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Abstract

The research activities undertaken during these three years have been mainly
focused on the investigation of sound radiation and sound transmission in
building elements, in order to develop efficient and reliable models, that may
represent helpful tools during the design process. Prediction methods repre-
sent a valuable resource to acoustician, engineers, and architects, to optimize
the acoustic performance of building elements, in order to accomplish a good
acoustic comfort inside living spaces. A particular attention has been paid to
the input data necessary to implement these models, developing procedures
for their experimental determination, and numerical approximation.

The radiation efficiency is an important acoustic descriptor, frequency
dependent, that characterises the capability of a vibrating structure to radi-
ate sound, and it is required as input data in many prediction models. Its
computation within the building acoustic frequency range – 50− 5000 Hz –
by using boundary element or finite element methods would require a huge
computational effort. While several analytical or approximated formulations
have been proposed, by different authors, to evaluate the radiation efficiency
of isotropic elements, orthotropic structures have not been investigated as
thoroughly. In this dissertation different models specifically developed to
evaluate the radiation efficiency of orthotropic building structures, such as
cross-laminated timber (CLT) plates, are presented. They are based on
different assumptions, and allow for a wide range accuracy within the inves-
tigated frequency range. Even though CLT panels’ dynamics is sometimes
investigated by using high order theories, like in structural analysis for exam-
ple, in the vibro-acoustic investigations presented in this dissertation, they
have been treated as thin orthotropic plates, under the assumption of small
displacements. The nature of the external excitation strongly influences the
radiation behaviour, therefore either a mechanical force or an incident sound
field have been considered acting on the plate surface. Reliable input data,
necessary to implement the proposed models, are of fundamental importance
to obtain accurate results. A non-destructive experimental procedure, based
on wave analysis, has been developed, in order to evaluate the direction
dependent dynamic stiffness properties of orthotropic structures. The predic-
tion models for orthotropic panels are finally validated with the experimental
radiation efficiency evaluated for a CLT plate.
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A standard procedure to experimentally determine the radiation efficiency
of a structure is not currently available. Since this acoustic descriptor is
not directly measurable, it has to be evaluated form other quantities, such
as the total radiated sound power, and the mean square velocity of the
vibrating surface. Two methods to evaluate the radiated sound power,
based on different assumption, have been compared, highlighting advantages
and limitations. The influence of the spatial sampling, i.e. the number
of measurement positions and their distribution on the plate surface, on
the mean square velocity, and thus on the radiation efficiency, has been
investigated.

Acoustically excited building elements are usually analysed in terms of
sound transmission loss. It is computed from the transmission coefficient,
defined as the ratio of the sound power incident on the excited surface, to the
sound power transmitted through the partition and radiated in the receiving
side. Sound transmission through different materials can be modelled by
means of the transfer matrix method. The transmission loss of a CLT panel
has been evaluated modelling the structure as an equivalent orthotropic thin
plate. The results are validated with experimental data.

Further, a general model to predict sound transmission through multi-
layer elements considering the presence of mechanical connections has been
developed within the transfer matrix framework. The model, based on the
decoupled approach, takes into account airborne and structure-borne trans-
mission paths as independent additive contributions. The model can be
applied to layers of different nature: elastic solid, orthotropic thin plate, fluid,
and poroelastic. The different radiation mechanisms associated to excitations
of different nature play a key role in this approach. A homogenisation tech-
nique, specifically developed for masonry brick wall but generally valid for
any kind of wall, has been proposed to obtain the equivalent elastic properties
of the partition, that one has to know in order to implement the transfer
matrix method. The elastic properties of an equivalent homogeneous element
are derived by means of a numerical procedure, based on a minimisation
algorithm, as a function of the measured transmission loss. The decoupled
model is finally validated with the experimental transmission loss measured
on an External Thermal Insulation Composite System (ETICS ), constituted
by a masonry wall clad with high-density mineral wool slabs. Moreover,
its applicability to lightweight structures, such as double-wall systems, is
verified.
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Riassunto

L’attività di ricerca svolta durante questi tre anni si è focalizzata principal-
mente sulla radiazione e trasmissione acustica nelle partizioni degli edifici, con
l’obiettivo di sviluppare dei modelli di calcolo efficienti e affidabili, per offrire
strumenti utili per la progettazione. I modelli previsionali rappresentano
sicuramente una preziosa risorsa per i progettisti, per l’ottimizzazione delle
prestazioni acustiche degli elementi edilizi necessaria per il raggiungimento
di un comfort acustico ottimale all’interno degli ambienti di vita. Particolare
attenzione è stata dedicata ai dati di input necessari all’implementazione
dei questi modelli, sviluppando sia metodi sperimentali per la loro determi-
nazione, che procedure numeriche di approssimazione.

L’efficienza di radiazione è un importante descrittore, necessario come
dato di input nella maggior parte dei modelli di calcolo; questo parametro
caratterizza la capacità di una struttura di convertire l’energia vibrazionale in
energia sonora nel fluido circostante. La determinazione di questo parametro,
nel range di frequenze solitamente investigato in acustica edilizia: 50 –
5000 Hz, utilizzando codici di calcolo agli elementi, o ai contorni finiti,
richiederebbe uno sforzo computazionale notevole. Infatti, diversi autori
hanno presentato formulazioni analitiche o approssimate per valutare l’efficienza
di radiazione di strutture omogenee isotrope. Tuttavia, le strutture ortotrope
non sono state studiate cos̀ı approfonditamente. In questa dissertazione sono
presentati due diversi modelli di calcolo, appositamente sviluppati per deter-
minare l’efficienza di radiazione di strutture edilizie ortotrope, come i pannelli
in legno cross-laminato (CLT). I due diversi approcci presentati si basano su
ipotesi differenti e offrono un diverso grado di accuratezza. Il comportamento
dinamico dei pannelli in CLT viene spesso analizzato utilizzando teorie di
ordine superiore, per esempio per nella progettazione strutturale, tuttavia,
per le analisi vibro-acustiche sviluppate in questo progetto di ricerca, sono
stati assimilati a una piastra sottile ortotropa, sotto l’ipotesi di piccoli sposta-
menti. I meccanismi di radiazione sonora da parte di una struttura vibrante
sono fortemente influenzati dalla natura della forzante che induce il campo
vibrazionale. Pertanto, sono stati considerati sia l’azione di una forzante
meccanica agente sul pannello, sia un campo acustico incidente. Utilizzare
dei dati di input affidabili per l’implementazione dei modelli è fondamentale
per ottenere dei risultati accurati. È stata sviluppata una procedura speri-
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mentale non-distruttiva per determinare la rigidezza flessionale dinamica di
una piastra ortotropa, in funzione della direzione di propagazione dell’onda
vibrazionale. I modelli previsionali per una piastra ortotropa sono stati vali-
dati attraverso i dati sperimentali ottenuti da misurazioni su pannelli in CLT.
Al momento non esiste una procedura standardizzata per la determinazione
sperimentale dell’efficienza di radiazione. Questo descrittore acustico non è
direttamente misurabile, ma deve essere determinato da altre grandezze: la
potenza sonora irradiata e la velocità di vibrazione media del pannello. Sono
state confrontate due diverse metodologie per valutare sperimentalmente la
potenza sonora irradiata, evidenziandone i vantaggi e le limitazioni. È stata
analizzata inoltre l’influenza del campionamento spaziale, cioè del numero di
posizioni di misura e della loro distribuzione sulla superficie della piastra,
sulla velocità media e conseguentemente sull’efficienza di radiazione. Le strut-
ture eccitate da un campo acustico incidente sono generalmente analizzate
in termini di isolamento acustico, invece che radiazione sonora. L’isolamento
acustico viene calcolato in funzione del coefficiente di trasmissione, definito
come il rapporto tra la potenza sonora incidente sulla superficie eccitata e
la potenza sonora irradiata nell’ambiente ricevente. La trasmissione sonora
attraverso diversi materiali può essere modellata con il metodo delle matrici
di trasferimento. Questo metodo è stato implementato per determinare
l’isolamento acustico fornito da un pannello in CLT, modellato come una
piastra sottile ortotropa e validando i risultati confrontandoli con i dati
ottenuti sperimentalmente.

È stato sviluppato un modello generale, implementato con il metodo
delle matrici di trasferimento, per simulare la trasmissione sonora attraverso
delle strutture multistrato, tenendo in considerazione la presenza di connes-
sione meccaniche. Il modello, basato sull’approccio disaccoppiato, calcola la
trasmissione sonora per via aerea e la trasmissione per via strutturale come
contributi indipendenti e additivi. Il modello può essere applicato a strati
di diversa natura: solidi elastici, piastre sottili ortotrope, fluidi e materiali
poroelastici. I diversi meccanismi di radiazione sonora, associati al tipo di
eccitazione esterna, giocano un ruolo chiave in questo approccio. Viene pro-
posta una tecnica di omogeneizzazione, sviluppata per pareti in muratura, ma
potenzialmente applicabile a qualunque partizione, per determinazione delle
proprietà meccaniche, necessarie per una corretta modellazione dell’elemento
con il metodo delle matrici di trasferimento. Le caratteristiche elastiche di
un solido omogeneo equivalente sono ricavate in funzione dell’isolamento
acustico sperimentale attraverso un algoritmo di minimizzazione. Infine, il
modello disaccoppiato, basato sul metodo delle matrici di trasferimento, è
validato attraverso i risultati sperimentali di isolamento acustico misurati su
un sistema ETICS : External Thermal Insulation Composite System; costitu-
ito da una parete in muratura, rivestita con pannelli di lana minerale. Inoltre,
ne è stata verificata l’applicabilità a strutture leggere come contropareti in
cartongesso e elementi a doppia lastra metallici.
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Chapter 1

Introduction

It is surprisingly difficult to give a general definition of the difference be-
tween sound and noise, even though the idea is quite clear in everybody’s
mind. From a physic point of view, noise and sound are exactly the same
phenomenon: a pressure wave propagating in an elastic medium at certain
frequencies that the human hearing system can percieve. In a fascinating
book, professor David Hendy [1] treats this subject by talking about music,
speeches, mechanical noise, ringing bells, crowded cities and many other
examples of how noise, or sound, deeply influenced human life through the
centuries from prehistory until now. To highlight the individual nature of
the difference between noise and sound professor Hendy quotes the artist and
composer John Cage: ”Whenever we are what we hear is mostly noise. When
we ignore it, it disturbs us. When we listen to it, we find it fascinating”.
The disturbance of unwanted noise is often regarded as a secondary problem.
However, the European Environmental Agency (EEA) recently published
a report [2] depicting a serious situation, with more than 900 thousand
people each year suffering of hypertension caused by environmental noise,
and almost 8 million people suffer sleep disturbance. The environmental
noise is defined ”a threat to public health,” by the World Health Organisa-
tion (WHO) [3], ”having negative impacts on human health and well-being”.
Moreover, several indoor sources contribute to increase the noise annoyance
inside living spaces. Nevertheless, with a careful specific acoustic design of
building elements, it is possible to provide a comfortable indoor environment,
reducing the noise annoyance. In order to optimize the acoustic performance
of the partitions, and accomplish such comfort inside buildings, accurate
prediction models represent an essential and useful tool during the design
process. Modern buildings present additional challenges for acousticians
and engineers. Service equipments and electrical appliances, more and more
present in any building, give a significant contribution to indoor sound pres-
sure levels, generating both airborne noise and vibrations, that propagate
in the building structures and can be radiated as sound energy. Moreover,
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alongside traditional construction materials such as concrete, steel, and clay
bricks, new building technologies, mostly involving lightweight structures,
have been lately introduced into the market, achieving a great success. For
example, cross-laminated timber, an engineered wood material, has become
increasingly popular during the last two decades. This technology provides
good structural stability, the fulfilment of all the safety requirements, and
allows to reduce time and costs. Nevertheless, these structures cannot provide
a satisfying sound insulation, due to their relative high stiffness compared to
their low density, and need to be conveniently treated in order to increase
the acoustic performance and meet the regulation requirements. Moreover,
cross-laminated timber plates due to their layered structures can be highly
orthotropic, which means they have different elastic and stiffness properties
along mutually orthogonal directions. It is of fundamental importance to take
into account this particular behaviour in vibro-acoustic prediction models.

In order to increase noise reduction, both lightweight and massive parti-
tions are usually lined with sound insulating systems. To better optimise
the acoustic treatment and obtain a good sound insulation, specific tools to
investigate sound transmission through the element are absolutely necessary.
The sound transmission loss, provided by the partition, can be evaluated
by modelling the sound wave propagation through each different material
constituting the layered structure. One of the greatest complexities is repre-
sented by the mechanical characterisation of the different materials a building
partition is made of, which in most of the cases are not simple homogeneous
isotropic elements.

1.1 Predicting sound transmission in buildings

Sound transmission in buildings is usually regarded in terms of direct and
flanking transmission. The former path represents the sound energy generated
in one room and transmitted through a partition into the adjoining room.
Flanking transmission directly involves structural acoustics too and it can
be subdivided in three different processes: generation of the vibrational field
either by an acoustic or a mechanical source; propagation of vibrational energy
from the excited structure to other elements; radiation of the vibrational
energy in the surrounding air as sound energy. To accurately predict sound
transmission it is necessary to consider the interaction between the different
structures, in which the vibrational field propagates, and also the interaction
between these structures and the surrounding fluid, in which they may radiate
sound energy. The finite element method (FEM) for interior problems, and
boundary element method (BEM) for exterior problems, are largely used in
many engineering fields. They certainly represent powerful tools to perform
vibro-acoustic analysis. However, the computational complexity of such
numerical models drastically increases, not only with the size of the geometry,
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but also with the frequency. Even though the potential of FEM and BEM
is virtually infinite, they require high performance processors, and a great
effort in terms of memory and time, especially if the analysis is extended
up to the highest frequencies considered in building acoustics. Even with
modern powerful processors, and the latest developments to increase the
performance of these methods, FEM and BEM remain particularly suitable
for low/medium frequency analysis. An alternative approach to predict
sound transmission in buildings is represented by statistical energy analysis
(SEA) [4]: in which a complex system is modelled as a combination of sub-
systems, and the transmission between each sub-element is computed in
terms of energy flow, based on analytical formulations. The SEA framework
is based on the assumption that both the acoustic and structural domains are
usually characterised by high modal density. Although SEA is much more
computationally efficient than numerical methods, it is normally considered
applicable only to high frequency analysis. It should be mentioned that in
the last years hybrid methods FEM/SEA for an extended frequency range
analysis have been developed. The series of standards EN 12354 [5] provides
a calculation model to predict sound transmission in buildings, based on a
simplified SEA approach, which neglects higher order structure-borne paths.
The EN 12354 models allow one to compute the acoustic performance of the
buildings, starting from the performance of each single partition. The input
data necessary to implement all these different models represent a crucial
aspect. FEM and BEM require the material’s elastic properties to be known.
A trustworthy material characterisation of the studied structures is essential
to achieve accurate and reliable results. Further, SEA-based models require
also some acoustic descriptors to be known as input data, characterising for
example the coupling between different structures, or between a structure
and the surrounding fluid. It might by difficult to determine such descriptors
for most of the structures commonly used in buildings, since the simple
formulations given in the standards only apply to monolithic homogeneous
and isotropic elements.

1.1.1 Sound radiation of rectangular panels: state of the art

John William Strutt, also known as Lord Rayleigh, certainly was a pioneer in
the field of acoustics and sound radiation. The Rayleigh’s integral, presented
later on in equation (3.21), was derived in his book Theory of sound [6] and
represents the starting point of several radiation models. Many analytical or
approximated formulations to predict the radiated sound power have been
proposed by several authors in the last fifty years; developed using different
approaches and under different basic assumptions, upon which depends
their suitability for each specific problem and the accuracy of the results.
Based on a non–modal approach, the modal-average radiation efficiency
can be evaluated assuming a high modal density and the validity of the
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equipartition of modal energy [7], focusing on the radiation behaviour of
each mode only at its natural frequency. While using a modal approach, the
in-vacuo single mode radiation efficiency is approximated over the entire
frequency range, neglecting the cross-modal coupling and the fluid loading
effect [8]. The effect of cross-modal coupling, deeply investigated by Keltie
and Peng [9], can be considered by means of analytical formulations. To
this purpose, the radiation impedance of the vibrating structure is generally
computed following two distinct approaches: (i) by solving the Rayleigh
integral, either assuming the radiation in the far-field [10], or by means of
near-field approximated numerical solutions [11, 12, 13]; (ii) through the
analysis of travelling bending waves, by transforming the pressure distribution
from space-time domain into wavenumber domain, using the spatial Fourier
transform [14]. A comparison between these different approaches to compute
the radiated sound power has been presented by Atalla and Nicolas in 1994
[15]. Later in the same decade, Nelisse [16] proposed a generalised model to
determine the acoustic radiation from baffled and unbaffled homogeneous
plates, with arbitrary boundary conditions, considering either lightweight
or heavy fluids surrounding the structure. The same approach was also
followed by Foin to develop a tool to predict the vibration response and
sound radiation of sandwich plates [17, 18]. The average radiation efficiency
of plates and strips was computed by Xie, Thompson and Jones by using
a modal summation approach, based on the far field sound intensity [19].
Rhazi and Atalla used simple and quick tools, such as statistical energy
analysis and transfer matrix method, to estimate the vibro-acoustic response
of multi-layer structures mechanically excited [20]. Davy developed a two
dimensional strip analytic approximation to compute the forced radiation
efficiency of acoustically excited finite size panels [21]. Moreover, Davy
recently presented an approximation method to calculate both the real and
the imaginary part of single-side specific forced radiation impedance of a
rectangular panel [22]. The possibility to consider both the resonant and
non resonant contribution, in the case of acoustically excited plate, and
the near-field contribution in the case of mechanical excitation, was also
introduced by Davy in a recently published paper [23].

While isotropic plates have been deeply investigated both from a vi-
brational and radiation point of view, sound radiation from orthotropic
structures has not been studied as thoroughly. Many studies focused on
ribbed [24] or corrugated plates [25], which are often approximated as equiv-
alent orthotropic elements. This approximation is valid if the ribs’ spacing is
less than half a bending wavelength, as pointed out by Langley et al. [26].
This was not the case for the ribbed plate investigated by Maidanik in Ref.
[8], who could not approximate that structure to an equivalent orthotropic
plate, because the ribs were to widely spaced. Guyader and Lesueur derived
the equations of motion for free vibration of a multilayer orthotropic plate
[27] by means of a variational formulation, in order to develop a sound
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transmission model. An overview of vibro-acoustics analysis of multilayer
structures was presented by D’Alessandro et al. a few years ago [28]. The
sound radiation efficiency of orthotropic plates has been investigated by
Hugin and Ohlirch [29]. While in 2005, Anderson and Bratos-Anderson
developed a prediction tool to estimate the radiation efficiency of orthotropic
carbon-laminate plates [30]. They compute the average radiation efficiency,
both with a modal approach, neglecting the fluid loading effect and consider-
ing each mode only at its natural frequency, and by means of the asymptotic
modal-average radiation, assuming a high modal density over the entire fre-
quency range. Further, Mejdi and Atalla presented a semi-analytical model
to predict the vibro-acoustic response of stiffened plates [31], while Legault
[32] analysed orthogonally ribbed plates by means of a periodic theory. In
this research project, the sound radiation of cross-laminated plates has been
modelled by means of two different approaches, either conveniently extending
an analytical model, developed for isotropic plates, in order to also analyse
orthotropic structures, and by using a modal-average formulation. Under the
assumption of small displacements, the dynamic response of cross-laminated
timber panels has been determined regarding these structures as orthotropic
thin plates.

Acoustically excited structures are often regarded in terms of sound
transmission rather than sound radiation. Sound transmission through
orthotropic multilayer plates was studied by Guyader and Lesueur [33] for an
oblique incident plane wave, highlighting in particular the effects of layering
and damping. The anlysis was then extended to the case of diffuse field
excitation [34]. Structure-borne sound transmission between orthotropic
plates has been thoroughly investigated by Bosmans et al. [35]. More
recently, sound insulation of plywood panels, characterised by soft orthotropy,
has been studied by Wareing, Davy and Pearse [36], taking into account
the finite dimension of the plate, by means of the geometrical radiation
impedance. The sound transmission through an orthotropic medium was
modelled within the transfer matrix framework by Lin, Wang, and Kuo, [37].
They developed a two-dimensional model, assuming in-plane isotropy, i.e.
the stiffness properties along the z-direction differ from the properties in
the plane x − y. The model was then extended by Kuo et al. [38], for the
three-dimensional case, describing an orthotropic elastic solid characterised
by the stress and strain relationship defined by nine independent constants.
In these dissertation the sound transmission loss of a cross laminated timber
plate is evaluated by means of the transfer matrix method, modelling the
structure as a thin orthotropic plate.

1.1.2 Sound transmission through multilayer structures

Multilayer elements are largely used in building constructions: double-leaf
walls, cavity wall systems, massive or lightweight partitions lined to increase
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the insulating performance, and cladding systems are just a few examples.
Due to the presence of structural connections linking the external layers, on
the receiving side the sound is radiated due to both airborne and structure-
borne excitation. The theoretical sound insulation that would be provided
by the element without mechanical fixings is thus reduced, due to the
structure-borne sound transmission via the mechanical connections. In 2006,
an extensive comparison between more than twenty different approaches
to predict sound transmission in double panels was presented by Hongisto
[39]. Among them, only a few methods took into account the presence of
structural connections. By means of a decoupled approach, the problem is
simplified by computing the fluid-borne transmission through the cavity, and
the structure-borne path through the connections, as independent additive
contributions. The decoupled approach was developed by Sharp [40] and
it considers the sound transmission through structural bridges by means of
a correction factor, calculated as a function of the sound power radiated
by a point (or line) connected panel [41]. Sharp’s method was modified
and inserted into the transfer matrix framework by Vigran [42], who also
extended the validity of the method above the critical frequency. A different
version of the decoupled approach, mainly focused on line-connections for
cavity stud walls, was developed by Fahy and Gardonio [43]. The possibility
to consider studs with finite stiffness, a problem first analysed by Gu and
Wang [44], was introduced into Fahy’s model by Davy [45, 46], through an
equivalent mechanical compliance. Moreover, Davy recently published the full
derivation of a prediction model for sound transmission via structural bridges,
both for line and point connections [47]. The line-connections assumption is
particularly useful to model cavity stud walls and double panel structures
when the screw spacing is small compared to the bending wavelength of the
wave propagating into the plate [48].

Although several formulations have been proposed, it is still difficult
to model some of the basic building structures, such as masonry brick
walls. While these models have been developed mainly for thin plates, this
assumption does not always fit to massive partition. Moreover, these models
cannot take into account sound transmission through poroelastic media.
High-density porous or fibrous material, that are often used in linings or to
fill cavity walls, cannot be modelled as equivalent fluids, like is usually done
with low density material, because the transmission contribution through
their solid frame is not negligible. In this dissertation a more general model
based on the transfer matrix method is presented, which has been developed
during the doctoral research project in order to take into account these
aspects.
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1.2 Objective of the research

The aim of this research undertaken during the last three years has been
to investigate sound radiation and sound transmission in complex building
elements, extending some of the existing prediction methods in order to
consider homogeneous orthotropic panels, and multilayer structures. These
models should represent efficient and reliable tools, handy during the acoustic
design process. Particular attention has been paid to the input data necessary
to implement these models, developing procedures for their experimental
derivation, and numerical approximation.

1.3 Dissertation outline

In Chapter 2 the background theory on plates’ dynamics is recalled. The
solution of the equation of motion of a thin plate undergoing flexural vibration
is derived from two different approaches, in order to introduce important
concepts that will be largely used in the following Chapters. The differences
between Kirchhoff’s theory for thin plates and Mindlin’s theory for thick
plates are discussed.

In Chapter 3 two different models to estimate the radiation efficiency
of an orthotropic rectangular plate are proposed. An analytical model is
derived by using Hamilton’s variational principle to obtain the governing
equations. Both a mechanical point force excitation and an acoustic incident
field are considered. The influence of fluid loading is investigated and
an approximated formulation, which neglects its effects, is discussed. A
modal-average radiation efficiency of orthotropic plates is introduced, and
an approximated formulation for the plate bending stiffness based on an
elliptic interpolation, which does not need the knowledge of the in-plane
shear modulus, is proposed. The model is based on basic assumptions of
high modal density, and equipartition of modal energy within the considered
frequency range.

The models are developed in order to evaluate the radiation efficiency of
cross-laminated timber elements used in buildings. An experimental analysis
of the radiation efficiency performed on three-ply cross-laminated timber
panels is presented in Chapter 4, both for mechanical and airborne excitation.
Different approaches to evaluate the radiated sound power are investigated,
highlighting advantages and limitations. The influence on the radiation
efficiency of the spatial sampling adopted to measure the vibration velocity,
namely the number of measurement positions and their distribution, is
investigated and discussed. An experimental procedure, based on structural
wave analysis, is proposed to determine the plate stiffness properties along
the principle directions, necessary as input data to implement the prediction
models. The experimental radiation efficiency is finally used to validated the
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sound radiation models.
In Chapter 5, sound transmission through building elements is simulated

using the transfer matrix method. The possibility to model cross-laminated
timber elements as thin orthotropic plates is firstly investigated. Moreover,
a general model to predict sound transmission through multilayer elements,
taking into account transmission through structural connections, is proposed.
Unlike most of the existing approaches, the model can consider both thin
and thick plates, and poroelastic materials. It has been specifically developed
for cladding systems used both on massive and lightweight partitions. A
numerical procedure to determine the elastic properties of the basic walls,
from the measured transmission loss, is presented in order to obtain the
input data needed to implement the model.
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Chapter 2

Background on plate
dynamics

2.1 Waves in solid media

In a compressible isotropic, homogeneous fluid medium, such as the air
that usually surrounds building structures, only compressional waves, also
known as pure longitudinal waves, can propagate. The particles displacement
due to a pure longitudinal wave is parallel to its propagation direction. In
solid media however, different kinds of waves can propagate, such as quasi-
longitudinal, transverse, and bending waves. The aim of this section is to
recall some basic concepts on wave propagation in plates useful for further
discussions of this thesis. A complete analysis and the derivation of the
equations can be found in many textbooks, see for example [41].

Quasi-longitudinal waves: Pure longitudinal waves might occur in solids,
only when the wavelength is smaller than the structure’s dimension parallel
to their propagation direction. This is not the case of building elements,
at least not within the entire frequency range. In fact a compressional
wave, with a wavelength larger that the solid element’s dimension parallel
to its propagation direction, induces a transverse displacement other than a
longitudinal one. However, the transverse displacement induced by quasi-
longitudinal waves is very small and it is often neglected in sound radiation
analysis. From the differential equation that governs the propagation of
this type of wave into a thin homogeneous plate it is possible to derive the
longitudinal wave speed:

cL =

√
E

ρ (1− ν2)
. (2.1)

Transverse waves: Since solids, unlike fluids, can resist tangential stresses,
transverse plane waves, sometimes called shear waves, can also occur. The

9



2.2. Bending waves in isotropic plates

shear deformation induced by the propagation of a transverse wave involves
changes in the shape of the element due to the rotation. Pure shear waves
occur when the element’s dimensions are larger than the propagating wave-
length. In a wide range of frequencies, the displacements that a transverse
wave induces in a plate are parallel to the surface, unable to excite the
surrounding fluid. Again, from the wave equation it is possible to derive the
transverse wave speed as:

cT =

√
G

ρ
. (2.2)

Transverse waves propagate slower than quasi-longitudinal waves, since the
shear modulus G of the plate is usually smaller than its Young’s modulus
E. It should be mentioned that another type of transverse waves, called
torsional waves, can propagate in beam-like structures.

Bending waves: The stresses and strains associated with bending or
flexural waves act in the longitudinal direction. Nevertheless, bending induces
in the structure transverse displacements w, with larger amplitude than waves
previously introduced. In structure-borne sound transmission analysis it
is important to consider the propagation of all these three kinds of wave,
and their interaction. However, in sound radiation problems, due to their
larger deflection, bending waves are by far of greater importance than quasi-
longitudinal and shear waves. Unlike quasi-longitudinal and transverse waves,
bending waves are dispersive. It means that the phase velocity is not constant,
but depends on the frequency. The dispersion relation is derived in the next
sections under different assumptions.

2.2 Bending waves in isotropic plates

The equation of motion of a vibrating plate can be derived using different
approaches. The dynamic equilibrium approach, based on Newton’s second
law, or D’Alembert’s principle, represents the most straightforward method
when the system is excited by forces with a constant orientation, and the
motion is restricted to a single plane. Although, when these conditions
are not fulfilled, other approaches, such as variational method and integral
equation formulation, introduced in Chapter 3, are more suitable. The
solution of the equation of motion of a rectangular homogeneous isotropic
thin plate, undergoing flexural vibrations, is derived in the next sections by
following two distinct approaches. Moreover, the main differences between
classical thin plate theory and Mindlin’s theory for thick plates are recalled.

10



2.2. Bending waves in isotropic plates

2.2.1 Thin plate theory

The equation of motion of a homogeneous isotropic rectangular thin plate,
laying in the xy plane and undergoing flexural vibrations, can be described
as a function of the transverse displacement w by using the classical plate
theory, also known as Kirchhoff’s theory. The differential equation of motion
of a thin vibrating plate is derived under the following assumptions:

1. the plate’s thickness h is small compared to its other dimensions.

2. the middle plane of the plate represents a neutral surface, therefore it
does not undergo in-plane deformations,

3. the transverse displacement of the middle plane w is small compared
to the plate thickness h,

4. the influences of the transverse shear deformation is neglected,

5. the influence of the rotational inertia is neglected.

The thin plate’s equation of motion for free and forced flexural vibration is
given by:

D

(
∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+
∂4w

∂y4

)
+ ρh

∂2w

∂t2
=


0;

fe (x, y, t) ;

(2.3)

where fe represents the external forces exciting the plate, ρ is the plate’s
density , and D its bending stiffness, defined as:

D =
Eh3

12 (1− ν2)
, (2.4)

where E is the plate’s elastic modulus, and ν represents its Poisson’s ratio.
Considering the homogeneous equation of motion for free vibration, a

possible solution for the transverse displacement w, induced by a harmonic
plane bending wave, with amplitude w and angular frequency ω, that propa-
gates along a direction φ = arctan

(
ky/kx

)
to the x-axis, can can be written

in the form:
w (x, y, t) = wei(ωt−kxx−kyy), (2.5)

where kx and ky are the components along the x and y directions of the the
bending wavenumber kB:

kB =
√
k2
x + k2

y . (2.6)

The plane bending wave equation, obtained by substituting equation (2.5)
into the unforced equation of motion (2.3), can be written omitting the time
dependency as: (

Dk4
B − ρhω

2
)
w = 0, (2.7)
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2.2. Bending waves in isotropic plates

which is satisfied for:

kB =
√
ω

4

√
ρh

D
. (2.8)

The general solution of the unforced equation of motion can be written as:

w (x, y, t) =
(
w1eikB(x cosφ+y sinφ) + w2ekB(x cosφ+y sinφ)

+w3e−ikB(x cosφ+y sinφ) + w4e−kB(x cosφ+y sinφ)
)

eiωt.
(2.9)

The solution part with complex wavenumbers w1eikB(... )eiωt +w3e−ikB(... )eiωt

represents propagating waves, where the sign of the exponential indicates the
propagation direction. The solutions with a real exponential represent the
so-called near-field vibrations, which might occur at the discontinuities, such
as the plate’s boundaries, or the excitation point. The exponentially decaying
contribution of these evanescent waves is usually considered negligible at a
distance equal or grater than half wavelength from the discontinuity. The
phase velocity cB, of a bending wave freely propagating in a homogeneous
isotropic thin plate, is given by:

cB =
ω

kB
=
√
ω 4

√
D

ρh
. (2.10)

Equation (2.10), known as the thin plate dispersion relation, shows that the
bending wave velocity is not constant, but increases with frequency. The
bending wave velocity plays a key role in sound radiation mechanisms, as
will be explained in Chapter 3.

The envelope function of a train of bending waves, with a different
wavelength, is defined by the group velocity cg:

cg =
dω

dkB
. (2.11)

The group velocity is the speed at which the energy propagates, and it is
helpful in the evaluation of the vibrational field by means of a statistical
approach, which is often applied in vibro-acoustic analysis at high frequencies.
The relationship between the phase and the group velocity depends on the
dispersion of the waves in a given elastic medium: the phase velocity can
be equal, greater, or less than the group velocity [49]. From equations (2.8)
and (2.11) it is possible to express the group velocity of pure bending waves
propagating in a plate as:

cg,B = 2kB

√
D

ρh
= 2cB , (2.12)

under the thin plate theory the bending group velocity is thus double the
phase velocity.
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2.2. Bending waves in isotropic plates

2.2.2 Modal approach solution

The real part of equation (2.9) represents the amplitude of the thin plate’s
transverse displacement due to free bending vibration. The approach followed
for its derivation is particularly useful to understand important concepts,
such as free bending wavenumber, dispersion relation, and propagating and
evanescent waves. However, it might be helpful to introduce an alternative
approach, based on modal analysis, to solve the unforced equation of motion
(2.3). Assuming a harmonic dependence of time, the field variables can be
separated as:

w (x, y, t) = F (x, y) eiωt, (2.13)

where F (x, y) is an unknown function of the spatial coordinates. By sub-
stituting this expression for transverse displacement into the homogeneous
equation of motion, one can reformulate the differential equation as a stan-
dard eigenvalue problem: (

54 − k4
B

)
F (x, y) = 0, (2.14)

where 54 is known as biharmonic operator. In Cartesian coordinates it has
the form of:

54 =
∂4

∂x4
+ 2

∂2

∂x2∂y2
+

∂2

∂y2
.

One solution of the standard eigenvalue problem, given in equation (2.14),
can be expressed as:

F (x, y) = A1 sin kxx sin kyy +A2 sin kxx cos kyy

+A3 cos kxx sin kyy +A4 cos kxx cos kyy

+A5 sinh kxx sinh kyy +A6 sinh kxx cosh kyy

+A7 cosh kxx sinh kyy +A8 cosh kxx cosh kyy.

(2.15)

To determine the value of the real constants A1–A8 it is necessary to
consider the plate’s boundary conditions. Assuming the plate to be simply-
supported on the four edges, the boundary conditions are expressed as:

w|x=0,Lx = 0; ∂2w
∂x2

∣∣∣
x=0,Lx

= 0; w|y=0,Ly = 0; ∂2w
∂y2

∣∣∣
y=0,Ly

= 0; (2.16)

where Lx and Ly are the length and the width of the plate. For simply-
supported boundaries a solution for the function F (x, y) is given by:

F (x, y) = A1 sin kxx sin kyy. (2.17)

The wavenumber components kx and ky, defined in the previous section,
must satisfy:

kx = km = mπ
Lx

;

ky = kn = nπ
Ly

;

(2.18)

13



2.3. Influence of shear deformation and rotational inertia

where m and n are real positive integers, representing the modal index. From
equations (2.8) and (2.18) it is possible to determine the natural frequency
associated with each single natural mode:

ωmn =

[(
mπ

Lx

)2

+

(
nπ

Ly

)2
]√

D

ρh
, (2.19)

and the mode shape function ψmn (x, y) of mode (m,n) is defined as:

ψmn (x, y) = sin

(
mπx

Lx

)
sin

(
nπy

Ly

)
. (2.20)

The orthogonality condition is satisfied, since:〈
ψmn, ψpq

〉
=

∫ Lx

0

∫ Ly

0
ψmnψpq dxdy =

LxLy
2

δmnδpq, (2.21)

where δij is the Kronecker delta, which is equal to 1 when i = j and equal to
0 otherwise. The general solution of the equation of motion (2.3) is given as
a sum of a theoretically infinite number of natural modes:

w (x, y, t) =

∞∑
m

∞∑
n

Amnψmn sin (ωmnt+ ϕmn) . (2.22)

The amplitude Amn, that quantifies the contribution of the mnth mode to
the total response, and the phase shift ϕmn, are determined by applying the
initial conditions of each specific problem.

2.3 Influence of shear deformation and rotational
inertia

The thin plate theory neglects the effects of rotational inertia and shear
deformation. In bending waves analysis, this approximation is generally valid
when the plate’s thickness is small compared to the bending wavelength. In
other words, due to the dispersive nature of bending waves, the validity of
the simple theory for thin plates is limited in frequency. A more sophisticated
plate theory which considers rotational inertia and shear deformation was
developed by Mindlin [50], extending Timoshenko beam theory. The equation
of motion for free vibration under Mindlin’s theory is given by [51, 52]:

D∇4w −
[
ρD

κ2G
+ I

]
∇2 ∂

2w

∂t2
+ ρ

I

κ2G

∂4w

∂t4
+ ρh

∂2w

∂t2
= 0; (2.23)

while it can be expressed, by taking into account an external force fe (x, y, t),
as:

D∇4w −
[
ρD

κ2G
+ I

]
∇2 ∂

2w

∂t2
+ ρ

I

κ2G

∂4w

∂t4
+ ρh

∂2w

∂t2

=

(
1− D

hκ2G
+

I

hκ2G

∂2

∂t2

)
fe (x, y, t) .

(2.24)
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2.3. Influence of shear deformation and rotational inertia
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Figure 2.1: Bending waves deformation: differences between Kirchhoff’s
theory for thin plates a), and Mindlin’s theory for thick plates b)

It should be noticed that when the mass moment of inertia of the plate
I = ρh3/12 is neglected, and the shear modulus G is assumed infinite, this
equation turns into the equation of motion of a thin plate, given in equation
(2.3). The coefficient κ2, similar to the Timoshenko shear coefficient in thick
beam theory [53], takes into account that the shear stress is not constant
over the plate thickness. According to Ref. [54], it can be approximated
using a simple relationship that follows from some considerations about the
bending wave velocity limit of large wavenumbers:

κ =
cR
cS

=
0.87 + 1.12ν

1 + ν
, (2.25)

where cS is the pure shear wave velocity and cR represents the Rayleigh
surface wave velocity.

The thin plate dispersion relation for pure bending derived in equation
(2.10), shows an unlimited increase of the wave velocity with frequency.
However, for large wavenumbers the velocity should be limited, due to
rotational inertia and especially shear deformation effects. Under Mindlin’s
theory it is possible to derive the dispersion relation of a flexural wave, by
taking into account these effects [49]:(

1− c2

κ2c2T

)(
c2L
c2T
− 1

)
=

12

h2
(ω
c
)2 , (2.26)

where c represents the velocity of the structural wave propagating in the
plate, while cL and cT are the longitudinal and the pure shear wave velocity,
given in equations (2.1) and (2.2).

According to Mindlin’s theory, at high frequencies the flexural wave
velocity approaches the Rayleigh surface velocity cR = κcT . A comparison
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2.3. Influence of shear deformation and rotational inertia
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Figure 2.2: Comparison between flexural wave dispersion curves, derived
under Kirchhoff’s and Mindlin’s theory. The normalised wave velocity:
c̄ = c/cL is plotted against the normalised wavenumber: k̄ = kh/2π.
Recreated from Ref. [49].

between thin and thick plate dispersion relations is given in Figure 2.2.
From an acoustic point of view, the effect of rotational inertia and shear
deformation starts to be significant when the structural wave length is
approximately six times smaller than the plate thickness λB < 6h [41]. This
condition, sometimes expressed in terms of Helmholtz number as kBh ≥ 1 [55],
represents the frequency limit above which longitudinal waves associated with
thickness resonances, known as dilatational waves, radiate sound efficiently
[56].
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Chapter 3

Sound radiated from
orthotropic plates

3.1 Introduction

Sound radiation from vibrating structures is a topic of main interest in many
fields of acoustics, both for sound insulation and noise control aspect, and,
with an opposite purpose, also for speaker and monitor design. In order
to design and optimise structures to provide good sound insulation it is
fundamental to characterise how a vibrating element radiates sound. This
has been object of an increasing interest during the last half century and the
physic behind this mechanism is well known. However, from an engineering
point of view, the rigorous computation of the sound power radiated by a
vibrating surface is still a highly demanding task. In this Chapter the basic
concepts of sound radiation by flexural vibration in plates are recalled, and
two different models, developed to estimate the radiation efficiency of an
orthotropic plate, are presented. The main purpose has been to implement
prediction models, helpful tools for engineers and architects in the acoustic
design of cross-laminated timber building partitions. Cross laminated plates
are sometimes treated as layered structures, although the main idea of this
research project was to analyse these elements as equivalent homogeneous
orthotropic plates, by using frequency dependent apparent elastic properties.
Frequency-dependent apparent material parameters are commonly used
to model the dynamics of complex elements, such as sandwich beams or
plates, by means of simplified theories, developed for homogeneous structures
[57]. While a complete and thorough analysis of plate dynamics and sound
radiation can be found in specific textbooks, see for example Ref. [51, 58] and
Ref. [59, 60], in this Chapter the stress and strain relationship of orthotropic
elastic materials are firstly recalled. The fundamental equations of motion
governing flexural vibration of orthotropic thin plates are derived, both
considering the in-vacuum condition, and the structure immersed in a fluid.
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3.2. Orthotropic elastic solids

A variational approach based on Hamilton’s principle follows, considering
external excitations of different nature. The sound radiation model presented
in Ref. [16] for isotropic plates has been extended, deriving an analytic
model for orthotropic thin plates. The influence of fluid loading on the plate
response is discussed, and an approximation of the radiation impedance with
the self-radiation resistance is introduced. The modal summation approach
presented by Xie et al. [19], is also introduced. Since this model has been
already applied to orthotropic structures by Venini [61], providing reliable
results, it has been used as basis for comparison with the analytic model.
The concepts of resonant and non-resonant radiation are introduced, and the
modal-average radiation efficiency for an orthotropic thin plate is derived,
based on the work of Anderson and Bratos-Anderson [30]. The effect of
vibrational near-field, and non-resonant field are finally discussed.

3.2 Orthotropic elastic solids

Considering a rectangular orthotropic plate, laying in the xy plane, with the
principal directions of orthotropy aligned with the axes, as shown in Figure 3.1,
it is possible to express the stress and strain relationship as a function of nine
independent constants: three elastic moduli Ei and the Poisson’s ratios νij ,
associated with the three principle orthotropic directions, and three shear
moduli Gij . The compliance matrix, in terms of the engineering strain and
stress components, and material constants, is given as:



εx
εy
εz
γxy
γxz
γyz


=



1
Ex

−νyxEy −νzxEz 0 0 0

−νxyEx
1
Ey

−νzyEz 0 0 0

−νxzEx −νyzEy
1
Ez

0 0 0

0 0 0 1
Gxy

0 0

0 0 0 0 1
Gxz

0

0 0 0 0 0 1
Gyz





σx
σy
σz
τxy
τxz
τyz


. (3.1)

However, under the thin plate assumptions, discussed in the previous section,
a plane stress condition is considered by taking σz = 0 and γxz = γyz = 0.
Thus the stress and strain relationship matrix given in equation (3.1) reduces
to: 

εx
εy
γxy

 =


1
Ex

−νyxEy 0

−νxyEx
1
Ey

0

0 0 1
Gxy




σx
σy
τxy

 . (3.2)
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3.3. Derivation of the basic equations
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Figure 3.1: Elastic thin orthotropic plate inserted in a infinite rigid baffle,
radiating sound energy in a semi-infinite fluid domain z > 0.

It is possible to express the strain components in terms of the plate’s trans-
verse displacement w as:

εx = ∂ξ
∂x = −z ∂2w

∂x2
;

εy = ∂ζ
∂y = −z ∂2w

∂y2
;

γxy = ∂ξ
∂x + ∂ζ

∂y = −2z ∂
2w

∂x∂y ;

(3.3)

where ξ and ζ represent the longitudinal in-plane displacement along the x
and y axes respectively.

3.3 Derivation of the basic equations

3.3.1 In-vacuum vibration

Although the equation of motion of a thin orthotropic plate can be easily
derived through the equilibrium approach, for sound radiation analysis it
might be useful to derive it in terms of energy, by means of Hamilton’s
principle: a variational method to determine the dynamics of a system.
Hamilton’s principle analyses the motion of a mechanical system, between
two instants t1 and t2, as a path traced in a n-dimensional space, called
configuration space.

H(w) =

∫ t2

t1

Ldt =

∫ t2

t1

(T− V+ We) dt. (3.4)
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3.3. Derivation of the basic equations

The Lagrangian function, L, is defined from the strain Vand kinetic Tenergy
and the work of external forces We. For a conservative system, Hamilton’s
principle states that, among all the possible paths, the one that represents
the true evolution of the system, within the interval t1 − t2, is such that the
variation of the Hamiltonian functional H is zero:

δH(w) = δ

∫ t2

t1

Ldt = 0, (3.5)

where δ represents the variational operator, which can be considered as
the total derivative operator assuming the time to be constant. A more
detailed analysis on variational methods, Hamilton’s principle, and calculus
techniques, can be easily found in Ref. [51, 62].

The strain energy of an elastic solid structure is defined by the product
of stresses and strains integrated over the volume V of the element; for the
orthotropic thin plate undergoing bending vibration it is given by:

V=
1

2

∫∫∫
V

(
σxεx + σyεy + τxyγxy

)
dV. (3.6)

From the stress and strain relationship, given in equation (3.3), the stress
components are given by:

σx = Ex
1−νxyνyx

(
εx + νyxεy

)
;

σy =
Ey

1−νxyνyx
(
εy + νxyεx

)
;

τxy = Gxyγxy;

(3.7)

while the strain components can be expressed as a function of the transverse
displacement w according to the relationships given in equations (3.2) as:

V=
1

2

{
Ex

1− νxyνyx

∫ Lx

0

∫ Ly

0

[(
∂2w

∂x2

)2

+ νyx
∂2w

∂x2

∂2w

∂y2

]
dxdy

+
Ey

1− νxyνyx

∫ Lx

0

∫ Ly

0

[(
∂2w

∂y2

)2

+ νxy
∂2w

∂x2

∂2w

∂y2

]
dxdy

+ 4Gxy

∫ Lx

0

∫ Ly

0

(
∂2w

∂x∂y

)2

dxdy

}∫ h/2

−h/2
z2 dz,

(3.8)

or in terms of the bending stiffness along the principle orthotropic directions
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3.3. Derivation of the basic equations

Dx, Dy as:

V=
Dx
2

∫ Lx

0

∫ Ly

0

[(
∂2w

∂x2

)2

+ νyx
∂2w

∂x2

∂2w

∂y2

]
dxdy

+
Dy
2

∫ Lx

0

∫ Ly

0

[(
∂2w

∂y2

)2

+ νxy
∂2w

∂x2

∂2w

∂y2

]
dxdy

+ 2Gxy
h3

12

∫ Lx

0

∫ Ly

0

(
∂2w

∂x∂y

)2

dxdy.

(3.9)

If rotational inertia effect is neglected, the kinetic energy of the plate
is defined as the product of the square vibration velocity and the material
density integrated over the volume:

T=
1

2

∫∫∫
V

ρ

(
∂w

∂t

)2

dV =
ρh

2

∫ Lx

0

∫ Ly

0

(
∂w

∂t

)2

dxdy. (3.10)

The work done by an external force fe (x, y, 0, t), acting on the plate surface,
is defined as:

We =

∫ Lx

0

∫ Ly

0
few dxdy. (3.11)

Hamilton’s principle can be written by substituting equations (3.9), (3.10),
and (3.11) into equation (3.5). Solving the resulting integral will lead to
the equation of motion of an orthotropic thin plate and to the equations
associated with all the possible boundary conditions. The equation of motion
of a thin orthotropic plate undergoing flexural vibrations is governed by the
differential equation [58]:

Dx
∂4w

∂x4
+ 2B

∂4w

∂x2∂y2
+Dy

∂4w

∂y4
+ ρh

∂2w

∂t2
=


0;

fe (x, y, t) ;

(3.12)

where the bending stiffness along the principal directions, Dx and Dy, and
the effective torsional stiffness B, are function of the elastic moduli Ex and
Ey, and the in-plane shear modulus Gxy:

Dx =
Exh

3

12
(
1− νxyνyx

) ; Dy =
Eyh

3

12
(
1− νxyνyx

) ; (3.13)

B =
νyxDx

2
+
νxyDy

2
+ 2Gxy

h3

12
. (3.14)

According to Betti’s reciprocal theorem the bending stiffnesses along the two
principle directions satisfy the relationship [63, 64]:

νyxDx = νxyDy. (3.15)

The Poisson’s ratios νxy and νyx represent the elastic constants related to
the geometrical configuration of the orthotropic plate.
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3.3. Derivation of the basic equations

3.3.2 Plate immersed in a fluid

The fluid-structure interaction, in some cases, might influence the structural
dynamic response significantly [41, 60, 59], therefore, the vibro-acoustic
analysis should also take into account the acoustic load of the fluid the plate
is immersed into, other than the external forces acting on the plate. For the
baffle condition we consider the fluid load effect only on the radiating side.
For z > 0, the forced equation of motion considering the acoustic loading is
given by:

Dx
∂4w

∂x4
+ 2B

∂4w

∂x2∂y2
+Dy

∂4w

∂y4
+ ρh

∂2w

∂t2
= fe (x, y, t)− p (x, y, 0, t) . (3.16)

The work done by the acoustic pressure p (x, y, z) acting on the plate surface
in the the semi-infinite fluid domain z > 0, is given by:

Wf =

∫ Lx

0

∫ Ly

0
p (x, y, 0)w (x, y) dxdy. (3.17)

The acoustic pressure satisfies the Helmholtz equation (3.18a), and the
continuity condition of the acoustic particle velocity and the mechanical
vibration velocity must be fulfilled both on the interfaces fluid domain–plate
surface (3.18b), and fluid–baffle (3.18c). Moreover, in the fluid domain z > 0

Sommerfeld radiation condition at infinity, given in equation (3.18d), has
to be satisfied [65]. Therefore, this radiation problem is governed by the
equations: (

52 + k2
0

)
p (r) = 0;

∂p (r)

∂nr

∣∣∣∣
plate

= ρ0ω
2w (r) ;

∂p (r)

∂nr

∣∣∣∣
baffle

= 0;

lim
r→∞

[
r

(
∂p (r)

∂r
− ik0p (r)

)]
= 0;

(3.18a)

(3.18b)

(3.18c)

(3.18d)

indicating with r (x, y, 0) a point on the plate surface and with nr the outward
normal to the plate surface. The acoustic pressure in the fluid domain p (r)

can be determined by using the integral formulation method. To this purpose
it is necessary to derive a suitable Green’s function G(r, r), describing the
sound pressure in a point of the fluid domain r (x, y, z), due to a monopole
source located in r (x, y, z). The Green’s function for the semi-infinite free
space is commonly used to simplify this kind of exterior baffled problem [66]:

G (r, r) =
eik0|r−r|

2π |r − r|
. (3.19)
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3.4. Analytical sound radiation model

It is possible to write the Kirchhoff-Helmholtz integral over the plate surface
S to describe the acoustic pressure as:

p (r) =

∫∫
S

[
∂G (r, r)

∂nr
p (r)− ∂p (r)

∂nr
G (r, r)

]
dS. (3.20)

The derivative of the semi-infinite space Green’s function is zero, both on
the baffle and on the plate surface, therefore, the equation (3.20) can be
simplified as:

p (r) = −
∫∫
S

∂p (r)

∂nr
G (r, r) dS, (3.21)

obtaining the well-known Rayleigh’s integral [6]. The acoustic pressure
on the plate surface is thus defined as p (x, y, 0) = −p (x, y, 0). Considering
the continuity condition on the plate-fluid interface, expressed in equation
(3.18b), the work associated with the fluid loading can be rewritten as a
four-fold integral over the plate surface S:

Wf = ρ0ω
2
∫∫
S

∫∫
S

w (x, y)G (x, y, 0;x, y, 0)w (x, y) dxdydxdy. (3.22)

It can also be expressed as a function of the plate’s radiation impedance Z
as:

Wf = −iωZw, (3.23)

defining the radiation impedance as:

Z = iρ0ω
2
∫∫
S

∫∫
S

w (x, y)G (x, y, 0;x, y, 0)w (x, y) dSdS. (3.24)

The Hamiltonian functional can be formulated by considering both the
work associated with the external forces and the work associated with the
fluid acoustic pressure as:

H(w) =

∫ t2

t1

(
T− V+ We + Wf

)
dt. (3.25)

In the next section, a solution of equation (3.25) for the transverse displace-
ment w will be sought, in order to determine the vibro-acoustic descriptors
of the orthotropic plate.

3.4 Analytical sound radiation model

The solution for the transverse displacement w of the orthotropic plate can
be derived following the generalised approach proposed by Nelisse [16] to
evaluate the sound power radiated by rectangular isotropic plates immersed
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3.4. Analytical sound radiation model

in a fluid. An approximate solution of the Hamiltonian functional can
be determined through the Rayleigh-Ritz method. The plate transverse
displacement w (x, y, t) can be approximated as a linear sum of admissible
functions, separating the spatial and the temporal variables, analogous to
what has been done in equation (2.13) for an isotropic plate.

w (x, y, t) =

M∑
m

N∑
n

amnψmn (x, y) eiωt, (3.26)

where amn represents the unknown amplitude of the transverse displacement
associated with the mode (m,n). The functions ψmn (x, y) depend only
on the spatial coordinates and can be chosen as polynomial [10, 67], or
trigonometric functions [68], satisfying the geometric boundary conditions.
The Hamiltonian functional can be reformulated by substituting in the
Lagrangian L the transverse displacement w, expanded over the admissible
functions given in equation (3.26). After some algebraic manipulations the
Lagrange equations can be written as [65]:

d

dt

∂T

∂amn
+

∂V

∂amn
=

∂We
∂amn

+
∂Wf
∂amn

. (3.27)

Assuming a harmonic time dependence of the kind eiωt, it is possible to write
the orthotropic plate’s equation of motion, for a given angular frequency ω,
as a linear matrix system:(

−ω2 [Mmnpq
]

+
[
Kmnpq

]
+ iω

[
Zmnpq

])
{amn} =

{
fe,mn

}
, (3.28)

where Mmnpq are the mass matrix coefficients, Kmnpq the stiffness matrix
coefficients, Zmnpq are the coefficients of the impedance matrix, and

{
fe,mn

}
is

the vector of the external force coefficients. The vector {amn} is the magnitude
of the transverse displacement, which represents the only unknown of the
system.

3.4.1 Mass matrix coefficients

Assuming a simply supported boundary condition, sine functions can be
used as trial functions, providing numerical stability in the computation [69].
Hence, the admissible functions ψmn (x, y) are represented by the plate’s mode
shapes given in equation (2.20). The generalised mass matrix coefficients for
an orthotropic plate, do not differ from the isotropic case, and are given by:

Mmnpq = ρh

∫ Lx

0

∫ Ly

0
ψmn (x, y)ψpq (x, y) dxdy. (3.29)
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3.4. Analytical sound radiation model

Due to the orthogonality property of the admissible functions, expressed in
equation (2.21), the mass matrix is diagonal, and equation (3.29) reduces to:

Mmnpq =


Mmn =

ρhLxLy
4 , if m = p and n = q;

0, if m 6= p or n 6= q.

(3.30)

3.4.2 Stiffness matrix coefficients

The stiffness matrix K of the orthotropic plate is defined as a function of
the transverse displacement w (x, y, t) as:

K =

∫∫
S

[
Dx

(
∂2w

∂x2

)2

+Dy

(
∂2w

∂y2

)2

+ νyxDx
∂2w

∂x2

∂2w

∂y2

+νxyDy
∂2w

∂y2

∂2w

∂x2
+ 4Gxy

h3

12

(
∂2w

∂x∂y

)2
]

dS.

(3.31)

The coefficients of the generalised matrix are computed by expressing the
transverse displacements in terms of admissible functions, as given in equation
(3.26), assuming a harmonic time dependence:

Kmnpq =

∫ Ly

0

∫ Ly

0

[
Dx

∂2

∂x2
ψmn (x, y)

∂2

∂x2
ψpq (x, y)

+Dy
∂2

∂y2
ψmn (x, y)

∂2

∂y2
ψpq (x, y)

+ νyxDx
∂2

∂x2
ψmn (x, y)

∂2

∂y2
ψpq (x, y)

+ νxyDy
∂2

∂y2
ψmn (x, y)

∂2

∂x2
ψpq (x, y)

+4Gxy
h3

12

∂2

∂x∂y
ψmn (x, y)

∂2

∂x∂y
ψpq (x, y)

]
dS.

(3.32)

The computation of the double-fold integral is still a computationally de-
manding task even for modern processors. However, under the assumption of
simply supported boundary conditions, it was possible to reduce the integral
equation to a simpler formulation, derived in Annex A.

3.4.3 Radiation impedance matrix coefficients

The radiation impedance Z is a sparse matrix of complex numbers. Its
coefficients can be expressed in terms of real and imaginary part: the plate’s
radiation resistance R and radiation reactance X respectively:

Zmnpq = Rmnpq + iXmnpq. (3.33)
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3.4. Analytical sound radiation model

The rigorous computation of the radiation impedance coefficients involves a
four-fold integral to be solved:

Zmnpq = iωρ0

∫ Lx

0

∫ Ly

0

∫ Lx

0

∫ Ly

0
ψmn (x, y)G (x, y, 0, x, y, 0)ψpq (x, y) dxdydxdy.

(3.34)
However, equation (3.34) can be reduced to a two-fold integral using the
approach proposed by Sandman [13] and Nelisse [16], as shown in Annex B

3.4.4 Excitation coefficients

In vibro-acoustic problems one needs to consider different kinds of excitation,
of both mechanical and acoustic nature. The simplest case to treat analyti-
cally is represented by a point-force acting perpendicular to the plate surface.
Considering a point mechanical force, acting in the position of coordinates
(x0, y0) with amplitude F0, the coefficients of the generalised force are given
by:

fe,mn = F0ψmn (x0, y0) . (3.35)

Considering an acoustic plane wave incident on the plate surface at an
angle θ to the normal, due to the plate response, a reflected sound wave on
the exciting side, and a radiated wave on the opposite side, are generated.
Assuming the reflected wave to be decomposed in a wave radiated by the
vibrating plate and a sound wave reflected by the motionless surface, the
generalised force due to the acoustic excitation is given by [18, 69]:

fe,mn = 2

∫ Lx

0

∫ Ly

0
pb (x, y, 0)w (x, y) dxdy, (3.36)

where the blocked sound pressure pb is the superposition of incident and
reflected plane waves with the plate assumed to be motionless:

pb (x, y, z, t) = e−ik0(x sin θ cosφ+y sin θ sinφ−z cos θ)eiωt. (3.37)

The acoustic pressure distribution is calculated for an incidence angle θ to
the normal of the plate, and an azimuthal angle φ measured from the x-axis
on the plate surface. For a simply supported boundaries the generalised force
exciting the plate can be expressed as [70]:

fe,mn =

64

(
mπ

Lx

)2(nπ
Ly

)2

[
(k0 sin θ sinφ)2 −

(
mπ

Lx

)2
]2 [

(k0 sin θ cosφ)2 −
(
mπ

Lx

)2
]2
S, (3.38)
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3.4. Analytical sound radiation model

where the function S depends on the modal indices:

S =



cos2
(
k0 sin θ sinφLx2

)
cos2

(
k0 sin θ cosφ

Ly
2

)
; odd-odd modes;

cos2
(
k0 sin θ sinφLx2

)
sin2

(
k0 sin θ cosφ

Ly
2

)
; odd-even modes;

cos2
(
k0 sin θ sinφLx2

)
sin2

(
k0 sin θ cosφ

Ly
2

)
; even-odd modes;

sin2
(
k0 sin θ sinφLx2

)
sin2

(
k0 sin θ cosφ

Ly
2

)
; even-even modes.

(3.39)
When a diffuse sound field excites the plate surface different incident angles
within the interval 0 < θ < π/2, other than different propagation angles
0 < φ < 2π, need to be considered. For each angular frequency ω, the
amplitude of the transverse displacement is given by:

a =

∫ π/2

0

∫ 2π

0
ω2 |a (θ, φ)|2 dφdθ. (3.40)

3.4.5 Vibro-acoustic indicators

Once the coefficients of the mass, stiffness, and radiation impedance matrix,
and of the external force vector have been obtained, the vector of coefficients
associated with the amplitude of the plate’s transverse displacement amn can
be computed by solving a set of linear algebraic equations:

amn = Amnpqfe,pq, (3.41)

where the admittance matrix A is obtained from the inversion of the matrices
between parentheses on the left hand side of equation (3.27) as:[

Amnpq
]

=
(
−ω2 [Mmnpq

]
+
[
Kmnpq

]
+ iω

[
Zmnpq

])−1
. (3.42)

In order to numerically perform the matrix inversion it is necessary to re-
arrange the multi-dimensional matrices, i.e. M, K and Z, in two dimensions.
For each angular frequency ω the admittance matrix A will result as:

[A] =



A1,1,1,1 A1,2,1,1 . . . A1,n,1,1 . . . Am,n,1,1

A1,1,1,2 A1,2,1,2 . . . A1,n,1,2 . . . Am,n,1,2
...

...
. . .

...
...

...
A1,1,1,q A1,2,1,q . . . A1,n,1,q . . . Am,n,1,q

...
...

...
...

. . .
...

A1,1,p,q A1,2,p,q . . . A1,n,p,q . . . Am,n,p,q


. (3.43)

By solving the equation (3.41) it is possible to compute the vibro-acoustic
indicators as a function of the plate’s transverse displacement w. The mean
square vibration velocity of the plate is given by:〈

v2
〉

=
ω2

2S

∫∫
S

|w (r)|2 dS =
ω2

8

∑
m

∑
n

|amn|2 . (3.44)
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3.5. Influence of fluid loading

The radiated sound power is computed by integrating the active sound
intensity over the plate surface:

Wrad =
1

2

∫∫
S

Re [iωw (r) p (r)] dS =
ω2

2

∑
m

∑
n

∑
p

∑
q

amnRe
[
Zmnpq

]
a∗pq,

(3.45)
where the superscript ∗ denotes the complex conjugate value.

The radiation efficiency σ is an important acoustic descriptor that char-
acterises the capability of a vibrating structure to radiate sound.

σ =
Wrad

ρ0c0S 〈v2〉s,t
. (3.46)

It is defined as the ratio between the sound power actually radiated by a
vibrating elastic structure Wrad and the sound power that would be theo-
retically radiated by a rigid piston of equal surface S, vibrating with the
same mean square velocity

〈
v2
〉
s,t. The notation 〈〉s,t indicates time and

spatial average. For this reason it can be sometimes more accurately defined
radiation ratio.

3.5 Influence of fluid loading

It is worth discussing some general considerations about the self and cross
radiation impedance. The radiation reactance and resistance for different
modes of a simply supported rectangular plate are plotted against the fre-
quency in Figure 3.2, normalised wih respect to the fluid acoustic impedance
Z0 = ρ0c0. When the radiation of each single mode is considered, the diago-
nal coefficients Zmnmn of the radiation impedance matrix are represented by
the self-radiation resistance and reactance, which take positive values in the
entire frequency range. The self-radiation reactance becomes negligible as
the frequency increases, while the self-radiation resistance tends asymptoti-
cally to the fluid acoustic impedance, Figure 3.2a). The off-diagonal matrix
coefficients Zmnpq, which consider the interaction of the modes (m,n) and
(p, q), can be analogously expressed in terms of cross-radiation resistance
and reactance. In this case the coefficients assume positive or negative
values oscillating around zero, as shown in Figure 3.2b). Many studies have
been undertaken on the effects of the load of the fluid on the structural
dynamic response and on the radiated sound power [71, 72, 73]. Evidence
shows that when the vibrating plate is immersed in water, the fluid loading
has a significant influence both on the dynamic response, for example by
shifting the in-vacuum resonance frequencies, and on the radiated sound
power too. Moreover, the angular dependence of wavenumbers, which charac-
terises orthotropic plates, is increased but not distorted by the fluid loading
[74]. It should be noted however, that in buildings, the fluid surrounding
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Figure 3.2: a) self radiation resistance R and reactance X of modes (1, 1) and
(2, 2); b) cross radiation resistance R and reactance X of modes (1, 3)− (1, 1)

and (1, 1)− (3, 3)

the radiating structures is air, which has a rather low inertia compared to
building elements, and an acoustic impedance thousand times smaller than
water. A general criterion to consider the light-fluid hypothesis was proposed
by Innes and Crighton [75]:

ε =
ρ0c0
ρhωc

� 1, (3.47)

where ωc is the critical angular frequency. In such a case, the influence of
the fluid loading is thus very small and the radiation impedance might be
approximated by the diagonal terms of the radiation resistance.

Zmnpq ≈ Zmn ≈ Rmn. (3.48)

3.5.1 Modal radiation efficiency

For each vibrational mode (m,n) a modal radiation efficiency σmn can be
defined, which is proportional to the self radiation resistance Rmn:

σmn =
Wmn

ρ0c0S 〈v2
mn〉

=
Rmn

ρ0c0Snmn
. (3.49)

The modal radiation efficiency equals the self-radiation resistance normalised
for the air impedance Z0, the plate area S, and the norm of the mode nmn.
The first approximate formulae to evaluate the modal radiation efficiency

29



3.5. Influence of fluid loading

were proposed by Maidanik [8] in the early 1960s. Wallace derived an integral
equation, based on the far-field acoustic intensity, to compute the modal
radiation efficiency for a rectangular simply supported plate at any given
frequency [76].

σmn =
64k2

0LxLy
π6m2n2

∫ π/2

0

∫ π/2

0


cos

sin

(
α
2

) cos

sin

(
β
2

)
[(

α
mπ

)2 − 1
] [(

β
nπ

)2
− 1

]


2

sin θ dθdφ, (3.50)

in which: 
α = k0Lx sin θ cosφ;

β = k0Lx sin θ sinφ.

(3.51)

The function cos (α/2) is used if m is an odd integer while sin (α/2) if m is an
even integer. The trigonometric functions with argument (β/2) are chosen
analogously with respect to the integer n. The integration is performed over
the bending wave propagation angle φ and over the angle of propagation θ of
the radiated acoustic wave in the fluid medium. An alternative asymptotic
formulation to compute the modal radiation efficiency was proposed by
Leppington [77] for large acoustic and structural wavenumbers.

As discussed in the previous section, when the fluid that surrounds
the structure is lightweight, the effects of its load can be neglected and
the radiation impedance coefficients Zmnpq can be approximated by the self
radiation resistance coefficients, computed from the modal radiation efficiency
σmn, according to equation (3.49). This approximation reduces drastically
the computational cost of the analytical model to determine the radiation
efficiency σ of an orthotropic plate.

3.5.2 Modal summation approach

An alternative approach to evaluate the plate radiation efficiency by inves-
tigating single mode radiation, neglecting the cross-modal coupling, was
presented by Xie, Thompson, and Jones for homogeneous isotropic baffle
plates and strips (or plates with a large aspect ratio) [19]. Moreover, this
method has already been successfully applied at orthotropic structures by
Venini [61], and it is reported here as basis for comparison with the analytical
method derived in the previous section. Unlike the analytical method, this
approach considers only mechanical excitation. The total radiated power
is computed by considering all the possible positions of uncorrelated point
forces, in order to average out the contribution of cross-modal coupling:

Wmn = |umn|2
∫ 2π

0

∫ π/2

0

Amn (r)A∗mn (r)

2ρc0
r2dθdφ, (3.52)
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3.6. Resonant and non-resonant modes

where r (r, θ, φ) represents a point in the fluid domain, in spherical coordinates.
The square modulus of the modal velocity amplitude averaged over all the
excitation positions is computed as:

|umn|2 =
4ω2 |F |2

M2
[
(ω2
mn − ω2)2 + η2ω4

mn

] , (3.53)

where M is the plate mass, F is the amplitude of the exciting force, η
represent the plate loss factor and ωmn is the orthotropic plate natural
frequency associated with the mode (m,n) [58]:

ωmn =
π2√
ρhL2

x

√
Dxm4 + 2Bm2n2

(
Lx
Ly

)2

+Dyn4

(
Lx
Ly

)4

. (3.54)

The function Amn is defined as:

Amn (r) = ik0ρ0c0
e−ik0r

2πr

LxLy
π2mn

[
(−1)m eiα − 1

(α/ (mπ))2 − 1

][
(−1)m eiβ − 1

(β/ (nπ))2 − 1

]
. (3.55)

The terms α and β are given in equation (3.51). The mean square velocity,
averaged over all the force positions, is given for each mode (m,n) by:

〈v2
mn〉s,t =

1

2M2

ω2 |F |2[
(ω2
mn − ω2)2 + η2ω4

mn

] . (3.56)

The modal radiation efficiency σmn can be determined by substituting the
modal radiated power Wmn and the averaged mean square velocity 〈v2

mn〉s,t
into equation (3.49), to obtain a formulation identical to Wallace’s equation
(3.50). Finally the orthotropic average radiation efficiency, considering all
the possible force positions, is determined as:

σ =

∑∞
m=1

∑∞
n=1 σmn

[(
ω2
mn − ω2

)2
+ η2ω4

mn

]−1

∑∞
m=1

∑∞
n=1

[
(ω2
mn − ω2)2 + η2ω4

mn

]−1
. (3.57)

3.6 Resonant and non-resonant modes

Before introducing the equations to determine the modal-average radiation
efficiency of an orthotropic plate, it might be useful to make some con-
siderations on resonant and non-resonant modes. A forced wave induced
into the plate by an external excitation, either mechanical or acoustic, will
propagate with the free wavenumber rather than the forced one once it has
been reflected by the edges. The forced response of a plate, mechanically
excited at a certain frequency, is given by the superposition of a theoretically
infinite number of modes. The multi-mode response due to a broadband
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Figure 3.3: Resonant and non-resonant modes represented in the wavenumber
space: the shaded area represents the frequency range of the exciting source.
Resonant modes are identified in the wavenumber space by points falling
within the shaded region.

mechanical force is governed by resonant modes, and those are responsible
for most of the radiated sound power [78]. The resonant modes are those
with wavenumbers kmn that match the forced wavenumber. The structural
wavenumber kmn associated with the mode (m,n) is defined, as a function of
its x− y components given in equation (2.18), as:

kmn =
√
k2
x + k2

y . (3.58)

In Figure 3.3, each plate mode is represented in the wavenumber space
at his natural frequency, by a single point of coordinates

(
kx, ky

)
. The

modes that fall within the shaded region are resonant modes, since their
natural frequency matches one of the exciting frequencies. The wavenumber
diagrams are useful to understand the different mechanisms than govern
sound radiation in different frequency ranges. In Figure 3.4, where the
wavenumber components have been normalised for the acoustic wavenumber
k0, five different regions associated with different classes of modes can be
identified, according to the relationship between kx, ky and k0:

(a) kmn < k0 and ky, kx < k0: above the coincidence region;

(b) kmn > k0 and ky, kx < k0: x− y edges modes;

(c) kx > k0 and ky < k0: y-edge modes;
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Figure 3.4: Different radiation modes represented in the normalised wavenum-
ber space. a) modes above the coincidence; b) edges modes; c) y-edge modes;
d) x-edge modes; d) corners modes.

(d) kx < k0 and ky > k0: x-edge modes;

(e) kx > k0 and ky > k0: corner modes.

The frequency at which the structural wavenumber equals the acoustic
wavenumber kmn = k0, and the flexural wave velocity matches the acous-
tic velocity in the surrounding fluid, is called first coincidence, or critical
frequency fc. Assuming that all modes are resonant, excited by a broad-
band mechanical force, the resonant plate modes can be divided in different
classes. The most efficient radiators are the ones characterised by a structural
wavenumber kmn < k0. Above the critical condition the sound is radiated
uniformly from the plate surface and propagates away from the surface, like
in the case of a piston source, since the bending wavenumber always fits the
wavenumber of the acoustic wave, according to the relationship kB = k0 sin θ,
or analogously λ0 = λB sin θ, as shown in Figure 3.6a). Below the critical
condition the acoustic wavelength is bigger than the plate wavelength, thus
air particles can move parallel to the plate surface to compensate the oscil-
lating areas associated with high and low pressure. The sound is radiated
only at the edges, and at other discontinuities, where the pressure change
cannot be fully compensated by the moving fluid particles. In this frequency
range the radiation efficiency is much smaller than unity. This phenomenon
is illustrated in Figure 3.5a), considering a mode shape of the plate where
both the bending wavelength λx and λy are smaller than the acoustic wave-
length λ0, the sound radiated can be modelled as quadrupole source in the
center of the plate, and dipole sources along the edges. The positive and
negative contributions cancel out, except at the corners of the plate, when
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Figure 3.5: Cross-cancellation representation for a) corner mode: λx, λy < λ0;
b) edge mode:λx ≥ λ0 and λy < λ0

the sound can be seen as radiated by a monopole source. These are known
as corner-modes.

Otherwise, the modes characterised by at least one of the structural
wavelengths propagating along the principle direction larger than the acoustic
wavelength, are called edge-modes. In this case cross-cancellation happens at
the center of the plate between out of phase dipole sources, but not along the
edge associated with the the larger wavelength, as shown in Figure 3.5b).

As already mentioned the transverse vibration of a plate mechanically
excited by a broadband force consists of a near-field, that represents the
vibrational field of an infinite plate, and a resonant field due to the reflection
at the boundaries. Above the critical condition the near field cannot be
distinguished from the resonant field. However, even if the resonant fields
tends to be the dominant component, the near-field contribution might
be significant below the critical frequency. The radiation behaviour is
different when the structure is acoustically excited by an incident plane
wave or a diffuse sound field. In this case the plate vibrational response
consists of a non-resonant forced field at the excitation frequency and a
resonant field, generated when the forced wave is reflected at the edges.
The dynamic response of a plate acoustically excited is strongly related
to its sound radiation behaviour by the so-called vibro-acoustic reciprocity
principle presented by Lord Rayleigh [6], and clearly illustrated in Ref. [60].
Considering a simplifying example of a plane sound wave impinging on an
infinite plate at the frequency f , at an angle θ to the normal to the surface, the
plate response has to match the incident wavelength, and it is characterised by
a single trace wavenumber kt = k0 sin θ, Figure 3.6b). The forced flexural wave
travels across the plate with a velocity overlinecF = c0/ cos θ, always equal
or greater than the acoustic velocity c0. When the finite dimension of real
structures is taken into account, the spectrum of the incident sound pressure
wavenumber is spread over the wavenumber domain, due to scattering and
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λ
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Figure 3.6: a) Matching between the bending wavelength propagating in the
plate and the wavelength of the radiated acoustic wave propagating away
from the surface; b) Matching between the incident acoustic wavelength, and
the forced trace wavelength propagating in the plate.

diffraction caused by variation of the surface impedance. Analogously, a
structural wavenumber kt, propagating in the finite size plate, can take an
infinite range of values. The forced flexural waves, induced by the incident
sound field, will travel with free bending wavenumbers once they have been
reflected. Therefore, even those modes with a resonant frequency below the
critical condition can be excited by an acoustic plane wave, even if not at
their resonance. The forced non-resonant field tends to govern the sound
radiation below the critical condition while, as it happens for mechanically
excited plates, near and above the critical condition this contribution is not
distinguishable from the resonant field.

3.7 Average radiation efficiency model

So far the average radiation efficiency of orthotropic plates has been computed
by considering the sound power radiated by each single mode. However, as
the number of modes within the frequency band increases it might be more
convenient to directly derive a modal-average radiation efficiency, rather
than consider the modal radiation. Approximated formulations of the modal-
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3.7. Average radiation efficiency model

average radiation efficiency, which provide a general trend of the radiation
behaviour of the structure as a function of the frequency, have been given
by several authors [8, 77, 22]. This acoustic descriptor, usually expressed in
one third octave bands, is often required in building acoustics for prediction
models based on the statistical energy analysis (SEA) framework, or when
a broad band excitation is involved. The average radiation efficiency of
orthotropic and composite plates, under Mindlin’s theory, was derived using
the wave approach by Ghinet and Atalla [79]. This statistical approach needs
some additional assumptions: (i) high modal density and modal overlap over
the entire frequency range, to treat the discrete distribution of modes as
a continuous function; (ii) the sound power is only radiated by resonant
modes; (iii) the resonant modes are uncorrelated; (iv) equipartition of modal
energy: all the modes within the frequency band have the same vibrational
energy. To consider the total resonant vibrational energy, the orthotropic
radiation efficiency σ (ω, φ) is weighted by the plate modal density nd, within
the frequency range delimited by ωmin and ωmax:

σr (ω) =

∫ ωmax

ωmin

∫ π/2

0
σ (ω, φ)nd (ω, φ) dφdω∫ ωmax

ωmin

∫ π/2

0
nd (ω, φ) dφdω

. (3.59)

The plate modal density nd, that describes the number of modes per Hz, is
given by [80, 81]:

nd (ω) =
LxLy
π2

∫ π/2

0
kB (ω, φ)

∂kB
∂ω

dφ. (3.60)

The average radiation model presented here, is based on an analogous
formulation developed under the thin plate assumptions following the work
presented by Anderson and Bratos-Anderson [30]. The average radiation
efficiency given in equation (3.59) can be reformulated for a thin orthotropic
baffled plate, with simply supported boundary conditions, as:

σr (ω) =
LxLy
π2nd

∫ π/2

0
σ (ω, φ) kB

∂kB
∂ω

dφ. (3.61)

The model proposed by Anderson et al. was developed for a specially
orthotropic carbon laminate plate, with the principal axes aligned with
the edges, undergoing harmonic vibrations. In order to investigate cross-
laminated timber plates, this model has been slightly modified, to allow for
frequency dependent input data, which are necessary to compensate for the
simplified thin plate theory, that neglects the shear effect. The radiation
efficiency σ (ω, φ), at the angular frequency ω, and for a propagation azimuthal
angle φ of structural wave, is computed using Leppington’s asymptotic
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formulations [77, 82], developed for three different frequency ranges, with
respect to the critical condition:

µ < 1− δ : above the critical condition;
µ = 1± δ : near the critical condition;
µ > 1 + δ : below the critical condition;

where µ is the dimensionless bending wavenumber defined as the ratio
µ = kB/k0 and δ indicates a frequency range around the critical condition
µ = 1, defined near-coincidence region. The complete set of Leppington’s
equations to compute the asymptotic radiation efficiency for a given angle
φ are provided in Annex C. However, Leppington’s papers do not provide
much information on how the term δ, to define the frequency limits, should
be determined. The procedure to determine the three frequency ranges for
which Leppington’s equations are defined was implemented for a discrete
number of angles within the interval 0 ≤ φ ≤ π/2 and is described in Annex
C. At any propagation angle φ the direction-dependent bending wavenumber
kB (φ) can be estimated from the wavenumber components along the principal
directions kB,x and kB,y, by applying a well-established orthotropic elliptic
model [30, 83]:

kB (φ) =

√(
kB,x cosφ

)2
+
(
kB,y sinφ

)2
. (3.62)

The modal density nd, given in equation (3.60), can be re-written for a thin
orthotropic rectangular plate as:

nd =
LxLy

√
ρh

2π2

∫ π/2

0

√
1

D (φ)
dφ. (3.63)

The orthotropic plate bending stiffness, that appears in the integrand de-
nominator of equation (3.63), is defined as:

D (φ) = Dx cos4 φ+ 2B cos2 φ sin2 φ+Dy sin4 φ. (3.64)

Computing the orthotropic bending stiffness using equation (3.64) requires
the knowledge of the in-plane shear modulus Gxy. In order to evaluate
the plate modal density the direction dependent bending stiffness can be
approximated for each propagation angle φ, at a given angular frequency ω,
as a function of the bending wavenumber kB given in equation (3.62):

D̃ (φ) =
ω2ρh

k4
B (φ)

. (3.65)

This approximation might be helpful when information regarding the in
plane shear modulus Gxy is not available. Moreover, it is straightforward
from equation (3.62) and (3.65) to determine the rate of change of the plate
wavenumber with the frequency:

kB (φ)
∂kB
∂ω

=

(
kB,x cosφ

)2
+
(
kB,y sinφ

)2
2ω

. (3.66)
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3.7.1 Near-field and non-resonant contribution

The modal-average radiation efficiency computed from equation (3.59) con-
siders only sound radiated due to resonant modes. In order to increase the
model accuracy, Davy recently presented a method to include the near-field
contribution for point and line mechanical forces [23]. The radiation efficiency
of a simply-supported plate, excited by a point-force acting orthogonally to
its surface, is given by:

σ =


σr

(
1 + 1

rr

)
if ω < ωc;

σr if ω ≥ ωc.

(3.67)

The ratio rr, of the sound power radiated by resonant modes to the sound
power radiated by the vibrational near-field due to the point-force, can be
computed as:

rr =
πωcσr
4ωη

. (3.68)

While, if the plate is excited by a line-force acting orthogonally to the plate
surface, the ratio of the resonant field to the near-field is given by:

rr =
σr
√
ωc/ω

2η
. (3.69)

Moreover in the same paper, Davy introduced the possibility to take
into account the non-resonant radiation contribution for acoustically excited
plates. In this case, the transverse vibration consists of a freely propagating
resonant field and a forced non-resonant vibrational field. The ratio of the
sound power radiated by the two contributions is equal to the ratio r, given
in equation (3.68) for a mechanical point-force. The radiation efficiency of
the plate excited by an incident plane wave is computed as:

σ =


1

r + 1 (rσr + σnr) if ω < ωc;

σr if ω ≥ ωc.

(3.70)

Below the critical condition, the non-resonant radiation efficiency σnr (φ), for
a given angle incidence θ, has to be considered together with the resonant
contribution σr. Different models have been proposed to take into account
the diffraction effects due to the finite size of the structure, discussed in the
previous section. The radiation efficiency of finite size panels was investigated
by Sato [84] and Sewel [85], considering an oblique incident wave, and a
diffuse field excitation. More recently, Davy [21] derived an analytical
expression, based on two dimensional strip theory, approximating Sato’s
results. Villot et al. [86] developed a model to compute the finite size
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3.7. Average radiation efficiency model

radiation efficiency, based on wave approach, using the spatial windowing
technique. Considering a plane wave incident on the plate at an angle θ to
the normal, the non-resonant radiation efficiency σnr is computed as:

σnr (kt, φ) =
S

π2

∫ k0

0

∫ 2π

0

{
1− cos [(kr cosϕ− kt cosφ)Lx]

[(kr cosϕ− kt cosφ)Lx]2

1− cos
[
(kr sinϕ− kt sinφ)Ly

][
(kr sinϕ− kt sinφ)Ly

]2 k0kr√
k2

0 − k2
r

dϕdkr.

(3.71)

The trace wavenumber kt is related to the plane wave incident angle θ accord-
ing to the relationships: kt = k0 sin θ; kr is the modulus of the wavenumber
spectrum in of the structural vibration velocity, the angle ϕ indicates the
propagation direction as polar coordinate in the wavenumber space. A
simplified version of this formulation was proposed by Vigran [87], but it’s
limited to isotropic plates with a low aspect ratio. An alternative, and more
general model to account for the finite dimension of the excited structure,
was proposed by Rhazi and Atalla, based on Rayleigh integral formulation
[88]. The radiation efficiency is computed from the real part of the radiation
impedance, normalised for the plate surface, as:

σnr (kt, φ) = k0
Ly
4π

∫ π/2

0
rG (%) d%. (3.72)

The function G of the variable (%), obtained in the paper after a few changes
of variables, can be solved analytically:

G (%) =
1

4
[G (%, α1) + G (%, α2) + G (%, α3) + G (%, α4)] . (3.73)

The functions G can be computed as:

G (%, αi) = sin (αiRθ)

[
− 2

α2
i

(
Lx
Ly

sin %+ cos %

)
+

2Lx

α2
iLy

Rθ cos % sin %

]

+ cos (αiRθ)

[
− 4

αi
+ 2

Rθ
αi

(
Lx
Ly

sin %+ cos %

)
+
Lx
Ly

cos % sin %

(
2

α3
i

−
R2
θ

αi

)]

− 2

α3
i

Lx
Ly

cos % sin %+
4

αi
,

(3.74)

where the variables αi are defined as:

α1,2 =
Lx
2

[k0 ± kt cos (%− φ)] ; α3,4 =
Lx
2

[k0 ± kt cos (%+ φ)] ;. (3.75)

39



3.8. Conclusion

and Rθ is defined as a function of incidence angle θ and the plate aspect ratio
as:

Rθ =


2

cos θ
if θ ≤ arctan

(
Ly
Lx

)
;

Ly
Lx

2
sin θ

if θ ≤ arctan

(
Ly
Lx

)
.

(3.76)

A simplified version of such a model was presented by Bonfiglio et al.
[89], by introducing an additional change of variable. This formulation is
computationally more efficient but its applicability is restricted to isotropic
panels with low aspect ratio. Based on Rhazi and Atalla approach, also
Davy et al. [23] proposed approximate formulation for the forced radiation
impedance, assuming it to be independent from the azimuthal angle. The non-
resonant radiation efficiency evaluated using either equation (3.71), or (3.72),
is dependent upon the azimuthal propagation angle φ, thus, the structural
averaged radiation efficiency can be computed by a further integration over
0 < φ < 2π. It should be mentioned that the ratio rr between the resonant and
the near-field, or the non-resonant field, as defined by equations (3.68) and
(3.69), was developed only for homogeneous isotropic plates [90], therefore this
correction cannot be extended to orthotropic elements. However, acoustically
excited structures are usually investigated in terms of sound transmission
rather than sound radiation. Since the non-resonant radiation efficiency does
not depend on the properties of the plate, but only on its geometry [91], it is
helpful to consider the diffraction effect in sound transmission models based
on wave propagation in infinitely extended element, as illustrated later on in
Chapter 5.

3.8 Conclusion

In this Chapter different approaches to model the radiation efficiency of an
orthotropic thin plate have been presented. An analytic model has been
developed from the plate’s equation of motion, derived using Hamilton’s
variational principle. This approach allows to compute the sound power
radiated by each single mode, either resonant or non-resonant. The plate
dynamic response can be computed both for a mechanical exciting force, or
for an incidence sound field. Further, it is possible to take into account the
influence of the fluid loading on the plate response. This effect is almost
negligible when the density of the fluid is much lower than the density of
the structure. In this case the radiation impedance can be approximated by
the self-radiation resistance, reducing significantly the computational cost
of the algorithm. A model based on the modal summation approach has
been introduced as basis for comparison, since it was already successfully
applied to orthotropic panels. This model computes the plate response,
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and the sound power radiated, averaging over all the possible position of a
mechanical point force, to reduce the influence of the fluid loading. When
the plate response is characterised by an high modal density, within the
investigated frequency range, the radiation efficiency can be computed from
a modal-average approach. Each mode is considered only at its resonance,
therefore this model is usually applied to investigate the radiation efficiency
of structures mechanically excited by a broadband force, since in this case
the multi-mode response is governed by the resonant field. Although an
approach to take into account the near-filed contribution in mechanically
excited plates, or the non-resonant response when the structure is excited by a
sound field, is available, it has been developed only for homogeneous isotropic
plates, thus it does not apply to orthotropic elements. Nevertheless, the
geometric radiation efficiency, associated with non-resonant sound radiation,
is dependent only on the plate dimension and it can be used to increase the
accuracy of sound transmission models, as it will be discussed in the following
of this dissertation. In Table 3.1 the suitability of the different approaches
to evaluate the sound radiated from isotropic or orthotropic plates under
different condition is summarised.
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Table 3.1: Summary of the different models to compute sound radiation of
isotropic and orthotropic plates

Isotropic Plates Orthotropic Plates

Modal-Average approach Modal-average radiation efficiency of reso-
nant modes (high-modal density)

Modal-Average +
near-field correction

Modal-average
radiation efficiency
of mechanically
excited
plates

-

Modal-Average +
non-resonant correction

Modal-average radi-
ation efficiency of
acoustically excited
plates

-

Modal Approach Sound radiation of plates excited by ex-
ternal forces of different nature, immersed
in a lightweight fluid (fluid loading is ne-
glected)

Analytical Approach Sound radiation of plates excited by exter-
nal forces of different nature immersed in
a lightweight or heavy fluid (fluid loading
and modal cross-coupling are taken into
account)
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Chapter 4

Sound radiation efficiency of
CLT plates

4.1 Introduction

In this Chapter the experimental evaluation of the radiation efficiency of
cross-laminate timber plates is investigated. Cross-laminated timber, often
abbreviated to the acronym CLT, is an innovative engineered solid wood
material consisting of an odd number of layers of lumber beams glued together,
alternating perpendicularly the wood fibres orientation of neighboring plies:
0◦ − 90◦. The outer layers fibres are oriented vertically in order to increase
the vertical load-bearing capacity of wall panels. CLT elements can be made
of different lumber species, such as pine-wood, spruce, or larch. Building
panels are generally fabricated with three, five, or seven layers, according
to the static requirements, with a total thickness up to 500 mm. According
to the standard EN 16351 [92] the thickness of each layer should be within
the range 4− 65 mm. An exhaustive review of all the different aspects that
concern CLT, from manifucture to building design, can be found in [93].
This relatively new engineered wood material has gained a growing success
in construction market over the last two decades, especially in Europe and
North America. CLT plates provide good structural stability, fulfil the safety
requirements and allow to reduce the construction time, since they can be
completely prefabricated and then rapidly assembled at the construction
site. Nowadays, CLT represents a valuable alternative to traditional building
materials like concrete, masonry and steel.

However CLT structures, due to their high stiffness combined with their
low density, provide a poor sound insulation. To enhance their performance
and meet the acoustic requirements for buildings, it is necessary to design
and optimise specific treatments, such as additional layers applied to the
walls [94], like gypsum board linings on a cavity, or a concrete floating screed
over the CLT floor [95]. Due to the layered structure CLT plates exhibit
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an orthotropic behaviour [96], having different elastic properties along the
vertical and the horizontal direction. For this reason, in section 4.5, the
experimental radiation efficiency is used to validate the different prediction
models presented in the previous Chapter.

Although the laboratory experimental evaluation of the radiation effi-
ciency has been presented in several papers, mainly to validate prediction
model results, and a few attempts to perform in-situ measurements have
also been made [97], at the moment there are no standard procedures to
measure this important acoustic descriptor. It should be noted that the
radiation efficiency is not directly measurable but needs to be experimentally
determined through other quantities: namely the total radiated sound power
and the mean square vibration velocity. In the next section two different
approaches used to determine the radiation efficiency of three different CLT
plates will be introduced and discussed. In section 4.3 the average radiation
efficiencies of three cross laminated timber plates are compared, to highlight
how the ratio of the layers’ thickness influences their vibro-acoustic behaviour.
The two different methods used to compute the radiated sound power are
compared. Finally, a parametric study on the same set of experimental
data set is performed, to better understand how the mean square vibration
velocity is influenced by the number of measured points and their distribution
on the plate surface.

An easily implementable non-destructive procedure developed to evaluate
the elastic and stiffness properties of specific orthotropic building elements
is presented, and applied to a CLT plate. The literature offers a variety of
different approches to experimentally investigate the mechanical properties
of solid wood through non destructive tests [98]. Many of them are modal
analysis-based methods [99, 100], or involve ultrasound measurements [101,
102]. The experimental approch presented here is based on wave propagation
analysis within the audible frequency range. The flexural wave velocity can
be directly evaluated measuring the time-of-flight difference between two
adjoining transducers in line with the excitation source, a technique derived
from ultrasound measurements [103] and also applied for the characterization
of poroelastic materials [104]. Alternatively, the flexural wavenumber can
be determined by measuring the phase difference between two consecutive
accelerometers, as proposed by Rindel [105] for low frequency measurements.
This approach has also been applied by Nightingale [106] to study a wooden
joist floor, implementing a slightly different setup in order to investigate
higher frequencies. A method to measure the flexural wave velocity, based
on phase difference of the frequency response function (FRF) [107], was also
applied by Thwaites to detect damages in sandwich structures other than to
determine the material elastic properties [108]. While these approaches use
continuous wave random noise excitation, or impact impulses, the method
to be described here involves short pulse excitation. Pulse excitation usually
requires more effort during the measurement stage, since a longer time
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Table 4.1: CLT plates geometry and density

CLT80 a CLT80 b CLT100

Lx [m] 4.20 4.20 4.20
Ly [m] 2.90 2.90 2.90
htot [mm] 80 80 100
hout.l. [mm] 15 30 30
hint.l. [mm] 50 20 40
ρ

[
kgm−3

]
467 484 484

is needed to investigate a wide frequency range, compared to broadband
excitation. On the other hand, it allows to obtain accurate results with a
much easier signal processing. The novelty aspect of the proposed method is
represented by an analytical data fitting of the experimental flexural wave
velocity in order to diminish the number of single frequencies to be tested
within the investigated band, reducing significantly the measurement time.
Besides, the fitting procedure also limits the influence of the scatter in the
experimental data, especially at high frequency.

4.2 Experimental measurements

4.2.1 Studied structures

The investigated three-ply CLT plates are 4.2 m wide and 2.9 m high, their
characteristics are reported in Table 4.1, and their cross section along the
two principle directions is shown in Figure 4.1. All three panels were
tested in Empa1’s wall sound insulation test facility as shown in Figure 4.2.
The source and the receiving rooms have a volume of 73 m3 and 101 m3

respectively. Each plate was mounted into a rigid frame between the two
test rooms, and fixed using a sealant putty along the edges on both sides,
as shown Figure 4.3. Vibro-acoustic measurements were performed in the
frequency range from 1 Hz to 6000 Hz in order to evaluate the plate radiation
efficiency. The surface vibration velocity was measured, using a Polytec
PSV-500 scanning laser vibrometer, on a grid with 513 evenly distributed
points, approximately spaced 160 millimetres apart. The sound pressure
transmitted in the receiving room was measured by a B&K rotating boom
microphone. The plates were excited subsequently at two different positions
using a B&K electrodynamic shake, and acoustically by an omnidirectional

1Empa - Swiss Federal Laboratories for Material Science and Technology - Laboratory
for Acoustics/Noise Control; Dübendorf (Switzerland)
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x-wise cross section

CLT100CLT80_bCLT80_a

y-wise cross section

Figure 4.1: Cross section along the two principle directions of the three
investigated CLT plates.

dodecahedron source. All sources were driven by a broadband white noise
signal. The shaker was connected to the plate by a stinger screwed in the
wood. Additionally, the reverberation time of the source and the receiving
room was experimentally determined, evaluating the decay curves using the
impulse response method and a MLS-signal according to the standard ISO
3382-2 [109]. The radiation efficiency needs to be experimentally determined
from other quantities according to equation (3.46).

4.2.2 Radiated sound power

The sound power radiated by a vibrating surface is not directly measurable,
but it can be experimentally determined by using different approaches. For
example it can be evaluated from the average sound pressure measured
in a reverberant room; by scanning the vibrating surface using a sound
intensity probe, consisting of two microphones; further the radiated sound
field can be determined by measuring the sound pressure, or particle velocity,
with an array of transducers, by means of a technique known as near-field
acoustic holography. Moreover, the radiated sound power can be evaluated
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y

x

source room

receiving room

tested plate

Figure 4.2: Experimental set-up diagram: CLT plate mounted into the sound
insulation test facility.

from the surface vibration velocity applying hybrid methods, which use
both experimental data and analytic calculation. The sound power radiated
from each CLT plate was determined both from the measured diffuse sound
pressure field, and from the surface vibration velocity using the hybrid
discrete calculation method.

Diffuse field approach

Assuming a perfectly diffuse sound field, the radiated sound power is de-
termined from the sound pressure measured in the center of the room and
the equivalent absorption area of the receiving room. The sound pressure
level measured in the central area of the testing room is lower than the mean
sound pressure of the entire volume, because in the spatial sampling the
boundary regions, where the pressure is higher, are neglected. This effect
becomes smaller at high frequencies due to the decrease of the size of the near
field at the boundaries. To consider this effect the Waterhouse correction has
been applied [56] and the radiated power was calculated using the equation:

Wrad =

〈
p2
〉
s,t

4ρ0c0
A

(
1 +

STλ

8V

)
(4.1)

where λ is the sound wavelength, ST is the total surface area of the receiving
room, and the equivalent absorption area A is calculated from the measured
reverberation time T20 and the room volume V , using the well known Sabine’s
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rigid frame

sealant putty

≈ 2 cm thick

CLT platea)

b)

c)

Figure 4.3: Mounting condition of the investigated CLT plates

relationship.

A = 24 ln (10)
V

c0T20
(4.2)

This method requires a test facility provided with the test window coupled
with a revereberation room to be implemented. The main limit of this
approach is the diffuse field assumption, which, in wall sound insulation
laboratories designed according to the standard ISO 10140-5 [110], is hardly
achieved below 100 Hz.

Discrete calculation method

The radiated sound power was also evaluated by using the discrete calculation
method (DCM), a hybrid method, proposed by Hashimoto [111], that requires
both numerical calculations and the experimental measurements of the
complex vibration velocity, over a grid of points on the plate surface, but
does not involve sound pressure measurements.

Wrad =
∑
i

Re (Zii) |vi|2 +
∑
j

Re
(
Zijviv

∗
j

) (4.3)

The plate surface has to be discretised in small piston-like source elements.
The radiated power is determined from the measured complex vibration
velocity vi,j , and from the self Zii and cross radiation impedance Zij of each
small piston source, computed as:

Zii = ρ0c0si

[
1− J1 (2k0ai)

k0ai
+ i

S1 (2k0ai)

k0ai

]
; (4.4)

Zij =
ρ0c0k

2
0sisj

2π

[
2
J1 (k0ai)

k0ai

][
2
J1
(
k0aj

)
k0aj

](
sin k0d

k0d
+ i

cos k0d

k0d

)
; (4.5)
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where J1 is the first order Bessel’s function and S1 is the Struve’s function,
si is the area of the ith element, while ai is its equivalent radius and d is
the distance between the ith and jth elements. For a complete and more
detailed description of this method refer to the original paper presented by
Hashimoto.

This approach assumes that the plate radiates sound into a free field, thus
the influence of the room is neglected. Since the method does not require
the measurement of the sound pressure in a perfectly diffuse field, it can be
easily applied at low frequencies. However, the number of plate subdivisions
will determine the upper frequency limit. The same set of experimental
data was used to evaluate the radiated power and the plate complex velocity
on a coarser grid, by considering only 140 of the 513 measured points, in
order to investigate two distinct aspects: (i) the effect of the larger size of
the piston-like elements, determining a lower upper frequency limit for the
radiated power computation; (ii) the influence of the number of measurement
positions over which the vibration velocity is spatially averaged.

4.2.3 Average vibration velocity

The surface vibration velocity of the three CLT plates was averaged over
513 positions, evenly distributed on grid with a spacing of approximately
160 mm. Vibration velocity measurements on building elements are usually
very time consuming, due to the big size of the structures. Nevertheless, by
using a scanning laser vibrometer it is possible to map the surface vibration
velocity on a narrow grid in a relatively short time, compared to time that
would be necessary by using accelerometers. The alternative is represented
by averaging the vibration velocity over a random distribution of transducer
positions. In order to investigate the influence of spacing between grid points,
or the number of positions in a random distribution, a parametric analysis
was undertaken on the same set of experimental data. The vibration velocity
was thus averaged over the entire set of data of 513 points, Figure 4.4 a), and
over a grid of only 140 positions, spaced approximately 320 mm Figure 4.4 b).
Furthermore, since accelerometers are more commonly used than scanning
laser vibrometer, a random distribution of the measured points was considered.
In order to analyse the influence of the number of transducers and their
spatial distribution, the mean square velocity was determined by averaging
a different number of positions that were randomly chosen as shown in
Figure 4.4 c). Random measurement points were chosen over the plate
surface according to the requirements given in in the standard EN 10848-
1 [112]. The random positions are chosen with respect to the following
minimum distances:

• 0.25 m between the measurement points and the plate borders;

• 1.00 m between the excitation point (when a mechanical point source
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Figure 4.4: Measurement points distributions: a) grid of 513 points; b) grid
of 140 points; d) 27 random points fulfilling EN 10848 requirements; d) grid
425 points excluding boundary regions.

is used) and the measurement points;

• 0.50 m between distinct measurement positions.

However, the grid spacing is not the only factor that influences the average
velocity, but the distance from the plate borders of the closest measurement
position can also be significant on its spectrum. In order to investigate this
influence, three different grids of points, neglecting a progressively wider area
close to the plate’s boundaries, as shown in Figure 4.4 d), were analysed: i)
a region approximately 85 mm wide, associated with the most external ring
of measurement points, is not considered and the velocity is averaged over
425 positions; ii) a region approximately 255 mm wide, associated with two
rings of measurement points, is not considered and the velocity is averaged
over 345 positions; iii) a region approximately 422 mm wide, associated with
the three orders of measurement points is not considered and the velocity is
averaged over 273 positions.

4.3 Experimental results

4.3.1 CLT plates’ radiation efficiency

For each plate the radiation efficiency has been calculated, both for structure-
borne and airborne excitation, by averaging the results obtained from the
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Figure 4.5: Experimental radiation index of the three CLT plates for me-
chanical excitation. Results presented in one-third octave bands.

DCM and the classical diffuse field method. In Figure 4.5 the radiation
index Lσ = 10 log (σ) of the three plates, averaged over the two shaker
positions, is compared. The plates CLT80 a and CLT100 show a similar
radiation index; their critical frequency falls within the band centred around
500 Hz. Since the structural flexural wave at a given frequency propagates
with different velocity along the two principal directions, orthotropic plates
are characterised by two significant coincidence frequencies. The lowest
coincidence is associated with the stiffest principal direction and in CLT
plates it is related to the vertical orientation of the fibres of the outer layers.
The first coincidence is identified below the critical condition by a peak from
where the radiation efficiency curve slope changes, falling within the 100 Hz
band for the plate CLT80 a and in the 200 Hz band for the plate CLT100.
The plate CLT80 b exhibits a different behaviour: the radiation curve is
shifted towards higher frequencies. The lowest coincidence falls in the 250

Hz frequency band, while the coincidence associated with the orthogonal
direction, which also represents the plate critical condition, falls within the
1000 Hz band, and it is marked by a softer peak. These results suggest
that the differences in sound radiation are mostly due to the CLT plate’s
inner structures, since the panels CLT80 a and CLT80 b even though have a
comparable surface mass exhibit a different radiation efficiency. Moreover,
even though the mass per unit of area of the plate CLT100 is approximately
30% greater than the surface mass of the plate CLT80 b, these structures
exhibit a similar radiation behaviour, with the critical frequency falling in
the same band. A different ratio between the thickness of outer layers and
inner core have a significant influence on the stiffness of the plate.
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Figure 4.6: Experimental radiation index of the three CLT plates excited by
a diffuse sound field. Results presented in one-third octave bands.

When an airborne sound source is used, below the critical condition,
all the three plates behave in a similar way, as shown in Figure 4.6. This
is due to the great influence of non-resonant modes when the structure is
excited by a diffuse sound field, as discussed in Chapter 3. Below the critical
frequency the radiation is thus governed by the forced non-resonant field,
and since this depends only on the panel dimension, no significant differences
are found between the three plates. For none of the investigated panels it
is possible to identify the first coincidence frequency. However, the critical
frequency of the three elements is still recognisable, falling within the 500

Hz band for the plate CLT80 a and CLT100, and within the 1000 Hz band
for the plate CLT80 b. It has been found that below 100 Hz, the airborne
excitation sound energy was not sufficient to have a good signal to noise
ratio to correctly determine the plates’ radiation efficiency, for neither the
velocity, nor the sound pressure measurements. To highlight the differences
due to the exciting source, the experimental radiation index of the plate
CLT80 b is given in Figure 4.7 both for the mechanical force and the diffuse
field excitation.

4.3.2 Comparison between diffuse field approach and DCM

In this paragraph the DCM and the classical method, used to evaluate
the radiation efficiency, are compared. The comparison is undertaken by
presenting results referring to the plate CLT80 b mechanically excited. The
radiation indices given in Figure 4.8 show a good agreement between the two
methods, although, the discrete calculation method tends to overestimate
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Figure 4.7: Comparison between the experimental radiation indices for
mechanical excitation and airborne excitation. The results, in one-third
octave bands, refer to the plate CLT80 b mechanically excited.

the radiation efficiency compared to the diffuse filed approach. The biggest
difference occurs in the 400 Hz band, where a radiation index about 3 dB
higher was obtained from the DCM. In the remaining frequency bands the
difference is less than 2 dB: ±1 dB around the average.

The main limit of the classical approach is the perfectly diffuse field as-
sumption. In standard sound insulation test facilities this is hardly achivable
in the lowest frequency bands, and never verified below 100 Hz [113]. Thus
the experimental evaluation of the radiation efficiency cannot be extended
to the low frequencies. According to Hashimoto [111], in order to obtain
accurate results using DCM, it is necessary that the piston-source elements
dimensions are smaller than the half wavelength at the critical frequency of
the vibrating plate. The critical frequency of the plate CLT80 b falls within
the 1000 Hz band. The corresponding half wavelength, λc ≈ 0.34 m, is larger
than the average grid spacing, approximately equal to 0.16 m. When a 140
points grid is considered, the average size of the sub-elements is about 0.32

m, close to the wavelength at the coincidence frequency. In Figure 4.9 the
radiation indexes computed using the two different grids are compared in
one-third octave bands. The two curves show a similar trend, but small
differences are shown. This indicates that when the spacing between elements
equals the structural wavelength, the discretisation of the velocity field is
not sufficient and information about the real vibration between points is
missing. The velocity of the pistons and thus the radiated sound will appear
as uncorrelated in the DCM calculation, as it is also the case above the
coincidence frequency of the plate. For the coarser grid of 140 points, this
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Figure 4.8: Comparison between the experimental radiation indices obtained
from the Diffuse field approach and the DCM. The results, in one-third
octave bands, refer to the plate CLT80 b mechanically excited.

limit lays around the coincidence frequency of plate and thus the distinct
peak at 1000 Hz is less pronounced compared to the curve obtained with
the finer grid. However, also at lower frequencies starting from the 250 Hz
frequency band, some discrepancies between the two curves are found. It
should be noted that the wider grid average spacing is close to one-quarter of
the wavelength at 250 Hz. In many calculation methods in which an element
is discretised in smaller sub-elements the one-quarter wavelength is correlated
with a frequency limit. This aspect might influence DCM computation of
self and mutual sound power and should be further investigated.

4.3.3 Average vibration velocity

The discrepancies in the radiation efficiency obtained from the DCM with
different grids might be caused not only by the sound power computation,
but also by the measured mean square velocity. In order to investigate the
influence of the grid spacing, and of the number of measured positions, mean
square velocities averaged over a different number of points are compared.
The vibration velocities averaged over all the 513 points and only over 140

points, given in Figure 4.10, show a very similar trend. The mean square
velocity curves are in good agreement, with only small discrepancies: the
larger difference is about 1.2 dB around the 1250 Hz band. On the other hand,
a significant influence on the average velocity spectrum is found in the low
frequency range, neglecting the regions closed to the plate boundaries. As
shown in Figure 4.11, as the size of the excluded regions increases, the velocity
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Figure 4.9: Comparison between the radiation efficiency from DCM consid-
ering a 513 measurement points grid or a 140 measurement points grid. The
results, in one-third octave bands, refer to the plate CLT80 b mechanically
excited.

levels in the low frequency bands increase, and the dip in the 150 Hz band is
more emphasised. This effect, caused by the restraints along the edges given
by the mounting conditions, is the inverse analogous to the Waterhouse effect,
mentioned in the previous section. In fact at low frequencies, higher velocity
levels are measured if the boundaries regions are neglected. This is verified
up to the band centred on 80 Hz, from which the velocity levels measured
only the central region of the plates are lower than the level averaged over the
entire scanned surface. Above the 500 HZ no relevant differences are found
between the velocity spectra. Since the extension of those border regions is
small compared to the plate size, the influence on the average velocity is not
very accentuated, however it could be much more emphasised in a smaller
plate using a similar grid spacing.

So far only small biases in the plate mean square velocity were obtained,
as long as a great number of positions are measured on a grid distribution.
But when accelerometers are used to sample the plate vibration velocity, it
would be extremely time consuming to obtain a sufficiently dense grid, and
therefore a random distribution of fewer points, that gives a good average
of the real mean square velocity, is preferred. To understand the influence
of the number of measured points, the velocity averaged over 200, 100, 50,
25, 20 and 10 positions, randomly chosen on the plate surface, are compared
in Figure 4.12. The velocity level spectra are scattered around the curve
computed from the complete set of points, with a more accentuated deviation
as the frequency increases, although, it is not clear whether a low spatial
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Figure 4.10: Comparison between the surface mean square velocity averaged
over 513 measurement points and over 140 measurement points. The results,
in one-third octave bands, refer to the plate CLT80 b mechanically excited.

sampling gives an overestimation or an underestimation of the mean square
velocity. For a better understanding, the same results are also given in terms
of the overall level difference with the mean square velocity averaged over
all the 513 points, in Figure 4.13. The overall single number is computed by
taking the energetic sum of all the third-octave bands. This comparison shows
that, for a plate of this size, at least 100 measurement points are necessary
to reduce drastically the differences with the mean square velocity calculated
over 513 positions. In Figure 4.14 a last comparison is made between the
surface velocity, averaged over the entire set of 513 points, and averaged
over three random distribution of 25 positions, chosen according to the
requirements on minimum distances given in the standard EN 10848-1. For
the latter case, 25 positions represent the maximum number of transducers
that can fit the plate size fulfilling the standard requirements. The velocity
spectrum obtained from the different EN distributions always represents
an underestimation of the velocity averaged over a great number of points,
suggesting that a low sampling, combined with the exclusion of the surface
regions close to the discontinuities leads to a lower mean square velocity.
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Figure 4.11: Comparison between the mean square velocity averaged over
the entire surface (513 points grid) or over a reduced region excluding the
border region: grids of 425 points; 345 points; 273 points. The results, in
one-third octave bands, refer to plate CLT80 b mechanically excited.
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Figure 4.12: Comparison between the mean square velocity averaged over
(n) measurement positions randomly distributed on the panel surface. The
results, in one-third octave bands, refer to plate CLT80 b mechanically excited.
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Figure 4.13: Overall velocity level difference ∆LV between the level averaged
over the entire set of 513 points and the level averaged over (n) measurement
positions randomly distributed on the surface of the panel CLT80 b.
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Figure 4.14: Comparison between the mean square velocity averaged over a
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4.4 Mechanical characterisation of CLT plate

The dynamic behaviour of CLT plates is known to be orthotropic, therefore
the elastic parameters, and the stiffness properties, are direction dependent
[114, 96]. The wave velocity has to be evaluated for many angles over the plate
surface to analyse the propagation along different directions separately. The
aim of this work is to present a fast and non-destructive method to investigate
the elastic and stiffness properties of particular orthotropic elements using
wave propagation analysis. The stiffness properties expressed as structural
wavenumbers, have been used as input data to model sound radiation and
sound transmission of CLT plates. The flexural wave velocity was measured
on a three-ply cross-laminated timber plate for different propagation angles,
instead of cutting beams along those directions [115]. Consequently, due to
its non-destructive nature, the method can be applied either in-situ or in
laboratory. Only propagating wave are taken into account, neglecting the
reflection from the discontinuities. Therefore this method is not dependent
on the boundary conditions of the panel.

4.4.1 Experimental flexural wave analysis

The frequency-dependent velocity of a propagating flexural wave was ex-
perimentally determined for the plate CLT80 b. The propagating flexural
waves were induced into the plate by a B&K 4809 vibration exciter driven
by short sinusoidal pulses (2.5 cycles). The central frequency was varied
from 100 Hz to 3100 Hz at 40 Hz steps. The transverse acceleration was
measured by five PCB-353B15 accelerometers (10 mV/g) aligned with the
excitation point and equally spaced 10 centimetres apart, as sketched in
Figure 4.15. In order to avoid the influence of the vibrational near-field and
to consider only the propagating wave neglecting the evanescent component,
the closest accelerometer was placed 50 centimetres from the excitation point.
The signals were generated and acquired by a National Instruments data
acquisition system controlled with an in-house implemented software. Each
measurement was performed for 5 different angles, from 0 to π/2 radians,
to investigate the dependency of the wave velocity upon the propagation
direction.

To evaluate the flexural wave velocity each set of measured data was
analysed with two different methods. The wave velocity can be determined
by evaluating the phase difference between each pair of adjoining transducers.
In order to consider only the direct incoming wave the measured signals
must be windowed in the time domain, removing reflections from the edges.
However, the time window should be long enough allowing the propagating
wave to reach the furthest measurement point. It is appropriate to shrink
the time window as the frequency increases, since the length of the signal
reduces. The window size is thus determined for each investigated frequency
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Figure 4.15: Experimental setup for different propagation angles at steps of
∆φ = π/8. The first measurement position is placed at a minimum distance
l1 = 50 cm from the excitation point to avoid near field effects and the
accelerometers are equally spaced: ∆d = 10 cm.

as a function of the first positive peak, detected in the time domain, of
the incoming pulse. A clear description of the window size effects on the
measurements can be found in [116], where the phase difference method
was used to investigate the stiffness properties of building components. The
phase difference is evaluated between each pair of consecutive accelerometers,
by performing an FFT on the windowed signals. For each frequency the real
part of the bending wavenumber, hence the wave velocity, can be evaluated
by dividing the measured phase shift ∆ϕ by the spacing ∆d, and averaging
over the accelerometer positions:

Re {kB (ω)} =
1

np − 1

np−1∑
i=1

(
−

∆ϕi,i+1

∆di,i+1

)
(4.6)

Re {cB (ω)} =
ω

Re {kB (ω)}
(4.7)

where np indicates the number of accelerometers, in this case np = 5. In the
second method, the wave velocity is determined directly from the time of
flight difference between neighbouring accelerometers. The measured data
were first smoothed by applying a second order Savitzky-Golay polynomial
filter in order to have a better signal to noise ratio, then the time of arrival
of the first positive peak was determined for each acceleration signal. The
time of flight is evaluated as the difference between the arrival time of two
consecutive accelerometers: ∆ti,i+1 = ti+1 − ti. Assuming the dissipation
to be negligible for small distances, the real part of the wave velocity is
estimated by averaging over

(
np − 1

)
pairs of neighbouring accelerometers,

the ratio of the spacing between two transducers ∆di,i+1 to the related time
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Figure 4.16: Evaluation of the time of flight of a flexural wave between two
consecutive measurement positions: f = 3100 Hz – φ = π/2.

of flight:

Re {cB (ω)} =
1

np − 1

np−1∑
i=1

(
∆di,i+1

∆ti,i+1

)
(4.8)

An example of the determination of the time of flight difference between a
pair of consecutive transducers is given in Figure 4.16. Both methods assume
that all the reflections are removed from the signal by the time window
and that the imaginary part of the wave velocity is negligible. As it will be
clear from the experimental results presented in the next section, the phase
difference method is more reliable in the low-mid frequency range, while the
time of flight analysis is more appropriate at high frequencies. The spacing
between the transducers should be much smaller than the bending wavelength
to correctly evaluate the phase shift between the signals. In order to reduce
the dispersion of the experimental results in the entire frequency range, the
two data sets were combined using a cut-off frequency: fco = 1500 Hz. The
measured wave velocities were fitted to obtain continuous smooth curves
within the frequency range 50− 5000 Hz, using Mindlin’s dispersion relation
given in equation (2.26). A fitting algorithm implemented in Matlab R2014b,
based on non-linear regression nlinfit, returns the estimated coefficients, cL
and cS , for which the dispersion relation best fits the measured values. The
resulting coefficients of the fitting algorithm represent the plate longitudinal
and shear waves velocities, introduced in equations (2.1), and (2.2). From
the values of cL and cS it is possible to derive directly the elastic E (φ) and
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the shear G (φ) moduli for all the investigated propagation directions:

Eφi = ρc2L,φi

(
1− ν2

)
(4.9)

Gφi = ρc2S,φi (4.10)

Sometimes, for engineering applications, simplified approaches are pre-
ferred over the more sophisticated ones. Simplified theories do not rigorously
describe the structure dynamics, although they provide accurate approxi-
mated results in a relatively short computational time. Solving the equations
of motion for an orthotropic thick plate, under Mindlin’s assumptions, would
require a great effort and the knowledge of much more input data as described
in Ref. [117], therefore sound prediction models for CLT plates have been
derived under the simplified thin plate theory. To compensate for the fact
that the effects of rotational inertia and the shear deformation are neglected,
the structure needs to be described by using frequency dependent properties,
that can be derived from the experimental wave velocity measured along the
principal directions [96]. The apparent frequency-dependent elastic proper-
ties along the principal directions Ex and Ey can be easily estimated from
the thin plate dispersion relation given in equation (2.10) as:

Ex =
12ρc4exp,x

(
1− ν2

)
h2ω2

Ey =
12ρc4exp,y

(
1− ν2

)
h2ω2

(4.11)

To account for the orthotropic behaviour of the CLT plate the elliptic model
introduced in section 3.7 is adopted, assuming the bending wavenumbers
along the principal directions to be independent. At any propagation angle φ,
the bending wavenumbers are derived from the experimental wavenumbers,
measured along the x-direction (φ = 0) and the y-direction (φ = π/2), as
given in equation (3.62). The direction-dependent bending stiffness can be
approximated by using equation (3.65).

4.4.2 Experimental results

The apparent parameters derived from the fitted wave velocity using the
simplified thin plate dispersion relation are frequency dependent, as found in
other studies when simplified assumptions are applied over more sophisticated
theories for thick or composite plates [118, 57]. The frequency dependency
of the apparent elastic modulus, or the apparent bending stiffness, takes
into account that the plate dynamics at high frequency is mostly governed
by the shear deformation, which is neglected in the classical plate theory.
The apparent elastic moduli along the principal directions are plotted in
Figure 4.17. The frequency dependent properties are compared to the
elastic constant derived from the longitudinal wave velocity cL resulting
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Figure 4.17: Comparison between the frequency dependent elastic properties
of an equivalent thin orthotropic plate and the elastic constants derived using
Mindlin’s thick plate theory, associated with the principal directions.

Table 4.2: CLT’s elastic constants for different propagation angles

φ [rad] 0 π/8 π/4 3π/8 π/2

E [Pa] 7.34e+08 9.68e+ 08 1.66e+ 09 3.80e+ 09 1.08e+ 10

G [Pa] 2.40e+ 08 4.84e+ 08 2.52e+ 08 4.96e+ 08 5.72e+ 08

from the fitting algorithm. The elastic and the shear moduli experimentally
determined for different directions are reported in Table 4.2. The elastic
modulus and the shear moduli along the x−axis, φ = 0, have a comparable
order of magnitude, while along the y−axis, φ = π/2 the shear modulus
is almost two orders of magnitude lower than the elastic modulus. For this
reason, the equivalent elastic properties along this direction, as the frequency
increases, exhibit a more emphasised reduction than in the opposite direction,
and the same is obviously valid for the apparent bending stiffness. These
findings agree very well with the results from a recent study performed on
cross-laminated timber beams using a modal analysis approach [119, 96].

To demonstrate the suitability of this approach for the investigated
CLT plate, the theoretical bending wavenumbers obtained using the elliptic
model were compared with the experimental values, for different propagation
angles at various frequencies. The comparison between experimental and
numerical data in wavenumber space, given in Figure 4.18, proves that
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Figure 4.18: Elliptic model: comparison between the elliptic and the experi-
mental wavenumbers, determined for the angles: π/8, π/4 and 3π/8; at the
frequencies: 100 Hz; 200 Hz, 500 Hz, 1000 Hz, 2000 Hz and 3000 Hz.

the elliptic model is a reliable approximation to describe the orthotropic
behaviour, showing a remarkably good agreement up to 1000 Hz. At higher
frequencies the experimental wavenumbers slightly deviate from the predicted
ellipse, consistent with the results of the analysis of wood material properties
presented in Ref. [120]. Above 1000 Hz, the measured wavenumber along the
φ = π/4 direction is larger than the estimated value, whereas for φ = π/8 the
experimental wavenumbers is smaller than the numerical one. In other words,
at high frequencies the elliptic model tends to overestimate the wave velocity
propagating at φ = π/4 while it underestimates the wave velocity along the
direction φ = π/8. However, it should be noted that in the high frequency
range the standard deviation of the measured velocity is significantly higher
and of the same order of magnitude as the difference between the experimental
and estimated wavenumbers. A similar comparison, with consistent results,
is presented in Figure 4.19. The apparent bending stiffness, derived in
equation (3.65), is compared with the values directly computed from the
experimental wavenumber, for different angles and at different frequencies.
The frequency and direction dependent apparent bending stiffness of the
orthotropic cross-laminated timber plate is presented in Figure 4.20. A
comparison is made between the approximated stiffness, function of the
bending wavenumbers elliptically interpolated, and the orthotropic stiffness
computed using equation (3.64). In the latter case to determine the effective
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Figure 4.19: Elliptic model: comparison between the elliptic and the experi-
mental bending stiffness, determined for the angles: π/8, π/4 and 3π/8; at
the frequencies: 100 Hz; 200 Hz, 500 Hz, 1000 Hz, 2000 Hz and 3000 Hz.

torsional stiffness B the in-plane shear modulus was approximated as a
function of the elastic moduli associated with the principle directions, as
given in equation (A.7). The main difference is found in the bending stiffness
decay associated with the transition between the two principle directions. The
approximated bending stiffness exhibit a steeper reduction as the propagation
angle approaches φ = 0, resulting, for the intermediate directions, lower than
the orthotropic bending stiffness computed from equation (3.64), which
exhibit a softer decay.

Finally the flexural wave velocity measured along five propagation direc-
tions are presented. The propagation angles were investigated from φ = 0

to φ = π/2 at steps of π/8 radians. The velocity obtained from the phase
difference methods or by evaluating the time of flight difference are compared
in the left side graphs, named a). The experimental data set, derived from the
combination of these results by using a cut off frequency fco = 1500 Hz, were
fitted using Mindlin’s wave dispersion relation, given in equation (2.26), and
are plotted in the right-hand side graphs named b), together with the shear
wave velocity κcS . The fitted curves agree very well with the experimental
data, as shown in Figure 4.21-4.25. Moreover the fitting method proved to
be efficient, since the final results are independent from the used initial guess
value, even if the frequency step in the measured data vector is increased
from 40 Hz to 160 Hz, as shown in Figure 4.26.
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Figure 4.20: CLT plate bending stiffness frequency and direction dependent:
a) elliptic approximation using equation (3.65); b) thin plate orthotropic
bending stiffness computed using equations (3.64)
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Figure 4.21: a) – Experimental wave velocity determined with the phase
difference (phd) and the time of flight (tof ) methods. b) – Curve fitting
of the experimental wave velocity using Mindlin’s dispersion relation. The
shaded area represents the measured data standard deviation. Propagation
angle: φ = 0
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Figure 4.22: a) – Experimental wave velocity determined with the phase
difference (phd) and the time of flight (tof ) methods. b) – Curve fitting
of the experimental wave velocity using Mindlin’s dispersion relation. The
shaded area represents the measured data standard deviation. Propagation
angle: φ = π/8
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Figure 4.23: a) – Experimental wave velocity determined with the phase
difference (phd) and the time of flight (tof ) methods. b) – Curve fitting
of the experimental wave velocity using Mindlin’s dispersion relation. The
shaded area represents the measured data standard deviation. Propagation
angle: φ = π/4
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Figure 4.24: a) – Experimental wave velocity determined with the phase
difference (phd) and the time of flight (tof ) methods. b) – Curve fitting
of the experimental wave velocity using Mindlin’s dispersion relation. The
shaded area represents the measured data standard deviation. Propagation
angle: φ = 3π/8
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Figure 4.25: a) – Experimental wave velocity determined with the phase
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4.5 Validation of sound radiation models

The validation of the prediction models presented in Chapter 3 has been
performed in two steps. A preliminary code verification was performed by
comparing the results presented in the acknowledged papers with the data
obtained from the models implemented for orthotropic plates. In particular,
the code of the analytical model, described in section 3.4, was verified by
computing the radiation efficiency of a steel plate, presented by Foin et
al. in Figure 2 of reference [17], either considering the fluid loading effect,
or by approximating the radiation impedance matrix Zmnpq with the self
radiation resistance Rmn. As shown in Figure 4.27, the radiation efficiency
obtained calculating the radiation impedance matrix agrees very well with the
curve presented in Ref. [17], except for minor discrepancies due to different
frequency vectors used for the computation. The approximated radiation
efficiency is reported as well, in order to show the influence of the fluid
loading effect on a lightweight steel plate surrounded by the air. In order to
verify the code based on the modal summation approach, described in section
3.5.2, the radiation efficiency of a rectangular aluminium plate was computed
and compared with the results presented by Xie et al. in Figure 3 of Ref.
[19]. The average radiation efficiency, shown in Figure 4.28 together with
the modal radiation efficiency, mathces very well with the results obtained
by Xie et al. in Ref. [19]. These models, which are specifically developed
for orthotropic plates, can be applied to isotropic materials by setting equal
stiffness properties along the two principle directions. A preliminary code
checking of the modal-average model was performed by computing the
radiation efficiency of a thin carbon laminate plate. The result, given in
Figure 4.29, are in good agreement with the radiation efficiency presented
for a simply supported plate, by Anderson and Bratos-Anderson in Figure
10 of Ref. [30].

The second validation step concerned the applicability of these models to
orthotropic building structures, such as CLT plates. The validation process
has been undertaken by comparing the predicted radiation efficiency with
the experimental data measured on the plate CLT80 b. The plate’s stiffness
properties, necessary as input data, were experimentally determined by
means of a procedure based on structural wave analysis, as described in
section 4.4.1. The measured wavenumbers kx and ky are given in Table
4.3, together with plate loss factor η. The plate damping can be taken into
account using complex input data [121], such as elastic modulus, or bending
stiffness, or bending wavenumber, given by:

E∗ = E (1 + iη) ; (4.12)

D∗ = D (1 + iη) ; (4.13)

k∗B =
4

√
k4
B

(1− iη)
. (4.14)
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Figure 4.27: Comparison between the radiation index of a baffled steel plate
obtained from the proposed code, either considering Lσ,Zmnpq or neglecting
Lσ,Rmn the fluid loading effect, and the results presented in Figure 2 of Ref.
[17] Lσ,Foin.

The loss factor η of the CLT plate was determined using the power injection
method from point input force and acceleration, measured with an impedance
head attached to the shaker stinger, as described in [122, 123, 124]. This
method was derived from SEA power balance equations, and its accuracy
has been proved in several papers [125, 126, 127], in which it was compared
to other methods to determine the structural damping, such as the decay
response method, or the half-power bandwidth method.

The analytical model is validated by comparing the numerical results
with the radiation efficiency measured on the plate CLT80 a for two distinct
excitation positions: S1 = (0.5, 0.8) and S2 = (3.6, 0.9). In Figure 4.30 the
numerical and experimental results related to the source position S1 are
compared in one-third octave band, while the curves given Figure 4.32
refer to the source position S2. The numerical data compared with the
experimental results have been obtained implementing the analytical model
with 9 frequencies for each third octave band, and considering up to 25 nodal
lines along the x and y directions. The criterion, usually adopted in BEM
analysis, that the higher resonance should be at least double the critical
frequency, is largely fulfilled and the computational cost is kept reasonably
low. The results are obtained neglecting the effect of cross-modal coupling and
approximating the radiation impedance matrix Zmnpq with the diagonal terms
of the radiation resistance matrix Rmn. The influence of the fluid loading on
CLT elements is almost negligible, as shown in Figure 4.31 by comparing
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Figure 4.28: Modal and average radiation efficiency of an aluminium plate,
obtained from the code based on the modal summation approach. The
average radiation efficiency is compared with the results presented in Figure
3 of Ref. [19].

the plate’s radiation efficiency computed either considering the radiation
impedance Zmnpq, or the self-radiation resistance Rmn, in one-third octave
bands. Moreover, the small influence of fluid loading is proved in Annex B
by comparing the results, both in third-octave band and in narrow band, for
all the exciting sources. A good agreement is found between numerical data
and experimental results for both the source positions. The first coincidence,
associated with the vertical stiffest direction, and the critical frequency are
well detected. The peaks and the dips of the radiation efficiency below the
critical condition are approximated with satisfying accuracy. Nevertheless
the predicted radiation efficiency is an overestimation of the experimental
results, and discrepancies up to 3 dB can be found in certain frequency
bands. The main cause is found in the assumption of simply supported
boundaries, which does not rigorously represent the complexity of the CLT
plate’s mounting conditions. The fact that in the experimental setup the
translational motion is not completely prevented at the edges, reducing the
sound energy actually radiated, as discussed in the next section.

The analytical approach also allows to predict the radiation efficiency
of an acoustically excited plate, either for the simple case of a an incident
sound wave, or considering a diffuse sound field. In Figure 4.33 the numerical
results obtained with the analytical model for a diffuse incident sound field are
compared with the experimental results. The contribution of non-resonant
modes below the critical frequency, which falls around 1000 Hz is clearly
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Figure 4.29: Average radiation index of an orthotropic carbon laminate plate,
obtained from the proposed modal-average approach, compared with the
results presented in Figure 10 of Ref. [30].

shown. The influence of the different boundary conditions below the critical
frequency seems to be more relevant than for the radiation due to mechanical
force. In this frequency range the numerical radiation index represents an
overestimation of the experimental results, with differences up to 6 dB in
certain bands. Moreover, the dips and peaks are slightly shifted, falling in
a lower third octave band. No experimental results are given below 100 Hz
band, since the energy of the diffuse sound field incident on the plate was
not enough to have a good signal to noise ratio in order to correctly evaluate
the radiation efficiency, thus a comparison would not be reliable.

The radiation efficiency computed my means of the modal summation
approach, represents the average over all the possible source positions, which
reduces the contribution of the fluid loading effect. Since this model has been
already successfully applied to compute the radiation efficiency of orthotropic
structures, it has been used as basis for comparison with the average radiation
efficiency of the CLT plate, obtained from the analytical approach averaging
the results over the two source positions. The modal average radiation
efficiency, obtained from these two approaches, is given in narrow band
in Figure 4.34, together with the radiation efficiency of each mode (m,n)

considered. The results are in good agreement, although the fluid loading has
been neglected in the analytical model. This allows for a faster computation,
reducing the time to approximately 1.5% the time required to calculate the
impedance matrix coefficients, obtaining an algorithm performace almost
identical to the one provided by modal summation approach. To further
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Table 4.3: Experimental bending wavenumbers and loss factor used as input
data to model the cross-laminated timber plate CLT80 b

f [Hz] kx [m] ky [m] η [-]

40 2.938 1.503 0.08
50 3.288 1.684 0.08
63 3.697 1.895 0.08
80 4.191 2.149 0.08

100 4.679 2.402 0.08
125 5.228 2.687 0.08
160 5.986 3.082 0.07
200 6.701 3.457 0.07
250 7.512 3.885 0.07
315 8.504 4.411 0.06
400 9.721 5.063 0.05

f [Hz] kx [m] ky [m] η [-]

500 10.967 5.742 0.04
630 12.512 6.59 0.03
800 14.440 7.674 0.03

1000 16.479 8.849 0.03
1250 18.907 10.284 0.03
1600 22.353 12.348 0.03
2000 25.993 14.620 0.03
2500 30.468 17.485 0.03
3150 36.313 21.285 0.03
4000 44.015 26.343 0.02
5000 52.994 32.329 0.02

reduce the computational cost, all the algorithms implement a frequency
interpolation proposed by Foin [17] to compute either the radiation impedance
Zmnpq or the self radiation resistance Rmn.

The experimental radiation efficiency averaged over the two source po-
sitions was used to validate the modal-average radiation model. The com-
parison between experimental and predicted radiation index is shown in
Figure 4.35. The statistical model provides a good approximation of the
radiation trend. It is possible to clearly detect the critical frequency although
the numerical curve exhibits a sharper peak. The first coincidence, which falls
within the 250 Hz frequency band, is not as pronounced as in the experimental
data, but only identified by a slight change of the curve slope. With this
model the radiation efficiency below the critical condition is not as accurately
approximated as with the analytical approach, due to several effects that are
not taken into account by the simplifying assumption of the model. The high
modal density assumption, necessary to consider a continuous distribution
of modes, is not verified within the entire frequency range. In fact, at low
frequencies the vibrational field of the CLT plate surface is not diffuse, and
only a few modes falls within the frequency bands. Moreover, below the first
coincidence the sound is mainly radiated from the plate discontinuities, like
the boundaries, that are assumed to be simply supported, which are more
complex in the reality, as will be illustrated in the next section. Furthermore,
the near field around the excitation point represents an additional discontinu-
ity not considered by the model that might slightly enhance sound radiation.
Nevertheless, this model gives helpful insights on the radiation behaviour
of the orthotropic CLT plate, providing a reliable trend of the radiation
efficiency. Finally the results obtained approximating the plate bending stiff-
ness as a function of the elliptic interpolation of bending wavenumber, given
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Figure 4.30: Radiation efficiency of a CLT plate: comparison between the
analytical model results and experimental data related to the position of the
exciting force S1. Results presented in one-third octave bands.

in equation (3.65), are compared with the results obtained considering the
orthotropic bending stiffness given in equation (3.64) in Figure 4.36. These
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Figure 4.31: Comparison between the CLT plate’s radiation index computed
considering the fluid loading Lσ,Zmnpq and the approximated results computed
considering the self radiation resistance Rσ,Zmnpq . Results obtained from
the analytical model are presented in one-third octave bands and refers to
exciting force S1.
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Figure 4.32: Radiation efficiency of a CLT plate: comparison between the
analytical model results and experimental data related to the position of the
exciting force S2. Results presented in one-third octave bands.

two formulations provide consistent results, since no relevant differences are
found in the modal-average radiation efficiency.
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Figure 4.33: Radiation efficiency of a CLT plate: comparison between the
analytical model results and experimental data obtained with a diffuse field
excitation. Results presented in one-third octave bands.
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Figure 4.35: Radiation efficiency of a CLT plate: comparison between the
numerical results obtained from the modal-average approach and experimen-
tal data averaged over two source positions. Results presented in one-third
octave bands.
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Figure 4.36: Radiation efficiency of a CLT plate: comparison between
results obtained considering the orthotropic bending stiffness and its elliptic
approximation. Results presented in one-third octave bands.
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4.6 Plate boundary conditions

For all the implemented models the plate boundaries have been considered
simply supported. This simplifying assumption provides an analytical solu-
tion of several equations, allowing for a faster computation. However, the
real boundary conditions of the investigated plate are much more complex,
as shown in Figure 4.3: at the bottom edge the plate is supported by a rigid
frame whereas at all the other edges there is a small gap, sealed with elastic
putty that does not completely prevent the out of plane translational motion
of the plate. The influence of the boundary conditions on the radiation
efficiency has been widely investigated. Gomperts analysed modal radiation
of plates with general boundary conditions [128, 129], determining the plate’s
response as the product of the mode shapes of two orthogonal beams. Below
the critical condition, Leppington et al. found an average increase of 3 dB in
the radiation efficiency of a rectangular plate clamped on all edges compared
to a simply supported plate [130]. Berry et al. proposed a method to com-
pute sound power radiated from plates with arbitrary boundary conditions
under point-force excitation, describing the displacement by means of a set
of polynomial trial functions [10]. Beslin and Nicolas derived a method to
describe plate bending modes for any kind of boundary condition, using
a set of hierarchical trigonometric functions [68]. A thorough analysis of
the influence of the boundary conditions on the sound radiation efficiency
was recently published by Squicciarini et al. [131]. A comparison between
simply supported, clamped, and free boundaries, shown that clamped plates
are the most efficient radiators for all the frequencies above the first mode,
while fully free plates exhibit the lowest radiation efficiency. Hence below
the critical condition, a plate with free boundaries exhibit a lower radiation
efficiency than a simply supported one. Above the critical frequency, the
boundary conditions do not have significant influence on sound radiation.
The CLT plate’s motion, obtained by scanning the vibration velocity over the
surface, reported in Figure 4.37 for mechanical excitation, and in Figure 4.38
for diffuse field excitation, clearly shows that the out of plane translation
was not completely restrained along all the four edges, and particularly along
the top edge. The plate’s motion at the edges is relevant and proportional
to the displacement measured in the center of the surface within the entire
frequency range. The discrepancies highlighted between the experimental
radiation efficiency and the results obtained from the analytical model Fig-
ure 4.30, 4.32 and 4.33, are perfectly in line with the findings of the study
presented by Squicciarini, in which differences up to 25 dB between free
and simply supported boundaries have been found. The plate’s transverse
motion induced by a mechanical source tends to reduce as the frequency
increases, Figure 4.37. Under airborne excitation the plate exhibits a similar
behaviour up to the critical frequency, where the vibrational field perfectly
matches the incident sound field and the amplitude of the plate’s motion
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Figure 4.37: Plate measured displacements. Mechanical source S1

increases reaching its maximum, Figure 4.38. Around the critical condition
the amplitude of the transverse displacement at the edges is of the same
order of magnitude of the transverse displacement measured far from the
boundaries, in the central area of the plate.

4.7 Conclusion

An experimental evaluation of the radiation efficiency has been presented
on three three-ply CLT plates, since it represents an important descriptor
and is often needed in building acoustic analysis as input data. CLT plates
are known to be orthotropic elements, due to the layered structure. The
CLT stiffness properties depend on the number of layers and the ratio of
their thickness. The type of excitation strongly influences the plate radiation
and the mechanisms that govern this process. When the plate is excited
by a mechanical force, its response is governed by resonant modes, even
though the vibrational near-field might give relevant a contribution below
the critical frequency. Two of the investigated plates, CLT80 a and CLT100,
have different thickness and different surface mass, although, they exhibit
a similar behaviour, with the critical condition falling within the 500 Hz
frequency band. Orthotropic structures are characterised by two significant
coincidence frequencies. In the plate CLT80 b, these are shifted towards
higher frequencies, in comparison to the other two structures. It means that
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Figure 4.38: Plate measured displacements. Airborne excitation

this plate has a lower bending stiffness along both the principal directions.
When a diffuse sound field is the exciting source, below the critical frequency
the plates response is governed by a non-resonant field and similar radiation
efficiency has been found for all the three structures. Above the critical
condition the radiation efficiency tends to unity, both with mechanical, and
airborne excitation. Two different methods to evaluate the radiated sound
power have been compared, obtaining consistent results. The diffuse field
approach estimates the sound power from the measured sound pressure,
assuming a perfectly diffuse sound field in the receiving room. The discrete
calculation method can be applied down to lower frequencies, since it requires
only the complex vibration velocity measured on a grid of points on the
plate surface. It assumes radiation into a free-field, thus influences due to
the room are neglected. However, it might be time consuming when a large
surface is investigated. The grid spacing between measurement positions
determines the highest frequency limit for the applicability of the DCM. A
comparison between grids with a different number of points and average
spacing shows that when the distance between adjacent points is larger the
half the wavelength at the coincidence, the discretisation of velocity field
is not enough accurate. The average spacing should be smaller than half
wavelength at the critical frequency, as stated by Hashimoto, otherwise the
sound radiated by each single piston-like source will appear as uncorrelated.
However, discrepancies in the results have been found also for a grid spacing
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equal to one-quarter of the acoustic wavelength. This might represent a
more restrictive limit of this method, that needs to be further investigated.
Very often the mean square velocity of a vibrating plate is averaged over
a certain number of measurement positions, randomly distributed on the
surface, especially when accelerometers are used instead of a scanning laser
vibrometer. To investigate the influence of the number of points and their
distribution on the surface, a parametric analysis on the same set of data
has been performed. As long as the number of measured positions is fairly
high in relationship with the investigated surface, either a uniform grid,
or a random distribution, provides a reliable spectrum of the mean square
velocity. A first analysis, undertaken considering the absolute number of
transducers randomly distributed on the plate with no regards for their
reciprocal distance, shows that for a surface of approximately 12.2 m2 at least
100 measurement positions are necessary in order to reduce the differences
with the data obtained from a narrow grid of 513 points. This represent an
average radius distance between the measurement positions of approximately
38 cm. However, when a random distribution is used, the local position
of each single transducer also plays an important role in the evaluation
of the mean square velocity. Investigating different random distributions
of measurement points, fulfilling the distances requirements given in the
standard EN 10848-1, an underestimation of the mean square velocity was
always found.

An experimental characterisation of the stiffness properties of an or-
thotropic CLT plate, based on flexural wave analysis, has been proposed.
The wave velocity was evaluated using two different approaches. The phase
difference method gives more accurate results in the low frequency range,
while at high frequencies it is more convenient to determine the velocity
from the time of flight difference, evaluated between neighbouring transduc-
ers. Using a non-linear fitting algorithm, the elastic and the shear moduli
have been derived from the flexural wave velocities, measured along the
plate’s principal directions. Results show that the y-direction, associated
with the vertically oriented outer layers fibres, is stiffer than the orthogonal
x-direction. Moreover, the elastic modulus Ey is two orders of magnitude
higher that the shear modulus Gyz, while along the x-direction the elastic
and the shear moduli have a comparable order of magnitude. Furthermore,
the bending stiffness along the principle directions of an equivalent thin
plate has been determined from the experimental bending wavenumbers,
by using Kirchhoff’s dispersion relation. A frequency dependent apparent
bending stiffness compensates the fact that, in thin plate theory, rotational
inertia and shear deformation are neglected. The plate’s apparent elastic
properties decrease as the frequency increases. The frequency dependence
is much more emphasised along the vertical direction, due to the greater
difference between the elastic and the shear moduli. The orthotropic bending
stiffness, approximated by an elliptic interpolation, is in good agreement
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with the experimental data measured for different propagation angles. The
stiffness properties of the equivalent thin plate has been used as input data
to investigate the vibro-acoustic behaviour of a CLT panel.

The experimental radiation efficiency of the plate CLT80 b was used to
validate the prediction models. The analytical approach proved to give reli-
able results, approximating the radiation efficiency with a satisfying accuracy
even below the critical frequency. Due to the different boundaries of the
experimental setup from the simply supported condition assumed in the
models, the analytical approach overestimates the radiation efficiency below
the critical frequency, particularly when a diffuse sound field excitation is
considered. This is in line with the findings of several studies regarding
the boundary conditions influence on the plate response and sound radia-
tion. In fact, the radiation efficiency increases due to an increase of the
restraint degree at the edges. The accuracy provided by the analytical model
is comparable with the one provided by the modal summation approach,
already applied to orthotropic structures. Besides, the analytical model offers
the possibility to consider specific positions for the mechanical force, and
acoustic excitation. Moreover, it is possible to take into account the fluid
loading effect, even if it does not have a significant influence on CLT panels.
Approximating the radiation impedance with the self radiation resistance
the computational effort required by the analytical model can be drastically
reduced. Finally the modal-average radiation efficiency, computed consider-
ing only resonant modes, was compared to the experimental data providing
a good approximation of the radiation trend. The modes are considered only
at their resonance, therefore this model can be applied only for mechanically
excited plates, neglecting the near-field contribution and the fluid loading
effects. Moreover, the model assumes an high modal density in the entire
frequency range. When this assumption it is not verified, especially in the
low frequency range, the results accuracy is reduced. Although, the modal-
average model represents an useful tool to perform preliminary analysis on
orthotropic plates during the design process.
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Chapter 5

Sound transmission through
building elements

5.1 Introduction

Structures excited by an incident sound field, either an acoustic plane wave
impinging with a certain angle θ on the surface, or a random incidence acoustic
field, can be regarded in terms of sound transmission. In this Chapter sound
transmission through complex building partitions is investigated by means
of a wave based approach. The transfer matrix method (TMM) represents
one of the most efficient and powerful tools used to model the acoustic
wave propagation through layered structures [132, 133], considering media
of different nature. This method can be easily applied to investigate the
sound insulation provided by multilayer structures, such as double leaf or
lined walls, largely used in buildings. The background theory of the TMM is
given in the next section, together with the fundamental equations necessary
to implement a model to investigate structures with an arbitrary number of
layers. The method has been applied to model the sound wave transmission
through a CLT plate excited by a diffuse sound field. The results are validated
with experimental data.

The influence of the different radiation mechanisms on sound transmission
has been investigated in particular multilayer structures commonly used in
buildings, known as External Thermal Insulation Composite System (ET-
ICS ). These systems are commonly used to achieve high thermal insulation
performance in buildings. The external walls are lined with insulating slabs
on which different finishings can be applied. The slabs are fixed to the
fabric of the building by using both mortar or special resins, and mechanical
fixings distributed over the surface of the basic wall. Furthermore, when a
proper material is used, such as mineral wool, the ETICS system can also
provide the acoustic performance required in buildings to meet the regulation
requirements [134]. While great attention has been paid to the thermal
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5.2. Transfer matrix method

performance over the last ten years, thanks to the EU policy for energy
efficiency of buildings, only a few acoustic experimental investigations have
been done [135]. Moreover, the development of proper tools to perform an
accurate acoustic analysis of such systems is still lacking. These multilayer
systems can be treated as double panel structures with mechanical point
connections. The structural bridges link the building wall to the thin finish-
ing layer through the insulating material. Therefore, the theoretical sound
insulation that would be provided by the element without mechanical fixings
would be reduced, due to the structure-borne sound transmission via the
mechanical connections. Despite the huge variety of models that can be found
in the literature, none of them seems to be suitable for the ETICS, since
they have been developed for lightweight structures. Moreover, they consider
only thin plates and the cavity being either empty or filled with low-density
porous or fibrous material, which can be modelled with good approximation
using simplified theories. On the contrary, the ETICS is mounted on walls
that need to be modelled as thick plates and high-density fibrous materials
are involved, which cannot be simply approximated as equivalent fluids,
but need to be modelled as poroelastic media using Biot’s theory. A more
general method, based on the TMM framework, has been developed in order
to evaluate sound transmission through multilayer elements, constituted
either by thin or thick plates, and poroelastic materials, also considering
the presence of structural bridges. It is described in detail and verified with
experimental results in section 5.4.

5.2 Transfer matrix method

The TMM solves a two-dimensional problem of a plane acoustic wave im-
pinging on the surface (S1) of a layered element, as sketched in Figure 5.1.
The general formalism of TMM can be expressed as:

V(S1) = [T ]V(S2). (5.1)

The vector V(S1) represents all the variables needed to define the acoustic
field on the surface (S1), such as pressure, particle velocity and stresses
depending on the nature on the medium; while the vector V(S2) contains
the descriptors related to each single layer and all the variables that define
the acoustic fields on the surface (S2). The transfer matrix T describes
wave propagation through the stratified structure. The size of this matrix
depends on the nature of each layer, such as fluid, thin plate, elastic solid,
or poroelastic. In sound transmission analysis, the multilayer element is
assumed to be extended by a semi-infinite fluid on both sides. It is possible to
express the global transfer matrix D to model the n-layers structure, having
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Figure 5.1: An acoustic wave impinging on a stratified structure with an
incidence angle θ. The multilayer element is surrounded by a semi-infinite
fluid on both sides.

(N + 1) rows and (N + 2) columns, as:

[D] =



Ifm1
Jfm1

Tm1 [0]

[0] Im1m2 Jm1m2Tm2 [0]
...

[0] Imn−1mn Jmn−1mnTmn [0]

[0] Imnf Jmnf
[0]

[
−1 Z0 cos−1 θ

]


,

(5.2)
where Z0 = ρ0c0 represent the characteristic impedance of the fluid termina-
tion, which is a function of its density ρ0 and the speed of sound c0. The
coupling matrices Iij and Jij, describing the interface conditions between
different layers, and the transfer matrices Tmi

that describes the sound
propagation through each different media, are reported in Annex D. The
relationship between the acoustic pressure and the particle velocity of a
sound wave impinging on a multilayer structure can be expressed by the
surface impedance of the medium ZS , which, as derived in Chapter 11 of
Ref. [133], can be computed as:

ZS = −det [D1]

det [D2]
. (5.3)

The matrices D1 and D2 are obtained by eliminating from D the first and
the second column respectively. For each incidence angle θ, the complex
reflection coefficient can be determined as:

R =
ZS cos θ − Z0

ZS cos θ + Z0
. (5.4)
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Similarly, the complex transmission coefficient T is given by:

T = − (1 +R)
det [DN+1]

det [D1]
. (5.5)

The matrix DN+1, analogous to D1 and D2, is obtained by the (N + 1)th

column from the matrix D, given in equation (5.2). For a given propagation
angle θ of the incident sound wave, the transmission coefficient is defined as:

τ∞ (θ) = |T (θ)|2 . (5.6)

The media in the TMM basic formulation are assumed to be laterally
infinite, therefore discrepancies between measured and predicted results might
be significant, especially in the low frequency range, due to the presence of
structural modes in real structures, and due to the scattering and diffraction
effect, caused by the finite dimension of the tested panel. The so-called finite
size transfer matrix method (FTMM) takes into account this diffraction
effect by introducing the geometrical radiation efficiency σfinite, described
in section 3.6. The finite size transmission coefficient τfinite can thus be
determined as:

τfinite (θ) = τ∞ (θ)σfinite (θ) cos θ. (5.7)

For a homogeneous isotropic layer the transmission coefficient depends upon
the angle of incidence of the impinging wave, but not on the propagation
angle of structural waves φ. Therefore, the finite size radiation efficiency
σfinite, given in equation (3.71) and (3.72), needs to be further integrated in
the interval 0 < φ < π/2.

5.3 Orthotropic elastic medium

The transfer matrix describing wave propagation in a thin orthotropic plate
Ttop can be expressed as [136]:

Ttop =

[
1 −Z (ω, φ)

0 1

]
, (5.8)

the direction-dependent mechanical impedance of the plate Z (ω, φ) is given
by:

Z (ω, φ) = iωρh

(
1− D (φ) k4

t

ω2ρh

)
, (5.9)

where D (φ) is the direction-dependent bending stiffness given in equation
(3.64). The global transfer matrix D that describes sound propagation
through thin orthotropic plates can be written as:

[D] =

If,top Jf,topTtop [0]

[0] Itop,f Itop,f
[0] [0]

[
−1 Z0 cos−1 θ

]
 . (5.10)
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the matrices to couple the thin orthotropic plate layer with the fluid medium
are given by:

If,top =

[
1 0

0 1

]
; Jf,top =

[
−1 0

0 −1

]
;

Itop,f = Jf,top; Jtop,f = If,top.

(5.11)

For a given angular frequency ω, the complex transmission coefficient T (θ, φ)

is computed for any incidence angle θ and any structural propagation direction
φ, by using equations (5.5),(5.4), and (5.3). The plate’s finite dimension is
taken into account by the geometrical radiation efficiency, function of the
incidence angle θ and the azimuthal angle φ.

τfinite (θ, φ) = τ∞ (θ, φ)σfinite (θ, φ) cos θ. (5.12)

Considering a diffuse incident sound field, the orthotropic plate’s transmission
loss TL is given by:

TL = −10 log

∫ 2π

0

∫ π/2

0
τfinite sin θ cos θ dθdφ∫ 2π

0

∫ π/2

0
sin θ cos θ dθdφ

. (5.13)

This model has been used to evaluate the sound insulation provided by
an orthotropic CLT plate. The FTMM results have been validated with the
experimental transmission loss of the plate CLT80 b, measured in Empa test
facility for sound insulation, according to the standard EN 10140-2 [137].
The plate was placed and fixed in a steel-concrete composite frame within
the testing rooms, as described in section 4.3.

The bending stiffness along the principle directions have been evaluated
form the bending wavenumbers experimentally determined as illustrated in
section 4.4.1, and given in Table 4.3. To calculate the orthotropic bending
stiffness, the in-plane shear modulus Gxy must be known. It has been
approximated as a function of the elastic moduli associated with the principle
direction according to equation (A.7). In Figure 5.2, the FTMM results are
compared with the experimental transmission loss. The FTMM provides a
good approximation of the CLT plate TL. A dip associated with the first
coincidence along the stiffest vertical direction is correctly computed between
the 200 Hz and 315 Hz bands, although it is more emphasised than in the
experimental results. The critical frequency, as much in the numerical data
as in the experimental results, is marked by a change of slope between
800-1000 Hz bands, from which the TL curve become steeper. Even though
the first coincidence and the critical frequency are slightly shifted towards
lower bands, the model provides a quite accurate prediction of the CLT plate
transmission loss.
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Figure 5.2: Sound transmission loss of the plate CLT80 b, comparison between
experimental data and FTMM results.

5.4 Structural bridges

5.4.1 Modelling structural connections within TMM

In section 5.2 the TMM was introduced to investigate sound transmission in
multilayer structures, without mechanical bridges connecting the external
surfaces. In order to take into account the structural connections in layered
building elements, such as ETICS system, Vigran’s model, based on the
decoupled approach [42], was conveniently modified. The basic assumption of
the decoupled approach is to consider the transmission through the different
media, and the transmission through the bridges as two independent and
additive paths. The total transmission loss TLtot is determined by adding
a correction term to the transmission coefficient τfinite obtained from the
FTMM algorithm. The implementation of the global transfer matrix D to
determine the transmission loss of the multilayer structure is provided in
Annex D. The correction term is calculated as the ratio between the power
radiated only due to the bridges action Wb over the sound power that would
be radiated by the structure without mechanical connections Wa, due to the
airborne excitation. For each propagation angle of the incident sound field,
the total transmission coefficient τtot is given by:

τtot = τfinite

(
1 +

Wb

Wa

)
. (5.14)
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By averaging τtot over all the possible incidence directions, the diffuse field
excitation transmission loss TLtot,d is determined as:

TLtot,d = −10 log

∫ θmax

θmin

τtot (θ) cos θ sin θ dθ∫ θmax

θmin

cos θ sin θ dθ

, (5.15)

where the angles θmin and θmax represent the propagation limits of the
incident sound wave. In the implemented algorithm the finite range of angles
0 < θ < π/2 was used. The sound power ratio, introduced in equation
(5.14) to take into account the transmission through structural bridges, can
be computed as:

Wb

Wa
=
σb
σa

〈∣∣∣∣ vS2,bvS1,F

∣∣∣∣2
〉〈∣∣∣∣vS1,FvS1

∣∣∣∣2
〉〈∣∣∣∣vS1vS2

∣∣∣∣2
〉
. (5.16)

The first factor in the right-hand side of equation (5.16), is the ratio between
the radiation efficiency of the plaster layer driven by one of the bridges σb,
over the airborne radiation efficiency of the same element excited by an
acoustic sound field σa. Analogously, vS2,b is the mean square vibration
velocity of the surface S2 driven by the mechanical bridge, while vS1 and
vS2 are the mean square velocities averaged over the surface (S1) and (S2)

respectively, without the structural connections. The force exerted by the
bridges depends on the vibration velocity of the surface they are connected
with, represented in this model by vS1,F , as shown in Figure 5.6. While it
is a perfectly reasonable approximation to consider an equal mean square
velocity over the two opposite surfaces of a thin plate, in thick plates this is
not always verified thus vS1,F 6= vS1 .

The radiation efficiency σb has been defined, in Vigran’s model, as the
link between the sound power radiated due to the action of one bridge and
the surface mean square velocity of the restricted area over which the bridge
is acting. However, a different approach was followed in the proposed model,
assuming that the bridge-driving action has a global influence on the velocity
over the thin finishing layer surface. In fact, it has been experimentally
proved that in some structures the presence of structural connections does
not increase the velocity only locally, over a restricted area the bridge acts
on, but it affects the entire radiating surface. In Figure 5.3 the measured
velocity levels are mapped over a one-square-metre sample of a masonry
wall lined with an ETICS system, described in the section 5.4.3. Although,
the structural connections are well detectable in Figure 5.3(a), their action
affects the vibration velocity over the entire surface compared to the element
without mechanical connections in Figure 5.3(b). The radiation efficiency σb
of the mechanically excited plate is determined according to equations (3.67).
The radiation efficiency due to airborne excitation σa is otherwise computed
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Figure 5.3: Mapping of the vibration velocity levels distribution on a 1 square
metre sample of the finishing layer of the ETICS system. (a) Mechanical
connection mounting condition: • 7 bridges per square metre represents the
standard in real conditions. (b) Mounting condition without mechanical
connections.

using equation (3.70). Both the equations are function of the ratio r of the
power radiated by the resonant vibrational field to the power radiated by
the vibrational near field for the point-excited panel, or to the non-resonant
vibrational energy for the panel acoustically excited by a diffuse sound field,
given in equation (3.68).

The mean square velocity of the radiating surface, mechanically excited
by a number nS of point-bridges per square metre, or line-connection per
unit of length, can be computed according to Ref.[47] as:

〈∣∣vS2,b∣∣2〉 = nS
|Fb|2

ωηS2mS2

Re
{
YS2

}
, (5.17)

where mS2 = ρS2hS2 is the mass per unit area of the plaster layer and YS2 is
the point-drive mobility for a thin plate, given by:

YSi =
ωc,Si

8mSic
2
0

, (5.18)
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while in case of line connections, the line drive mobility can be computed as:

YSi =
1− i

4mSic0

√
ωc,Si
ω

. (5.19)

The exciting force Fb is determined as a function of the vibration velocity of
the basic wall excited by the diffuse sound field as:

|Fb|2 =

〈∣∣vS1,F ∣∣2〉∣∣YS1 + YS2
∣∣2Q. (5.20)

Under the thin plate theory the vibration velocity on the opposite surfaces of
a plate is assumed to be equal. However, as the thin plate theory is limited in
frequency range, for a massive structure such as the basic wall in the ETCIS
system, this might not be verified in the entire frequency range. Therefore,
it is more rigorous to derive the exciting force from the vibration velocity of
the surface the bridges are connected with, vS1,F , namely the velocity of the
inner side surface of the basic wall, on the interface with the mineral wool
layer, as shown in Figure 5.6. In the literature different criteria for the thin
plate theory limit can be found: for example the bending wavelength should
be 6 times greater than the plate thickness. In the frequency range where the
thin plate theory is not valid, the point mobility of the basic plate YS1 should
be derived from the equation developed for thick plates in [41]. On the other
hand when such point mobility is very small compared to the mobility YS2
of the lightweight surface of the lining system it can be approximated as
YS1 = 0. From equations (5.17) and (5.20), the second factor of equation
(5.16) can be expressed as:〈∣∣∣∣ vS2,bvS1,F

∣∣∣∣2
〉

=
nSRe

{
YS2

}
ωηS2mS2

∣∣YS1 + YS2
∣∣Q. (5.21)

Since within the TMM the layers are infinitely extended, the reflections of
the transverse wave velocity at the edges are not included, Therefore, below
half the critical frequency of the basic wall, the velocity derived from the
TMM represents the forced vibrational response rather than the resonant
one. For this reason, below the coincidence, a factor Q, needs to be included
in the numerator of equation (5.21). As described in Ref. [47] Q can be
computed as a function of the ratio between the resonant and the forced
vibrational energy of the first wall as:

Q =

1 +
πfc,S1

σS1
4fηS1

if f < fc,S1 ;

1 if f ≥ fc,S1 .
(5.22)

However, considering massive walls the factor Q can generally been neglected,
since the critical frequency usually falls within the lowest frequency bands,
where the bridges’ action is not significant.
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The surfaces velocity ratio
∣∣vS1/vS2 ∣∣2, like in Vigran’s model, is derived

from the transfer matrix computed for the multilayer structure in absence
of mechanical bridges. The main differences from Vigran’s approach is the
possibility to consider many kinds of layers, and matrices of any size. Vigran’s
model was developed only for thin plates and low-density fibrous/porous
materials, which can be described with good approximation as an equivalent
fluid by using the laws of Delany and Bazley, depending only on their air
flow resistivity and thickness. In other words, only a [2× 2] transfer matrix is
allowed and no coupling matrices are needed. However, when thick plates or
poroelastic layers are modelled, matrices of different size are involved, thus
coupling matrices are needed. In this case, the derivation of the ratio between
surfaces’ mean square velocities as provided in Vigran’s model, cannot be
applied, due to the increased size of the global transfer matrix. Therefore,
a new procedure to numerically determine vS1 and vS2 is proposed. As
already mentioned when equation (5.1) was introduced, the column vector
V(S1) contains all the variables to completely define the acoustic field in the
fluid medium adjoining the surface (S1): the sound pressure and the particle
velocity along the x3−direction:

V(S1) =
[
pf (S1) , vf,x3 (S1)

]
. (5.23)

Since the exciting acoustic pressure is arbitrary, it is possible to delete the
first column of the transfer matrix D, given in equation (5.2), obtaining a
square matrix, indicated as D1. The column vector V (S2), containing all the
variables that describe the acoustic field in the fluid domain adjoining the
surface (S2), other than the variables that define the transmission through
the different layers, can be computed by solving the algebraic system:

[D1]V (S2) = P, (5.24)

where the vector P is the first column deleted from the matrix D multiplied
by −1. Due to the continuity condition, the vibration velocity over the
external surfaces is equal to the particle velocity of the adjoining fluid media.
Thus, for each incidence angle θ the complex velocities vS1,θ and vS2,θ are
determined from the vector V (S2) as the first and last element respectively:

V (S2) =



vS1,θ
...

vS1,F,θ

...
vS2,θ


. (5.25)

The same procedure also allows one to obtain the velocity vS1,F , that the
mechanical force Fb depends upon. Its position in the vector V (S2) depends
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Figure 5.4: Outline of the minimisation algorithm to determine the apparent
elastic properties of the equivalent homogeneous layer.

on the nature of the layers and their arrangement. In the TMM model
applied to a masonry wall lined with an ETICS system, presented in section
5.4.3, vS1,F is the transverse velocity of basic wall, defined as a solid elastic
layer and is the third element of the column vector V (S2). The derivation of
vS1,F is computationally costless. In the case that the thin plate theory is
valid over the entire frequency range vS1,F = vS1 and the third ratio on the
right-hand side of equation (5.16) would be equal to 1.

5.4.2 Characterisation of equivalent homogeneous walls

Masonry building partitions are highly non-homogeneous structures, consist-
ing of hollow clay or concrete bricks, and layers of mortar to join different
blocks. The TMM requires the mechanical properties of each layer as input
data, but the definition of parameters such as the elastic modulus, E, and
the loss factor, η, of a brick wall is not straightforward, neither numerically,
nor experimentally. Previous works tried to deal with this problem using
different approaches. Maysenholder and Haberkern in [138] calculated the
sound transmission through a periodically inhomogeneous infinite plate under
general conditions, but this method is not easily applicable because of the
required computation capacities. Another homogenization method described
by Dijckmans in [139] calculates the equivalent material parameters from
the measurements of the thickness resonance frequency. Jacqus et al. [140]
presented a homogenised vibratory model to predict the acoustic properties
of hollow brick walls starting from the elastic tensor of the brick material
measured using an ultrasonic technique. The presented method does not
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consider the single brick, but deals with the entire wall, because the presence
of mortar joints, or plaster layers, highly influences the wall behaviour.

The general numerical method to be proposed, based on the TMM frame-
work, has been developed in order to estimate the elastic and damping
apparent properties E and η of an equivalent homogeneous wall, from the
experimental transmission loss. The massive wall, constituted by bricks
jointed with mortar and the possible layers of plaster, is considered as a
single equivalent homogeneous layer. A set of equivalent mechanical parame-
ters is determined by using a minimization procedure. In this process the
equivalent layer is modelled within FTMM, in which the geometric parame-
ters, and the measured TL are the input data, whereas E and η represent
the variables. A non-linear unconstrained optimization algorithm, based on
the Matlab R2014b function fminsearchbnd [141] is used to estimate best
values for E and η. It minimizes the sum square of the differences between
the experimental TL and the results of the FTMM model computed for each
frequency band as:

∆TL =

nband∑
i=1

∣∣TLi,exp − TLi,TMM

∣∣ (5.26)

where nband is the total number of frequency bands considered. The algorithm
is outlined in Figure 5.4. The result of this process represents just one of
the possible mathematical solutions, and might not have a strong physical
meaning in itself. In order to preserve as much as possible physical significance
of the apparent elastic modulus and the loss factor, the choice of the limits
in which the algorithm works to optimize the parameters is very important.
The upper and lower limits should define a realistic range of values for the
investigated element. Moreover, this also increase the robustness of the
algorithm, since no significant differences in the resulting elastic properties
are shown when the initial guess values are changed within such a interval.
Since η does not vary much in frequency for massive masonry walls, its
mean value has been kept constant all over the frequency range. In this
way the resulting curve of E is less fluctuating and tends to level off to a
constant value as the frequency increases, as shown in Figure 5.5. The results
obtained for each analysed frequency are finally iteratively smoothed using
the Matlab moving average filter smooth to further reduce the numerical
fluctuation. The procedure was validated with the experimental data of
different masonry walls, with attached layers of fibrous or porous linings
connected with adhesive mortar and screws.
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Figure 5.5: Estimated values of E associated to different values of η of the
equivalent homogeneous layer.

5.4.3 Experimental validation

Experimental setup and measurements

Experimental measurements have been performed into the wall sound insu-
lation test facility of the University of Ferrara in order to investigate the
reliability of the model and validate the assumptions made for its derivation.
The studied structure is a massive wall clad with ETICS system. The basic
partition is a masonry wall plastered on both sides, its total thickness is
150 mm. It was modelled as an equivalent homogeneous solid layer, described
by frequency dependent elastic properties, instead of elastic constants, as
it is common using homogenization techniques [57]. The frequency depen-
dent elastic modulus, reported in Table 5.1 was derived from the measured
transmission loss, using the minimization algorithm described in section
5.4.2, by assuming the Poisson’s ratio ν = 0.33 as typical values for this kind
of partitions. Moreover, the plate loss factor was assumed to be constant
η = 0.045, since only a small variation in frequency was found, with no
significant influence on the Young’s modulus resulting from the algorithm.

The basic wall was clad with mineral wool slabs 100 mm thick, finished
with 5 mm of reinforced cement plaster. The high density mineral wool
layer is modelled as a poroelastic medium to considering both its fluid
phase and its solid frame. The five parameters related to the fluid phase,
namely: airflow resistivity σ, open porosity φ, tortuosity α, viscous and
thermal characteristic lengths Λ and Λ

′
, were experimentally determined using

laboratory measurements combined with an inversion procedure algorithm
[142]. The mechanical parameters of the solid frame were determined from
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5.4. Structural bridges

Table 5.1: Elastic properties of the equivalent homogeneous plate used as
input data for the basic wall in the FTMM model

f [Hz] E [Pa]

100 2.13 · 1010

125 1.77 · 1010

160 1.44 · 1010

200 1.19 · 1010

250 9.89 · 109

315 8.15 · 109

f [Hz] E [Pa]

400 6.68 · 109

500 5.54 · 109

630 4.57 · 109

800 3.74 · 109

1000 3.10 · 109

1250 2.58 · 109

f [Hz] E [Pa]

1600 2.58 · 109

2000 2.58 · 109

2500 2.58 · 109

3150 2.58 · 109

4000 2.58 · 109

5000 2.58 · 109

p
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Figure 5.6: Diagram of the multilayer ETICS system modelled using FTMM.
In order to consider the transmission contribution due to the bridges action,
which is neglected by the FTMM, the mechanical force Fb is determined as a
function of the velocity vS1,F .

quasi-static measurements [143]. The cement plaster layer, like the basic
wall, was modelled as an elastic solid medium using input values found in
the literature. A diagram of the TMM model implemented to investigate
this multilayer structure is shown in Figure 5.6, and the input data of each
single medium are given in Table 5.2. In the first configuration the mineral
wool slabs were fixed to the basic wall only using adhesive mortar, applied
over approximately 40% of the surface. It was necessary to implement this
configuration in order to determine experimentally the transmission loss
provided by the ETICS system, without the additional structure-borne
transmission path via the mechanical bridges. However due to static reasons,
in the practical situation the adhesive fixing is not enough. It is necessary
to also provide mechanical connections. In this second configuration, the
structure was mounted by applying 7 mechanical bridges per square meter,
in order to reproduce the in-situ conditions. A diagram of the different layers
that constitute the investigated structure is given in Figure 5.7, for the two
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5.4. Structural bridges

Table 5.2: Mechanical, geometrical and acoustic descriptors used as input
data in the FTMM model

Eq. homogeneous plate Mineral wool slabs Reinforced plaster

h [mm] 150 100 5

ρ
[
kg/m3

]
1770 78 1500

E [Pa] freq. dependent Tab. 5.1 5.7 · 105 5 · 109

η [−] 0.045 0.05 0.01

ν [−] 0.33 0.01 0.3

σ
[
sPa/m2

]
- 59100 -

φ [−] - 0.90 -

α [−] - 1.00 -

Λ [µm] - 18.0 -

Λ
′

[µm] - 36.0 -

mounting conditions.
The sound insulation provided by the structure was determined according

to the standard EN 10140-2 [137]. The influence of the mechanical con-
nections on the transmission loss provided by the multilayer element was
thus experimentally investigated by comparing the values measured with
the two different mounting conditions. This comparison, given in Figure 5.8,
shows clearly that they have a significant influence in the frequency range
above the 630 Hz band, where the two experimental curves start to split
up, and a reduction of more than 10 dB can be found. In the same Figure,
the transmission loss provided by the basic wall is also plotted, to highlight
the contribution of the lining. The suitability of the FTMM to predict the
transmission loss of these stratified building elements was proved by compar-
ing the numerical results with experimental data measured on the structure
without mechanical connections. As shown in Figure 5.9, the FTMM gives a
good approximation of the transmission loss provided by the element. The
predicted curve matches reasonably well with the measured transmission
loss over the entire frequency range. At low frequency the mass-spring-mass
resonance is detected within the 125 Hz band. In order to investigate the
reliability of the model presented here and validate the assumptions made,
each term defining the correction factor, given in equation (5.16), has been
validated experimentally and the global reliability of the model has been
verified in terms of TL.
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STRUCTURAL LINK

BASIC WALL

  Solid Layer

MINERAL 

WOOL

FINISHING PLASTER

Solid Layer

a) b)

Figure 5.7: Diagram of the ETICS system mounted on the basic masonry
wall and the definition of TMM media. (a) The mounting condition involves
only adhesive mortar without mechanical connections; (b) Both mortar and
mechanical fixings are used to mount the cladding system on the basic wall.
For each condition, a picture of the system before the finishing layer was
applied is shown.

Validation of FTMM model for structural connections

In order to determine experimentally the velocity ratio in absence of structural
bridges, the surface vibration velocity was measured, both on the source
vS1,exp and the receiving side vS2,exp, using PCB accelerometers with a
sufficiently low mass (m ≤ 10 g), to avoid any possible influence on the
dynamic response of the finishing layer. The vibration velocity over the
basic wall surface was averaged over a random distribution of accelerometer
positions according to the standard ISO 10848-1 [112]. The velocity on the
reinforced plaster surface, which in the experimental configuration was on
the receiving side, was averaged over a grid of accelerometer positions, with
an equal spacing of 100 mm. This procedure was extremely time consuming
but allowed the investigation of the regions over which the structural bridges
were acting. In Figure 5.10, the ratio between the average velocity on the
surfaces (S1) and (S2), evaluated numerically from the TMM, is compared
with the data measured on the structure without connections. While a
very good agreement is found in the low frequency range, the model seems
to overestimate this ratio at higher frequencies. However, since the same
model provided accurate results in terms of transmission loss, as shown in
Figure 5.9, the discrepancies might be due to experimental uncertainties. In
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Figure 5.8: Transmission loss experimentally evaluated on the basic wall and
on the multilayer structure, with and without the mechanical fixing.

all probability the number of points used to measure the vibration velocity
over the surface on the exciting side (S1), chosen in order to fulfil the distance
requirements of the standard EN 10848-1, was not enough to obtain an
accurate spatial sampling. Therefore, the mean velocity vS1 might represent
an underestimation of the mean velocity of the surface (S1), as it has been
discussed for CLT plates in section 4.3.

Due to practical reasons it was not possible to measure the mean square
velocity on the thin finishing layer driven only by the bridges actions. This
is because the reinforced plaster layer cannot be mounted detached from the
mineral wool. Under the decoupled approach the total radiated power is
assumed to be the sum of the airborne radiated sound power and the sound
power radiated due to the bridges’ action. This relationship can be expressed
in terms of radiation efficiencies and mean square velocity as:〈∣∣∣∣v2,tot

vS1

∣∣∣∣2
〉
σtot =

〈∣∣∣∣vS2,bvS1

∣∣∣∣2
〉
σb +

〈∣∣∣∣vS2vS1

∣∣∣∣2
〉
σa (5.27)

In order to validate the approach used to calculate the surface velocities ratio
of the structure with mechanical connections, the left-hand side of equation
(5.27) was experimentally determined with the sum on the right-hand side of
the equation numerically computed. This comparison, given in Figure 5.11,
shows a rather good agreement between the experimental total velocity ratio
and the numerical results, which means that the model well approximates the
trend of the vibration velocity of the finishing layer driven by the structural
bridges.
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Figure 5.9: Transmission loss of the ETICS system without structural
connection. Comparison between the FTMM results and experimental data.

The same practical issue determined also the impossibility to experi-
mentally evaluate the ratio of the radiation efficiencies. Nevertheless, some
considerations on the radiated sound power can be made in order to validate
the hypothesis of the model. The sound power radiated by the finishing thin
plate, in both the mounting conditions, was determined through sound inten-
sity measurements, performed according to the standard ISO 9614-3 [144].
The lateral walls and the floor were shielded with absorbing material, to
reduce the interference given by the reverberant sound field. In Figure 5.12,
the sound power levels radiated from the structure with Wtot,bridges and
without mechanical connections Wwo/bridges are compared. Below the 630 Hz
band, no significant differences are shown, while the two curves progressively
split apart as the frequency increases. At low frequencies transmission via
the mineral wool frame and the air that fills the voids is dominant. However,
as the frequency increase, sound transmission due to the bridges’ driving
action becomes becomes more and more significant. This is particularly in
line with the assumption made in the model, since at low frequency there is
no difference between the layered element with or without bridges. However,
at higher frequencies, approaching the critical condition of the plaster layer,
the resonant and the near field radiation, due to the mechanical excitation,
becomes the dominant component.

The global reliability of the model was finally verified by comparing the
transmission loss obtained from the TMM with the experimental results in
Figure 5.13. The numerical results provided by the proposed model are in
rather good agreement with the experimental data and the sound insulation
reduction in the high frequency region is well approximated. In the mid-
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Figure 5.10: Ratio between the mean square velocities on the external
surfaces of the multilayer structure. The experimental results, measured on
the sample without mechanical bridges, are compared with numerical data
obtained from the TMM

frequency range a slightly higher transmission loss is computed with the
FTMM, while above 2000 Hz the reduction caused by the bridges’ action is
overestimated, due to the assumption of infinite stiff structural connections,
as already proved in [145]. However, for this kind of structures the effect of the
assumption of bridges with infinite stiffness seems to be less significant, than
in lightweight frame-based partitions. In the same Figure the transmission
loss obtained from Vigran’s formulation is plotted as a further proof that
the different assumptions made in this model are correct and necessary
to consider double wall system consisting of two plates with incomparable
thickness and mass, or when the cavity is filled with high density fibrous
material that cannot be modelled as an equivalent fluid. Vigran’s model
proved to work very well with double leaf lightweight structures, but it clearly
fails in the prediction of the reduction of the ETICS transmission loss, caused
by the presence of point-bridges, providing an underestimated reduction.

The model was also successfully applied to other massive partitions. The
FTMM results of a clay brick wall plastered on one side, with a total surface
mass of 150.5 kgm−2, and lined with an ETICS system involving a double
density mineral wool 150/95 kgm−3, are compared with the experimental
results in Figure 5.14, showing a remarkable agreement.

The more general applicability of this model was further verified by
modelling lightweight structures presented in some of the previously cited
papers. The model has been applied to predict the TL of the double wall
system presented by Legault and Atalla in Ref. [32]. It consists of two
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Figure 5.11: Comparison between the total vibration velocity measured
on the plaster layer surface, on the structure with mechanical connections
multiplied by the radiation efficiency experimentally evaluated, and numerical
surface velocity ratios with and without bridges multiplied respectively by
the airborne and point-driven radiation efficiency.

aluminium plates separated by a 50.8 mm thick cavity filled with fibrous
material. The two panels are connected by line aluminium junctions that in
the FTMM model are assumed to be massless, and infinite stiff. In Figure 5.15
the FTMM results both for the uncoupled, and coupled structures, are
compared with the experimental data extrapolated from Figures 3, and 4 of
Legault’s paper. The FTMM model allows for a rather good approximation
of the structure’s TL, either considering only the fluid-borne transmission, or
the coupled system. The results for the coupled structures are in very good
agreement with the curve obtained by Legault et al. implementing Davy’s
model for massless structural connections, which is presented in Figure 4 of
their paper.

Finally the possibility to extend the FTMM model to allow for struc-
tural connections with a finite stiffness was investigated. Following Davy’s
approach [47] it is possible to introduce the bridge’s compliance. The force
exerted on the radiating panel given in equation (5.20) for infinite stiff
connections, can be reformulated for elastic connections as:

|Fb|2 =

〈∣∣vS1,F ∣∣2〉∣∣iωC + YS1 + YS2
∣∣2Q (5.28)

To validate this approach, a double-leaf gypsum walls with steel studs,
described in Ref. [146] and numerically investigated by Vigran in [42], has
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Figure 5.12: Sound power levels radiated by the building element, experi-
mentally determined from sound intensity measurements.

been modelled. The mechanical compliance has been determined by inverting
the studs’ stiffness, experimentally measured by Poblet-Puig et al. [147]
and provided in Vigran’s papers. The FTMM transmission loss, is given in
Figure 5.16 for the structure with and without mechanical connections. A
good agreement is found between FTMM and experimental data. Moreover
the results related to infinitely stiff bridges are given to highlight the influence
of this smplifing assumption on the transmission loss of lightweight structures.
The FTMM results are consistent with the data presented by Vigran in Figure
6 of Ref. [42].

5.5 Conclusion

In this Chapter the transfer matrix method has been applied to complex
elements commonly used as building partition. The complexity is repre-
sented either by their sub-structure, which provides a direction-dependent
stiffness, like CLT plates, or by the presence of different layered media. The
FTMM, which also considers a correction term to take the finite dimension
of the structures into account, has been firstly applied to model predict
the transmission loss of a CLT plate. The panel has been described as a
thin orthotropic plate, characterised by the orthotropic bending stiffness
computed from the structural wavenumbers associated with the principal
directions, approximating the in plane shear modulus as a function of the
elastic moduli. The transmission loss obtained from FTMM model has been
compared with the experimental laboratory results. The model allows to
accurately predict the sound transmission loss provided by the CLT panel.
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Figure 5.13: Transmission loss of the ETICS system with structural connec-
tion. Comparison between the FTMM results and experimental data.

A prediction model to investigate the transmission loss provided by
a cladding system for building partitions has been developed. The basic
building wall and the cladding system can be seen as a multilayer structure;
therefore, the TMM is a particularly useful tool to describe sound propagation
through the different media. Due to static reasons it is necessary to attach
the lining slabs using mechanical connections other than an adhesive layer.
Although many prediction models can be found in the literature to model
structural links in stratified elements or double panel systems, a more general
model, based on the decoupled approach, has been proposed in order to
consider also thick plates and high-density porous and fibrous materials,
taking inspiration from an existing formulation developed within the TMM
framework. The structure-borne sound transmission through mechanical
fixings is considered by means of a correction factor added to the transmission
coefficient obtained from the TMM model. All the parameters necessary to
determine the correction term have been accurately described, defining all the
assumptions made in their derivation. The validation of each parameter and
the global reliability of the model has been investigated with experimental
data, measured on a masonry clay brick wall, lined with high-density mineral
wool, and a reinforced plaster finishing. At first the influence of mechanical
connections on sound insulation provided by the element was investigated.
Due to the structure-borne transmission, a clear reduction of sound insulation
is shown above the 630 Hz frequency band. Comparing the transmission loss,
measured on the tested element without structural links, with the numerical
results obtained from TMM a very good agreement has been found, proving
that this is a suitable tool for such elements. The validation shows that
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Figure 5.14: Transmission loss of a clay brick wall lined with an ETICS
system using a double density mineral wall. Comparison between the FTMM
results and experimental data.

all the assumptions of the model are quite reasonable and the numerical
parameters approximate very well the experimental data. The proposed
method considers the ratio between the radiation efficiency of the plate,
on the receiving side, mechanically and acoustically excited. The power
radiated due to the structural connection is thus computed by taking into
account the mean square velocity averaged over the entire plate surface,
instead of considering only a restricted area over which the mechanical force
is exerted, since the bridges’ action influences the dynamic response of the
whole surface, as was experimentally proven. The numerical evaluation of the
surface velocities ratios matches very well the experimental results both for
the case with sound bridges and in absence of structural links. Comparing the
radiated sound power measured in the two different mounting configurations,
a similar radiation behaviour has been found at low frequencies, governed by
transmission via the mineral wool. However, at high frequencies the radiation
due to the bridges’ action becomes more and more significant. A very good
agreement between the FTMM results and the experimental transmission
loss has been found. The model can accurately predict the frequency region
where the sound insulation of the building element is reduced due to the
bridges’ actions. The applicability of the model to lightweight structures was
further investigated, predicting with a good accuracy the TL of double-leaf
frame-based systems with aluminium plates, and gypsum boards. Finally,
since the assumption of infinite stiff connections leads to an underestimation
of the TL, the possibility to consider elastic structural bridges was introduced
into the model and successfully verified.
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Figure 5.15: Transmission loss of a double leaf aluminium plate with struc-
tural line connections. Comparison with Figure 3, and 4 of Ref. [32].
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Chapter 6

Conclusion

6.1 Overview

In this dissertation, the issue of predicting sound radiation and sound trans-
mission in building structures, which cannot be treated as homogeneous
isotropic elements, has been addressed. In order to investigate the radiation
efficiency of orthotropic plates, excited either by a mechanical point force,
or by an incident sound field, an analytic model has been developed based
on Hamilton’s variational principle, extending an existing model derived for
isotropic plates. The plate dynamic response and the radiated sound power
are computed for each single mode, either resonant or non-resonant, consid-
ering both airborne excitation, and mechanical point forces. The average
radiation efficiency is evaluated from the total radiated power and the surface
mean square vibration velocity. This approach allows one to take into account
the influence of fluid loading on the plate’s dynamic response. The model was
validated by comparing the results with the experimental radiation efficiency
evaluated for a three-ply CLT plate, which, due to the layered structure,
exhibits an orthotropic behaviour. The comparison highlighted a rather good
agreement between numerical and experimental data, especially for the plate
mechanically excited. Although the analytic model provides reliable results,
detecting with a satisfying accuracy both the critical frequency and the first
coincidence associated with the stiffest direction, the predicted radiation
efficiency is slightly overestimated below the critical frequency. The discrep-
ancy is mostly associated with the assumption of simply-supported boundary
conditions, which do not truly represent the experimental fixing condition. In
fact, it has been found that, along the edges, the out of plane motion of the
plate was not completely prevented by the experimental mounting condition.
Many studies investigated the influence of boundary conditions on sound
radiation, finding that the radiation efficiency increases due to an increase of
the constraint degree at the edges. This effect seems to be more accentuate
when a diffuse incident sound field is considered as the external exciting
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force. The influence of fluid loading on the plate response has been examined,
which is usually considered negligible when the fluid inertia is much lower
than the inertia of the structure. No relevant influence has been found in
the radiation efficiency of a CLT plate by neglecting the fluid loading and
approximating the radiation impedance with the self-radiation resistance,
except small differences in the very low frequencies. Moreover, when the
fluid loading is neglected, the computational cost of the analytical model is
drastically reduced to 1.5–2% of the time that would be necessary to compute
the radiation impedance matrix. The results obtained from the approximated
analytical model have been compared with the average radiation efficiency
computed from a modal summation approach, since this model had already
been applied to orthotropic elements, providing a satisfying accuracy. The
two approaches gave consistent results and an almost identical computational
performance. However, the analytical approach, unlike the modal summation
approach, allows to also consider either external sources of different nature
and specific positions for a mechanical excitation.

A modal-average model has been proposed to compute the radiation
efficiency when the orthotropic plate vibration response is characterised by
high modal density within the investigated frequency range. Each mode is
considered only at its resonance, therefore this model can be applied only to
mechanically excited structures by a broadband force, since in this case the
multi-mode response is generally governed by the resonant vibrational field.
The model has been implemented in such a way that, by means of an elliptic
interpolation, the bending wavenumbers along the two principle directions
represent the plate’s stiffness characteristics required as input. Once again the
results have been validated by comparison with the experimental radiation
efficiency of a CLT plate. The model provide reliable results, even if the
average radiation efficiency is not very detailed in the low frequency range,
where the plate’s vibrational field is governed by modal response. However,
it is still a helpful tool that provides an accurate trend of the radiation
efficiency of an orthotropic plate, which requires only 2% the computational
time necessary to run the analytical model by neglecting the fluid loading.

The stiffness properties necessary as input data in the models are obtained
through an experimental characterisation based on flexural wave analysis.
The phase difference method has been used to determine the bending wave
velocity propagating in the CLT plate at low frequencies, while at high
frequencies the time of flight difference was found to be more accurate. The
values obtained at each tested frequency were interpolated, in the entire range
of interest, by means of a non-linear fitting algorithm, based on Mindlin’s
dispersion relation. The bending stiffness along the principle directions of the
equivalent CLT thin plate has been determined from the experimental bending
wavenumbers, by using Kirchhoff’s dispersion relation. The equivalent thin
plate exhibits a frequency dependent apparent bending stiffness, which
compensates the fact that rotational inertia, and the shear deformation
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effects are neglected in thin plate theory. The orthotropic bending stiffness,
approximated by an elliptic interpolation, is in good agreement with the
experimental data measured for different propagation angles.

The issues associated with the experimental evaluation of the radiation
efficiency have been investigated on three different three-ply CLT plates. Two
distinct approaches to determine radiated sound power, based on different
assumptions and with different limitations, have been compared. Although
some small discrepancies between the results have been found, these ap-
proaches provide consistent results. The radiation efficiency is also influenced
by the number of measurement positions, and their distribution, over which
the mean square velocity is spatially averaged. Significant differences have
been found when the surface vibration velocity is averaged over a random
distribution of measurements positions. A parametric analysis, undertaken
on the same set of measured data, shown that for a surface of approximately
12.2 m2 at least 100 measurement positions are necessary to obtain a good
spatial sampling. Moreover it has been found that a random distribution
of transducers, fulfilling the distances requirements given in the standard
EN 10848-1, provides an underestimated mean square velocity compared to
spectrum obtained by the complete data set. In order to experimentally show
how sound radiation is highly influenced by the type of excitation, the plates
were excited both by a mechanical force, using a shaker rigidly connected to
the wood panel, and by a diffuse sound field, generated by a dodecahedron
sound source. When the plate is excited by a mechanical force its response,
below the critical frequency, is mainly governed by resonant modes and
sound radiation mostly depends on the plate’s stiffness. The experimental
radiation efficiency, evaluated for the different CLT plates, shown how the
ratio of the outer layers thickness to the thickness of the inner core plays an
important role on the stiffness properties of this kind of structures. However,
below the critical frequency, when the plates are excited by a diffuse sound
field, their response is governed by the forced non-resonant field, and the
three structures exhibit a similar radiation behaviour, although they have
very different stiffness properties. Above the critical condition, both with
mechanical, and airborne excitation, the radiation efficiency tends to unity,
and it is not possible to distinguish between resonant and forced field.

Orthotropic structures excited by an incident sound field have also been
analysed in terms of sound transmission. The transmission loss of orthotropic
elements, such as CLT plates, has been predicted using the TMM, which is
one of the most efficient tools to model sound propagation through media of
different nature. To have a better agreement with experimental results, a
geometric radiation efficiency needs to be introduced in the TMM model to
account for the finite dimension of the element. The transmission loss of a
CLT panel, described as a thin orthotropic plate, was accurately predicted
using FTMM. The direction-dependent bending stiffness was computed
approximating the in plane shear modulus as a function of the elastic moduli
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along the principal directions. In order to take into account the structure-
borne transmission through the rigid connections of lined walls, or double
leaf panels, a model based on the FTMM framework has been developed.
Differently from other models, developed by several author specifically for
thin plates, a more general approach has been proposed. This model allows
to consider either thin and thick plates, and poroelastic materials, by taking
into account both the transmission through the fluid that fills the pores, and
the transmission through the solid frame. The model has been validated
with the experimental transmission loss, measured on an ETICS system,
constituted by a masonry clay brick wall, lined with slabs of high-density
mineral wool, finished with a layer of reinforced plaster. A very good
agreement between the FTMM results and the experimental transmission
loss has been found. The model can accurately predict the frequency region
where the sound insulation of the building element is reduced due to the
bridges’ actions. To investigate whether the model might be applied also
to lightweight frame-based structures, a double leaf aluminium plate, and
gypsum board double-wall system, have been modelled with good accuracy.
Finally, Davy’s approach to take into account a finite value of the stiffness of
structural bridges was introduced into the model, and successfully verified.

6.2 Future developments

The radiation models have been developed under the simplifying assumption
of simply supported boundary conditions. This allows for an analytical,
or approximated, solution of the governing equations, and thus a faster
computation. Many studies have been undertaken, proving how different
boundaries influence the radiation behaviour. However in the literature, both
polynomial and trigonometric trial functions can found, in order to consider
different boundary conditions. Therefore, it might be useful to investigate
the possibility to derive the analytical model for a fully clamped orthotropic
plate, to thoroughly investigate the boundary influence on the dynamics of
such structures and to provide a more versatile prediction tool.

One of the limits of the modal-average radiation efficiency is represented
by the fact that only the contribution of resonant modes is taken into account.
However for homogeneous isotropic plates, a correction factor, based on the
ratio between resonant and force response, can be applied to overcome this
limitation. Extending this approach also to orthotropic structures would
provide more accurate results, and would give the chance to apply this model
also to airborne excitation.

Sound transmission through orthotropic panels has been modelled by
means of the FTMM. The problem has been simplified assuming the structure
as an equivalent thin orthotropic plate, described by frequency dependent
elastic properties. To provide a handy tool for the design and the acoustic
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6.2. Future developments

optimisation of CLT panels, an alternative approach to apply the TMM
should be investigated. Each single layer of a CLT structure could be
modelled as a solid homogeneous medium, described by the elastic dynamic
properties of the lumber beams. However, the determination of the elastic
properties is a delicate aspect that presents some difficulties, since each layer,
made out of beams, exhibits an orthotropic behaviour in itself. Hence for
a complete characterisation of each single layer the wood elastic properties
might not be enough, but it would be necessary to implement additional
simulations, evaluating its orthotropic behaviour.

From the experimental point of view, the influence of the measurement
points spacing, either on a grid or on a random distribution will be further
investigated. From the complex vibration velocity measured on a grid
distribution it is possible to compute the radiated sound power, by means
of hybrid methods, such as DCM. A great advantage of these approaches is
their applicability at low frequencies. However, to be extended up to high
frequencies a small grid spacing it is required, and the time necessary for the
experimental test might increase significantly. The intention is to examine
in the near future the possibility to implement hybrid methods combined
with interpolating functions in order to reduce the time required to perform
experimental measurements. Moreover, the wave analysis to investigate the
stiffness properties of a structures might be extended in order to evaluate
both the real and imaginary part of the complex flexural velocity, obtaining
information about the structural damping.
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Appendix A

Stiffness Matrix Coefficients

In this Annex a simpler formulation of the integral equation derived in
Chapter 3, to compute the stiffness matrix coefficients of a thin orthotropic
plate, is provide for the case of simply-supported boundary conditions. Using
the dimensionless coordinates: 

u =
x

Lx

v =
y

Ly

, (A.1)

The mode shape functions for simply-supported boundaries are given in the
new coordinate system as:{

φmn (u, v) = sin (mπu) sin (nπv) ;

φpq (u, v) = sin (pπu) sin (qπv) .
(A.2)

The chain rule for a second order derivative can be applied obtaining:

∂2

∂x2
φij (x, y) =

∂2

∂u2
φij (u, v)

(
du

dx

)2

;

∂2

∂y2
φij (x, y) =

∂2

∂v2
φij (u, v)

(
dv

dy

)2

;

∂2

∂x∂y
φij (x, y) =

∂2

∂u∂v
φij (u, v)

du

dx

dv

dy
.

(A.3)
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yL

y

x 



v

u

Figure A.1: Coordinates transform given in equation (A.1)
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Moreover, due to this change of variable within the double integral, the new
integrands du and dv have to be multiplied by the absolute value of the
Jacobian LxLy. Equation (3.32) can thus be rewritten in terms of the new
spatial coordinates u and v as:

Kmnpq =LxLy

∫ 1

0

∫ 1

0

[
Dx

(
1

L2
x

)2 ∂2

∂u2
φmn (u, v)

∂2

∂u2
φpq (u, v)

+Dy

(
1

L2
y

)2
∂2

∂v2
φmn (u, v)

∂2

∂v2
φpq (u, v)

+ νyxDx

(
1

LyLx

)2 ∂2

∂u2
φmn (u, v)

∂2

∂v2
φpq (u, v)

+ νxyDy

(
1

LyLx

)2 ∂2

∂v2
φmn (u, v)

∂2

∂u2
φpq (u, v)

+4Gxy
h3

12

(
1

LyLx

)2 ∂2

∂u∂v
φmn (u, v)

∂2

∂u∂v
φpq (u, v)

]
dvdu

. (A.4)

Due to the orthogonal property of the mode shape functions, discussed in
Chapter 2, equation (A.4) can be rewritten as:

• if m = p and n = q

Kmnmn =
LxLy

4

[
Dx

m4π4

L4
x

+Dy
n4π4

L4
y

+ 2B
m2n2π4

L2
xL

2
y

]
; (A.5)

• if m 6= p or n 6= q

Kmnpq = 0. (A.6)

The stiffness matrix Kmnpq of a simply-supported orthotropic plate is diagonal
and can be computed by means of a simple algebraic equation, reducing the
computational time significantly. The bending stiffness along each principle
direction is obtained, according to equation (3.13), from the experimental
wavenumbers given in Table 4.3. The in-plane shear modulus Gxy of the
orthotropic plate, necessary to compute the effective torsional stiffnes B,
given in equation (3.14), has been approximated as a function of the elastic
moduli associated with the principal directions [64] as:

Gxy =

√
ExEy

2
(
1 +
√
νxyνyx

) . (A.7)

The value of the elastic properties νxy and νxy has been determined from
equation (3.15) assuming the plate Poisson’s ratio ν =

√
νxyνyx = 0.3 as

typical for wood materials.
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Appendix B

Radiation Impedance Matrix
Coefficients

The four-fold integral equation to compute the radiation impedance, given in
equation (3.34), is approximated to a two-fold integral following the approach
proposed by Sandman [13] and Nellisse [16]. A first coordinate transform is
applied:

α =
x

Lx

β =
y

Ly

;


ᾱ =

x0

Lx

β̄ =
y0

Ly

; r =
Lx
Ly

. (B.1)

By mixing the modes, one can express the plate’s radiation impedance as:

Zmnpq =iωρ0S
2
∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

[
ψmp (α, ᾱ)

G
(
α, β, 0, ᾱ, β̄, 0

)
ψnq

(
β, β̄

)]
dᾱ dβ̄dαdβ.

(B.2)
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yL
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Figure B.1: Coordinates transform given in equation (B.1)
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Figure B.2: Coordinates transform given in equation (B.3)

A further change of variable is needed:
u = α− ᾱ;

v = ᾱ;


ū = β − β̄;

v̄ = β̄.

. (B.3)

Considering the symmetry of the mode shape functions, the radiation
impedance can be expressed in the new coordinate system as:

Zmnpq = 4iωρ0S
2
∫ 1

0

∫ 1

0
Φmp (u)G (u, 0, ū, 0) Φnq (ū) dūdu, (B.4)

where:

Φmp (u) =

∫ 1−u

0
sin (mπ (u+ v)) sin (pπv) dv;

Φnq (ū) =

∫ 1−ū

0
sin (nπ (ū+ v̄)) sin (qπv̄) dv;

G (u, 0, ū, 0) =

exp

(
−ik0Lx

√
u2 − r−2 (ū)2

)
2πLx

√
u2 − r−2 (ū)2

.

(B.5)

If m 6= p and n 6= q the integral functions Φmp (u) and Φnq (ū) are given by:

Φmp (u) =
sin (π (m− p+ pu))

2π (m− p)
− sin (πmu)

2π (m− p)

− sin (π (m+ p− pu))

2π (m+ p)
+

sin (πmu)

2π (m+ p)
;

Φnq (ū) =
sin (π (n− q + qū))

2π (n− q)
− sin (πnū)

2π (n− q)

− sin (π (n+ q − qū))

2π (n+ q)
+

sin (πnū)

2π (n+ q)
;

(B.6)
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while if m = p and n = q, the integral functions are given by:

Φmp (u) =
sin (πm (u− 2))

4πm
+

sin (πmu)

4πm

+ cos (πmu)

(
1− u

2

)
;

Φnq (ū) =
sin (πn (ū− 2))

4πn
+

sin (πnū)

4πn

+ cos (πnū)

(
1− ū

2

)
,

(B.7)

Applying Prostaphaeresis’ sum to product formulas, these equations can be
rewritten as:
if m 6= p and n 6= q:

Φmp (u) =
1

π

cos
(
π(m−p)

2 +
π(m+p)u

2

)
sin
(
π(m−p)

2 − π(m−p)u
2

)
m− p

−
cos
(
π(m+p)

2 +
π(m−p)u

2

)
sin
(
π(m+p)

2 − π(m+p)u
2

)
m+ p

 ;

Φnq (ū) =
1

π

cos
(
π(n−q)

2 +
π(n+q)ū

2

)
sin
(
π(n−q)

2 − π(n−q)ū
2

)
n− q

−
cos
(
π(n+q)

2 +
π(n−q)ū

2

)
sin
(
π(n+q)

2 − π(n+q)ū
2

)
n+ q

 ;

(B.8)

while, if m = p and n = q:

Φmp (u) =
1

2πm
[sin (πm (u− 1)) cos (−πm)]

+ cos (πmu)

(
1− u

2

)
;

Φnq (ū) =
1

2πn
[sin (πn (ū− 1)) cos (−πn)]

+ cos (πnū)

(
1− ū

2

)
.

(B.9)

However, it was found, that, at low frequencies, the fluid loading has a very
small influence on sound radiated by a CLT plate, and it is almost negligible
in the mid-high frequency range. Although CLT panels are lightweight
elements compared to the traditional building partitions, their inertia is still
several orders of magnitude larger than the one provided by the air, thus
the load of the fluid does not affect significantly the plate dynamics. The
radiation indices compute either considering and neglecting the this effect are
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Figure B.3: Comparison between the CLT plate average radiation efficiency
computed considering the radiation impedance coefficients Zmnpq and its
approximation with the self radiation resistance coefficients Rmn. Plate
mechanically excited in the position S1. Results given in one-third octave
bands.

compared in one-third octave bands in Figures Figure B.3, Figure B.4 and
Figure B.5, for two different position of the mechanical force and for airborne
excitation respectively. Furthermore, for a more accurate investigation,
the same results are compared in narrow band for each of the external
source considered. When the plate is mechanically excited, above 100 Hz the
influence of fluid loading is still negligible, as shown in Figures B.6 and B.7.
However, at lower frequency some discrepancies can be seen; although, the
influence of the fluid loading is very small. On the other hand with airborne
excitation, the contribution given by the load of fluid is negligible within the
entire frequency range, as shown in Figure B.8.

The radiation impedance Zmnpq of CLT building structures can be def-
initely well approximated by the self radiation resistance Rmnmn. This
approximation, which does not have a significant influence on the average
radiation efficiency, allows to reduce the computational cost to approximately
only 1.5− 2% of the time. This huge difference is related to the computation
effort that is required to evaluate the radiation impedance matrix, due to the
large dimensions of the panel and to the number of modes that one should
consider to extend the analysis up to reasonably high frequencies.
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Figure B.4: Comparison between the CLT plate average radiation efficiency
computed considering the radiation impedance coefficients Zmnpq and its
approximation with the self radiation resistance coefficients Rmn. Plate
mechanically excited in the position S2. Results given in one-third octave
bands.
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Figure B.5: Comparison between the CLT plate average radiation efficiency
computed considering the radiation impedance coefficients Zmnpq and its
approximation with the self radiation resistance coefficients Rmn. Diffuse
sound field excitation. Results given in one-third octave bands.
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Figure B.6: Comparison between the CLT plate average radiation efficiency
computed considering the radiation impedance coefficients Zmnpq and its
approximation with the self radiation resistance coefficients Rmn. Plate
mechanically excited in the position S1. Results given in narrow band.
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Figure B.7: Comparison between the CLT plate average radiation efficiency
computed considering the radiation impedance coefficients Zmnpq, and the
approximation with the self radiation resistance coefficients Rmn. Plate
mechanically excited in the position S2. Results given in narrow band.
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Figure B.8: Comparison between the CLT plate average radiation efficiency
computed considering the radiation impedance coefficients Zmnpq, and the
approximation with the self radiation resistance coefficients Rmn. Diffuse
sound field excitation. Results given in narrow band.
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Appendix C

Leppington’s asymptotic
equations

The modal-average radiation efficiency is computed for each propagation
angle by using Leppington’s asymptotic equations:

σ =
(
1− µ2

)− 1
2 µ < 1− δ;

σ =
(Lx+Ly)(µ2−1)

− 1
2

πk0µLxLy

[
ln
(
µ+1
µ−1

)
+ 2µ

µ2−1

]
µ > 1 + δ;

σ = I
(
Lx, Ly, 0

)
+ I

(
Ly, Lx, 0

)
µ = 1± δ;

(C.1)

the function I is given by:

I (l1, l2, 0) =

∫ secφ0

0

J (i)

[
−φ0 + i cosecφ0 (cosφ0 − cos 2φ0)− 1

4
i2 sin 2φ0

]
di

+

∫ secφ0

0

J (i)

[
arcsec i−

(
i2 − 1

) 1
2 +

1

2
(1− i)2 cotφ0

]
di,

(C.2)

defining the function J (i) as:

J (i) =
(2k0l1)

1
2

π
3
2

i−
1
2 sin

(
k0l1 (µ− 1) i− 1

4
π

)
e−ηi, (C.3)

and the angle phi0 as;

φ0 = arctan

(
l2
l1

)
. (C.4)

The term η can be set to zero in order to consider the undamped condition,
or it can take into account the plate loss factor η:

η =
1

4
kBl1η. (C.5)
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In order to compute the modal-average radiation efficiency it is necessary
to determine three frequency regions in which the equations (C.1) are valid.
In the implemented algorithm the three different regions are not set a priori,
instead all the three curves are computed for each investigated propagation
direction φ. The function defined in the above-coincidence range assumes
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Figure C.1: Determination of the average radiation efficiency for a single
propagation direction by combining the curves defined in each frequency
region: below-coincidence, near-coincidence, above-coincidence;

negative values below the critical condition while it is positive and it tends
asymptotically to unity above. The function defined in the below-coincidence
region presents a discontinuity at the critical frequency, where µ = 1. The
first formulation presented by Leppington could not solve this singularity
at µ = 1, but some years later he proposed an integral formulation for
a positive and continuous function valid within an interval around the
coincidence frequency, the near-coincidence range. The cut off frequency
between the below-coincidence and near-coincidence regions is identified
by the intersection between these two functions which is closest to the
discontinuity point. Above the coincidence frequency, the first intersection
between the near and the above curves represents the limit between these
two regions. It might happen that, due to numerical reasons, two curves
do not intersect each other, even though the transition between two regions
occurred. In this case the implemented algorithm evaluates the frequency
at which the values of the two functions are closest to each other. Once
those limits are defined the resulting radiation efficiency is determined, for
each investigated angle, by combining the three curves within the frequency
range in which they are respectively defined. In Figure C.2 the radiation
index, from φ = 0 to φ = π/2, is plotted at steps of ∆φ = π/90. The radiation
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Figure C.2: Frequency dependent average radiation index for different prop-
agation angles φ.

efficiency with the lowest critical frequency is associated with the bending
wave propagating along the stiffest direction, while the curve with the highest
critical frequency is associated with the orthogonal direction. In other words
the critical condition is shifted towards lower frequencies as the plate’s
stiffness increases.
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Appendix D

Transfer and coupling
matrices

In this annex the transfer and the coupling matrices necessary to implemengt
a TMM model of an ETICS system are provided. The full derivation for
elastic solid, fluid, and poroelastic medium can be found in [133].

D.1 Fluid medium

The [2× 2] transfer matrix that describe a compressional wave propagating
through a fluid medium is defined as:

[
Tf
]

=

[
cos(kx3h) iωρ sin(kx3h)k−1x3

ikx3 sin(kx3h)(ωρ)−1 cos(kx3h)

]
, (D.1)

where h is the thickness of the layer and kx3 is then wavenumber component
along the direction x3, according to figure Figure 5.1, of the wave propagating
in the fluid medium. It is computed as a function of the acoustic wavenumber

k0 = ρ0c0 and the incidence angle θ as kx3 =
√
k2

0 − k2
0 sin2 ϕ.

D.2 Solid medium

The [4× 4] transfer matrix that describes the propagation of longitudinal
and shear waves through an isotropic elastic solid material, used to model
the basic massive wall and the reinforced concrete finishing thin layer of the
ETICS system, is given by:

[Ts] = [Γ (−h)] [Γ (0)]−1 . (D.2)

The two wavenumbers components along the x3-direction can be calculated
as:

kl,x3 =
√
k2
l − k

2
t ; ks,x3 =

√
k2
s − k2

t ; (D.3)
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D.3. Poroelastic medium

where kt = k0 sinϕ is the trace wavenumber of the incident wave propagating in
the fluid, while k2

l and k2
s are the longitudinal and shear square wavenumbers

propagating in the solid medium. They can be derived from the Lamé
coefficients λ and µ as:

k2
l =

ω2ρ

λ+ 2µ
; k2

s =
ω2ρ

µ
. (D.4)

The matrix Γ evaluated in x3 = −h is:

[Γ (−h)] =


ωkt cos

(
−kl,x3h

)
−iωkt sin

(
−kl,x3h

)
−iωkl,x3

sin
(
−kl,x3h

)
ωkl,x3

cos
(
−kl,x3h

)
−A1 cos

(
−kl,x3h

)
iA1 sin

(
−kl,x3h

)
iA2kl,x3

sin
(
−kl,x3h

)
−A2kl,x3

cos
(
−kl,x3h

)

iωks,x3 sin(−ks,x3h) −ωks,x3 cos(−ks,x3h)

ωkt cos(−ks,x3h) −iωkt sin(−ks,x3h)

iA2ks,x3 sin(−ks,x3h) −A2ks,x3 cos(−ks,x3h)

A1 cos(−ks,x3h) −iA1 sin(−ks,x3h)



, (D.5)

where the coefficients A1 and A2 are defined as:

A1 = µ
(
k2
l,x3
− k2

0

)
; A2 = 2µk0. (D.6)

In order to have a more stable algorithm, the inversion of the matrix Γ,
evaluated in x3 = 0 was analytically computed as:

[Γ (0)]−1 =


2kt(ωk2s)

−1
0

0
(
k2s,x3

−k2t
)(
ωkl,x3

k2s

)−1
0 2kt(ωk2s)

−1(
k2s,x3

−k2t
)
(ωks,x3k

2
s)
−1

0

−(µk2s)
−1

0

0 −kt
(
µkl,x3

k2s

)−1
0 (µk2s)

−1

−kt(µks,x3k
2
s)
−1

0



(D.7)

D.3 Poroelastic medium

The poroelastic transfer matrix used to model the mineral wool layer has
been derived from Biot’s theory [148]. Three kinds of waves are considered
propagating in the poroelastic medium: namely a longitudinal and a shear
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D.3. Poroelastic medium

wave propagating in the solid frame of the material, and a compressional wave
propagating in the fluid medium that fills the pores. The [6× 6] poroelastic
transfer matrix can be determined as:[

Tp
]

= [Γ (−h)] [Γ (0)]−1 . (D.8)

The matrix Γ evaluated in x3 is defined as:

[Γ (x3)] =



ωkt cos
(
kl s,x3

x3

)
−iωkt sin

(
kl s,x3

x3

)
−iωkl s,x3

sin
(
kl s,x3

x3

)
ωkl s,x3

cos
(
kl s,x3

x3

)
−iωµl skl s,x3

sin
(
kl s,x3

x3

)
ωµl skl s,x3

cos
(
kl s,x3

x3

)
−Ds cos

(
kl s,x3

x3

)
iDs sin

(
kl s,x3

x3

)
2iGktkl s,x3

sin
(
kl s,x3

x3

)
−2Gktkl s,x3

cos
(
kl s,x3

x3

)
−Es cos

(
kl s,x3

x3

)
iEs sin

(
kl s,x3

x3

)

ωkt cos
(
kl f,x3

x3

)
−iωkt sin

(
kl f,x3

x3

)
−iωkl f,x3

sin
(
kl f,x3

x3

)
ωkl f,x3

cos
(
kl f,x3

x3

)
−iωµl fkl f,x3

sin
(
kl f,x3

x3

)
ωµl fkl f,x3

cos
(
kl f,x3

x3

)
−Df cos

(
kl f,x3

x3

)
iDf sin

(
kl f,x3

x3

)
2iGktkl f,x3

sin
(
kl f,x3

x3

)
−2Gktkl f,x3

cos
(
kl f,x3

x3

)
−Ef cos

(
kl f,x3

x3

)
iEf sin

(
kl f,x3

x3

)

iωks s,x3 sin(ks s,x3x3) −ωks s,x3 cos(ks s,x3x3)

ωkt cos(ks s,x3x3) −iωkt sin(ks s,x3x3)

ωµs skt cos(ks s,x3x3) −iωµs skt sin(ks s,x3x3)

2iGktks s,x3 sin(ks s,x3x3) −2Gktks s,x3 cos(ks s,x3x3)

G
(
k2s s,x3

−k2t
)

cos(ks s,x3x3) −iG
(
k2s s,x3

−k2t
)

sin(ks s,x3x3)

0 0



. (D.9)

The wavenumbers components of the two compressional waves and the shear
wave along the x3−direction are computed as:

kl s,x3 =
√
k2
l s − k

2
t ; kl f,x3 =

√
k2
l f − k

2
t ; ks s,x3 =

√
k2
s s − k2

t ;

(D.10)
where k2

l s, k
2
l f and k2

s s are the square wavenumbers of the three different
waves:

k2
l s =

ω2

2PR−Q2

(
P ρ̃22 +Rρ̃11 − 2Qρ̃12 −

√
∆
)

;

k2
l f =

ω2

2PR−Q2

(
P ρ̃22 +Rρ̃11 − 2Qρ̃12 +

√
∆
)

;

k2
s s =

ω2

G

(
ρ̃11ρ̃22 − ρ̃2

12

ρ̃22

)
;

(D.11)

127



D.4. Coupling matrices

where P ,Q and R are Biot’s elastic coefficients, G is the shear modulus of
the material. The quantities Dm and Em, where the subscript m indicates
the solid frame m = s, or the fluid medium m = f , are given by:

Dm =
(
P +Qµl,m

) (
k2
t + k2

l,m,x3

)
− 2Gk2

t

Em =
(
Rµl,m +Q

) (
k2
t + k2

l,m,x3

) (D.12)

the term ∆ in equation D.11 is computed as:

∆ = (P ρ̃22 +Rρ̃11 − 2Qρ̃12)2 − 4
(
PR−Q2

)(
ρ̃11ρ̃22 − ρ̃2

12

)
(D.13)

the parameters ρ̃ij depend on the geometrical and mechanical characteristics
of the porous material, considering both the rigid frame and the fluid phase.
The velocity ratio µw,m of the air velocity to the two longitudinal wave
velocity, respectively µl s and µl f , and to the shear wave velocity, µs s, can
be expressed as:

µw,m =
Pk2

w,m − ω2ρ̃11

ω2ρ̃12 −Qk2
w,m

w = l; m = s, f ;

µw,m =− ρ̃11

ρ̃22
w = s; m = s;

(D.14)

For the complete derivation of the parameters ρ̃ij and the coefficients P ,Q
and R as a function of the poroelastic material properties, please refer to
one among the various formalisms of Biot’s theory that can be found in the
literature, see for example Chapter 6 of [133].

D.4 Coupling matrices

The interface between two layers of different nature is obtain using coupling
matrices. In this section the matrices used to couple the differ layers of
ETICS are provided:

• fluid-solid:

Ifs =

0 −1

1 0

0 0

 ; Jfs =

0 1 0 0

0 0 1 0

0 0 0 1

 ;

Isf = Jfs; Jsf = Ifs;

(D.15)
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• solid-porous:

Isp =


1 0 0 0

0 1 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 ; Jsp =


1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 1

0 0 0 0 1 0

 ;

Ips = Jsp; Jps = Isp;

(D.16)

These represent the coupling matrices used in the models presented in Chapter
5. However, the coupling between any kind of layer can be derived from the
interface conditions.

D.5 ETICS: Global transfer matrix

Assuming the multilayer element to be extended by a semi-infinite fluid
on both sides, in order to determine its transmission coefficient, the global
transfer matrix is expressed as:

[D] =


Ifs JfsTs [0] [0] [0]

[0] Isp JspTp [0] [0]

[0] [0] Ips JpsTs [0]

[0] [0] [0] Isf Jsf
[0] [0] [0] [0] [−1 Z0/ cos θ]

 (D.17)

The transmission loss of the ETICS system, considering only the airborne
transmission path, is determined from the matrix (D.17), as described in
Chapter 5.
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[94] R. Öqvist, F. Ljunggren, and A. Ågren, “Variations in sound insulation
in cross laminated timber housing construction,” in Proceedings of
Forum Acusticum 2011, (Aalborg, Denmark), EAA, June 2011.

[95] S. Schoenwald, B. Zeitler, I. Sabourin, and F. King, “Sound insu-
lation performance of cross laminated timber building systems,” in

137



Bibliography

Proceedings of the 42nd International Congress and Exposition on Noise
Control Engineering, (Innsbruck, Austria), Institute of Noise Control
Engineering, September 2013.

[96] B. Van Damme, S. Schoenwald, M. Alvarez Blanco, and A. Zemp,
“Limitation to the use of homogenized material parameters of cross
laminated timber plates for vibration and sound transmission mod-
elling,” in Proceedings of the 22nd International Congress on Sound
and Vibration, (Florence, Italy), International Institute of Acoustics
and Vibration, July 2015.

[97] A. Santoni and P. Fausti, “Case studies on the application of EN
12354-5 in Italy.,” in Proceedings of the 42nd International Congress
and Exposition on Noise Control Engineering, vol. 247, (Innsbruck,
Austria), pp. 6211–6220, Institute of Noise Control Engineering, 2013.

[98] P. Niemz and D. Mannes, “Non-destructive testing of wood and wood-
based materials,” Journal of Cultural Heritage, vol. 13, no. 3, pp. S26–
S34, 2012.

[99] P. S. Frederiksen, “Experimental procedure and results for the iden-
tification of elastic constants of thick orthotropic plates,” Journal of
Composite Materials, vol. 31, no. 4, pp. 360–382, 1997.

[100] E. O. Ayorinde and L. Yu, “On the elastic characterization of composite
plates with vibration data,” Journal of Sound and Vibration, vol. 283,
no. 1, pp. 243–262, 2005.

[101] V. Bucur and R. Archer, “Elastic constants for wood by an ultrasonic
method,” Wood Science and Technology, vol. 18, no. 4, pp. 255–265,
1984.

[102] D. Keunecke, W. Sonderegger, K. Pereteanu, T. Lüthi, and P. Niemz,
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