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Sommario

L’informazione quantistica sarà essenziale nello sviluppo delle reti di futura gener-

azione per una vasta gamma di applicazioni che coinvolgono, nel dominio quantistico,

il sensing, la crittografia, la computazione, e le reti. La supremazia delle tecnologie

quantistiche si basa sull’utilizzo delle proprietà peculiari della meccanica quantistica,

tra cui la sovrapposizione di stati, l’entanglement e il principio di indeterminazione.

Questo richiede quindi lo sviluppo di sistemi e reti di comunicazione in grado di sfruttare

appieno le potenzialità della meccanica quantistica.

La progettazione di sistemi e reti di comunicazione quantistici pone nuove sfide

rispetto alla controparte classica. Da un lato, a livello di sistema, è necessario carat-

terizzare nuove classi di stati non classici non Gaussiani per poter progettare sistemi di

comunicazione quantistici innovativi, in grado di raggiungere nuovi livelli di prestazioni.

Dall’altro lato, a livello di rete, la fragilità dei sistemi quantistici richiede lo sviluppo

di nuove metodologie per l’analisi e la progettazione di reti quantistiche.

Gli obiettivi di questa tesi di dottorato sono: (i) caratterizzare una importante

classe di stati non classici non Gaussiani, noti come photon-added coherent states

(PACSs); (ii) introdurre l’utilizzo di stati non classici non Gaussiani nei sistemi di co-

municazione quantistici; e (iii) sviluppare un framework per analizzare e progettare le

reti per la distribuzione di chiavi quantistiche in presenza di relay intermittenti. Nella

tesi si dimostra che l’utilizzo di stati non classici non Gaussiani può migliorare signi-

ficativamente la discriminazione di stati quantistici. Inoltre, si dimostra che un’analisi

globale dei protocolli per la distribuzione di chiavi quantistiche porta a definire nuove

strategie per il progetto delle reti. I risultati di questa tesi evidenziano l’utilità degli

stati non classici non Gaussiani per i sistemi di comunicazione quantistici ed eviden-

ziano la necessità di definire metodi olistici per l’analisi di reti quantistiche.





Abstract

Quantum information science is essential in the development of future-generation net-

works for a variety of new applications in the quantum domain involving sensing,

cryptography, computing, and networking. The supremacy of quantum technologies

relies on the exploitation of unique properties in quantum mechanics, such as superpo-

sition, entanglement, and indeterminacy. This calls for the design of communication

systems and networks able to unleash the full potentialities of quantum mechanics.

The design of quantum communication systems and networks poses new challenges

compared to classical ones. On the one side, at system level, the characterization of

new classes of non-classical non-Gaussian states is needed for the design of innovative

quantum communication systems with unprecedented performance. On the other side,

at network level, the fragility of quantum systems requires the development of new

methodologies for the analysis and the design of quantum networks.

The main objectives of this thesis are as follows: (i) characterize an important class

of non-classical non-Gaussian states, namely photon-added coherent states (PACSs);

(ii) establish the use of non-classical non-Gaussian states for quantum communication

systems; and (iii) design a framework for the analysis of quantum key distribution

(QKD) networks in the presence of a realistic intermittent relaying. It is shown that

the use of non-classical non-Gaussian states can significantly improve the performance

of quantum state discrimination. Moreover, it is also shown that a comprehensive

analysis and the design of a QKD in the presence of intermittent relaying leads to new

network design strategies. The findings of this thesis reveal the utility of non-classical

non-Gaussian states for quantum communication systems and highlights the need for

an holistic analysis of quantum networks.





Contents

1 Introduction 1

1.1 Big picture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Quantum information 7

2.1 Fundamentals of quantum mechanics . . . . . . . . . . . . . . . . . . . 7

2.1.1 Postulates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2 Quantum noise . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.3 Relevant properties . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Quantum information with continuous variables . . . . . . . . . . . . . 10

2.2.1 Classical electromagnetic field . . . . . . . . . . . . . . . . . . . 11

2.2.2 Quantized electromagnetic field . . . . . . . . . . . . . . . . . . 12

2.2.3 Quantum transformations . . . . . . . . . . . . . . . . . . . . . 16

2.2.4 Phase-space description . . . . . . . . . . . . . . . . . . . . . . 18

2.2.5 Gaussian states . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.6 Quantum channels . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Quantum information with discrete variables . . . . . . . . . . . . . . . 26

2.3.1 Quantum bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.2 Qubit transformations . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.3 Qubit physical implementations . . . . . . . . . . . . . . . . . . 29

3 Non-Gaussian quantum states 31

3.1 Photon-added states . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.1 Physical implementation . . . . . . . . . . . . . . . . . . . . . . 33

3.1.2 Photon-added coherent states . . . . . . . . . . . . . . . . . . . 34

3.1.3 Photon-added squeezed states . . . . . . . . . . . . . . . . . . . 35

3.2 Photon-subtracted states . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.1 Physical implementation . . . . . . . . . . . . . . . . . . . . . . 36



viii Contents

3.2.2 Photon-subtracted squeezed states . . . . . . . . . . . . . . . . 37

3.3 Noisy photon-added coherent states . . . . . . . . . . . . . . . . . . . . 37

3.4 Proof of the Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4.1 Proof of Theorem 3.3.1 . . . . . . . . . . . . . . . . . . . . . . . 40

3.4.2 Proof of Theorem 3.3.2 . . . . . . . . . . . . . . . . . . . . . . 41

3.4.3 Proof of Theorem 3.3.3 . . . . . . . . . . . . . . . . . . . . . . 42

3.4.4 Proof of Theorem 3.3.4 . . . . . . . . . . . . . . . . . . . . . . 43

4 Quantum discrimination of non-Gaussian states 45

4.1 General framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1.1 Optimal discrimination . . . . . . . . . . . . . . . . . . . . . . . 47

4.1.2 Optimal binary discrimination . . . . . . . . . . . . . . . . . . . 47

4.2 Discrimination of PACSs . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2.1 Noiseless PACSs . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2.2 Noisy photon-added coherent states (PACSs) . . . . . . . . . . . 49

4.3 Proof of the Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3.1 Proof of Lemma 4.2.1 . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3.2 Proof of Lemma 4.2.2 . . . . . . . . . . . . . . . . . . . . . . . . 52

5 Quantum communications with non-Gaussian states 53

5.1 Quantum communication systems . . . . . . . . . . . . . . . . . . . . . 54

5.1.1 Quantum modulator . . . . . . . . . . . . . . . . . . . . . . . . 55

5.1.2 Quantum and classical receivers . . . . . . . . . . . . . . . . . . 56

5.2 Quantum on-off keying with non-Gaussian states . . . . . . . . . . . . 59

5.2.1 System model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2.2 Performance evaluation in absence of noise . . . . . . . . . . . . 59

5.2.3 Performance evaluation in presence of noise . . . . . . . . . . . 62

5.3 Quantum pulse position modulation with non-Gaussian states . . . . . 63

5.3.1 System model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.3.2 Performance evaluation in absence of noise . . . . . . . . . . . . 64

5.3.3 Performance evaluation in presence of noise . . . . . . . . . . . 67

5.3.4 Analysis of state preparation efficiency . . . . . . . . . . . . . . 68

5.4 Proof of the Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.4.1 Proof of Proposition 5.3.1 . . . . . . . . . . . . . . . . . . . . . 69

5.4.2 Proof of Proposition 5.3.2 . . . . . . . . . . . . . . . . . . . . . 70



Contents ix

6 Quantum key distribution networks 73

6.1 Quantum key distribution . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.1.1 QKD protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.1.2 Security of a QKD protocol . . . . . . . . . . . . . . . . . . . . 76

6.1.3 BB84 protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.2 QKD networks with trusted-relay . . . . . . . . . . . . . . . . . . . . . 79

6.2.1 Fully trusted-relay BB84 . . . . . . . . . . . . . . . . . . . . . . 79

6.2.2 Simplified trusted-relay BB84 . . . . . . . . . . . . . . . . . . . 80

6.2.3 Performance evaluation . . . . . . . . . . . . . . . . . . . . . . . 81

6.3 QKD with intermittent trusted-relay . . . . . . . . . . . . . . . . . . . 81

6.3.1 Scenario description . . . . . . . . . . . . . . . . . . . . . . . . 82

6.3.2 Secret key throughput . . . . . . . . . . . . . . . . . . . . . . . 82

6.3.3 Performance evaluation . . . . . . . . . . . . . . . . . . . . . . . 84

7 Conclusion 89

A Wirtinger calculus 91

Bibliography 92





List of Acronyms

BB84 Bennett and Brassard (1984)

CECC classical error-correcting code

CPTP completely positive trace-preserving

CV continuous variable

DEP discrimination error probability

DV discrete variable

FTR fully trusted relay

ICT information and communication technologies

IR information reconciliation

LDPC low-density parity-check codes

LEO low-Earth orbit

MDEP minimum discrimination error probability

MSEP minimum symbol error probability

OPA optical parametric amplifier

PA privacy amplification

PE parameter estimation

IR information reconciliation

PAS photon-added state

PACS photon-added coherent state



xii Contents

PADTS photon-added displaced thermal state

PADSTS photon-added displaced squeezed thermal state

PAGS photon-added Gaussian state

PASS photon-added squeezed state

PATS photon-added thermal state

PSS photon-subtracted state

PSGS photon-subtracted Gaussian state

PSSS photon-subtracted squeezed state

POVM positive operator-valued measure

QCF quantum characteristic function

QN quantum network

QSD quantum state discrimination

QKD quantum key distribution

QOOK quantum on-off keying

QPPM quantum pulse position modulation

SEP symbol error probability

SRM square root measurement

STR simplified trusted relay



Chapter 1

Introduction

1.1 Big picture

Quantum mechanics is a key enabler for next-generation information and communica-

tion technologies (ICT). In particular, the possibility to actively employ and engineer

the properties of quantum mechanical systems is an essential aspect of the undergoing

second quantum revolution [1–3] allowing, on one side, the development of new tech-

nologies and applications, including quantum communications [4–9], quantum cryp-

tography [10–13], quantum computing [14–18] and quantum networks [19–23]. On

the other side, the use of quantum mechanics allows unprecedented improvements on

existing technologies such as high precision sensing and metrology [24–28].

A technology is considered to be quantum if it is based on at least one of the peculiar

and unique aspects of quantum mechanics [2]:

• Quantum superposition: the possibility, for a quantum system, to be in a super-

position of states (e.g., the Schrodinger cat that is “simultaneously” dead and

alive);

• Quantum entanglement: the non-local correlation between two or more spatially

separated quantum systems that allows one system to instantaneously affect the

other system; and

• Quantum uncertainty: the intrinsic impossibility to simultaneously know all of

the properties of a quantum system.

Quantum technologies can be classified into two categories: discrete variables (DVs)

[14–17], and continuous variables (CVs) [29–33] DV technologies are based on discrete

quantum states, such as qubits and qutrits. DVs are the quantum equivalent of digital

signals and they are a natural framework for the development of quantum protocols.
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The use of DVs allows on one side, to exploit a simple theory of quantum information;

and, on the other side, allows a simpler description of the quantum impairments.

However, DVs systems are more difficult to prepare, manage and control, as they are

typically embedded in a complex system [14]. Conversely, CVs technologies are based

on continuous quantum states, such as coherent states and Gaussian states. CVs are

the quantum equivalent of analog signals and they are a natural framework to describe

optical and radio quantum signals and thus quantum communication systems. The

use of CVs offers, on one side, the possibility to re-use the existing classical network

infrastructure by just adapting the apparatuses in the network nodes; and, on the other

side, CVs states are more easy to generate and manage with respect to DV states as

they have a natural physical description. However, the analysis and the design of

protocol in the CV domain is more difficult than in the DV domain.

Recently, DVs and CVs quantum systems have been considered to be merged in a

unified framework that exploits the benefits of both the approaches for the development

of hybrid powerful technologies [34].

Quantum communications

Quantum communication is the task of transferring classical or quantum informa-

tion from one place to another by using a quantum carrier, a quantum-capable sys-

tem. The use of a quantum carrier to transfer information allows to: (i) overcome

the performance limits of classical communication systems [4–7]; and (ii) provide an

information-theoretical secret communication channel [10–12]. However, the design and

the analysis of a quantum communication system is challenging as the symbol error

probability (SEP) in the quantum domain requires solving a quantum state discrimi-

nation (QSD) problem. This is a difficult task, especially in the presence of thermal

noise: the discrimination error probability (DEP) of the QSD problem depends on the

set of quantum states and the measurement used to discriminate among them.

When used to transmit classical information, quantummodulations such as quantum

on-off keying (QOOK) and quantum pulse position modulation (QPPM) can provide

higher reliability than classical ones [4]. Nevertheless, the analysis and the design of

a quantum communication system is more difficult than in the classical domain: the

error probability depends on the quantum states employed in the constellation, and the

design of a quantum receiver that minimizes the error probability is challenging, espe-

cially in the presence of noise. In the literature, particular attention has been devoted to

the analysis of quantum communication systems that employ Gaussian states [35–46].

In contrast, quantum communication systems with non-Gaussian states has received
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less attention except for attempts made on the use of number states [47–49].

Photon-added coherent states (PACSs) and photon-added squeezed states (PASSs)

[50–55] are two important classes of non-Gaussian states that can exhibit a non-classical

behavior and that can be generated by using linear and non-linear optical devices to-

gether with conditional measurements on a coherent state state [56–58].PACSs and

PASSs have been considered for use in quantum technologies [59–62] but a character-

ization of quantum communication systems with PACSs and PASSs is still missing.

Determining the effects of thermal noise on quantum communication systems requires

a mathematical characterization of the quantum states, which is still missing for these

states.

When used to transmit quantum information, quantum systems can be exploited

to distribute a information-theoretically secret cryptographic key via a quantum key

distribution (QKD) protcol [63–65]. QKD is one of the most mature quantum commu-

nication technologies, with several commercial implementations available on the mar-

ket. However, the distribution of secret keys across long distances is still a challenge

with current technologies, due to noise and attenuations in quantum channels [64].

The most promising techniques for long-distance QKD involve the usage of low at-

tenuation optical fibers [66–68] for metropolitan distances and low-Earth orbit (LEO)

satellites [69–71] for long-range communications. However, a direct and efficient distri-

bution of secret keys over long distances is a challenging task with current technologies,

calling for the implementation of quantum networks to allow a global-scale QKD.

Quantum networks

A quantum network (QN) [19–23] is an ensemble of spatially distributed and physically

interconnected nodes that are able to manage and transmit quantum information. In-

deed, in analogy with the classical world, the quantum technologies running in a point-

to-point scenario can be interconnected with each other to form a QN. QNs exploit the

unique features of quantum mechanics to enable new communication and computing

applications, including the distribution of cryptographically secret keys (these networks

are referred to as QKD networks). However, the analysis and the design of quantum

networks present several critical issues that are related to the quantum nature of the

systems. First of all, quantum systems, such as the quantum bits, are much more frag-

ile with respect to classical systems, making them more sensible to impairments during

the propagation [14]. Furthermore, quantum systems cannot be cloned [72]: as such,

it is difficult to apply the store-and-forward paradigm of classical networks. There are

two possible solutions to these problems: (i) use quantum repeaters, which are specifi-



4 Chapter 1. Introduction

cally designed to regenerate a quantum signal and acting transparently with respect to

the quantum protocol running on the QN and thus preserving all of its characteristics

(e.g., the secrecy of the information in QKD networks); (ii) use trusted nodes, which

regenerate the quantum signal by reading it and regenerating a new quantum signal

to mitigate the effect of noise impairments, thus requiring the intermediate nodes to

be trusted.

In almost all theoretical studies, the efficiency of a QKD protocol is evaluated in

terms of the secret key rate (or secret fraction), i.e., the number of secret key bits per

raw key bit. This rate is the most important figure of merit in the design of a QKD

link, as it gives an estimate of the speed that the QKD system can achieve. However, in

a QKD network, it may happen that one or more of the relays are not always available

to their neighbours, as in the case of LEO satellites. Moreover, the end nodes may

be able to communicate between them using an existing communication network (e.g.,

Internet), even in the absence of the relay. This is the case of the recent satellite-

relayed QKD network established through the Chinese satellite named Micius [71]. In

this scenario, the design and the analysis of a QKD protocol is more subtle, and it

should take into account these limitations to improve the overall secret key throughput

of the network, i.e., the total amount of exchanged secret key bits in the time frame

during which the relay is visible to the end nodes.

1.2 Objectives

The goals of this thesis is to establish the use of non-Gaussian states for quantum

technologies and provide new methodologies for the analysis of quantum networks.

The key contributions of the thesis are as follows:

• characterization of PACSs in terms of Fock representation and quasi-probability

distributions;

• put forth the idea of using PACSs for QSD and quantum communication systems;

• characterization of QSD with noisy PACSs in terms of DEP;

• characterization of QOOK and QPPM system operating with noisy PACSs in

terms of SEP;

• analysis of the decoherence and losses effects on the system performance for both

QOOK and QPPM systems;
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• evaluation of the source generation efficiency and its impact on the data rate for

both QOOK and QPPM systems.

• definition of a new metric for the comparison of QKD network protocols with

intermittent relaying; and

• analysis of the secret key throughput for protocols operating in an intermittent-

relay scenario.

The remainder of the thesis is organized as in the Following.

Chapter 2 reviews the fundamentals of quantum mechanics and presents the math-

ematical preliminaries to describe DVs and CVs quantum systems.

Chapter 3 provides a characterization for the class of PACSs in terms of Fock

representation, WignerW -function, Glauber–Sudarshan P -function, and Husimi–Kano

Q-function.

Chapter 4 characterizes QSD with PACSs in terms of DEP with and without noise

in state preparation.

Chapter 5 characterizes the performance of QOOK and QPPM systems employing

PACSs and PASSs in the presence of noise in state preparation. Morevover, the effect

of decoherence and noise impairments is analyzed for these systems.

Chapter 6 analyses the performance of a QKD networks in the presence of inter-

mittent trusted relays and defines a new performance metric for QNs operating in this

scenario referred to as secret key throughput. This metric is then applied to analyze

the performance of different protocols in a realistic scenario involving a LEO satellite.

The results presented in this thesis have been published in the proceedings of in-

ternational conferences and journals [5–7,13].

1.3 Notation

Random variables are displayed in sans serif, upright fonts; their realizations in serif,

italic fonts. Vectors are denoted by bold lowercase letters. Operators and matrices

are denoted by uppercase letters. For example, a random variable and its realization

are denoted by x and x; a random vector and its realization are denoted by x and x;

a random matrix/operator and its realization are denoted by X and X, respectively.

Sets are denoted by upright sans serif. The m-by-m identity matrix is denoted by Im:

the subscript is removed when the dimension of the matrix is clear from the context.

The sets of complex numbers and of positive integer numbers are denoted by C
and N, respectively. For z ∈ C: |z| and arg(z) denote the absolute value and the
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phase, respectively; Re{z} = zr and Im{z} = zi denote the real part and the imaginary

part, respectively; z∗ is the complex conjugate; ž = [z z∗]T is the augmented vector

associated to z; and ı =
√
−1 . The trace and the adjoint of an operator are denoted by

tr{·} and (·)†, respectively. The trace norm of an operator is represented by ∥·∥1. For a

matrix M ∈ Cn×m: MT denotes the transpose; MH denotes the transpose conjugate.

For a quantum system: H denotes the Hilbert space of states; D(H) denotes the set

of densities operators on H, i.e., D(H) = {Ξ : H → H |Ξ = Ξ† and tr{Ξ} = 1}. For
two operators X and Y , the commutator is denoted by [X,Y ] = XY − Y X. For a

quantum state Ξ, the expectation value of an observable A is ⟨A⟩ = tr{ΞA}.



Chapter 2

Quantum information

Quantum information is the discipline that underpins the second quantum revolution.

It considers the creation, the manipulation, and the transmission of quantum or clas-

sical information via a quantum system. There are two complementary approaches to

quantum information: CV, and DV. A CV system is the quantum equivalent of an

analog signal, and it is well-suited to describe the low-level protocols of a quantum

network such as the quantum communication systems. In these systems, the informa-

tion is encoded in a quantum system having a degree of freedom with a continuous

spectrum. A DV system is the quantum equivalent of a digital signal, and it is well-

suited to describe high-level applications and protocols, such as quantum computing

and quantum cryptography. In these systems, the information is encoded in a quantum

system having a degree of freedom with a finite spectrum.

This section reviews the fundamentals of quantum mechanics and presents the

mathematical preliminaries on CVs and DVs systems.

2.1 Fundamentals of quantum mechanics

2.1.1 Postulates

This section reviews the postulate of quantum mechanics in the form of Dirac and von

Neumann [73,74].

Postulate 1 (States). The state space of an isolated physical system is a separable

complex Hilbert space H. The system is completely described by its state vector |ψ⟩,
which is a unit vector in the space H.

Postulate 2 (Observables). Every observable is associated with a linear, self-adjoint

operator M on the space H. The possibile outcomes for m are the eigenvalues of M .



8 Chapter 2. Quantum information

If the system is in the state |ψ⟩, the probability to get the outcome m is equal to

P{m = m} = ⟨ψ|Em |ψ⟩ where Em is the projector onto the eigenspace corresponding

to m. For the outcome m, the state of the system after the measurement is Em |ψ⟩ .

Postulate 3 (Evolution). The evolution of a closed quantum system is described by

a unitary operator U in H. Let the system be in the state |ψ(t0)⟩ at the time instant

t0. Then, the state of the system |ψ(t)⟩ at the time istant t is:

|ψ(t)⟩ = U(t, t0) |ψ(t0)⟩ . (2.1)

Postulate 4 (Composite systems). The space state H of a system composed by two

subsystems, H1 and H2, is given by the tensor product H = H1 ⊗H2 .

2.1.2 Quantum noise

This section gives a description of quantum systems, channels and measurement in

the presence of noise. In practice, the noise can be interpreted as the interaction of a

quantum system with its surrounding.

Noisy states

In the most general framework which comprehends the possibility for a quantum state

to be affected by noise, the definition for a quantum state is given as follows.

Definition 2.1.1. The state of a quantum system is determined by a linear operator,

called density operator, Ξ : H → H such that Ξ = Ξ† and tr{Ξ} = 1.

According to this definition, the postulates can be reformulated as follows.

Measurement. If the system is in the state Ξ, the probability to get the outcome m

with the observable M is P{m = m} = tr{ΞEm} and the state after the measurement,

given the outcome m, is given by EmΞE†
m/ tr{EmΞE†

m}, where Em is the projector

into the eigenspace corresponding to the eigenvalue m of M .

Evolution. If the system is in the state Ξ, the state after the evolution described

by the unitary operator U is given by UΞU † .

Quantum channels

The description of the evolution for a quantum system given in Postulate 3 is not

sufficiently general to describe all of the possible evolution. In particular, it does not
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consider the possibility for a quantum system ΞS to interact with an ancilla in the

state ΞA using a unitary evolution USA, and then perform a joint measurement MSA

on the two systems. The ancilla is then discarded after the measurement. In this case,

the state of the system after the interaction is given by

trB

{︃∑︂
m

EmUSAΞS ⊗ΞAU
†
SAE

†
m

tr{EmUSAΞS ⊗ΞAU
†
SAE

†
m}

}︃

It can be shown that this definition is equivalent to the following.

Definition 2.1.2. A quantum channel is described by a linear completely positive

trace-preserving (CPTP) mapping C : D(H) → D(H) such that the state Ξ at the

end of the quantum channel is C(Ξ) .

Generalized measurements

The description of a quantum measurement given in Postulate 2 is not sufficiently

general to describe all of the observations which can be performed in the real world.

In particular, it does not consider the possibility for a quantum system ΞS to interact

with an ancilla in the state ΞA and then perform a joint measurement MSA on the

two systems. In this case, the state of the quantum system after the measurement with

outcome m is given by

trB{EmUSAΞS ⊗ΞAU
†
SAE

†
m}

Pm

where Em is the projector onto the eigenspace of MSA associated to m, and Pm =

tr{EmUSAΞS ⊗ΞAU
†
SAE

†
m} is the probability to get the outcome m.

If the state after the measurement is not of importance, then this is equivalent to

the following definition.

Definition 2.1.3. A positive operator-valued measure (POVM) is described by a set

of operators P = {Π0,Π1, ...,ΠM−1} such that Πi ≽ 0 for i = 0, 1, ...,M − 1, and∑︁
iΠi = I. The probability to get the i-th outcome for a given state Ξ is tr{ΞΠi} .

2.1.3 Relevant properties

In this section, we report two noticeable results which are fundamental for quantum

cryptography.
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Uncertainty

The Heisenberg uncertainty principle is one of the oldest results in quantum mechanics.

It formally states that it is not possible to have, at the same time, a perfect knowledge

of two observable quantities which belong to operators that do not commute.

Theorem 2.1.4 (Robertson-Heisenberg). Let |ψ⟩ ∈ H be a quantum state. For any

two observables A, B:

∆A∆B ≥ 1

2
|⟨ψ| [A,B] |ψ⟩| . (2.2)

where (∆A)2 = ⟨ψ|A2 |ψ⟩ − ⟨ψ|A |ψ⟩2 and (∆B)2 = ⟨ψ|B2 |ψ⟩ − ⟨ψ|B |ψ⟩2.

No-cloning

One of the most simple results of quantum mechanics is the no-cloning Theorem.

Despite its simplicity, it was discovered only in 1982 by Wooters and Zurek [72] and

has profound implications in quantum information.

Theorem 2.1.5. It is not possible to create a copy of an unknown quantum state.

Proof. Let’s suppose that such a system exists. If the state space is the Hilbert space

H, it means that there exist a unitary operator U in H ⊗H such that for all source

states |ψ⟩ , |ϕ⟩ ∈ H it is able to to build a copy of the state, independently from the

state |s⟩ of the target system. Thus, ∀ |s⟩ ∈ H:

U
(︁
|ψ⟩ ⊗ |s⟩

)︁
= |ψ⟩ ⊗ |ψ⟩

U
(︁
|ϕ⟩ ⊗ |s⟩

)︁
= |ϕ⟩ ⊗ |ϕ⟩ .

It follows that:

⟨ϕ| ⟨s|U †U |ψ⟩ |s⟩ = [⟨ϕ|ψ⟩]2 = ⟨ϕ|ψ⟩ .

Where the last equality follows from the unitarity of U . However, the last relation can

hold if and only if ⟨ϕ|ψ⟩ is equal to 0 or 1. This means that a cloning operator can only

work correctly if the input states are orthogonal. Therefore, a general cloning device

can not exist.

2.2 Quantum information with continuous variables

The CV framework is related to the study of quantum systems with an infinite-

dimensional Hilbert space. The CV framework is used to describe the quantized elec-
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tromagnetic field, that is the best-known example of CV quantum system. Indeed, the

electromagnetic field inside a conductive cavity can be represented as a superposition of

modes which behave as independent harmonic oscillators. For these reasons, hereafter,

the term CV system will be used to indicate a system behaving like a set of harmonic

oscillator.

2.2.1 Classical electromagnetic field

Consider an electromagnetic cavity with perfectly conducting walls delimited by the

volume V ⊂ R3. The electric field e(r, t) inside the cavity is determined by Maxwell’s

equations and can be written as a superposition of the cavity modes [75–77]

e(r, t) = −
∑︂
n

pn(t)un(r) (2.3)

where pn(t) and un(r) describe the temporal evolution and the shape of each cavity

mode, respectively, and are determined by the initial conditions of the field and the

shape of the cavity [75–77]. For a cubical cavity of side L, it can be shown that

un(r) =
1√
L3

exp{ıkn · r}

where kn is the propagation vector that defines the allowed frequencies ωn = c|kn|2 .

Correspondingly, the magnetic field h(r, t) is given by

h(r, t) =
∑︂
n

qn(t)∇×un(r) (2.4)

where qn(t) is related to pn(t) by the relation

pn(t) =
dqn(t)

dt
. (2.5)

The total energy H of the electromagnetic field is given by

H =
1

2

∫︂
V
ϵ0e

2(r, t) + µ0h
2(r, t) dr (2.6)

and, by using (2.3)-(2.4), it can be expressed as

H =
∑︂
n

Hn (2.7)
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where Hn is the energy associated to the mode n, and it is given by

Hn =
1

2

[︁
p2n(t) + ω2

nq
2
n(t)

]︁
. (2.8)

Therefore, the electromagnetic field inside an ideal cavity is formally equivalent to an

infinite ensemble of uncoupled harmonic oscillators. The harmonic oscillator can be

equivalently described by introducing the complex variable an(t) defined as

an(t) =
ωnqn(t) + ıpn(t)√

2ℏωn

. (2.9)

By using (2.9) in (2.8), the energy of every harmonic oscillator can be expressed as

Hn = ℏωn|αn(t)|2 (2.10)

and thus the total energy in terms of αn(t) is given by

H =
∞∑︂

n=−∞

ℏωn|αn(t)|2 . (2.11)

2.2.2 Quantized electromagnetic field

The quantization of the electromagnetic field is obtained by associating two time-

varying Hermitian operatorsQn(t),Pn(t) ∈ L(Hn) to the two dynamical variables qn(t)

and pn(t) of the classical harmonic oscillator, for every n.1 Note that, by construction,

the Hilbert space Hn associated to the n-th mode of the cavity is infinite dimensional

as the physical observables Qn(t) and Pn(t) are allowed to assume numerical values

in a continuous interval. Therefore, the Hilbert space H associated to the quantized

electromagnetic field is given by H = ⊗nHn.

The quantization is obtained by imposing the following set of commutation relations

for every n,m

[Qn,Pm] = ıℏδn,mI (2.12)

[Qn,Qm] = 0 (2.13)

[Pn,Pm] = 0 . (2.14)

The quantum harmonic oscillator can be equivalently described by introducing the

1In the following, unless otherwise specified, the temporal dependence of the operators will not be
considered.
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annihilation operator defined as

An =
ωnQn + ıPn√

2ℏωn

. (2.15)

Notice that An is not self-adjoint and thus it is not an observable. The adjoint of An

is called creation operator and it is given by

A†
n =

ωnQn − ıPn√
2ℏωn

. (2.16)

From (2.7), the Hamiltonian of the quantum system is

H =
∑︂
n

Hn (2.17)

where

Hn =
1

2

[︁
P 2

n + ω2
nQ

2
n

]︁
(2.18)

is the Hamiltonian operator associated to the n-th cavity mode. Equivalently, from

(2.10), the Hamiltonian can be expressed in terms of A†
n and An as

Hn = ℏωnA
†
nAn . (2.19)

Single-mode cavity

In several cases of practical interest, it is useful to consider a single-mode cavity for

which the Hilbert space H corresponds to the Hilbert space of a single quantum Har-

monic oscillator, and thus the Hamiltonian reduces to

H = ℏωA†A (2.20)

where A and A† are the bosonic field operators associated to the single mode of the

quantum field. In this case the number operator is N = A†A.

Fock states

The operator Nn = A†
nAn is called the number operator of the n-th mode and it can

be shown that its spectrum is discrete, i.e.,

Nn |nn⟩ = nn |nn⟩ (2.21)
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with nn ∈ N. Hence, by (2.19), the energy of a quantum harmonic oscillator is quan-

tized and the measurement operator Nn determines the number of “quanta” in the

mode n. In particular, from (2.19) and the definition of Nn, the Hamiltonian is

H =
∑︂
n

ℏωnNn (2.22)

and, from (2.21) and (2.22) the eigenvalues of H are

En =
∑︂
n

ℏωnnn (2.23)

where n = {nn}n is the vector containing the number of “quanta” of each mode. It

is thus possible to introduce the operator N which quantifies the total number of

“quanta” in the quantized electromagnetic field, and it is given by

N =
∑︂
n

A†
nAn . (2.24)

The spectrum of N is discrete and it is given by

N |n⟩ = n |n⟩ (2.25)

where the eigenvalue n (i.e., the number of quanta) is

n =
∑︂
n

nn (2.26)

and the eigenvector |n⟩ is
|n⟩ =

⨂︂
n

|nn⟩ . (2.27)

The state |n⟩ is referred to as multi-mode Fock state. The state |0⟩ is associated to

the lowest energy level of the system and thus it is also referred to as ground state. It

is important to note that the set of all Fock states forms an orthonormal basis for the

Hilbert space H. Therefore, every state Ξ ∈ D(H) can be represented as

Ξ =
∑︂
n

∑︂
m

cn,m |n⟩⟨m| (2.28)

where

cn,m = ⟨n|Ξ |m⟩ . (2.29)
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Single-mode Fock states

In a single mode cavity the number operator is given by N = A†A. Therefore, the set

of the single-mode Fock states is determined by the eigenvalue equation

N |n⟩ = n |n⟩ .

It can be proven that [73] the action of the annihilation operator on a Fock state

decreases the number of photons by one, i.e.,

A |n⟩ = √
n |n− 1⟩ . (2.30)

Conversely, the action of the creation operator on a Fock state increases the number

of photons by one, i.e.,

A† |n⟩ =
√
n+ 1 |n+ 1⟩ . (2.31)

Finally, observe that by using Equations (2.28)-(2.29) every single-mode state Ξ can

be represented using the (single-mode) Fock representation

Ξ =
∑︂
n

⟨n|Ξ |m⟩ |n⟩⟨m| . (2.32)

Thermal state

Consider an electromagnetic cavity in thermal equilibrium with its surrounding. In this

case, the probability that the system is in a state with a given energy E is given by

the Boltzmann distribution, and it is proportional to exp{−E/(kBT )}. Recall that the
energy levels for the quantized electromagnetic fields are given by (2.23) and therefore,

the state of the system in thermal equilibrium is

Ξ =
1

Z

∑︂
n

exp
{︂
− En

kBT

}︂
|n⟩⟨n|

where Z is a normalization constant, called partition function, that ensures tr{Ξ} = 1.

It can be shown that [77] Z =
∏︁

n Zn with

Zn =
(︂
1− exp

{︂
− ℏωn

kBT

}︂)︂−1

.

Furthermore the state Ξ is a product of independent states for each mode, i.e.,

Ξ =
⨂︂
n

Ξn
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where Ξn = Ξth, with

Ξth =
∞∑︂
n=0

n̄n

(n̄+ 1)n+1
|n⟩⟨n| (2.33)

and

n̄ =
(︂
exp

{︂
− ℏω
kBT

}︂
− 1

)︂−1

(2.34)

in which, for each mode, n = nn and ω = ωn. Notice that Equation (2.34) is the famous

Planck distribution. In the following, the state (2.33) will be referred to as thermal

state. Equation (2.33) can be conveniently rewritten as [4]

Ξth = (1− v)
∞∑︂
n=0

vn |n⟩⟨n| (2.35)

where

v =
n̄

n̄+ 1
. (2.36)

2.2.3 Quantum transformations

This section presents some important transformations that can be applied to a single-

mode or a two-mode CV system by using physical devices.

Displacement

The first important evolution operator for a single-mode CV system is the displacement

operator defined as

Dξ = exp{ξA† − ξ∗A} . (2.37)

In the Heisenberg picture, the annihilation and creation operators A and A†, are

transformed by the linear transformation[︄
A

A†

]︄
→

[︄
A

A†

]︄
+

[︄
α

α∗

]︄
I . (2.38)

The displacement operator can be implemented by using a beam splitter together with

a strong laser beam [78].

Rotation

The second important evolution operator for a single-mode CV system is the rotation

operator defined as

Rϕ = exp{ıϕA†A} . (2.39)
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In the Heisenberg picture, the annihilation and creation operators A and A†, are

transformed by the linear transformation[︄
A

A†

]︄
→

[︄
eıθ 0

0 e−ıθ

]︄[︄
A

A†

]︄
. (2.40)

The rotation operator can be implemented by increasing the optical length of the

electromagnetic beam by using, for example, a transparent material with a different

refractive index [31].

Squeezing

The last important evolution operator for a single-mode CV system is the squeezing

operator defined as

Sζ = exp{1
2
(ζ(A†)2 + ζ∗A2)} . (2.41)

In the Heisenberg picture, the annihilation and creation operators A and A†, are

transformed by the linear transformation[︄
A

A†

]︄
→

[︄
cosh(r) − sinh(r)e−ıϕ

− sinh(r)eıϕ cosh(r)

]︄[︄
A

A†

]︄
. (2.42)

The single-mode squeezing operator can be implemented by using a degenerate para-

metric amplifier [79].

Beam splitter

The first important evolution operator for a two-mode CV system is the beam splitter

defined as

Bθ = exp{θ(A†
1A2 −A1A

†
2)} . (2.43)

In the Heisenberg picture, the annihilation and creation operators A1, A2, and A†
1, A

†
2

for the two modes are transformed by the linear transformation⎡⎢⎢⎢⎢⎣
A1

A†
1

A2

A†
2

⎤⎥⎥⎥⎥⎦ →
[︄ √

τI2
√
1− τI2

−
√
1− τI2

√
τI2

]︄⎡⎢⎢⎢⎢⎣
A1

A†
1

A2

A†
2

⎤⎥⎥⎥⎥⎦ . (2.44)

The beam splitter is a four-port device that can be implemented using a mirror [77].



18 Chapter 2. Quantum information

Two-mode squeezing

The last important evolution operator for a two-mode CV system is the two-mode

squeezing operator defined as

S
(2)
ζ = exp{ζA†

1A
†
2 + ζ∗A1A2} . (2.45)

In the Heisenberg picture, the annihilation and creation operators A1, A2, and A†
1, A

†
2

for the two modes are transformed by the linear transformation⎡⎢⎢⎢⎢⎣
A1

A†
1

A2

A†
2

⎤⎥⎥⎥⎥⎦ →
[︄

cosh(2r)I2 − sinh(2r)I2

− sinh(2r)I2 cosh(2r)I2

]︄⎡⎢⎢⎢⎢⎣
A1

A†
1

A2

A†
2

⎤⎥⎥⎥⎥⎦ . (2.46)

The two-mode squeezing operator can be implemented by using a non-degenerate para-

metric amplifier [31].

2.2.4 Phase-space description

The state of a CV quantum system is described by an infinite-dimensional density oper-

ator Ξ. The phase-space description of a CV quantum system provides an alternative

and convenient representation for the quantum state Ξ via a complex function called

quasi-probability distribution. This tool was introduced by Wigner [80] and further

investigated in [81, 82] and [83–85]. For simplicity, we consider here only the case of a

single-mode bosonic system. The extension to the multidimensional case is trivial and

can be found in other works [29–33,45].

Characteristic function

In analogy with classical probability theory [86], the state of a quantum system can be

expressed in terms of a complex-valued function called quantum characteristic function,

which is the Fourier-Weyl transform of the density operator associated to the state.

Definition 2.2.1 (Quantum characteristic function). The s–ordered characteristic

function χ(ξ, s), with ξ, s ∈ C, associated to the quantum state Ξ is

χ(ξ, s) = exp
{︂s
2
|ξ|2

}︂
tr{ΞDξ} . (2.47)

Notice that, in contrast to classical probability theory, there is an infinite number

of quantum characteristic functions, indexed by the parameter s ∈ C, representing
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the same quantum state. This can be attributed to the non-commutativity of the

annihilation and creation operators for which the parameter s identifies the ordering

of the product. Indeed notice that, by using the Baker–Campbell–Hausdorff formula

[87,88]

Dξ = eξA
†−ξ∗A = eξA

†
e−ξ∗Ae−

1
2
|ξ|2 = e−ξ∗AeξA

†
e

1
2
|ξ|2 . (2.48)

Notice that, in the second equality, all of the creation operators are on the left and all

the annihilation operators are on the right (normal ordering), and, in the third equality

all of the creation operators are on the right and all the annihilation operators are on the

left (anti-normal ordering). The ordering in the first equality is the so called symmetric

ordering. Therefore, it is possible to define an s-ordered displacement operator as

Dξ,s = Dξ exp
{︂s
2
|ξ|2

}︂
(2.49)

which comprehends the normal ordering (s = 1), the anti-normal ordering (s = −1)

and the symmetric ordering (s = 0).

In analogy with the classical characteristic function, the quantum characteristic

function can be used to compute the moments of the s–ordered product, hereafter

referred with {(A†)
n
Am}s, as follows

⟨︁
{(A†)

n
Am}s

⟩︁
= tr{Ξ{(A†)

n
Am}s} = (−1)m

∂m+n

∂ξ∂ξ∗
χ(ξ, s)

⃓⃓⃓
ξ=0

. (2.50)

The s-ordered quantum characteristic function χ(ξ, s) associated to the quantum

state Ξ is unique [89]. Therefore, the state Ξ can be obtained from χ(ξ, s) by using

the inversion formula [81, Eq. (5.16)], as given in the following.

Theorem 2.2.2 (Representation). Let χ(ξ, s) be the s-ordered characteristic function

associated to Ξ. Then

Ξ =
1

π2

∫︂
R2

χ(ξ, s)D†
ξ,−s d

2ξ . (2.51)

Quasi-probability distribution

The state of a quantum system can be equivalently described by using the inverse

Fourier transform of the characteristic function, called quasi-probability distribution.

Definition 2.2.3 (Quasi-probability distribution). The s-ordered quasi-probability

distribution W (α, s), with s ∈ C, associated to the quantum state Ξ is

W (α, s) =
1

π2

∫︂
R2

χ(ξ, s)eαξ
∗−α∗ξ d2ξ (2.52)
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where χ(ξ, s) is the s-ordered characteristic function associated to Ξ as in (2.47).

Remark. Recall that, in classical probability theory, the inverse Fourier transform

of the quantum characteristic function (QCF) associated to a random variable is the

probability density function of the random variable itself. In quantum mechanics,

the quasi-probability distribution must not be interpreted as the probability density

function for α. Indeed, for a non-classical state, the quasi-probability distribution may

assume negative values.

For s = 0, the function W (α) = W (α, 0) is the Wigner W -function [80]; for s = −1

the function Q(α) = W (α,−1) is the Husimi–Kano Q-function [90, 91]; and for s = 1

the function P (α) = W (α, 1) is the Glauber–Sudarshan P -function [87,88,92].

The Glauber–Sudarshan P -function has the remarkable property to represent the

quantum state in terms of coherent states as

Ξ =

∫︂
P (α) |α⟩⟨α| d2α . (2.53)

Therefore, the Fock representation of Ξ can be expressed from (2.53) in terms of the

P -function as

⟨m|Ξ |n⟩ = 1√
n!m!

∫︂
P (α)e−|α|2(α∗)nαm d2α . (2.54)

Notice that, for every quantum state Ξ ∈ D(H), the characteristic function χ(ξ, s)

defined in (2.47) satisfies the following bound [82, Eq. (6.25)]

|χ(ξ, s)| ≤ exp
{︂1

2
Re(s)|ξ|2

}︂
. (2.55)

Therefore, since |χ(ξ, s)| ≤ 1 for every s ∈ C such that Re(s) ≤ 0, the quasi-probability

distributions W (α, s) always exists for every s ∈ C such that Re(s) ≤ 0. Therefore,

the Wigner W -function and the Husimi Q-function always exists, while the Glauber–

Sudarshan P -function may not exist. If the s–ordered quasi-probability distribution

W (α, s) exists, then the corresponding quantum characteristic function can be obtained

by using the Fourier inversion formula.

Theorem 2.2.4. LetW (α, s) be the s-ordered quasi-probability quasi-probability dis-

tribution associated to Ξ. Then

χ(ξ, s) =
1

π2

∫︂
R2

W (α, s)eα
∗ξ−αξ∗ d2α . (2.56)
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2.2.5 Gaussian states

Gaussian states [29–33] is a broad class of quantum states that plays a central role in

CV quantum information, and can be defined as follows.

Definition 2.2.5. A quantum state ΞG is Gaussian iff its Wigner function WG(α) is

Gaussian, i.e.,

WG(α) =
1

π
√︁

det Č0

exp

{︃
−1

2
(α̌− µ̌)HČ−1

0 (α̌− µ̌)

}︃
(2.57)

where µ̌ is the augmented displacement vector, and Č0 is the augmented covariance

matrix.

The symmetrically-ordered characteristic function χG(ξ) of a Gaussian state Ξ can

be obtained by using Equation (2.57) in (2.56) to get

χG(ξ) = exp

{︃
−1

2
ξ̌HZČ0Z

Hξ̌ + (Zµ̌)Hξ̌

}︃
. (2.58)

Remark. Notice that, in the literature, the definition of Gaussian states is given with

respect to the Wigner function defined on R2 instead of C, i.e.,

W (x) =
1

π
√
detV

exp

{︃
−1

2
(x− x̄)TV −1(x− x̄)

}︃
(2.59)

where x̄ ∈ R2 is the displacement vector and V is the covariance matrix. Expres-

sion (2.57) is obtained from (2.59) by using the following transformations [93–97]

µ̌ =
1√
2
Jx̄ (2.60)

Č0 =
1

2
JV JH (2.61)

where

J =

[︄
1 ı

1 −ı

]︄
. (2.62)

Using (2.47) it also follows that the s-ordered characteristic function χG(ξ, s) of a

Gaussian state Ξ is given by

χG(ξ, s) = exp

{︃
−1

2
ξ̌HZČsZ

Hξ̌ + (Zµ̌)Hξ̌

}︃
. (2.63)
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where

Čs = Č0 −
s

2
I . (2.64)

Therefore, if Čs is invertible, the s-ordered quasi probability distribution is given by

the Fourier transform of (2.63), i.e.,

WG(α, s) =
1

π
√︁

det Čs

exp

{︃
−1

2
(α̌− µ̌)HČ−1

s (α̌− µ̌)

}︃
. (2.65)

There are some important sub-classes of Gaussian states, as detailed in the following.

Coherent states

A coherent state [87, 88] with amplitude µ ∈ C is defined as the eigenstate |µ⟩ of the
annihilation operator A associated to the eigenvalue µ, i.e.,

A |µ⟩ = µ |µ⟩ . (2.66)

The state can be obtained from the ground state by using the displacement operator

|µ⟩ = Dµ |0⟩ . (2.67)

A coherent state with amplitude µ ∈ C can be proven to be a Gaussian state with

augmented mean µ̌ = [µ µ∗]T and augmented covariance matrix

Č0 =
1

2
I . (2.68)

Therefore, the WignerW -function, the Glauber–Sudarshan P -function, and the Husimi–

Kano Q-function associated with Ξth(µ) are respectively given by [98]

Wc(α) =
2

π
exp

{︁
− 2|α− µ|2

}︁
(2.69)

Pc(α) = δ2(α− µ) (2.70)

Qc(α) =
1

π
exp

{︁
− |α− µ|2

}︁
. (2.71)

The Fock representation of a coherent state is given by

|α⟩ = e−
|α|2
2

∞∑︂
n=0

αn

√
n
|n⟩ . (2.72)
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Noisy coherent states

A noisy coherent state with amplitude µ ∈ C is defined to be a coherent state affected

by thermal noise in state preparation, and it is defined as follows

Ξth(µ) = DµΞthD
†
µ (2.73)

where Ξth is a thermal state with mean number of thermal photons n̄, as defined in

(2.33). A noisy coherent state is a Gaussian state with augmented mean µ̌ = [µ µ∗]T

and augmented covariance matrix

Č0 =
(︂
n̄+

1

2

)︂
I . (2.74)

The Fock representation of a noisy coherent state Ξth(µ) is given by [4]

⟨n|Ξth(µ) |m⟩ = (1−v) e−(1−v)|µ|2
√︃
n!

m!
vn
[︁
(1−v)µ∗]︁m−n

Lm−n
n

(︂−(1− v)2|µ|2
v

)︂
(2.75)

where v = n̄/(n̄ + 1). The Wigner W -function, the Glauber–Sudarshan P -function,

and the Husimi–Kano Q-function associated with Ξth(µ) are respectively given by [98]

Wth(α) =
1

π(n̄+ 1
2
)
exp

{︂
− |α− µ|2

n̄+ 1
2

}︂
(2.76)

Pth(α) =
1

πn̄
exp

{︂
− |α− µ|2

n̄

}︂
(2.77)

Qth(α) =
1

π(n̄+ 1)
exp

{︂
− |α− µ|2

n̄+ 1

}︂
. (2.78)

Squeezed states

A squeezed state [99, 100] with amplitude µ ∈ C and squeezing parameter ζ ∈ C is

defined as follows

|µ, ζ⟩ = DµSζ |0⟩ . (2.79)

A squeezed state with amplitude µ ∈ C and squeezing parameter ζ ∈ C can be proven

to be a Gaussian state with augmented mean µ̌ = [µ µ∗]T and augmented covariance

matrix

Č0 =
1

2

[︄
cosh(2r) sinh(2r)e−ıϕ

sinh(2r)eıϕ cosh(2r)

]︄
. (2.80)

Therefore, a squeezed state is represented by a Gaussian Wigner function that is not

circularly symmetric, i.e., the uncertainty of one quadrature is reduced at the expense
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of the uncertainty for the other. Indeed, by using (2.80) into Eq. (2.65), the Wigner

function of a squeezed state with ζ = re−ıϕ is found to be [98]

Ws(α) =
2

π
exp

{︁
|(α− µ) cosh(r)− (α− µ)∗ sinh(r)e−ıϕ|2

}︁
. (2.81)

Noisy squeezed states

A noisy squeezed state with amplitude µ ∈ C and squeezing parameter ζ ∈ C is defined

to be a squeezed state affected by thermal noise in state preparation, and it is defined

as follows

Ξth(µ, ζ) = DµSζΞthS
†
ζD

†
µ (2.82)

where Ξth is a thermal state with mean number of thermal photons n̄, as defined

in (2.33). A noisy squeezed state is found to be a Gaussian state with augmented

mean µ̌ = [µ µ∗]T and augmented covariance matrix

Č0 =
(︂
n̄+

1

2

)︂[︄
cosh(2r) sinh(2r)e−ıϕ

sinh(2r)eıϕ cosh(2r)

]︄
. (2.83)

Note that, for a noisy squeezed state, by using (2.83) in (2.64)

det Čs =
(︂
n̄+

1− s

2

)︂2

− s(2n̄+ 1) sinh2(r) . (2.84)

Therefore, the s-ordered quasi-probability distribution in the form of (2.65) exists only

for s < sth, with sth = (2n̄+1)e−r to guarantee that det Čs > 0 [98,101].2 By assuming

det Čs ̸= 0 it can be shown that

Č−1
s =

1

det Čs

(ZČ0Z
H − s

2
I) . (2.85)

It can be proven that every Gaussian state can be expressed as a noisy squeezed state

with displacement parameter µ ∈ C noise parameter n̄ ∈ R and squeezing factor ζ ∈ C
[31]. Therefore, a Gaussian quantum state is uniquely identified by the augmented

mean µ̌ and an augmented covariance matrix Č0 in the form of (2.83).

2In the following, we will assume the existence of WG(α, s) and thus the invertibility of Čs.
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2.2.6 Quantum channels

The devices presented in Section 2.2.3 are unitary transformation on a CV system and,

as such, they can be inverted. In practice, a quantum system can interact with the

environment, drifting the quantum state Ξ to Υ after the interaction. In this section

we present some popular noise models for CV systems.

Thermal noise

In this noise model, a classical Gaussian noise is superimposed to the quantum state

Ξ, for which the output state Υ is given by

Υ =

∫︂
R2

1

πn̄
exp

{︂
− |α|2

n̄

}︂
DαΞD†

α d
2α . (2.86)

This noise model describes the presence of thermal noise in the state preparation, and

it can be physically interpreted as follows. The quantum state Ξ enters the first port

of a beam splitter with high transmissivity η. The second port of the beam splitter is

fed with a highly noisy thermal state with mean number of thermal photons N . Then,

in the limit of η → 1 and N → ∞, with (1 − η)N → n̄, the thermal noise channel is

obtained.

Phase diffusion

The phase diffusion model [98] is a purely quantum mechanical model that has no

classical counterparts and can be used to model different phenomena (e.g., the random

scattering of photons in a waveguide) and, in particular, the loss of quantum coherence

without energy loss. In the presence of phase diffusion, the quantum state Ξ becomes

Υ such that

Υ =

∫︂ ∞

−∞

1√
2πσ2

exp
{︂
− ϕ2

2σ2

}︂
RϕΞRϕ dϕ (2.87)

where σ is the phase diffusion parameter. Notice that the effect of a phase diffusion

channel can be evaluated in the Fock representation as

⟨n|Υ |m⟩ = e−(n−m)2σ2 ⟨n|Ξ |m⟩ .

Therefore, the effect of phase diffusion is the exponential damping of the off-diagonal

elements in the Fock representation. Note that this model can be used to describe the

reception of a state with unknown phase. For example, when the phase of a state is
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unknown, a uniform random model is used [29] and the state Υ results in

Υ =

∫︂ 2π

0

1

2π
RϕΞR†

ϕdϕ .

In such a case, ⟨n|Υ |m⟩ = δn,m ⟨n| ρ |m⟩, which resembles to the phase diffusion model

with large σ (high-phase diffusion), for which Υ reduces to a purely classical state.

Photon loss

The photon loss model [39] describes the energy loss of a CV quantum state, and it

can be used to model different phenomena (e.g., the free-space propagation). The

loss of energy can be modeled by a beam splitter of transmissivity η, as described in

Section 2.2.3. In the presence of photon loss, the P -function PΥ (α) of the output state

Υ is related to the PΥ (α) is given by

PΥ (α) =
1

η2
PΞ

(︃
α

η

)︃
. (2.88)

2.3 Quantum information with discrete variables

The DV framework is related to the study of quantum systems with a finite-dimensional

Hilbert space. The DV framework allows the description of several quantum systems

of practical interest in quantum information, such as the qubit.

2.3.1 Quantum bit

A qubit is a two-level quantum system, i.e., the Hilbert space H = H2 associated to the

system has dimension two. The two orthogonal states of the basis are conventionally

written as |0⟩ and |1⟩. Therefore, every state |ψ⟩ ∈ H2 can be written as

|ψ⟩ = α |0⟩+ β |1⟩ .

where α, β ∈ C such that |α|2 + |β|2 = 1. The normalization condition |α|2 + |β|2 = 1

is satisfied by any couple of points |α|, |β| on the unitary circle in the Cartesian plane.

Therefore, by defining

|α| = cos

(︃
θ

2

)︃
; |β| = sin

(︃
θ

2

)︃
θ ∈ [0, π]
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Figure 2.1: Block sphere representation of a qubit.

it follows that

|ψ⟩ = cos

(︃
θ

2

)︃
|0⟩+ sin

(︃
θ

2

)︃
eiϕ |1⟩

and thus the density matrix is

Ξ = |ψ⟩⟨ψ| = 1

2
I +

1

2

[︄
cos(θ) sin(θ)eiϕ

sin(θ)e−iϕ − cos(θ)

]︄
.

By defining n⃗ = (sin θ cosϕ, sin θ sinϕ, cos θ), with |n⃗| = 1, it follows from (2.3.1) that

any pure qubit can be geometrically represented as a unit vector n⃗ on the unit sphere

(see Figure 2.1), referred to as Bloch sphere. Analogously, a mixed (noisy) qubit can

be represented as a non unitary vector n⃗ with |n⃗| < 1 inside the Block sphere.

2.3.2 Qubit transformations

In this section, we presents the most important transformations that can be applied to

a quantum bit, useful for DV applications.

Hadamard gate

The Hadamard gate H is an operator that acts on a single qubit and it performs a

rotation of π/2 radians around the z axis in the Bloch representation. This gate is

represented by a 2× 2 Hadamard matrix

H =
1√
2

[︄
1 1

1 −1

]︄
.

The Hadamard gate is an elementary circuit to generate a non-classical state in the

DV domain. Indeed the basis vectors |0⟩ and |1⟩ are transformed as follows
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H |0⟩ = |0⟩+ |1⟩√
2

(2.89)

H |1⟩ = |0⟩ − |1⟩√
2

. (2.90)

Pauli matrices

The Pauli gates X, Y and Z are operators acting on a single qubit and they perform

a rotation of π radians around the x, y, and z axis of the Bloch sphere. These gates

are respectively represented by the Pauli matrices

X =

[︄
0 1

1 0

]︄
(2.91)

Y =

[︄
0 −i
i 0

]︄
(2.92)

Z =

[︄
1 0

0 −1

]︄
. (2.93)

Controlled NOT

The controlled NOT gate acts on a pair of qubits, the first of which is called source

and the second one target. It is described by the matrix

CX =

⎡⎢⎢⎢⎢⎣
1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎤⎥⎥⎥⎥⎦ .

The controlled NOT gate can be used, together with the Hadamard gate and the Pauli

gates to generate an entangled state in the DV domain, indeed

CXHA |00⟩AB =
|00⟩AB + |11⟩AB√

2

ZBCXHA |00⟩AB =
|00⟩AB − |11⟩AB√

2

YBCXHA |00⟩AB =
|01⟩AB − |10⟩AB√

2

XBCXHA |00⟩AB =
|01⟩AB + |10⟩AB√

2
.
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2.3.3 Qubit physical implementations

The physical realization of quantum bits requires the ability to represent and manage a

two-level quantum system. Alternatively, a two-level quantum system can be embedded

into a multi-level quantum system such as a quantum harmonic oscillator. There are

different technological implementations as detailed in the following.

Linear optics

In linear optical quantum computing, the qubit is physically represented by an optical

photon [102–104]. Therefore, the qubit is embedded in a two-dimensional Hilbert

subspace of a quantum harmonic oscillator, such as the space spanned by the ground

state |0⟩ and the single Fock state |1⟩. The main advantages of this architecture

are: (i) the possibility to use off-the-shelf optical components; and (ii) the weak effect

of thermal noise at optical frequencies. This framework has been used for proving

the quantum supremacy in solving the boson sampling problem [105]. The principal

drawback of this architecture is the difficulty in coupling different quantum systems.

Superconducting circuits

In superconducting quantum computing, the qubit is physically represented by the

state of a superconducting electronic circuit [106–108]. In particular, the qubit is em-

bedded in the two-dimensional Hilbert space spanned by the two lowest energy levels

of an anharmonic oscillator. Conversely to the linear optical approach, the anhar-

monicity is needed to avoid unintentional excitation of the highest energy levels. The

main advantages of this architecture are: (i) the possibility to engineer and dynami-

cally configure the circuit parameters; and (ii) the scalability of the architecture. The

superconducting architecture is the actually predominant architecture for the realiza-

tion of a universal quantum computer [109]. The main drawback is the need for these

circuits to operate at near-zero temperatures to avoid decoherence.

Ion traps

In the ion trap quantum computing, the qubit is represented by the spin of an atom

confined into an electromagnetic trap [110–112]. Conversely to the two previous tech-

nologies, in this case the qubit is physically represented with a discrete-level quantum

systems. The main advantages of this architecture are: (i) the stability of the quantum

system at room temperatures; and (ii) the low error rates. The main drawback is that

trapped ions quantum computers are difficult to scale.
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Non-Gaussian quantum states

Non-classical states are key enablers for quantum-enhanced technologies such as quan-

tum communications [5], quantum metrology [113], quantum computation [114], and

quantum cryptography [115], in both the optical [116–118] and microwave [119–121]

spectrum. In particular, squeezed coherent states have been used thoroughly in applied

quantum information as the principal source of non-classicality in CV systems [29–33].

However, despite their great success, Gaussian states present several limitations when

used as the only source of non-classicality [32], motivating a growing interest for non-

Gaussian states.

Photon-added states (PASs) [50–53] and photon-subtracted states (PSSs) [122–126]

are two important classes of non-Gaussian states that can exhibit a non-classical behav-

ior and that can be generated by using conventional devices and conditional measure-

ments [56–58, 127–129]. The quantum states obtained by photon-addition or photon-

subtraction on a Gaussian state are called photon-added Gaussian states (PAGSs)

and photon-subtracted Gaussian states (PSGSs), respectively. The utility of PAGSs

and PSGSs has been shown for several applications including quantum communica-

tions [6, 7, 130], quantum key distribution [59, 60, 62], and quantum sensing [131–133].

In particular, the use of PACSs [50–52], i.e., the class of quantum states generated by

photon addition on a coherent state, is beneficial for QSD applications [5], including

quantum communication systems [6,7], quantum key distribution [60,62], and quantum

sensing [61,131].

Nevertheless, in real world scenarios, the preparation of quantum states will al-

ways be affected by noise impairments, such as thermal noise. Hereafter, we refer to

these classes of states as noisy states. The characterization of PACSs in the pres-

ence of thermal noise in state preparation is crucial for the design and the analysis of

quantum-enhanced applications, such as quantum communication systems, in a real-

world scenario. While significant progress has been made in the literature [53–55], a
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Figure 3.1: Wigner W -function of a PACS highlighting its non-Gaussian shape and
exhibiting a non-classical signature evident in terms of negativity.

complete characterization of PACSs in the presence of thermal noise is still missing.

This thesis advocates the use of non-Gaussian quantum states in various applica-

tions of quantum systems and networks. In particular, it is shown that PACSs is a

class of non-Gaussian states that can be used for providing non-classicality to quantum

systems, even in the presence of thermal noise in state preparation. The goal of this

chapter is to provide a characterization of noisy PACSs in presence of thermal noise in

state preparation. The key contributions of this chapter are as follows:

• characterization of noisy PACSs in terms of Fock representation, Wigner W -

function, Glauber–Sudarshan P -function, and Husimi–Kano Q-function;

• observation of the non-classical properties for noisy PACSs in terms of Wigner

function negativity.

Notation

This section relies on the Wirtinger calculus discussed in Appendix A. For a complex-

valued function g(z) : C → C, the symbols ∂g(z)
∂z

and ∂g(z)
∂z∗

indicate the Wirtinger

derivatives of g(z) with respect to z and z∗, respectively, as defined in (A.1). For

a complex number z ∈ C: Lk(z) and L
(α)
k (z) denote the associated and generalized

Laguerre polynomials, respectively.
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Figure 3.2: Block scheme for the generation of a photon-added state Ξ
(k)
+ with k = 1,

from the state Ξ using a low-gain OPA.

3.1 Photon-added states

Consider an arbitrary quantum state |ψ⟩. The corresponding PAS |ψ(k)
+ ⟩ is defined as

|ψ(k)
+ ⟩ = (A†)k |ψ⟩√︁

⟨ψ|Ak(A†)k |ψ⟩
(3.1)

where k ∈ N is the number of addition operations. It is important to notice that,

despite the name, the operation of photon-addition should not be interpreted in a

deterministic sense: if the mean number of photons in Ξ is n, the mean number of

photons in Ξ
(k)
+ is not given by n + k, in general. This slight abuse of terminology

comes out from the fact that photon-addition on the Fock state |n⟩ produces the state
|n+ k⟩, as given by Eq. (2.31), i.e., it effectively adds k photons.

3.1.1 Physical implementation

There are different architectures to generate a PAS. Consider the scheme of Figure 3.2

and assume without loss of generality, that the state Ξ = |ϕ⟩⟨ϕ| enters the signal port

of an optical parametric amplifier (OPA), while the vacuum state enters the idler port

of the OPA. Therefore, the input state of the OPA is |ψ⟩SI = |ϕ⟩S |0⟩I . The output

state |ψ⟩S′I′ of the OPA is given by the two-mode squeezing transformation (2.45)

|ψ⟩S′I′ = S
(2)
ζ |ψ⟩SI

where, for a small amount of squeezing (i.e., for a small amount of the OPA gain), the

operator S
(2)
ζ can be approximated as

S
(2)
ζ ≃ I + ζA†

SA
†
I − ζ∗ASAI
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and thus

|ψ⟩S′I′ ≃ |ϕ⟩S |0⟩I + ζA†
S |ϕ⟩S |1⟩I . (3.2)

Therefore, the state of the output signal S ′ conditioned on the result nI = 1 of a photon

number measurement nI on the idler output is

|ϕ⟩S′ =
1√︂

⟨ϕ|S ASA
†
S |ϕ⟩S

A†
S |ϕ⟩S .

Notice that, for a generic input state Ξ =
∑︁

n pn |ϕn⟩⟨ϕn|, the joint signal-idler state

at the output of the OPA can be written as ΞS′I′ =
∑︁

n pn |ψn⟩⟨ψn|S′I′ where |ψn⟩ is

given by Equation (3.2)

|ψn⟩S′I′ ≃ |ϕn⟩S |0⟩I + ζA†
S |ϕn⟩S |1⟩I

and therefore, for a generic state Ξ, the state of the output signal S ′ conditioned on

the result nI′ = 1 of a photon number measurement nI′ on the idler output is given by

Ξ
(1)
+ =

A†ΞA

tr{A†ΞA} .

3.1.2 Photon-added coherent states

Let |ψ⟩ be a coherent state, i.e., |ψ⟩ = |µ⟩ with µ ∈ C as in Eq. (2.66). The corre-

sponding PAS is given by

⃓⃓
µ(k)

⟩︁
=

(A†)k |µ⟩√︁
⟨µ|Ak(A†)k |µ⟩

. (3.3)

The state
⃓⃓
µ(k)

⟩︁
is called PACS. The Wigner function of a PACS is given by [50]

W
(k)
+ (α) = B

(k)
+ (α)Wc(α) (3.4)

whereWc(α) is the Wigner function of the coherent state |µ⟩ as given by Eq (2.69) and

B
(k)
+ (α) = (−1)k

2Lk(|2α− µ|2)
πLk(−|µ|2) . (3.5)

Notice that the Wigner function of a PACS is given by the product of the Gaussian

function Wc and a non-Gaussian function B
(k)
+ (α). Also notice that the non-Gaussian

term also admits negative values, due to the presence of a Laguerre polynomial, thus

highlighting the non-classical nature of this class of states.
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In this thesis, we will focus on the class of PACSs for several reason: (i) PACSs are

generated from a quasiclassical Gaussian state, i.e., the initial state can be generated

straightforwardly; (ii) PACSs have a simple mathematical characterization; and (iii)

PACSs turns out to be useful to improve the performance of quantum communication

systems, such as QOOK and QPPM systems. In the following, we will derive a model

for describing PACSs in the presence of thermal noise in state preparation.

3.1.3 Photon-added squeezed states

If |ψ⟩ is a squeezed state, i.e., |ψ⟩ = |µ, ζ⟩ with µ, ζ ∈ C as in Eq. (2.79), the corre-

sponding PAS is called PASS. The Wigner function of a PASS is shown to be

W
(k)
+ (α) = B

(k)
+ (α)Ws(α) (3.6)

where Ws(α) is the Wigner function of a squeezed state as given by Eq. (2.81) and

B
(k)
+ (α) is the non-Gaussian factor that depends on µ and ζ. The expression of B

(k)
+ (α)

is rather cumbersome [53] and it will not be reported here for brevity. Notice that, by

comparing Eq. (3.4) and Eq. (3.6) both PACSs and PASSs have a similar structure for

the Wigner function. However, note that a PASS is more difficult to generate than a

PACS as a squeezed state is needed as a initial state to generate a PASS.

3.2 Photon-subtracted states

Let |ψ⟩ be an arbitrary quantum state. The corresponding PSS |ψ−⟩ is defined as

|ψ−⟩ =
Ak |ψ⟩√︁

⟨ψ| (A†)kAk |ψ⟩
(3.7)

where k ∈ N is the number of subtraction operations. As for the case of photon-

addition, it is important to notice that the photon-subtraction operation should not be

interpreted in a deterministic sense. This slight abuse of terminology comes out from

the fact that photon-subtraction on the Fock state |n⟩ produces the state |n− k⟩, as
given by Eq. (2.30), i.e., it effectively annihilates k photons. Also notice that, if |ψ⟩ is
a coherent state, i.e., |ψ⟩ = |µ⟩ with µ ∈ C as in Eq. (2.66), the corresponding PSS

|ψ+⟩ = |µ⟩, i.e., photon-subtraction has no effect on a coherent state. This is due to

the fact that a coherent state is an eigenstate of the annihilation operator. Therefore,

photon-subtraction requires a squeezed state as input to produce a non-trivial state as

output.
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Figure 3.3: Block scheme for the generation of a PSS Ξ
(k)
− with k = 1, from the state

Ξ using a low-reflectivity beam splitter.

3.2.1 Physical implementation

Consider the scheme of Figure 3.3 and assume without loss of generality, that the state

Ξ = |ϕ⟩⟨ϕ| enters the first port of a beam splitter, while the vacuum state enters the

second port. Therefore the input state of the beam splitter is |ψ⟩SI = |ϕ⟩S |0⟩I . The

output state |ψ⟩S′I′ of the beam splitter is given by

|ψ⟩S′I′ = Bθ |ψ⟩SI

where, for small reflectivity, the operator Bθ can be approximated as

Bθ ≃ I + ıθ(A†B +AB†)

and thus

|ψ⟩S′I′ ≃ |ϕ⟩S |0⟩I + ıθA |ϕ⟩S |1⟩I .

Therefore, the state of the system S conditioned on the result nI′ = 1 of a photon

number measurement nI′ on the system i is

|ϕ⟩S′ =
1

⟨ϕ|S A†A |ϕ⟩S
A |ϕ⟩S .

Analogously to PAS it is possible to show that, for a generic input stateΞ =
∑︁

n pn |ϕn⟩⟨ϕn|
the output signal S ′ conditioned on the result nI′ = 1 of a photon number measurement

nI′ on the system I is given by

Ξ
(1)
− =

AΞA†

tr{AΞA†} .
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Figure 3.4: Wigner W -function W
(k)
+ (α) of a PASS and a PSSS for different values of

k with µ = 1 and ζ = −0.5.

3.2.2 Photon-subtracted squeezed states

If |ψ⟩ is a squeezed state, i.e., |ψ⟩ = |µ, ζ⟩ with µ, ζ ∈ C as in Eq. (2.79), the corre-

sponding PAS is called photon-subtracted squeezed state (PSSS). The Wigner function

of a PASS is shown to be

W
(k)
− (α) = B

(k)
− (α)Ws(α) (3.8)

where Ws(α) is the Wigner function of a squeezed state as given by Eq.(2.81) and

B
(k)
− (α) is a non-Gaussian function that depends on µ and ζ. The expression of B

(k)
− (α)

is rather cumbersome [134] and it will not be reported here for brevity. Notice that, by

comparing Eq. (3.4) and Eq. (3.8) both PASSs and PSSSs have a similar structure for

the Wigner function even if the corresponding states are obtained with rather different

operations. Also notice that, in general, the generation of a PSSS is simpler than that

of a PASS because, as shown in the previous section, the generation of a PSSS does

not require active devices such as an OPA.

3.3 Noisy photon-added coherent states

In this section, we derive a complete characterization for PACSs affected by thermal

noise in state preparation. This model will be of particular importance in the analysis

and the design of quantum communication systems with non-Gaussian states.

Let Ξ be a coherent state affected by thermal noise. Then, the corresponding

photon-added state Ξ+ is referred to as noisy PACS.1 Therefore, a noisy PACS is

1This definition of noisy PACS is in accordance with that of photon-added displaced thermal state
(PADTS) in [54], a special case of a photon-added displaced squeezed thermal state (PADSTS) [53,55]
with no squeezing. We then provide new results, all in closed form, for PADTS.
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defined as

Ξ(µ, k) =
(A†)kΞth(µ)A

k

Nk(µ, n̄)
(3.9)

where k ∈ N represents the number of addition operations, and Nk(µ, n̄) is the nor-

malization constant given by Nk(µ, n̄) = tr
{︁
(A†)kΞth(µ)A

k
}︁
. From [82, eq. (7.16)],

we obtain2

Nk(µ, n̄) = k!(n̄+ 1)kLk

(︂
− |µ|2
n̄+ 1

)︂
. (3.10)

Note that a noisy PACS is uniquely determined by the parameters k, µ, and n̄; such de-

pendencies will not be explicated unless strictly needed. The mean number of photons

np(µ, n̄) in a noisy PACS is given by
⟨︁
A†A

⟩︁
. Since

⟨︁
A†A

⟩︁
= tr

{︁
Ξ(µ, k)A†A

}︁
= tr

{︁
Ξ(µ, k)AA†}︁− 1

we find

np(µ, n̄) =
Nk+1(µ, n̄)

Nk(µ, n̄)
− 1 . (3.11)

For a given noise level n̄, the np(µ, n̄) has a minimum at µ = 0. From (3.11) and (3.10)

such a minimum is given by

np(0, n̄) = (k + 1)(n̄+ 1)− 1 . (3.12)

In the following, the Fock representation, theWignerW -function, the Glauber–Sudarshan

P -function, and the Husimi–Kano Q-function are given for noisy PACS.

Theorem 3.3.1 (Fock representation). The Fock representation of a noisy PACS

Ξ(µ, k) is found to be

⟨n|Ξ(µ, k) |m⟩ =

⎧⎨⎩c
(k)
n,m for both n,m ≥ k

0 otherwise
(3.13)

where k ∈ N, and

c(k)n,m =
(1− v)k+1e−(1−v)|µ|2

vk

√︃
n!

m!

(︃
m

k

)︃
vn
[︁
(1− v)µ∗]︁m−n

×
Lm−n
n−k

(︂
−(1−v)2|µ|2

v

)︂
Lk

(︁
−|µ|2(1− v)

)︁ . (3.14)

Proof. See Section 3.4.1.

2This result is in accordance with [54, eq. (7)] for V = 2n̄+ 1 .
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Figure 3.5: Wigner W -function W (α) of a noisy PACS for different values of k and n̄
with µ = 0.8.

The probability distribution for the number of photons n in a PACS Ξ(µ, k) is

obtained using Theorem 3.3.1 as

Pn = n = ⟨n|Ξ(µ, k) |n⟩ =

⎧⎨⎩p
(k)
n , for n ≥ k

0 otherwise
(3.15)

where p
(k)
n = c

(k)
n,n is obtained from (3.14) with m = n. The following Theorems

3.3.2–3.3.4 provide a characterization of noisy PACS in terms of Wigner W -function,

Glauber–Sudarshan P -function, and Husimi–Kano Q-function, respectively.

Theorem 3.3.2 (W -function). The Wigner W -function of a noisy PACS Ξ(µ, k) is

found to be

W (α) =
(−1)k

(2n̄+ 1)k

Lk

(︁ |2α(n̄+1)−µ|2
(2n̄+1)(n̄+1)

)︁
Lk

(︁
− |µ|2

n̄+1

)︁ Wth(α) (3.16)

where k ∈ N and Wth(α) is the Wigner W -function of a noisy coherent state given by

(2.76).

Proof. See Section 3.4.2.

Fig. 3.5 showsW (α) for different values of k and n̄. Notice that the Wigner function

gets stretched and looses its negativity as n̄ increases. Recalling that the negativity of
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the Wigner function is an indicator of non-classicality of the state [135], this behavior

shows that the quantum state decoheres as the thermal noise increases.

Theorem 3.3.3 (P -function). The Glauber–Sudarshan P -function of a noisy PACS

Ξ(µ, k) is found to be

P (α) =
(−1)k

n̄k

Lk

(︁ |α(n̄+1)−µ|2
n̄(n̄+1)

)︁
Lk

(︁
− |µ|2

n̄+1

)︁ Pth(α) (3.17)

where k ∈ N and Pth(α) is the Glauber–Sudarshan P -function of a noisy coherent state

given by (2.77).

Proof. See Section 3.4.3.

Theorem 3.3.4 (Q-function). The Husimi–Kano Q-function of a noisy PACS Ξ(µ, k)

is found to be

Q(α) =
|α|2k

k!(n̄+ 1)k Lk

(︁
− |µ|2

n̄+1

)︁ Qth(α) . (3.18)

where k ∈ N and Qth(α) is the Husimi–Kano Q-function of a noisy coherent state given

by (2.78).

Proof. See Section 3.4.4.

It is worth noting that this characterization of a noisy PACS has relevant special

cases. First, in case of no photon addition (i.e., k = 0) the characterization of a

noisy PACS reduces to that of a noisy coherent state, as described in Section 2.2.5.

Moreover, in the absence of noise (i.e., n̄ = 0), the characterization of a noisy PACS

reduces to that of a noiseless PACS presented in [50]. Furthermore, in the absence of

displacement (i.e., µ = 0), the characterization of a noisy PACS reduces to that of a

photon-added thermal state (PATS) presented in [51]. Finally, in the absence of both

noise and displacement (i.e., n̄ = µ = 0), the characterization of a noisy PACS reduces

to that of a Fock state shown in [98].

3.4 Proof of the Results

3.4.1 Proof of Theorem 3.3.1

The coherent-state representation of a noisy PACS Ξ(µ, k), defined as [88, eq. (6.1)],

can be written as

R(α∗, β) = e
1
2
(|α|2+|β|2) ⟨α|Ξ(µ, k) |β⟩ .
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From (3.9),

R(α∗, β) =
e

1
2
(|α|2+|β|2)

Nk

⟨α| (A†)kDµΞthD
†
µA

k |β⟩

=
(α∗β)k

Nk

e
1
2
(|α|2+|β|2) ⟨α|DµΞthD

†
µ |β⟩ (3.19)

where the first equality is from (3.9) and (2.73), and the second equality follows from the

fact that a coherent state is an eigenvector ofA. From the coherent-state representation

of a displaced thermal state [4, eq. (4.15)] together with (3.10) and (2.35), the (3.19)

becomes

R(α∗, β) =
(α∗β)k(1− v)k+1

k!Lk

(︁
−|µ|2(1− v)

)︁ exp
{︁
−(1− v)|µ|2

}︁
× exp

{︁
vα∗β + (1− v)(α∗µ+ βµ∗)

}︁
. (3.20)

From the Mollow–Glauber double generating function for the associated Laguerre poly-

nomials [136, eqs. (A1) and (A6)] and by applying some simple algebra, the (3.20)

results in

R(α∗, β) =
∞∑︂
n=k

∞∑︂
m=k

(α∗)nβm

√
n!m!

(1− v)k+1

Lk

(︁
−|µ|2(1− v)

)︁
vk

× exp
{︁
−(1− v)|µ|2

}︁√︃ n!

m!

(︃
m

k

)︃
vn

× [(1− v)µ∗]m−n Lm−n
n−k

(︂
− (1− v)2|µ|2

v

)︂
. (3.21)

From the relationship between coherent-state representation (3.21) and Fock represen-

tation [88, eq. (6.2)], the (3.13) is obtained.

3.4.2 Proof of Theorem 3.3.2

The Wigner W -function of a noisy PACS Ξ(µ, k), defined according to [50, eq. (3.5)],

can be written as

W (α) =
2 e2|α|

2

π2

∫︂∫︂
⟨−β|Ξ(µ, k) |β⟩ e2(β∗α−βα∗)dβrdβi . (3.22)

From (3.19),

⟨−β|Ξ(µ, k) |β⟩ = R(−β∗, β)e−|β|2 (3.23)
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and by using it together with (3.20) in (3.22), it follows that

W (α) =
2(1− v)k+1e2|α|

2−(1−v)|µ|2

π2k!Lk

(︁
−|µ|2(1− v)

)︁
×

∫︂∫︂
(−β∗β)k e−(1+v)|β|2+β∗(2α−(1−v)µ)−β(2α−(1−v)µ)∗dβrdβi . (3.24)

Then, by applying a double change of variable

γ = β
√
1 + v (3.25a)

ξ =
2α− (1− v)µ√

1 + v
(3.25b)

we obtain

W (α) =
2(1− v)k+1e2|α|

2−(1−v)|µ|2

πk!Lk

(︁
−|µ|2(1− v)

)︁
(1 + v)k+1

I(k)(ξ) (3.26)

where

I(k)(ξ) =
1

π

∫︂∫︂
(−γ∗γ)k e−|γ|2+γ∗ξ−γξ∗dγrdγi .

Using [137, eq. (A.28)] and the Wirtinger derivatives,

I(k)(ξ) =
∂2k

∂ξ∗k ∂ξk
e−|ξ|2

and, from the definition of Laguerre polynomials,

I(k)(ξ) = (−1)kk! e−|ξ|2Lk

(︁
|ξ|2

)︁
. (3.27)

From (3.27), the (3.26) can be rewritten as

W (α) =
(v − 1)kLk

(︁
|ξ|2

)︁
2(1− v) e−|ξ|

2
e2|α|

2−(1−v)|µ|2

(1 + v)kLk

(︁
−|µ|2(1− v)

)︁
π(1 + v)

. (3.28)

From (3.25b) together with (2.36) and (2.76), the (3.28) results in (3.16).

3.4.3 Proof of Theorem 3.3.3

The Glauber–Sudarshan P -function of a noisy PACSΞ(µ, k), defined according to [138,

eq. (6)], can be written as

P (α) =
e|α|

2

π2

∫︂∫︂
⟨−β|Ξ(µ, k) |β⟩ e|β|2eβ∗α−βα∗

dβrdβi . (3.29)
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Using (3.20) and (3.23) in (3.29), it follows that

P (α) =
(1− v)k+1e|α|

2−(1−v)|µ|2

π2k!Lk

(︁
−|µ|2(1− v)

)︁ ∫︂∫︂ (−β∗β)k e−v|β|
2+β∗(α−(1−v)µ)−β(α−(1−v)µ)∗dβrdβi .

(3.30)

Then, by applying a double change of variable

γ =
√
vβ (3.31a)

ξ =
α− (1− v)µ√

v
(3.31b)

we obtain

P (α) =
(1− v)k+1e|α|

2−(1−v)|µ|2

π2k!Lk

(︁
−|µ|2(1− v)

)︁
vk+1

I(k)(ξ) . (3.32)

From (3.27), (3.32) can be written as

P (α) =
(v − 1)kLk(|ξ|2)(1− v) e−|ξ|2e|α|

2−(1−v)|µ|2

vkLk

(︁
−|µ|2(1− v)

)︁
πv

. (3.33)

From (3.31b) together with (2.36) and (2.77), the (3.33) results in (3.17).

3.4.4 Proof of Theorem 3.3.4

The Husimi–Kano Q-function of a noisy PACS Ξ(µ, k), defined according to [139,

eq. (12.7)], can be written as

Q(α) =
1

π
⟨α|Ξ(µ, k) |α⟩ . (3.34)

From (3.19),

Q(α) =
e−|α|2

π
R(α∗, α) . (3.35)

From (3.20) together with (2.36) and (2.78), the (3.35) results in (3.18).





Chapter 4

Quantum discrimination of

non-Gaussian states

Quantum state discrimination (QSD) addresses the problem of identifying an unknown

state among a set of quantum states [4, 38, 140]. QSD enables several applications

including quantum communications [37, 45, 141], quantum sensing [25–27], quantum

illumination [117, 142, 143], quantum cryptography [11–13], quantum networks [19,

21, 23], and quantum computing [14–16]. The DEP depends on the set of quantum

states and the measurement used to discriminate among them. Determining the DEP

and identifying the quantum measurement that minimizes the DEP are difficult tasks,

especially for states prepared in the presence of thermal noise (hereafter referred to as

noisy states).

Understanding how the choice of quantum states impacts the discrimination per-

formance plays an important role in QSD applications. In particular, CV quantum

states have been considered in quantum optics as they supply a quantum descrip-

tion of the electromagnetic field and can be efficiently prepared, manipulated, and

measured [9, 29, 31, 144–147]. Previous works on CV-QSD have devoted particular at-

tention to the analysis of discrimination between coherent states [35, 36, 42, 148–150],

largely motivated by the success of the Glauber theory [81,82,87,88].

In contrast, QSD with non-coherent states has received less attention except for

attempts made on the use of squeezed states [46, 151, 152] and number states [47–49].

PACSs is an important class of non-coherent quantum states that can be generated in

a laboratory [50,56,57], which have been characterized in the previous section. PACSs

have been considered for quantum illumination [133] and quantum cryptography [153]

but a characterization of QSD with PACSs is still missing.

This thesis envisions the use of non-Gaussian quantum states for QSD (see Fig-
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Ξ Ĥ

Quantum discriminator

Quantum measurement

Π0 Π1

Hypotheses

H0 : Ξ0 H1 : Ξ1

Figure 4.1: Illustration of binary QSD with non-Gaussian states: hypotheses are de-
scribed by the Wigner functions corresponding to the quantum states.

ure 4.1). In particular, PACSs is an important class of non-Gaussian states that can

provide significant benefits to QSD and pave the way for innovative applications in

quantum sensing and networking. The goal is to establish the use of PACSs to improve

QSD. The key contributions of this chapter are as follows:

• put forth the idea of using non-Gaussian states for QSD applications;

• characterization of QSD with noisy PACSs in terms of DEP.

4.1 General framework

Consider a quantum system with Hilbert spaceH and let A = {Ξi}M−1
i=0 ⊆ D(H) be the

set of possible states for the quantum system. If the state of the system is unknown,

there are M hypotheses about the state Ξ of the quantum system given by

Hj : Ξ = Ξj for j = 0, ...,M − 1 . (4.1)

The decision among the M hypotheses, as depicted in Figure 5.1 for a binary scenario

(M = 2), is done by mean of a quantum measurement described by the POVM P =

{Π0,Π1, ...,ΠM−1} so that the probability that the hypothesis Hj is choosen when

Hk is true is given by

P{Hj|Hk} = tr{ΞkΠj} . (4.2)
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By denoting with pi the prior probabilities of Hi for i = 0, 1, ...,M − 1, the DEP, i.e.,

the probability of choosing the wrong hypothesis is

Pe = 1−
M−1∑︂
i=0

pi tr{ΞiΠi} . (4.3)

The DEP determined by Equation (4.3) depends on the set A of the possible quantum

states, and on the POVM P used to discriminate among them.

4.1.1 Optimal discrimination

Among several QSD strategies, of particular interest are those aiming to design the

quantum measurement that minimizes the DEP, i.e., determine the POVM P that is

a solution of the following semi-definite optimization problem

min 1−
M∑︂
i=1

pi Tr{ΞiΠi}

s.t. 0 ≼ Πi ≼ I for i = 1, ...,M
M∑︂
i=1

Πi = I

(4.4)

This problem has been extensively studied in [4, 38, 140]. Determining the DEP and

identifying the quantum measurement that minimizes the DEP are difficult tasks.

4.1.2 Optimal binary discrimination

Consider a binary QSD problem (M = 2) for which the hypotheses (4.1) are given by

H0 : Ξ = Ξ0

H1 : Ξ = Ξ1 . (4.5)

The quantum states Ξ0 and Ξ1 have prior probability p0 and p1, respectively. Under

these premises, the DEP is

Pe = p0 tr{Ξ0Π1}+ p1 tr{Ξ1Π0} . (4.6)
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In the binary case (M = 2), the minimum discrimination error probability (MDEP) is

given in closed form by the Helstrom bound

P̆e =
1

2
(1− ∥p1Ξ1 − p0Ξ0∥1) . (4.7)

The elements of the optimal POVM that achieves the Helstrom bound are given by

Π̆0 =
∑︂
i

λi<0

|λi⟩⟨λi| (4.8a)

Π̆1 = 1− Π̆0 =
∑︂
i

λi≥0

|λi⟩⟨λi| (4.8b)

where |λi⟩ is the eigenvector of p1Ξ1 − p0Ξ0 associated with the eigenvalue λi. For

pure states, i.e., Ξ0 = |ψ0⟩⟨ψ0| and Ξ1 = |ψ1⟩⟨ψ1|, the MDEP is given by

P̆e =
1

2

(︂
1−

√︂
1− 4p0p1|⟨ψ0|ψ1⟩|2

)︂
. (4.9)

Note that, in this case, the MDEP is zero when the two states are orthogonal, i.e.,

⟨ψ0|ψ1⟩ = 0. In the case of mixed states, the MDEP is zero when the density operators

Ξ0 and Ξ1 have support on orthogonal subspaces [154].

4.2 Discrimination of PACSs

An important application of the QSD techniques described in the previous section is the

discrimination of two photon-added coherent states, described in Section 3.3. This is

an important application of the QSD techniques that will guide the design of quantum

communication systems with non-Gaussian states.

4.2.1 Noiseless PACSs

Consider the discrimination of two PACS in a noiseless scenario, i.e., the states associ-

ated with the hypotheses in (4.5) are given by Ξ0 = |ξ(h)⟩⟨ξ(h)| and Ξ1 = |µ(k)⟩⟨µ(k)|.
Since the states are pure, the MDEP is determined by (4.9) with |ψ0⟩ = |ξ(h)⟩ and

|ψ1⟩ = |µ(k)⟩, and its dependence on the quantum states is manifested by the following

Lemma.

Lemma 4.2.1. Consider two PACSs |ξ(h)⟩ and |µ(k)⟩ according to (3.3). Without loss
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of generality, let h ≤ k. It is

⟨ξ(h)|µ(k)⟩ = (ξ∗)k−hLk−h
h (−µξ∗)e− 1

2
(|µ|2+|ξ|2−2µξ∗)√︂

k!
h!
Lk(−|µ|2)Lh(−|ξ|2)

. (4.10)

Proof. See Section 4.3.1.

The MDEP is found by using (4.10) in (4.9). Note that the scalar product be-

tween the two states, and thus the MDEP, is zero if one of the following orthogonality

conditions holds

(i) ξ = 0 and h ̸= k (4.11a)

(ii) Lk−h
h (−µξ∗) = 0 . (4.11b)

The orthogonality condition (4.11a) is of particular interest because |ξ(h)⟩ with ξ = 0

corresponds to the Fock state |h⟩. This orthogonality condition is related to the fact

that the photon-addition operation on |µ⟩ generates a state |µ(k)⟩ orthogonal to the

span of the set {|n⟩ : n ≤ h}. If both ξ = 0 and h = 0, then |ξ(h)⟩ corresponds to the

ground state, and therefore the QSD reduces to the discrimination between a PACS

and the ground state. The orthogonality condition (4.11b) represents the situation in

which there are canceling cross-terms in the scalar product of the two states. It can

also be observed that the exponential factor in (4.10) makes the DEP vanish as |µ− ξ|
increases. It is thus important to notice that, in the absence of noise it is possible to

choose two PACSs such that the DEP is zero. Therefore, in the absence of noise, the

use of PACSs can provide an optimal solution to the QSD problem.

In the following, it is shown that the presence of thermal noise during state prepara-

tion increases the DEP. Since a noise component is unavoidable in quantum systems,

it is essential to represent the noisy quantum states and characterize the QSD that

accounts for thermal noise in state preparation.

4.2.2 Noisy PACSs

This section characterizes the binary QSD with noisy PACSs using the characterization

given in Section 3.3. In particular, the quantum states associated with the binary

hypotheses in (4.5) are

Ξ0 = Ξ(ξ, h) (4.12a)

Ξ1 = Ξ(µ, k) . (4.12b)
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Figure 4.2: MDEP for discrimination between a noisy PACS and a noisy coherent state
as a function of µ and ξ, with p0 = p1 = 1/2.

Recall that, according to the Helstrom bound (4.7), the MDEP for a binary QSD

depends on ∥∆∥1 with ∆ = p1Ξ1−p0Ξ0. The following lemma shows that the MDEP

for a binary QSD with quantum states as in (4.12) does not depend on the individual

phases of ξ and µ, but only on the phase difference.

Lemma 4.2.2. Consider the PACSs Ξ0 = Ξ(ξ, h), Ξ1 = Ξ(µ, k), Ξ
(θ)
0 = Ξ(ξeıθ, h),

and Ξ
(ϕ)
1 = Ξ(µeıϕ, k) with θ, ϕ ∈ R, defined as in (3.9). Then,

∥p1Ξ(ϕ)
1 − p0Ξ

(θ)
0 ∥1 = ∥p1Ξ1 − p0Ξ

(θ−ϕ)
0 ∥1 . (4.13)

Proof. See Section 4.3.2.

This result simplifies the QSD characterization, especially when one of the states is the

thermal state for which the phase is irrelevant, as shown in the following corollary.

Corollary 4.2.3. Consider the PACSs of Lemma 4.2.2 with ξ = h = 0, for which

Ξ0 = Ξth. Then,

∥p1Ξ(ϕ)
1 − p0Ξ

(θ)
0 ∥1 = ∥p1Ξ1 − p0Ξth∥1 . (4.14)

Proof. From Ξ
(θ−ϕ)
0 = Rθ−ϕΞthR

†
θ−ϕ and rotational invariance of Ξth, the (4.13) re-

duces to (4.14).

The operator ∆ has an infinite number of eigenvalues that have no closed-form

expression. This is a long standing problem [4] and a tractable approximation of ∆ is
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needed to compute the MDEP. A simple way to approximate ∆ is to use an operator

∆̃N , of finite dimension N , in the Fock representation. In particular, ∆ ≃ ∆̃N where

∆̃N =
N−1∑︂
n=0

N−1∑︂
m=0

⟨n|∆ |m⟩ |n⟩⟨m|

with entries ⟨n|∆ |m⟩ obtained using (3.13). The accuracy of MDEP approximation

using ∆̃N depends on N .1

To quantify the noise effects on QSD, the following case study will be considered:

Ξ0 is assumed to be a noisy coherent state and Ξ1 a noisy PACS. Therefore, the

quantum states associated with the binary hypotheses in (4.5) are

Ξ0 = Ξ(ξ, 0)

Ξ1 = Ξ(µ, k) .

Recall from (4.7) and Lemma 4.2.1 that, since h = 0, the MDEP only depends on n̄,

k, |ξ|, |µ|, and arg(ξ)− arg(µ).

Figure 4.2 shows the MDEP as a function of µ and ξ, for different values of k and

n̄.2 Note that, for n̄ ̸= 0, the MDEP is always greater than zero and, differently from

(4.11a) in the noiseless case, ξ = 0 is no longer an optimal solution.

4.3 Proof of the Results

4.3.1 Proof of Lemma 4.2.1

From (3.3) and the normalization in [50],

⟨ξ(h)|µ(k)⟩ = ⟨ξ|Ah(A†)k |µ⟩√︁
h!k!Lk(−|µ|2)Lh(−|ξ|2)

. (4.15)

1N = 30 will be used in the remainder.
2While ξ and µ are complex in general, here they are plotted for real values.
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The enumerator of (4.15) can be written as

⟨ξ|Ah(A†)k |µ⟩ = ⟨ξ|µ⟩
h∑︂

n=0

n!

(︃
k

n

)︃(︃
h

n

)︃
µh−n(ξ∗)k−n

= ⟨ξ|µ⟩h!(ξ∗)k−h

h∑︂
n=0

(︃
k

h− n

)︃
(µξ∗)n

n!

= ⟨ξ|µ⟩h!(ξ∗)k−hLk−h
h (−µξ∗) (4.16)

where the first equality is obtained by using [81, eq. (5.12)] to express Ah(A†)k in the

normal order and noticing that A |µ⟩ = µ |µ⟩ when |µ⟩ is a coherent state; the second

equality follows from simple algebra; and the third equality follows from the definition

of generalized Laguerre polynomials. From (4.16), and [88, eq. (3.32)], (4.15) results

in (4.10).

4.3.2 Proof of Lemma 4.2.2

From (3.9) and (2.73),

Ξ
(ϕ)
1 =

1

Nk

(A†)kDνΞthD
†
νA

k (4.17)

where ν = µeıϕ. By using the relationships between the operators A, A†, Dµ, and

Rϕ [155], we obtain

Ξ
(ϕ)
1 =

1

Nk

(A†)kRϕDµΞthD
†
µR

†
ϕA

k

=
1

Nk

Rϕ(A
†)kDµΞthD

†
µA

kR†
ϕ

= RϕΞ1R
†
ϕ (4.18)

where the first equality follows from RϕDµR
†
ϕ = Dν and the rotational invariance of

Ξth, for which R†
ϕΞthRϕ = Ξth; the second equality follows from R†

ϕARϕ = Ae−iϕ;

and the third equality follows from the definition of Ξ1. Therefore, by using (4.18) for

both Ξ
(ϕ)
1 and Ξ

(θ)
0 in the left-hand side of (4.13),

∥p1Ξ(ϕ)
1 − p0Ξ

(θ)
0 ∥1 = ∥p1RϕΞ1R

†
ϕ − p0RθΞ0R

†
θ∥1

= ∥p1Ξ1 − p0Rθ−ϕΞ0R
†
θ−ϕ∥1

(4.19)

where the last equality follows from the isometric invariance of the trace norm [154],

and R†
ϕ = R−ϕ . From the definition of Ξ

(θ−ϕ)
0 , (4.19) results in (4.13).



Chapter 5

Quantum communications with

non-Gaussian states

Quantum state discrimination [4,5,38,140] is a key enabler for next-generation informa-

tion and communication technologies, including quantum sensing [26,27,156], quantum

networking [13, 19–21, 157], and quantum communications [8, 37, 141, 158]. In particu-

lar, the use of quantum properties is beneficial for conveying classical information via a

quantum communication system [35, 36, 39–41, 45]. However, the design and the anal-

ysis of a quantum communication system is challenging as the error probability in the

quantum domain requires solving a QSD problem. This is a difficult task, especially

in the presence of noisy quantum states.

In the literature, attention has been devoted to the analysis of quantum commu-

nication systems employing constellations with coherent states [4,36–38,43–45], which

can be easily generated by a laser and have been extensively characterized from a the-

oretical viewpoint. The possibility to use a different set of states in the communication

system has received scarce attention. This is in part due to the fact that the prepara-

tion of non-classical states of light is a difficult task that should be taken into account

for a fair comparison between different systems. However, the few attempts made in

this direction with squeezed states [46,151,152] and number states [47,48], showed an

improvement of the system performance.

The possibility of using other classes of non-Gaussian states in a quantum com-

munication system was envisioned in [5], which proved the utility of PACSs in QSD.

However, despite this preliminar work proving the utility of PACSs in QSD applica-

tions, the possibility of using non-Gaussian states in quantum communication systems

has not been investigated yet.

This thesis envisions the use of non-Gaussian quantum states for quantum commu-
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Figure 5.1: Block scheme of a quantum communication systems.

nication systems. In particular, it is shown that PACSs and PASSs are two important

classes of non-Gaussian states that can provide significant benefits to quantum commu-

nication systems. The goal is to establish the use of non-Gaussian states in quantum

communication systems systems. The key contributions are as follows:

• put forth the idea of using non-Gaussian states for quantum communication

systems, including QOOK and QPPM;

• characterization of QOOK and QPPM systems with noisy PACSs and PASSs in

terms of error probability; and

• quantification of the effects of state preparation and decoherence on the system

performance.

5.1 Quantum communication systems

In an M -ary quantum communication system (see Figure 5.1), a classical symbol a ∈
A = {a0, a1, . . . , aM−1} is conveyed to the destination by a quantum state chosen from

a set Aq = {Ξ0,Ξ1, . . . ,ΞM−1} ⊆ D(Hq), referred to as quantum constellation [44].

Therefore, a quantum modulator, described by a map ai ↦→ Ξi for i = 0, 1, . . . ,M−
1, associates a classical symbol to a quantum state. The probability that the symbol

ai with i = 0, 1, . . . ,M − 1 is chosen is given by pi, i.e., pi = P{a = ai}. The Hilbert

space Hq associated to the quantum constellation is assumed to be the Hilbert space

of a CV system, as described in Section 2.2.

In the propagation from source to destination, the quantum state may decohere

due to the noise present in the quantum channel. A quantum channel is described by a

completely positive trace-preserving mapping Ξi ↦→ Υi for i = 0, 1, . . . ,M − 1. In this

section, the phase-diffusion and the photon-loss channels described in Section 2.2.6 will

be considered.

The receiver consists of a quantum measurement that provides an estimator â of the

transmitted symbol. The quantum measurement has M outcomes and it is described

by an M -ary POVM P = {Π0,Π1, . . . ,ΠM−1}. Since the transmitted symbol is

unknown, the design of the receiver can be formulated as an hypothesis testing problem
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in which there are M hypotheses about the state Ξ as given by (4.1). The set of states

defining the hypotheses corresponds to the quantum constellation Aq, and thus it

depends on the modulation employed. The SEP is defined as the probability that the

estimate symbol â is different from the transmitted symbol, and it is given by the DEP

of the corresponding hypothesis testing problem.

This section characterizes the modulators and the different receivers for QOOK and

QPPM systems.

5.1.1 Quantum modulator

This section defines two different quantum modulations, i.e., two different choices for

the quantum constellation Aq.

Quantum on-off keying

The QOOK modulation is a binary modulation (M = 2) in a single mode CV system,

i.e., the Hilbert space of the quantum system is Hq = H where H is the Hilbert space

of a single-mode CV system described in Section 2.2. The quantum states associated

with the binary hypotheses in (4.1) are

Ξ0 = Ξ(0)

Ξ1 = Ξ(1) (5.1)

where the density operator Ξ(0) describes the state of the quantum system when no

signal is transmitted, i.e., the ground state (2.32) in the absence of preparation noise

or the thermal state (2.33) in the presence of noise, and Ξ(1) describes the state of the

quantum system in the presence of a signal. The choice of Ξ(1) is purely arbitrary. In

a conventional QOOK system, Ξ(1) is a coherent state as in (2.66), in the absence of

noise, or a noisy coherent state as in (2.73), in the presence of thermal noise in state

preparation. Notice that the state Ξ(1) affects the system performance and thus it can

be engineered together with the system receiver, to maximize the system performance,

as detailed in the following.

Quantum pulse position modulation

In an M -ary QPPM the information is encoded in the temporal position of a known

signal called pulse. Therefore, the modulation is encoded in an ensemble of M single-

mode CV systems, i.e., the Hilbert space of the quantum system is Hq = H⊗M where

H is the Hilbert space of a single-mode CV system described in Section 2.2.



56 Chapter 5. Quantum communications with non-Gaussian states

In particular, the quantum states associated with the M hypotheses in (4.1) are

Ξi =
M−1⨂︂
j=0

Ψi,j for i = 0, . . . ,M − 1 (5.2)

where Ψi,j = Ξ(1) for j = i and Ψi,j = Ξ(0) for j ̸= i. As for the QOOK modulation,

the density operator Ξ(0) describes the state of the quantum system when no signal

is transmitted (i.e., a ground state or thermal state), and Ξ(1) describes the state of

the quantum system in the presence of a signal, for which its choice is arbitrary. In

particular, for a conventional QPPM system, in the presence of thermal noise in state

preparation, Ξ(1) is a noisy coherent state as in (2.73). As for QOOK, the state can

be engineered together with the system receiver, to maximize the system performance,

as detailed in the following.

As an example, in a 4-QPPM system the states of the quantum constellation (5.2)

are given by

Ξ0 = Ξ(1) ⊗Ξ(0) ⊗Ξ(0) ⊗Ξ(0)

Ξ1 = Ξ(0) ⊗Ξ(1) ⊗Ξ(0) ⊗Ξ(0)

Ξ2 = Ξ(0) ⊗Ξ(0) ⊗Ξ(1) ⊗Ξ(0)

Ξ3 = Ξ(0) ⊗Ξ(0) ⊗Ξ(0) ⊗Ξ(1) .

5.1.2 Quantum and classical receivers

This section descrjbes three different quantum receivers, i.e., three different choices of

the POVM P . The choice of P affects the SEP, that is given by Eq. (4.3), i.e.,

Pe = P{â ̸= a} = 1−
M−1∑︂
i=0

pi tr{ΥiΠi} . (5.3)

Minimum SEP receiver

The optimal receiver is the receiver that minimizes the SEP, given by Eq. (5.3). The

optimal receiver can be determined by solving the optimization problem (4.4), which

is in general a difficult task. For the special case of binary modulation (M = 2) the

elements of the POVM are given by Eqs. (4.8a)-(4.8b), and the minimum symbol error

probability (MSEP) is given by Eq. (4.7), i.e.,

P̆e =
1

2
(1− ∥p1Υ1 − p0Υ0∥1) . (5.4)
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Square root measurement receiver

The square root measurement (SRM) receiver is a suboptimal receiver that can be

used to overcome the difficulties in the design of the MSEP receiver. It has been first

introduced in [159], and then studied in [160–162]. In the SRM receiver the POVM

can be determined directly from the set of states to be discriminated, without solving

the optimization problem (4.4). In particular, the elements of the POVM are given by

Πi = Υ−1/2piΥiΥ
−1/2 for i = 0, . . . ,M − 1 (5.5)

where

Υ =
M−1∑︂
i=0

Υi . (5.6)

The SRM is a good approximation of the MSEP receiver and it has the advantage to

be easily found directly from the quantum states by using an algebraic equation (5.5)

instead of solving the semi-definite problem to find the MSEP receiver.

Counting receiver

The counting receiver counts the number of photons in the received quantum states,

and takes a decision based on the measurement result. The decision policy depends

on the modulation. The counting receiver is more feasible to realize than the MDEP

receiver and admits a purely classical description [41].

Counting receiver for QOOK modulation. For a QOOK modulation the count-

ing receiver (see Figure 5.2) simply counts the number of photons n (or, equivalently,

the energy as given in (2.7)) in the received state Ξ and compares with a threshold

λ ∈ N. If the number of counted photons is greater than λ, then H1 is chosen, otherwise

H0 is chosen. Therefore, the POVM is given by

Π0 =
∑︂
n<λ

|n⟩⟨n|

Π1 =
∑︂
n≥λ

|n⟩⟨n| . (5.7)
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The SEP is given by using the POVM definition (5.7) into Eq. (4.6) for the DEP in a

binary QSD, for which

Pe(λ) = p0v
λ + p1

∑︂
n<λ

⟨n|Ξ(1) |n⟩ . (5.8)

Since the quantum measurement is fixed, the measurement statistic is determined and

thus the choice of the threshold λ is guided by the classical detection theory [163]. In

particular, the hypothesis H1 is chosen if the following condition is satisfied

q1(n)

q0(n)
>
p0
p1

(5.9)

where

qj(n) = ⟨n|Ξj |n⟩ for j = 0, 1 . (5.10)

Therefore, there exists an optimal threshold λ∗ such that Pe = Pe(λ
∗) = minλ Pe(λ).

Counting receiver for QPPM modulation. For a M -QPPM modulation the

counting receiver (see Figure 5.3) counts the number of photons nj in each mode j of

the received state Ξ and decides the hypothesis Hj with the highest nj.
1 If a number

g of modes have an equal number of photons, then one of these modes is chosen at

random with probability 1/g. Therefore, the POVM is given by

Πi =
∑︂
n∈Di

|n⟩⟨n|+
M∑︂
g=2

1

g

∑︂
n∈G(g)

i

|n⟩⟨n| for i = 0, . . . ,M − 1 (5.11)

1Recall that Ξ ∈ D(H⊗M )
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where

Di = {n ∈ NM : ni > nj for j ̸= i} (5.12)

is the decision region for the mode i, and

G(g)
i = {n ∈ NM : ni = nj for j ∈ K,with K ∈ gCM} (5.13)

is the “confusion” regions in which g of theM modes have the same number of photons.

The probability for a correct detection Pc = 1 − Pe has been derived by Helstrom [4,

Eq. (A.7) p. 194] and it is given by

Pc =
1

M(1− v)
En

{︃ M∑︂
h=1

(−1)h
(︃
M

h

)︃
(vh − 1)vn(h−1)

}︃
(5.14)

where the expected value is taken over to the number of photons n in the state Ξ(1).

5.2 Quantum on-off keying with non-Gaussian states

This section defines and characterizes a QOOK system with a PACS. The use of a

PACS in QPPM communication systems can reduce the SEP with respect to the use

of coherent states, as shown in the following.

5.2.1 System model

The quantum constellation of an QOOK using a PACS is given by (5.1) with Ξ1 =

Ξ(µ, k), where Ξ(µ, k) is a PACS as defined in (3.9), and Ξ0 = Ξth.

5.2.2 Performance evaluation in absence of noise

Performance evaluation with optimal receiver

The MSEP for this binary system is determined according to the Helstrom bound (4.7)

and depends on ∥∆∥1, with ∆ = p1Υ1 − p0Υ0. However, in this case, the eigenvalues

of the operator ∆ have no closed form expression and thus a tractable approximation

of ∆ is needed to compute the MSEP. The operator ∆ can be approximated with a

finite dimensional operator ∆̃N defined as in Section 4.2.2. Here, the minimum symbol

error probability is approximated using ∥∆∥1 ≃ ∥∆̃30∥1.

Figure 5.4a shows the MSEP as a function of the mean number np of photons in Ξ1,

for different values of k. Note that the use of a PACS improves the system performance
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Figure 5.4: Performance of QOOK as a function of np, with n̄ = 10−2 and p0 = p1 =
1/2.

compared to the use of a coherent state (k = 0). Moreover, the performance improves

with the number of photon addition operations, which is inversely proportional to the

state generation efficiency. Therefore, there is a trade-off between the MSEP and the

state generation rate. Furthermore, the minimum value of np is given by (3.12).

Notice that the performance analysis of this section does not consider the state

preparation efficiency. Indeed, as shown in Sec. 3.1.1, PAS are typically prepared by

means of a non-deterministic procedure, with a low probability of successfully gener-

ate a PAS. Moreover, the probability decreases as the number of addition operation

k increases. We will consider this effect in the performance analysis of a quantum

communication system in Sec. 5.3.4.

Performance evaluation with counting receiver

The performance of a QOOK system using a PACS and employing a counting receiver

can be easily determined by using (5.8) together with the Fock representation of a

PACS given in (3.13).

Figure 5.4b shows the SEP of a counting receiver as a function of the mean number

np of photons in Ξ1, for different values of k. In comparison to Figure 5.4a, it can

be observed that the SEP with a counting receiver is higher than that of the optimal

quantum receiver (i.e., the MSEP), as expected. Note that the use of a PACS improves

the QSD performance compared to the use of a coherent state (k = 0), even for the

counting receiver. Note also that the SEP of a counting receiver approaches the MSEP

for low values of np. This can be attributed to the fact that, when np is low, the
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Figure 5.5: Quantum gain ζ as a function of np, with n̄ = 10−2, and p0 = p1 = 1/2.
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Figure 5.6: MSEP of a QOOK system using a PACS as a function of n̄, with np = 8,
and p0 = p1 = 1/2.

off-diagonal terms in the Fock representation vanish, hence the quantum advantage of

in using PACSs is reduced.

Figure 5.5 shows the quantum gain ζ, the ratio between the SEP with a counting

receiver and the MSEP with the optimal receiver, as a function of np, for different

values of k. Note that the use of the optimal quantum receiver always allows for

improvement of the performance with respect to a classical receiver.

Figure 5.6 shows the MSEP as a function of the mean number n̄ of thermal photons,

for different values of k and for fixed np = 8. Note that the use of a PACS improves
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Figure 5.7: MSEP of a QOOK system using a PACS affected by phase diffusion as a
function of σ2, with np = 6, n̄ = 10−2, and p0 = p1 = 1/2. The two dashed lines for
each k represent the MSEP without phase noise (bottom) and the SEP of a counting
receiver (top).

the system performance compared to the use of a coherent state (k = 0), especially for

small n̄. Therefore, PACSs are particularly valuable in situations when thermal noise

is low.

5.2.3 Performance evaluation in presence of noise

Phase diffusion

We now quantify the effects of phase diffusion on the MSEP. Figure 5.7 shows the

MSEP as a function of σ2 for different values of k. Note that the use of a PACS

improves the system performance compared to the use of a coherent state (k = 0).

It can be observed that, for small σ, MSEP with phase diffusion approaches to that

without phase diffusion. It can also be observed that, for large σ, the MSEP with the

optimal receiver approaches the SEP with a counting receiver as the off-diagonal terms

vanish. Therefore, in the presence of a strong phase diffusion, the counting receiver is

asymptotically optimal. This can be attributed to the fact that the off-diagonal terms

in the Fock representation vanish as the diffusion parameter increases.

Photon loss

We now quantify the effects of photon loss on the MSEP.Figure 5.8 shows the MSEP

as a function of η for different values of k. Note that the use of a PACS improves
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Figure 5.8: MSEP of a QOOK system using a PACS affected by photon loss as a
function of η, with np = 6, n̄ = 10−2, and p0 = p1 = 1/2.

the QSD performance compared to the use of a coherent state (k = 0), especially for

high η. Note also that, in the high-loss regime (i.e., when η ≈ 0), MSEP with a PACS

approaches to that with a coherent state for all k. Therefore, PACSs are particularly

valuable in situations when the loss is low. This can be attributed to the fact that the

quantum state loses its non-classical properties rapidly as η decreases [164–166].

5.3 Quantum pulse position modulation with non-

Gaussian states

This section defines and characterizes a QPPM system with a PASS. The use of a

PASS in QPPM communication systems can reduce the SEP with respect to the use

of squeezed states and coherent states, as shown in the following.

5.3.1 System model

The quantum constellation of anM -QPPM using a PASS is given by (5.2) with Ξ(1) =

Ξ(µ, ζ, k), where Ξ(µ, ζ, k) is a PASS as defined in the following, and Ξ(0) = Ξth.

Recall that, the photon-addition operation on a quantum state Ξ produces a new

state Ξ+ given by

Ξ+ =
A†ΞA

tr{A†ΞA} .
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If Ξ is a squeezed state affected by thermal noise [101], then the corresponding photon-

added state Ξ+ is referred to as a noisy PASS. Therefore, a noisy PASS is defined as

Ξ(µ, ζ, k) =
(A†)kDµSζΞS†

ζD
†
µA

k

N
(k)
+

(5.15)

where k ∈ N represents the number of addition operations, Ξth is a thermal state de-

fined in (2.33), and N
(k)
+ = tr{(A†)kDµSζΞthS

†
ζD

†
µA

k} is the normalization constant.

Note that, in the case of no photon addition (i.e., k = 0), (5.15) defines a noisy

squeezed state as in (2.82). Note also that, in absence of squeezing (i.e., r = 0), (5.15)

defines a noisy PACS as in (3.9). Finally, when both k = 0 and r = 0, (5.15) defines a

noisy coherent state as in (2.73). This definition allows to study a more general case

with respect to the QOOK of the previous section.

Note that the characterization of an M -QPPM system using a PASS depends on

the displacement parameter µ ∈ C, the squeezing parameter ζ ∈ C, and the number of

addition operations k ∈ N. The SEP of such quantum communication system depends

on the strategy employed for the design of the receiver.

5.3.2 Performance evaluation in absence of noise

Performance evaluation with optimal receiver

Consider a 2-QPPM system with a PASS according to Sec. 5.1.1, i.e., Ξ(1) = Ξ(µ, ζ, k)

and Ξ(0) = Ξth. The states of the quantum constellation (5.2) are thus given by

Ξ0 = Ξ(µ, ζ, k)⊗Ξth, and Ξ1 = Ξth ⊗Ξ(µ, ζ, k). The MSEP for this binary system

is determined according to the Helstrom bound (4.7) and depends on ∥∆∥1, with

∆ = p1Υ1 − p0Υ0. However, in this case, the eigenvalues of the operator ∆ have no

closed form expression and thus a tractable approximation of ∆ is needed to compute

the MSEP. The operator ∆ can be approximated with a finite dimensional operator

∆̃N defined as in [5]. Here, the minimum symbol error probability is approximated

using ∥∆∥1 ≃ ∥∆̃30∥1.

Performance evaluation with counting receiver

The performance of a QPPM system using a PASS and employing a counting receiver

can be determined in a closed form as given in the following.

Proposition 5.3.1. The probability of a correct detection for an M -QPPM system

with equiprobable symbols (pi = 1/M , for i = 0, 1, ...,M − 1) using a PASS, i.e.,
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Figure 5.9: Error probability of 2-QPPM systems for SEP receiver (solid line), SRM
receiver (dash dotted line), and counting receiver (dashed line) as a function of np and
n̄ = 10−2.

Ξ(1) = Ξ(µ, ζ, k), is given by

Pc =
R

M(1− v)vkN
(k)
+

M∑︂
h=1

(−1)h
(︃
M

h

)︃
(vh − 1)vkh

(1− Ãvh−1)k+1
G
(︂ |B̃|vh−1

1− Ãvh−1
,

C̃√︁
2B̃

; k
)︂

(5.16)

where R, Ã, B̃, and C̃ are given by (4.4)-(4.7) of [101], respectively, v = n̄/(1+ n̄), and

G(w, x; k) =
∂k

∂wk

[︂ wk

√
1− w2

exp
{︂2|x|2w − 2x2rw

2

1− w2

}︂]︂
.

Proof. See Section 5.4.1.

The expression for the probability of a correct detection can be further simplified

in the absence of squeezing (r = 0) as given in the following.

Proposition 5.3.2. The probability of a correct detection for an M -QPPM system

with equiprobable symbols (pi = 1/M , for i = 0, 1, ...,M − 1) using a PACS, i.e.,

Ξ(1) = Ξ(µ, ζ, k), is given by

Pc =

[︃
1− v

v

]︃k
e−(1−v)|µ|2

MLk(−|µ|2(1− v))

M∑︂
r=1

(−1)r
(︃
M

r

)︃
(vr − 1)H

(︃
−(1− v)2|µ|2

v
, vr; k

)︃
(5.17)
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(a) Optimal receiver (quantum).
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(b) Counting receiver (classical).

Figure 5.10: Performance of 2-QPPM as a function of np, with n̄ = 10−2 and p0 =
p1 = 1/2.

where v = n̄/(1 + n̄), and

H(x, z; k) =
zk

k!

∂k

∂zk

[︃
zk

1− z
exp

{︃
− xz

1− z

}︃]︃
. (5.18)

Proof. See Section 5.4.2.

Figure 5.9 shows the error probability Pe for a 2-QPPM as a function of np, for

different receivers and values of k. Notice that the use of PACSs improves the perfor-

mance of the QPPM system with respect to coherent states (k = 0). Notice also that,

the performance of the SRM receiver is essentially the same of the SEP. This can be

attributed to the fact that the noise parameter is very small and therefore, the SRM is

a good approximation to the SEP [45]. For this reason, the performance of the SRM

will not be considered anymore.

Figure 5.10a shows the error probability for a 2-QPPM system with the optimal

receiver as a function of the mean number np of photons in Ξ(1), for different values

of k and r. Note that, for a fixed amount of squeezing r, the use of a PASS improves

the performance of the optimal receiver compared to the case of squeezed state (k = 0)

with same np and r. Note also that, as np increases, the use of a PASS improves the

performance of the optimal receiver with respect to the use of a PACS (r = 0) with

the same np and k.

Figure 5.10b shows the error probability for a 2-QPPM system with the counting

receiver as a function of the mean number np of photons in Ξ(1), for different values of

k and r. In comparison to Figure 5.10a, it can be observed that the error probability
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Figure 5.11: MSEP for a 2-QPPM system with the optimal receiver as a function of
n̄, with np = 9, and p0 = p1 = 1/2.

with the counting receiver is higher than the error probability with the optimal receiver,

as expected. Note that the use of a PASS instead of a squeezed state improves the

performance of the system even with a sub-optimal receiver. Note also that the use of

squeezing is advantageous particularly for sufficiently high values of np even with the

counting receiver.

Figure 5.11 shows the MSEP for a 2-QPPM system with the optimal receiver as

a function of the mean number n̄ of thermal photons, for different values of k and r,

and np = 9. Note that the use of a PASS improves the performance of the MSEP

receiver compared to the use of a squeezed state with the same squeezing parameter

r, especially for small n̄. Note also that, for sufficiently small np, the use of a PASS

improves the performance of the optimal receiver compared to the use of a PACS.

5.3.3 Performance evaluation in presence of noise

Finally, the impact of decoherence in the quantum channel on the system performance

is evaluated. Figure 5.12 shows the error probability for a 2-QPPM system with the

optimal receiver as a function of the decoherence parameter σ2, for different values of

k, and np = 4. Note that the performance of the optimal receiver approaches that of

the counting receiver as σ2 increases. This can be attributed to the fact that the state

loses its quantum phase as the noise parameter increases.
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Figure 5.12: Performance of 2-QPPM with optimal receiver as a function of σ2, with
np = 4, n̄ = 10−2, and p0 = p1 = 1/2.

5.3.4 Analysis of state preparation efficiency

Photon-added states are typically prepared by means of a conditional preparation tech-

nique [57]. This technique has been used to generate different classes of photon-added

states, but is extremely inefficient and slow. Therefore, it is important to compare

different quantum communication systems by taking into account the efficiency of the

preparation on the effective speed of the system. Denote with RM(np, ζ; k) the trans-

mission rate for anM -QPPM system, as described in Sec. 5.1.1, for which RM(np, 0; 0)

denotes the transmission rate of aM -QPPM system using coherent states [44]. Follow-

ing the approach in [7], the performance gain GM(ζ, k) = RM(np, ζ; k)/RM(np, 0; 0) is

considered to compare the two systems. For an M -QPPM using a PASS, the perfor-

mance gain is given by

GM(ζ, k) =
CM(np, ζ; k)

CM(np, 0; 0)

Fk(ζ) + (M − 1)F0Fk(ζ)

1 + (M − 1)F0Fk(ζ)
(5.19)

where F0 is the ratio between the generation rate of a coherent state and that of a

thermal state, Fk(ζ) is the ratio between the generation rate of a PASS Ξ(µ, ζ, k) and

that of a coherent state, and CM(np, ζ; k) is the Shannon capacity of the system. The

capacity of the system with a counting receiver is [167]

CM(np, ζ; k) = log2(M)− h2(Pe)− Pe log2(M − 1) (5.20)
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M
F1 = 1 F1 = 10−1 F1 = 10−2 F1 = 10−3

r = 0.4 r = 0.0 r = 0.4 r = 0.0 r = 0.4 r = 0.0 r = 0.4 r = 0.0
2 1.560 1.558 0.284 0.283 0.031 0.030 0.003 0.003
16 1.339 1.333 0.857 0.853 0.186 0.185 0.021 0.021
128 1.243 1.220 1.162 1.140 0.701 0.688 0.141 0.138
1024 1.190 1.149 1.179 1.139 1.084 1.048 0.602 0.581

Table 5.1: Performance gain GM(ζ, 1) of an M -QPPM system using a PASS with
respect to a M -QPPM system using coherent states: counting receiver, np = 2, n̄ =
10−2, and F0 = 1.

where h2(x) = −x log2(x) − (1 − x) log2(1 − x) is the binary entropy function and

Pe = 1−Pc with Pc given by Eq. (5.16). Table 5.1 shows the gain GM(ζ, 1) as function

of M , for different values of the squeezing parameter ζ and generation rates ratio F1.

Note that the presence of squeezing increases the gain G1 with respect to the absence

of squeezing. Note also that, when the ratio F1 is low, the gain increases with M .

This can be attributed to the fact that preparation inefficiency is compensated by the

constellation size.

5.4 Proof of the Results

5.4.1 Proof of Proposition 5.3.1

The proof of the proposition requires the following Lemma.

Lemma 5.4.1. For k ∈ N, x,w ∈ C, it is

+∞∑︂
n=0

(n+ k)!

(n!)2

(︂w
2

)︂n

Hn(x)Hn(x
∗) = G(w, x; k) (5.21)

where

G(w, x; k) =
∂k

∂wk

[︂ wk

√
1− w2

exp
{︂2|x|2w − 2x2rw

2

1− w2

}︂]︂
.

Proof. Notice that the left-hand side of (5.21) can be written as

2k
∂k

∂wk

[︄(︂w
2

)︂k
+∞∑︂
n=0

1

q!
Hn(x)Hn(x

∗)
(︂w
2

)︂n
]︄
. (5.22)

Then, (5.21) follows by using Mehler’s formula [168] in (5.22).

Recall that, the probability for a correct dectection is given by Eq. (5.14)
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Pc =
1

M(1− v)
En

{︂ M∑︂
h=1

(−1)h
(︃
M

h

)︃
(vh − 1)vn(h−1)

}︂
where the expected value is taken over to the number of photons n in the state Ξ(1).

Note that the probability of a correct detection depends on the probability gener-

ating function of n, En {zn} =
∑︁+∞

n=0 Pnz
n, with z = vh−1, where Pn = P{n = n} =

⟨n|Ξ(1) |n⟩. Therefore, by using the Fock representation of a noisy squeezed state [101],

and after some algebra we obtain

En {zn} =
R

N (k)(µ, ζ)

+∞∑︂
n=k

n−k∑︂
q=0

n!znÃn−k

(n− k)!q!

(︃
n− k

q

)︃(︂ |B̃|
2Ã

)︂q

Hq(x)Hq(x
∗) (5.23)

where R, Ã, B̃ and C̃ are given by (4.4)-(4.7) of [101], respectively. By changing the

order of the summations, the (5.23) results in

En {zn} =
R

N (k)(µ, ζ)

+∞∑︂
q=0

1

q!

(︂ |B̃|
2Ã

)︂q

Hq(x)Hq(x
∗)

+∞∑︂
n=q+k

n!znÃn−k

(n− k)!

(︃
n− k

q

)︃
. (5.24)

Recall that, for y ∈ C, the following identity holds

+∞∑︂
n=h

(︃
n

h

)︃
(n+ k)!

n!
yn =

(h+ k)!

h!(1− y)k+1

(︂ y

1− y

)︂h

. (5.25)

Using (5.25), the (5.24) can be written as

En {zn} =
Rzk

N (k)(µ, ζ)(1− Ãz)k+1

+∞∑︂
q=0

(q + k)!

(q!)2

[︂ |B̃|z
2(1− Ãz)

]︂q
Hq(x)Hq(x

∗) . (5.26)

From (5.21), (5.26) with z = vr−1, and (5.14), the (5.16) is obtained.

5.4.2 Proof of Proposition 5.3.2

The proof of the proposition requires the following Lemma.

Lemma 5.4.2. For k ∈ N and |z| < 1, it is

∞∑︂
n=k

(︃
n

k

)︃
Ln−k(x)z

n =
zk

k!

∂k

∂zk
[︁
G(x, z)zk

]︁
= H(x, z; k) (5.27)
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where

G(x, z) =
1

1− z
exp

{︃
− xz

1− z

}︃
.

Proof. Consider the generating function of the Laguerre polynomials [168], which can

be equivalently written as

∞∑︂
n=k

Ln−k(x)z
n =

zk

1− z
exp

{︃
− xz

1− z

}︃
. (5.28)

Relation (5.27) follows from taking the k-th derivative on both sides of (5.28).

Recall that, the probability for a correct dectection is given by Eq. (5.14)

Pc =
1

M(1− v)
En

{︂ M∑︂
h=1

(−1)h
(︃
M

h

)︃
(vh − 1)vn(h−1)

}︂
where the expected value is taken over to the number of photons n in the state Ξ(1).

Note that the probability of a correct detection depends on the probability generat-

ing function of n, En {zn} =
∑︁+∞

n=0 Pnz
n, with z = vh−1, where Pn = P{n = n} =

⟨n|Ξ(1) |n⟩. Therefore, by using the Fock representation (3.13) of a noisy PACSs , and

after some algebra we obtain

En {zn} =
(1− v)k+1e−(1−v)|µ|2

Lk(−|µ|2(1− v))vk
H
(︂
− (1− v)2|µ|2

v
, vz; k

)︂
.

Equation (5.17) follows by applying this expression into Equation (5.14) with z = vh−1.
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Quantum key distribution networks

Quantum key distribution is a technology that exploits the peculiarity of quantum

mechanics to allow the exchange of cryptographically secure keys between two remote

parties [63–65]. It is one of the most mature quantum technologies, with different

commercial implementations available on the market. However, the distribution of

secure keys across long distances is still a challenge with current technologies, due to

noise and attenuations in quantum channels [64]. The most promising techniques for

long distance QKD involve the usage of low attenuation fibers [66–68] for metropolitan

distances and LEO satellites [69–71] for long-range communications.

The advent of quantum networks will be beneficial for a global diffusion of QKD

protocols. Indeed, the use of a quantum network allows to break a long-distance

noisy quantum communication into shorter-distance point to point communications.

Moreover, the network structure allows the interconnected nodes to exchange secret

keys reliably and robustly. However, one of the main challenges is related to the no-

cloning Theorem, which states that an unknown quantum system can not be cloned [72].

On one side, this Theorem is beneficial to guarantee information-theoretical secure

communications, but on the other side, making it more difficult to apply classical

solutions.

A possible enabler for the construction of a quantum network are the quantum re-

peaters [169]. Such repeaters are specifically designed to regenerate a quantum signal,

without perturbing it, by exploiting different kind of quantum effects such as entangle-

ment swapping and entanglement distillation [170, 171]. In this way, two end parties

may be connected with a chain of quantum repeaters, which will allow the parties

themselves to establish a secure key without requiring the intermediate nodes to be

trusted. In the future, quantum repeaters may be used as the fundamental building

block for the quantum Internet [22, 23]. As an alternative in the short-term, differ-

ent protocols have been proposed and implemented to overcome these limitations by
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Figure 6.1: Illustration of a simple QKD network with a relay operating in an intermit-
tent availability scenario. In this example, the two end nodes are allowed to exchange
quantum information by relying on a trusted LEO satellite, which is visible to one end
node at time and only for a short period of time during the day. Conversely, classical
information can be exchanged via the classical internet even if the relay is not visible.

relying on the trustiness of the intermediate nodes [64, 67,68,71,172,173].

Independently from the implementation, the QKD may work in a complex scenario.

For example, it may happen that one or more of the (trusted or not) relays are not

always available to their neighbours, as in the case of LEO satellites. This is the case of

the recent satellite-relayed QKD network established through the Micius satellite [71].

In this scenario (see Figure 6.1), the design of a QKD protocol is more subtle, and it

should take into account these limitations to improve the overall secret key throughput

of the network, i.e., the total amount of exchanged secret key bits in the time frame

during which the relay is visible to the end nodes.

This thesis envisions the possibility to use properly tuned QKD protocols to im-

prove the throughput of QKD networks in the intermittent-relay scenario. In partic-

ular, it is shown that under certain conditions, apparently slower QKD protocols may

perform better than state-of-the-art protocols, when they operate in an intermittent-

relay scenario. The goal is to establish new techniques for performance evaluation of

trusted-relay intermittent QKD networks. The key contributions are as follows:

• analysis of secret key throughput for QKD networks with intermittent trusted

relays; and

• definition of a new performance metric for QKD networks with intermittent

trusted relays.
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6.1 Quantum key distribution

The security of classical public-key cryptosystems relies on the computational hardness

of some algorithms, and therefore they are not based information theoretically secure

[174]. In an ideal situation, with an infinite amount of processing power, and with

the capability to intercept the communications between the legitimate users, an evil

agent (also referred to as eavesdropper) would be able to intercept and decipher the

messages exchanged by the users, without leaving any trace of his actions. This is

a well known problem in modern cryptography and it is considered an Achille’s heel

for the future of secure communications. The no-cloning theorem, together with the

Heisenberg uncertainty principle, turns out to be a fundamental tool for cryptographic

applications, which can overcome the limitation of classical cryptographic systems.

6.1.1 QKD protocols

QKD protocols can be divided into two categories: (i) prepare-and-measure protocols

which are essentially based on the superposition and undeterminancy principle; and (ii)

entanglement-based protocols which are based on the properties of bipartite entagled

systems. A wide class of these QKD protocols can be described as follows [175].

1. Quantum communication: The two legitimate parties Alice and Bob use a

quantum channel to share a set of N bipartite quantum states among them.

2. Parameter estimation (PE): Alice and Bob sacrifice a subset of the m sub-

systems to estimate the error rate ϵ due to the presence of impairments or eaves-

droppers in the quantum channel. If the error rate ϵ is too high, which may be

a signature for the presence of an eavesdropper, then the two parties may agree

to abort the protocol. Otherwise, the protocol proceeds by throwing away the

systems used for PE.

3. Measurement: If the protocol has not been aborted, the two parties apply a

local quantum measurement on their remaining subsystems to obtain a pair of

raw keys (i.e., a classical string of bits) of length N −m.

4. Block-wise processing: Alice and Bob apply a classical post-processing pro-

cedure to increase their correlation, by sacrifying a subset of their classical bits,

to obtain a set n of bits.

5. Information reconciliation (IR): To counteract the effect of the noise in the

quantum channel, Alice and Bob share some error correcting information for
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the set of n classical bits. In state of the art implementations [67, 68, 71, 176],

low-density parity-check codes (LDPC) codes are used to correct errors.

6. Privacy amplification (PA): To reduce the information that may have been

acquired by a non-legitimate third party in the previous step of the protocol,

the legitimate parties Alice and Bob apply a classical protocol to transform their

strings of n bits into secret keys of length l. In general, Alice and Bob apply a

l× k Toeplitz matrix T as a 2-universal hash function [177]. If r is the string of

bits after IR, then k = Tr is the string of secure key bits after PA.

The secret key rate, which quantifies the efficiency of a QKD protocol to generate a

secret key is defined as in the following.

Definition 6.1.1. The key rate Cr of a QKD protocol is defined as the ratio between

the number l of secret key bits obtained at the end of the protocol, and the number n

of bits used for the computation of the key, i.e.,

Cr =
l

n
.

6.1.2 Security of a QKD protocol

Consider a QKD protocol with two legitimate parties, Alice and Bob, together with

a malicious attacker, referred to as Eve. The peculiarities of QKD protocols is the

possibility to prove that they are not based on the complexity of a mathematical

problem, but they use the peculiarities of quantum mechanics to satisfy an information-

theoretical security criterion.

The security analysis for a QKD protocol is performed by assuming that the quan-

tum channel connecting Alice and Bob is under full control of Eve. This is a pessimistic

assumption, but it allows to derive an upper bound on the performance of the QKD

protocol. The strongest security criterion is formulated as follows [175,178].

Let ΞABE ∈ H⊗n
A ⊗ H⊗n

B ⊗ HE be the quantum state shared by Alice, Bob, and

Eve at the end of protocol, provided that the protocol has not been aborted. Then,

the protocol is said to be ε-secure

1

2
∥ΞABE −ΞUU ⊗ΞE∥1 ≤ ε

where ρUU = 1/|S|∑︁s∈S |s⟩⟨s| is the fully mixed state in H⊗n
A ⊗ H⊗n

B , S is the set of

possible values for the key.

Notice that, in the asymptotic limit n → ∞ the security definition stated above

can be applied for every ε > 0. Therefore, the definition is equivalent to say that a
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protocol is secure if the state shared between Alice and Bob (i.e., the key) at the end of

the protocol is indistinguishable from the fully mixed state. In other words, this means

that, if the protocol succeed, the two legitimate parties are ensured that, independently

from the attack chosen by eavesdropper, no information is leaked. Indeed, it can be

proven that a secure protocol according to the above definition, which produces a secret

key K, satisfies the following inequality for every ϵ > 0

max
W

I(K;W ) ≤ ϵ

where the maximum is taken with respect to over all possible measurements W of the

eavesdropper, and I(K;W ) is the mutual information between K and W .

The security definition gives important restrictions on the performance of a QKD

protocol. In particular, For every QKD protocol it is possible to prove that [175], in

the asymptotic limit n→ ∞, the protocol is secure if and only if

Cr =
l

n
≤ C

where C is a constant that depends on the protocol and on the error rate, and it is

referred to as the secret key rate. The secret key rate plays a role analogue to the

channel capacity in classical information theory [179]: it measures the mean amount

of secret key bits that can be generated from one raw key bit, i.e., the efficiency of the

QKD protocol. In the following, it is assumed that the QKD protocols work ideally,

i.e., Cr = C.

6.1.3 BB84 protocol

The first but still widely used QKD protocol is the Bennett and Brassard (1984) (BB84)

[63]. The protocol is described as follows.

1. Quantum communication: Alice generates two random strings a and b of

N = 4n classical bits. The two strings are then used to prepare a string |ψ⟩ of

4n qubits according to the BB84 rules [63], defined as follows.

|ψ⟩ =
4n⨂︂
i=1

|ϕaibi⟩ (6.1)

where ai denotes the information bit, bi denotes the qubit basis used for prepare
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the quantum bits, and |ϕaibi⟩ is prepared according to the following

|ϕ00⟩ = |0⟩
|ϕ10⟩ = |1⟩

|ϕ01⟩ =
|0⟩+ |1⟩√

2

|ϕ11⟩ =
|0⟩ − |1⟩√

2
.

2. Quantum measurement: Bob measures the received qubits in a randomly

chosen basis, to get a string of 4n bits. This does not require any communication.

3. Key sifting: Alice and Bob publicly announce their choice of basis for each

qubit, and they discard the qubits for which their choices differ. The expected

number of remaining bits after sifting is 2n. Since the choices are independent,

the Shannon source coding theory [180] can be used to show that both parties

have to publish 4n classical bits, for a total of 8n classical bits.

4. PE: Alice and Bob publicly compare a randomly chosen set of half of their

remaining bits to guess the error rates εb and εp of the channel in the two bases,

respectively. In a first approximation, Alice needs 2n qubits to tell Bob the set

of bits to compare.1 Then both parties announce the value of such bits, using n

classical bits each one. Therefore, this step requires approximately 4n bits to be

sent on the classical channel.

5. IR: Alice and Bob use a classical error-correcting code (CECC) to correct the

errors of the quantum channel, as described in the previous section. Assuming

that the classical channel is error-free, than Alice needs to send bob only some

n − k parity bits to let Bob produce an error-free string of k < n classical bits.

Assuming that the parity-check matrix is known in advance, this step requires

Alice to send n− k parity bits on the classical channel.

6. PA: Alice uses an l × k Toeplitz matrix T as a 2-universal hash function, with

l < k, to eliminate the side information, as described in the previous section.The

Toeplitz matrix is completely described by a binary vector of length k + l − 1,

which is sent through the classical channel. The parameter l, which determines

1In theory, Alice can use a smaller amount of bits, given by log2
(︁
2n
n

)︁
≈ 2n − log2(

√
πn), which

follows from Stirling’s approximation. However, log2
(︁
2n
n

)︁
≈ 2n for large n.
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KAB ⊕KBC

A B C

(i)
(ii)
(iii)
(iv)

(a) fully trusted relay (FTR) protocol.

A B C

RAB ⊕RBC

(b) simplified trusted relay (STR) protocol.

Figure 6.2: Illustration of the two trusted-relay protocol architectures: (i) represents
the exchange of quantum states over the quantum channel; (ii) indicates the presence
of a classical communication to perform the sifting procedure; (iii) represents the post
processing procedure; and (iv) points out the publication of trusted-relay information.

the secure key rate, depends on the information leaked during the error correc-

tion procedure. When l is sufficiently high, the amount of classical information

emitted by Alice is approximately equal to k + l (neglecting −1).

The secret key rate of the BB84 protocol is given by the Shor-Preskill formula [181]

CBB84 = max{1− h2(εb)− h2(εp), 0} (6.2)

where h2(x) = −x log2(x) − (1 − x) log2(1 − x) is the binary entropy function. If the

attack is symmetric in the two basis, i.e., εb = εp = ε, then

CBB84 = max{1− 2h2(ε), 0} . (6.3)

From (6.3) it follows that C = 0 for ε > ε̃ ≈ 0.11. Therefore, no secret key can be

established between Alice and Bob if the error rate affects more than 11% of the control

qubits.

6.2 QKD networks with trusted-relay

This section introduces two QKD protocols that can be used in a trusted-relay QKD

network. To keep the concepts as simple as possible, consider a simple three-node

network in which the two end parties Alice (A) and Charlie (C) want to agree on a

secret key by relying on the trusted third party Bob (B). The topology of the network

is showed in Figure 6.2.

6.2.1 Fully trusted-relay BB84

The most simple trusted-relay protocol, which has been proposed and used in almost

all available QKD networks [67,68,71], uses the intermediate node as a full QKD relay.
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In particular, Alice exchanges a secure key KAB with Bob. Bob does the same with

Charlie, by establishing a secure key KBC with him. Then, Bob sends Charlie the key

KAB using KBC as a one-time pad KAB⊕KBC , which Charlie uses to reconstruct KAB.

In this sense, Bob acts as a complete relay between Alice and Charlie who now both

know the key KAB. Such protocol is referred to as fully trusted relay (FTR). This idea

can be easily generalized to an arbitrary number of nodes. The pictorial representation

of this protocol is reported in Figure 6.2a.

Cftr = max{1− 2h2(ε), 0} . (6.4)

6.2.2 Simplified trusted-relay BB84

Let us now consider the STR protocol, proposed in [173]. The principal idea of this

protocol is to demand the classical post-processing procedure to the end users, thus

involving the trusted relay only in the quantum state distribution and sifting procedure.

The protocol proceeds as follows:

1. Alice prepares a string of 4n quantum bits as in the BB84 protocol, and she sends

it to Bob using the link A−B.

2. Bob measures the received qubits in a random basis. He then performs the sifting

procedure to produce the raw key RAB.

3. The steps 1 and 2 are repeated by Bob and Charlie on the link B−C to produce

the raw key RBC .

4. Bob announces P = RAB ⊕RBC and its role ends here. Charlie uses his raw key

RBC to recover Alice’s raw key RAB.

5. End-to-end PE: Alice and Charlie publicly determine the error rate for each

basis combination, including the choice of Bob. If the error rate is too high, they

abort the protocol.

6. End-to-end IR and PA: Alice and Charlie perform the usual information rec-

onciliation and privacy amplification procedure to produce the secure key.

A pictorial representation of this protocol is shown in Figure 6.2b. In this case, the

trusted relay is involved only in the quantum state preparation and in the sifting

procedure; it is not concerned in the post-processing operations. This simplification

comes at the expenses of the key rate, which, in this case, is given by [173]

Cstr = max{1− 2h2
(︁
2ε(1− ε)

)︁
, 0} . (6.5)
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Figure 6.3: Secret key rate C of the FTR and the STR protcols as a function of the
error rate ε.

6.2.3 Performance evaluation

If the network nodes are always available, the performance of a QKD protocol operat-

ing in an end-to-end link, as in the scenario depicted above, can be evaluated via the

secret key rate, which quantifies the amount of secret key generated per channel use.

Figure 6.3 shows the secret key rate for the FTR and STR protcols, given by Equa-

tions (6.4) and (6.5), as a function of the error rate ε. Note that, the secret key rate

of the STR protocol is lower than the one of the FTR protocol. Therfore, according

to this analysis, the STR protocol, despite being of simpler implementation, has worse

performance than the FTR protocol.

6.3 QKD with intermittent trusted-relay

In the analysis of the previous section, the efficiency of a QKD protocol is evaluated

in term of the secret key rate, i.e., the number of secret key bits per raw key bit. This

rate is the most important figure of merit in the design of a QKD link, as it gives

an estimate of the efficiency of the QKD system. However, in a QKD network, it

may happen that one or more of the trusted relays are not always available to their

neighbours, as in the case of LEO satellites. Moreover, the end nodes may be able to

communicate between them using an existing communication network (e.g., Internet),

even in the absence of the relay.
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6.3.1 Scenario description

Consider the simple network introduced in the previous section and shown in Figure 6.1,

and consider the relay to be operating intermittently. These conditions can be imposed

by the assumptions (i)-(v) reported in the following.

(i) The trusted node B is visible to the end nodes only for a certain amount of time

tv, after which it remains hidden for a certain amount of time ti, which is supposed

to be much greater than tv (e.g., LEO satellites). The time frame during which

it is available to A may not overlap to the one of C;

(ii) the quantum transmission rate Rq and the classical transmission rate Rc are the

same for each link, and they remain constant during the whole transmission;

(iii) the quantum channels are identical and independent one from the other;

(iv) the computation times are negligible;

(v) the error correction and privacy amplification procedures work at their theoretical

limits, i.e., the effective key rate is equal to the theoretical one.

Note that the first two assumptions are reasonable, according to the experimental

data obtained by recent studies with the Micius satellite [69–71]. Anyway, a time-

dependent transmission rate does not affect the results of our analysis, as it can be

assumed to be piecewise constant. The third assumption is reasonable too, especially if

the communication between the source node and the destination node happens during

disjoint time slices, as in Micius experiments. Finally, the last two assumptions seem

to be optimistic as the computational time may not be negligible with respect to the

time slice tv. Furthermore, the IR and PA procedures cannot work at the theoretical

limits. This does not affect our analysis since no protocols, except the FTR, rely on the

intermediate relay for the post-processing phase. This would thus give us a pessimistic

analysis.

6.3.2 Secret key throughput

Fully trusted relay protocol

The performance analysis is simple. Each of the two links runs a complete BB84

protocol during the time slice of length tv. Thus, using the expressions of the previous

section



6.3. QKD with intermittent trusted-relay 83

tv =
4n

Rq

+
8n

Rc

+
4n

Rc

+
n− k

Rc

+
k + l

Rc

= l
4Rc + (13 + C)Rq

CRcRq

where C is the key rate of the standard BB84 protocol, which is given by the well

known expression [181]: C = 1−2H2(ε) where H2(x) = −x log2(x)− (1−x) log2(1−x)
is the binary entropy function and ε is the error rate as measured in the IR phase. It

follows that the amount of exchanged bits, for a single BB84 link during the time slice

tv, is given by

l = tv
CRcRq

4Rc + (13 + C)Rq

.

However, to complete the key exchange, the trusted relay needs further classical com-

munication to publish the one-time pad message KAB⊕KBC . This happens just before

the end of the second time slice (the one between Bob and Charlie). Therefore,

tp = 2tv = 2l
4Rc + (13 + C)Rq

CRcRq

+
l

Rc

and

lftr =
1

2
tp

CftrRcRq

8Rc + (26 + 3Cftr)Rq

(6.6)

where Cftr = C. Notice that the term one half, which has been added in front of the

previous expression, takes into account that the key KBC , which has been exchanged

between Bob and Charlie, is discarded after the end of the protocol. It is also worth

noticing that, in some works [70], the quantum transmission rate Rq is implicitly re-

placed with the sifted transmission rate Rs. Anyway, it is possible to derive one from

the other. Indeed, the amount of time needed for quantum state distribution and

sifting is given by

ts =
4n

Rq

+
8n

Rc

= 2n

[︃
2Rc + 4Rq

RcRq

]︃
.

Since the number of bits after the sifting step is equal to 2n, it follows that the sifted

rate is given by

Rs =
RcRq

2Rc + 4Rq

. (6.7)

Simplified trusted relay protocol

In this protocol, the trusted relay is involved only in the quantum state preparation

and in the sifting procedure; it is not concerned in the post-processing operations that

are executed by the end nodes. This simplification comes at the expenses of the key
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rate, as described in the previous section. Therefore, it is

tp = 2

[︃
4n

Rq

+
8n

Rc

]︃
+

2n

Rc

= l
8Rc + 18Rq

RcRqCstr

.

The last term in the first expression is due to the public announcement of the trusted

relay. From this expression, it follows that

lstr =
1

2
tp

RcRqCstr

8Rc + 18Rq

. (6.8)

The term one half has been added for the same reason explained in the previous section.

It is important to note that, according to the standard key-rate analysis, the STR

protocol is less efficient than the FTR as Cstr < Cftr for all the significant ε.

6.3.3 Performance evaluation

A performance evaluation of the two protocols presented in the previous section is now

given. The FTR protocol is used as the reference protocol, since it represents the state

of the art. We define the secret key throughput gain of a protocol p, with respect to

the FTR protocol, as

Gp = Gp(Rq, Rc, ε) =
lp
lftr

where lp represents the amount of bits exchanged in the time slice tv using the protocol

p. Since both lp and lftr linearly depend on tv, Gp is a function only of the communi-

cation rates Rq and Rc, and of the error rate of the channel. The throughput gain is

a figure of merit in the intermittent-relay scenario. Indeed, if Gp > 1, it means that

the protocol p has a longer secure key (with respect to the FTR protocol) when the

visibility time of the trusted relay is the same, and viceversa for Gp < 1.

For the STR protocol, using expressions (6.6) and (6.8), it is

Gstr =
Cstr

Cftr

8 + (26 + 3Cftr)R

8 + 18R

where we have implicitly defined the quantum-over-classical communication rate ratio

parameter R as

R =
Rq

Rc

.

Note that Gstr depends only on the parameter R and the error rate ε, i.e., Gstr =

Gstr(R, ε).
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Figure 6.4: Throughput gain of the STR with respect to the FTR protocol as a function
of the error rate e.

It is also possible, with similar calculations, to express the gain as a function of the

sifted-over-classical communication rate

R′ =
Rs

Rc

where Rs is the equivalent sifted rate of the protocol, as in (6.7) for the FTR protocol.

Using expression (6.7), we can derive the relation between R and R′

R′ =
R

2 + 4R
.

Discussion

Figure 6.4 shows the throughput gain of the STR protocol as a function of the error

rate in the channel ε, for different values of the parameter R. It can be observed

that, at extremely low error rates, the gain given by the STR protocol can go over

40%, depending on the value of R. Notice that the throughput gain has no physical

significance when the error rate ε is such that Cftr, Cstr < 0.

Comparing the protocols directly using the throughput gain seems to be hard, at

least in principle, because the parameter R has to be fixed. To have a synthetic and

more concise comparison, we introduced the parameter εu(R) which is the unitary-

gain error rate as a function of R, i.e., Gstr(R, εu(R)) = 1. Since the function Gstr is

monotonically decreasing in ε, when R is fixed, the parameter εu discriminates two

operating regions for the protocol: when ε < εu, using the STR protocol allows the
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Figure 6.5: Error rate as a function of R: (a) theoretical unitary gain error rate of the
STR protocol with respect to the FTR protocol; and (b) experimental mean values as
in [70].

network to achieve a greater throughput with respect to the FTR protocol, otherwise

the opposite is true.

Figure 6.5 shows the unitary gain error rate for the STR protocol as a function of

the ratio R. It is interesting to note that the gain of the STR protocol has a smooth

trend in R, and the unitary error-rate function divides the plane into two regions: the

one under the curve is the advantageous region for the STR protocol, the other is the

advantageous region for the FTR. This means that, under certain conditions on ε and

R, the STR protocol is more efficient than FTR, even if it is slower according to a

simple key rate analysis. In other words, the secret key rate is not the best figure of

merit to analyze QKD system in this scenario. The crosses in the figure are explained

hereafter.

Technological considerations

The theoretical study of the last section can be used to design a QKD network when the

relay is available only for a limited amount of time. As a toy example, we perform a first

analysis of trusted relay protocols on an existing infrastructure, using the experimental

data obtained with a state of the art LEO satellite [70], which relies on the FTR

protocol to perform relay assisted QKD [71]. In this case, the observed sifted key

rate is in the range from 1 to 40 KHz, depending on the environmental conditions,

and the classical communication speed is around 1 Mbps. The ratio R′ is thus in
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the order of 10−2. The measured quantum bit error rates are in the order of 10−2.

The experimental data, obtained for different runs of the BB84 protocol using a LEO

satellite [70], are Figure 6.5 crosses. This means that according to the above analysis,

we can not improve the network throughput with the STR protocol by using current

technologies. However, recall that in the assumptions of our analysis we have neglected

the computational times needed to perform the relay operations, and the inefficiency of

IR and PA operations. Generally, the computational resources of a lightweight satellite

are very limited with respect to ground nodes. For this reason, our unitary-gain error

curves may be interpreted as a lower bound for real systems, which can perform better

than predicted by our analysis. This means that even if current technologies can not

still reach the unitary gain error curve (delimiting the advantageous working region

for the STR protocol) next generation technologies are very likely to do so in the near

future.
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Conclusion

This thesis introduces new methodologies for the design and analysis of quantum sys-

tems and networks. In particular, the use of non-classical non-Gaussian states, such as

photon-added coherent states (PACSs) and photon-added squeezed states (PASSs), is

established for applications relying on quantum state discrimination (QSD). Moreover,

a new framework for the characterization of quantum key distribution (QKD) networks

in the presence of intermittent relaying is derived.

A characterization for PACSs affected by thermal noise in state preparation is

derived in terms of Fock representation, Wigner W -function, Glauber–Sudarshan P -

function, and Husimi–Kano Q-function. Then, a characterization of QSD with noisy

PACSs is given in terms of discrimination error probability (DEP) for both optimal

and sub-optimal quantum measurements. It is shown that the use of PACSs instead of

coherent states can significantly reduce the error probability in QSD. These findings are

then used for establishing the use of non-Gaussian states for quantum communication

systems. In particular, the results on QSD with PACS are used to analyze and design

quantum communication systems with quantum on-off keying (QOOK) and quantum

pulse position modulation (QPPM) modulations with PACS and PASS. It is shown

that the use of PACSs and PASSs is beneficial for the QSD performance and can

significantly reduce the error probability with respect to the use of Gaussian states

with the same energy, even when a classical receiver is used. The impact of thermal

noise, phase diffusion, and photon loss on the system performance is also evaluated.

The characterization of QKD networks is also determined in the presence of in-

termittent relays such as low-Earth orbit satellites. In this scenario, the design and

the analysis of a QKD protocol accounts for all the limitations and network’s working

conditions to maximize the performance of the network. A new metric for the anal-

ysis of QKD networks in presence of intermittent relaying, referred to as secret key

throughput, is also introduced. It is shown that the conventional metric to quantify
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the efficiency of a QKD protocol, i.e., the secret key rate, may not be accurate to ana-

lyze the network performance in the presence of limiting conditions. In particular, the

performance of different QKD protocols are evaluated in a realistic scenario, showing

that apparently slower protocols, provide an higher secret key throughput.

This thesis (i) establishes the use of non-classical non-Gaussian states for improving

QSD, and (ii) develops a framework for design and analysis of QKD in networks with

intermittent relays. The findings of this thesis pave the way for the analysis and

the design of innovative quantum systems and networks relying on non-classical non-

Gaussian states.



Appendix A

Wirtinger calculus

In the phase-space formulation of quantum mechanics it is useful to regard a function

(e.g., the quasi-probability distribution) defined on R2 as a function defined on C. In

particular, it is possible to formally replace the two real variables x and y in the real-

valued function f(x, y) with one complex variable z = x + ıy so that f(x, y) becomes

a function of z, i.e., f(x, y) = g(z). However, this formal substitution introduces some

mathematical issues for the differential calculus due to the structure of the complex

space. In particular, even if f(x, y) is differentiable, the function g(z) is differentiable

in the complex domain if and only if the Cauchy-Riemann conditions hold [182].

The key idea of the Wirtinger calculus is to introduce a generalized complex deriva-

tive with respect to z (or z∗), that considers z∗ (or z) as a constant. The theory behind

this mathematical framework was initially developed by Wirtinger [183] and then re-

discovered recently in the engineer literature [93–97,184].

Definition A.0.1. Let g(z) : C → C be a complex function and let g̃(z, w) : C2 → C
be a complex function such that g̃(z, z∗) = g(z). The Wirtinger derivatives of g(z) are

∂g(z)

∂z
≜
∂g̃(z, w)

∂z

⃓⃓⃓
w=z∗

(A.1a)

∂g(z)

∂z∗
≜
∂g̃(z, w)

∂w

⃓⃓⃓
w=z∗

. (A.1b)

Remark 1. Notice that a complex valued function g(z) : C → C may not be differ-

entiable in the complex domain, but the Wirtinger derivatives may exist. Consider,

for example, the function g(z) = |z|2 = zz∗, which is not differentiable in C, but its
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Wirtinger derivatives are

∂g(z)

∂z
= z∗

∂g(z)

∂z∗
= z .

Theorem A.0.2 (Adapted from [184]). Let g(z) : C → C be a complex function

and let g̃(z, w) : C2 → C be a complex function such that g(z) = g̃(z, z∗). If g(z) is

differentiable in R2 and if g̃(z, w) is analytic, then

∂g(z)

∂z
=

1

2

(︂∂g(z)
∂zr

− ı
∂g(z)

∂zi

)︂
∂g(z)

∂z∗
=

1

2

(︂∂g(z)
∂zr

+ ı
∂g(z)

∂zi

)︂
.

Corollary A.0.3 (Adapted from [97]). If g(z) is holomorphic, then

∂g(z)

∂z
=

dg(z)

dz
. (A.2)

Remark 2. Brandwood’s theorem establishes a connection between the Wirtinger

and the conventional derivatives. The corollary highlights the fact that the Wirtinger

derivatives are a generalization of the conventional complex derivative. Therefore, an

equivalent definition for the Wirtinger derivative can be given as follows.

Definition A.0.4 (Wirtinger [183]). For a complex function g(z) : C → C the

Wirtinger derivatives are defined as

∂g(z)

∂z
≜

1

2

(︂∂g(z)
∂zr

− ı
∂g(z)

∂zi

)︂
(A.3a)

∂g(z)

∂z∗
≜

1

2

(︂∂g(z)
∂zr

+ ı
∂g(z)

∂zi

)︂
. (A.3b)
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