2.4.2, Algorithm 9) to efficiently solve the described CT problem.

For sake of clarity, we report here the general iteration of the SGP method for the solution of

problem (4.5)

x(k+1) = x(k) + λk

(
P+(x

(k) − αkDk∇f(x(k)))− x(k)
)
. (4.10)

recalling the fact that a classic GP scheme can be obtained by choosing Dk = In. As the feasible

set of problem (4.5) is Ω =
{
x ∈ R

Nv |x ≥ 0
}
, P+(z) is the euclidean projection of the vector

z ∈ R
Nv onto the nonnegative orthant.

Following the technique described in Section 2.4.2, we define the diagonal scaling matrix by

means of special splittings of the gradient of the objective function:

∇f(x) = V f (x)− Uf (x), V f (x) > 0, Uf (x) ≥ 0, (4.11)

where V f (x) and Uf (x) are obtained as:

V f (x) = V J(x) + λV TV (x), Uf (x) = UJ(x) + λUTV (x),

with
∇J(x) = V J(x)− UJ(x), V J(x) > 0, UJ(x) ≥ 0,

∇TVβ(x) = V TV (x)− UTV (x), V TV (x) > 0, UTV (x) ≥ 0.

Given the splitting (4.11), we propose to update the diagonal scaling matrix Dk+1 = {d(k+1)
j,j }

in the following way:

d
(k+1)
j,j = min

(
ρk+1,max

(
1

ρk+1
,

x
(k+1)
j

V f
j (x(k+1))

))
, j = 1, . . . , n.

The vectors V J(x) and V TV (x) defining V f (x) are set by taking into account the special form

of ∇J(x) and ∇TVβ(x), respectively.
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When the J(x) is the LS function (4.7), the gradient of the fit–to–data term has the form:

∇J(x) = ATAx−AT b;

in this first case, we choose:

V J(x) = ATAx, UJ(x) = AT b.

When the fit–to–data term J(x) is the KL function (4.8), we have that:

∇J(x) = AT
1−ATY −1b,

where 1 ∈ R
n is a vector whose components are all equal to one and Y = diag (Ax+ bg) is

a diagonal matrix with the entries of (Ax + bg) on the main diagonal; in this second case we

choose:

V J(x) = AT
1, UJ(x) = ATY −1b.

Accordingly with the notation introduced in Section 4.1 for the entries of ∇TVβ(x), we finally

set the components of V TV (x) as

V TV
jx,jy ,jz

(x) =
(
3φ′(δ2xjx,jy ,jz) + φ′(δ2xjx−1,jy ,jz)+

φ′(δ2xjx,jy−1,jz) + φ′(δ2xjx,jy ,jz−1)
)
xjx,jy ,jz .

Following the suggestions in [17, 31, 30], the parameter ρk+1 is chosen as ρk+1 =
√

1 + 1015/(k + 1)2.1.

Steplength selection

Once the scaling matrix Dk+1 has been defined, a new value for the steplength αk+1 can be

computed with the aim to achieve further acceleration of the iterative process. We equipped the

SGP algorithm with two steplength selection strategies. First, the alternating strategy similar

to (2.41) (introduced in Section 2.3.2) with variable parameter τk is used:

αk+1 =




min

{
αBB2
j : j = max{1, k + 1−mα}, . . . , k + 1

}
, if

αBB2
k+1

αBB1
k+1

< τk

αBB1
k+1 , otherwise

(4.12)

where mα = 2, τ0 = 0.5 and the parameter τk is updated in the following way

if αBB2

k+1/α
BB1

k+1 < τk

τk+1 = 0.9 τk,

else

τk+1 = 1.1 τk,

end.
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Secondly, the so called Ritz–like values in described in Section 2.4.2 [Steplength choice], are

used to define the steplengths for m = 3 iterations:

αk+j =
1

θj
, j = 1, 2, 3. (4.13)

4.3 Numerical experiments

In this section we present the numerical results performed on on a a MacBook Pro equipped

with an Intel Core i7 processor 3GHz with 8 Gb of RAM running Matlab (Release 2015a) with

its standard settings. For performing the tests, we used some functions of the TVReg Matlab

Toolbox, http://www.imm.dtu.dk/~pcha/TVReg/ [71].

4.3.1 Test problem

We consider as the true object x∗ the digital Shepp Logan phantom discretized in Nv =

Nx ×Ny ×Nz = 61× 61× 61 = 226981 voxels lexicographically ordered in a vector. The slices

number 24, 31 and 35 in the z direction are shown in Figure 4.2. The projections have been

created as:

b∗ = A · x∗

where A is the projection matrix, obtained with the functions in the TVReg Toolbox which

simulates a system where a source moves on a semi–sphere emitting X–rays cone beams from

Nθ angles. The detector is supposed with Np = 61×61 pixels and the number of angles Nθ varies

in the set {19, 37, 55}. In all the cases the problem is underdetermined. The projections are

corrupted by noise, with both Gaussian and Poisson distribution, as specified in the following

subsections.

Stopping criterion and parameters

We describe here the stopping criterion for the SGP algorithm and the setting of its main

parameters. If k is the index of the current iteration and

Sf
k :=

|f(x(k+1))− f(x(k))|
|f(x(k))|

is the relative distance between successive values of the objective function, we consider the

conditions

Sf
k ≤ ε1,

1

p

p−1∑

j=0

Sf
k−j ≤ ε2 if k ≥ p− 1,

where ε1 = 10−6, p = 20 and ε2 = 10−5; the SGP stopping criterion consists in satisfying both

the conditions or performing a maximum number of k = 1000 iterations.

For what concerns the SGP parameters, the setting reported below is used:
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• γ = 0.4 and σ = 10−4 as backtracking parameters;

• αmin = 10−10, αmax = 105, α0 = 1, mα = 2 and τ0 = 0.5 for the steplength selection.

Results evaluation

In order to evaluate the reconstruction results, we consider the the Relative Error (Relerr)

between the exact volume x∗ and the reconstructed image x̃ (Relerr = ‖x∗ − x̃‖2/‖x∗‖2). The

reconstructed images are also evaluated by plotting the profile of the yellow vertical line in

Figure 4.2d, vertical profile (VP), and the profile over the 61 layers in the z direction of the red

pixel in Figure 4.2d, depth profile (DP).

We show the results obtained by the algorithms at three different temporal windows: at 5

seconds (10–15 iterations), for simulating a real–time execution; at 20 seconds (50–60 iterations),

corresponding to an over–time of few minutes in real applications; at the convergence, i.e., when

the convergence criterium is satisfied (this is a long execution that can be performed only off–

line in a real application). Each of these three different outputs reflects a practical interest and

together they represent the evolution of the methods in time.

(a) layer 24 (b) layer 31

(c) layer 35 (d) layer 31

Figure 4.2: different layers in the z–direction of the original phantom. For the analysis of the

results, in (d) some interesting features in layer 31 are highlighted: a yellow line along which

we analyse the vertical profile and a red pixel to examine the depth profile.
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4.3.2 Results for Gaussian noise tests

In this paragraph we show the results obtained on the simulated data b = b∗ + e, where e is

the vector representing white Gaussian noise with level defined as ν = ‖e‖2
‖b∗‖2

; we consider here

ν = 0.01, corresponding to a Signal–to–Noise Ratio SNR := 20 · log10( ||b||2
||b−b∗||2

) of about 40.

We consider the fit–to–data function J(x) as the LS function and we set the TV smoothing

parameter β equal to 0.001 in all the experiments. The regularization parameter λ has been

heuristically set to 0.09; we have experimented that for this test the model is not very sensitive

to the value of λ (similar results have been obtained with different values of λ in the interval

[0.005, 0.5]).

We compare the results obtained by the proposed SGP method equipped with ABB steplengths

(4.12), the non–scaled GP method (GP) equipped with the same steplength selection used by

SGP and the Unknown Parameter Nesterov (UPN) method proposed in [69], implemented in

the TVReg toolbox. The UPN method has been equipped with the same stopping criterion used

for GP and SGP and its parameters have been set at their best values after a careful tuning.

In Table 4.1 we present the results obtained with different number of views (Nθ = 19, 37, 55)

for the GP, SGP and UPN methods. In the columns from left to right we report the Relative

Error, the objective function value and the number of performed iterations in the three con-

sidered temporal windows: at 5 seconds, at 20 seconds and at convergence. From the table,

we see that the SGP method outperforms the others in the first iterations (5 and 20 seconds)

for all the considered angles; at convergence, all the methods give very similar results. The

reconstructions of central layer (layer 31) obtained with the three considered methods in the

case Nθ = 37 are shown in Figure 4.3.

In Figure 4.4 the errors versus the iterations (on the left) and the objective function values

versus the iterations (on the right) are shown in log–log scale. We compare here the GP method

(blue line), the SGP method (red line) and the UPN method (green line) up to the convergence

of the methods. The advantage of using the scaling matrix is evident, especially in the first

iterations.

Figure 4.5 displays the VP (on the left) and DP (on the right) after 5 seconds, 20 seconds

and at convergence. We compare again the GP reconstruction (blue line), SGP reconstruction

(red line) and UPN reconstruction (green line) with the phantom profile (grey line). The VP

plots confirm that after few iterations (5 seconds) we can identify, in the signal reconstructed

by the SGP method, all the objects with a good approximation of their intensity; in the DP

plot after 20 seconds the SGP method has almost completely eliminated the noise, while the

GP and UPN plots show a residual noise yet. We can see that the SGP profiles are less noisy

than the others and in the DP the peak of the SGP line is the closest to the exact one.
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Relerr fun iters

Nθ = 19

5 s 0.3816 5574.36 16

GP 20 s 0.1548 1596.75 69

conv 0.0559 1498.49 263

5 s 0.2637 3396.96 19

SGP 20 s 0.1178 1560.48 71

conv 0.0543 1498.57 198

5 s 0.3785 6075.55 11

UPN 20 s 0.1786 1652.62 48

conv 0.0580 1484.46 606

Nθ = 37

5 s 0.3475 11537.90 16

GP 20 s 0.0898 1795.02 64

conv 0.0245 1645.77 154

5 s 0.1840 4335.56 18

SGP 20 s 0.0477 1689.30 66

conv 0.0247 1646.39 194

5 s 0.4001 19918.90 8

UPN 20 s 0.1045 1917.49 46

conv 0.0241 1632.07 224

Nθ = 55

5 s 0.3091 14306.80 15

GP 20 s 0.0779 1997.80 60

conv 0.0199 1783.11 142

5 s 0.2148 9662.70 16

SGP 20 s 0.0277 1814.38 60

conv 0.0199 1783.60 147

5 s 0.4315 40865.00 6

UPN 20 s 0.0677 2033.66 46

conv 0.0199 1769.47 200

Table 4.1: results obtained on the test problems with data affected by Gaussian noise.
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(a) GP method at 5 seconds, 20 seconds, convergence.

(b) SGP method at 5 seconds, 20 seconds, convergence.

(c) UPN method at 5 seconds, 20 seconds, convergence.

Figure 4.3: reconstructions obtained in case of Gaussian noise on the data. From the left to the

right: reconstructions after 5 seconds, after 20 seconds, at convergence.

4.3.3 Results for Poisson noise tests

We consider now some tests where the projections are affected by Poisson noise, with SNR

' 40 and background bg = 10−5. The problem is solved by using the KL fit–to–data function

in (4.8). In this case the regularization parameter λ has been heuristically set to 0.03 and the

TV smoothing parameter β = 0.01; we have experimented that, as in the case of Gaussian

noise, similar results have been obtained with different values of λ in the interval [0.001, 0.1].

In order to test the effectiveness of the acceleration strategies proposed in Sections 2.3

and 2.4, we compare the results obtained with the GP and the SGP methods on four distinct

implementations, based on either the ABB rules or the Ritz–like values: in the rest of this

Chapter, GP ABB and SGP ABB will refer to GP (Algorithm 6) and SGP (Algorithm 9)

methods equipped with ABB steplengths (4.12), while GP R and SGP R will refer to GP and

SGP methods equipped with Ritz–like steplengths (4.13).

Table 4.2 reports the results in the case Nθ = 19, 37, 55, with the same information of Table
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(a) Nθ = 19

(b) Nθ = 37

(c) Nθ = 55

Figure 4.4: case of Gaussian noise. On the left: errors vs iterations; on the right: function

values vs iterations. The circles and the diamonds represent the values at 5 and 20 seconds,

respectively.

4.1. For the KL model, the performance improvement due to the scaling is more consistent than

in the LS model, as it can be seen by the Relative Error values. If the number of performed

iterations in the last column is equal to 1000 an asterisk reminds that the algorithm has stopped

after reaching the maximum number of iterations. We want to stress that this happens only for

the GP method, confirming its slower convergence rate. Figure 4.7 shows the Relative Error

versus the iterations in the left panel for GP ABB (black line), GP R (green line), SGP ABB

(blue line) and SGP R (red line); the objective function values versus the iterations are displayed

in the right panel with the same color correspondence. Independently of the steplength rule, the
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(a) Profiles after 5 seconds

(b) Profiles after 20 seconds

(c) Profiles at convergence

Figure 4.5: case of Gaussian noise. Profiles for 37 angles: on the left VP plots and on the right

DP plots at different temporal windows.

scaling strategy accelerates the GP methods considerably, especially in the first iterations. In

Figure 4.6 the reconstructions of the layer 31 obtained with SGP equipped with both steplength

selection rules after 5 seconds, 20 seconds and at convergence are represented: the quality of

the SGP R reconstruction after 5 iterations is noticeable.

The analysis of VP and DP profiles for SGP ABB and SGP R in the case of Nθ = 37 in

Figure 4.8 shows that the scaling allows recovering very good profiles in very short time: after

20 seconds the line of the reconstructed image almost overlap the line of the exact phantom

(the only exception is the small peak in the center of the DP).
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Relerr fun iters

Nθ = 19

5 s 0.6301 16683.45 12

GP BB 20 s 0.5691 9050.69 61

conv 0.4480 3402.91 1000*

5 s 0.4938 7287.88 14

GP R 20 s 0.3599 4116.67 65

conv 0.3107 1660.81 882

5 s 0.2145 768.06 19

SGP BB 20 s 0.1003 524.97 72

conv 0.0917 522.81 184

5 s 0.1545 563.89 19

SGP R 20 s 0.0976 524.51 71

conv 0.0870 521.99 206

Nθ = 37

5 s 0.6914 55825.21 12

GP BB 20 s 0.6396 32657.93 51

conv 0.4603 7504.14 560

5 s 0.4386 12952.16 13

GP R 20 s 0.4250 7810.99 62

conv 0.3876 4348.95 375

5 s 0.1831 1201.56 17

SGP BB 20 s 0.0663 559.66 65

conv 0.0482 554.39 332

5 s 0.1067 625.84 19

SGP R 20 s 0.0580 559.66 68

conv 0.04851 552.12 252

Nθ = 55

5 s 0.6919 85029.32 12

GP BB 20 s 0.5186 19534.21 53

conv 0.4444 9959.44 498

5 s 0.6329 73328.95 9

GP R 20 s 0.6305 70221.83 57

conv 0.293 2992.25 523

5 s 0.1745 1572.84 16

SGP BB 20 s 0.0862 703.82 59

conv 0.0495 595.30 617

5 s 0.1089 727.70 16

SGP R 20 s 0.0465 586.32 57

conv 0.0365 575.86 241

Table 4.2: results obtained on the test problems with data affected by Poisson noise.
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(a) SGP BB method at 5 seconds, 20 seconds, convergence.

(b) SGP R method at 5 seconds, 20 seconds, convergence.

Figure 4.6: reconstructions obtained in case of Poisson noise on the data. From the left to the

right: reconstructions after 5 seconds, after 20 seconds, at convergence.
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(a) Nθ = 19

(b) Nθ = 37

(c) Nθ = 55

Figure 4.7: case of Poisson noise. On the left: errors vs iterations; on the right: function

values vs iterations. The circles and the diamonds represent the values at 5 and 20 seconds,

respectively.
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(a) Profiles after 5 seconds

(b) Profiles after 20 seconds

(c) Profiles at convergence

Figure 4.8: case of Poisson noise. Profiles for 37 angles: on the left VP plots and on the right

DP plots at different temporal windows.





Conclusions

The research activity presented in this thesis has dealt with the analysis of acceleration tech-

niques for first–order methods in nonlinear constrained optimization and their impact in signal

reconstruction problems arising in the biomedical domain. The work mainly concerned the

design of suitable variable metric strategies induced by scaling matrices and choices of the

steplength parmeter for a classical gradient projection method and for a gradient projection

method with extrapolation step.

Further work was devoted to the study of regularization methods for inverse problems, with

the aim of extending the aforementioned acceleration techniques to a wider class of problems.

The presented methods have been tested on two biomedical imaging problems.

The first application concerned the reconstruction of fibre orientation distribution on the

cerebral white matter from diffusion Magnetic Resonance Imaging data, designed as a con-

strained Least Squares problem with nonnegativity and sparsity constraints. The methods

Scaled Gradient Projection equipped with Adaptive Barzilai–Borwein steplength selection rule

and the Scaled Gradient Projection with Extrapolation were engaged to find an optimal solution

for the problem and they showed competitive performances with respect to the state–of–the–art

FISTA algorithm.

The second experimental framework dealt with an image reconstruction problem of 3D X-

ray tomography from limited data. In this case, the problem is formulated as the nonnegatively

constrained minimization of an objective function expressed by the sum of a fit–to–data term

and a smoothed Total Variation function. The choice of the fit–to–data function is strictly

related to the noise that affects real Computed Tomography systems; thus different functionals

were considered in order to evaluate the behaviour of the methods on realistic scenarios. The

Gradient Projection and the Scaled Gradient Projection algorithms were equipped with Adap-

tive Barzilai–Borwein steplength selection rule and with recent limited–memory steplength rule

based on Ritz–like values; the performances of these methods were compared with each other and

with a state–of–the–art method for Computed Tomography problems. Numerical experience

showed the effectiveness of the scaling matrix and of the designed steplength selection rules.

Work in progress concerns the investigation of the described methods and acceleration tech-

niques in microwave tomography problems for brain imaging.
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