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Abstract

The smart world era is yet to come with all its multitude of applications
including smart cities, smart industry, smart agricolture, smart energy, and
smart mobility. Internet of things (IoT) is the underlaid paradigm for the
realization of the smart world by the interconnection of a massive multi-
tude of heterogeneous devices. Along with the tremendously increasing user-
generated tra�c, next-era wireless communications will face unprecedented
demands also in terms of machine-generated tra�c, according to the aris-
ing big data applications and the development of sophisticate cyber physical
systems (CPSs).

To unlock the potentials and reap the benefits of IoT, scalable, reliable,
resilient, secure, and e�cient wireless networking platforms are required. In
this Ph.D. dissertation we introduce the concept of massive wireless net-
work (MWN), which is of particular importance in the fifth generation (5G)
ecosystem. With MWN we intend a network where the wireless terminals
may include autonomous terrestrial vehicles, unmanned arial vehicles, sen-
sors, actuators, alarms, cameras, smart phones, computers, and smart phys-
ical objects (things). Each type of these coexisting wireless terminals has
unique features in terms of complexity, tra�c demand, battery life, propaga-
tion environment, and quality of service (QoS) constraints, which all have to
be considered within the design and operation of MWNs. Catering for such
highly diverse demands within the MWNs is the first step towards smart
world and big data era.

This Ph.D. dissertation tackles the scalability, reliability, and security
of the MWN by developing stochastic models for network analysis and de-
sign. Stochastic modeling is the way to not focus on a specific network, but
to account for all networks with common features in a stochastic sense, to
achieve fundamental results and provide general guidelines for the design.
Nevertheless, our models include important contex-informations, specifically
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spatial (topology) and temporal (delay, tra�c) ones, to assess the location-
dependent performance of the network. This is required to properly develop
the surging IoT and CPSs. The enormous opportunities that this new era
can bring to industrial and vertical markets including, public safety, logistics,
well-being, and smart cities, are beyond imagination. Furthermore, the appli-
cations enabled by IoT create new business opportunities through developing
specific products and solutions.

The dissertation is organized as follows: in Chapter 1 we show the vision
of the smart world era and we describe the challenges of next-generation
wireless networking, in Chapter 2 we face the scalability and reliability prob-
lem in wireless networks, in Chapter 3 we tackle the problem of intrinsic
secrecy in wireless networks, and in Chapter 4 we conclude the dissertation
providing some future research challenges.
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Chapter 1
Introduction

The next generation wireless communication networks are key enablers for
supplying big data, automating cites, and bridging physical and cyber worlds,
thus leading to the upcoming smart world era, for a revolution in connectivity,
networking, monitoring, surveillance, automation, decision making, control,
and business opportunities. This Ph.D. dissertation tackles the foundation
of next generation wireless communications by introducing massive wireless
networks (MWNs). In particular we provide a context-aware modeling for
the analysis and design of reliable, resilient, e�cient, and secure networks
and of algorithms for their operation (see Fig. 1.1).

1

Wireless Networks
Design/Operation

Cycle

Modeling

Analysis

Design

Expansion

Operation

Context-Awareness

MassiveWireless Networks

Figure 1.1: Framework for the development of future generation wireless
networks.
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1.1 Big Picture: The Smart World Era and
Next Generation Wireless Communica-
tions

The Smart World

The smart world is a human-centric concept, a vision, that is to use data
for decision making and automation, to improve the life of human beings,
preserve the environment, and reduce the costs to achieve such goals [1]. This
concept has its derivations in the di↵erent aspects of the life and society,
which are smart agriculture [2–4], smart industry [5–7], smart energy [8–10],
smart homes [11–13], smart retail [14–16], smart mobility [17–19], smart
health [20–22], smart government [23–25], smart education [26,27], which in
the literature are well’known as sectors of the smart cities [28] (see Fig. 1.2).

Figure 1.2: The applications of the smart city. This picture can be found at
www.smartcity.org.hk.

There exist in the literature formal definitions for smart cities [29]; we
chose to adopt the following to include both the data-centric and the communication-
centric points of view: a smarty city uses a combination of data collection,
processing, and disseminating technologies in conjunction with networking
and computing technologies and data security and privacy measures thus
encouraging the innovation of applications to promote the overall quality of
life for its citizens, preserve the environment, and reduce the costs of living
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1. Multitude of devices with
heterogeneous hardwares

2. Distributed data-processing
and decision-making engine

3. Internet of selfcontrolled and
user-controlled communicating devices

Figure 1.3: IoT layers. This figure has been created starting from the IoT
logo, which can be found at www.silicon.it.

by covering dimensions including utilities, health, transportation, economy,
entertainment, and government services [1].

Enabling the Smart World: the Role of IoT

In general, the attribute smart indicates the fact that data are used to autom-
atize processes and improve their e�ciency within a networking framework,
such that (s.t.) the monitoring of operations is always possible. The an-
swer to the demand of a smart networking platform for the realization of
smart cities is provided by the surging Internet of things (IoT), which is the
paradigm for the interconnection of a massive number of devices of hetero-
geneous type (things) [30]. The nature of the IoT is mainly threefold as
depicted in Fig. 1.3:

1. a distributed multitude of devices with sensing and actuating capabil-
ities (device-centric point of view);

2. a distributed powerful data processing and decision-making engine (data-
centric point of view); and

3. an internet of communicating devices either selfcontrolled or controlled
by users (communication-centric point of view).

The definition of IoT has been changing over time along with the evolu-
tion of the technology. Lately, it has become: “The IoT allows people and
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things to be connected anytime, anyplace, with anything and anyone, ideally
using any path/network and any service” [31]. In the near future, almost
all active devices will have an Internet interface. This vision enforces data
scientists to provide solutions for the inevitable challenge of how to process
the large amount of data coming from things, and how to make sense of
the raw extracted data. With the proliferation of wireless devices (e.g., mo-
bile phones, wireless sensors and actuators, wireless smart meters, unmanned
vehicles and drones), wireless networks become a global information infras-
tructure incurring a fast escalation of data volume known as big data [32].

Being “Smart”: Big Data Applications

IoT will enable the implementation of big data [33, 34] applications; that
is to analyze, process, and make inference on large and heterogeneous data
sets; for the realization of more smart and green environments [32, 35, 36].
Incorporating sensors and cloud computing, sensor-cloud [37] is a very pow-
erful system for users to achieve big data in smart cities. In particular, a
massive amount of data will be sensed in cities and gathered by a multi-
tude of ubiquitous sensors (e.g., temperature, humidity, pressure, light, and
video sensors) and further transmitted to the cloud via sinks. The big data
will be then stored and processed by powerful data centers and delivered to
users on-demand. Hence, with sensor clouds, users are able to access to data
anytime and anywhere if there is any network connection.

5G and Massive Wireless Networks

To support the requirements of the IoT, a new-generation wireless network-
ing platform is needed to answer to the unprecedented demands in terms
of reliability, latency, bandwith, rate, coverage [38]. In that regards, tech-
nological solutions are evolving towards the development of fifth generation
(5G) wireless networks, e.g., millimeter wave (mm-wave) communications,
massive multiple-input-multiple-output (MIMO) systems, dense small cells,
moving cells, heterogeneous networks (HetNets), cloud radio access network
(C-RAN), smart antennas, beamforming [39].

Hence, when compared to state-of-the-art wireless networks, the next-era
networks, which we denote as MWNs, are discriminated with the following
characteristics:

• a massive multitude of wireless terminals in their totality;

• a significant heterogeneity in the type of the devices in terms of com-
plexity, battery life, sensing, actuating, computational, communica-
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tion, energy harvesting, and mobility capabilities; thus including au-
tonomous and non autonomous terrestrial vehicles, unmanned arial ve-
hicles, sensors, actuators, alarms, cameras, smart phones, base stations,
computers, i.e., smart physical objects or things;

• a wide range of applications including monitoring, automation, secu-
rity, city management, commerce, public safety, health care, energy
distribution, transportation; and

• an extensive variety of requirements ranging from reliability, low-delay,
fault-intolerancy, resiliency, security, energy-e�ciency.

Catering for such extremely dense and highly diverse demands within the
MWNs is the first-mile towards smart world and big data era and the focus
of this Ph.D. thesis dissertation. MWNs are key enablers to reap the next-
era unprecedented opportunities leading to a better, safer, and more e�cient
everyday life. While the potentials are limitless and span every industrial
sector, in the following we mention two examples for the sake of illustration.

• Automotive:

– Fact: Every year, 1.3 million die and 50 million are injured on
road accidents [40,41]. The US by itself witnesses over 30,000 fatal
crashes per year [40, 42]. From an economical perspective, the
annual global cost of car accidents is far beyond $500 million [40].
Besides accidents, tra�c congestions have tremendous negative
e↵ects on the economy. According to The Economist, a study has
estimated the total economical cost of tra�c jams in 2013 across
four countries, including the US, to be around $200 billion [43].

– Vision: Imagine a smart vehicular system where vehicles can
communicate together and access real time tra�c data. Such sys-
tem will lead to optimal utilization of the road infrastructure and
autonomous driving with no human errors, which will significantly
improve road safety and e�ciency. Incorporating vehicles into the
world of connected physical objects will further increase the level
of context-awareness1 and improve safety and e�ciency. In ad-
dition to the information about locations, speeds, and directions
of proximate vehicles, each vehicle will also be aware of pedestri-
ans, cyclists, pets, real time road statuses, and tra�c alerts (e.g.,
accidents, congestions, icy/de-iced roads).

1In that regard, it is worth to mention the importance of localization and navigation
systems, which allow to track context informations as position and speed of objects by
wireless signals. This allow to make context-aware decisions [44–48].
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• Health-care:

– Fact: Health-care is a major source of national expenditure that
imposes significant burden on the US economy. Late and wrong
diagnosis are two major existing issues that negatively impact the
health of individuals and significantly contribute to the cost of
health-care. The Washington Post recently reported that almost
every individual in the US gets a late or wrong diagnosis at least
once in their lives [49].

– Vision: Imagine a system where accurate and ubiquitous health
monitoring is viable. The real time health conditions and vital in-
formation of each patient become accessible for doctors and nurses,
alleviating the necessity for long waiting queues for regular check-
ups. Early diagnosis becomes a matter of developing appropriate
over the top application. The availability and ubiquity of the pa-
tient vital signals can dramatically improve diagnosis e�ciency
and expedite the patients release from hospitals. Besides reduc-
ing infection risks and improving psychological state of patients,
early release will also decrease health-care expenditures.

The aforementioned brief examples just highlight the social and economic
impact of the technologies enabled by MWNs on individuals and society. The
added values that MWNs can bring to each industrial and vertical market,
including public safety, logistics, well-being, industrial automation, smart
cities, etc., are beyond imagination [50,51]. Besides improving the e�ciency
of these sectors, the applications enabled by MWNs create new business
opportunities through developing specific products and solutions.

1.2 The Problems and the Goals

1.2.1 The scalability problem of the IoT

The connectivity in the MWNs plays a major role in enabling an interop-
erable access and interconnections among heterogeneous smart objects. In
fact, in smart cities, infrastructured and infrastructureless telecommunica-
tion networks can and have to provide a reliable and e�cient delivery of
services and high-quality information under diverse communication quality
of service (QoS) and user quality of experience (QoE) constraints. This can
be achieved by leveraging a large number of digital devices along with the
involvement of various technologies such as wireless sensor networks (WSNs),
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machine-to-machine (M2M), vehicle-to-vehicle (V2V), and device-to-device
(D2D) communications, with or without the support of the cellular network.

During the last years, wireless networks have been experiencing a tremen-
dous growth of user-generated tra�c demand. With the increasing popular-
ity of smart devices, Internet protocol (IP)-based networks have become a
part of everyday life. As a result, a set of new, user-oriented mobile mul-
timedia applications, like mobile video conferencing, video streaming, and
e-healthcare are coming up. Several rapid changes respond to new capacity
demands resulting from the massive data growth over the last ten years espe-
cially posed by video. In fact, since 2012 video tra�c is more than half of the
global mobile tra�c [52]. The actual video resolution capability of handsets
has increased to 4K, which will need a data rate of 15.4 Mbps per user (using
H.265 profile 5.1, 4K resolution at 64 fps and Chroma ratio 4:4:4) [53]. An
average mobile user is expected to download around 1 terabyte of data an-
nually by 2020 [54]. The demand of contents will keep on increasing at high
rates, beyond forecasts. In fact, the mobile tra�c per year is expected to
increase to 291.8 exabytes by 2019 [55]. Statistics reveal that global mobile
tra�c esperienced around 70% growth in 2014 [52]. Only 26% smartphones
(of the total global mobile devices) are responsible for 88% of total mobile
data tra�c [52]. Cisco’s virtual network indexing (VNI) forecasts that mo-
bile networks will have more than half of connected devices as smart devices
by 2019.

Next to the satisfaction of the enormous user-generated tra�c demand,
there is a surging seek for city automations, which are intrinsically delay-
and fault-intolerant applications [56]. Thus, wireless networks will face un-
precedented tra�c demands in terms of M2M communications. For long
time, multihop short-range communications with mesh topology have been
considered as highly suitable to implement IoT services involving M2M com-
munications [57–59].

Standards such as ZigBee and Bluetooth provide examples of very low-
power standards but with limited coverage, which is and obstacle for appli-
cations that require urban-wide coverage or place-&-play type of connectiv-
ity [60].2

Hence, after experimentations of some smart city services the need for
something di↵erent arose. In that regard cellular networks play a role because
of their ability to provide ubiquitous coverage to IoT nodes. Nevertheless,
latest cellular standards, i.e., universal mobile telecommunications service
(UMTS) and long term evolution (LTE), were not designed to accomodate

2It is possible to connect an IoT device just placing it in a desired location and turning
it on.
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the IoT and its demand for massive and sporadic M2M type of communica-
tions [61–63]. In fact the control signaling and the access network could be
the bottlenecks of IoT-enabled cellular networks, thus opening new scalability
challenges towards the development of 5G networks.

To unlock the potentials and reap the benefits of MWNs, a scalable, reli-
able, and e�cient wireless networking platform is required. This motivated
industry to release several new technologies, such as 3GPP narrowband IoT
(NB-IoT), long-range radio (LoRa), SIGFOX, and Weightless, that oper-
ate towards low-power wide area networks (LPWANs). LPWANs are solu-
tions that exploit sub-gigahertz unlicensed frequency bands, characterized by
star topologies and long-range communications [64, 65]. These are solutions
standing in between short-range communications with mesh topologies and
long-range cellular-based narrowband communications.

However, due to the lack of precise mathematical models for MWNs, it
is unknown to which extent such networks can support in terms of devices
density and what QoS level they can guarantee. Further, there is no rig-
orous framework to design such networks and optimally tune the network
parameters to fulfill given key performance indicators (KPIs) constraints.
Current mathematical models are inadequate for MWNs due to their myopic
focus either on the macroscopic scale interactions between devices or the
microscopic behavior of nodes. On one extreme, macroscopic scale frame-
works utilize stochastic geometry to account for mutual interference between
devices with saturated bu↵ers. Stochastic geometry analysis provides spa-
tially averaged performance metrics that overlook important temporal KPIs
(e.g., delay) and fail to give per-node performance characterization. On the
other extreme, tra�c-aware microscopic scale frameworks utilizes queuing
theory with collision model (or vulnerability region models) to account for
the interactions between neighboring devices. Simplistic collision models fail
to capture realistic signal-to-interference-plus-noise ratio (SINR) interactions
between devices, overlook the potential of spatial frequency reuse, and cannot
relate the KPIs to the network density, which are fundamentals in MWNs.

Thus our approach is to combine stochastic geometry and queuing theory
to account for important spatial and temporal contextual informations to
devise a novel spatiotemporal modeling for the analysis and design of MWNs.
The dissertation of this part of the work is given in Chapter 2.
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1.2.2 The security problem in the next-generation net-
works

Security is one of the main challenges for next-generation wireless networks
[66–68]. The variety of applications, scenarios, devices, and communication
types make the security problem. A security system must provide confi-
dentiality, integrity, authentication, and non-repudiation of the information.
Consider security in the IoT, in particular the M2M type of communications
involving sensing and actuating devices; such systems might be exposed to at-
tacks such as denial of service (DoS) and, in this context, availability and re-
silience are important factors. Also requirements such as privacy, anonymity,
liability, and trust will be vital for the development of IoT applications involv-
ing social networking, and internet-integrated sensing and actuating devices.
In some applications involving M2M or human-to-machine (H2M), data such
as sensor measurements or control signals for automations need to be trans-
mitted with privacy in order to prevent unwanted listeners from overhearing
classified informations, e.g., about commercial exercises, or cyber physical
system (CPS) behavior and operation (e.g., how many times during a day a
smart lock is opened) which might also hinder citizen’s privacy. The work
in [66] cathegorize the citizen’s privacy into five areas, which are location
privacy, privacy of state of body and mind, privacy of social life, privacy of
behavior and actions, privacy of media. Information privacy is a challenge
falling within the area of the privacy of media. That is, the privacy of images,
video, audio, and other data such as biometric signals or account numbers
of a person [69].

In the third chapter of this Ph.D. dissertation we consider the problem
of the transmission of confidential information, to address both the privacy
of the machine- and user-generated tra�c in the MWN. First, some prelim-
inary considerations need to be made, which lead to state our approach and
methodology:

• wireless communication networks are particularly vulnerable to eaves-
dropping due to the intrinsically brodcast radio channel;

• the devices involved in the communication might have limited compu-
tational capabilities, which hinders the utilization of criptography;

• the advent of quantum computing will undermine in the near future
the trustworthiness of criptography-based secrecy systems, due to the
possibility of launching brute force attacks in small times;

• MWNs will su↵er from an enormous overhead and signaling because of
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the key distribution mechanism, which burdens the usage of criptogra-
phy in massively dense networks;

• physical layer security is a promising approach to complement criptog-
raphy with an additional layer of security; and

• the phisical properties of the wireless communication medium, o↵er
the possibility to provide some level of message confidentiality with the
help of proper coding and processing.

Starting form Shannon’s information-theoretic principle of perfect secrecy
[70], several techniques that exploit artificial noise, network interference, and
legitimate node cooperation have been proposed [71–75]. Such works as-
sume that provided impaired eavesdropping channels, a certain amount of
transmission rate can be delivered with theoretically certain confidentiality.
Stochastic geometry have been extensively used to assess the average secrecy
level by including spatial and protocol context-informations [76–86]. Such
works account for the node spatial distribution by homogeneous point pro-
cesses for tractability, which allow to determine the averaged performance.
We propose to fill a modeling gap by accounting for inhomogeneous networks
rather that homogeneous ones. In fact information confidentiality have to be
guaranteed at every location in order to provide the network with security.
Our work assume more fine-grain description of the network spatial-model to
inspect the location-dependent secrecy performance. We utilize probability
theory, communication theory, information theory and stochastic geometry
to include the context-information. The dissertation is provided in Chapter
3.

1.2.3 Mathematical Theory of MWNs

Due to the broadcast nature of the wireless channel, the mandatory (i.e., due
to spectrum scarcity) spatial frequency reuse, and the propagation charac-
teristics of the wireless medium, the performance of large-scale networks are
characterized by the SINR at the receiving devices. The SINR is a fundamen-
tal performance metric for two reasons: 1) it captures the topology-dependent
spatial interactions among the network elements and devices, which are man-
ifested in the aggregate network interference; and 2) it determines several
important QoS metrics such as throughput, error probability, and capacity.
Several studies have been carried out to evaluate the performance of com-
munications with disturbances and interference [87–92].

Stochastic geometry is a branch of applied probability that is instrumental
to study and develop the theory of large-scale networks [93–96]. Specifically,
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it is fundamental to include the spatial context-informations that are needed
to characterize the aggregated interference and the SINR in wireless stocastic
networks, which are objects of this Ph.D. dissertation. Stochastic geometry
based analysis has been extensively applied for ad-hoc, Wi-Fi, and cellular
networks, where the positions of the the network elements (e.g., cellular base
stations and Wi-Fi access points) and devices are modeled by stochastic point
processes [97–100].

There exist in the literature solid contributions to the mathematical the-
ory of stochastic large-scale networks, specially for Poisson point processes
(PPPs) [93,101,102]. A comprehensive characterization of aggregate network
interference and its subsequent e↵ect on SINR-dependent QoS metrics (e.g.,
bit error rate, symbol error rate, outage probability, and ergodic capacity)
are presented in [103, 104]. The spectral properties of aggregate network
interference are characterized in [104, 105]. The impact of spectrum over-
lap between narrowband networks and ultra-wideband networks is studied
in [106, 107]. Spectrum sharing between primary and secondary networks is
characterized in [108]. A theoretical framework for interference alignment in
large-scale networks is developed in [109, 110]. Last but not least, interfer-
ence engineering for physical layer security in stochastic large-scale networks
is presented in [74, 76, 77, 110–112]. A comprehensive tutorial on the use of
stochastic geometry for modeling, analysis, and design of cellular networks
is presented in [96].

Despite its instrumental role in large-scale networks, stand-alone stochas-
tic geometry models are inadequate for MWNs. A majority of stochastic
geometry models in the literature adopt spatially averaged snapshot-based
analysis for devices with saturated bu↵ers, which implicitly 1) assume that
the devices are always active, 2) are oblivious to the di↵erent time scales of
transmission, fading variation, and topology dynamics (i.e., due to mobility),
and 3) overlook the temporal and contextual aspects of MWNs. Hence, the
analysis can neither account for the sporadic tra�c patterns, the diverse ap-
plications, nor capture the per-device microscopic performance (e.g., queue
activity), all of which are crucial for MWNs. It is shown in [113, 114] that
spatially averaged performance metrics can be misleading to network design-
ers as it hides important details about the underlying variance regarding
the devices performance. Note that the analysis in [113, 114] is very specific
to preemptive ad-hoc and cellular network models and should be extended
to much richer sets of topologies that may appear in MWNs. To overcome
the aforementioned deficiencies, this Ph.D. dissertation goes beyond state-
of-the-art and develop mathematical theory of large-scale networks that in-
corporates the macroscopic and microscopic features of MWNs and account
for the statistical measures of the KPIs rather than spatial averages. This
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will be achieved by combining queueing theory and stochastic geometry, and
by introducing the notion of spatial tra�c density. The developed theory
will provide fundamentally new understanding of the MWN operation by ac-
counting for the interplay between the tra�c generation, transmission rates,
medium access protocol, and spatiotemporally correlated aggregate network
interference (call for (c.f.) Chapter 2). Capturing this interplay leads to
accurate mathematical models for MWN design.

For what regard the intrinsic secrecy aspects of MWNs, it is in the scope
of this Ph.D. dissertation to provide a di↵erent perspective on the location-
dependent secrecy performance. In fact, we account for inhomogeneous net-
work models, to understand the continuous spatial variation of the KPIs such
as secrecy rate and throughput (c.f. Chapter 3).

1.2.4 Organization of the Ph.D. Dissertation

The Ph.D. dissertation is further organized in following three parts: Chap-
ter 2 addresses the spatiotemporal modeling and design of MWNs, Chapter
3 develops the intrinsic secrecy analysys for inhomogeneous networks, and
Chapter 4 provides final remarks and future research challenges.
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Chapter 2
Spatiotemporal Modeling of

Uncoordinated Massive Networks

2.1 Preliminaries

2.1.1 Big Picture

Massive wireless networks; consisting of many wireless nodes including sen-
sors, actuators, machines, vehicles, drones, and many other smart objects
(things); will significantly contribute to the big data supply and automation
of the foreseen smart world. Realizing such massive wireless connectivity is an
important foundation for the IoT and CPSs,1 which are emerging in di↵erent
sectors including smart cities, public safety, health-care, autonomous vehi-
cles, etc. [30,115]. Each of these sectors will entail massively many connected
things, hereafter denoted as nodes,2 which are required to communicate with
each other and/or connect to the Internet with a given QoS. For instance,
public safety and autonomous driving may require ultra-reliable low-latency
communications. Other sectors, such as monitoring and automation, may
require massive number of connections with flexible constraints in terms of
delay and reliability. Consequently, developing a scalable wireless networking
platform that is able to accommodate the tra�c generated from massively
many nodes with di↵erent QoS requirements is mandatory to unlock the
potential and reap the benefits of the foreseen smart era.

Spectrum access and reuse are among the fundamental challenges for
MWNs. The massive number of nodes, heterogeneous node types, sporadic

1While IoT and CPSs involve di↵erent layers of the protocol stack, MWNs focus on
the wireless communications at the physical and medium access layers.

2MWNs may include users equipment, sensors, machines, and vehicles.
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Fig. 1. Network model illustrating the macroscopic and microscopic scales of the proposed spatiotemporal model.

collision model is often used to account for the interactions
among the queues. Interacting queues are also used to de-
sign scheduling techniques over fading channels [11], [12].
However, these works consider single server model allowing
a single transmission per time slot. More realistic signal-to-
interference-plus-noise ratio (SINR)-based two-queue inter-
actions are modeled in [13], [14]. However, the models in
[13], [14] cannot be generalized to MWNs. An integrated
graph and queuing theory model that captures the interactions
among the queues of neighbor nodes is presented in [15], [16].
However, the methodology fails to capture the aggregate effect
from non-neighbors, which may be significant in MWNs.
In conclusion, the models in [7]–[16] overlook the spatial
and physical layer effects on queue interactions, which are
fundamental in MWNs.

Spatial and physical layer attributes of wireless networks
are usually captured via stochastic geometry models [17]–
[22], where the nodes spatial locations are modeled via point
processes. Radio propagation and fading models are used in
conjunction with point process theory to model the concur-
rent transmissions that imposes mutual interference among
the spatially coexisting nodes. By averaging over all spatial
realizations of the point process and channel fading, spatially
averaged SINR-dependent performance metrics are obtained
such as bit/symbol error probabilities [23], [24], transmission
rates [25], [26], outage probabilities [27], [28], and informa-
tion secrecy [29]–[31]. Nevertheless, previous works overlook
temporal attributes such as traffic generation, queue occupa-
tion, and the resulting node activities, as well as queueing
performance metrics such as service delay and queuing length,
which are also fundamentals to characterize MWNs.

To jointly account for the temporal, spatial, and physical
layer attributes in large-scale wireless networks, recent studies
integrate stochastic geometry and queueing theory [32]–[37].
For instance, studies for energy harvesting-powered commu-
nications in wireless networks are presented in [32], [33].
However, the queueing theory is utilized to model the battery
level dynamics while assuming saturated data buffers. The
spatiotemporal interactions between nodes with non-saturated
data buffers are studied in [34]–[37]. However, the analysis
in [34], [35] assumes high mobility scenarios, which allow

to consider independent realizations of the network topology
at every time slot and, hence, spatial averages for the per-
formance metrics. The works in [35], [36] utilize a dominant
system model where all nodes are always active even if they
have empty queues, which is quite pessimistic for MWNs. The
work in [37] considers uplink traffic for IoT-enabled cellular
networks where every queue in the network behaves like the
typical queue, which is not generally true for MWNs.

B. Contribution
By a joint utilization of stochastic geometry and queueing

theory, this paper presents a holistic spatiotemporal modeling
for MWNs (call for (c.f.) Fig. 1). On the microscopic scale,
queueing theory is used to account for the per-node buffer
state and transmission protocol state. On the macroscopic
scale, stochastic geometry is used to account for the mutual
interference among the coexisting nodes. We also consider
the intrinsic interdependency between the macroscopic- and
microscopic-scale analysis. This enables to characterize the
aggregate interference while accounting for the node activities
due to their buffer occupations and protocol states. Since
transmission and fading vary at a much smaller time scale
than the spatial dynamics (e.g., due to mobility), the spatial
realization of the network is assumed as static. This paper goes
beyond the existing literature, which uses spatially averaged
metrics to characterize the performance, by exploiting the
concept of the meta distribution of SINR [22], [38]. This
allows to account for the diverse qualities of links coexisting
in the network by classifying them into different QoS classes.
To this end, we quantify the network scalability via the
�-stability and �-operativity frontiers in terms of per-node
traffic intensity, node density, target transmission rate, and
uncoordinated access persistence.3 Operating beyond the �-
stability frontier implies that the (1 � �)-percentile of the
network operate with unstable queues, thus overflowing their
data buffer. Analogously, beyond the �-operativity frontier at
least the (1 � �)-percentile of the network do not achieve the
target operation. This paper develops a framework to design
networks with guaranteed stable operation and a desired QoS

3� is a design parameter.

Figure 2.1: Network model illustrating the macroscopic and microscopic
scales of the proposed spatiotemporal model.

tra�c patterns, wide-spatial existence, and di↵erent QoS requirements im-
pose several new challenges to wireless communications and networking. In
the context of IoT, there are several evolving low-power wireless technologies,
such as LoRa, SigFox, On-Ramp Wireless, and Weightless, to address such
challenges [116]. The third generation partnership project (3GPP) LTE stan-
dard also provides solutions for accommodating IoT tra�c within the cellular
networks such as device-to-device communications, machine-to-machine com-
munications, and narrowband IoT (NB-IoT) [117]. Each of these technologies
provides innovative solutions in terms of energy e�ciency, spectrum sharing,
and tra�c prioritization to fulfill the diverse IoT requirements. However,
uncoordinated spectrum access is a common ground in all of these tech-
nologies [63, 116–118]. In particular, variations of ALOHA, with or without
carrier sensing, are used to either transmit data and/or request scheduling.
However, it is well known that ALOHA performance degrades as the number
of nodes grows [63, 116, 117], which raises the following fundamental ques-
tions; i) how to quantify the scalability of ALOHA for MWNs in terms of
per-node tra�c intensity, node density, and required transmission rate; and
ii) how to ensure a stable network operation and guarantee a desirable per-
formance for a given percentile of the MWN. The answer of these questions
gather into a rigorous framework for the design and implementation of IoT
and CPS. It will also determine the extent to which current network solutions
can accommodate from the surging IoT and CPS tra�c.

2.1.2 Related works and Motivation

To characterize the scalability and design spectrum access strategies, math-
ematical models that capture the essences of MWNs are required. Con-
ventionally, mathematical models that involve interacting queues are uti-
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lized to study and design spectrum access strategies [119–122]. However,
in [119–122], a pessimistic collision model is used to account for the interac-
tions among the queues. Interacting queues are also used to design schedul-
ing techniques over fading channels in wireless systems [123, 124]. However,
the work in [123, 124] is limited to a single server model that allows single
transmission per time slot. A realistic SINR-based two-queue interactions
is modeled in [125, 126] for interference and broadcast channels. However,
the model in [125, 126] cannot be generalized to the MWN. The authors
in [127, 128] propose an integrated graph and queuing theory model that
captures the interactions among the queues of neighbor nodes. However, the
methodology presented in [125,126] fails to capture the aggregate e↵ect from
non-neighbors, which may by significant in MWNs. In conclusion, the models
in [119–128] abstract spatial and/or physical layer attributes (e.g., SINR cap-
ture model, the wide spatial existence, the aggregate network interference,
etc.), which are fundamental for MWNs.

Spatial and physical layer attributes are usually captured via stochas-
tic geometry models [93, 101, 102, 113, 129, 130], where the nodes spatial
locations are modeled via point processes. Radio propagation and fading
models are used in conjunction with point process theory to model the
concurrent transmissions that lead to mutual interference among the spa-
tially coexisting nodes. By averaging over all spatial realizations of the
point process and channel fading, spatially averaged SINR-dependent perfor-
mance metrics are obtained such as bit/symbol error probabilities [103,131],
transmission rates [104, 132], outage probabilities [107, 133], and informa-
tion secrecy [74, 76, 134]. Nevertheless, the stochastic geometry works in
[74, 76, 93, 101–104, 107, 113, 129–134] are based on the spatially-averaged
analysis which overlooks the temporal attributes such as tra�c generation,
queue occupation, and the resulting node activities, as well as queueing per-
formance metrics such as service delay and queuing length, which are also
fundamentals to characterize MWNs.

To jointly account for the temporal, spatial, and physical layer attributes
in large-scale wireless networks, recent studies integrate stochastic geometry
and queueing theory [135–140]. For instance, studies for energy harvesting-
powered communications in wireless networks are presented in [135, 136].
However, the queueing theory is utilized to model the battery level dynamics
while assuming saturated data bu↵ers. The spatiotemporal interactions be-
tween nodes with non-saturated data bu↵ers are studied in [137–140]. How-
ever, the analysis in [137, 138] assumes high mobility scenarios, which allow
to consider the network topology at every time slot as randomly and inde-
pendently generated from the considered point process and, hence, spatial
averages for the performance characterization. The works in [138,139] utilize
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a dominant system model where all nodes are always active even if they have
empty queues, which can be quite pessimistic for MWNs. The work in [140]
is confined to uplink tra�c for IoT-enabled cellular networks where every
queue in the network behaves like the typical queue, which is not generally
true for MWNs.

2.1.3 Contribution

By a joint utilization of stochastic geometry and queueing theory this chap-
ter, which is in part presented in [1, 4], presents a holistic spatiotemporal
modeling for MWNs (c.f. Fig. 2.1). On the macroscopic scale, stochastic
geometry is used to account for the mutual interference among the coex-
isting nodes. On the microscopic scale, queueing theory is used to account
for the per-node bu↵er state and transmission protocol state. Our solu-
tion challenges the intrinsic interdependency between the macroscopic- and
microscopic-scale analysis, i.e., allows to characterize the aggregate interfer-
ence and the related quantities also accounting for the node activities due to
their bu↵er occupations and protocol states. Since transmission and fading
occur at a much smaller time scale than the spatial dynamics (e.g., due to
mobility), the spatial realization of the network is assumed as static. To go
beyond the existing literature, which uses spatially averaged metrics to char-
acterize the performance, we utilize the concept of the meta distribution of
SINR [113,114] to account for the diverse qualities of the links coexisting in
the network and classify such links into di↵erent QoS classes. To this end, we
quantify the network scalability via the percentile-based Pareto frontiers of
the stability regions in terms of per-node tra�c intensity, node density, target
transmission rate, and uncoordinated access persistence. Operating beyond
stability regions means that the nodes bu↵er overflow with probability one
and the network is not scalable to accommodate the MWN generated tra�c.
The developed framework is used to design networks with stable operation
and/or a desired QoS level, which are ensured for a target percentile of the
MWN. The contributions of this chapter can be summarized as follows

• developing a mathematical model that accounts for the intricate spa-
tiotemporal interactions in the MWN and quantifies the network scal-
ability in terms of spatiotemporal tra�c density and target percentile
performance.

• presenting the �-stability (�-operativity) Pareto-frontiers that define
the ranges of the network parameters and design variables that guar-
antee stable-queues (target QoS level) for �% of the MWN;
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• proposing di↵erent uncoordinated access protocols that balance the
tradeo↵s between transmission deferral, power-ramping, and persis-
tence to improve the �-stability and/or �-operativity of ALOHA.

2.1.4 Notation and Organization

Notation

Along the chapter we use the serif font, e.g., v, for random variables (RVs)
and the roman font, e.g., v for their instantiation. Vectors are bolded, e.g.,
v and v; matrices are bolded and uppercase, e.g., V and V ; and sets are
uppercase, e.g., W and ⌦. The notation [·]> is used to denote the transpose
operator and the notation V [i,j] is used to denote the i

th-row j

th-column ele-
ment. V [:,j] and V [i,:] are used to denote all elements in the j

th column and
all elements in the i

th row, respectively. With a slight abuse of notation we
use v

[i] to denote the i

th element v[i] of a vector. The functions fv(·), Fv(·),
F̄v(·), and Lv(·) denote the probability density function (PDF), cumulative
distribution function (CDF), complementary cumulative distribution func-
tion (CCDF), and legitimate transmitter (LT) of the RV v,3 respectively.
We denote by P{·}, E{·}, P!�{·}, and E!�{·} the probability, expectation,
Palm probability, and Palm expectation, respectively. With the over-bar we
denote the complement operator, i.e., v̄ = 1 � v, and d·e denotes the ceiling
function.

Organization

We present the system model and the analysis methodology in Section 2.2;
Section 2.3 presents the macroscopic analysis corresponding to the stochas-
tic geometry part of the framework by characterizing the meta distribution
of the SINR of a network of interacting queues; Section 2.4 presents the
microscopic analysis which corresponds to the queuing theory part of the
framework through the discrete-time Markov chain (DTMC) representation
of the bu↵er and protocol states; Section 2.5 presents the iterative solution
of the spatiotemporal model, introduces the KPIs, and presents the notions
of network stability and target operativity; Section 2.6 discusses numerical
results and shows a design case study; Section 2.7 provides final remarks,
thus, concluding the chapter.

3From now till the rest of the chapter we will abuse the terminology “LT of the RV v”
for the LT of its PDF.
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2.2 System Model

For the sake of organized presentation, the spatial and physical layer models
are first presented and then followed by the temporal and medium-access
control (MAC) layer attributes.

2.2.1 Spatial and Physical Layer Parameters

This chapter considers MWNs in which nodes are scattered in R2 according
to a Poisson bipolar network (PBN) [143, Def. 5.8]. That is, the potential
transmitters belongs to a PPP P = {yj 2 R2

, j 2 N
+

}, with intensity � and
each transmitter communicates with a dedicated receiver located at a fixed
distance f in a uniformly random orientation. A realization of the PBN is
shown in Fig. 2.1. For simplicity, we consider the unbounded path loss model
`(r) = r

�2⌘, where r is the propagation distance and ⌘ is the amplitude loss
exponent. We account for a Rayleigh fading environment with unit mean
channel power gains. All channels gains are assumed to be independent and
identically distributed (i.i.d.) from one location to another and from one
time slot to another. Each transmission is defined by a frequency-power
pair and at every channel access frequency ALOHA (F-ALOHA) is used to
uniformly and randomly select one of the N

c

frequency channels [144, 145].
The transmission power is selected among N

p

di↵erent power levels P =
{P

1

, P

2

, . . . , PN
p

} according to the employed power-ramping scheme, which
is described in the next section.

2.2.2 Temporal Parameters and Queuing Model

We consider a discrete-time system with slot duration of T

s

seconds. As
shown in Fig. 2.1, each transmitter has a bu↵er that stores data received
from higher layers. An i.i.d. Bernoulli tra�c generation model, with per-
slot probability of 0 < a < 1, is assumed at each bu↵er which induces i.i.d.
geometric inter arrival times. At each time slot, transmitters with non-empty
bu↵ers employ a slotted F-ALOHA protocol with transmission probability
p̆

a

, p

a

/N

c

to access any of the N

c

channels and probability p

a

to access any
channel. Upon a channel access, each transmitter operates at a fixed rate of
R

t

= W log(1 + ✓) [bits/second]. Hence, a packet size of T

s

R

t

[bits/packet]
is successfully transmitted if the SINR at the intended receiver exceeds ✓.

Packets are transmitted according to a first-in-first-out (FIFO) rule and
only successfully received packets are dropped from the transmitter bu↵ers.
Otherwise, the packet is kept in the bu↵er until successful transmission.
When a transmission failure occurs, the node changes the transmission power
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for the next channel access according to the employed power-ramping scheme.
Starting from the initial power level P

1

, a node uses the same transmission
power Pi for up to N

t

consecutive retransmissions,4 where N

t

is a design
variable. If the transmission is still unsuccessful, the next power level Pi+1

is utilized for the next N

t

retransmissions. Ramping-up (i.e., Pi+1

> Pi)
is the greedy choice to prioritize delayed transmissions at the expense of
increasing the interference level and deteriorating the success probability of
other nodes’ packets. In contrast, ramping-down (Pi+1

< Pi) is the altruistic
choice that reliefs the interference level in the network, especially in regions
where packets are subjected to high delays. The retransmission protocol is
restarted either upon a transmission success or after exploring all power levels
(i.e., the counter tracking the retransmissions is cleared and the node restarts
the transmission from P

1

). The power-ramping protocol state, namely the
phase, is defined by both the physical (power) and logical (retransmission)
states leading to M = N

p

N

t

transmission phases. We assume that positive
and negative transmission acknowledgements are sent over a delay-free and
error-free control channel.

Since the time scale of fading and packet transmission is much smaller
than that of the spatial dynamics (e.g., due to mobility) [146], it is assumed
that the realization of the network nodes remains static during the network
operation. That is, an arbitrary, but fixed, network realization P = ⇧ of the
PBN is considered over the temporal domain and only channel fading, queue
states, node activities, channel access, and transmission powers change from
one time slot to another.

2.2.3 Methodology

The operation of the aforementioned network involves intricate and inter-
dependent interactions among the spatially distributed queues. As shown
in Fig. 2.1, the macroscopic e↵ect of the network interference and the mi-
croscopic e↵ect of the per-node behavior are interrelated. Furthermore, the
static network topology leads to a location-dependent packet departure prob-
ability of each queue (c.f. Fig. 2.2). That is, the packet departure probability
of a given link depends on i) the location of the intended receiver relative to
the other transmitters, ii) the employed power by the intended transmitter,
and iii) the status of all other transmitters (i.e., activity and transmission
powers). For a given network realization P = ⇧, let n

p

2 N
p

= {1, 2, . . . , N
p

}
be the power level index and zn

p

,j be the SINR at the intended receiver of

4Note that consecutive retransmissions do not necessarily occur in consecutive time
slots due to the ALOHA random backo↵.
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protocol is restarted either upon a transmission success or after
exploring all power levels (i.e., the counter tracking the re-
transmissions is cleared and the node restarts the transmission
from P

1

). The employed power-ramping protocol encompasses
a total of M = N

p

N
t

transmission phases, which are classified
into N

p

physical phases of different power levels and N
t

logical phases for per-power level retransmissions.
Since the time scale of fading and packet transmission is

much smaller than that of the spatial dynamics, it is assumed
that the realization of the network nodes remains static during
the network operation. That is, an arbitrary, but fixed, network
realization P = ⇧ of the PBN is considered over the temporal
domain while channel fading, queue states, node activities,
channel access, and transmission powers change from one time
slot to another.

C. Methodology

Network operation involves intricate and interdependent
temporal interactions among the spatially distributed queues.
As shown in Fig. 1, the macroscopic effect of the network in-
terference and the microscopic effect of the per-node behavior
are interrelated. Furthermore, the static network topology leads
to a location-dependent packet departure probability of each
queue (Fig. 2). That is, the packet departure probability of a
given link depends on i) the location of the intended receiver
relative to the other transmitters, ii) the power employed by the
intended transmitter, and iii) the status of all other transmitters
(i.e., node activity and transmission powers). For a given net-
work realization P = ⇧ , let n

p

be the power level index and
znp,j be the SINR at the intended receiver of the transmitter
located at yj 2 ⇧ when operating with the power level Pnp .
Further, let pnp,j be the probability that znp,j is greater than
�. A departure from the queue of the jth wireless link as
in Fig. 1 occurs upon the joint independent events of channel
access and transmission success, i.e., with probability p

a

pnp,j .
For any fixed P = ⇧ , the values pnp,j along the network
are considered as realizations of the RV pnp . The distribution
of pnp is denoted as the meta distribution of the SINR with
CDF Fpnp

(�) , P{pnp < �} which indicates the fraction
of links in the network having a success probability smaller
than � [22]. Furthermore, let �j 2 {0, P

1

, P
2

, . . . , PNp} for
j 2 N+ be IID RVs modeling the node physical phases
and wr = [w[0], w[1], . . . , w[Np]] be the spatially averaged
steady-state distribution of �j for all j, where w[0] is the
probability of being idle due to empty buffer and w[i] is the
probability of having non-empty buffer while being in any of
the retransmission phases of the power level Pi. To analyze
the considered MWN, we utilize the following steps depicted
in Fig. 3.

(a) Macroscopic analysis via stochastic geometry
• Find the moments of pnp as a function of wr, where

the bth moment is denoted by Mb,np , for every
power level n

p

2 P .
• For every power level n

p

2 P , approximate the
PDF fpnp

(·) via the beta distribution with moments
M

1,np and M
2,np .

p � [0, 0.65] p � [0.65, 0.78] p � [0.78, 1]

Fig. 2. Three QoS-classes classification for the success probability within a
realization of the PBN operating with ALOHA for N

c

= N
p

= N
t

= 1

where the filled (empty) shapes represent transmitters (receivers).

• Discretize the PDF fpnp
(·) of each power level n

p

into N equiprobable values each corresponding to a
QoS-class. Construct the success probabilities ma-
trix D[np,i] = d[i]

np , where each row of D contains
the success probabilities for all QoS-classes using
the same power level n

p

2 P and each column con-
tains the success probabilities for all power levels
within the same QoS-class n 2 N = {1, 2, . . . , N}.

(b) Microscopic analysis via queueing theory

• Use the arrival probability a and the class dependent
success probabilities D[:,n] to find the marginal
steady-state distribution ⇡n = [�[0]

n , �[1]

n , . . . , �
[Np]

n ]
of node physical phases for each class n 2
{1, 2, . . . , N}, where �[0]

n is the probability of being
idle due to empty buffer and �

[np]

n is the probability
of being in a retransmission phase that employs the
power level n

p

.
• Aggregate the per-class states to get the overall

steady-state marginal distribution wr of node phys-
ical phases, where w[i] = 1

N

PN
n=1

�[i]
n .

(c) Iterative solution

• Initialize wr such that wr1 = 1, where 1 is a
column vector of ones.

• Solve the system of equations generated by stochas-
tic geometry and queueing theory analysis to find
the steady-state wr and D by following the iterative
algorithm shown in Fig. 3 until convergence.

The macroscopic stochastic geometry analysis in (a) is
presented in Section III, the microscopic queueing theory
analysis in (b) is presented in Section IV, and the iterative
solution in (c) is presented in Section V.

Figure 2.2: Three QoS-classes classification for the packet departure prob-
ability within a realization of the PBN operating with ALOHA for N

c

=
N

p

= N

t

= 1, where the filled (empty) shapes represent transmitters (re-
ceivers). The green hexagrams, blue pentagrams, and red circles represent
the high (p > 0.78), medium (0.65 < p < 0.78), and low (p < 0.65) QoS
links, respectively.

the transmitter located at yj 2 ⇧ when operating with the power level Pn
p

.
Further, let pn

p

,j be the probability that zn
p

,j is greater than ✓. A departure
from the queue abstracting the j

th wireless link as in Fig. 2.1 occurs upon the
joint independent events of channel access and transmission success, i.e., with
probability p

a

pn
p

,j. Although ⇧ is fixed, the values pn
p

,j along the network
can be considered as realizations of the RV pn

p

. The distribution of pn
p

is de-

noted as the meta distribution of the SINR with CDF Fp
n

p

(�) , P{pn
p

< �}
which indicates the fraction of links in the network having a success prob-
ability smaller than � [113]. Further, let rj 2 P [ {0} for j 2 N+ be i.i.d.
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RVs modeling the nodes’ physical state and wr = [w[0]

, w

[1]

, . . . , w

[N
p

] be the
spatially averaged steady-state distribution of rj for all j, where w

[0] is the
probability of being idle due to empty bu↵er and w

[i] is the probability of hav-
ing non-empty bu↵er while being in any of the retransmission phases of the
power level Pi. To analyze the considered MWN, we consider the following
steps as shown in Fig. 2.3:

(a) Macroscopic analysis by stochastic geometry as a function of wr.

• Find the moments of pn
p

, where the b

th moment is denoted as
Mb,n

p

, for every power level n

p

2 N
p

.

• For every power level n

p

2 N
p

, apply the moment matching to ap-
proximate the meta distribution fp

n

p

(·) via the beta distribution.

• Discretize the meta distribution fp
n

p

(·) of each power level n

p

into
N equiprobable values corresponding to N QoS-classes. Construct
the success probabilities matrix D[n

p

,i] = d

[i]
n

p

, where each row of
D contains the success probabilities for all QoS-classes using the
same power level n

p

2 N
p

and each column contains the success
probabilities for all power levels within the same QoS-class n 2 N .

(b) Microscopic analysis by queueing theory as a function of D

• Use the arrival probability a and the class dependent success
probabilities D[:,n] to find the marginal steady-state distribution
⇡n = [⇡[0]

n , ⇡

[1]

n , . . . , ⇡

[N
p

]

n ] of node physical states for each class

n 2 N , where ⇡[0]

n is the probability of being idle due to empty
bu↵er and ⇡

[n
p

]

n is the probability of being in a retransmission
phase that employs the power level n

p

.

• Aggregate the per-class states to get the overall steady-state marginal
distribution wr of node physical states, where w

[i] = 1

N

PN
n=1

⇡

[i]
n .

(c) Iterative solution for wr and D

• Initialize wr such that wr · 1 = 1, where 1 is a column vector of
ones.

• Solve the system of equations generated by stochastic geometry
and queueing theory analysis to find the steady-state wr and D
by following the iterative algorithm shown in Fig. 2.3 until con-
vergence.
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The macroscopic stochastic geometry analysis in (a) is presented in Sec-
tion 2.3, the microscopic queueing theory analysis in (b) is presented in Sec-
tion 2.4, and the iterative solution in (c) is presented in Section 2.5.

2.3 Macroscopic Stochastic Geometry Anal-
ysis

As discussed before, the spatial point process P = ⇧ overviews the macro-
scopic-scale aspects of the network while the link queueing model delves into
the microscopic-scale aspects of each transmitter-receiver pair. As shown in
Fig. 2.1, queue arrivals, which represent the tra�c generation at the trans-
mitter, along with queue departures, which represent the successful packet
reception at the receiver, allow the abstraction of the MWN to a network of
spatially interacting queues. Due to the employed fixed rate transmission, a
packet departure occurs if and only if the SINR at the intended receiver is
greater that ✓. As shown in Fig 2.2, the departure probabilities at di↵erent
queues are not equivalent due to the location-dependent performance.

The first step to analyze the received SINR, and hence the queues depar-
ture probabilities, is to mark the point process of the transmitters by their
activity parameters as P = {yj, aj, rj} where, for all j 2 N+, the RVs aj

are i.i.d. Bernoulli marks with probability p̆

a

= p
a

N
c

, which is the probability
that a link operates on any of the N

c

channels due to the adopted F-ALOHA
channel access, and rj 2 P [ {0} are non-negative, real-valued, and discrete
marks of the node physical states. Due to the random channel selection and
independent ALOHA transmission backo↵, the marks aj, 8j, are indepen-
dent. In contrast, the marks rj are spatially and temporally correlated due
to the static network topology that leads to location-dependent SINRs. As
shown in Fig. 2.2, nodes at sparse locations are more likely to have success-
ful transmissions and, hence, to empty their queues and are less likely to
explore all power levels. On the other hand, nodes at congested locations are
more likely to have transmission failures and, hence, to accumulate packets
in their queues thus exploring all power levels. Such a spatiotemporal depen-
dence of the protocol states complicates the analysis. Hence, we introduce
the following approximation:

Approximation 1 (Power marks i.i.d. distribution) We consider the
marks rj for all j to be i.i.d. from one node to another and from one time
slot to another according to the spatially averaged steady-state distribution
wr = [w[0]

, w

[1]

, . . . , w

[N
p

]].
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The spatially averaged steady-state distribution wr is obtained in Sec-
tion 2.4 via queueing theory by averaging over all possible location-dependent
distributions of the node states. Note that Approximation 1 ignores the
spatiotemporal correlations among the physical state marks of the interfer-
ing nodes on the aggregate interference and assumes identical distributions,
which is mandatory for tractability5 and is validated in Section 2.6. Thus,
the goal of this section is to characterize the distribution of the transmission
success probabilities (i.e., the meta distribution of the SINR) of the spatially
interacting queues for i.i.d. exponentially distributed channel gains, i.i.d. ac-
cess marks with uniform probability p̆

a

, and i.i.d. node physical states marks
with distribution wr, where the interaction is due to the mutual interference
between the links.

2.3.1 Meta Distribution Analysis

Let yi 2 ⇧ and yrx

i be the location of a transmitter and its intended receiver.
The SINR at the intended receiver can be characterized in terms of the
intended transmitter power and the marked PPP of interferers as

pn
p

,i , P{zn
p

,i > ✓|P = ⇧} (2.1a)

= P
(

Pn
p

hiR
�2⌘

X

j : y

j

2⇧\y

i

rjajhjkyj � yrx

i k�2⌘ + �

2

> ✓

�

�

�

�

�

⇧

)

(2.1b)

where hi is the channel gain of the intended link and �2 is the zero-mean Gaus-
sian noise power. Note that the relative locations of the interfering trans-
mitters are fixed. However, the randomness in (2.1) is due to the temporal
variation of fading, random channel selection, node activities, and transmis-
sion states. Due to the location-dependent interference seen by each receiver
yrx

i , pn
p

,i along the network can be seen as realizations of the RV pn
p

, of
which CDF Fp

n

p

(�), namely the meta distribution of the SINR [113], pro-
vides the fraction of the network having a success probability smaller than �.
Moreover, thanks to the ergodicity of the PPP, pn

p

can be formally defined
as the success probability at the typical point for an arbitrary yet fixed node
configuration, i.e.,

pn
p

, P{z� > ✓|P} (2.2)

5Specifically, Approximation 1 simplifies the computation of moments of the meta
distribution of the SINR in Appendix A.1, Eq. (A.1b) (c.f. stationary i.i.d. marked point
process [143, Corollary 7.4]).
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taking values for di↵erent realizations of the point process. Thus we introduce
the meta distribution of the SINR by the CDF

Fp
n

p

(�) = P�{pn
p

< �} (2.3)

where P�{·} is the probability over all the point configurations having a link
at the typical point.

According to [113] the PDF of pn
p

can be accurately approximated by
the beta distribution as

fp
n

p

(�) =
�

M

1,n

p

(↵+1)�1

1�M

1,n

p (1 � �)↵�1

B

� M
1,n

p

↵

1�M
1,n

p

,↵

�

(2.4a)

↵ =
(M

1,n
p

� M

2,n
p

)(1 � M

1,n
p

)

M

2,n
p

� M

2

1,n
p

(2.4b)

where B(·, ·) is the complete beta function and the moments M

1,n
p

and M

2,n
p

are given in the following Theorem 1.

Theorem 1 The b

th order moment of the transmission success probabilities
pn

p

over all receivers in an arbitrary, but fixed, realization of the PBN is
given by

Mb,n
p

, E�{pb
n

p

} = e

�b✓
n

p

�2

exp{��⌫b,n
p

} (2.5a)
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p
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1

⌘

b
X

k=1
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b

k
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(�1)k+1

·
Z 1

0
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N
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w

[i]
✓n
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where ✓n
p

= ✓R

2⌘
/Pn

p

, ✓n
p

,i = ✓n
p

Pi, and w

[i] is the i

th element in wr. In
case of b = 1 the integral expression in (2.5b) reduces to the following closed
form

⌫

1,n
p

= ⇡�(1 � 1

⌘ )�(1 + 1

⌘ )
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✓

Pn
p

⌘

1
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a

N
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X

i=1

w

[i]
P

1

⌘

i . (2.6)

Proof 1 See Appendix A.1.
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Algorithm 1 Network partitioning in QoS-classes (meta distribution dis-
cretization).

Require: N , P , �, ⌘, �2, ✓.
Ensure: A departure probability vector dn

p

s.t. Fp
n

p

(d[n]

n
p

) � Fp
n

p

(d[n+1]

n
p

) =
1/N for all n

p

2 N
p

and n 2 N \ {N}.
1: for n

p

= 1, 2, . . . , N
p

do
2: Compute the moments M

1,n
p

and M

2,n
p

through equation
(2.5);

3: Find fp
n

p

(�) through equation (2.4);

4: Set �
1

= 0 and �N+1

= 1;
5: for n = 1, 2, . . . , N � 1 do
6: Retrieve the values of �n and �n+1

s.t.

Fp
n

p

(�n) � Fp
n

p

(�n+1

) =

Z �
n+1

�
n

fp
n

p

(�)d� =
1

N

7: Compute d

[n]

n
p

s.t.

Z d
[n]

n

p

�
n

fp
n

p

(�)d� =

Z �
n+1

d
[n]

n

p

fp
n

p

(�)d� =
1

2N
;

8: end for
9: Assign D[n

p

,:] = dn
p

;
10: end for
11: Return D.

2.3.2 Network Uniform Partitioning

Consider that the PBN links are divided into di↵erent QoS-classes accord-
ing to their location-dependent transmission success probabilities (or equiva-
lently queue departure probabilities). If each possible value of pn

p

is consid-
ered as a departure probability, then, an infinite number of QoS-classes are
required to characterize the location-dependent performance of the nodes.
For tractability, we resort to the following approximation.

Approximation 2 (Network uniform partitioning) We partition the nodes
into N equiprobable QoS-classes according to their transmission success prob-
abilities. This is done by discretizing the continuous RV pn

p

via a discrete
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p

p

p

Figure 2.4: Distribution of the continuous conditional success probability
and its discretization by importance sampling (N = 10).

RV dn
p

2 dn
p

. The elements of dn
p

= [d[1]

n
p

, d

[2]

n
p

, . . . , d

[N ]

n
p

] are selected via
the importance sampling criterion given in Algorithm 1, and illustrated in
Fig. 2.4, such that the probabilities P{dn

p

= d

[n]

n
p

} = 1/N for all n 2 N . The
process is repeated for all n

p

2 N
p

and the number of classes is selected to
achieve a su�ciently accurate mathematical model.

As shown in Algorithm 1, the matrix D, of size N

p

⇥N , can be populated
using the discretized departure probability vectors dn

p

for each power level.

The element D[i,j] = d

[j]
i defines the departure probability of the queue rep-

resenting a link of the j

th QoS class when the intended transmitter operates
with power level Pi. As shown in Fig. 2.3, the success probabilities’ matrix D
represents the interface from stochastic geometry analysis to queueing theory
analysis. An example of the network partitioning proposed in Approxima-
tion 2 is illustrated in Fig. 2.2 for a single power level, i.e., N

p

= 1, and N = 3
QoS-classes. Since only a single power level is considered, success probabil-
ities are given in the 1 ⇥ 3 vector d 2 {d

[1] = 0.56, d[2] = 0.71, d[3] = 0.84},
such that each value represents 1/3 of the PBN links.
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2.4 Microscopic Queueing Theory Analysis

To address the microscopic-scale analysis, each wireless link of the PBN
is modeled as a queuing system as in Fig. 2.1 and then abstracted to a
DTMC that tracks the number of packets in the transmitter bu↵er, employed
transmission power, and retransmission phase as in Fig. 2.5. As discussed
in Section 2.3, and shown in Figs. 2.2 and 2.4, the static locations of the
considered PBN lead to temporally correlated packet departure probabilities
for each queue. To capture the location-dependent performance of each queue
while avoiding queueing memory complications, we resort to the following
approximation:

Approximation 3 (QoS aware but temporally independent departure rates)
Recall that D is the power-QoS-class success probability matrix obtained by
sampling the meta distribution of the SINR in Algorithm 1. At a generic time
slot, the departure probability of a packet from a queue that belongs to the n

th

QoS-class and operates with power n

p

is given by p

a

D[n
p

,n]. A queue does
not change its QoS-class over time. The departures from the same queue in
two di↵erent time slots when operating with transmission powers n

p

in the
first time slot and n

0
p

in the second time slot are assumed to be independent

with probabilities p

a

D[n
p

,n] and p

a

D[n0
p

,n], respectively.

The QoS-aware and memoryless success probabilities given in Approxima-
tion 3 facilitate the queueing theory analysis while capturing the location-
dependent performance of each queue. Based on this approximation, the
queueing model for each link (c.f. Fig. 2.1) is represented via a Geo/Ph/1
DTMC with the QoS-class dependent state diagram shown in Fig. 2.5, where
the packet departure probabilities are given by p

a

D[:,n]. Each of the DTMCs
captures the di↵erent phases that a queue belonging to a given QoS-class
may experience until a packet departure. In Geo/Ph/1 queues, the depar-
ture phase type distribution is constructed via an absorbing Markov chain
that accounts for all phases that a queue may experience until packet de-
parture [147, Ch. 5.8]. To built the transition matrix of the considered
Geo/Ph/1 DTMC, we first define the following N

t

⇥ N

t

matrices,

H [i,j]
n

p

,n =

8

>

<

>

:

p̄A if i = j

p

a

D̄[n
p

,n] if j = i + 1

0 otherwise

(2.7a)

J [i,j]
n

p

,n =

(

p

a

D̄[n
p

,n] if i = N

t

and j = 1

0 otherwise
(2.7b)
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following approximation.1

Approximation 2 (Network uniform partitioning): We par-2

tition the nodes into N equiprobable QoS-classes according3

to their transmission success probabilities. This is done by4

discretizing the continuous RV pnp via a discrete RV dnp 25

dnp . The elements of dnp = [d[1]

np , d
[2]

np , . . . , d
[N ]

np ] are selected6

via the importance sampling criterion given in Algorithm 1,7

and illustrated in Fig. 4, such that the probabilities P{dnp =8

d[n]

np} = 1/N for all n = 1, 2, . . . , N . The process is repeated9

for all n
p

= 1, 2, . . . , N
p

and the number of classes is selected10

to achieve a sufficiently accurate mathematical model.11

As shown in Algorithm 1, the matrix D, of size N
p

⇥ N ,12

can be populated using the discretized departure probability13

vectors dnp for each power level. The element D[i,j] = d[j]
i14

defines the departure probability of the queue representing15

a link of the jth QoS class when the intended transmitter16

operates with power level Pi. As shown in Fig. 3, the success17

probabilities’ matrix D represents the interface from stochastic18

geometry analysis to queueing theory analysis. An example19

of the network partitioning proposed in Approximation 2 is20

illustrated in Fig. 2 for a single power level, i.e., N
p

= 1,21

and N = 3 QoS-classes. Since only a single power level is22

considered, success probabilities are given in the 1 ⇥ 3 vector23

d 2 {d[1] = 0.56, d[2] = 0.71, d[3] = 0.84}, such that each24

value represents 1/3 of the PBN links.25

IV. MICROSCOPIC QUEUEING THEORY ANALYSIS26

To address the microscopic-scale analysis, each wireless27

link of the PBN is modeled as a queuing system as in28

Fig. 1 and then abstracted to a DTMC that tracks the number29

of packets in the transmitter buffer, employed transmission30

power, and retransmission phase as in Fig. 5. As discussed in31

Section III, and shown in Figs. 2 and 4, the static locations32

of the considered PBN lead to temporally correlated packet33

departure probabilities for each queue. To capture the location-34

dependent performance of each queue while avoiding queueing35

memory complications, we resort to the following approxima-36

tion:37

Approximation 3 (QoS aware but temporally independent38

departure rates): Recall that D is the power-QoS-class success39

probability matrix obtained by sampling the meta distribution40

of the SINR in Algorithm 1. At a generic time slot, the41

departure probability of a packet from a queue that belongs42

to the nth QoS-class and operates with power n
p

is given43

by p
A

D[np,n]. A queue does not change its QoS-class over44

time. The departures from the same queue in two different45

time slots when operating with transmission powers n
p

in the46

first time slot and n�
p

in the second time slot are assumed to47

be independent with probabilities p
A

D[np,n] and p
A

D[n�
p,n],48

respectively.49

The QoS-aware and memoryless success probabilities given50

in Approximation 3 facilitate the queueing theory analysis51

while capturing the location-dependent performance of each52

queue. Based on this approximation, the queueing model for53

each link (c.f. Fig. 1) is represented via a Geo/Ph/1 DTMC54

with the QoS-class dependent state diagram shown in Fig. 5,55

where the packet departure probabilities are given by p
A

D[:,n].56
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Fig. 5: The DTMC for a class n queue with two power levels
P = {P

1

, P
2

} and N
t

= 3 retransmissions per each power
level.

Each of the DTMCs captures the different phases that a 1

queue belonging to a given QoS-class may experience until 2

a packet departure. In Geo/Ph/1 queues, the departure phase 3

type distribution is constructed via an absorbing Markov chain 4

that accounts for all phases that a queue may experience until 5

packet departure [42, Ch. 5.8]. To built the transition matrix of 6

the considered Geo/Ph/1 DTMC, we first define the following 7

N
t

⇥ N
t

matrices, 8

H [i,j]
np,n =

8

>

<

>

:

p̄A if i = j

p
A

D̄[np,n] if j = i + 1

0 otherwise
(5a) 9

J [i,j]
np,n =

(

p
A

D̄[np,n] if i = N
t

and j = 1

0 otherwise
(5b) 10

11

where (5a) contains the probabilities of ALOHA deferral 12

and horizontal transition between the logical phases (i.e., 13

retransmissions counter value) within the same power level, 14

and (5b) contains the probabilities of horizontal transition 15

from one power level to the next. Given that there are N
p

16

different power levels with N
t

retransmissions within each 17

power level, the transient state sub-stochastic matrix for the 18

absorbing Markov chain is given by 19

Figure 2.5: The DTMC for a class n queue with two power levels P =
{P

1

, P

2

} and N

t

= 3 retransmissions per each power level.

where (2.7a) contains the probabilities of ALOHA deferral and horizontal
transition between the logical phases (i.e., retransmissions counter value)
within the same power level, and (2.7b) contains the probabilities of hori-
zontal transition from one power level to the next. Given that there are N

p

di↵erent power levels with N

t

retransmissions within each power level, the
transient state sub-stochastic matrix for the absorbing Markov chain is given
by
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The M ⇥ M matrix Sn, where M = N

p

N

t

, accounts for all powers and
retransmissions phases until successful packet transmission (i.e., absorption).
The absorption probabilities from each transient state phase is defined by the
M -sized vector

sn = 1 � Sn1 = [s[1]

n , s

[2]

n , . . . , s

[M ]

n ]>, (2.9a)

where s

[m]

n is the probability that a packet is transmitted and is successfully
decoded within a link of class n when the intended transmitter is in the phase
m = (n

p

� 1)N
t

+ n

t

. The index n

p

of the transmission power used by the
intended transmitter can be retrieved from m as n

p

= dm/N

t

e and, hence,

s

[m]

n = p

a

d

[n]

n
p

.7 Since the transmission of each new packet starts with power
n

p

= 1 and n

t

= 1, the initialization vector for the absorbing Markov chain
is � = [1, 0, 0, . . . , 0] 2 RM⇥1.

Using Sn, sn, and �, the DTMC modeling of the n

th QoS-class link is
given by a quasi-birth-and-death (QBD) process with the following transition
matrix

Pn =

2

6

6

6

6

6

4

l
n

=0 l
n

=1 l
n

=2 l
n

=3 l
n

=4 ···

l
n

=0 Bn Cn

l
n

=1 En A
1,n A

0,n

l
n

=2 A
2,n A

1,n A
0,n

l
n

=3 A
2,n A

1,n A
0,n

...
. . . . . . . . .

3

7

7

7

7

7

5

(2.10)

where ln represents the di↵erent levels (i.e., number of packets in the queue)
within a generic n

th class queue, B = ā 2 R, En = āsn 2 RM⇥1, C = a� 2
R1⇥M , A

0,n = aSn 2 RM⇥M , A
1,n = asn� + āSn 2 RM⇥M , and A

2,n =
āsn� 2 RM⇥M . The steady-state distribution of a queue with transition

6In case of F-ALOHA with no power ramping, i.e., M = N
p

= N
t

= 1, the transient
state sub-stochastic matrix is simply given by Sn = Hn + Jn.

7The superscript m is used for brevity where the specification of n
p

and n
t

is not
needed. In general a transmission phase is always associated with a single transmission
power-retransmission index pair.
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matrix Pn is obtained by solving the following system of equations

xnPn = xn (2.11a)

xn1 = 1 (2.11b)

where xn = [x[0]

n , x
[1]

n , x
[2]

n , . . . , x
[l]
n , . . . ] is the steady-state probability vector

for all levels l = 1, 2, . . . of an n

th class’ queue; x

[0]

n is the idle-state proba-
bility; x

[l]
n = [x[1]

l,n, x
[2]

l,n, . . . , x
[M ]

l,n ] is the distribution of phases in level l, and

x

[m]

l,n is the probability of being at level l and phase m = (n
p

� 1)N
t

+ n

t

.
As mentioned before, the transmission power index used in the phase m is
n

p

= dm/N

t

e.
Since the considered queueing model is ergodic and irreducible, then the

system of equations in (2.11) has a unique solution if the queue is stable. To
check the stability, we first construct the matrix An = A

0,n + A
1,n + A

2,n =
sn� + Sn, and solve the system

 nAn =  n (2.12a)

 n1 = 1 (2.12b)

for  n = [ [1]

n , 

[2]

n , . . . , 

[M ]

n ], which is the marginal distribution of all trans-
mission phases while excluding the idle state. Then, following [147], the
queue is stable if and only if (i.f.f.)

 nA2,n1 >  nA0,n1 . (2.13)

The output of the condition (2.13) leads to two di↵erent types of analysis,
namely, stable and unstable class analysis.

2.4.1 Stable QoS-class analysis

If the condition in (2.13) is satisfied, then the QoS-class represented by (2.11)
is stable and has a unique solution. Then, using the systematic matrix an-
alytic method (MAM) [147], the system in (2.11) has the following solution

x

[0]

n =
�

1 + C
�

I � asn� � āSn � Rnāsn�
��1

· (I � Rn)�1 1
��1

(2.14a)

x[l]
n =

(

x

[0]

n C
�

I � asn� � āSn � Rnāsn�
��1

for l = 1

x
[1]

n Rl�1

n for l > 1
(2.14b)
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where I 2 RM⇥M is the identity matrix and Rn 2 RM⇥M is the MAM rate
matrix given by

Rn = aSn (I � asn� � āSn � aSn1�)�1

. (2.15)

Let ⇣n = [⇣ [1]

n , ⇣

[2]

n , . . . , ⇣

[M ]

n ] be the vector containing the probabilities of being
in phase m irrespective of the bu↵er level, then

⇣n = x[1]

n (I � Rn)�1

. (2.16)

Note that ⇣n is a sub-stochastic vector as it does not contain the probability
of being idle. The steady-state marginal distribution for the powers levels
⇡n is given by

⇡

[0]

n = x

[0]

n (2.17a)

⇡

[n
p

]

n =
M
X

m=1

M(m) ⇣ [m]

n (2.17b)

where {·} is the indicator function that equals one if m 2 M = {m

0 :
dm0

/N

t

e = n

p

} and zero otherwise, which ensures that the sum is over the
retransmission phases within the same transmission power index n

p

.

2.4.2 Unstable QoS-class analysis

If the condition in (2.13) is not satisfied, then the QoS-class represented
by (2.11) is unstable and the bu↵er will overflow with probability one. In

this case, the probability of being idle is zero x

[0]

n = 0 and the marginal
distribution of the phases is the one obtained from solving (2.12). Hence,
the steady-state marginal distribution ⇡n for the power levels is given by

⇡

[0]

n = 0 (2.18a)

⇡

[n
p

]

n =
M
X

m=1

M(m) [m]

n . (2.18b)

2.4.3 Classes aggregation

As shown in Fig 2.3, the classes aggregation is the interface between queueing
theory and stochastic geometry analysis, where the spatially averaged wr
is obtained. As mentioned in Approximation 1, the spatial and temporal
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correlations among the activity marks of the interfering nodes are ignored
and the aggregate interference is characterized assuming i.i.d. node state
distribution wr. Recall that the network is partitioned into N equiprobable
classes (c.f. Approximation 2), the spatially averaged node state distribution
is defined for i = 0, 1, . . . , N

p

by

w

[i] =
1

N

N
X

n=1

⇡

[i]
n . (2.19)

2.5 Spatiotemporal Model Solution

As shown in Section 2.3, the characterization of the meta distribution of
the SINR and the subsequent packet success probabilities matrix D require
the spatially averaged node state distribution wr. Meanwhile, computing
wr through queueing theory in Section 2.4 requires the packet departure
probability matrix p

a

D, which is obtained by sampling the meta distribution
of the SINR. To solve the coupling between D and wr, we follow the iterative
algorithm shown in Fig. 2.3 and detailed in Algorithm 2. Note that the
system to be solved, i.e.,

x[k]

n P
n

(x[k�1]

n ) = x[k]

n (2.20a)

x[k]

n 1 = 1 (2.20b)

is known to converge according to the fixed-point theorem [122,137,148,149].

2.5.1 Network Stability

According to the Loynes theorem [150], a stable queue is the one that have
the packet departure probability greater than the packet arrival probabil-
ity, which guarantees finite average bu↵er size and bounded queueing delay.
Otherwise, the bu↵er overflows with probability one and the queueing delay
becomes unbounded. Recalling the stability condition in (2.13), the fraction
of nodes that operate with stable queues can be obtained as

�

su

=
1

N

N
X

n=1

S(n) (2.21)

where S = {n

0 :  n0A
2,n01 >  n0A

0,n01}; and  n, A
2,n, and A

0,n are ob-
tained from Algorithm 2 for every QoS-class after convergence. Now consider
the multidimensional space of the system parameters with points defined as
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Algorithm 2 Iterative algorithm with N activity classes for networks of
Geo/Ph/1 queues

Require: �, p

a

, a, N , ✓, ⌘, R, �2, N

c

, N

p

, N

t

, P .
Ensure: D and for all n 2 N , xn for stable classes and  n for unstable

classes.
1: Inizialize k = 1, ✏ ⌧ 1, w

[1]

r s.t. w
[1]

r 1 = 1.
2: while max

n

�

kw[k]

r � w[k�1]

r k
 

� ✏ do

3: for n

p

2 P do
4: Compute the moments M

1,n
p

and M

2,n
p

through equation (2.5);
5: Run Algorithm 1 to populate D;
6: end for
7: for n 2 N do
8: Construct the matrix Sn and the vector sn according to (2.7a),

(2.7b), (2.8), and (2.9);
9: Construct An = A

0,n + A
1,n + A

2,n and solve (2.12) for  n;
10: if  nA2,n1 >  nA0,n1 then
11: the queues belonging tho the n

th class are stable;
12: Obtain xn through (2.14);
13: Evaluate ⇡n through (2.16) and (2.17)
14: else
15: the n

th class is unstable. Set ⇡[0]

n = 0 and retrieve  n to find
⇡n via (2.18);

16: end if
17: end for
18: Use ⇡n for all classes to calculate w

[k+1]

r through (2.19);
19: end while
20: Return xn for stable classes,  n for non-stable classes, M

1,n
p

, M

2,n
p

,
and D.

R = {�, ✓, a, p

a

} 2 G = [R+]2 ⇥ [0, 1]2. Consider the function �
su

: G ! [0, 1],
we define the �-stability region as

Rs

� , {R : �
su

(R) > �} (2.22)

i.e., as the region where a fraction of the nodes greater than � operates
with stable queues. In addition to the de facto stability condition in (2.21),
necessary (NC) and su�cient (SC) conditions for the �-stability of the PBN
can be checked through the mildest and most severe interference scenarios,
respectively. Note that the NC and SC do not require an iterative algorithm
and can be directly determined. In particular, the NC can be obtained by
setting wr = wnc

r = [1�a, 0, . . . , 0, a], which captures the mildest interference
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scenario by activating the nodes with fresh packets only. In contrast, SC
can be obtained by setting wr = wsc

r = [0, 1, 0, . . . , 0], which captures the
most sever interference scenario by activating all nodes.8 This would lead
to explicit expressions for the success probability moments as shown in the
following corollary

Corollary 1 Assuming interference limited regime, the b

th order moment of
the transmission success probabilities in the mildest and most severe inter-
ference scenarios are, respectively, given by

M

nc

b =exp

⇢

� ⇡�

⌘

b
X

k=1

✓

b

k

◆

1
Z

0

✓

ap̆

a

✓R

2⌘

u + ✓R

2⌘

◆k (�1)k+1

u

⌘�1

⌘

du

�

(2.23a)

M

sc

b =exp

⇢

� ⇡�

⌘

b
X

k=1

✓

b

k

◆

1
Z

0

✓

p̆

a

✓R

2⌘

u + ✓R

2⌘

◆k (�1)k+1

u

⌘�1

⌘

du

�

. (2.23b)

Proof 2 Follows directly from Theorem 1 by ignoring noise, assuming that
all active transmitters operate with equal powers, and setting wr = wnc

r and
wr = wsc

r . ⇤
The percentile of the PBN satisfying the NC can be checked using Algo-

rithm 3. The same algorithm can be also used to check the percentile of the
PBN satisfying the SC by replacing M

nc

b with M

su

b .

2.5.2 Performance Metrics

Once the steady-state probabilities (i.e., xn and  n), the moments of the
SINR (i.e., M

1,n
p

and M

2,n
p

), and the success probability matrix D are de-
termined by Algorithm 2, many performance metrics can be computed. For
instance, following [147, Ch. 5.8] for Geo/Ph/1 queues, the average queue
length of a node that belongs to the n

th QoS-class is given by

E {ln} = x[1]

n (I � R)�21 (2.24)

Let t
q

denote the queueing delay, i.e., the number of time slots a packet
spends in the queue before the transmission starts. Following [147, Ch. 5.8.1],
the average queuing delay in the n

th class is given by

E {t
q,n} =

1
X

t=1

t P {t
q,n = t} (2.25)

8Since ramping-up and ramping-down protocols use a single power in case of severe or
mild interference scenario we just define wnc

r and wsc

r for the ramping-down protocol.
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Algorithm 3 NC for Percentile Stability

Require: M

nc

b , a, N , N

c

, N

p

, N

t

.
Ensure: �
1: Inizialize i = 0.
2: Obtain d via Algorithm 1;
3: for n 2 N do
4: Construct Sn and sn according to (2.7a), (2.7b), (2.8), and (2.9);
5: Construct An = A

0,n + A
1,n + A

2,n to solve (2.12) for  n;
6: if  nA2,n1 >  nA0,n1 then
7: i = i + 1;
8: else
9: Break;

10: end if
11: end for
12: Return The NC is satisfied for � = i

N % of the PBN.

The distribution of the queuing delay can be evaluated by solving the queu-
ing problem of an absorbing DTMC that tracks the position of a target
packet in the queue. In particular, define the queue distribution at time t

as �[t]
n =

h

�

[0]

n,t, �
[1]

n,t, �
[2]

n,t, . . .

i

where �[l]
n,t =

h

�

[1]

l,n,t, �
[2]

l,n,t, . . . , �
[M ]

l,n,t

i

; xn gives the

state probability of the system upon a packet arrival, i.e. �[0]

n = xn; and the
absorption occurs when the tagged packet arrives at the queue head. The
transition matrix s.t.

�

�
[t]
n

�>
=
�

�
[t�1]

n

�>
Pt

q,n

is as follows

P
t

q,n

=

2

6

6

6

6

6

4

1
sn Sn

sn� Sn

sn� Sn

. . . . . .

3

7

7

7

7

7

5

. (2.26)

By following this interpretation, the queuing delay distribution is given by

P {t
q,n  t} = �

[0]

n,t . (2.27)

When the packet is at head of the queue, it will take additional t
s

time
slots to be successfully delivered to the receiver over the wireless channel.
Note that the service delay t

s

accounts for both ALOHA transmission de-
ferrals and transmissions failures due to the SINR being less than ✓. The
average service delay for a node belonging to the n

th QoS-class is given by
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E {t
s,n} =

N
p

X

i=1

⇡

[i]
n

1 � x

[0]

n

1

p

a

D

[i,n]

(2.28)

Let tn be the total, i.e., queuing plus service, delay from arrival until
reception. Then, the average total delay is given by

E {tn} = E {t
q,n} + E {t

s,n} . (2.29)

It is worth noting that the average queuing delay for unstable queues is
infinite. However, the average service delay is finite and is given by (2.28).

An important concept that we introduce in this paper is the �-operativity.
Analogously to the definition in (2.22), we define the �-operativity region by
the function �

to

: G ! [0, 1] as

Ro

� , {R : �
to

(R) > �} (2.30)

which determines the region of the points in the space of network parame-
ters that satisfy a target performance (e.g., delay, queue length, etc.). The
parameter �

to

defines the fraction of nodes that achieves the target opera-
tion. For example, when the target operation is defined in terms of maximum
tolerable delay t

? the �-operativity is given by

�

to

=
1

N

N
X

n=1

T (n) (2.31)

where T = {n

0 : E {tn0}  t

?}.

2.6 Numerical Results and Discussion

We start by validating the developed spatiotemporal model, particularly Ap-
proximations 1-3, via independent Montecarlo simulations. The simulation
is conducted over an arbitrary, but fixed, realization of the PBN in a 10 ⇥ 10
km2 area with a wrapped-around boundaries.9 Only the fading realizations
and node activities change over the temporal domain. Each simulation run
is considered as a time slot where independent channel gains are realized,
packets are generated, and nodes interact according to their protocol states
and relative positions. We keep track of the queue level, transmission power,

9Wrap-around simulation model is utilized to eliminate edge-induced favorable inter-
ference conditions and their subsequent e↵ects on queueing departure probabilities.
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and retransmission phase of each queue. For a transition from one time slot
to another, packets are independently generated in all bu↵ers with probabil-
ity a. A transmitter with non-empty bu↵er becomes active with probability
p

a

and uniformly selects one of the N

c

channels. The SINRs at the receivers
of all active links are determined based on the interferers that are simultane-
ously active on the same channel. Then, one packet is subtracted only from
queues of the links with SINR greater than ✓. The simulation starts from
a fictitious point in time where all nodes are considered idle and then runs
for a su�ciently high number of time slots until the steady-state is reached.
Let bw

[k]

r be the distribution of nodes activity at the k

th simulation run, then

steady-state is reached when max k bw[k]

r � bw
[k�1]

r k < ✏. The time slot at which
steady-state is reached is the starting point of the simulation kernel where all
temporal statistics are computed. For the simulations, we choose ✏ = 10�3

and use a kernel of 10,000 iterations. Throughout the considered simulation
kernel, the SINRs of the receivers of all active links along with the transmis-
sion powers of their intended transmitters are recoded to construct the meta
distribution of the success probability for all transmission power levels.

Figs. 2.6 and 2.7 show the meta distributions of the transmission success
probability for di↵erent nodes intensities, ALOHA access probabilities, and
transmission rates. Particularly, Fig. 2.6 is plotted for a single power level
ALOHA protocol and Fig. 2.7 is plotted for a power-ramping ALOHA pro-
tocol with two power levels. In both figures, the analysis curves are plotted
via (2.4) and the moments are obtained from Algorithm 2 after convergence.
Both figures show perfect match between the theoretical (solid lines) and sim-
ulation (markers) results as long as su�ciently high number of QoS-classes
(i.e., N = 10) are considered, thus validating the considered model. The fig-
ures also show the significance of the system parameters, such as transmission
rates, medium access probability, and transmission rates, on the distribution
of the success probability.

Fig. 2.8 shows the average queuing length as a function of the node density
for the first (n = 1, red diamonds) and last (n = 10, green stars) QoS-classes
as well as the spatially averaged queue length. Although an infinite queue
size is assumed in the analysis, the figure shows that a finite queue with
reasonable bu↵er size is required as long as the node operates within a stable
QoS-class. If the queue is unstable, the bu↵er will overflow with probability
one regardless of the bu↵er size. It is worth noting that the curve of the
high class N = 10 experience a discontinuity (i.e., jump) at the point where
a lower class becomes unstable. Such discontinuity occur because the entire
nodes within the unstable class (i.e., 1/N fraction of the total nodes) becomes
active all the time and contribute to the aggregate interference.
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Figure 2.6: CCDFs of p in di↵erent network scenarios for simple ALOHA
(N

p

= 1). Theoretical values are shown for N = 10 (solid lines) along
with simulated values (markers) for ⌘ = 2, R = 10 [m], �2 = �90 [dBm],
P = {�30} [dBm], a = 0.1 [packets/slots].

Figs 2.9-2.12 show the Pareto frontier for the system parameters that
ensure a stable queue operation for a � fraction of the nodes. Each of the
colored region show the pairs of the network parameters that are required
to ensure stability for a given faction of nodes. The color mapping to the
network fraction � is shown in the bars located on the right of each figure.
The magenta dashed line with markers, denoted as deterministic stability
frontier shows the region of the network parameters that are required to
ensure network stability on average,10 i.e.,

Rs

av

, {R : p

a

M

1

(R) > a} (2.32)

which conveys no information about the fraction of nodes that may have

10Such a region is determined through the classic spatially averaged success probability.
For simplicity, in the case of (2.32) we show the condition for single phase, i.e., Geo/Geo/1
queues.
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Figure 2.7: CCDFs of pn
p

for aloha with power-ramping. Theoretical values
are shown for N = 10 (solid lines) along with simulated (markers) values for
� = 0.1, ⌘ = 2, R = 10 [m], �2 = �90 [dBm], N

c

= 1, N

p

= 2, N

t

= 2,
P = {�30, �32} [dBm] (ramping-down), a = 0.1 [packets/slots], p

a

= 0.6,
✓ = �23 [dBm].

unstable queue. Hence, considering the meta distribution is important to
reveal information about the percentiles of stable and unstable nodes.

The results shown in Figs 2.9-2.12 are of primary importance to char-
acterize the scalability-stability tradeo↵ in MWNs. In fact, the maximum
spatial tra�c density of nodes that can be accommodated subject to a �-
stability constraint is shown. For instance, Fig. 2.9 shows the (�,a)-pairs
that ALOHA with p

a

= 0.3 can accommodate while being subject to a given
�-stability constraint. The figure shows that accommodating more nodes
may necessitate a lower tra�c generation per-node to maintain the same �
fraction of stable nodes. The �-stability of the network can also be controlled
by enhancing the detection threshold of receivers as shown in Fig 2.10. The
figure shows that, given a fixed a, to increase � may require a lower threshold
✓ at the receivers in order to improve the success probabilities and cope with
the increased spatial tra�c density.
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Figure 2.8: Average queuing length as a function of the node density for the
low QoS-class (red diamonds), high QoS-class (green stars), and considering
the spatial averages at the typical point (blue circles) for ALOHA with ran-
dom channel selection with N

c

= 4, N = 10, a = 0.1, p

a

= 0.4, ✓ = �30 [dB],
R = 10 [m], ⌘ = 2, �2 = �90 [dBm], P = {�30} [dBm].

Fig 2.11 shows the importance of designing the ALOHA access through
p

a

to ensure a stable network operation by the regions on the (p
a

,a)-plane
where �-stability holds for � = 0.1 [node/m2].

The figure shows that p

a

must be greater than a to allow any fraction of
the network to be stable, since a su�ciently persistent channel access is a
necessary but not su�cient condition for stability. Note that for a given � and
increasing a, the minimum p

a

ensuring �-stability diverges increasingly from
p

a

= a. The Pareto frontier for region of the (p
a

,�)-pairs is shown in Fig 2.12.
The figure shows that there is a given range of p

a

that ensures stability for
a given �. This is because the tradeo↵ between conservative and aggressive
channel access should be balanced to maintain stable queues. To employ a
conservative access policy with low values of p

a

misses many transmission
opportunities, accumulates packets in bu↵ers, and leads to instability. On
the other hand, to employ an aggressive access policy with high values of
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Figure 2.9: Stability regions of ALOHA with random channel selection over
the (�, a)-plane. We show the �-stablity regions for N = 10 (colorplot)
and the deterministic stability frontier for the average performance (marked
dashed curve) for N

c

= 4, ⌘ = 2, R = 10 [m], ✓ = �30 [dB], �2 = �90 [dBm],
P = {�30} [dBm], and p

a

= 0.8 [attempts/slots].

p

a

aggravates the interference, leads to excessive transmission failures due to
low SINR, thus leading to instability.

Fig 2.13 shows the de facto Pareto frontiers, as well as the NC and SC
frontiers, for di↵erent operational objectives of the considered uncoordinated
MWN. Particularly, Fig 2.13 considers the uncoordinated MWN operation
with (a) �-stability for � = 0.99 constraint, (b) �-operativity for a delay
t

?  5 [slots] and � = 0.5, and (c) �-operativity for a delay t

?  3 [slots]
and � = 0.05. The figure shows that the frontiers obtained by considering
dominant systems, i.e., NC and SC conditions, do not provide tight upper
and lower bounds, respectively, for the actual performance, which may either
lead to a too conservative system operation with a lot of wasted resources or
a too aggressive system with violated operational constraints. Particularly,
operating with the SC constraints may lead to serving much lower intensity
of nodes that the network can support. On the other hand, operating with
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Figure 2.10: Stability regions of ALOHA with random channel selection over
the (✓,�)-plane. We show the �-stablity regions for N = 10 (colorplot)
and the deterministic stability frontier for the average performance (marked
dashed curve) for N

c

= 4, ⌘ = 2, R = 10 [m], �2 = �90 [dBm], P =
{�30} [dBm], a = 0.1 [packets/slots], and p

a

= 0.3.

the NC may result in serving a lot more nodes than the network should sup-
port but without any performance guarantee. Hence, Fig 2.13 manifests the
importance of the developed spatiotemporal model to determine the network
scalability under the required operational constraints.

To show the impact of the power-ramping strategy, we present a network
design case study with � = 0.1, ✓ = �23 [dB], �2 = �90 [dBm], a = 0.1,
⌘ = 2, R = 10 [m] and N = 10. It is worth highlighting that the con-
sidered setting is according to LoRa dense ad-hoc scenario (10 nodes on a
10 ⇥ 10 [m2] squared surface) for low-power consumption and short-range
communications. Table 2.1 shows di↵erent design variations of ALOHA and
the corresponding performance in terms of the fraction �

su

of stable nodes,
the fraction �

to

of nodes with delay less than t

? time slots, and the fraction
w̄

0

of nodes with non-empty bu↵ers. The results in the table emphasize that
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Figure 2.11: Stability regions of ALOHA with random channel selection over
the (p

a

, a)-plane. We show the �-stablity regions for N = 10 (colorplot)
and the deterministic stability frontier for the average performance (marked
dashed curve) for � = 0.1 [nodes/m2], N

c

= 4, ⌘ = 2, R = 10 [m], ✓ =
�30 [dB], �2 = �90 [dBm], and P = {�30} [dBm].

ramping-down power control with some persistence on each power level out-
performs all other schemes. This is because ramping-down the power reliefs
the interference and the persistence on each power level ensures sacrificing the
performance of nodes belonging to low QoS classes. Ramping-down without
persistence may mistakenly degrade the performance of a node belonging
to a high QoS class that experience instantaneously a severe fading. The
table also manifests that ramping-up the power has the worst performance
among all schemes, which is because ramping-up the power aggravates the
interference without enhancing the performance of nodes at congested loca-
tions. The table also shows that the primitive single power ALOHA scheme
outperforms the ramping-down scheme, which is not properly designed.
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Figure 2.12: Stability regions of ALOHA with random channel selection over
the (p

a

,�)-plane. We show the �-stablity regions for N = 10 (colorplot)
and the deterministic stability frontier for the average performance (marked
dashed curve) for N

c

= 4, ⌘ = 2, R = 10 [m], ✓ = �30 [dB], �2 = �90 [dBm],
P = {�30} [dBm], and a = 0.1 [packets/slots].

Table 2.1: Design of power ramping

N
p

N
t

P [dBm] �
su

�
to

t? =5

�
to

t? =10
w[0]

Single power 1 1 �30 0.4 0.1 0.4 0.15

Ramping-down 1 4 1 �30, �32, �34, �40 0.4 0 0.2 0.10

Ramping-down 2 4 10 �30, �32, �34, �40 0.6 0.2 0.5 0.25

Ramping-up 1 4 1 �30, �28, �26, �22 0.3 0 0.2 0.09

Ramping-up 2 4 10 �30, �28, �26, �22 0.2 0 0.2 0.06
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Figure 2.13: Pareto frontiers for the necessary (dashed), su�cient (dotted),
and actual (solid) conditions for simple ALOHA for (a): �-stability, with
a = 0.1 and � = 0.999; (b): �-operativity, with t

? = 5 [slots] and � = 0.5;
and (c): �-operativity, with t

? = 3 [slots] and � = 0.05. We considered
⌘ = 2, R = 10 [m], ✓ = �30 [dB], �2 = �90 [dBm], P = {�30} [dBm], and
a = 0.1 [packets/slots].

2.7 Final Remarks

The analysis of this chapter combines stochastic geometry and queuing the-
ory to develop a novel holistic spatiotemporal modeling for uncoordinated
MWNs. We carry out both the macroscopic- and microscopic-scale analysis
through a converging iterative proceidure that keeps track of the number of
packets in the transmitter bu↵ers, channel access, transmission power, and
the retransmission phase. We neglect the simplistic assumption of high mo-
bility, and consider fixed node locations for the analysis, thus accounting for
interference temporal correlation. Our framework goes beyond the analysis
through spatial averages at the typical point of the network and accounts
for the metadistribution of the SINR, which enables the characterization of
the location-dependent performance by the partitioning of the networkinto
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N QoS-classes. By such a partitioning we compute the percentile of stable
nodes and the percentile of nodes achieving a target operation in terms of
delay or queuing length, thus introducing the concepts of �-stability and �-
operativity. The stability-scalability and operativity-scalability tradeo↵s are
shown via the Pareto frontiers of the �-stability and �-operativity regions,
respectively, by accounting for the per-node tra�c intensity, node density,
target transmission rate, and uncoordinated access persistence. Our results
also show that the Pareto frontier retrieved from the spatial averaging at
the typical point, corresponds to a total uncertainty on the actual fraction
of network holding stability (or target operation), thus proving the superi-
ority of our analysis. Further, for both stability and operativity, we show
that the Pareto frontiers obtained for the necessary and su�cient conditions
corresponding to two dominant systems are not tight bounds of the actual
frontier obtained through our framework, thus highlighting that, towards ac-
counting for spatiotemporal interactions among queues, it is mandatory to
consider the location-dependent performance of each queue, while it is inac-
curate to account for dominant systems. Further, variations of the F-ALOHA
protocol with di↵erent power-ramping schemes are presented to improve the
�-stability and �-operativity. The importance of power-ramping design is
manifested through a case study that shows that ramping-down the power
after a properly designed number of retrials can improve the network per-
centile performance.
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Chapter 3
Intrinsic Secrecy in Inhomogeneous

Stochastic Networks

3.1 Preliminaries

Network intrinsic secrecy is the capacity of a network to hide a portion of
the transmitted information from unwanted listeners by solely relying on
the physical properties of the wireless channel. Its exploitation is a key
enabler for several emerging wireless applications including operation and
control of cyber-physical systems [151–153], IoT [30,154,155], and vehicular
networks [156–158].

3.1.1 Big Picture

The need for communication confidentiality has existed since antiquity. A
simple and famous example is the Caesar cipher, used by Julius Caesar ac-
cording to Suetonius for protecting missives of military significance [159].
Nowadays the confidentiality of wireless communications has become cru-
cial due to the advent of pervasive wireless networks and the development
of secrecy-sensible applications. In fact, the broadcast nature of the wireless
channel facilitates the information eavesdropping; on the other hand, it o↵ers
the possibility to exploit network interference to enhance the secrecy level.

Information-theoretic secrecy has emerged in the broader area of phys-
ical layer security [72] as a possible solution to complement the traditional
cryptographic techniques [160–163]. In recent studies based on the seminal
work of Shannon [70] and Wyner [164], it is highlighted how network in-
trinsic features such as wireless propagation medium, node locations, and
aggregate interference impact network secrecy [74]. Such an analysis high-
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Figure 3.1: Voltone del Podestà in Piazza Maggiore, Bologna, Italy.

lights the usability of network interference to obtain secrecy enhancement.
Interference engineering strategies (IESs) can be devised to imbalance the
quality of the legitimate and eavesdropping links and, thus, to obtain con-
fidential communications at a non-zero rate. In particular, the node spatial
distribution is crucial for the level of confidentiality in the network. Fig. 3.1
shows the Voltone del Podestà in Bologna, which is an example of intrinsic
confidentiality of the communication. In particular, only persons at two op-
posite columns can hear each others speech due to the peculiar shape of the
structure.

3.1.2 Related Works and Motivation

The seminal work of Wyner introduces the secrecy capacity of a wire-tap
channel [164]. After the characterization of the discrete memoryless channel,
secrecy capacity is studied in Gaussian wire-tap channels [165], in fading
channels [166], in the presence of interference [167], with multi-antenna links
[168], for multilevel networks [111], and with eavesdropper collusion [112].
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Figure 3.2: Intensity function.

Recently, IESs have been proposed to enhance the secrecy of small net-
works consisting of source, destination, helping nodes and eavesdroppers.
Techniques like artificial noise [73, 169], artificial noise alignment [170, 171],
friendly jamming [172,173], and cooperative jamming [75,174,175] have been
developed to impair the eavesdropping channel and, hence, achieve a non-zero
secrecy rate at the legitimate receiver. Generalized interference alignment
techniques that maximize network secrecy for large-scale stochastic networks
have been proposed in [109,110].

Other recent works explore information-theoretic secrecy in generic [76–
78], cellular [79–82], D2D enabled [83,84], full-duplex enabled [85], and multi-
tier [86] large-scale networks with stochastic topology. Such papers consider
the homogeneous Poisson point process (HPPP) for modeling node spatial
distributions, which has been extensively adopted to study the role of ag-
gregate interference in wireless networks [93, 129, 176, 177] because of its
tractability. However, the HPPP cannot capture practical scenarios that may
involve spatial clustering, space dependent access control, and non-uniform
mobility.

Several types of stationary point processes have been introduced to study
wireless networks with spatial correlation, e.g., Cox, cluster, hardcore, Gibbs,
and determinantal point processes [143, 178, 179]. Such point processes ac-
count for properties like attraction, repulsion, and regularity in node patterns
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Figure 3.3: Realization.

and are particularly useful to study the spatial distribution both of clustered
and cellular networks [180, 181]. Such stationary models have the advan-
tage of being able to describe the average performance of the network in a
tractable way. Nevertheless, such translation invariant models have the main
limitation of not being capable of describing the location-dependent perfor-
mance within a network. For this reason we consider inhomogeneous point
processes to tackle the spatial variability of the network performance when
a spatial model of node density is available. This has found application in
di↵erent scenarios such as mobile, vehicular, and sensor networks [182–186]

Consider a clustered network, when classical homogeneous Poisson cluster
model is used it is only possible to determine the average performance at the
typical point of the clustered network. In particular, a receiver can be con-
sidered at any point in any cluster, and the statistics evaluated at that point
represent the average statistic over all point configurations [113]. The anal-
ysis developed in this chapter considers inhomogeneous Poisson cluster and
enables to determine the performance variations while moving within a clus-
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Interfering link

Figure 3.4: System model.

ter and from cluster to cluster. Thus, we aim to provide a spatial description
of secrecy metrics, to consider the inhomogeneous distribution of the nodes.
Furthermore, secrecy needs to be guaranteed over the whole network, and
the analysis at a typical point is inadequate. Therefore, it is important to
study the inhomogeneous network where nodes are spatially distributed ac-
cording to an inhomogeneous Poisson point process (IPPP) (see Fig. 3.2-3.3).
The considered setting represents a challenging generalization with respect
to (w.r.t.) the homogeneous one, especially for what concerns the character-
izations of the interference and SINR when a destination selection policy is
employed.

3.1.3 Contribution

This chapter, which is in part presented in [2,5], provides foundations for the
analysis of intrinsic secrecy in inhomogeneous wireless networks. We propose
a framework based on the characterization of the signal-to-interference ra-
tio (SIR) which accounts for 1) the spatial distributions of LTs, legitimate
receivers (LRs), eavesdropping receivers (ERs), and intentional interferers
(IIs); 2) the wireless propagation medium; and 3) the aggregate interfer-
ence at each receiver. We consider three scenarios: the full inhomogeneous
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Table 3.1: Notation used throughout the chapter.

Symbol Usage

A ✓ Rd Bounded Borel set in Rd

i, i Random variable and its realization

x, x Random vector and its realization

P, ⇧ Point process and its realization

Y (·) Indicator function for the property Y

P(A) = nA Number of points in A
�(·) Intensity function [nodes/md]

⇤(·) Intensity measure over A [nodes]

S{·} Destination selection operator

E {·} Expectation operator

P {·} Probability operator

E!j{·} Reduced Palm expectation given xj

T , J Index sets of LTs and IIs

Rj Index set of receivers of xj

Ej Index set of eavesdroppers of xj

k 2 Rj index of the generic receiver of xj

k̄ = S{Rj} Index of the receiver selected by xj

(k) Index of the kth closest LR to xj

k̆ Index of the maximum SIR LR of xj

ij,k Interference at xk given xj

ij,k|xk Interference at xk given xj = xj

fz(·) PDF of the RV z

Fz(·) CDF of the RV z

 i(·) CF of the RV i

Li(·) Laplace transform of the RV i

rj,(k)

Distance between xj and its kth closest LR

fj,¯k,˘l MSR of at the selected LR of xj

U(a, b] Uniform distribution on the interval (a, b]

P(a) Poisson’ distribution with parameter a

k·k, | · | Euclidean norm, Lebesgue measure

<{c} Real part of c 2 C

network (FIN), full homogeneous networ (FHN), and partial inhomogeneous

54



network (PIN). The key contributions of the work can be summarized in the
following actions:

• develop a framework for the design and analysis of inhomogeneous wire-
less networks with intrinsic secrecy composed of legitimate nodes, inten-
tional interferers, and eavesdroppers with inhomogeneous distributions;

• characterize the statistic of the received SIR in legitimate and eaves-
dropping networks for di↵erent receiver selection strategies in the FIN,
FHN, and PIN scenarios;

• define local and global secrecy metrics for inhomogeneous networks;

• quantify the secrecy performance in di↵erent scenarios with physical
interpretations of di↵erent inhomogeneities.

Our approach combines information theory, communication theory, proba-
bility theory, and stochastic geometry to develop a theoretical analysis cor-
roborated by simulations in di↵erent network settings. The novelty of the
work is in the analysis of the location-dependent performance of the network,
which allows to characterize accurately the di↵erent local secrecy levels aris-
ing from the diverse local node densities. We then show how the availability
of an inhomogeneous model that reflects the spatial characteristics of a net-
work allows to accurately unveil the local performance. The main di�culty
is to hold tractability while considering the intricate relations between the
distributions of LTs, LRs, ERs, and IIs. This makes di�cult to characterize
the aggregate interference and the SINR. Nevertheless, we devise a system-
atic procedure to characterize and compute key performance indicators for
any destination selection policy by means of numerical integrations.

3.1.4 Notation and Organization

Notation

The notations used in this chapter is summarized in Table 3.1.

Organization

The rest of the chapter is organized as in the following: Section 3.2 presents
the network model. Section 3.3 analyzes the aggregate interference distribu-
tion in inhomogeneous networks. Section 3.4 develops the statistical charac-
terization of the received SIR in generic and Nakagami-m fading channels for
di↵erent destination selection strategies. Section 3.5 defines local and global
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secrecy metrics for inhomogeneous networks. Section 3.6 proposes competi-
tive strategies based on node inhomogeneous stochastic deployment as case
studies. Section 3.7 provides numerical results and section 3.8 gives our final
remarks.

3.2 Network Model

Consider four overlaid networks as in Fig. 3.4: the legitimate transmitter
network (LTN); legitimate receiver network (LRN); eavesdropping receiver
network (ERN); and intentional interferer network (IIN). These networks
are modeled via independent IPPPs defined over an d-dimensional Euclidean
space. Recall that a point process P is defined over a bounded Borel set1

A ✓ Rd and has the twofold nature of being a random measure, i.e., the
number of points in A, P(A) = nA, and a random sequence of points, i.e.,
P = {x

1

, x

2

, . . . } = {xnA}. Further, P is characterized by the intensity
function �(x) for all x 2 A or, equivalently, by the intensity measure ⇤(A),
where2

⇤(A) =

Z

A
�(x)dx .

The considered networks are described in the following points.

• The LTN and the LRN form the legitimate network, which consist of
nodes exchanging confidential information. The LTN and the LRN are
denoted by the point processes P

tx

and P
rx

with intensity functions
�

tx

(x) and �
rx

(x), respectively.

• The ERN is composed of malicious nodes trying to intercept the con-
fidential information exchanged through the legitimate network. It is
described by the point process P

ex

with intensity function �
ex

(x).

• The IIN is made up of nodes that introduce jamming messages in the
radio channel to impair the ERs’ channels. The IIN is described by the
point process P

jx

with intensity function �
jx

(x).

1A Borel set is the smallest �-algebra on Rd that contains all the open subsets of
Rd [189].

2The intensity function of point processes represents the density of nodes per unit area
and is measured in [nodes/md]. The intensity measure is the mean number of points of P
on A.
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We model the point processes of interferers a↵ecting the LRs and ERs as
IPPPs with intesity functions given, respectively, by

�

ir

(x) = �

tr

�

tx

(x) + �

jr

�

jx

(x) (3.1a)

�

ie

(x) = �

te

�

tx

(x) + �

je

�

jx

(x) (3.1b)

where the parameters �
tr

, �

te

, �

jr

, �

re

2 [0, 1] model the capability of the sub-
networks to control the interference. Specifically, at the receivers’ side in-
terference cancellation can be employed if the sequence of transmitted sym-
bols is known, while at the transmitters’ side interference alignment can be
exploited to null the interference at some specific locations via multiple an-
tennas [?]. For the sake of simple presentation, in the rest of the paper we
consider no interference cancellation nor interference alignment for the LTs’
interference (i.e., �

tr

= �

te

= 1), no interference cancellation nor alignment
for the IIs’ interference at the ERs (i.e., �

je

= 1), and perfect cancellation
or alignment for the IIs’ interference at the LRs (i.e., �

jr

= 0). In such a
scenario, the LRs know the sequence of symbols transmitted by the IIs or
IIs use multiple antennas to align the interference at ERs locations. There-
fore, the interferers a↵ecting the LRN and the ERN are described by the
point processes P

ir

and P
ie

with intensity functions �
ir

(x) = �

tx

(x) and
�

ie

(x) = �

tx

(x)+�

jx

(x), respectively. Section 2.6 considers the case wherein
the ERs knows the sequence of symbols of the IIs and perform interference
cancellation (i.e., �

ie

(x) = �

tx

(x)).
Let T and J denote the index sets of LTs and IIs, respectively. For the

j

th LT in T , Rj denotes the index set of potential LRs and Ej the index set
of ERs. For a specific legitimate link, k 2 Rj is the receiver index. Similarly,
for an eavesdropping link, i 2 Ej is the ER index.

3.3 Interference Panorama in Inhomogeneous
Wireless Networks

In wireless networks, noise and interference are important for determining the
performance of communications. In interference-limited systems the additive
noise is considered negligible w.r.t. the aggregate interference. Therefore, we
neglect the e↵ect of the noise and assume an interference-limited regime.

It is well known that the interference distribution at a given point of a
network can be described by the characteristic function or equivalently by
the Laplace transform [189]. When the network is modeled as an HPPP,
the interference distribution is the same at each location [93]; otherwise, the
analysis presents remarkable di�culties.
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j,k

|r
j,k

,j
j,k

(|!) =exp

⇢

�
Z

A

⇣

1�

 h

⇣

|!

�

(u � uj � rj,k cos ✓j,k)
2 + (v � vj � rj,k sin ✓j,k)

2

��b
⌘⌘

�

tx

(u, v)dudv

�

(3.9)

We introduce a random link composed of a transmitter xj and a receiver
xk 2 P

rx

in A ✓ Rd.3 The signal power received by xk is

pj,k = p

T

|sj|2
hj,k

r2b
j,k

(3.2)

where p

T

is the transmitted power, |sj|2 is the power of the complex transmit-
ted symbol, b is the amplitude path-loss exponent, hj,k 2 C is the quasi-static
channel power gain and rj,k = kxj � xkk is the Euclidean distance between
the locations xj and xk. The aggregate interference power level at xk is
expressed by

ij,k =
X

x

q

2P
ir

p

T

|sq|2
hq,k

r2b
q,k

. (3.3)

In the following we consider p

T

= 1, |s|2 = 1, and i.i.d. channel power
gains.4 Further, ij,k is a RV taking di↵erent values for each realization of
point processes and channels. The conditional characteristic function of the
interference at a given location can be expressed by means of the probability
generating functional (PGFL) of the PPP [189] as

 i
j,k

|x
k

(|!) = exp

⇢

�
Z

A

✓

1 �  h

✓

|!

kx � xkk2b

◆◆

�

ir

(x)dx

�

(3.4)

where | is the imaginary unit.
It is worth noting a particular feature of the inhomogeneous network: the
statistical distribution of the aggregate interference is di↵erent in each pos-
sible realization of the random location xk of the receiver. This is because

3The notation xk 2 P
tx

indicates that the random points xk belongs to a random
sequence P

tx

, exploiting the nature of P
tx

of being a random sequence of points in A ✓ Rd.
4Consider that every LT and IIs transmit symbols sj and sq, respectively, with symbol

|sj |2 = |sq|2 = |s|2 = 1 for all j 2 T and q 2 J . For all pairs of locations xj , xk 2 A,
the same square channel gain distribution is assumed, i.e.,  hj,k(·) =  h(·), in terms of
characteristic functions.
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from each location xk we see a di↵erent panorama of interferers, which is the
distribution of the interferers seen from xk.

We now introduce the unconditional characteristic function of the inter-
ference, which is useful when an SIR analysis is carried out considering a
destination selection strategy, as will be shown in Section 3.4. The uncon-
ditional characteristic function is obtained by marginalizing  i

j,k

|x
k

(|!) over
the spatial PDF f

rx

x

k

(x) of the receiver’s location xk as

 i
j,k

(|!) = E
x

k

�

 i
j,k

|x
k

(|!)
 

(3.5)

where

f

rx

x

k

(x) =
�

rx

(x)

⇤
rx

(A)
(3.6)

for all x 2 A. For a receiver selected randomly, according to the spatial
distribution in (3.6),  i

j,k

(|!) is independent from xj, i.e.,  i
j,k

(|!) =  i(|!).
To consider other receiver selection strategies than the random one, it is

convenient to express the marginalization and the spatial distribution of (3.5)
and (3.6) w.r.t. the polar coordinates of xk. For networks in A ✓ R2, the
position xk can be conveniently expressed by means of its polar coordinates
w.r.t. the position xj, i.e.,

xk =



uk

vk

�

=



uj + rj,k cos ✓j,k

vj + rj,k sin ✓j,k

�

. (3.7)

Then (3.5) takes the form of

 i
j,k

(|!) = Er
j,k

,j
j,k

�

 i
j,k

|r
j,k

,j
j,k

(|!)
 

(3.8)

where  i
j,k

|r
j,k

,j
j,k

(|!) is defined in (3.9) and the expectation is performed
w.r.t. the joint PDF of rj,k and jj,k, i.e., fr

j,k

,j
j,k

(rj,k, ✓j,k). As will be shown
in the following section, this model simplifies the statistical analysis of the
received SIR for the considered receiver selection strategies.

Recall that if the interferers are uniformly distributed over A = R2, the
distribution of the aggregate interference does not depend on the location
where it is evaluated [93], i.e.,

 i
j,k

|x
k

(|!) =  i
j,k

(|!) (3.10a)

= exp

✓

� �

ir

�|!| 1

b



1 +
|!

||!| tan
⇣

⇡

2b

⌘

�◆

(3.10b)

for all xk 2 A. Then, ij,k belongs to the class of skewed stable RVs

ij,k ⇠ S
✓

1

b

, 1,�
ir

�

◆

(3.11)
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where

� = ⇡B

�1

1

b

E
�

h
1

b

 

(3.12)

Ba =

(

1�a
�(2�a) cos(⇡a

2

)
for a 6= 1

2

⇡ for a = 1
(3.13)

and where �(·) is the Gamma function.

3.4 Statistical Characterization of SIR

In interference-limited systems, the additive noise is considered as negligible
w.r.t. the aggregate interference level. For this reason we analyze perfor-
mance by means of the SIR

zj,k , hj,k

r2b
j,kij,k

. (3.14)

Di↵erent destination selection strategies are taken into account for character-
izing the SIR of a legitimate link. In particular, the confidential information
can be sent to: 1) a randomly selected receiver, 2) the receiver with maxi-
mum SIR, or 3) the k

th closest receiver. Regarding the eavesdropping link,
we consider only the ER with maximum instantaneous SIR, i.e., the most
dangerous and limiting for secrecy performance.

3.4.1 SIR in the Legitimate Network

For a transmitter located in xj, we characterize the SIR received by the LR at
x

¯k with index k̄ = S{Rj}, i.e., which is selected within Rj using the selection
strategy S{·}. Note that this characterization is local and is conditioned
on the transmitter location. The analysis generalizes the results of [76] to
inhomogeneous wireless networks. In particular, we extend in Lemmas 1 and
2 results obtained in Sections IV and V of [76], respectively.

Randomly Selected Receiver

Hereafter we provide two lemmas to characterize the distribution of the SIR
given a random selection policy.

Lemma 1 (Random link SIR distribution in fading channels) Let xk 2
P

rx

be the location of the receiver randomly selected by the transmitter in xj
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according to the spatial PDF described in (3.6). The CDF of the SIR zj,k is
given by

Fz
j,k

(z) =
1

2
+

1
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Z 1

0

<
n

 g
j,k

(|!)

|!

o

d! (3.14a)

 g
j,k

(|!) =  h
j,k

(|!)E
x

k

n

 i
j,k

|x
k

�

�|!r2b
j,kz

�

o

(3.14b)

where gj,k , hj,k � zr2b
j,kij,k and  i

j,k

|x
k

(·) is given by (3.4).

Proof 3 The proof follows directly from the Gil-Pelaez inversion theorem
[190]; then, exploiting the independence between the useful channel gain and
the interference. The steps of the proof are similar to those in Sections IV-
A1, IV-A2, and Appendix B of [76], except for the generalization

Er
j,k

�
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�

�|!r2b
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. (3.15)

⇤

Lemma 2 (Generic link SIR distribution in Nakagami-m fading channels)
For the scenario of Lemma 1 with Nakagami-m fading channels, the CDF of
zj,k is given by

Fz
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(z) = 1 �
m�1
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(3.16)

where s 2 C, and Li
j,k

|x
k

(·) is the conditional Laplace transform of the inter-
ference obtained by plugging into (3.4)5

Li(s) =  i (|!)
�

�

|!=�s
. (3.17)

5Note that the Laplace transform and the characteristic function of the aggregate in-
terference are both deducted by the probability generating functional [189].
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Proof 4 The proof follows directly by considering the exponential distribu-
tion of the useful channel gain, which allows to use the Laplace transform of
the interference. The steps of the proof are similar to those in Section V-A
and Appendix D of [76]. ⇤

Note that (3.14b) and (3.16) highlight an important structural feature: the
key issue for the evaluation of the SIR distribution is the marginalization
of the conditional characteristic function (or Laplace transform) of the ag-
gregate interference, i.e.,  i

j,k

|x
k

(·) (or Li
j,k

|x
k

(·)), over the distribution of the
receiver location xk.

Maximum SIR Legitimate Receiver

Based on the results shown in Section 3.4.1, the following three results (i.e.,
Theorem 2, Corollaries 2 and 3) are provided to obtain the CDF of the SIR
when the maximum SIR receiver selection strategy is adopted by transmit-
ters. Three di↵erent network scenarios will be taken into account. In partic-
ular, Theorem 2 concerns the analysis of the FIN, Corollary 2 analyzes the
FHN as a special case of the FIN and recalls results from [76], while Corollary
3 gives a formulation for PINs. Furthermore, Case Study 1 is presented to
provide insights from our findings and validate the analysis.

Consider an LT in xj and all the LRs with index set Rj in a bounded set
AR

j

⇢ Rd. The location of the maximum SIR receiver is defined as x

˘k 2 P
rx

where k̆ , arg max
k2R

j

{zj,k}.

Theorem 2 (FIN: maximum SIR receiver) Let the LTN and the LRN
be described by the IPPPs P

tx

and P
rx

with intensity functions �
tx

(x) and
�

rx

(x), respectively. The CDF of the SIR at x

˘k when xj is the useful trans-
mitter, i.e., zj,˘k , maxk2R

j

{zj,k}, is given by

Fz
j,

˘

k

(z) = exp
��

Fz
j,k

(z) � 1
�

⇤
rx

(AR
j

)
 

(3.18)

where Fz
j,k

(z) is the CDF of the SIR of a generic link obtained by Lemma 1
or 2.

Proof 5 The proof is given in Appendix B.1. ⇤

Corollary 2 (FHN: maximum SIR receiver) Let the LTN and the LRN
be described by the HPPPs P

tx

and P
rx

in A ✓ R2 with intensities �
tx

and �
rx

,
respectively. Let AR

j

be a circular region centered in xj with radius r

M

in which the LRs are located. The CDF of zj,˘k is given by (3.18) with
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⇤
rx

(AR
j

) = ⇡r

2

M

�

rx

, where Fz
j,k

(z) is defined in (3.14a)-(3.15), ij,k is a
skewed stable RV with a characteristic function given by (3.10b), and r2j,k ⇠
U(0, r2

M

].

Proof 6 The proof is given in Appendix B.2. ⇤
Note that Corollary 2 summarizes what is analyzed in Section IV-A2 of [76]
as a special case of Theorem 2.

Corollary 3 (PIN: maximum SIR receiver) Let the LTN and the LRN
be described by the IPPP P

tx

with intensity function �
tx

(x), and the HPPP
P

rx

with intensity �
rx

, respectively. The CDF of zj,˘k is given by (3.18) with
⇤

rx

(AR
j

) = ⇡r

2

M

�

rx

, where Fz
j,k

(z) is obtained by (3.14a)-(3.15) and
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 i
j,k

|r
j,k

,j
j,k

(|!) is given by (3.9), r2j,k ⇠ U(0, r2

M

], and jj,k ⇠ U(0, 2⇡].

Proof 7 The proof is given in Appendix B.3. ⇤
Case Study 1 Consider the PIN setting of Corollary 3, in a Nakagami-m
fading environment with average channel power ⌦. Further, consider for the
LTN a Gaussian6 intensity function centered in the origin of a coordinate
system (see Fig. 3.2) with variance �2 on each axis, i.e.,
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The CDF of zj,˘k is given by (3.18) with ⇤
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j
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, where
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s mr
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�

is found to be expressed as (3.22), r2j,k ⇠ U(0, r2

M

], and
jj,k ⇠ U(0, 2⇡].

Proof 8 Case Study 1 is a special case of Corollary 3 with Gaussian inten-
sity function and Nakagami-m fading. The derivation of (3.21) is straight-
forward considering Lemma 2 instead of Lemma 1. To obtain (3.22), (3.9)
is rearranged taking into account (3.17), (3.20), and the Laplace transform
of the square channel gain in Nakagami-m fading, i.e., Lh(s) =

�

m
⌦s+m

�m
. ⇤

6This intensity function can be interpreted as a bivariate Gaussian PDF with same
variance on the two jointly Gaussian components (see [191]), weighted by ⇤

tx

(A).
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k

th Closest Receiver

Consider all the selectable LRs k = 1, 2, . . . , nAR
j

of the transmitter xj.

Consider the orderly index set of the LRs {(k)} where the ordering is based
on distances, i.e., rj,(k)

 rj,(k+1)

for all k. When the k

th closest LR is selected,
i.e., k̄ = (k), the following result holds.

Theorem 3 (FIN: k

th closest receiver) In the FIN setting of Theorem
2, the CDF of the SIR between xj and its k

th closest receiver x

(k)

, i.e., zj,(k)

,
is given by (3.14a) and (3.14b) with k = (k),7 and

 g
j,(k)

(|!) =  h
j,(k)

(|!)
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�
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where  i
j,(k)

|r
j,(k)

,j
j,(k)

(|!) is given by (3.9) with k = (k). The distributions of
rj,(k)

ad jj,(k)

are derived in Appendix B.4.

Proof 9 Consider the framework of Lemma 1 with k = (k) in (3.14a)-
(3.14b). Before carrying out the expectation of (3.14b), let us emphasize that
rj,(k)

and jj,(k)

are dependent RVs. In fact, if the LRs are inhomogeneous, for
a certain value of the distance rj,(k)

, there exists an angular direction ✓j,(k)

in which the probability of finding the k

th closest receiver is maximized

✓j,(k)

= argmax
✓2C

j,(k)

�

rx

�

rj,(k)

, ✓

�

(3.24)

where Cj,(k)

is the the circumference with center xj and radius rj,(k)

. Con-
sidering k = (k), (3.14b) can be rearranged by the chain rule of conditional
expectation to obtain (3.23); then (3.9) is plugged in with (k) in place of k.
⇤

Corollary 4 (FHN: k

th closest receiver) In the FHN setting of Corol-
lary 2, the CDF of zj,(k)

is given by (3.14a)-(3.14b) where k = (k), ij,(k)

is a
skewed stable RV with characteristic function given by (3.10b) except for the
replacement k = (k), and r2j,(k)

is an Erlang distributed RV [192–194] with
characteristic function given by

 r2
j,(k)

(|!) =

✓

1 � |!

⇡�

rx

◆�k

. (3.25)

7From here on and for the rest of the subsection, whenever we refer to an equation
involving the index k of a generic receiver, the reader should substitute it with (k) for the
case of the kth closest receiver.
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Proof 10 Consider (3.14b) with k = (k). Since transmitter and receiver
locations are modeled according to HPPPs over the set A, the aggregate in-
terference characteristic function is given by (3.10b) where k = (k). Further,
the squared distance r2j,(k)

between xj and its k

th closest receiver x

(k)

is an
Erlang RV with characteristic function defined in (3.25). ⇤

Note that the case analyzed in Section IV-A1 of [76] undergoes to the same
hypotheses of Corollary 4 and can be considered as a special case of Theorem
3.

Corollary 5 (PIN: k

th closest receiver) In the PIN setting of Corollary
3, the CDF of zj,(k)

is given by (3.9), (3.14a), and (3.19) with k = (k); where
r2j,(k)

is Erlang distributed with characteristic function defined in (3.25); and
jj,(k)

⇠ U(0, 2⇡].

Proof 11 The proof directly follows from the one of Corollary 3 with k = (k)
and by considering the Erlang distribution for the square distance r2j,(k)

. ⇤

Case Study 2 Consider the assumptions made in Case Study 1. The CDF
of zj,(k)

is given by
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where Li
j,(k)

|r
j,(k)

,j
j,(k)

�

s mr

2b
j,(k)

z

�

is obtained in (3.22) with k = (k); r2j,(k)

is
an Erlang distributed RV with characteristic function defined in (3.25); and
jj,(k)

⇠ U(0, 2⇡]

Proof 12 Case Study 2 is a special case of Corollary 5 with Gaussian inten-
sity function and Nakagami-m fading. The derivation of (3.26) is straight-
forward considering Lemma 2 instead of Lemma 1. ⇤

3.4.2 SIR in the Eavesdropping Network

The framework for the characterization of the SIR in the eavesdropping net-
work is the same as defined for the legitimate network. The main di↵erence
comes from the assumption of considering a population of IIs that help the
legitimate network in keeping the information confidential. In particular, IIs
know the positions of LRs and have the capability of nulling the transmission
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power sent in the directions of such receivers, e↵ectively deteriorating only
the reception of the ERN. Specifically, either IIs are equipped with multiple
antennas, and, hence, can perform null-steering beamforming or interference
alignment [110] at the LRs’ locations, or IIs with a single antenna cooperate
to mimic multiantenna jammers [73].

In Section 3.7, we also show scenarios in which IIs are inactive and,
hence, the eavesdropping channels are as much impaired as the legitimate
ones. Practical techniques to impair eavesdropping channels can be found
in [73, 75, 109, 110, 169–175]. All results of Section 3.4.1 hold also for the
eavesdropping link, where the interferers of the ERN are modeled by the
PPP P

ie

given by the superposition of P
tx

and P
jx

with intensity function
�

ie

(x) = �

jx

(x)+�

tx

(x) for all x 2 A ✓ Rd. The eavesdropping link consists
of the transmitter at xj and the receiver at xi 2 P

ex

. Recall that secrecy
performance is determined by the ER with maximum SIR. The results of
Section 3.4.1 are used, with ER index l̆ 2 Ej s.t. zj,˘l , max

i2E
j

{zj,l} in place of

the selected receiver with index k̆.

3.5 Network Secrecy Metrics

Based on the framework developed in Section 3.4 for received SIR character-
ization, this section defines the secrecy metrics for inhomogeneous networks.
Among di↵erent locations of the network, the aggregate interference can dra-
matically change, depending on the panorama of interferers at the considered
point. Hence, we first introduce local secrecy metric, then we define global
metrics to summarize the overall network performance.

3.5.1 Maximum Secrecy Rate

In Section III-A of [76], the maximum secrecy rate (MSR) of a Gaussian
wireless-tap channel is extended to scenarios with interference generated by
a homogeneous network, when receivers treat interference as noise. Recall
the conditional MSR fj,¯k,˘l, which is the maximum transmission rate that a
transmitter can employ remaining in the condition of perfect secrecy [70,164].
The MSR of the link consisting of the LT, the selected LR and the ER at
xj, x

¯k, and xı̆, respectively, is determined by the most capable ER (i.e., the
one with highest SIR) with index l̆ , arg max

i2E
j

{zj,l}. The conditional MSR is

given by

fj,¯k,˘l =
h

c(zj,¯k) � c(zj,˘l)
i

+

(3.27)
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and it is is measured in confidential information bits per second per Hertz,
i.e., [cib/s/Hz] (c.f. [76]), where c(z) , log

2

(1 + z) [bit/s/Hz] is the capacity
of the Gaussian wireless-tap channel, zj,¯k is the SIR at the selected receiver,
and zj,˘l is the SIR at the ER with maximum SIR. Hence, the local maximum
secrecy rate (LMSR) is defined as the average MSR of a link originated in
xj over channel gains and point configurations, i.e.,

Rj , E!j{fj,¯k,˘l} . (3.28)

where E!j{·} is the reduced Palm expectation conditional on the intended
transmitter at xj, i.e., the expectation over all point configurations having
the intended transmitter at xj with its removal from the point sequence
(c.f. [189]).Consider zj,¯k and zj,˘l to be independent.8 The expectation of
(3.28) is computed over SIRs as
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)fz
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k

(z
2

)dz

1

dz
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. (3.29)

Remark 1 Rj expresses the average MSR of a link with the LT located in
xj. Hence, it is a metric that describes secrecy performance from the single
link point of view and is particularly useful for link design.

It is also worth defining a metric to describe the secrecy performance from
the network point of view. The local network secrecy rate density (LNSRD)
is defined as

⇢j(xj) , �

tx

(xj)Rj (3.30)

for all xj 2 A and measured in [cib/s/Hz/m2]. Note that such a metric is a
density, being weighted for the density of transmitters in xj, and describe the
performance in terms of secrecy rate per unit area. The definition of ⇢j(xj)
highlights that a high level of information confidentiality can be achieved in
a certain region not only if every single link has a high MSR, but also if that
region is densely populated by links with low MSR values. To describe the
overall network performance, we define a global secrecy metric that takes into
account all the possible locations of the LT xj. For that purpose, consider

8The approximation that neglect the spatial correlation of the interference has been
shown to be good in [76] (see Fig. 3)
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the spatial average of Rj as

R ,
Z

A
Rj(x)f tx

x

j

(x)dx (3.31a)

=
1

⇤
tx

(A)

Z

A
⇢j(x)dx (3.31b)

=
1

⇤
tx

(A)
R

ns

(3.31c)

where f

tx

x

j

(x) = �

tx

(x)/⇤
tx

(A) and (3.30) are used to obtain (3.31b). Then,
(3.31b) is used together with (3.31c) to define the network secrecy rate
(NSR)9 as

R

ns

,
Z

A
⇢j(x)dx . (3.32)

Remark 2 Di↵erently from Rj, that is related to a single link, R

ns

is related
to all the links in the set A and represents the total secrecy rate over A.
Moreover, ⇢j(xj) is the pointwise density associated with R

ns

.

3.5.2 Secrecy Throughput Density

Consider that an LT cannot achieve the MSR unless it knows the SIRs at
the selected receiver and at each ER. It is worth introducing a metric that
characterizes the confidential information flowing through legitimate links,
which is blind w.r.t. the instantaneous ERs’ positions and channels (only
stochastic information is assumed). In Sections III-D and III-E of [76], the
network secrecy throughput density is defined. We now generalize such a
metric to account for the inhomogeneous distribution of nodes.

Consider a desired rate of confidential information R

s

and a maximum
tolerable secrecy outage probability (SOP) P

?
so

. The LT in xj transmits the
confidential information only if the SIR at the selected receiver is greater
than a threshold µ, namely the secrecy protection ratio. Such an event
happens with probability P

it,j(µ) , P
�

zj,¯k > µ

 

. The secrecy outage event

9The NSR is measured in confidential information bits per second per Hertz, i.e.,
[cib/s/Hz] (c.f. [76]).
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is characterized by the SOP

P

so,j(Rs

, µ) , P
n
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o
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(3.33d)

which is obtained by the Bayes rule. Hence, the secrecy protection ratio of
the network is set as the most conservative value over the possible transmitter
location xj that maximize P

it,j(µ) with the constraint P

so,j(Rs

, µ)  P

?
so

, i.e.,

µ

? = max
x

j

2A

n

arg max
µ2Mj

P

it,j(µ)
o

(3.34)

which is solved by exhaustive search where Mj = {µ : P

so,j(Rs

, µ)  P

?
so

}.
We then define the local secrecy throughput (LST) as

Tj , E!j
[µ?,1)

(zj,¯k)Rs

(3.35)

that is the average secrecy throughput for a link with the LT located at xj.
Then, Tj is determined as

Tj = P

it,j(µ
?)R

s

. (3.36)

To describe the secrecy throughput flowing in the network we define the local
network secrecy throughput density (LNSTD) by

⌧j(xj) , �

tx

(xj)Tj . (3.37)

Furthermore, in analogy to the NSR, we define the network secrecy through-
put (NST) to describe the overall network performance in terms of total
secrecy throughput over a certain area A as

T

ns

=

Z

A
⌧j(x)dx . (3.38)

Remark 3 Note that local secrecy metrics Rj, Tj, ⇢j(xj), and ⌧j(xj) are de-
fined pointwise and describe a surface for all xj 2 A. Global secrecy metrics
like R

ns

and T

ns

condense the information provided by local metrics in a single
value that is proportional to the spatial means of Rj and Tj, respectively.
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Remark 4 Eq. (3.30) and (3.37) show that spatial variability of LNSRD and
LNSTD are mainly caused by two di↵erent elements: 1) direct dependency
from �

tx

(xj), and 2) implicit dependency from intensity functions �
tx

(x),
�

rx

(x), �
jx

(x), and �
ex

(x). Such an implicit dependency is due to the SIRs
zj,¯k and zj,˘l, which themselves depend on the point process of the LRs, the
point process of ERs, and that of the IIs.

3.6 Case Studies

Sections 3.3, 3.4, and 3.5 show the influence of intrinsic network properties,
such as aggregate interference and node spatial distribution, on network se-
crecy. Section 3.2 presents the network model as a superposition of four PPP,
where each of those is described by its intensity function. Inhomogeneities
in such functions as well as local imbalances between values of di↵erent sub-
networks heavily a↵ect the local secrecy level. In this section we introduce
and analyze some case studies to explore the inhomogeneous network secrecy
performance. In particular, Section 3.6.1 presents the dense-sparse model to
capture the fundamental e↵ect of a rise and a fall of the node intensity com-
pared to a constant level, while Section 3.6.2 introduce several case studies
where LTs, LRs, ERs, and IIs follow either the dense-sparse or the homoge-
neous models.

3.6.1 The Dense-Sparse Model

Consider a generic PPP P⇤ where ⇤ = {tx, rx, jx, ex}. P⇤ can be either
a HPPP or IPPP. For the IPPPs we have considered a Gaussian intensity
functions centered in the origin with variance �2 on each axis (see Fig. 3.2),
hence

�⇤(x) =

(

⇤⇤(A)

2⇡�2

e

� u

2

+v

2

2�

2 if P⇤ is an IPPP

�⇤ if P⇤ is a HPPP
. (3.39)

For a fair comparison it is necessary that A and �2 are such that
Z

A

1

2⇡�2

e

� u

2

+v

2

2�

2 ' 1 .

We define the high density (HD) region by the surface in which the in-
tensity function of the IPPP is greater than �⇤ and the low density (LD)
region by the surface in which such intensity function is smaller than �⇤ (see
Fig. 3.5). The former represents a peak of the node density while the latter
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xj (i.e., P!

ex,j), the panorama of interferers for each possible
value of x

¯k = xk (i.e., P!

ir,k), and the panorama of interferers
for each possible value of xı̆ = xl (i.e., P!

ie,l).

VI. CASE STUDIES

Sections III, IV, and V show the influence of intrinsic
network properties, such as aggregate interference and node
spatial distribution, on network secrecy. Section II presents
the network model as a superposition of four PPP, where each
of those is described by its intensity function. Inhomogeneities
in such functions as well as local imbalances between values
of different subnetworks heavily affect the local secrecy level.
In this section we introduce and analyze some case studies to
explore the inhomogeneous network secrecy performance.

A. The Dense-Sparse Model

Consider a generic PPP P⇤ where ⇤ = {tx, rx, jx, ex}.
P⇤ can be either a HPPP or IPPP. For the IPPPs we have
considered a Gaussian intensity functions centered in the
origin with variance �2 on each axis (see Fig. 2(a)), hence

�⇤(x) =

(

��(A)

2��2 e� u2+v2

2�2 if P⇤ is an IPPP
�⇤ if P⇤ is an HPPP

. (38)

We define the high density (HD) region by the surface in
which the intensity function of the IPPP is greater than �⇤
and the low density (LD) region by the surface in which
such intensity function is smaller than �⇤ (see Fig. 3). The
former represents a peak of the node density while the latter
represents a hole of the node density. The above defined
model is particularly adequate in scenarios where nodes are
concentrated in a specific area, and tend to rarefy outside it.
This situation can occur in vehicular networks, e.g., at the
intersection of two streets in an urban area or at the toll booth
on a highway; or in pedestrian networks, e.g., at a concert or
at the traffic light in correspondence of a crosswalk; in tactic
scenario, e.g., a squadron of drones, and so on so forth. More
realistic models can be considered to avoid the total rarefaction
of the network. For example a superposition of a dense-sparse
model with an homogeneous model can effectively represent
a scenario with a high concentration of nodes in a specific
area, that decrease to a standard uniform concentration. In
such a case, the network can be considered as a superposition
of point processes, and the analysis of this paper can serve for
that scenarios as well.

B. Network Scenarios

While HPPPs are usually compared on a theoretically
infinite surface by means of their intensity (nodes per square
meter in a two dimension area), a fair comparison between
inhomogeneous PPPs with different intensity functions can
be carried out by considering their intensity measures over a
bounded region A. Hence we will consider different scenarios
where each subnetwork follows the dense-sparse model. Then,

�
⇤

(r
,�

�
)

P⇤ is IPPP

P⇤ is HPPP

r

HD region LD region

Fig. 3. Section of the intensity function for an IPPP and HPPP, along the
semi-plane defined by ✓? and positive r, as a function of the distance r from
the origin.

we refer the intensity measures of the four subnetworks to that
of an HPPP with intensity �h by

⇤tx(A) = �
1

⇤h(A) (39a)
⇤rx(A) = (1 � �

1

)⇤h(A) (39b)
⇤jx(A) = �

2

⇤h(A) (39c)
⇤ex(A) = �

3

⇤h(A) (39d)

where �
1

, �
2

, �
3

2 [0, 1] and ⇤h(A) = �h|A|. We now
define as case studies six network scenarios where imbalances
between the spatial distributions of the LTN, LRN, ERN, and
IIN are considered. We introduce some specific terminology
to refer to the considered scenarios: the first specification
(smart/non smart) refers to the LTN and RTN and the second
specification (informed/non informed) to the ERN and IIN.
In particular, the terms “smart” and “informed” refers to
an inhomogeneous distribution of nodes. The following case
studies have been analyzed:

• smart informed (SI): all PPPs are inhomogeneous;
• smart non-informed (SNI): inhomogeneous LTN and

LRN, homogeneous ERN and IIN;
• non-smart informed (NSI): homogeneous LTN and LRN,

inhomogeneous ERN and IIN;
• non-smart non-informed (NSNI): all PPPs are homoge-

neous.

In addition, two hybrid scenarios have been considered; they
will be referred to as follows:

• hybrid network scenario 1 (HNS1): inhomogeneous LTN
and IIN, homogeneous LRN and ERN;

• hybrid network scenario 2 (HNS2): inhomogeneous IIN,
homogeneous LTN, LRN, and ERN.

To each of the six settings above, there can be appended the
third specification regarding the receiver selection technique:
maximum SIR (MS) or k-th closest (KC).

Figure 3.5: Half of a section of the intensity function of an IPPP and HPPP,
respectvely. It is divided in the HD and LD region.

represents a hole of the node density. The above defined model is particularly
adequate in scenarios where nodes are concentrated in a specific area, and
tend to rarefy outside it. This situation can occur in vehicular networks, e.g.,
at the intersection of two streets in an urban area or at the toll booth on a
highway; or in pedestrian networks, e.g., at a concert or at the tra�c light in
correspondence of a crosswalk; in tactic scenario, e.g., a squadron of drones,
and so on so forth. More realistic models can be considered to avoid the to-
tal rarefaction of the network. For example a superposition of a dense-sparse
model with an homogeneous model can e↵ectively represent a scenario with
a high concentration of nodes in a specific area, that decrease to a standard
uniform concentration. In such a case, the network can be considered as
a superposition of point processes with intensity function composed by two
parts, i.e., �⇤(x) = �

inh.

⇤ (x) + �

hom.

⇤ . All the results of this thesis directly
apply to such a scenario.
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3.6.2 Network Scenarios

While HPPPs are usually compared on a theoretically infinite surface by
means of their intensity (nodes per square meter in a two dimension area),
a fair comparison between inhomogeneous PPPs with di↵erent intensity func-
tions can be carried out by considering their intensity measures over a bounded
region A. Hence we will consider di↵erent scenarios where each subnetwork
follows the dense-sparse model. Then, we refer the intensity measures of the
four subnetworks to that of an HPPP with intensity �

h

by

⇤
tx

(A) = ↵

1

⇤
h

(A) (3.40a)

⇤
rx

(A) = (1 � ↵

1

)⇤
h

(A) (3.40b)

⇤
jx

(A) = ↵

2

⇤
h

(A) (3.40c)

⇤
ex

(A) = ↵

3

⇤
h

(A) (3.40d)

where ↵
1

,↵

2

,↵

3

2 [0, 1] and ⇤
h

(A) = �

h

|A|. We now define as case stud-
ies six network scenarios where imbalances between the spatial distributions
of the LTN, LRN, ERN, and IIN are considered. We introduce some spe-
cific terminology to refer to the considered scenarios: the first specification
(smart/non smart) refers to the LTN and LRN and the second specifica-
tion (informed/non informed) to the ERN and IIN. In particular, the terms
“smart” and “informed” refers to an inhomogeneous distribution of nodes.
The following case studies have been analyzed:

• smart informed (SI): all PPPs are inhomogeneous;

• smart non-informed (SNI): inhomogeneous LTN and LRN, homoge-
neous ERN and IIN;

• non-smart informed (NSI): homogeneous LTN and LRN, inhomoge-
neous ERN and IIN;

• non-smart non-informed (NSNI): all PPPs are homogeneous.

In addition, two hybrid scenarios have been considered; they will be referred
to as follows:

• hybrid network scenario 1 (HNS1): inhomogeneous LTN and IIN, ho-
mogeneous LRN and ERN;

• hybrid network scenario 2 (HNS2): inhomogeneous IIN, homogeneous
LTN, LRN, and ERN.

To each of the six settings above, there can be appended the third specifica-
tion regarding the receiver selection technique: maximum SIR (MS) or k

th

closest (KC).
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3.7 Numerical Results

This section provides results based on the analytical framework developed
in Sections 3.3, 3.4, and 3.5. In the first part, the analytical distribution
of the SIR at the selected receiver is verified by simulations. In the second
part, we explore the spatial behavior of local secrecy metrics and we provide
global secrecy metrics’ values for di↵erent comparative scenarios and network
settings.

For IPPPs we have considered Gaussian intensity functions centered in
the origin with the same variance �2 on each axes. The scattering surface is
a disk with maximum radius R

max

= 5� (see Fig. 3.2). The LT operates the
receiver selection with two di↵erent modes: the MS and the KC with k = 1.

3.7.1 CDF of the Received SIR

Fig. 3.6 shows the CDF Fz
j,

˘

k

(z) of the received SIR at the maximum SIR

(continuous lines) and at the closest (dashed lines) receiver selected by an LT
located at di↵erent distances from the origin (di↵erent markers correspond
to di↵erent locations of the LT). A PIN has been considered in a Rayleigh
(m = 1) fading channel. As expected, higher SIR values are more likely to
occur when the maximum SIR receiver is selected. It can be observed that
analytical results (lines) and simulations (markers) match almost perfectly.

3.7.2 Secrecy Metrics Analysis

Competitive Scenarios Performance

Fig. 3.7 shows the LMSR Rj as a function of the distance of the LT from the
origin, i.e., kxjk, for di↵erent receiver selection strategies (solid and dashed
lines) and di↵erent network scenarios (di↵erent markers). Let us remind the
structure of the conditional MSR of a link in xj to provide insights

fj,¯k,˘l =



log

⇢

1 + hj,¯k



X

x

q

2P
ir

hq,¯k

✓

rj,¯k
rq,¯k

◆

2b ��1

�

� log

⇢

1 + hj,˘l



X

x

w

2P
ie

hw,˘l

✓

rj,˘l
rl,˘l

◆

2b ��1

��

+

. (3.41)

Note the behavior of the HNS1 curve, which shows an imbalance between
LTs’ (inhomogeneous) and LRs’ (homogeneous) distributions. Intuitively, we
expect that the high density of LTs and IIs would lead to a high performance
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Fig. 4. Fzj,k̄
(z) for different transmitter locations when the closest (dashed

lines) and maximum SIR (continuous lines) receiver is selected. A circular
region has been considered with Rmax = 15 [m], �rx = 0.5 [node/m2

],
⇤tx(A) = �rx⇡R2

max, �2

= 3 [m2

], m = 1, b = 2, ⌦ = 1.

VII. NUMERICAL RESULTS

This section provides results based on the analytical frame-
work developed in Sections III, IV, and V. In the first part,
the analytical distribution of the SIR at the selected receiver
is verified by simulations. In the second part, we explore the
spatial behavior of local secrecy metrics and we provide global
secrecy metrics’ values for different comparative scenarios and
network settings.

For the IPPPs we have considered Gaussian intensity func-
tions centered in the origin with the same variance �2 on
each axes. The scattering surface is a disk with maximum
radius Rmax = 5� (see Fig. 2(a)). The LT operates the receiver
selection with two different modes: the MS and the KC with
k = 1.

A. CDF of the Received SIR

Fig. 4 shows the CDF Fzj,k̆
(z) of the received SIR at the

maximum SIR (continuous lines) and at the closest (dashed
lines) receiver selected by an LT located at different distances
from the origin (different markers correspond to different
locations of the LT). A PIN has been considered in a Rayleigh
(m = 1) fading channel. As expected, higher SIR values
are more likely to occur when the maximum SIR receiver is
selected. It can be observed that analytical results (lines) and
simulations (markers) match almost perfectly.

B. Secrecy Metrics Analysis

1) Competitive Scenarios Performance: Fig. 5 shows the
LMSR Rj as a function of the distance of the LT from the ori-
gin, i.e., kxjk, for different receiver selection strategies (solid
and dashed lines) and different network scenarios (different
markers). Let us remind the structure of the conditional MSR

kxjk [m]

R
j
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z]
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Fig. 5. LMSR as a function of the location of the LT (distance from the origin
�x

j

�). We consider a circular region A, in which Gaussian intensity functions
of IPPPs are centered. It has been assumed Rmax = 15 [m], |A| � 706 [m2

],
� = 3 [m], ↵

1

= ↵
2

= ↵
3

= 0.5, �h = 1 node/m2, Rayleigh fading
(m = 1), b = 2.

of a link in xj to provide insights
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Note the behavior of the HNS1 curve, which shows an imbal-
ance between LTs’ (inhomogeneous) and LRs’ (homogeneous)
distributions. Intuitively, we expect that the high density of
LTs and IIs would lead to a high performance in the HD
region, which is not verified. This can be attributed to the
fact that both the path loss and the aggregate interference
heavily impair the legitimate channel (rq,¯k for all xq 2 Pir,
i.e., the distances between interferers and the selected raceiver
by xj , are much lower than rj,¯k on average) and, also, the
performance in terms of achievable secrecy rate of the link.
The performance improves for increasing kxjk because the
interference level decreases, i.e., rq,¯k for all xq 2 Pir increase
on average with the increase of kxjk.

The performance of other scenarios is characterized by the
balance between LTs’ and LRs’ densities. In the HD region,
the NSI curve shows the high density of ERs (low rj,˘l and,
hence, low path loss), the SI (full inhomogeneous scenario)
overlaps with the NSNI (full homogeneous scenario), and the
SNI overlaps with the HNS2, exhibiting the best performance.

In the LD region, the NSI curve shows the low density
of ERs (high rj,˘l and, hence, high path loss), while the SI’s
and SNI’s performance decays dramatically with the average
of the internode distance between source and destination
of the legitimate link, i.e., rj,¯k (inhomogeneous LRN), the
NSNI’s and HNS2’s performance exhibit a floor (the LRN
is homogeneous, hence rj,¯k does not increase arbitrarily, and
the effect of path loss is limited).

It is worth noting the causes of the overlapping in the HD

Figure 3.6: Shows Fz
j,

¯

k

(z) for di↵erent transmitter locations when the closest
(dashed lines) and maximum SIR (continuous lines) receiver is selected. A
circular region has been considered with R

max

= 15 [m], �
rx

= 0.5 [node/m2],
⇤

tx

(A) = �

rx

⇡R

2

max

, �2 = 3 [m2], m = 1, b = 2, ⌦ = 1.

in the HD region, which is not verified. This can be attributed to the fact
that both the path loss and the aggregate interference heavily impair the
legitimate channel (rq,¯k for all xq 2 P

ir

, i.e., the distances between interfer-
ers and the selected raceiver by xj, are much lower than rj,¯k on average)
and, also, the performance in terms of achievable secrecy rate of the link.
The performance improves for increasing kxjk because the interference level
decreases, i.e., rq,¯k for all xq 2 P

ir

increase on average with the increase of
kxjk.

The performance of other scenarios is characterized by the balance be-
tween LTs’ and LRs’ densities. In the HD region, the NSI curve shows the
high density of ERs (low rj,˘l and, hence, low path loss), the SI (full inhomo-
geneous scenario) overlaps with the NSNI (full homogeneous scenario), and
the SNI overlaps with the HNS2, exhibiting the best performance.

In the LD region, the NSI curve shows the low density of ERs (high rj,˘l
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Fig. 4. Fzj,k̄
(z) for different transmitter locations when the closest (dashed

lines) and maximum SIR (continuous lines) receiver is selected. A circular
region has been considered with Rmax = 15 [m], �rx = 0.5 [node/m2

],
⇤tx(A) = �rx⇡R2

max, �2

= 3 [m2

], m = 1, b = 2, ⌦ = 1.

VII. NUMERICAL RESULTS

This section provides results based on the analytical frame-
work developed in Sections III, IV, and V. In the first part,
the analytical distribution of the SIR at the selected receiver
is verified by simulations. In the second part, we explore the
spatial behavior of local secrecy metrics and we provide global
secrecy metrics’ values for different comparative scenarios and
network settings.

For the IPPPs we have considered Gaussian intensity func-
tions centered in the origin with the same variance �2 on
each axes. The scattering surface is a disk with maximum
radius Rmax = 5� (see Fig. 2(a)). The LT operates the receiver
selection with two different modes: the MS and the KC with
k = 1.

A. CDF of the Received SIR

Fig. 4 shows the CDF Fzj,k̆
(z) of the received SIR at the

maximum SIR (continuous lines) and at the closest (dashed
lines) receiver selected by an LT located at different distances
from the origin (different markers correspond to different
locations of the LT). A PIN has been considered in a Rayleigh
(m = 1) fading channel. As expected, higher SIR values
are more likely to occur when the maximum SIR receiver is
selected. It can be observed that analytical results (lines) and
simulations (markers) match almost perfectly.

B. Secrecy Metrics Analysis

1) Competitive Scenarios Performance: Fig. 5 shows the
LMSR Rj as a function of the distance of the LT from the ori-
gin, i.e., kxjk, for different receiver selection strategies (solid
and dashed lines) and different network scenarios (different
markers). Let us remind the structure of the conditional MSR
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Fig. 5. LMSR as a function of the location of the LT (distance from the origin
�x
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�). We consider a circular region A, in which Gaussian intensity functions
of IPPPs are centered. It has been assumed Rmax = 15 [m], |A| � 706 [m2

],
� = 3 [m], ↵

1

= ↵
2

= ↵
3
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(m = 1), b = 2.

of a link in xj to provide insights
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Note the behavior of the HNS1 curve, which shows an imbal-
ance between LTs’ (inhomogeneous) and LRs’ (homogeneous)
distributions. Intuitively, we expect that the high density of
LTs and IIs would lead to a high performance in the HD
region, which is not verified. This can be attributed to the
fact that both the path loss and the aggregate interference
heavily impair the legitimate channel (rq,¯k for all xq 2 Pir,
i.e., the distances between interferers and the selected raceiver
by xj , are much lower than rj,¯k on average) and, also, the
performance in terms of achievable secrecy rate of the link.
The performance improves for increasing kxjk because the
interference level decreases, i.e., rq,¯k for all xq 2 Pir increase
on average with the increase of kxjk.

The performance of other scenarios is characterized by the
balance between LTs’ and LRs’ densities. In the HD region,
the NSI curve shows the high density of ERs (low rj,˘l and,
hence, low path loss), the SI (full inhomogeneous scenario)
overlaps with the NSNI (full homogeneous scenario), and the
SNI overlaps with the HNS2, exhibiting the best performance.

In the LD region, the NSI curve shows the low density
of ERs (high rj,˘l and, hence, high path loss), while the SI’s
and SNI’s performance decays dramatically with the average
of the internode distance between source and destination
of the legitimate link, i.e., rj,¯k (inhomogeneous LRN), the
NSNI’s and HNS2’s performance exhibit a floor (the LRN
is homogeneous, hence rj,¯k does not increase arbitrarily, and
the effect of path loss is limited).

It is worth noting the causes of the overlapping in the HD

Figure 3.7: LMSR as a function of the location of the LT (distance from the
origin kxjk). We consider a circular region A, in which Gaussian intensity
functions of IPPPs are centered. It has been assumed R

max

= 15 [m], |A| '
706 [m2], � = 3 [m], ↵

1

= ↵

2

= ↵

3

= 0.5, �
h

= 1 node/m2, Rayleigh fading
(m = 1), b = 2.

and, hence, high path loss), while the SI’s and SNI’s performance decays
dramatically with the average of the internode distance between source and
destination of the legitimate link, i.e., rj,¯k (inhomogeneous LRN), the NSNI’s
and HNS2’s performance exhibit a floor (the LRN is homogeneous, hence rj,¯k
does not increase arbitrarily, and the e↵ect of path loss is limited).

It is worth noting the causes of the overlapping in the HD region of the
SI and SNI curves with the NSNI and HNS2 curves, respectively, which is
summarized in the following remark.

Remark 5 If the receivers and interferers have the same spatial distribution,
the channel capacities of every links in the HD region are constant on average.

The key assumption is that, in the HD region, LTs tends to select nearby
LRs, and hence the distribution of nodes seen from those two points is almost
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Table 3.2: NSR [cib/s/Hz] values in Fig. 6.

Scenario MS selection KC selection

SI 3080.1 2806.2

SNI 3775.5 3401.7

NSI 816.3 743.1

NSNI 787.1 718.1

HNS1 813.2 757.2

HNS2 824.6 750

the same. Consider the legitimate link without any loss of generality; we can
approximate the aggregate interference with its maximum component, i.e.,

X

x

q

2P
ir

hq,¯k

r2b
q,¯k

'
hq?,¯k

r2b
q?,¯k

(3.42)

where xq? 2 P
ir

is the index of the interferer with the highest power; hence,
the SIR of the legitimate link would depend on average by the ratio rj,¯k/rq?,¯k,
which mostly depends on the imbalances between the interferers’ and re-
ceivers’ panoramas seen from xj. A similar behavior can be expected for the
eavesdropping link.

Remark 6 In the HD region, the LMSR for a full inhomogeneous network
with equal spatial distributions of the four subnetworks can be approximated
by the one of a full homogeneous network.

Fig. 3.8 shows the LNSRD ⇢j(xj) as a function of the distance from the
origin kxjk for di↵erent receiver selection strategies and di↵erent comparative
scenarios. The curves come from weighting Rj by �

tx

(xj). Hence, in the HD
region, a low performance of the single link (low LMSR) can result in an
acceptable performance from the network point of view (high LNSRD). This
can be justified by the accumulative performance of high density links with
non-zero secrecy rate, which leads to a high LNSRD (see HNS1 curves in
Fig. 3.7 and Fig. 3.8).

The highest result in terms of NSR (see Table 3.2) is obtained when all
the legitimate nodes are inhomogeneous (SNI and SI). In such scenarios, the
high density of legitimate links (inhomogeneous LTN) carries a multitude
of contribution to the NSR; besides that each contribution is high due to
the high availability of receivers (inhomogeneous LRN), which allows each
transmitter to select a receiver with a highly reliable channel. In particular a
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Fig. 6. LNSRD as a function of the location of the LT (distance from the
origin �x

j

�). We consider a circular region A, in which Gaussian intensity
functions of IPPPs are centered. It has been assumed Rmax = 15 [m], |A| �
706 [m2

], � = 3 [m], ↵
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= 0.5, �h = 1 [node/m2

], Rayleigh
fading (m = 1), b = 2.

region of the SI and SNI curves with the NSNI and HNS2
curves, respectively, which is summarized in the following
remark.

Remark 5: If the receivers and interferers have the same
spatial distribution, the channel capacities of every links in
the HD region are constant on average.

The key assumption is that, in the HD region, LTs tends
to select nearby LRs, and hence the distribution of nodes
seen from those two points is almost the same. Consider
the legitimate link without any loss of generality; we can
approximate the aggregate interference with its maximum
component, i.e.,

X

xq��ir

hq,¯k

r2b
q,¯k

'
hq�,¯k

r2b
q�,¯k

(41)

where xq� 2 Pir is the index of the interferer with the highest
power; hence, the SIR of the legitimate link would depend on
average by the ratio rj,¯k/rq�,¯k, which mostly depends on the
imbalances between the interferers’ and receivers’ panoramas.
A similar behavior can be expected for the eavesdropping link.

Remark 6: In the HD region, the LMSR for a full inho-
mogeneous network with equal spatial distributions of the
four subnetworks can be approximated by the one of a full
homogeneous network.

Fig. 6 shows the LNSRD �j(xj) as a function of the
distance from the origin kxjk for different receiver selection
strategies and different comparative scenarios. The curves
come from weighting Rj by �tx(xj). Hence, in the HD region,
a low performance of the single link (low LMSR) can result
in an acceptable performance from the network point of view
(high LNSRD). This can be justified by the accumulative
performance of high density links with non-zero secrecy rate,
which leads to a high LNSRD (see HNS1 curves in Fig. 5 and
Fig. 6).

The highest result in terms of NSR (see Table II) is obtained
when all the legitimate nodes are inhomogeneous (SNI and

TABLE II
NSR [CIB/S/HZ] VALUES IN FIG. 6.

Scenario MS selection KC selection

SI 3080.1 2806.2
SNI 3775.5 3401.7
NSI 816.3 743.1

NSNI 787.1 718.1
HNS1 813.2 757.2
HNS2 824.6 750

SI). In such scenarios, the high density of legitimate links
(inhomogeneous LTN) carries a multitude of contribution to
the NSR; besides that each contribution is high due to the high
availability of receivers (inhomogeneous LRN), which allows
each transmitter to select a receiver with a highly reliable
channel. In particular a NSR of 3775.5 and 3080.1 [cib/s/Hz]
is obtained on the area |A| ' 706 [m2] in the SNI and SI
scenarios, respectively.

Remark 7: The availability of LRs in dense regions is a
key enabler for confidential communications. When a practical
ubiquitous eavesdropping channel impairment is difficult to
achieve, the transmission of the information on highly reliable
channel allows to hide a higher confidential information rate
within the total rate. Hence, smart secure destination selec-
tion (single-hop networks) and routing (multi-hop networks)
are particularly suitable to achieve confidentiality in highly
populated networks.

Furthermore, the selection of the receiver with maximum
SIR instead of the k-th closest implies higher confidentiality,
especially in more dense regions. For instance the MS selec-
tion allows to gain 373.8 [cib/s/Hz] of NSR compared to the
KC selection in the SNI scenario (see Table II). Note also
that in the SI and SNI settings the decay of performance in
LD region is faster compared to the other settings (HNS1,
HNS2, and NSNI). HNS2 and NSNI scenarios guarantee a
performance floor, thanks to the homogeneity of the LRN.

Table II shows NSR values obtained by integrating numeri-
cally (32) for the comparative scenarios. By comparing the
NSR values of the smart scenarios (SI and SNI) with the
others, and in particular with the one of the full homogeneous
scenario (NSNI); a remarkable performance gap can be no-
ticed.

Remark 8: Even though the inhomogeneous network may
show poor performance locally, it can highly outperform the
homogeneous network in terms of the global network secrecy.

2) Variability of Spatial Distributions: Fig. 7 shows the
network secrecy rate density �j(xj) as a function of the
distance from the origin kxjk in the SI-MS scenario, for
different values of the variance of intensity functions of
the inhomogeneous point processes describing the various
subnetworks, and with non-active IIs, i.e., ⇤jx(A) = 0. It
can be observed that node concentration highly influences the
achievable secrecy performance in terms of secrecy rate per
square meter.

Fig. 8 shows the network secrecy throughput density �j(xj)

Figure 3.8: LNSRDas a function of the location of the LT (distance from the
origin kxjk). We consider a circular region A, in which Gaussian intensity
functions of IPPPs are centered. It has been assumed R

max

= 15 [m], |A| '
706 [m2], � = 3 [m], ↵

1

= ↵

2

= ↵

3

= 0.5, �
h

= 1 [node/m2], Rayleigh fading
(m = 1), b = 2.

NSR of 3775.5 and 3080.1 [cib/s/Hz] is obtained on the area |A| ' 706 [m2]
in the SNI and SI scenarios, respectively.

Remark 7 The availability of LRs in dense regions is a key enabler for con-
fidential communications. When a practical ubiquitous eavesdropping chan-
nel impairment is di�cult to achieve, the transmission of the information
on highly reliable channel allows to hide a higher confidential information
rate within the total rate. Hence, smart secure destination selection (single-
hop networks) and routing (multi-hop networks) are particularly suitable to
achieve confidentiality in highly populated networks.

Furthermore, the selection of the receiver with maximum SIR instead of
the k

th closest implies higher confidentiality, especially in more dense regions.
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For instance the MS selection allows to gain 373.8 [cib/s/Hz] of NSR com-
pared to the KC selection in the SNI scenario (see Table 3.2). Note also that
in the SI and SNI settings the decay of performance in LD region is faster
compared to the other settings (HNS1, HNS2, and NSNI). HNS2 and NSNI
scenarios guarantee a performance floor, thanks to the homogeneity of the
LRN.

Table 3.2 shows NSR values obtained by integrating numerically (3.32)
for the comparative scenarios. By comparing the NSR values of the smart
scenarios (SI and SNI) with the others, and in particular with the one of
the full homogeneous scenario (NSNI); a remarkable performance gap can be
noticed.

Remark 8 Even though the inhomogeneous network may show poor perfor-
mance locally, it can highly outperform the homogeneous network with same
measures ⇤⇤(A) for ⇤ = {tx, rx, jx, ex} in terms of the global network
secrecy.

Variability of Spatial Distributions

Fig. 3.9 shows the network secrecy rate density ⇢j(xj) as a function of the
distance from the origin kxjk in the SI-MS scenario, for di↵erent values
of the variance of intensity functions of the inhomogeneous point processes
describing the various subnetworks, and with non-active IIs, i.e., ⇤

jx

(A) = 0.
It can be observed that node concentration highly influences the achievable
secrecy performance in terms of secrecy rate per square meter.

Fig. 3.10 shows the network secrecy throughput density ⌧j(xj) as a func-
tion of the distance from the origin kxjk in the SI-MS scenario, for di↵erent
values of the ratios ↵

2

and ↵

3

defined in (3.40c) and (3.40d), respectively.
Three cases are compared: the first (blue stars) shows the performance for
a low mean number of ERs while IIs are not active; the second (red circles)
highlights the performance loss when the mean number of ER increases; and
the third (yellow diamonds) shows the performance improvement obtained
with IIs having the same intensity measure as the ERs.

3.8 Final Remarks

This chapter develops a framework for design and analysis of inhomoge-
neous wireless networks with intrinsic secrecy. The aggregate interference
has been characterized and the received SIR analyzed in both the legitimate
and eavesdropping networks for di↵erent receiver selection strategies. Local
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Fig. 7. LNSRD in the SI-MS scenario comparing different variances �2 of
the intensity functions �tx(x), �rx(x), and �ex(x) while the IIN is not active.
It has been considered Rmax = 15 [m], |A| � 706 [m2
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1
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as a function of the distance from the origin kxjk in the SI-MS
scenario, for different values of the ratios �

2

and �
3

defined
in (39c) and (39d), respectively. Three cases are compared:
the first (blue stars) shows the performance for a low mean
number of ERs while IIs are not active; the second (red circles)
highlights the performance loss when the mean number of
ER increases; and the third (yellow diamonds) shows the
performance improvement obtained with IIs having the same
intensity measure as the ERs.

VIII. FINAL REMARKS

This paper develops a framework for design and analysis of
inhomogeneous wireless networks with intrinsic secrecy. The
aggregate interference has been characterized and the received
SIR analyzed in both the legitimate and eavesdropping net-
works for different receiver selection strategies. Local secrecy
metrics have been defined to reveal the peculiar nature of the
intrinsic secrecy for an inhomogeneous network from both
the “link” and the “network” perspectives. Our findings show
that interference engineering enables a desired secrecy rate (or
throughput) density, despite of the low per-link secrecy rate.
Global secrecy metrics have also been proposed to summarize
the overall performance of different networks.

It has also been shown that a peak of density in the
legitimate network guarantees a higher global confidentiality,
despite the presence of a low-density region in which the local
performance decay. Such an imbalance is particularly benefi-
cial where the transmitters and the receivers of the legitimate
network have overlapping density peaks. This suggest that the
local secrecy level of an inhomogeneous network is mainly
determined by the local density of legitimate nodes and that,
from a network perspective, the performance loss in the low-
density region is negligible with respect to the performance
gain obtained in the high-density region.

We also found that to study an inhomogeneous network by
modeling it as a superposition of homogeneous PPPs leads to a
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suboptimal performance analysis. In addition, the availability
of legitimate receiver in dense regions is a key enabler for
confidential communications.

The developed framework is particularly suitable for wire-
less networks applications that present an intrinsic inho-
mogeneity, such as heterogeneous access networks, cyber-
physical systems, Internet of Things, and vehicular networks.

APPENDIX I
REDUCED PALM DISTRIBUTION OF A PPP

Consider the PPP P defined over a bounded set A. By
panorama seen from xj , we refer to the reduced palm ver-
sion of P, which is the point process P!

j , that is the point
process obtained by removing the conditioning point xv and
characterized by the reduced palm distribution

P !

j(X ) = P
�

P!

j 2 X
 

= P {{P \ xj} 2 X || xj} (42)

where P !

j(X ) denotes the probability that P without the point
xj has some property or, more precisely, that belongs to the
configuration set for X 2 Y where Y is the smallest �-algebra
over Z , i.e., the family of all the sequences of points ⇧ 2 Rd

satisfying some regularity conditions [59].

APPENDIX II
PROOF OF THEOREM 1

Let nARj
be the number of LRs selectable by xj . If nARj

=
0 the conditional CDF of zj,˘k given nARj

= 0 is assumed to
be Fzj,k̆|nARj

=0

(z) = 1. Conversely, if nARj
> 0 it can be

obtained as

Fzj,k̆|nARj
(z) = P

n

zj,˘k  z|nARj
= nARj

o

= P
n

zj,1  z, zj,2  z, . . . , zj,nARj
 z

o

=

nARj
Y

k=1

Fzj,k(z) =
⇥

Fzj,k(z)
⇤nARj (43)

Figure 3.9: LNSRD in the SI-MS scenario comparing di↵erent variances �2 of
the intensity functions �

tx

(x), �
rx

(x), and �
ex

(x) while the IIN is not active.
It has been considered R

max

= 15 [m], |A| ' 706 [m2], ↵
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= 0.5, ↵
2

= 0,
↵

3

= 0.1, �
h

= 1 [node/m2], Rayleigh fading (m = 1), b = 2.

secrecy metrics have been defined to reveal the peculiar nature of the intrinsic
secrecy for an inhomogeneous network from both the “link” and the “net-
work” perspectives. Our findings show that interference engineering enables
a desired secrecy rate (or throughput) density, despite of the low per-link
secrecy rate. Global secrecy metrics have also been proposed to summarize
the overall performance of di↵erent networks.

It has also been shown that a peak of density in the legitimate net-
work guarantees a higher global confidentiality, despite the presence of a
low-density region in which the local performance decays. Such an imbal-
ance is particularly beneficial where the transmitters and the receivers of the
legitimate network have overlapping density peaks. This suggest that the
local secrecy level of an inhomogeneous network is mainly determined by the
local density of legitimate nodes and that, from a network perspective, the

79



112 SUBMITTED TO IEEE TRANSACTIONS ON NETWORKING

kxjk [m]

� j
(x

j
)

[c
ib

/s
/H

z/
m

2

]

0

5

10

15

20

25

0 2 4 6 8 10

� = 3
� = 2.5
� = 2

Fig. 7. LNSRD in the SI-MS scenario comparing different variances �2 of
the intensity functions �tx(x), �rx(x), and �ex(x) while the IIN is not active.
It has been considered Rmax = 15 [m], |A| � 706 [m2
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as a function of the distance from the origin kxjk in the SI-MS
scenario, for different values of the ratios �

2

and �
3

defined
in (39c) and (39d), respectively. Three cases are compared:
the first (blue stars) shows the performance for a low mean
number of ERs while IIs are not active; the second (red circles)
highlights the performance loss when the mean number of
ER increases; and the third (yellow diamonds) shows the
performance improvement obtained with IIs having the same
intensity measure as the ERs.

VIII. FINAL REMARKS

This paper develops a framework for design and analysis of
inhomogeneous wireless networks with intrinsic secrecy. The
aggregate interference has been characterized and the received
SIR analyzed in both the legitimate and eavesdropping net-
works for different receiver selection strategies. Local secrecy
metrics have been defined to reveal the peculiar nature of the
intrinsic secrecy for an inhomogeneous network from both
the “link” and the “network” perspectives. Our findings show
that interference engineering enables a desired secrecy rate (or
throughput) density, despite of the low per-link secrecy rate.
Global secrecy metrics have also been proposed to summarize
the overall performance of different networks.

It has also been shown that a peak of density in the
legitimate network guarantees a higher global confidentiality,
despite the presence of a low-density region in which the local
performance decay. Such an imbalance is particularly benefi-
cial where the transmitters and the receivers of the legitimate
network have overlapping density peaks. This suggest that the
local secrecy level of an inhomogeneous network is mainly
determined by the local density of legitimate nodes and that,
from a network perspective, the performance loss in the low-
density region is negligible with respect to the performance
gain obtained in the high-density region.

We also found that to study an inhomogeneous network by
modeling it as a superposition of homogeneous PPPs leads to a
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suboptimal performance analysis. In addition, the availability
of legitimate receiver in dense regions is a key enabler for
confidential communications.

The developed framework is particularly suitable for wire-
less networks applications that present an intrinsic inho-
mogeneity, such as heterogeneous access networks, cyber-
physical systems, Internet of Things, and vehicular networks.

APPENDIX I
REDUCED PALM DISTRIBUTION OF A PPP

Consider the PPP P defined over a bounded set A. By
panorama seen from xj , we refer to the reduced palm ver-
sion of P, which is the point process P!

j , that is the point
process obtained by removing the conditioning point xv and
characterized by the reduced palm distribution

P !

j(X ) = P
�

P!

j 2 X
 

= P {{P \ xj} 2 X || xj} (42)

where P !

j(X ) denotes the probability that P without the point
xj has some property or, more precisely, that belongs to the
configuration set for X 2 Y where Y is the smallest �-algebra
over Z , i.e., the family of all the sequences of points ⇧ 2 Rd

satisfying some regularity conditions [59].

APPENDIX II
PROOF OF THEOREM 1

Let nARj
be the number of LRs selectable by xj . If nARj

=
0 the conditional CDF of zj,˘k given nARj

= 0 is assumed to
be Fzj,k̆|nARj

=0

(z) = 1. Conversely, if nARj
> 0 it can be
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Figure 3.10: LNSTD in the SI-MS scenario comparing di↵erent network set-
tings in terms of ratios ↵
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performance loss in the low-density region is negligible with respect to the
performance gain obtained in the high-density region.

We also found that to study an inhomogeneous network by modeling it
as a superposition of homogeneous PPPs leads to a suboptimal performance
analysis. In addition, the availability of legitimate receiver in dense regions
is a key enabler for confidential communications.

The developed framework is particularly suitable for wireless networks
applications that present an intrinsic inhomogeneity, such as heterogeneous
access networks, cyber-physical systems, Internet of Things, and vehicular
networks.
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Chapter 4
Conclusion

This Ph.D. dissertation tackles the analysis and design of MWNs, to provide
them with a reliable, resilient, and secure operation. The developed frame-
works account for important spatial and temporal features of MWNs thus
unleashing the full potential of the IoT and placing the first-mile toward the
realization of the smart world era.

Specifically, Chapter 2 develops a spatiotemporal modeling for uncoor-
dinated MWNs to account for their massive spatial existence and sporadic
per-node tra�c. The percentile-performance of the MWN are inspected w.r.t.
the spatial tra�c intensity, target transmission rate, and uncoordinated ac-
cess protocol. Furthermore we assess the scalability limit of uncoordinated
access, which is used in wireless networks either to transmit data or request
scheduling, thus solving the bottlenecks of the access network. Our results
show that to design a network by considering spatially averaged metrics only
corresponds to a total uncertainty on the actual fraction of the network hold-
ing stability a target operation (e.g., stability). Furthermore, we show that
dominant systems, which are commonly used to simplify the spatiotemporal
analysis of wireless networks, do not provide tight performance bound. Dif-
ferently our framework provides the fraction of the network holding a target
performance. Moreover we show that variations of the F-ALOHA protocol
with di↵erent power-ramping schemes can improve the �-stability and �-
operativity. The importance of power-ramping design, which is a tecnique in
which nodes do not have to account for any information besides the success or
insuccess of their previous transmission, is manifested through a case study
that shows that ramping-down the power after a properly designed number
of retrials can improve the network percentile performance (20% more stable
users compared to F-ALOHA only).

Chapter 3 deals with the delivery of confidential information in inhomoge-
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neous MWNs with intrinsic secrecy. We analyze the e↵ect of inhomogeneities
of the node distribution by exploiting a fine-grain spatial model, thus explor-
ing the fundamental limits of network intrinsic secrecy. We also compare
local and global secrecy metrics to compare the intrinsic secrecy of networks
with di↵erent types of inhomogeneity. The lesson learned is that local max-
ima of legitimate node density improve the global network secrecy. It is the
combination of massive presence of legitimate transmitters and receivers that
enables higher level of confidentiality. Thus, we make a step forward towards
the use of information-theoretic secrecy in future generation wireless net-
works, to help cryptography-based systems in preserving the confidentiality
information.

We hereafter present some future research directions:

• Spatiotemporal modeling of cellular ntworks: After considering
uncoordinated access is important to consider uplink and downlink in
cellular networks, to analyze the distribution of user delay also account-
ing for the cell load and verious user scheduling policies.

• Spatiotemporal modeling of WIPT networks: wireless transfer
of information and power (WIPT) via radiofrequency radiation has
long been regarded as a possibility for energizing low-power devices.
Now that the advances in electroncs have made it feasible it is an
interesting solution to supply smart devices. Our interest is in modeling
the network as composed by information-energy queues, and to inspect
the delay distribution in the presence of energetic constraints of the
transmission.

• Secrecy routing for multihop networks: The help that intrinsic
secrecy can provide to cryptographic systems have not been quantified
yet. In the area of best-e↵ort solutions to conceal confidential infor-
mation, secrecy routing in multihop networks is a viable solution that
tradeo↵s secrecy and delay.

• Spatiotemporal modeling of networks with intrinsic secrecy:
Network intrinsic secrecy allows legitimate users to exploit the secrecy
capacity of the wireless channel thus concealing a certain amount of
bits per time unit. We believe that a spatiotemporal analysis will
help quantifying the extent to which information-theoretic secrecy can
provide in helping cryptographyc systems.
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Appendix A
A.1 Proof of Theorem 1

In (2.1a) we present the average success probability at every receiver as a
variable depending on the receiver’ location. By the ergodicity of the PPP,
the distribution of the success probability along all the links in an infinite
network is associated to the distribution of the success probability at the
typical point, i.e., the origin, that accounts for all the possible realization of
the point process. By this interpretation we define the conditional success
probability at the typical point as a random variable by
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where (A.1b) follows from the exponential distribution of the channel, con-
sidering i� =
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averaging over ALOHA with random channel selection, power distribution
(by using Approximation 1), and channels (by using the LT of the channel).

1The receiver of the typical link is considered at the origin without any loss of generality.
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Then, the b

th order moment is computed by definition as
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where (A.2b) follows by applying the PGFL of the PPP, considering (1+v)b =
Pb

k=0
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⌘

v

k, rearranging the terms, transforming to polar coordinates, and

changing integration variable u , kyjk2⌘, thus concluding the proof.
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Appendix B
B.1 Proof of Theorem 2

Let nAR
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where zj,k have been assumed independent and identically distributed. The
identical distribution is shown in (3.14b) and (3.16) for the generic receiver,
while the assumption of independence of SIRs at di↵erent locations is as-
sumed for tractability and verified [76]. Moreover, correlation is higher when
the amount of common randomness is high, thus, massively dense networks,
networks with random access, multiple channels, and multiple codes, su↵er
from low interference correlation [113,140]. By assuming that nAR

j

is a Pois-

son RV with intensity measure ⇤
rx

(AR
j

), the CDF of zj,˘k is obtained by the
marginalization
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The proof is then obtained by rearranging terms, also using the definition of
the exponential function.
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B.2 Proof of Corollary 2

The proof follows considering that (3.18), holding in the FIN setting, also
holds for the FHN where ⇤

rx

(AR
j

) = |AR
j

|�
rx

= ⇡r

2

M

�

rx

. Furthermore, since
receiver locations are described by an HPPP on AR

j

, the squared distance r2j,k
between xj and a generic receiver xk is a uniform RV U(0, r2

M

]. To conclude,
it is su�cient to recall that the distribution of the aggregate interference of
an homogeneous panorama of interferers in R2 (c.f. [93]) is the same in each
point of the network (see (3.10b)-(3.11)).

B.3 Proof of Corollary 3

Since Corollary 3 is a special case of Theorem 2, (3.18) directly applies to
compute the CDF of zj,˘k. Then, when the receivers are characterized by a
HPPP, rj,k and jj,k are independent, so that (3.14b) assumes the form of
(3.19). Furthermore, for the homogeneity of receivers r2j,k ⇠ U(0, r2

M

] and
jj,k ⇠ U(0, 2⇡].

B.4 Statistical characterization of the polar
coordinates of the k

th closest receiver

Hereinafter, the distributions of RVs needed to perform expectations of (3.23)
are characterized.

1. The PDF of the distance between the LT xj and the k

th closest receiver
is given by

fr
j,(k)

(r) =
d

dr

Fr
j,(k)

(r) =
d

dr

�

P
�

rj,(k)

 r
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(B.3)

where

P
�

rj,(k)

 r

 

= 1 � P
�

rj,(k)

> r

 

= 1 � P {n
rx

(Bj(r))  k � 1} (B.4)

and n
rx

(Bj(r)) is a Poisson RV with intensity measure ⇤
rx

(Bj(r)) rep-
resenting the number of LRs in a ball with radius r and center xj, i.e.,
n

rx

(Bj(r)) ⇠ P (⇤
rx

(Bj(r))).1

1P(⇤) denotes the distribution of a Poisson RV with parameter ⇤.
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2. The conditional PDF of the angle between the LT xj and the k

th closest
receiver given rj,(k)

is defined by

fj
j,(k)

|r
j,(k)

(✓) =
�

rx

(rj,(k)

, ✓)

⇤
rx

(Cj,(k)

)
(B.5)

where Cj,(k)

is a circumference centered at xj with radius rj,(k)

and
⇤

rx

(Cj,(k)

) is the mean number of LRs on Cj,(k)

.
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