

Abstract

Fog computing is gaining momentum to extend Cloud resources in close proximity to data
sources, end users or both. Among the explored Fog deployment models, the Public Fog
offers compute and memory resources for open use to IoT service providers, and is emerging
as a fundamental component for an Edge-Fog-Cloud complete compute continuum along
which IoT services can be flexibly instantiated.

The multi-tenant nature of public Fog nodes represents a major design and manage-
ment challenge at the intersection of different yet related research disciplines, ranging from
dynamic mapping of manycore architectures to resource management for Cloud and Fog
resources, and from computing acceleration to software virtualization. The fundamental
challenge is to efficiently share the limited pool of Fog resources among multiple consoli-
dated IoT services sharing the same hardware platform.

This thesis revolves around the key intuition that multi-tenancy could be reconciled with
limited resource capacity through an elastic provisioning of Fog resources. As a result, the
thesis proposes a holistic support for elastic Fog computing, following a bottom-up
methodology.

The support is fundamentally rooted in the capability of the on-chip interconnection
network (network-on-chip, NoC) to spatially and temporally isolate communication flows
originated by different IoT services. The isolation in space enables to partition the Fog node
architecture into spatially-isolated execution environments that provide enhanced security
with respect to software-only isolation, and the strictest notion of service composability.
At this level, the thesis proposes pLBDR, a lightweight routing mechanism that prevents
functional and non-functional interference of intra-partition communication flows with one
another. Above all, it combines low complexity with fast dynamic reconfigurability of the
partitioning pattern, thus delivering a NoC-supported elastic partitioning in space that is
out-of-reach for current NoC technology.

In space-multiplexed parallel computing architectures, some communications unavoid-
ably break the spatial locality, especially those associated with memory controller and system
configuration traffic. For these flows, this thesis provides efficient time-multiplexing while
meeting the distinctive requirements of an elastic Fog environment: low-latency communi-
cation scheduling in time, and runtime reconfigurability of the number of time slots. This
new set of requirements make the proposed time-multiplexed NoC a unique design point in
the open literature.

In compliance with its bottom-up approach, the thesis finally tackles the resource man-
agement challenge to master the elasticity properties of the underlying compute and memory
partitions. In line with mainstream approaches to resource management for manycore sys-
tems, the thesis assumes a hierarchical framework where virtual resource reassignments are
dynamically changed into the actual reallocation of physical resources. At this level, the
shape, size and location of space partitions have to be adjusted in a non-overlapping way
to fulfil the variations. The thesis proposes an Integer Linear Programming shape-based

i

model that strives to deliver prioritized latency guarantees to IoT services while perturbing
the system state the least possible. The modest running times enable the deployment of
the proposed Partition Manager for online use, in combination with a "prior provisioning
prompt allocation" scheme for resource utilization in Fog computing.

Overall, this thesis is a highly interdisciplinary piece of work that provides an integrated
hardware/software support for elastic Fog computing, and paves the way for a dynamically-
orchestrated Edge-Fog-Cloud continuum serving as a seamless hosting environment for the
next generation of smart IoT services.

Keywords: Internet of Things (IoT), Fog computing, Network-On-Chip (NoC), Rout-
ing mechanism, Elastic Computing, Cloud continuum, Time-Division-Multiplexing (TDM),
Space-Division-Multiplexing (SDM), Resource Management, Security, Strong Isolation, Real-
Time applications, Dynamic reconfiguration.

Contents

List of Figures vi

List of Tables viii

1 New System Concept and Contribution of the Thesis 6
1.1 Basic Definitions . 6
1.2 Motivation: Cloud-Things Continuum challenges 7
1.3 Concepts for a new computing continuum 9
1.4 Components for a novel compute continuum 12

1.4.1 A shared Fog node . 12
1.4.2 Elastic allocation of resources . 13
1.4.3 Dynamic resource management . 14

1.5 Contributions of the thesis . 15
1.6 Conclusions . 17

2 State of the art 18
2.1 A gap in Fog computing . 18
2.2 Elastic Computing . 19
2.3 Dynamic Resource Management . 22

2.3.1 Defragmentation framework . 24
2.4 Copying with state space explosion . 27

2.4.1 HAM flow . 27
2.4.2 Related works to hybrid mapping . 28

2.5 Dynamic reconfiguration . 30
2.6 SDM/TDM scheduling of hardware resources 33

2.6.1 Strong Isolation Requirement in Emerging Fields 33
2.6.2 Architectural challenges: The NoC Sharing Problem 34
2.6.3 TDM-based scheduling . 35
2.6.4 SDM-based scheduling . 36

2.7 Conclusions . 40

3 Target Architecture 42
3.1 Fog node architecture . 42
3.2 Accelerator cluster architecture . 43
3.3 Memory Architecture . 44
3.4 Elastic accelerator sharing . 44

3.4.1 Inter-partition interference . 46
3.5 Dual NoC architecture . 47
3.6 Conclusions . 48

iv

4 A Low-Latency and Flexible TDM NoC 49
4.1 Introduction . 49

4.1.1 Goal of this work . 50
4.2 Architecture instance . 51
4.3 Baseline TDM NoCs . 52
4.4 CDG-driven Strong Isolation . 54

4.4.1 Router-Level Strong Isolation . 54
4.4.2 Synchronized Token Propagation . 55
4.4.3 Supporting a Higher Number of Domains 58
4.4.4 Supporting a Lower Number of Domains 59
4.4.5 Heterogeneous Allocation of Time Slots to Domains 59
4.4.6 Router Architecture . 59

4.5 Experimental Results . 62
4.5.1 Zero-Load Latency . 63
4.5.2 Load Curves under Perfect Scheduling 64
4.5.3 Network Performance in Challenging Configurations 64

4.6 Wrap-up . 65
4.7 Deployment for Fog Computing . 66

5 A Routing Mechanism for Flexible Space Partitioning 67
5.1 Introduction . 67

5.1.1 Which NoC routing mechanism for isolation? 69
5.1.2 Goal of this work . 69

5.2 Our Approach: pLBDR . 70
5.2.1 Enforcing Partition Boundaries . 70
5.2.2 pLBDR . 73
5.2.3 Routing Strategy . 73
5.2.4 Deadlock freedom of pLBDR . 75

5.3 Experimental Results . 76
5.3.1 Hardware Reconfiguration Cost . 76
5.3.2 Algorithm Recomputation Overhead 77
5.3.3 Execution Efficiency . 78

5.4 Conclusions . 79

6 A Partition Manager for Elastic Fog Nodes 80
6.1 Introduction . 80

6.1.1 Goal of this work . 81
6.2 Analysis of real workload characteristics . 82
6.3 Global Management Framework for the Fog 84
6.4 System Architecture Refinement . 88
6.5 A Shape-Oriented Model For Optimal Partitioning 89

6.5.1 Model assumptions . 90
6.5.2 Model inputs . 91
6.5.3 Decision variables . 92
6.5.4 Constraints . 92
6.5.5 Objective function . 93

6.6 Experimental results . 94
6.6.1 Preserving ideal configurations . 94
6.6.2 Model’s capability to optimally place new admitted applications . . . 98

6.6.3 Evaluating Simulated Traces . 99
6.6.4 Coping with large grid size instances and with large number of appli-

cations and requesters . 101
6.7 Conclusions . 102

7 Conclusions and Future Works 104

Bibliography 106

List of Figures

1.1 Current gap in the IoT-Cloud continuum. 8
1.2 Vision for a novel Things-Fog-Cloud continuum. 11
1.3 Platform partitioning strategies put at work on an array fabric of heteroge-

neous processing elements or accelerators. 13

2.1 Figure from [102]. Example showing 10.16% reduction in an arriving task’s
(Task 7) execution time if mapped after defragmentation against when mapped
without defragmentation. An increase of 3.92% in execution time of the task
migrated for defragmentation (Task 5) is also observed as an overhead. . . . 25

2.2 Hybrid application mapping (HAM) flow . 28
2.3 Four systems demonstrating all combinations of the predictability and com-

posability properties. 32
2.4 Table-Based routing mechanism . 38
2.5 (a)Interference effects without close control of the NoC routes. (b)Content of

the LBDR configuration registers for the switches of a NoC with two partitions. 38
2.6 LBDR logic inside the switch . 40
2.7 Representation of a routing algorithm for the NoC as bidirectional routing

restrictions. At the same time, a reachability problem is illustrated, which
limits routability of partition shapes with vanilla LBDR. 41

3.1 Target architecture: system-level view. 43
3.2 PMCA architecture, with a zoom into the Cluster architecture. Distributed

multi-banked L2 not shown. 44
3.3 Distributed multi-banked L2 architecture with partitioning at work in two

consecutive partition configurations (a) and (b). (c) Network packet route
invading a neighboring partition on the way to destination. 45

3.4 Dual NoC structure supporting isolation in time and space. 48

4.1 Focus of this chapter: isolation of global MC traffic. 50
4.2 Multi-core architecture instance with a partitioning pattern into isolated spa-

tial domains. 52
4.3 Partitioning of virtual channel buffers among D domains, with m buffers for

each domain, at a generic input port of a NoC switch. 53
4.4 (left) Global TDM schedule. (right) Local TDM schedules, for which a spatio-

temporal correlation is researched in this Chapter. 53
4.5 Network-level token propagation, with annotated latency, in the order of the

CDG with periodic SR routing (dictating the position of routing restrictions)
and single-cycle routers and links. Routing restrictions represent forbidden
turns by the routing algorithm at hand for the sake of deadlock-free routing. 55

4.6 Perfect scheduling for minimum latency in a 2-domain scenario. 56

vii

4.7 Generic relative delays for the arrival of tokens at the different input ports of
a switch. The arrival order and the relative delays depend on the topology of
the channel dependency graph. 56

4.8 Token propagation flow at regime in a specific time slot across the scroll-down
(left) and scroll-up (right) links. Numbers denote the token DI served on a
specific NoC resource at that clock cycle. The assumption is to have 4 running
domains. 57

4.9 Extending the number of domains under strong isolation. 58
4.10 Proposed router architecture. 60
4.11 Token structure. 60
4.12 Token logic (TL) of a single router output port, featuring two input ports

with routing dependencies with it. 61
4.13 Zero-load traffic for 4x4 2D-mesh (a-b) and for the 8x8 2D-mesh (c-d). . . . 63
4.14 Uniform traffic for 5 Domains (a-b-c-d) and 7 Domains (e-f-g-h). 64

5.1 Focus of this Chapter: spatial isolation of compute and memory partitions. . 68
5.2 Performance saturation with increased hardware parallelism. 68
5.3 Legal partition shapes are those where minimal-path routing is feasible. . . . 71
5.4 (a) Global routing function. (b) Selective restriction masking. (c) pLBDR to

flexibly partition Manycores. 72
5.5 Segmentation of an irregular topology, and placement of routing restrictions

inside segments for deadlock-free routing. 74
5.6 Scenario considered for the deadlock-freedom and connectivity proof of pLBDR. 75
5.7 Hardware reconfiguration overhead for 17 partitioning patterns, with the

partition-level breakdown for each pattern. 76
5.8 Path management overhead (in software) for table-based routing. For com-

parison, the design-time software overhead of pLBDR is reported (no runtime
overhead though). 77

5.9 Execution efficiency of FAST. 78

6.1 Global Management Framework . 86
6.2 Evolution of the physical partitioning pattern to fulfil reassignments of virtual

resources. 87
6.3 Problems in translating virtual resource assignments into actual resource al-

locations. 87
6.4 Mapping of user processes to the cores of the tiles of a reserved partition. . . 88
6.5 Average Manhattan distance after reconfiguration when starting from appli-

cation placements correlated with their priority. 95
6.6 Average migration overhead . 96
6.7 Normalized total number of migrated tiles 97
6.8 Average Manhattan distance after reconfiguration when a new application is

admitted . 98
6.9 Average total number of changed tiles as a function of the new admitted

application’s priority . 99
6.10 Average Manhattan distance for dynamically generated traces 100
6.11 Normalized total number of migrations over traces 100
6.12 Execution time as a function of the number of applications and requesters . 101

List of Tables

6.1 Workload characteristics of emerging Fog applications. 83
6.2 The impact of large grid size instances on the model’s running time 102

ix

Introduction

All along the past years, there has been a tremendous increase in the popularity of the
Internet-of-Things (IoT) to become one of the most utilized innovative technologies at
present. It has pervaded almost every industry, from health care to automotive. Despite
the facilities and benefits IoT has provided, the industry is facing abundant obstacles in its
adoption and implementation.
In fact, the early IoT scenarios were doing all of their processing in the Cloud using Big
Data methodologies and tools, and returning the results to the interested users.
Current advances in IoT technologies are making an unprecedented number of immersive ap-
plications available at the infrastructure Edge, featuring unmatched computing power and
storage capacity requirements with respect to the old generation of IoT services [131, 148].
As a result, novel computation paradigms are emerging from the convergence of IoT, wireless
sensor networks, mobile computing, Edge computing and Cloud computing. Among them,
Fog computing is having the most rapid growth, due to its capability to bring computing
paradigms from the Cloud to the Edge and enable sophisticated data processing in closer
proximity to end users [25, 28, 90].
Populating the current gap between Smart Objects at the infrastructure Edge and datacenter-
powered Cloud with emerging Fog computing nodes, and enabling their tight interplay, is a
promising approach to set up a novel "compute continuum" along which the next generation
of IoT services could be flexibly instantiated [117, 133]. However, the implementation of ef-
ficient Fog computing platforms represents a challenging task. The main challenges include
the following:

• First and foremost, this is still a constrained execution environment, that needs to cope
with a massive amount of data with scarce computational, bandwidth and memory
resources with respect to the Cloud counterpart [147].

• Second, the criticality of the capacity limitations is amplified by the shared (i.e., multi-
tenant) nature of most Fog nodes, which enables different IoT service providers to
amortize the infrastructure cost while still taking advantage of more powerful devices
than their in-house built/developed IoT devices [147].

• Third, IoT applications are context-sensitive [65, 116] and exhibit fluctuating workloads
over time. Not only the execution context changes continuously [101], but also the
business logic of the application and the pricing model of the Fog node [43], in addition

1

to user preferences. As a result, Fog nodes should allow for the flexible provisioning of
resources to applications over time [127].

• Last but not least, security is a primary design goal for Fog computing [150], where
services should be strongly isolated from one another.

State-of-the-art hardware/software platforms for Fog computing are not keeping up with
these emerging requirements. Common implementations rely on commercial off-the-shelf
parallel computing architectures, rely on software-driven virtualization without any hard-
ware extensions for efficient and secure multi-tenancy, and are typically mastered through
statically-defined resource management policies.

This thesis revolves around spatial partitioning of manycore architectures as an effective
solution to deliver secure-grade isolation of IoT services and platform composability. It is
in fact well-known that the most promising mapping of a workload to a parallel comput-
ing architecture consists of reserving a spatial region of contiguous computing and memory
resources. By combining this with the isolation of such spatial "partitions" (e.g., through
a strict control over partition boundaries in hardware), the isolated execution environment
allows IoT service providers to develop their applications and to verify their timing proper-
ties in isolation, since the final consolidation in the target platform with an unknown and
runtime-varying number of sharers will not have any functional and non-functional interfer-
ence over its operation. At the same time, segregated spatial partitions are easier to protect
against security threats [95], including denial-of-service attacks or even the formation of tim-
ing channels [124].
The thesis takes its steps from the observation that:
(i) no state-of-the-art COTS platform exhibits hardware support for spatial-division multi-
plexing of its manycore resources, as a key enabler for efficient multi-tenancy;
(ii) no state-of-the-art platform is optimized for the frequent dynamic reconfiguration of re-
source allocation in a multi-tenant platform (resource elasticity).
(ii) no state-of-the-art resource manager explicitly focuses on the control of spatial partition
attributes, such as shape, size and location, thus failing to deliver contiguity, compactness,
high execution performance and control over system state perturbation in the presence of a
dynamically reconfigurable system.

The key technical intuition behind this thesis consists of identifying the pivotal role that
the routing mechanism of the on-chip interconnection network (NoC) plays with respect
to the fulfilment of the efficient, flexible and secure partitioning requirements of manycore
processors/accelerators. In fact, the secure-grade isolation of spatial partitions of parallel
compute and memory resources depends ultimately on the capability to constrain routing
paths of communication flows on the NoC within the spatial partition boundaries.

A related challenge consists of flexibly reconfiguring the partitioning pattern without
having to adapt the NoC routing framework each time to contain communications within
the newly defined partition shapes.

2

The solution proposed by this thesis consists of Partition-Enabling Logic-Based Distributed
Routing (pLBDR), a lightweight routing mechanism for SDM-capable NoCs that combines
implementation efficiency with flexibility.

pLBDR guarantees routability of spatial partitions leveraging a unique, unaffected global
routing function. Thus, as the partition configuration needs to be modified at runtime, only
the new partition boundaries need to be reprogrammed in the routing mechanism (limited to
just a single 4-bit register per switch), while avoiding any routing path management overhead
in software and in hardware. For the sake of fast reconfigurability, the proposed mechanism
poses some restrictions to the irregularity of legal partition shapes, while still enabling those
shapes that can deliver internal high-performance communications.

However, not all communications in a multi-tenant platform exhibit spatial locality, such
as the routing paths connecting spatial partitions to the memory controllers, which would
end up crossing the spatial extension of intermediate partitions and breaking the compos-
ability and isolation properties of the system as a whole. Therefore, temporal multiplexing
(i.e., isolation) of non-local communication flows from/to different partitions is also required.
Indeed, many distributed operating systems for manycore processors envision partitioning of
the resources in both space and time, thus inspiring the approach of this thesis to equip Fog
computing nodes with both space- and time-division multiplexing of chip-scale communica-
tions. Our solution is based on a dual Network-On-Chip concept. The first networking layer
serves intra-partition traffic without mutual interference between spatial partitions, and uses
the pLBDR routing framework to route packets. The second layer serves non-local traffic
by scheduling domains on the network over time using time-division multiplexing (TDM).
More precisely, we build on the concept of Token-based TDM, which takes advantage of the
properties of the network Channel Dependency Graph (CDG) defined by the topology and
the routing algorithm. From it, we derive the generic requirements to have all input ports of
all routers serving only packets from the same domain at each time slot. This would allow
contention between packets from the same domain only, while at the same time delivering
secure-grade isolation between domains.
The approach is generalized to an arbitrary number of domains by selectively and determin-
istically placing propagation stops at specific points in the NoC, which preserves the strong
isolation property and delivers more latency-efficient NoC communications than state-of-
the-art of solutions. Finally, we provide support for runtime modifications of the system
configuration through a flexible architecture that does not require substantial changes to
support the new configuration, but rather modifies the scheduling commands distributed to
the network switches through a token-based notification mechanism.
With respect to state-of-the-art, our work provides a flexible architecture from the ground
up, and extends performance and implementation efficiency to the whole configuration space.

Our Dual-NoC solution ensures that concurrent IoT services running onto the same Fog
computing node can be allocated secure-grade, isolated and flexible compute and memory
partitions. But those allocated resources may be then remodulated over time depending on

3

application load and execution context variations. Along this direction, IoT providers may
update their service models to demand resources based on a "use-just-what-you-need" basis,
and the Fog resource management framework may have to cope with conflicting requests
following decision policies inspired by priorities and pricing schemes.
The support for the illustrated "resource-elastic" computing paradigm in Fog platforms raises
new challenges for traditional resource management schemes:

• First, the underlying hardware platform model needs to be revised to formulate the
resource allocation problem. In fact, in manycore processors the applications are typ-
ically assigned virtual resources, not physical ones, since the focus on "how many"
resources to provide is currently dominating over the definition of "which ones" to pro-
vide. The mapping of virtual resources to physical ones is typically overlooked, that is,
considered as an implementation detail or, in the most accurate papers, as the focus of
future work. Indeed, in an elastic computing environment brokering resources among
consolidated services, identifying "which" exact resources to assign and/or revoke is
of the utmost important, since it affects application latency and the amount of task
migrations needed to evolve the system from one configuration to another.

• Second, the resource management framework becomes multi-layer: a top-level Resource
Manager reconciles potentially conflicting resource allocation demands leveraging an
abstract view of both application requests and available (virtual) resources, while a
lower-level Partition Manager enforces the final allocation determining the new shape,
size and location of concrete physical space partitions, as well as their non-overlapped
composition on the computation grid.

The latter is a new optimization problem, and is the focus of the last part of our research
work. We propose an innovative management framework for elastic partitioning of manycore
accelerators/processors for Fog computing platforms under dynamic operational behavior.
Based on predefined demands for more or less resources for the consolidated services har-
monized by application-level managers, our partition manager fulfils the demands through
the readjustment of partition shapes, size and location, in a way that trades optimality of
the execution state with the reconfiguration overhead. On the one hand, the solver mini-
mizes the number of task migrations of those services that are "neutral" (i.e., do not have
a demand, or are not selected for resource revocation) during a reconfiguration event. On
the other hand, it aims at correlating the proximity of a partition/service to the memory
controller with its performance criticality.

Overall, the design methods and tools delivered by this thesis, that address the "elastic
computing" paradigm for Fog nodes at several abstraction layers, are only the first steps
toward materializing a novel Things-Fog-Cloud compute continuum. More research is needed
to fulfil this vision, which represents an ambitious target for the future requiring the work
of many PhD students.
The specific milestone achieved by this thesis consists of engineering a dual-NoC architecture

4

for Fog nodes enabling the flexible partitioning of its compute and memory resources, and of
a resource management framework capable of mastering the exposed flexibility. As such, the
thesis presents contributions that are logically synergistic and meant to work in a vertically-
integrated way.

Thesis Organization

The thesis is composed of six technical chapters, in addition to the introduction, conclusions
and future work.
Chapter 1 defines the vision for a new Things-Cloud compute continuum, serving as the
ecosystem for the next-generation Internet of Things (IoT) services.
Chapter 2 reviews the state of the art by giving a background about Elastic systems and
Fog management. Also, it reveals the limitations of existing solutions to deliver secure and
composable multi-tenancy in emerging Fog nodes, and to manage it.
Chapter 3 illustrates the target architecture.
Chapter 4 presents our proposed Time-Division-Multiplexing (TDM) NoC for strong iso-
lation and low-latency.
Chapter 5 explores the innovative routing framework for flexible space-division multiplex-
ing.
Chapter 6 reports on the implementation of a resource management framework to deal
with the elasticity and dynamism of emerging IoT applications consolidated on the same
Fog node.
In closing, we summarize the thesis outcomes, provide final remarks on the presented research
works, and envision possible future works.

5

Chapter 1

New System Concept and Contribution
of the Thesis

Internet of Things (IoTs) represents a notable first pace towards the networked society.
It provides gigantic social and economical opportunities while at the same time it raises
significant challenges regarding the infrastructure underpinning it and the deluge of data
generated from it. This chapter explores these challenges and presents new system concepts
capable to integrate nowadays IoT services.

1.1 Basic Definitions

This section introduces the terminology and concepts related to the three components of the
emerging IoT-Fog-Cloud ecosystem.

• Internet of Things (IoT): the term IoT encloses all physical objects "things" that are
connected to the internet, collecting and sharing data. Next, we present two comput-
ing paradigms that can be utilized together to fulfill the heterogeneous requirements
associated with IoT applications: cloud and fog computing.

• Internet of Things (IoT) services/applications: IoT services/applications promise to
bring immense value into our lives. With newer wireless networks, superior sensors
and revolutionary computing capabilities, the Internet of Things could be the next
frontier in the race for its share of the wallet. IoT applications are expected to equip
billions of everyday objects with connectivity and intelligence. The fields where the
most important IoT applications have been developed are: Wearables, Smart Home
Applications, Health Care, Smart Cities, Agriculture and Industrial Automation.

• Cloud Computing: is a model which enables the on-demand availability of a shared pool
of configurable computer system resources (e.g. services, storage, servers, networks,
and applications) with minimal management effort by the user. However, in light of
the proliferation of IoT connected devices, a huge volume of data is being generated

6

CHAPTER 1. NEW SYSTEM CONCEPT AND CONTRIBUTION OF THE THESIS

rapidly. Thus, data management, computation and storage becomes laboured in the
cloud. This has led to the emergence of fog computing.

• Fog Computing: is a layered model that extends services offered by the cloud to the
edge of the network (e.g. routers, switches, etc..) to run information-processing services
on top of relatively powerful nodes in proximity of either raw data sources, information
consumers, or both [28, 90]. Thus, ameliorates efficiency and minimizes the distance
across the network by reducing the amount of data needed to transport to the cloud
for computation, storage, and management.

1.2 Motivation: Cloud-Things Continuum challenges

Today we have several levels of computing ranging from IoT sensors and smart objects
all the way to the Cloud datacenter infrastructure through IoT gateways and networks of
private Fog nodes. The problem is that such layers are loosely coupled today, which stymies
innovation in IoT services and limits the creation of an ecosystem for the large scale adoption
of IoT technologies.

Clearly, an effort should be made to couple such layers more tightly together. The goal
of a tight integration of heterogeneous computing layers and devices all along the data path
is currently giving rise to an unprecedented effort in industry and academia to materialize a
complete and innovative distributed «computing continuum».

Historically, large-scale processing for early IoT services was taking place in the Cloud,
thus leading to a strongly polarized Edge-Cloud integrated system. However, as massive
amounts of data (so-called Big Data) are being generated in unusual variety and volumes,
and need to be processed under tighter latency, security and cost requirements, the main goal
is to enable Big Data analytics in closer proximity to the raw data sources or to information
consumers. This has raised a surge of interest in power-efficient computing architectures for
deployment at the infrastructure Edge, especially coping with the computation horsepower
required by artificial intelligence under tight resource and power budgets. Nonetheless, there
is still a large gap in the Things-Cloud continuum that computing acceleration efforts are
not able to bridge, as illustrated in Fig. 1.1.

On the one hand, there are private Edge infrastructures, hosting low latency and isolated
services, with no resource sharing, high Capital Expenditure (CAPEX), time-to-market, and
Total Cost of Ownership (TCO). Despite the progress in power-efficient computing, there
is still a mismatch between the computational requirements of thorough Big Data analytics
and the capability offered by such infrastructures.

On the other hand, the public Cloud infrastructure comes with the opposite characteris-
tics. At the time of this writing, there is no consolidated hardware/software platform capable
of bridging this fundamental gap, nor it is clear which player will effectively bridge it in the
future.

Fog computing is a fast growing technology that might play a fundamental role to bridge

7

CHAPTER 1. NEW SYSTEM CONCEPT AND CONTRIBUTION OF THE THESIS

Figure 1.1: Current gap in the IoT-Cloud continuum.

this gap. Its purpose is to bring Cloud-like computing capability to the Infrastructure Edge,
which is a much more constrained execution environment. The concept has been around for
many years but it is still lacking of a concrete large-scale implementation. For this reason,
developers have not spent too much time so far in developing applications capable of taking
full advantage of the Fog paradigm. In turn, this is slowing down further progress towards
concrete realizations of the paradigm, since they have to be customized for the applications
that will make use of them. Ultimately, there is a vicious circle in Fog computing that calls
for further research investments to unfold its potential and enable an effective Things-Fog-
Cloud continuum. This thesis is a contribution to break this circle.

The main challenge to be tackled consists of matching high computational requirements
with capacity-constrained hardware platforms (although more equipped than smart sensor
nodes). Moreover, there are functional challenges, consisting of the computing orchestration
throughout the devices of the compute continuum, and non-functional challenges including
cost, power, reliability, security and privacy.

At the same time, current hardware/software platforms are not well suited for Fog and
Edge computing, due to the relatively static policies for resource allocation. In fact, the main
characteristics of an integrated Edge/Fog Computing environment are the relative resource
shortage as well as the IoT workload dynamicity, which call for innovative computing and
service models revolving around flexible dynamic resource allocation strategies.

In a nutshell, Fog nodes could bridge a missing gap between smart objects and Cloud
computing toward a complete and innovative "computing continuum", provided relevant
functional and non-functional challenges are addressed by research. This thesis is a contri-
bution in this direction.

8

CHAPTER 1. NEW SYSTEM CONCEPT AND CONTRIBUTION OF THE THESIS

1.3 Concepts for a new computing continuum

The first goal of this thesis was to work out guiding principles for the Edge-Fog-Cloud com-
puting continuum, serving as the context for the technical research activities presented later.
In particular, the following concepts contribute to deliver a vision of such continuum, and
were elaborated through fruitful brainstorming sessions with other groups at University of
Ferrara (distributed systems, operating research), with other italian universities (Politecnico
di Milano, Università di Modena/Reggio Emilia, Università di Messina), with european aca-
demic partners (EPFL Lausanne, Universidad Politecnica de Valencia) and industrial players
(Leonardo, Camlin, Everis, Sysgo, Dunavnet):

• A compromise must be established between the increased resource requirements of fu-
ture IoT services and the cost considerations of underlying execution platforms. This
naturally tends to create intermediate levels of hierarchy along the Cloud-Things com-
puting continuum.

• A Fog node will be necessarily shared among many IoT services, at least for public
Fog nodes. Thus, the adoption of fine-grain resource allocation strategies and high
frequency pricing schemes at the infrastructure Edge become mandatory to make an
effective use of resources, and for their efficient sharing.

• Since Fog nodes are placed in closer proximity to IoT devices, context awareness should
be a fundamental design and management concern. Exploiting context information en-
ables improved services, reduces their cost for resource utilization and leads to efficient
resource sharing. For this reason, the runtime optimization of the deployment of the so-
called application topologies cannot be statically defined any more, based for instance
only on the data traffic analysis between the tasks of the topology and their computa-
tional complexity. First of all, most IoT applications have fluctuating workloads. Also,
most end nodes will be mobile, thus changing the association of processing workloads
to Fog nodes over time, and causing time-dependent congestion on such nodes. As
a result, context-aware computing will play a fundamental role in determining which
data to process, its computational requirements, its criticality for the end user and
where to process it along the Cloud-Things continuum.

• Management strategies must be employed to solve any possible conflict when appli-
cations are consolidated onto the same underlying hardware platform, harmonizing
their potentially conflicting requirements. Compute and memory resources will have
to be dynamically split into virtual platforms whose resource allocation depends on
application goals and platform state.

• Services’ demand for resource allocation do not depend only on the context and/or
platform state, but also on the business logic of the application and the user prefer-
ences. For this, quality-of-execution requirements (response time, latency, accuracy,

9

CHAPTER 1. NEW SYSTEM CONCEPT AND CONTRIBUTION OF THE THESIS

throughput, etc.) need to be traded off with the cost (data transfer, virtual resource us-
age, storage or monitoring cost). Not only the execution context changes continuously,
but also the business/pricing models and the user preferences may evolve throughout
the lifecycle of the service/underlying platforms.

• For the applications whose deployment topology changes over time, a flexible provi-
sioning should be employed due to the offload of components from/to Edge from/to
the cloud. To achieve this, we envision a global Service Supervisor for each service as
a whole, capable of mapping and remapping service components all along the Edge-
Cloud continuum, interacting with a local Resource Manager for the Fog platform
negotiating access to local resources.

• For the sake of managing and instantiating service components in the Cloud or on
the Fog devices, a Global Orchestrator running in the Cloud will coordinate between
these services. For each service, the Supervisor component will notify the Global
Orchestrator of the desired location for the instantiation or the migration of service
components. The Global Orchestrator will thus coordinate with the Cloud and Fog
devices to translate the requests into a concrete course of mapping or remapping action.

• In order to allow the runtime synthesis of IoT services, dynamic resource allocation
is needed. However, the lack of unified standards and the coexistence of open and
proprietary solutions currently limit device interoperability. As a result, participating
devices will need to have predefined interfaces, accessible through standardized APIs.

• Service components semantics have to be identified in such a way that the system can
automate the tasking and reasoning process without the need for hardwired configura-
tions and service specifications. The semantics will enable intelligent response to the
business requirements and policies enabling the hardware and software components to
understand run-time requirements and execute the corresponding service strategies.

• Since IoT services will move (part of) their execution from the cloud to the Fog,
security becomes one of the most challenging properties that has to be satisfied. Thus,
the need for computing platforms ensuring strongly isolated execution environments
for the running services will be a priority. Basically, the requirement is to implement
a trusted compute base for the “elastic” and migratable applications to deploy and
run. In addition, many threats will arise from platform sharing. In fact, resource
dependencies and synchronization between the running services are exposed during
runtime, which raises the need for secure communication channels (both on-chip and
off-chip), authentication and authorization methods.

• In Fog node architectures, data privacy is essential. To ensure it, direct and indirect
accesses to the data of the different applications that share the resources of the same
Fog node must be forbidden whether these data are stored or processed on the main

10

CHAPTER 1. NEW SYSTEM CONCEPT AND CONTRIBUTION OF THE THESIS

host processor or in an companion accelerator. In addition, the owner/operator of the
Fog node must not be able to access the application data. As a solution, we could use
an hypervisor-based isolation system, coupled with hardware mechanisms to ensure
isolation at the accelerator side and to ensure the authenticity of the hypervisor itself.

The concepts of this vision are pictorially illustrated in Fig.1.2, where they are combined to
draft the scheme for a novel Things-Fog-Cloud compute continuum.

Figure 1.2: Vision for a novel Things-Fog-Cloud continuum.

The platform will be capable of executing service components on different locations: in
the Cloud, on Fog Nodes, and on COTS Edge devices. Federated Cloud environments could
be part of the picture, allowing to build flexible software platforms that leverage multiple
Cloud providers. At the Edge level, the vision includes 2 different types of COTS devices:
level 1 (L1) devices that have limited resources and can support dynamic workloads only
through the activation/deactivation of pre-installed software components, and level 2 (L2)
devices that have more resources and can implement dynamic workloads also through the
migration of service components to/from the Fog or the Cloud.
At the service management level, a multi-layer architecture is envisioned. Each Fog service
has an associated Service Supervisor: a software component that is in charge of instantiating
the Fog service, of monitoring the performance of each service component, and of overseeing
resource allocations/remodulations both at the entire service and at the single service com-
ponent levels. Service Supervisor interfaces with the Resource Manager (RM) component
running on each Fog node to have an always up-to-date knowledge of the corresponding local
resource availability and pricing scheme (which will typically change according to resource
availability). At the same time, Service Supervisor interfaces with service components to
monitor their performance, according to both technical (response times, resource consump-
tion, etc.) as well as business-level (revenue, OPEX, etc.) key performance indicators.
Leveraging the knowledge of resource availability and pricing and service performance, as

11

CHAPTER 1. NEW SYSTEM CONCEPT AND CONTRIBUTION OF THE THESIS

well as an interoperable service description provided by developers, Service Supervisor will
control resource allocation and remodulation. Service component migration requests are
fulfilled by a Global Orchestrator component, which interacts with System Software com-
ponents running on each Fog node and L2 Edge nodes, as well as with Local Orchestrator
components running on other Cloud platforms, connected to the platform in order to perform
migration of containers corresponding to the interested service components.

1.4 Components for a novel compute continuum

From an implementation viewpoint, we envision a framework that revolves around the fol-
lowing fundamental new components with respect to state-of-the-art:

• A shared multi-tenant Fog node: it ensures a secure and composable compute
environment for the applications that share the very same Fog node and run on top of
it. This thesis will contribute interconnect-centric hardware design methods for multi-
tenant Fog nodes.

• Elastic allocation of Fog resources to elastic IoT services: instead of allocating
resources on the Fog node for the worst-case, IoT services will contribute to efficient re-
source sharing by demanding resources based on a “use-just-what-you-need” paradigm.
This way, resources will be dynamically assigned to those IoT services that need them
the most at any given point in time. This thesis will specialize the context of elastic
computing for a public Fog node serving low-latency and user-centric applications.

• Dynamic resource manager in the cloud-Fog-Things continuum: it will ensure
a hierarchical resource management framework structured into communicating layers.
The top layer will take care of dynamic topology deployment of IoT services by (re-
)assigning service components all along the data path of the continuum. At the bottom
layer, the manager will master the elasticity of Fog resource allocation to IoT services
on the local Fog node. This thesis will focus on the bottom management layer and will
deliver a hardware-dependent resource manager mapping virtual resource assignments
in a Fog node into the concrete readjustment of physical resources.

1.4.1 A shared Fog node

A multi-tenant Fog platform shared by IoT services represents the innovative hardware
component of the proposed vision. It serves as a connecting platform across the Edge-Cloud
continuum by bringing Cloud-like computations and elastic resource provisioning capability
at the Edge. We envision an architecture revolving around a high performance host multi-
core processor together with a dynamically reconfigurable array fabric of homogeneous or
heterogeneous accelerator cores. The fundamental relevance of this Fog node is to serve as
the first-level computing platform sharing among IoT services across the Things-Fog-Cloud

12

CHAPTER 1. NEW SYSTEM CONCEPT AND CONTRIBUTION OF THE THESIS

Figure 1.3: Platform partitioning strategies put at work on an array fabric of heterogeneous
processing elements or accelerators.

continuum.
In order to ensure composability and security in a shared multi-tenant systems, a common
solution is to divide the system into a set of domains. Each domain represents an isolated
environment along the time or space dimensions, where an IoT service can be kept separated
from the other ones and run with no mutual interference.
Time division multiplexing (TDM) will be applied to those accelerators of the Fog hardware
platform that lack spatial parallelism, and over which IoT services can be time-sliced over
time (Fig.1.3a). Some accelerators expose spatial parallelism. In this case, an hypervisor
would be enforcing segregation of IoT services into isolated and contiguous spatial regions.
Alternatively, spatial partitioning could be used to virtualize an array of heterogeneous ac-
celerators, and assign each virtual partition to a different IoT service (Fig.1.3b). In both
cases, routing control of the underlying on-chip interconnection network will be of funda-
mental importance to avoid any kind of mutual interference between traffic flows logically
pertaining to different regions. In another scenario, Interestingly, whenever spatial parti-
tioning is inferred, there exists communication flows that break the spatial locality, such as
communications from one partition to the memory controller, and vice versa (Fig.1.3c). In
this case, time-division multiplexing of the locality-breaking flows could be a solution not
to interfere with the spatial partitions crossed by the non-local traffic flow, and to preserve
system-wide communication isolation.

1.4.2 Elastic allocation of resources

Due to the fact that IoT applications are very sensitive and dependent to the workload,
the execution context and the surrounding environment, our system vision assumes elastic
computing principles in a multi-dimensional space (resource, quality and cost elasticity).
As already mentioned above, the hardware platform will adopt resource allocation elastic-

13

CHAPTER 1. NEW SYSTEM CONCEPT AND CONTRIBUTION OF THE THESIS

ity and will allow services to dynamically get and release resources at a significantly finer
granularity than what happens in the Cloud today (i.e., at the level of individual processing
elements, rather than of complete virtual machines), and in a more cost-sensitive environ-
ment. Furthermore, quality elasticity will be implemented through the use of efficient policies
able to dynamically trade-off user experience with the demand for Fog resources. Last but
not least, Fog providers will use pricing policies to shape the peak requests for resources
from IoT services in the most non-overlapping way possible (cost elasticity).
The elasticity principles should be generalized at each layer of the design hierarchy for the
sake of vertical integration and efficient operation, from the service model to the decision
making layer, and from the runtime support to the dynamic hardware platform. Along this
direction, service models should be extended to explicitly cope with a variable amount of
underlying resources.
Overall, elastic IoT services, matched by elastic resource allocation in the hardware platform,
will efficiently contribute to bridge the gap between the growing amount of data to be pro-
cessed in IoTs and the scarcity of compute and memory resources at the infrastructure Edge.

1.4.3 Dynamic resource management

Elasticity can only be mastered through a systematic and coherent support for dynamic
resource management at several layers. In fact, to enable the dynamic creation of
workload/state/environment-adaptive deployment topologies for Cloud IoT services, the sys-
tem will have to satisfy the following requirements:
- At the Fog node level, it will allow efficient elastic resource allocation through dynamic
resource allocation of homogeneous or heterogeneous parallel computing architectures.
- It will make dynamic topology deployment operational at runtime, by moving service com-
ponents from the Fog to the Cloud or vice versa, depending on workload phase, execution
context on the different platforms, on the pricing schemes and on the business model. Along
the same direction, the Service Supervisor will consider relevant non-functional requirements
such as power budgets or thermal control issues.
The way to fulfill these objectives will be to build on top of three interactive and fully-
integrated concepts: local composability of services, distributed service topology manage-
ment and the employment of a centralized Orchestrator in the Cloud.
At the level of individual Fog nodes, a dynamic resource allocation policy will broker re-
sources among consolidated IoT services. In turn, each service will have a dedicated software
component called Service Supervisor, interacting with the Global Orchestrator to map or
remap service components all along the Edge-Fog-Cloud continuum. When a service is in-
stantiated or needs to be migrated for dynamic topology deployment, the Service Supervisor
will notify the Global Orchestrator about the desired location; this latter will coordinate
with the Cloud and Fog devices to execute the command.

14

CHAPTER 1. NEW SYSTEM CONCEPT AND CONTRIBUTION OF THE THESIS

1.5 Contributions of the thesis

The proposed vision serves as the reference context for the technical contributions of this
thesis, that will be the first milestones on the way of a concrete implementation of the vision
in industrial hardware and software platforms.

In short, the thesis focuses on emerging public multi-tenant Fog nodes, for which a twofold
set of contributions is pursued:

• Hardware support for the partitioning of accelerator resources in space and time. The
initial focus will be on an array fabric of homogeneous processor cores for a Fog envi-
ronment, whose computing and memory resources will be multiplexed in space among
IoT services, and whose interconnection network will be multiplexed in space and time
depending on the spatial locality of the specific communication flow.

• Hardware support for the dynamic re-partitioning of the manycore architecture. The
routing mechanism of the on-chip interconnection network will be demonstrated to be
a fundamental enabler for the fast repartitioning of the system, that is, for dynamically
changing the shape and size of spatial compute and memory partitions. As a result,
the thesis will proposes a lightweight and flexible routing mechanism cutting down on
the reconfiguration cost with respect to state-of-the-art routing frameworks.

• Techniques for hardware-dependent resource management of a manycore accelerator.
Once hardware support has been provided for dynamic and flexible partitioning, a
resource manager will be set up for managing the elasticity of the partitions. Focus
will be on the resource management layer closer to the actual computing fabric, where
physical resources are assigned, not virtual ones. The proposed resource management
framework will then perform online mapping of virtual partitions onto physical ones,
and work out the readjustment of the latter whenever a higher-level application man-
ager demands more or less resources for virtual partitions in a placement-agnostic way.

Beyond the focus itself on emerging computing platforms, the key novel aspects of the
research reported in this thesis are as follows:

• Time-division multiplexing of communication flows will be targeted to the low-latency
and reconfigurability requirements of a Fog node. In practice, once packets are ad-
mitted into the network, they will flow uninterrupted all the way to the intended
destination in a conflict-free way. At the same time, the proposed architecture relies
on the propagation of scheduling commands to the network switches, thus lending itself
to the dynamic reconfiguration of the number of time slots over time. The scheduling
solution of this thesis is inspired by the Channel Dependency Graph (CDG) of the
routing algorithm on top of the considered network-on-chip topology, and as such is
original.

15

CHAPTER 1. NEW SYSTEM CONCEPT AND CONTRIBUTION OF THE THESIS

• The NoC routing mechanism for space partitioning will extend a lightweight logic-
based distributed routing (LBDR) mechanism. The latter is far more efficient than
mainstream routing tables in terms of routing computation delay, area and power over-
head, and scalability. However, LBDR trades resource-/performance-/area-efficiency
with flexibility. The LBDR extension proposed in this thesis enables to reconfigure the
partitioning pattern in space of a manycore accelerator without having to reconfigure
the routing function. Therefore, the reconfiguration process is extremely fast, since
only partition boundaries need to be programmed in the routing mechanism, for the
sake of traffic isolation, predictability and composability.

• Traditional dynamic resource management frameworks for manycores focus on the
assignment of virtual resources to consolidated applications. The claim of previous
work is that determining "how many" resources to assign is far more important than
"which" exact resources to assign due to the tight integration of chip-scale manycores.
We claim that this assumption does not hold for Fog computing, where the need for
isolated execution, predictability and composability puts unique emphasis on the shape
and location of space partitions. First, their proximity to the memory controller should
be correlated to the latency criticality of the IoT service, so "which resources" we are
assigning is important. Second, the matching shrinking virtual partition to a growing
one (in terms of resources to be reallocated) might be positioned far apart from each
other in the actual computing grid, thus leading to a new optimization problem: which
intermediate "neutral" partitions should be repositioned to enable the actual hand-
over of resources? For the first time, we model this problem as a mapping problem of
poloyominoes, identify objective function and constraints for a Fog environment, and
provide optimal solutions within the time frame of a few seconds. When used with a
"prior provisioning prompt allocation" strategy of Fog resources, the proposed solver
can be used online.

The working methodology will be as follows:

• Design of a multi-plane network-on-chip architecture for emerging multi-tenant Fog
computing nodes.

• Design of a time-division multiplexed sub-network with flexibility and low-latency fea-
tures.

• Design of a space-division multiplexed sub-network with fast dynamic reconfigurability
as the main target.

• Design of the hardware-dependent resource management framework mastering the elas-
ticity of the space partitions.

Overall, the thesis has a unique barrier-breaking attitude between abstraction layers and
disciplines to gain cross-layer visibility and complete solutions. However, it should be meant
only as the first step on the way of implementing the vision presented in this chapter.

16

CHAPTER 1. NEW SYSTEM CONCEPT AND CONTRIBUTION OF THE THESIS

1.6 Conclusions

In this chapter, we shed light on the emerging trend of the Edge-Fog-Cloud continuum, which
consists of a transparent and adaptive hosting environment that fully realizes the “everything
as a service” provisioning concept, from centralised Cloud to the Edge, and from network
and computing infrastructure up to the application layers.
From several brainstorming sessions we had with academic and industrial partners, the chap-
ter reports a vision with the concepts and components that might shape up this distributed
and integrated computing platform. We point out the most vibrant enabling technology for
such a vision, which we identify in multi-tenant public Fog nodes. The latter hold promise
of bridging the gap between smart objects or IoT sensors and the Cloud infrastructure.
However, we observe that building a Fog node with current hw/sw technology cannot span
a satisfactory trade-off between computational requirements and limited capacity. In this
direction, we identify the promising direction of elastic computing as a way of dynamically
reallocating resources from one IoT service to another depending on differentiated service
peaks. The thesis places contributions in all three components involved in the material-
ization of elastic computing, namely the multi-tenant Fog node, the hardware support for
dynamic hardware reconfiguration, and the dynamic resource manager. Far from being ex-
haustive, the thesis represents a stepping stone into further research and development in
such a promising yet wide research field.

17

Chapter 2

State of the art

In the previous chapter, we shed light on the growing gap between the requirements of
emerging distributed systems and the characteristics of existing computing platforms. Fur-
thermore, we proposed the new concept of elastic computing to bridge this gap, which we
pursue for the design and management of Fog node architectures.
This chapter reviews relevant previous work in related disciplines, and for each group of
works highlights the novel contribution of this thesis.

2.1 A gap in Fog computing

As we have mentioned in the previous chapter, traditional Cloud computing is being chal-
lenged by new emerging applications dealing with the proliferation of deployed edge devices,
the huge volumes of generated data, the demand for low response latencies and/or the
request for augmented privacy and security [149]. To deal with these challenges, Fog com-
puting, an extension of the Cloud at the edge of the network infrastructure, can execute
these applications (or part of them) closer to data sources and/or users.

Fog Computing is thus a very appealing component to build a new compute continuum
ranging from Edge devices to the Cloud, and serving as an ecosystem for IoT services [33].
The most important issue is arguably that at the moment of this writing there is no public
Fog Computing platform widely available on the market. Existing solutions are very specific,
offer peculiar services and capabilities, and hit the market with different sales models and
prices. On the one hand, Internet giants like Amazon, Microsoft and Google provide Cloud-
centric digital products, where management and orchestration of users’ resources, models
and data are performed at the Cloud side. On the other hand, alternative approaches
(e.g., EdgeX Foundry, Nebbiolo) use Cloud-based support only occasionally for demanding
operations, and try to push computation as close as possible to the Edge of the network.

In many cases, service providers work around these limitations by deploying and man-
aging their own Fog Computing platforms, typically opting for COTS hardware platforms.
These platforms tend to HPC-like performance levels and do not lend themselves to any
customization; thus, they are typically overprovisioned and overly expensive for the require-

18

CHAPTER 2. STATE OF THE ART

ments of the application at hand, in addition to large deployment and maintenance costs.
Last but not least, this practice gives rise to significant entry barriers for new potential service
providers. In all cases, state-of-the-art Fog computing platforms are designed as single-tenant
(and often proprietary) infrastructures with mainly static resource management capabilities.

At the same time, there is a lack of any (either de iure or de facto) standard service and/or
programming model for Fog Computing applications, despite the efforts to define a concep-
tual model for Fog Computing [60] and several standardization attempts have emerged, most
notably ETSI MEC [125] [34] and the OpenFog Consortium [96]. Hence, service providers
have to develop their own service models, with a significant impact in terms of development
times and costs, or reuse service models developed for Cloud computing, which are not par-
ticularly well suited for Fog and Edge computing. In fact, what characterizes an Edge/Fog
Computing environment is the relative resource scarcity and IoT workload dynamicity - de-
manding computing models with fine-grained adaptivity. Developers of Fog services cannot
assume to have enough computational, storage, and communication resources to analyze all
the incoming data of several applications concurrently using the full-fledged / sophisticated
/ fine-grained analytics techniques developed for Cloud environments. Instead, they have to
adopt trade-offs: either services discard some data [50] or they have to remodulate big data
analytics so that when they run in the Fog they decrease their computational requirements,
perhaps switching to coarser grained but less computationally demanding algorithms. In a
multi-tenant Fog node, this quality-of-service modulation techniques of IoT services need to
be coordinated with the resource manager of the shared Fog node, which can apply priori-
tization policies.

Clearly, a new generation of largely parallel computing architectures to be deployed as
multi-tenant public Fog nodes would be game changers in the field of IoT, due to the capa-
bility to bring more computing power at the edge in a cost-effective way for the delivery of
smart IoT services. We believe that the awareness of workload characteristics of Fog appli-
cations could help in the design of effective and efficient management and operation of Fog
computing platforms. Especially for Fog applications with dynamic workloads, it is necessary
for the Fog infrastructure and applications to be deployed in a scalable manner. Meanwhile,
Fog management platforms need to incorporate intelligent application placement, dynamic
resource allocation mechanisms and automated operation systems to ensure acceptable QoS
is guaranteed.

2.2 Elastic Computing

Resource and service management in Edge Computing are compelling topics in the scientific
literature [89]. As Fog nodes bring a part of the Cloud computing power closer to users
or sensors, the most promising idea for sharing Fog resources among IoT service providers
consists of elastically allocating them in an adaptive way over time. Indeed, elasticity repre-
sents one essence of cloud computing [140]: when limited resources are offered for potentially

19

CHAPTER 2. STATE OF THE ART

unlimited use, providers must manage them elastically by scaling up and down, as needed.
While this notion was originally understood mainly as "resource elasticity" for the Cloud,
since 2011 it has been deemed as rather restrictive by the community of distributed systems.
In fact, resources’ requirements are not determined only by the application using them. If
we really treat computation as a service, then we must consider all aspects of a service that
might impact the demands on a resource. In 2011, Dustdar [43] presented the Principle of
Elastic Processes where he defined cost, quality, and resources as the basic elasticity dimen-
sions that form the foundations of elastic systems. Let’s look more closely at these elasticity
dimensions:

• Resource elasticity is the traditional dimension of elastic computing, and consists of
the capability to allocate/deallocate computing resources on demand, in order to align
the state of the execution platform with changing load and business needs.

• Cost elasticity describes the provision of a resource as a result to changes in cost.
Service providers apply it when price models are defined for cloud computing systems.
In this context, cost elasticity is also referred to as utility computing, in which resources
such as computational services provided by virtual machines, data transmission on the
network, and storage services provided on different storage hierarchies are charged
based on a pay-as-you-go pricing mechanism.

• Quality elasticity measures how responsive quality is to a change in resource usage.
The elasticity is a part of the essential nature of cloud applications — that is, to
have a precise quality elasticity measurement, the improvement of the service’s quality
need to be monotonic to the consumption of the resource needed. In other words, the
more resources are consumed, the better quality is achieved. The main matter here
is to relate a service to a measurable quality and cost function, which computes the
resource requirement for a given quality, such as execution speed. In this case, a service
gives a deterministic result, but its execution speed is variable based on the required
resource. In cloud computing, some computational forms have this desired property.
Let’s take the example of MapReduce which is a scalable programming framework that
lets users process data elastically [39]. It has a desired quality elasticity that asserts
that execution speed is scalable to the increase of servers in a distributed file system.
The used quality criteria were not restricted to the Response time criterion only, other
quality measurements were considered such as the result quality in an approximation-
based computing process. This can help provide a new class of cloud algorithms.

Other elastic systems have emerged, such as [123] which is focusing on uniform management
of people and computing resources as functional units of the same system. This work in-
troduced the Design by Units principle. The principle defines the Unit as an abstraction
over both people and computing resources. Since people have become entangled in bigger
heterogeneous systems, [22] have defined the notion of Collective Adaptive Systems. This
concept focuses on the societal aspects of systems in which processes, devices, people, and

20

CHAPTER 2. STATE OF THE ART

things, evolve, cooperate, and function as a part of an artificial society.
Thanks to these recent developments we are more familiar and we have better knowledge and
understanding on how to manage the increasingly connected and heterogeneous ecosystems
of people, computing processes, and things with the help of elastic systems.
While the resource elasticity paradigm is mainstream in Cloud computing, and is being
extended to the other dimensions of quality and cost elasticity, it is poorly unexploited in
embedded systems since current hardware/software stacks are typically not conceived for
dynamic resource management [18, 32, 88, 145]. However, elastic computing could find
applicability for Edge and Fog Computing environments [110]. In fact, the use of elastic
computing at the Edge has many potential benefits:

• Elastic applications do not need to be constrained by current execution contexts;

• Computation, storage and communication resources need not to be designed for the
worst-case;

• IoT services can be synthesized on the fly and not at platform deployment time;

• Opportunistic resource management could improve service quality-of-execution;

• Improved resilience and power management capabilities;

• Capability to preserve real-time constraints in a dynamic and unpredictable execution
environment.

Shaping the hardware/software architecture of Fog nodes even only for resource elasticity
(as a first step) is non-trivial and brings Cloud computing elasticity into new ground. Due to
their constrained and more cost-sensitive execution environments, it is not possible to deliver
the same coarse-grained elastic provisioning of virtual resources as in the Cloud [18], since
this would lead to resource over-provisioning (sometimes even tuned to the worst case).

The resource management problem addressed in this paper is a profound departure from
traditional resource management for the Cloud. In that scientific community, bin-packing
based algorithms are the mostly used concept to achieve virtual machine placement to phys-
ical Cloud servers [72]. At a first approximation, in this thesis we lower the abstraction layer
and map such virtual machines (or more suitable virtual entities for the Edge) to an array
fabric of homogeneous computing tiles. In this context, physical machine placement matters.
Similarly, current research on resource management for Fog computing and for integrated
Cloud/Fog systems again abstracts Fog nodes as "containers" of virtual entities with a given
capacity [59]. The work of this thesis fully complements these existing frameworks, capable
of allocating workloads throughout a network of Fog nodes, or to the Cloud vs. the Fog
layer.

21

CHAPTER 2. STATE OF THE ART

2.3 Dynamic Resource Management

When using scalable manycore architectures for Fog computing, it is possible to capitalize on
previous work on dynamic resource management for them in order to implement the notion
of resource elasticity.

Dynamic resource management has been established as an effective technique to improve
reliability, efficiency, and performance of computer systems [11]. Managing shared resources
during runtime becomes more complex with modern multi- and manycores which support
diverse workloads that exhibit varying resource demands, sometimes with conflicting limita-
tions. This dynamic behaviour of workloads that vary across concurrent applications creates
significant challenges for homogeneous architectures. The need for a holistic dynamic re-
source management technique becomes even more vital in heterogeneous parallel processors
where heterogeneous compute units are deployed on a single chip, allowing trade-offs be-
tween objectives such as maximizing performance and minimizing power [111].
In this context, computer architects use several approaches to perform dynamic resource
management. Model-based and rule-based heuristic methods use a model or an encoded
algorithm to make decisions during runtime. Optimization methods minimize/maximize an
objective while considering certain constraints. Machine learning methods learn the best
input values for different observed conditions. Finally, control theoretic techniques use their
intrinsic feedback loop to adapt to conditions. A review of these techniques is provided in
[66].

Quality of service (QoS) is a primary metric to qualitatively evaluate the system’s ef-
ficiency in satisfying application’s requirements. Applications from different domains have
different QoS metrics such as frame rate (multi-media) [62], latency-per-query (web search
and financial) [38], throghput (data analytics and streaming) [30], responsiveness (user cen-
tric) [77], end-to-end latency and privacy (social media) [100].

Runtime QoS management becomes necessary and challenging with (i) variable work-
load characteristics, (ii) variable QoS requirements of applications, (iii) identification and
translation of QoS metrics into system level parameters for provisioning and (iv) resource
contention and arbitration among concurrent applications.

Performance-bound QoS can be guaranteed with compute, memory, network and I/O
bandwidth provisioning with dynamic priority identification. In particular, allocating more
and/or suitable cores, CPU time slices, exploiting core-level asymmetry to fit application’s
QoS requirements are common approaches for QoS guarantees [129] [38] [30]. Under workload
diversity, smart co-location - scheduling an optimized combination of latency and throughput
sensitive applications together, exploits underutilized resources to satisfy QoS of both types
of applications [129] [63] [53] [30]. All these techniques feature user/application defined QoS
metrics such as latency and throughput bounds or dynamic identification of critical resource
contending regions of code [74] and measure QoS in terms of IPC and harmonic speed up for
scheduling decision. Monitoring QoS based on IPC and satisfying application requirements
through optimized time slice sharing among concurrent applications is proposed in [141].

22

CHAPTER 2. STATE OF THE ART

Combining a set of cores, memory and network bandwidth into a package to priovision
isolated resources per application as per their QoS requirements is proposed in [144], to
provide infrastructure as a service. All the provisioning techniques prioritize applications
based on QoS requirements and dynamically adapt further by monitoring resource utilization
upon provisioning.

None of the above techniques address the hierarchical nature of the dynamic resource
management problem, including virtual resource assignment and actual allocation of physical
resources. Therefore, the proposed solutions are well-suited for small-scale systems where
hardware-dependent effects do not play a fundamental role in determining system perfor-
mance and/or application quality metrics, and complexity does not need an orthogonalization
of concerns to be mastered.

Fog computing nodes and their management issues are closer to large-scale architectures
for which distributed operating systems have been proposed. In fact, with the advent of
manycores, researchers had the opportunity to fundamentally restructure operating systems
to support a simultaneous mix of interactive, real-time and high-throughput parallel appli-
cations. The intuition behind many works is that a much wider variety of performance goals
can be met by structuring the operating system around resource distribution, performance
isolation, and QoS guarantees.

The foundation of these works is given by virtual machines, exokernels, and multiproces-
sor runtime systems. Frameworks such as Xen [98] and VMware ESX [5] virtualize machine
resources, but not at the partition granularity, whereby CPUs within a partition are sched-
uled simultaneously. In Exokernel, system services are implemented extensibly at user-level,
allowing for instance applications to choose a user-level runtime best suited for the appli-
cations. A stronger notion of isolation than Exokernel might enable support for multiple
heterogeneous runtimes. In previous work such as LPAR [29] and DLPAR [64] partitioning
comes with relevant overhead and lacks of flexibility. In McRT [23], space-time partitioning
complements threading runtimes. It envisions a sequestered mode which runs directly on
bare-metal resources and acts as a light weight threading system, and is closer to runtimes
needed to manage on-chip manycore accelerators. Existing operating systems (e.g., Linux,
BSD, or Windows) operate at the granularity of individual CPUs, and therefore use the
thread abstraction to make resource allocation and scheduling decisions.
We claim that spatial partitions provide a more natural abstraction for supporting multiple
parallel applications. Further, spatial partitions act as a natural abstraction for implementing
resource allocation and accounting frameworks such as resource containers [23] and energy-
aware scheduling policies [23].
CoryOS is a manycore OS that achieves scaling by giving programmers control over the shar-
ing of kernel data structures [114]. However, many more options can be exploited for the
sake of scalability, including distributed OS structure [12] and space-time partitioning. The
Tessellation OS argues for space-time partitioning as the primary abstraction for resource
management on manycore client devices. Like other resource management frameworks for
multi- and manycores, it comes with a virtualization layer of physical resources, so that

23

CHAPTER 2. STATE OF THE ART

the high-level assignment of virtual resources can be decoupled by the actual adjustment of
physical partitions [36].

Unfortunately, the mapping problem of virtual assignments to actual resource allocations
is typically overlooked or left for future work.

The gap could be bridged by pioneer works in the field of runtime mapping of multiple
applications on NoC-based manycores. This thesis is interested in proactive partition alloca-
tion strategies, therefore MapPro is a relevant work in the field [54]. It proactively calculates
the propagated impact of spatial availability and dispersion on the network with every new
mapped application. This work makes the point for the selection of spatially-contiguous re-
gions and for near-convex shapes to minimize dispersion and external congestion. However,
it does not consider the secure-grade isolation of communications, as in Fog computing,
and the focus is on internal and external congestion (to the partitions), and on resource
utilization. Other key non-functional metrics of Fog computing are not considered, such as
proximity of the memory controller for end-to-end latency criticality, and dynamic reconfig-
uration overhead.

We observe that no previous work has captured the inherent geometrical nature of the
dynamic mapping problem under secure-grade isolation constraints of contiguous regions.
The only exception is the work in [102], which models it as a mapping problem of polyomi-
noes. The latter are complex geometric shapes formed by a combination of simple unit square
shapes. However, this previous work only focuses on the problem of fragmentation, and is
far away from capturing the multiple conflicting quality metrics that come into play when
considering the mapping problem in a Fog environment. Above all, the paper exhibits the
following fundamental limitations that this thesis addresses:
- it imposes a huge limitation of the mapping flexibility in order to make the problem tractable.
Limitations include the number of allocated cores, the partition shape and the partition loca-
tion.
- the allocation granularity of cores can become pretty coarse and easily lead to resource un-
derutilization.
- there is guarantee on the optimality of the system state after reconfiguration, but not on
the transition from one configuration into another.
Despite these limitations, this work is so relevant for the contribution of this thesis that
some details are hereafter reported. The non-interested reader can skip to the next section.

2.3.1 Defragmentation framework

The defragmentation framework presented in [102] presents the idea of exponentially sepa-
rable mapping (ESM), which defines dynamic task mapping constraints on a many-core. In
the proposed many core architecture, cores are arranged in a 2D lattice connected together
by a mesh NoC.

A multi threaded task on the many-core in general performs more efficiently when the
set of cores allocated to it are contiguous (spatially connected by an isolated NoC link) and

24

CHAPTER 2. STATE OF THE ART

compact (the shape formed by the allocated cores has minimum perimeter). Under such an
allocation, the communication cost between the task’s threads spread over the allocated cores
is minimal. The relative benefits from thread co-location would generally increase with the
increase in number of spawned threads of a benchmark because of an increase in inter-thread
synchronizations. Further, under a contiguous allocation, inter-thread NoC traffic generated
by one task remains isolated and does not interfere with another task’s NoC traffic. This
isolation reduces NoC congestion, enhancing the many-core’s multi program performance.
But in an open system, neither the arrival nor the departure time of the tasks are known.
Therefore, over a span of time, this results in unallocated cores getting scattered all over
the many-core, generating fragments in the task mapping. Formation of these fragments
leads to the problem of fragmentation. Fragmentation makes it difficult to perform efficient
compact contiguous mapping of new incoming tasks.

Figure 2.1: Figure from [102]. Example showing 10.16% reduction in an arriving task’s (Task 7)
execution time if mapped after defragmentation against when mapped without defragmentation.
An increase of 3.92% in execution time of the task migrated for defragmentation (Task 5) is also
observed as an overhead.

Fragmentation can be reduced by using a defragmenter, which consolidates smaller frag-
ments into larger fragments.
Fig.2.1 shows a simple illustration of how fragmentation leads to inefficiency on a 64-core
processor. Initially, the processor is executing a total of six tasks as shown in Fig 2.1(a).
Tasks 1 and 6 finish and leave the system, changing the many-core state to Fig. 2.1 (b).
Task 7 then arrives with a requirement of 16 cores. Fig.2.1 (c) shows the state and cor-
responding execution time of Task 7 if it is mapped without defragmentation. Fig.2.1 (d)
shows the state in an alternate timeline if defragmentation is performed first by migrating
Task 5 in the middle of its execution before Task 7 is mapped. Fig.2.1 (e) shows the state
and corresponding execution time of Task 7 if it is mapped after defragmentation. Exper-
iments show that the execution time of Task 7 is reduced by 30 ms (10.16%) in the state
depicted by Fig.2.1 (e) in comparison to the state in Fig.2.1 (c) because of the optimized

25

CHAPTER 2. STATE OF THE ART

interthread NoC communications. In contrast, the performance penalty of migration on
Task 5 for defragmentation is comparatively less at 14ms (3.92%). Task 5 experiences an
elongated execution because thread migrations force its threads to wait until the caches on
the newly assigned core are refilled from DRAM. Nevertheless, we observe that the net gain
in overall performance of the system is positive.
Clearly, Defragmentation would lead to a more responsive open system and a centralized
defragmenter is sufficient for a multicore.
However, for a many-core, given the large optimization search space, it would not scale up.
Therefore, a distributed defragmenter that distributes its processing across all cores in the
many-core and allows multiple fragments to merge in parallel is required.
However, the problem of many-core defragmentation is NP-hard. To overcome these limita-
tions, the main contribution of [102] is twofold: It shows that the exponentially separable
mapping (ESM) exhibits properties that allow optimal many-core defragmentation to be
performed distributively. At the same time, it also introduces a defragmenter, McD (short
for many-core defragmenter), that shows how ESM properties can be exploited for optimal
defragmentation of the many-core. McD disburses all of its processing overhead across all
unallocated cores in the many-core, allowing it to scale up as the number of cores in the
many-cores continue to increase in the future.
This work ends up making the defragmentation problem tractable by overly constraining
feasible mappings, especially due to the constraints that ESM puts on the number of cores
that can be allocated to a task, the shape of polyominoes that these cores can form, and the
physical location of those polyominoes.
Regarding the number of cores constraint, ESM requires that a task must always be allocated
a number of cores in an exponentiation series with base 2 (or power of two). If a task comes
with a core requirement that is not a power of two, its requirement is buffered up to the next
highest (ceiling) power of two. Therefore, tasks can get resources more than their demands
which will limit the availability of resources for other tasks. Thus limit the capability to
satisfy the demands of incoming and existing tasks in the system. Moreover, this solution is
restricted to the grids power of two which will limit feasibility.
As for the shape constraint, they are restricting the number of possible shapes for every
demand to one. Which will limit the number of possible solutions. Thus, the feasibility.
Finally, regarding the location constraint, they are limiting the possible positions of the
shapes. Therefore, they limit the number of possible solutions.
The defragmentation process gives rise to another issue. In fact, when merging fragments
(defragmentation) a number of tasks migrate. In this work, this number of task migrations
is not minimized in the objective function, which will affect the system’s performance and
user experience for offered IoT services.

26

CHAPTER 2. STATE OF THE ART

2.4 Copying with state space explosion

It has been demonstrated that resource allocation is one of the most complex problems in
large multi-/many-core distributed systems [81, 85].
An accordant search strategy may need to evaluate numerous allocations that are distinct
before it finds the optimal solution that meets the systems performance requirements [82,
105].
This presents a big misalignment when it comes to Hard-real-times tasks. In fact, such
evaluation most likely will take a long time, thus, it cannot be applied to find the solution
rapidly, which is desired within the context of dynamic resource allocation and when real
time constraints must be considered. In addition, defining the way that helps to achieve an
accurate status of resource allocation during runtime is very difficult and challenging.
This status of resource allocation can be utilization or memory usage of different cores into
the system. An imprecise status of resources may lead to an allocation that might not be
efficient at runtime. Furthermore, when applications are active simultaneously in the system,
we may have various combinations. Thus, it becomes challenging to satisfy performance
requirements of each application. Therefore, for each task, since optimal solution cannot be
explored at runtime due to limited computation power and evaluation time, it needs to be
explored by advanced design-time by Design Space Exploration (DSE) approaches and then
to be used at runtime.

2.4.1 HAM flow

In order to support real-time applications on a many-core platform, certain performance
guarantees such as worst-case execution latency or minimum throughput must be delivered
to ensure that the on-line real-time constraints are met.
As a remedy, Hybrid Application Mapping (HAM) is a recent class of mapping method-
ologies for multi-/many-core systems that has proven its efficient way of delivering exactly
such guarantees by combining design-time analysis of application mappings with run-time
management.

In Fig.2.2, the flow of HAM is illustrated. First, a Design Space Exploration (DSE) is
performed at design time (offline). During this step, multiple mappings with verified real-
time properties for the application on the target platform will be generated.
Each mapping requires a certain set of processing and communication resources—to execute
the application’s tasks and route messages among them and delivers certain qualities in
terms of energy dissipation, performance, etc.
For real time applications, the worst-case timing behavior of the mappings is derived within
the DSE [136].
Second, the design-time exploration and analysis step is followed by a run-time (online)
management step in which the statically-computed mappings are provided to a Resource
Manager (RM) that selects and embeds the most fitting mapping for the given set of on-line

27

CHAPTER 2. STATE OF THE ART

system and/or application constraints [71].

Figure 2.2: Hybrid application mapping (HAM) flow

2.4.2 Related works to hybrid mapping

Hybrid mapping approaches aim at bridging the gap between predictable application execu-
tion and dynamic workload scenarios.

In [9], a hybrid mapping approach is presented. It is designed for heterogeneous MPSoCs.
At design time, a single-objective optimization is performed by predefining thresholds for
each optimization target (performance, lifetime reliability, energy consumption, and tem-
perature). Multiple optimizations with varied threshold values are conducted, with which a
Pareto front is created. This latter is used to determine the best-suited operating points for
known applications at runtime.
For applications that their execution is not known before, a dynamic scheduling approach is
employed by monitoring the system periodically and occurring when the design parameters
diverge from the objectives. In this process, the latency-minimal mapping is chosen.

[135] proposes a scenario-based run-time task mapping algorithm (STM) for dynamic
mapping reconfiguration of multiple applications. At design time, mappings optimized for
throughput are determined for all scenarios by DSE. At run time, an initial mapping is chosen
for all active applications. However, when an application is not compliant with the defined
objectives, responsible tasks are remapped considering poor locality and load imbalance. A
reconfiguration also occurs upon detecting a new workload.

Works regarding scenario-based (e. g. [130]) and multi-mode (e. g. [137]) embedded
system design provide application mapping alternatives which are optimized at design time

28

CHAPTER 2. STATE OF THE ART

for various workload scenarios and execution modes. At run time, it is then possible to choose
the application mapping alternative which performs best for the current workload/execution
mode. However, all scenarios and execution modes have to be known already at design time.
Optimization for unknown application mixes is not in the focus of these approaches.

As a solution for unknown applications, some hybrid approaches provide models which
give an approximation on how the application performance depends on the availability of re-
sources, (e. g. how execution speedup increases when more resources are available) [70, 138].
However, such functions are not suited for heterogeneous architectures and only approximate
the actual performance. Consequently, these approaches are tailored for best-effort execution
and not appropriate for execution with real-time constraints.

More accurate anticipation of the impact of resource availability on application perfor-
mance can be obtained by performing DSE and making the obtained characteristics then
available to the run-time resource management [27, 83]. DSE is performed to obtain a set
of operating points which are characterized by their resource usage profile and their per-
formance. For handling unknown application mixes, run-time management partitions the
available resources between applications. This is done by selecting an operating point for
each application such that the overall system objectives are optimized (like maximizing per-
formance/utilization, minimizing energy consumption) under the constraint that the total
amount of resources is limited.

In [118], a hybrid strategy based on a formal analysis for throughput calculation and
energy consumption is proposed. Although communication is considered in the analysis, it
is limited to network interconnects that provide end-to-end connections with fixed latency
between tiles. In general, routing of multiple communication over the same communication
resources results in non-fixed latencies. The approach therefore requires an interconnect that
provides guaranteed service [31, 55, 61]. In this case, the interconnect can only support a
limited amount of guaranteed service connections per communication resource.

However, the work in [118] ignores contention on shared resources and instead assumes
feasibility solely based on the availability of respective computation resources.
Consequently, ignoring the constrained availability of shared resources may render applica-
tion mappings infeasible which have been assumed as feasible by [118].

To conclude, hybrid approaches employ a lightweight runtime platform manager to con-
figure the applications efficiently since only selection of the allocation from the storage is
required at runtime and most of the computations are done offline. Moreover, the hybrid
approach allocates applications more efficiently than on-the-fly heuristics that perform all
the computations at runtime.
However, flexibility in these approaches is limited, since all potential applications must be
known in their entirety at design time, and analysis results will be applicable only to the an-
alyzed platform. Therefore, design-time analysis needs to be repeated when the application
set or platform changes. Furthermore, storing analysis results introduces additional memory
overhead.

Overall, previous work has coped with the proliferation of possible configuration options

29

CHAPTER 2. STATE OF THE ART

of shared manycore systems through the combination of online and offline analysis. State-
of-the-art Hybrid Mapping Approaches provide tools and methodologies to determine whether
the transition to a given configuration meets real-time requirements, both from the viewpoint
of the final execution state and of the transient. However, these works explicitly leave the
system-level policy that selects the actual target configuration for future work. This thesis
tackles the challenge of selecting such state. Above all, it solves the problem to optimality
under realistic working conditions for Fog nodes. The presented work is fully complementary
with HAM and related works, since once our framework has been identified the shape and size
of a partition for the near future, we envision a local manager that can locally manage the
resources and map user processes to them with the goal of fulfilling real time requirements.

2.5 Dynamic reconfiguration

Elastic partitioning of a Fog node architecture has not only to do with the computation of the
next system state, but also with how to achieve it from an initial condition. Therefore, the
work of this thesis addresses in part the domain of dynamic reconfiguration, which goes hand
in hand with dynamic resource management, although not necessarily the reconfiguration
overhead is accounted for when dynamically readjusting resource allocations.

Many-core systems enable the concurrent execution of dynamic mixes of applications on
a shared set of dynamically available resources. Migration of tasks between the cores of
a many-core processor allows to dynamically balance the CPU load and hence to improve
the temperature distribution of the chip [56]. Furthermore, it increases the resource locality
[48] and enhances fault tolerance [115]. It also enables features yet unknown to embedded
systems, such as adding new applications at runtime.
Predictability, determinism, and a-priori schedulability guarantees are of paramount impor-
tance in safety-critical embedded systems especially with hard real-time (RT) constraints.
On many-core processors, task migration has been subject of research with focus on decreas-
ing the migration penalty [26].

Some works also concentrate on soft RT systems where migration is often triggered by
missed deadlines [13]. Only little work has been done concerning task migration in hard RT
systems.

Authors in [92] devise three agreement protocols that enable a single-threaded application
to plan its future execution both temporally and spatially. An application can be executed
on the subset of cores on which its instructions are present, encapsulated in a dispatcher.
A task migration transfers the context between these dispatchers. The authors present an
analytical and experimental evaluation of the worst case delays of the proposed protocols
that select the next dispatcher to execute the application.

In [93], authors extend their Limited Migrative Model approach to support inter-application
communication on a separate NoC.

Hilbrich and van Kampenhout [57] evaluate methods for dynamic reconfiguration of

30

CHAPTER 2. STATE OF THE ART

avionic embedded systems. They focus on deterministic task migration and leverage mode
changes, i. e., task-to-core mappings which are statically derived and can be switched on-
line. Task migration is an important part of a mode change, during which no guarantees are
given. At the same time, the application, including its worst-case execution times (WCETs),
communication latencies, and external events must be known at design time in order to
define the modes.
This work is basically based on flexible partitioning as an approach to improve resource
utilization and fault tolerance using dynamic reconfiguration.
Flexible partitioning requires task migration between cores via a shared resource - the NoC
- which may endanger the required predictability. Therefore, they analyzed a variety of task
transfer mechanisms in many-core processor in order to determine their potential for deter-
ministic reconfiguration during run-time. Moreover, at the NoC level, flexible partitioning
and guarantees on Quality of Service (QoS) are fulfilled by using Time Division Multiplexing
(TDM).

Katre et al. [69] present a policy to guide task migration decisions on multi-core proces-
sors with temporal guarantees.
The worst-case migration delays for the migrating task and the remaining tasks as well as
the communication costs are investigated by an offline static timing analysis. This worst
case migration overhead is used to determine the set of feasible migrations, i. e., the tasks
that can be migrated without disturbing the RT constraints of the system.
The authors present a formula for the weighted migration costs, which allows to select the
migration with the least costs among all feasible migrations. Different cache-line transfer
policies are considered by a comparative term in the formula.
The main limitation of those works is that they are limited by static migration options pre-
computed at design time.

In contrast to the previously mentioned solutions, the task migration process presented
in [91] is not only limited to the set of precomputed options derived at design time, but
performs the feasibility test online. Thus, the set of possible destinations for a migrating
task is potentially larger and less memory is required to store precomputed results in general.
In this work, the task migration concept is implemented as a service at OS level.
The migration procedure is split in 3 parts that are executed by: the Decision Unit, the
Investigation Unit (IU), and the Execution Unit (EU).
First, the Decision Unit (DU) uses global monitoring and profiling information, e. g., tem-
perature and task runtimes, respectively, in order to create new migration requests. They
assume that the DU does not issue a second migration request as long as another one is still
processed.
Second, the Investigation Unit (IU) receives the migration request and evaluates if the re-
quest can be executed without violating the real time constraints. The IU is implemented
as a low-priority background task on every tile. On each destination tile, the local IU task
checks whether the tile can receive the task.
Finally, on each core, the Execution Unit (EU) is implemented as a low-priority background

31

CHAPTER 2. STATE OF THE ART

task that can act as sender and as receiver and is activated by the DU.
The proposed concept guarantees the application’s hard deadlines on a many-core processor
during a task migration by a runtime feasibility check of a migration request prior to its
execution.
In spite of the benefits of this work, it contradicts the definition of composability which
was presented by B.Akesson in [17]. In fact, based on his definition, we can conclude that
weighted Round Robin (WRR) arbitration used in this work ensures predictability but not
composability, since the starting times of applications suffer from mutual interference.
Predictability and Composability are two different properties, and one does not imply the
other. Predictability means that a useful bound is known on temporal behavior, and compos-
ability that the temporal behavior of an application is independent of other applications.
[17] illustrated the difference by discussing four example systems, shown in Fig.2.3, that
cover all combinations of predictability and composability.
The first system, depicted in Fig.2.3(a), consists of two processors, each executing a single
application. Assuming that the applications are predictable and that worst-case execution
times are known for all tasks. Data is stored in a shared remote SRAM that for simplicity is
reached by direct wires. The SRAM has a latency of one clock cycle that is independent of
other requestors. The SRAM is shared using TDM arbitration, which is a predictable and
composable arbitration scheme, since the latency of a requestor is bounded and independent
of other requestors. This makes this system as a whole both predictable and composable.
For the second system in Fig.2.3(b), the TDM arbiter is replaced with a round-robin arbiter
(RR). This makes the system predictable, but not composable, since the round-robin arbiter
creates a dependence on the presence or absence of other requestors.
In the last two systems private L1 caches are added to the processors in both previous sys-
tems. A private cache is composable, since it is not shared between applications. However,
it makes the systems unpredictable, since a useful bound cannot be derived on the time to
serve a sequence of requests.
The third system, in Fig.2.3(c), is hence composable, but not predictable.
The last system, shown in Fig.2.3(d), is neither predictable, nor composable.

Figure 2.3: Four systems demonstrating all combinations of the predictability and composability
properties.

32

CHAPTER 2. STATE OF THE ART

In this thesis, we target the composability property through the spatial partitioning of
the underlying hardware platform among the consolidated IoT services. This enables IoT
applications to be developed and verified in isolation, and to be later safely composed on
the multi-tenant Fog node. We also target the composability through time-multiplexing the
global communication flows, for which predictable timing bounds can also be delivered. The
target architecture of this thesis allows also the formulation of timing bouds for real-time
applications inside each spatial partition, provided suitable arbitration mechanisms are used
in the network-on-chip routers and in the core schedulers [107].

2.6 SDM/TDM scheduling of hardware resources

Most existing solutions for resource sharing at the Edge adopt software containerization
techniques, that allow to execute service components and run them in a mildly isolated
environment.
However, it has been proved that security vulnerabilities can impact this isolation, and thus
affecting the overall security [1, 3].
Moreover, software consolidation on manycores gives rise to a number of subtle interference
effects that take place in hardware, associated with the partitioning pattern, that may break
not only security guarantees, but also predictability and composability. For instance, if
communication flows logically pertaining to different partitions/IoT services can slow down
each other through resource contention, it is possible to form timing channels to leak out
useful information, but also to give rise to hard-to-bound interference for timing analysis and
to non-composable performance of individual IoT services. To this end, combining software
with complementary hardware techniques is an effective way to deliver the secure-grade
isolation, predictability and composability requirements that Fog services demand.

In this section we will address the strong isolation requirement in depth.
Firstly, we will present some emerging fields where strong isolation is a must. Secondly, we
will detail the architectural challenges that limit security. Finally, we will take a closer look
at the previous works that aimed at fulfilling the strong isolation property.

2.6.1 Strong Isolation Requirement in Emerging Fields

Security has always been an area where network related researchers are continuously striving
to get through.
In fact, nowadays Chip Multiprocessors (CMPs) are typically designed with a tile-based ap-
proach, where a compute tile, typically including distributed L2 memory, is replicated and
connected by a NoC.
In high-assurance systems, support for resource partitioning into isolated domains is an
emerging requirement. As an example, Integrated Modular Avionics (IMA) architectures
are currently mainstream, constituting a logically-centralized and shared computing plat-
form hosting a variety of avionics functions on a single computing platform (multi-function

33

CHAPTER 2. STATE OF THE ART

integration). IMA demands software partitioning [109], which consists of achieving fault con-
tainment in software, independently of the underlying hardware platform. However, with
the advent of parallel computing architectures, the partitioning concept should be enforced
in hardware as well.
The avionics safety standards dictate the enforcement of partitioning in space and time.
Spatial partitioning ensures that an application in one partition is unable to change private
data or use private devices of another one.
Temporal partitioning guarantees that the timing characteristics of an application, such as
worst-case execution time, are not affected by the execution of an application in another
partition. While these concepts have been fundamentally driven by fault-tolerance and per-
formance predictability considerations, protection from cyber attacks is getting increasing
attention in the design of avionic systems [95]. Systems must be safeguarded not only against
DoS but from other vulnerabilities such as timing channels [124]. Similar considerations hold
for the automotive domain, where densely populated networks of electronic control units are
being replaced by distributed central compute platforms, driven by cost, weight, complexity
and security considerations.
The picture becomes even more critical when considering the possible co-integration of safety-
critical functions (e.g., the breaking system) with infotainment and even third-party applica-
tions. In this domain, numerous works are surveying cars’ intercommunication technologies
and possible threats [79, 99], and demonstrating different kinds of attacks [126]. Last but
not least, computing platforms for space applications are following the same trend, extend-
ing the concern from failure cascading avoidance to the interference threats between system
components in multicore architectures [46, 134].

2.6.2 Architectural challenges: The NoC Sharing Problem

Overall, the key challenge of applying time and space partitioning to CMP platforms lies in
the NoC, where an additional layer of possible interaction arises for the system as a whole.
Routers and links are shared among domains, and are thus subject to contention and con-
gestion. This renders network performance unpredictable, prevents fault containment and
exposes unprecedented security threats.
Several degrees of non-interference can be enforced on the NoC. A first approach to loos-
ening interdependencies among communication flows consists of delivering quality of service
(QoS) guarantees. In fact, most QoS techniques aim at limiting flow rates, while restoring
nominal rates in the absence of contention. While QoS-augmented NoCs can typically pro-
tect from denial-of-service (DoS) and bandwidth depletion attacks between domains, they
cannot easily avoid an information leak associated with latency and throughput variations
of communication flows as a function of network state. In fact, they can be used as timing
channels by an attacker either to infer confidential information from a protected high-security
program (side channel attacks) or to have a malicious program deliberately leak information
covertly when direct communication channels are protected (covert channel attacks) [142].

34

CHAPTER 2. STATE OF THE ART

When protection against timing channel attacks is required, even cycle-level variations of
communication performance should be prevented, a scenario that we hereafter denote as
strong isolation of domains.
Interestingly, strongly isolated domains simplify handling propagation of faults and the cer-
tification process (most system-level interactions are avoided).
In order to deliver strong isolation to networked domains, the NoC must be designed to
guarantee the non-interference property in its strictest sense: injection of packets from one
domain cannot affect the timing of packet delivery from other domains.
To sum up, a better use of many-core processors or accelerators at the Edge might be by
adopting space-division multiplexing (SDM) and time-division multiplexing (TDM) policies.
In the next two sections relevant SDM and TDM works for NoCs are presented.

2.6.3 TDM-based scheduling

In order to prevent interference between concurrent domains, one straightforward solution
is to statically schedule them on the network over time with some form of time-division
multiplexing (TDM) [61].
However, this approach typically comes with relevant performance overheads. On the one
hand, strict non-interference requires resource allocation decisions being independent from
application demands. On the other hand, performance of packets in time-multiplexed NoCs
is highly sensitive to the scheduling methodology of time slots.
While existing solutions support a generic global schedule, its reconfiguration at runtime
is not obvious. In some cases, this implies solving a slot allocation problem in software
or through hardware acceleration, and large programming tables at network interfaces [61]
as well. In other cases, invasive hardware modifications are needed to optimally support
different system configurations (e.g., number of domains) [10]. Thus, they are mainly suited
for design time customizations.

Prior approaches to TDM-based scheduling in NoCs lose relevance when they are chal-
lenged with conflicting requirements of latency optimization, area efficiency and architectural
flexibility.

Numerous designs perform TDM scheduling at the time-slot level [61][14][45] where the
scheduling is typically performed offline (and assumes perfect a priori knowledge of applica-
tions to be running on the system), and then statically applied to the entire NoC [78]. In
these approaches latency overhead can be quite substantial.

AEthereal [61] employs pipelined TDM (at the time-slot level) and circuit-switching to
guarantee performance services. Traffic is separated into two main classes: 1) guaranteed
service (GS) and 2) best effort (BE). Excess bandwidth not used by GS flows is given to BE
flows. Packets on a single connection are always ordered, but ordering cannot be enforced
between connections.

Moreira in [94] proposes an online resource manager using AEthereal TDM. It can modify
the domain configuration at runtime. However, it can not prevent cycle-level variations of

35

CHAPTER 2. STATE OF THE ART

communication. Both approaches incur a substantial programming overhead of time slots
at network interfaces.

The SuperGT NoC [122] is an evolution of AEthereal providing three QoS classes.
Aelite[14] simplifies the router architecture by providing only GS and supports multicast
traffic and fast virtual-circuit setup.

Argo [45] allows schedules to evolve at the granularity of a single cycle, even when routers
have more than one pipeline stage. The hardware cost is low, but the latency overhead can
be substantial.

In [143], static space and time network partitioning is used to provide multi-way isolation
among supported domains. This multi-way isolation property comes at a high performance
cost, which is alleviated by the introduced reversed priority with static limits (RPSL) mech-
anism. It uses priority-based arbitration and static limits to guarantee one-way isolation
between high-security and low-security flows.

A recent architecture, SurfNoC [58], employs optimized TDM scheduling, applied at the
VC level, to minimize the latency overhead. However, the required hardware is expensive.
Achieving low-cost implementations with SurfNoC would increase the latency overhead of
static scheduling.

The current state-of-the-art in TDM-based scheduling is PhaseNoC [10]. It improves the
VC-level scheduling proposed by SurfNoC by pre-configuring the network in order to receive
packets from the same domain at all the input ports at every cycle, and performing the
arbitration in the next cycle of this incoming domain.
Following this approach, PhaseNoC meets the first requirement, by minimizing the latency
overhead. However, it lacks flexibility as it requires adding router pipeline stages to support
a higher number of domains.
PhaseNoC divides the network into x+y+ and x−y− to support a higher number of domains.
However, following this approach, it can not guarantee the non-interference property any
more, for which it would need input speedup similarly to SurfNoC.
The work in this thesis presents a more flexible and scalable approach to low-latency TDM
communications, and compares directly against PhaseNoC.

2.6.4 SDM-based scheduling

The isolation problem in the SDM NoC can be solved by gaining a tighter control over the
routing paths of network packets in hardware. However, the solution should be partition-
specific. In essence, we cannot typically rely on a network-wide global routing algorithm,
but we need to custom-tailor a per-partition routing algorithm, which needs to be computed
and programmed at runtime as a new partition is set up, or its configuration modified. This
thesis aims at overcoming this limitation and overhead.
In the following paragraphs, we will present the most relevant previous routing mechanism
support for spatial isolation.

36

CHAPTER 2. STATE OF THE ART

Table-Based Routing

Traditional routing mechanisms for NoCs are based on routing tables [139]. The most com-
mon solution is to implement them at the network interface of source nodes (source-based
routing), and to embed the stored routing path to destination in the packet header.
When implemented in the network interface of source nodes (source-based routing), routing
tables need to include a routing path for each possible destination reachable by that node.
At each switch, a simple logic reads in the routing path from the packet header and imple-
ments the pre-computed routing action for that switch.
Source-based routing comes with overly long packet headers, since the embedded routing
path field should be as large as the worst-case number of hops the packet could traverse
in the network. Moreover, even though partitions will be used, the network should provide
support for the largest possible partition size, which consists of the network as a whole, thus
requesting a conservative number of routing table entries for full connectivity.
Routing tables could also be implemented at each switch (distributed table-based routing),
but their access delay would end up impairing the network operating frequency. For this
reason, this paper will consider source-based routing as the reference approach for compari-
son.
If tables are implemented at each switch (distributed table-based routing), then packets need
only to carry the destination address, which will be looked up in a table to derive the routing
decision for that hop. This approach is rarely implemented in on-chip networks, since tables
are large and their access delay ends up impairing the switch operating frequency.
Whatever the table location (at network interfaces or switches), table-based routing exhibits
large overhead when reconfiguring partition shapes at runtime, due to the lengthy course of
action required.
By assuming static reconfiguration (that is, the temporary suspension of the application/ser-
vice under test for the sake of updating its configuration as well as the configuration of the
underlying compute and memory partition), and source-based routing (i.e., tables at network
interfaces), the following tasks should be performed to reconfigure a partition:

• Draining the interested portion of the network from ongoing packets for deadlock-free
reconfiguration, and blocking of traffic injection. This step can be overlapped with the
next two ones for an optimized reconfiguration process.

• Computation of an ad-hoc routing algorithm for the new partition shape. This pro-
cessing can be performed by the host processor or by a dedicated controller.

• Search for all source-to-destination paths for intra-partition minimal-path routing.

• Programming of the routing tables of the network interfaces belonging to the partition
through dedicated control packets over a TDM NoC. Only the modified table entries
associated with destinations that belong to the partition should be selectively updated.

• Activation of the new routing function, and software-managed traffic resumption.

37

CHAPTER 2. STATE OF THE ART

This mechanism is illustrated in Fig2.4, where, for every partition belonging to the initial con-
figuration, the routing algorithm is computed, then routing paths are established. Finally they
are stored in the routing tables. This procedure gives rise to a huge reconfiguration overhead
for physical partitions, including both a hardware (spreading of new configuration informa-
tion) and a software contribution (search for a routing function and for routing paths). This
thesis aims at completely removing the software overhead, and at minimizing the hardware
one, at runtime.

Figure 2.4: Table-Based routing mechanism

Logic-Based Distributed Routing

To prevent the interference between packets belonging to different partitions, some previous
works used Logic-Based Distributed Routing (LBDR).

Figure 2.5: (a)Interference effects without close control of the NoC routes. (b)Content of the
LBDR configuration registers for the switches of a NoC with two partitions.

In Figure 2.5(a) we can see two generic partitions are mapped onto the PMCA, and where
the underlying NoC uses xy dimension-order routing. Clearly, some source-to-destination
flows in the second partition take routing paths that end up invading the spatial region of the
first one. This may result in performance variations, traffic congestion or security threats.
In this context many researches have advocated the use of the LBDR [47] not only as a
global routing mechanism replacing routing tables for better scalability and lower cost, but
also as a simple means of enforcing isolated spatial partitions.
LBDR consists of simple combinational logic at each switch input port processing destina-
tion coordinates from packet headers and local switch coordinates. Based on them, it then

38

CHAPTER 2. STATE OF THE ART

computes a productive switch output port for the packets. The decision is taken based on
the computation of the destination quadrant, hence its complexity is not a function of the
network size, but only of the switch radix. For each target quadrant, two productive direc-
tions are identified (e.g., North and East for the North-East quadrant), which are compared
against the forbidden turns at the next hop of the routing algorithm. The mechanism finally
selects the legal direction that conservatively enables the packet to approach the destination
at the next hop.
This logic uses 12-bit configuration register per switch, including 4 connectivity bits Ci and
8 routing restrictions Rxy.
Forbidden turns at the next hop are encoded in a small configuration register of the LBDR
routing logic, the so-called routing restrictions , pictorially illustrated as arrows in Fig.2.5(b),
where the arrow direction indicates the direction that cannot be taken by packets. Thus,
making the routing function easily reprogrammable.
This routing mechanism needs to be aware of whether there is a connected switch in the
north/south/east/west direction or not, so to avoid routing a packet to unconnected direc-
tions. This is the case of border switches in a 2D mesh topology. This information is coded
in the so-called connectivity bits of the same LBDR configuration register.
Connectivity bits are not just used to denote the topology boundary, but also the partition
boundary.
Figure 2.5(b) illustrates the content of the LBDR configuration registers for each NoC switch.
In red, the connectivity bits are set to zero to denote the common boundary of both parti-
tions.
For instance, Fig.2.6 defines the connectivity bits and routing restrictions of switch 5. We
can conclude that the switch is connected to the four directions: North, East, West and
South. However, it has two forbidden turns that prevent packets coming from the East to
turn to the North (vice versa) and packets coming from the South to take the East direc-
tion (Vice versa). When compared to the hundreds of bits required by routing tables, the
superior area and delay properties of LBDR become apparent, which are however paid with
a decrease in flexibility.
In fact, although LBDR has been demonstrated to successfully implement the most com-
mon topology-agnostic routing algorithms, it is capable of routing from 30 to 40% of the
irregular topologies derived from a 2D-mesh (the LBDR feasibility domain) [113]. In fact,
the mechanism can easily support only topology irregularities that still enable minimal path
routing with respect to the ideal fully-connected 2D-mesh. Even restricing the focus to
routable NoCs and partitions, LBDR gives rise to a mismatch between the underlying rout-
ing algorithm and specific partition shapes. This mismatch is illustrated in Fig.2.7, where
partitions use minimal path routing with respect to the 2D mesh as a whole, however some
routes turn out infeasible using LBDR. In fact, nodes belonging to the south-west flank of
partition 2 cannot reach nodes belonging to the other flank of the same partition, due to the
routing restrictions. Clearly, using distributed routing logic at each switch can minimize the
area and delay overhead of routing tables, but such logic is natively routing algorithm- and

39

CHAPTER 2. STATE OF THE ART

Figure 2.6: LBDR logic inside the switch

topology-specific[139].
Most previous work targets an enhanced coverage of faulty links and switches through LBDR
without reverting to routing tables.
uLBDR supports non-minimal path routing through the use of special deroute bits [113].
However, 100% coverage of 2D-mesh irregularities is achieved only by means of virtual cut-
through switching and by forking packets in some special cases. Moreover, some faults require
the re-segmentation of the network, which is compute-intensive and requires deadlock-free
dynamic reconfiguration.
d2−LBDR achieves 100% coverage of 1- and 2-link failures with lower overhead than uLBDR
[112]. It complements vanilla LBDR with a distance register and a new deroute strategy
on each router. This work introduces the interesting notion of selective masking of routing
restrictions depending on the communication flow, and aims at avoiding re-segmentation.
However, there is no evidence that this fault tolerance can be changed into the support
of a set of partition shapes without recomputing the routing function. At the same time,
uLBDR and d2−LBDR rely on additional programming bits for the routing logic that are
demanding in terms of computation requirements [19, 112]. Hence, these approaches do not
lend themselves to fast runtime reconfiguration.
Overall, LBDR has never been used in the context of a partitioned SDM NoC for the sake
of fast and flexible partitioning. This is the primary focus of this thesis, which addresses the
problem under the security and flexibility requirements of a Fog computing environment.

2.7 Conclusions

The work of this thesis lies at an unexplored intersection between Cloud computing, com-
puter architecture and resource management at several abstraction layers. As a result, this

40

CHAPTER 2. STATE OF THE ART

Figure 2.7: Representation of a routing algorithm for the NoC as bidirectional routing restrictions.
At the same time, a reachability problem is illustrated, which limits routability of partition shapes
with vanilla LBDR.

chapter reviews state-of-the-art of the main related disciplines and points out the unique
interdisciplinary contribution of this thesis. The latter addresses a twofold extension of
baseline disciplines:
- It matches dynamic management of manycores with the non-functional requirements of
Fog computing.
- It extends the elastic provisioning of Cloud resources to the Fog through hardware and
management support.

41

Chapter 3

Target Architecture

This chapter expands on the proposed target architecture. First, we will describe the Fog
node architecture. Second, we will detail the accelerator cluster and the memory architecture.
Finally, we will present the on-chip interconnect considered in our work.

3.1 Fog node architecture

Our solution targets an heterogeneous Fog node architecture. Figure 3.1 shows the block
diagram of the heterogeneous system template targeted in this work.

It consists of a general-purpose multi-core CPU (the host) running a separation ker-
nel that partitions platform hardware resources into high-assurance virtual machines with
strictly controlled information flows [67]. We assume one IoT service is associated with each
virtual machine. General-purpose multi-core CPU are not the most efficient in terms of
performance/watt to process compute intensive applications. To address this challenge, the
host is coupled to a programmable many-core accelerator (PMCA) composed of several tens
of simple processing elements (PEs), where critical computation kernels can be offloaded by
IoT services. The PEs considered here are simple independent RISC cores, perfectly suited
to execute both single program, multiple data (SPMD) and multiple program, multiple data
(MPMD) types of parallelism. This better copes with the characteristics of data analyt-
ics workloads, which alternate data-parallel stages to irregular, task-based parallelism (e.g.,
graph traversal). [87].

In light of the nature of accelerated applications, we model the PMCA as a massively-
parallel processor array that is shared among concurrent IoT services by means of spatial
partitioning of its compute and memory resources. Connectivity between PMCA clusters is
delivered by means of mainstream network-on-chip (NoC) technology.

The host and the PMCA physically share the main memory (DRAM). For improved data
and computation locality, they leverage internal memory hierarchies to keep most frequently
accessed data in fast, local storage. The host does so by relying on hardware-managed caches,
whereas the PMCA leverages scratchpad memory (SPM) and multi-channel, high-bandwidth
direct memory access (DMA) engines.

42

CHAPTER 3. TARGET ARCHITECTURE

High-end computing platforms are increasingly relying on Input-Output Memory Man-
agement Units (IOMMUs) to allow the host and the PMCA to exchange virtual shared data
pointers.
Without lack of generality, data sharing between the host and the PMCA relies on a sim-
plified I/O memory management unit (IOMMU) managed in software, similar to what is
proposed in [132]. However, any HW, SW or hybrid technique can be adopted at the system
level for host-to-PMCA communication.

Access to the main system DRAM is mediated by the IOMMU attached to the NoC.
Since the concern of our work is on the PMCA system only, we will not further discuss
external memory from now on.

The main idea is achieving a secure, efficient and flexible PMCA sharing among several
concurrent IoT services running on the host and offloading computations. Consequently, in
the following we only discuss the internal PMCA architecture design.

Top-Level	Interconnect

System	
DMADDR	

Memory

Mem CTRL I/O	
Peripherals

HOST	SYSTEM PMCA	SYSTEM

IOMMU

HOST	SYSTEM PMCA	SYSTEM

IO
M
M
U

TOP-LEVEL	INTERCONNECT

SYSTEM	
DMADDR	

MEMORY

MEM	CTRL I/O	
Peripherals

Figure 3.1: Target architecture: system-level view.

3.2 Accelerator cluster architecture

The block diagram of the PMCA template considered in this work is shown in Fig.3.2. It
consists of a hierarchical design, where a top-level communication system (typically a NoC,
structured as a 2D mesh) interconnects a number of clusters (also known as tiles).

Several products are nowadays available that leverage the cluster-based design paradigm,
including STHORM[87], KALRAY [2] or Parallela [4]. Modern tiled architectures include
several PEs per cluster (typically up to 16).

Cluster cores are typically equipped with private instruction caches, while for data they
share a single L1 tightly-coupled data memory (TCDM), which is software-controlled.

The TCDM is usually designed as a multi-banked SPM, explicitly managed by
the software via DMA transfers. This memory can be accessed via a fast local intercon-
nection (e.g., a crossbar, or mesh of trees), which ensures identical, fast read/write latency
to every PE (ideally 1 cycle).

The L2 memory is implemented here as a shared software-controlled scratchpad memory
(SPM). In addition, we assume the PMCA has one or multiple I/O ports, that can be used

43

CHAPTER 3. TARGET ARCHITECTURE

by the system DMA to access internal L2 banks for data/code transfers from/to the main
memory. Without lack of generality, we assume a single I/O port located in the bottom-right
corner of the 2D mesh.

In our work, we focus on managing the PMCA sharing (i.e., resource multiplexing) among
the several host-based IoT services offloading computation kernels.

More details about internal PMCA memory hierarchy design, precisely L2 memory or-
ganization, will be discussed in the following section.

Figure 3.2: PMCA architecture, with a zoom into the Cluster architecture. Distributed multi-
banked L2 not shown.

3.3 Memory Architecture

The PMCA memory system is organized as a partitioned global address space (PGAS), thus
each core in the system can explicitly address every memory segment, from local L1 TCDM
to the distributed L2 banks. This has demonstrated realizable performance and productivity
potential for large parallel computing systems with distributed memory architectures.

The L2 memory is implemented here as a shared SPM. A common design choice is
distributed (multi-banked) L2 shared memory, with each NoC router hosting a L2 bank.

3.4 Elastic accelerator sharing

If multiple IoT services, from different providers, running on the host require simultaneously
the use of the PMCA, arbitration policies need to be in place to guarantee resource sharing.
Time-Division Multiplexing (TDM) is the primary option to share a PMCA. TDM can be

44

CHAPTER 3. TARGET ARCHITECTURE

implemented at a fine granularity by executing each offloaded kernel sequentially for a certain
time slot.

Recent high-end GPGPUs are increasingly supporting context switching in hardware,
particularly to implement GPU virtualization. The costs associated with this type of hard-
ware support, however, are very high [132] and it is questionable whether they will ever be
affordable in the context of Fog nodes.

Above all, accelerator sharing via fine-grained TDM assumes that the offloaded applica-
tions always contain sufficient parallelism to effectively utilize the whole manycore.

This is not necessarily true for IoT applications, where the data sets are usually smaller
than in scientific computing. For instance, through the GEM5 simulation of a 9-cluster
system with 8 cores per cluser, we empirically verified that under ideal memory and inter-
connection (each load/store is handled in 1 processor cycle), the GaussianBlur, rBrief, and
FAST image processing applications emphasize a plateau in the speedup already beyond 6
clusters, and that only one benchmark (ROD) presents a speedup very close to the ideal
case.

These results suggest that a better use of many-core accelerators at the Edge might
be that of allowing multiple offloaded kernels to co-exist at a given time, namely to adopt
space-division multiplexing (SDM) policies. We assume each service is associated with a
spatial partition of neighboring computing clusters, and that a corresponding partition of
L2 memory banks topologically matches the associated compute partition (Figure 3.3(a)).

When we couple this sharing model with a NoC routing mechanism capable of constrain-
ing routes within the spatial extension of the compute and memory partitions [128], the
outcome is the lack of interference between L2 traffic in nearby partitions, and the delivery
of hardware-supported secure-grade isolation.

Figure 3.3: Distributed multi-banked L2 architecture with partitioning at work in two consecutive
partition configurations (a) and (b). (c) Network packet route invading a neighboring partition on
the way to destination.

As we explained in previous chapters, our work unlocks the exploitation of the resource
elasticity concept at the partition level. In practice, compute and memory partitions are
allowed to change in size, shape and location over time, which we refer to as elastic parti-
tioning. The latter is required whenever the IoT service executed within the partition asks

45

CHAPTER 3. TARGET ARCHITECTURE

for more or less resources to reflect its dynamic workload (e.g., change of execution phase,
variability of input data, data-dependent computation). Another scenario is the one where
IoT services come and go, since they are migrated to the Cloud, or vice versa, by the Service
Supervisor. As an example, Figure 3.3(a) and Figure 3.3(b) represent a possible evolution
over time of the partitioning pattern, where a partition includes computing tiles and L2
memory banks. An IoT service is migrated in order to obtain a better allocation or adapting
the mapping of the applications to the imposed constraints (e.g., performance requirements,
resource availability) [119].
Without lack of generality, in this plot we assume the interleaving of memory locations across
the L2 banks of partitions, so to reduce memory congestion.

3.4.1 Inter-partition interference

A spatially-multiplexed array fabric of computing tiles is still sensitive to inter-partition
interference when irregular partition shapes are allowed, such as in the partitioning pattern
in Fig.3.3(c). If the network uses YX routing, packets of the L-shaped A partition would
invade the links of partition C.

There are three fundamental ways of coping with this problem:

• The irregularity of the partition shape could be limited by construction, for instance
enabling only squared or rectangular shapes. In this case, if the NoC uses minimal-
path routing, all routing paths would be contained into the spatial extension of the
partition, thus yielding communication isolation. This is the assumption of most previ-
ous work in the open literature about mapping of workload onto manycore processors.
They often target rectangles or squares [68]. In the most flexible case, they target
near-convex partition shapes [54]. This design choice has subtle implications. In some
cases, this leads to the discretization of resource requests, or to major changes of the
partition shape even when small increments or decrements of resources are requested,
which negatively affects the reconfiguration overhead. In other cases, the allocation
of highly asymmetric rectangular shapes leads to inefficient intra-partition communi-
cations, for instance between tasks allocated to cores placed at the opposite extreme
of the elongated shape. This effect can be nonetheless controlled by suitable mapping
policies of tasks to the cores of a partition.

• Irregularity of partition shapes could be accepted as a way to increase the grid utiliza-
tion, or to allow fine-grained resource reallocations without major impacts over service
continuity (i.e., over the reconfiguration overhead). The challenge for this scenario
is associated with the routing mechanism. In fact, routing tables should be repro-
grammed at each reconfiguration to constrain the routing paths for intra-partition
communications within the partition space, thus avoiding interference between neigh-
boring partitions. This approach is the most flexible one, however it relies on compo-
nents (i.e., the routing tables) that exhibit significant latency, area and power over-

46

CHAPTER 3. TARGET ARCHITECTURE

head, poor scalability and large reconfiguration overhead [113]. Recently, more scalable
and lightweight routing mechanisms have been proposed, such as LBDR [113], which
however come with flexibility limitations. LBDR can natively route partitions where
minimal-path routing is feasible (with respect to the network as a whole). Extensions
have been proposed to extend the flexibility to more irregular shapes through the use
of pre-programmed deroute information or by even moving from wormhole switching
to virtual cut-through switching. Unfortunately, such deroute information cannot be
easily computed online for newly established partition shapes. [19]. Whatever the rout-
ing mechanism (provided it exhibits some degree of reconfigurability), an unpleasant
characteristic of this approach consists of the need to work out differentiated routing
functions on a per-partition basis.

• Another way to allow partition irregularity consists of using a global and unmodified
routing function for the network as a whole, and of inferring partition boundaries on
top of it. This would allow to use more scalable routing mechanisms than routing
tables or even than LBDR, such as algorithmic routing [139], due to the removal of
the reconfigurability requirement. Unfortunately, there are two major drawbacks of
this approach. First, some support for reconfiguration needs to be set up just at the
same, since at least the partition boundaries should be reprogrammed into the routing
mechanism. Thus, we again need for at least LBDR, or table-based routing. Second,
some partition shapes may not be compatible with the underlying routing algorithm,
since specific routing restrictions may prevent any kind of communications between
neighboring chunks of the partition, thus making the partition as a whole unroutable.

This problem will be addressed more in detail in Chapter 5. However, we anticipate that
our approach consists of:

• using a global and unmodified routing function for the network as a whole;

• implementing the routing function through an extension of the scalable and lightweight
logic-based distributed routing (LBDR) mechanism.

• turning unroutable partition shapes for the routing algorithm at hand into routable
ones through an LBDR extension that selectively and safely ignores redundant routing
restrictions for the partition shape at hand.

• accepting a reasonable restriction of the legal partition shapes, which is the trade-off
to benefit from the advantages of our approach: fast and scalable routing computation
and fast reconfiguration of the partitioning pattern.

3.5 Dual NoC architecture

Interference between running partitions needs to be avoided not only between intra-partition
traffic flows, but also when accessing memory controller ports. Therefore, we suggest to com-

47

CHAPTER 3. TARGET ARCHITECTURE

Spatial-Division Multiplexing

Time-Division Multiplexing

Memory controller
Gateway

Memory
controller
Gateway

Fabric
controller

Cluster

Figure 3.4: Dual NoC structure supporting isolation in time and space.

plement spatial-division multiplexing for intra-partition communications with the temporal
isolation of non-local traffic to/from the memory controllers, which would otherwise break
partition boundaries and invade nearby partitions.

More specifically, our solution envisions a dual NoC structure (Fig.3.4), in which intra-
partition traffic goes through an SDM-enabled NoC, and memory controller traffic goes
through a low-latency dual TDM NoC. This thesis will contribute a TDM solution that
lends itself to the dynamic reconfiguration of the number of time slots based on the number
of running partitions at any given point in time. This solution will be highlighted in Chapter
4.

3.6 Conclusions

In this chapter, we described the target architecture primarily addressed by this work, and
detailed the compute, memory and interconnection components. In particular, the presented
architecture targets the distinctive challenges of emerging multi-tenant Fog node platforms.
The architecture targets a more ambitious scenario of "resource-elastic multi-tenancy", and
comes with dynamic reconfiguration mechanisms supported in the interconnection network
capable of flexible and secure partitioning of compute and memory resources among the
consolidated IoT services.

48

Chapter 4

A Low-Latency and Flexible TDM NoC

This chapter is organized as follow: We start by an introductory section that presents the
motivation of this work and the main idea of our proposal. Then, we detail our approach and
its distinctive features. Finally, we analyze and explain the experimental results. This work
stems from a joint collaboration with Universidad Politecnica de Valencia (Spain), especially
with Miguel Gorgues Alonso and Prof. Josè Flich.

4.1 Introduction

In the Edge computing domain, it is often found that executing multiple applications con-
currently and dividing hardware threads among them provides greater efficiency rather than
time-slicing single applications with large thread counts [49, 148]. As anticipated in the
previous chapter, this is also the assumption of this thesis on the usage model of public
computing infrastructures offering Cloud-like pay-per-use computing functions to service
providers, who end up sharing compute, memory and interconnect resources [97].

This sharing trend has historically motivated research on how to solve contention for ac-
cess to shared resources, not to limit the execution speedup of concurrent processes [52]. As
awareness of security issues keeps growing in the Fog computing domain [20], this contention
problem increasingly evolves into a true isolation problem, requiring a trade-off between de-
gree of isolation and performance penalty. In fact, secure-grade decoupling between running
applications requires resource allocation decisions to be to some extent independent from
application demands.

In the first chapter, we have recalled the importance of strong isolation in multi-tenant
Fog node platforms. This requirement is motivated by the need to avoid security threats,
to effectively contain faults, and to enable composability and performance predictability.
It is in fact of the utmost importance that IoT service providers can develop and verify
their applications in isolation, and can then securely run into the system without any kind
of functional and non-functional interference from other applications/services. From this
viewpoint, multi-tenant Fog nodes share many similarities with security-critical systems,
which are typically organized as a set of domains that must be kept separate subject to

49

CHAPTER 4. A LOW-LATENCY AND FLEXIBLE TDM NOC

certification requirements.

Figure 4.1: Focus of this chapter: isolation of global MC traffic.

In the presence of a parallel computing architecture, the on-chip network (NoC) is key to
delivering strong domain isolation, since many of its internal resources are shared between
packets from different domains [109]. Starting from the dual NoC architecture highlighted
in Chapter 3, in this chapter we tackle the challenge of eliminating any form of interference
in the NoC serving spatially-non-local communication flows, e.g., from spatial partitions
to the memory controller, or vice versa (Fig.4.1). We target interference removal in the
strictest sense: injection of packets from one domain/partition cannot affect the timing of
packet delivery from other domains/partitions. This way, even timing channel protection is
provided. This is also a requirement to enforce the strictest notion of platform composability,
which implies not only that worst-case timing bounds can be given for message delivery, but
also that the timing of message injection/propagation/delivery should not be affected at all
by other domains [17].

4.1.1 Goal of this work

One straightforward solution that we have mentioned in chapter 2 is to statically schedule
domains on the network over time with some form of time-division multiplexing (TDM). One
fundamental issue is that communication performance in time-multiplexed NoCs is highly
sensitive to the scheduling methodology of time slots. For use in Fog computing, this schedule
should have a twofold characteristic. On the one hand, it should target low-latency commu-
nications, since one of the main reasons for IoT service providers for using Fog computing
is the promise for low-latency responses. On the other hand, since we consider elasticity as
the key management principle for future multi-tenant Fog computing, the dynamic reconfig-
urability of the schedule (i.e., of the number of domains or of the length of assigned slots)
should be enabled from the ground up. Unfortunately, runtime reconfiguration of the generic
global schedule is hard to make fast and cost-effective. In most cases, this implies solving a
slot allocation problem in software or through hardware acceleration, and dealing with large
programming tables at switches or network interfaces [61]. In other cases, invasive hardware

50

CHAPTER 4. A LOW-LATENCY AND FLEXIBLE TDM NOC

modifications are needed to optimally support different system configurations (e.g., number
of domains) [10]. Thus, current TDM solutions are mainly well-suited for design time system
configurations, which makes their extension for runtime flexibility problematic.

The main goal of our proposal is to deliver the strong isolation property for the non-local
communications of a runtime-configurable number of domains, while optimizing the latency
of TDM communication flows across the entire configuration space. Our solution provides
a flexible architecture from the ground up, and targets high performance throughout the
configuration space.

We build on the concept of Token-based TDM, which is based on the observation of the
Channel Dependency Graph (CDG) defined by the topology and by the routing algorithm
on top of it. From the CDG, we derive the generic requirements to have all input ports
of all routers serving packets from the same domains at each time slot. This approach
allows contention between packets from the same domain, while at the same time delivering
secure-grade isolation between domains. Unlike similar works [10, 58], our scheme easily and
efficiently generalizes to an arbitrary number of domains by selectively placing propagation
stops at specific points in the NoC: this strategy preserves the strong isolation property while
delivering more scalable communication performance than previous work.

Finally, we support non-invasive runtime modifications of the system configuration through
the distribution of scheduling commands to network switches. In practice, our architecture
runs unmodified with high performance regardless both static (switch and link latency) and
dynamic (number of running domains) NoC settings.

4.2 Architecture instance

Figure 4.2 shows a tile-based multi-core architecture instance compliant with the architec-
tural template of Chapter 3. Each tile includes a core, a private L1, a distributed L2 cache
bank and a router. All elements are connected to the router. Routers from different tiles
are connected building a 2D mesh topology. Without lack of generality, our baseline router
is single cycle. More in detail, link traversal and input buffer storage are performed in
one cycle, while VC allocation (VA), switch allocation (SA) and crossbar switching (X) are
performed in another cycle. When a packet is stored in the buffer, the head information
advances and is used by the routing function to compute the requested output port. Then,
the packet uses the selected output port to allocate the output VC through VC allocation
logic. Once the packet has acquired an output VC, it tries to gain access to the output port
through switch allocation (SA). The winners of the SA (maximum one per output) traverse
the crossbar switch and the packets are forwarded through the links. Cores access main
memory by sending requests to the memory controllers (MC). Without lack of generality,
we assume 4 MCs shared by all tiles.

The architecture is partitioned into disjoint domains, mapped to a subset of contiguous
tiles (Figure 4.2). As a result, two traffic types emerge: intra-partition/domain traffic, and

51

CHAPTER 4. A LOW-LATENCY AND FLEXIBLE TDM NOC

Figure 4.2: Multi-core architecture instance with a partitioning pattern into isolated spatial do-
mains.

traffic from/to memory controllers and I/O ports breaking partition boundaries. This work
targets the temporal isolation of the latter through a dedicated TDM NoC.

Like most scheduled TDM NoCs, the router provides a set of VCs (Figure 4.3) for each
domain, so that flits of unscheduled domains in a given time slot or ungranted flits from
the scheduled domain can be stored [10]. There are relevant buffer-optimized exceptions
for ultra-low area realizations of TDM NoCs [104], however they trade performance for
complexity, and may not be well-suited for the latency-critical Fog computing domain.

Packet routing is performed via logic-based distributed routing (LBDR) [120], which
consists of a combinational logic at each input port. LBDR accounts for forbidden turns by
the routing algorithm and for topology boundaries, coded in a configuration register. We
assume deadlock-free deterministic routing, so that the channel dependency graph (CDG)
can be assumed to be acyclic.

4.3 Baseline TDM NoCs

The reference solution to avoid any kind of domain interference consists of partitioning the
virtual channels among domains and time-multiplexing the physical channels and crossbars
sequentially among the different domains such that they are only allowed to propagate pack-
ets from different domains on consecutive time slots. This global TDM scheme is illustrated
in Figure 4.4 (left), where the whole NoC is scheduled for moving packets of one domain at
a given time slot.

52

CHAPTER 4. A LOW-LATENCY AND FLEXIBLE TDM NOC

Figure 4.3: Partitioning of virtual channel buffers among D domains, with m buffers for each
domain, at a generic input port of a NoC switch.

Figure 4.4: (left) Global TDM schedule. (right) Local TDM schedules, for which a spatio-temporal
correlation is researched in this Chapter.

This schedule ensures that latency and throughput of each domain are completely inde-
pendent of the other domain’s load, and is the baseline schedule used in the experimental
results for comparison. However, it is heavily sub-optimal and non-scalable. In fact, packets
wait as many time slots as the number of concurrent domains minus one at each hop. The
performance penalty grows with the distance of the receiver end node. To cope with this
problem, we revert to local schedules such as those illustrated in Figure 4.4(right), which give
rise to waves of propagating domains. For instance, when a packet moves from one switch
to another during the time slot of its domain, it could find again a useful time slot in the
receiver switch and keep moving. The problem consists of defining such waves, that is the
spatio-temporal correlation of local schedules, in such a way that communication latency
is minimized. We tackle this challenge by leveraging the knowledge of the CDG, as later
explained.

The proposed TDM architecture could be tailored also to more resource-constrained
platforms than the one presented in Chapter 3. In practice, it works also for unified NoC
architectures where a single NoC is used to serve both intra-partition and memory controller
and I/O traffic. Should this be the case, the awareness of spatial partitions would suggest
a straightforward extension to baseline TDM, where intra-partition traffic would be enabled
concurrently. For this, a TDM schedule could be designed where all domains/partitions
would transmit local traffic during the same time slot, while a different time slot would be
available for each domain to send or receive packets to/from memory controllers and I/O. In

53

CHAPTER 4. A LOW-LATENCY AND FLEXIBLE TDM NOC

fact, while strong isolation of global traffic (to/from MCs and I/O) would be delivered by the
TDMmechanism and its optimized schedule, local traffic would be easily kept non-interfering
by exploiting its spatial locality. This could be achieved in two ways:

• By defining rectangular or squared partition shapes together with shortest-path routing
algorithms, so that packet routes stay within the spatial extension of partitions by
construction.

• By using topology-agnostic routing algorithms on top of irregular partition shapes, yet
enforcing that packets will never cross their boundaries. This solution, with its pros
and cons, has already been discussed in Chapter 3.

In the experimental results, also the unified partition-aware schedule will be used for the
sake of comparison with our approach, when used in tandem with regular partition shapes
(e.g., see Figure 4.2. Therefore, we will assume the non-interference of intra-partition traffic
by construction.

4.4 CDG-driven Strong Isolation

Our approach is to associate time slots with partitions/domains, and to change the phase
of their oscillations to cut down on network latency based on the observation of the CDG,
while preserving the strong isolation property.

4.4.1 Router-Level Strong Isolation

Token-Based TDM enforces non-interference between traffic from different partitions to/from
the MCs and the I/O ports. Even cycle-level variations are prevented in order to avoid timing
channel attacks.

To achieve such property, the network relies on a token propagation scheme. Tokens
contain scheduling commands to local router-level domain schedulers. For this purpose,
tokens carry a domain identifier (DI), which identifies the domain whose packets can be
forwarded from a specific router input upon arrival of the token. In order to deliver strong
isolation between domains, we need to synchronize the timing of token propagation throughout
the network in such a way that every router gets homogeneous DIs at each input port on every
cycle. The configuration of tokens at cycle "t" in Fig. 4.6 is an example of such synchronized
token dispatch. This means the router will arbitrate and forward messages belonging to the
same domain/partition, and messages from different domains will never compete. Tokens
can be built with additional switch-to-switch wires, or be carried by special control packets.
The former solution is adopted in this work.

54

CHAPTER 4. A LOW-LATENCY AND FLEXIBLE TDM NOC

4.4.2 Synchronized Token Propagation

The basic idea is to inject and propagate as many tokens as running domains, each with its
own DI. All tokens are triggered back-to-back in sequence from a single node and propagated
through the NoC following the CDG. In our initial implementation, at each NoC cycle a new
token is injected and a token for the same domain is injected again after D cycles (where D
is the number of domains). Tokens are received in sequence at each switch input port, and
instruct the scheduler to serve packets belonging to domain DI from that port.

Figure 4.5: Network-level token propagation, with annotated latency, in the order of the CDG
with periodic SR routing (dictating the position of routing restrictions) and single-cycle routers and
links. Routing restrictions represent forbidden turns by the routing algorithm at hand for the sake
of deadlock-free routing.

As mentioned, tokens traverse the NoC (router ports and links) following the CDG.
Therefore, whether a router receives tokens with the same identifier on all its input ports
on the same cycle or not, depends on the nominal router and link latencies and on the
dependencies set by the CDG (i.e., the routing algorithm). Concerning the former, we assume
single-cycle routers and links in a 2D-mesh topology. Concerning the latter, without lack of
generality we assume the Segment-based Routing algorithm (SR) from [21]. Following the
analysis in [21], we infer segments in the 2D-mesh in such a way that bidirectional routing
restrictions (i.e., forbidden turns by the routing algorithm for the sake of deadlock freedom)
can be placed with a periodic regularity (see diagonal arrows in Figure 4.5), since this pattern
has showed promising performance results. With the above assumptions, tokens would be
triggered from the bottom right corner, and would be propagated throughout the CDG as
illustrated in Figure 4.5. Numbers in the figure indicate token propagation latencies since
initial injection time. Clearly, there are two token propagation phases, a scroll-up one (left)
and a scroll-down one (right), which occur one after the other. Their combined effect is the
traversal of all router ports and links just once (since the CDG is acyclic), in the order of
the CDG.

Focusing on a single router, tokens with the same DI will reach its input ports at different
timestamps. Let us define relative latencies as the time period elapsed between any two

55

CHAPTER 4. A LOW-LATENCY AND FLEXIBLE TDM NOC

Figure 4.6: Perfect scheduling for minimum latency in a 2-domain scenario.

Figure 4.7: Generic relative delays for the arrival of tokens at the different input ports of a switch.
The arrival order and the relative delays depend on the topology of the channel dependency graph.

consecutive such timestamps (Fig. 4.7). Router-level operation with strong domain isolation
requires that the result of the modulo operation between any of these relative latencies and
the number of domains is always 0:
∀(y, x) ∈ A→ (ATy − ATx) mod D = 0, where ATy > ATx.
Where A is the set of router input ports, D the number of running domains, and ATi

the arrival time of same-DI tokens at input port i. In fact, as we inject the same domain
identifier token into the network everyD cycles, a token with the same identifier must reach a
specified port everyD cycles, or multiples thereof. Therefore, if the previous condition is met,
at regime all the router input ports will receive tokens with the same domain identifier exactly
at the same time, and can thus work in strong isolation mode. The number of domains Dideal

that enables this operating condition is the Maximum Common Divisor (MCD) of all relative
latencies between consecutive pairs of arrival times (in increasing order). For instance, if the
three relative latencies of a 4-ported router (excluding the local port) are 4, 32 and 8 cycles,
then strong isolation is ideally delivered with 4 domains.

To extend this property to the whole network, we first calculate the maximum number
of domains for every router as the MCD illustrated above (if any). If such an MCD can
be computed for each router, then the topology, coupled with the target routing algorithm,
supports strong isolation of domains. In this case, the MCD of all router-level computed
domains is the ideal number of domains which delivers strong isolation for the network as a
whole. In the 2D mesh example in Fig.4.5, strong isolation is achieved with 4 domains.

56

CHAPTER 4. A LOW-LATENCY AND FLEXIBLE TDM NOC

As a shortcut, the ideal number of domains for strong isolation can be directly determined
by the smallest relative latency inside the network, which corresponds to the latency Dideal =

SCL of the smallest cyclic path spanned by a token in the network to reach two different
ports of the same router. For instance, SCL in Fig.4.5 amounts to 4 cycles.

Clearly, SCL depends on router and link latencies, and is equal to: SCL = (R − 2) ∗
(P +L) where R is the number of switches in the smallest cycle, P is the router latency and
L is the link latency.

When applied to 2D-meshes and periodic SR routing, a relevant benefit of this theory is
that the composition of strongly-isolated router-level operations at network level through the
CDG dependencies gives rise to a Perfect Schedule, which consists of the onset of unstopped
propagating waves of naturally synchronized same-DI tokens throughout the network (see
Fig.4.6), guaranteeing minimum-latency operation of the NoC1 and matching the latency-
sensitive nature of Fog nodes.

Figure 4.8 shows the token propagation flow over the network at regime, which is estab-
lished once the first token comes back to the injecting router. Despite the 4 running domains,
each router works in strong isolation mode, and globally a perfect schedule is established.

Our CDG-based methodology generalizes the constraints for perfect scheduling identified
by the designers of PhaseNoC from the observation of local scheduling loops [10]. While
their observation is good at efficiently handling specific system configurations, with our
generalization it becomes possible to work out optimized solutions for the remaining cases
as well, as hereafter illustrated.

Figure 4.8: Token propagation flow at regime in a specific time slot across the scroll-down (left)
and scroll-up (right) links. Numbers denote the token DI served on a specific NoC resource at that
clock cycle. The assumption is to have 4 running domains.

1The property certainly holds for several different routing strategies, but evidence of this is left for future
work.

57

CHAPTER 4. A LOW-LATENCY AND FLEXIBLE TDM NOC

4.4.3 Supporting a Higher Number of Domains

In order to handle a larger number of domains than Dideal, PhaseNoC requires deep changes
in the architecture, thus proving unsuitable for runtime reconfigurability. In particular, the
pipeline depth of all routers needs to be increased, which would preserve strong isolation and
perfect scheduling. As we will see in the experimental results, for some configurations this
leads to suboptimal performance. Alternatively, the NoC can be split into communicating
subnetworks, similar to SurfNoC. In this case, the strong isolation property is lost (i.e.,
domains can affect timing of packet propagation in other domains), unless area-expensive
input speedup is implemented to avoid VC contention at crossbar inputs. Our CDG-inspired
approach leads to more flexible and less invasive solutions, which provide better latency
across the configuration space.

(a) Building subnets along the critical path
of token propagation through the CDG.

(b) Selective stall placement to support 5 do-
mains with strong isolation. Only scroll-up
phase shown.

Figure 4.9: Extending the number of domains under strong isolation.

In particular, in a 2D mesh routed through periodic SR, all relative latencies are multiples
of SCL. Thus, we can split the critical path of the tokens throughout the CDG into subnets
of length SCL clock cycles (see Figure 4.9(a)). With the ideal number of domains (which
was found to be equal to SCL), all inputs to these subnets will be in the same domain at a
given time slot.

In order to support a higher number of domains D, our intuition is that only SCL

domains should be in flight at any given point in time. The remaining D − SCL domains
should be stalled. This would enable to preserve the strong isolation property, while breaking
the perfect scheduling assumption. As we will show in the experimental results, preserving
perfect scheduling at all costs may not be the best performing solution, as instead pursued by
PhaseNoC.

In order to implement this concept, we place domain propagation stalls selectively within
subnets. The constraint to be met for correct operation is to place these stalls at the same
positions within subnets (e.g., either in the first router, or in the second one). Figure 4.9(b)
shows an example of stall placements to support 5 domains. Stalls allow the network to

58

CHAPTER 4. A LOW-LATENCY AND FLEXIBLE TDM NOC

synchronously receive the same DI at all router input ports.
Depending on the target number of domains D and the ideal number of domains SCL,

the number of stalls in each subnet can be set to D−SCL, if D is larger or equal than SCL.

4.4.4 Supporting a Lower Number of Domains

If a lower number of domains than the ideal one needs to be used, then strong isolation
and perfect scheduling can be preserved provided D is an integer divider of SCL. This way
the latency of the shortest cycle spanned by tokens to bridge two consecutive ports of the
same router is a multiple of the repetition period of domain identifiers. Therefore, previous
conclusions are still valid. As an example, with ideally SCL = 12 domains in a perfect
schedule with strong isolation guarantees, the same property can be delivered with D = 2,
3, 4 and 6 domains.

With a different number of domains (e.g., 5 or 7), the same stall-based methodology can
be applied, preserving strong isolation but not perfect scheduling. The following procedure
must be used to re-align DI tokens at subnet inputs in the remaining cases where D < SCL:

1. Compute an integer n such that n×D > SCL.

2. Compute number of stalls per subnet as n×D − SCL.

3. Enforce number of stalls at the same position within each subnet.

4.4.5 Heterogeneous Allocation of Time Slots to Domains

With our methodology, it is possible to allocate a different number of time slots to each
domain. For instance, in a 3-domain scenario, the basic schedule D1, D2, D3 can be changed
into D1, D1, D2, D3, D3, D3. Strong isolation is preserved if we configure the network for
6 "equivalent" domains instead of 3. Efficiency analysis and optimization of flexible slot
allocation is left for future work.

4.4.6 Router Architecture

In a standard router withM ports, D domains and V VCs per domain, there existM×D×V
inputs and outputs VCs. However, our proposal only allows one domain to access the virtual
channel arbiters at a time, then only M × V VCs perform virtual channel allocation (VA)
at every cycle. Similarly, the M ×D × V to M switch allocator (SA) in traditional routers
is reduced in our implementation to a M × V to M allocator.

Figure 4.10 shows our Token-based TDM router architecture. For the sake of better
understanding, one input and one output port are shown, with one VC per domain. Hence,
no VA is needed for domain processing. The showed router has buffering at both input and
output ports, although input buffering only is also feasible.

59

CHAPTER 4. A LOW-LATENCY AND FLEXIBLE TDM NOC

D1

Token

Logic

ARBITER

D2

valid

data

stall D1

stall D2

IN PORT_1

IN PORT_x

valid Px

data P1

data Px

Token ID

under service

Forbidden by routing restriction

Token P1

Token PN

data Px and

 valid Px

from input

 port

Sel

REQS

Stall Px

valid D1

D2

 stall D1

downstream

 stall D2

downstream

TOKEN_OUT

LINK_OUT

OUT PORT_1

OUT PORT_x

TOKEN_OUT P1

Control

logic

mux_sel

EN1

ENx

Token

aggregation
Token Px

TOKEN_OUT P1

Number of stops

Valid

TOKEN_IN

0

EN2

LBDR

REQS

valid P1

Figure 4.10: Proposed router architecture.

The incoming token (TOKEN_IN) is used as the VC selector as it represents the do-
main buffer (VC) the incoming data flit (if any) will be stored into. The TOKEN_IN is
stored in a retiming register, so that in the next clock cycle it will indicate (and select) the ac-
tive domain within the router. Indeed, only one domain can access the routing/SA/crossbar
resources within the router.

The Token Logic (TL) block is implemented for each output port as a modular block. It
checks whether the same token DI is available at all input ports with routing dependencies
with the associated output port. If so, the logic block forwards the token DI to the SA
arbiter, and prepares an ouput token through that port with the same DI for the next
cycle (TOKEN_OUT). If not, the router is in transient state, and the logic operates as
illustrated in Section 4.4.6.

CNT(1bit) N(1bit) SET_DELAY (log SCL bits) TOKEN_ID (log Dmax + 1 bit)

Figure 4.11: Token structure.

Programmed Stops at Routers

Figure 4.11 shows the token structure. Two control bits are used to provide different infor-
mation to the router, when set. The CNT bit is used to notify the number of hops before

60

CHAPTER 4. A LOW-LATENCY AND FLEXIBLE TDM NOC

a stop, while the bit N notifies the number of domains to be configured. At bootstrap or at
reconfiguration time, two "programming" tokens are sequentially injected: the first one with
the CNT bit set and the second one with the N bit set. If both bits D and CNT are set to
zero, the token transports a regular DI. The first programming token (named token 1A) re-
ports in the field SET_DELAY a decrementing counting value from the number of routers
inside a subnet downto 0. At each hop, SET_DELAY is first decremented, then analyzed.
If its value is equal to 0, then the router may need to implement programmed stops. For
this purpose, the second programming token (named 1B) reuses the field TOKEN_ID to
carry the number of domains D to be set.

When D = SCL (where SCL is pre-programmed into an internal register), no stops are
needed. Istead, if D > SCL, the number of stops is equal to D − SCL, and is enforced
by means of a programmable shift register that delays the incoming tokens accordingly (see
upper part of Figure 4.10). Similarly, the number of stops is computed when D < SCL

based on the algorithm of the previous section.
When the SET_DELAY field is found equal to zero, the TL restores its value to the

number of switches inside a subnet, so that stops can be reprogrammed periodically through-
out the topology.

T L T L T L

T L T L

T L T L

T L T L T L

0

0

0

1A

0 0

1A

1A

1A

1A

1B

1A

1B

1B

1B

1B

1

1B
1

1

1

1

0

1

2

0

2
0

0

0

T L

1B

2

1B
T L

2

2

2

Figure 4.12: Token logic (TL) of a single router output port, featuring two input ports with
routing dependencies with it.

Handling the Transient State

Token 1A and token 1B are notified throughout the network in successive phases with a
propagation timing throughout the CDG that is similar to that of the existing OSR protocol

61

CHAPTER 4. A LOW-LATENCY AND FLEXIBLE TDM NOC

[121]. In practice, an output port receiving one of these tokens keeps it stable till all the
inputs with routing dependencies with that port get the same token. Then, the token is fired
through the output port (see first row in Figure 4.12). Propagation of token 1A is completed
when the bottom-right switch that has initiated it receives the very same token, which means
the scroll-down phase has finished. Then, token 1B is injected, which follows the very same
propagation rules (second row in Figure 4.12). When the trigger router receives 1B back,
the number of stops has been programmed, and it can start injecting "scheduling tokens"
(with associated data) with increasing DI (modulo D), for istance D1, D2, D1, D2, .. for a
2-domain scenario.

In the third row of Figure 4.12, token D1 is received, to enable processing of domain
1. However, it takes some time before it appears on both inputs. Meanwhile, the token
is dropped. When all inputs carry the synchronized token DI, then routing/SA/crossbar
traversal are performed with packets belonging to that domain, and the token is forwarded
as well.

The NoC can be inherently reprogrammed to support any number of running domains
since the adaptation is not in the architecture itself, but in the scheduling commands sent
through tokens.

In order to reconfigure the number of domains at runtime, in this thesis we assume static
reconfiguration. In practice, the network is temporarily stopped by injecting a token DI=0.
When all the network is idle (a condition that the trigger router can easily test when the
null DI is received back), then programming flits 1A and 1B for the next configuration
are injected. Please notice that strong isolation among domains is retained also during the
reconfiguration transients. More performance-efficient dynamic reconfiguration methods will
be explored in future work.

4.5 Experimental Results

We use the SystemC-based VirtualSoC virtual platform [37] to model our architecture with
RTL-equivalent accuracy. Modelled topologies include 4× 4 and 8× 8 2D-mesh.

We experimentally assess the most workload-intensive case, that is, the case where the
TDM NoC is used both for intra-partition and for memory controller traffic (i.e., a unified
NoC approach). We take it for granted that if the NoC works fine in this scenario, it can be
applied to the dual NoC scenario of Chapter 3 as well, where it has to serve only MC traffic,
thus giving it more bandwidth and lower latency.

We inject a mix of read/write transactions from the tiles to the distributed L2 banks
of a partition (intra-domain traffic). Inter-domain traffic is obtained by injecting a mix of
read/write transactions from domain tiles to memory controller nodes (MC traffic).

Several configurations of the 16-tile network are used, where it is split into a different
number of domains. We evaluate four mechanisms across a different number of running
domains, so to test the flexibility/scalability claim:

62

CHAPTER 4. A LOW-LATENCY AND FLEXIBLE TDM NOC

2 3 4 5 6 7 8
Num Domains

0

2

4

6

8

10

12

La
te

nc
y

TDM
TDM-Esp

PHASENOC
Token-based TDML

(a) Local traffic

2 3 4 5 6 7 8
Num Domains

0

10

20

30

40

La
te

nc
y

TDM
TDM-Esp

PHASENOC
Token-based TDM

(b) MC traffic

2 4 6 8 10 12 14
Num Domains

0

5

10

15

20

25

30

La
te

nc
y

TDM
TDM-Esp

PHASENOC
Token-based TDM

(c) Local traffic

2 4 6 8 10 12 14
Num Domains

0

20

40

60

80

La
te

nc
y

TDM
TDM-Esp

PHASENOC
Token-based TDM

(d) MC traffic

Figure 4.13: Zero-load traffic for 4x4 2D-mesh (a-b) and for the 8x8 2D-mesh (c-d).

1) Baseline TDM. All domains are served in consecutive order. At each time slot, both
intra- and inter-domain traffic for the associated partition is served.
2) Partition-aware TDM (TDM-esp), described in Section 4.3, where a dedicated time
slot is concurrently used for intra-partition traffic of all domains. Then, every partition has
one additional slot to transmit or receive its own MC traffic.
3) PhaseNoC [10]. For each configuration, we tune the PhaseNoC router with the proper
number of pipeline stages for perfect scheduling and strong isolation (although this would be
problematic to apply at runtime). However, in some cases PhaseNoC ends up in a suboptimal
configuration. For instance, PhaseNoC with two pipeline stages per router can support 6
fully-isolated domains in perfect schedule, but if the required number of domains is 5, one
domain would go unused. For a fair comparison, we allocate such an unused time slot to
the active domains in a round robin fashion. With PhaseNoC, both intra-domain traffic
and MC traffic are served when a domain is active. PhaseNoC also recommends network
splitting into subdomains to handle critical cases. However, we verified that in this case the
strong isolation property is lost, unless input speedup is implemented. We do not consider
this case, since it would amplify the complexity gap between PhaseNoC and our approach.
4) Token-based TDM. Our approach, which serves both inter- and intra-domain traffic
when a domain is active.

4.5.1 Zero-Load Latency

Figure 4.13(a) shows the zero-load latency results for local intra-domain uniform random
traffic. The x-axis represents the number of domains and the y-axis the zero-load latency.
PhaseNoC and Token-based TDM improve upon the baseline TDM variants. However,
our proposal improves upon PhaseNoC in scenarios where PhaseNoC’s pipeline has to be
oversized for strong isolation (5 and 7 domains). The improvement on the network latency
is 13% and 9% for 5 and 7 domains, respectively. In these scenarios, we claim "generalized
perfect scheduling" through selective placement of stalls. In scenarios where PhaseNoC
achieves perfect scheduling by increasing the switch pipeline depth (with 4, 6 and 8 domains),
our proposal provides matched performance without changing the architecture. Note that
the higher the number of domains the smaller the partition size. However, latency tends to
increase because there is a higher waiting time to pay in the network interfaces to wait for
the suitable injection time slot.

63

CHAPTER 4. A LOW-LATENCY AND FLEXIBLE TDM NOC

Figure 4.13(b) plots the zero-load latency results for MC traffic. The performance reached
and the considerations are similar to the local traffic case. Token-based TDM improves
network latency by 20% for 5 domains and by 12% for a 7-domain configuration.

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Injection Rate (%)

0

10

20

30

40

La
te

nc
y

TDM
TDM-Esp

PHASENOC
Token-based TDM

(a) 100% Local traffic

2 4 6 8 10 12 14
Injection Rate (%)

0

10

20

30

40

La
te

nc
y

TDM
TDM-Esp

PHASENOC
Token-based-TDM

(b) 100%MC traffic

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Injection Rate (%)

0

10

20

30

40

La
te

nc
y

TDM
TDM-Esp

PHASENOC
Token-based TDML

(c) 75% Local traffic

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Injection Rate (%)

0

10

20

30

40

La
te

nc
y

TDM
TDM-Esp

PHASENOC
Token-based TDM

(d) 25% MC traffic

2 4 6 8 10 12 14
Injection Rate (%)

0

10

20

30

40

La
te

nc
y

TDM
TDM-Esp

PHASENOC
Token-based TDM

(e) 100% Local traffic

2 4 6 8 10 12 14
Injection Rate (%)

0

10

20

30

40

La
te

nc
y

TDM
TDM-Esp

PHASENOC
Token-based TDM

(f) 100%MC traffic

2.5 5.0 7.5 10.0 12.5 15.0 17.5
Injection Rate (%)

0

10

20

30

40

La
te

nc
y

TDM
TDM-Esp

PHASENOC
Token-based TDM

(g) 50% Local traffic

2.5 5.0 7.5 10.0 12.5 15.0 17.5
Injection Rate (%)

0

20

40

60

80

La
te

nc
y

TDM
TDM-Esp

PHASENOC
Token-based-TDM

(h) 50% MC traffic

Figure 4.14: Uniform traffic for 5 Domains (a-b-c-d) and 7 Domains (e-f-g-h).

Figure 4.13(c) shows the zero-load latency results for local intra-domain traffic in a 64-
tile scenario. As in the 16-tile network, Token-based TDM improves upon PhaseNoC in
scenarios where the pipeline is oversized. Even the reallocation of the unused slot is not able
to compensate for this inefficiency. The improvement of Token-based TDM oscillates between
20% (5 domains) and 9% (15 domains). For MC traffic (Figure 4.13(d)), Token-Based TDM
reaches the best performance improving up to 30% the PhaseNoC network latency. For a
number of domains higher than 8, the cases where PhaseNoC gets perfect scheduling are
not shown because in those cases Token-based TDM performs the same, as we have shown
previously. Notice that, the higher the number of domains the smaller the benefit achieved
by Token-based TDM as PhaseNoC decreases its bandwidth underutilization.

4.5.2 Load Curves under Perfect Scheduling

We computed the network saturation curves for local and MC traffic under uniform random
traffic with four domains.

PhaseNoC and Token-Based TDM should deliver perfect scheduling in this context. In
fact, we found that Token-based TDM exactly matches PhaseNoC performance, validating
the following claim: Token-based TDM matches the best case for PhaseNoC, while delivering
extended flexibility and communication performance scalability, as proven next.

4.5.3 Network Performance in Challenging Configurations

Next we analyze the network load curves in those cases where perfect scheduling does not
hold. PhaseNoC increases the pipeline depth but needs to reallocate a redundant slot, while
Token-based TDM inserts stops selectively throughout the network.

64

CHAPTER 4. A LOW-LATENCY AND FLEXIBLE TDM NOC

We analyze four scenarios in a 16-node NoC: one where the whole traffic is local, another
with only MC traffic, and two scenarios with mixed traffic, one with 50% of each type of
traffic and another one with 75% of local traffic and 25% of MC traffic.

Figure 4.14(a) shows the results for local traffic for the 5-domain scenario. PhaseNoC and
Token-based TDM improve network performance of TDM. In addition, Token-based TDM
reduces network latency of PhaseNoC by 10% along the complete injection range, reaching
saturation at similar injection rates. Figure 4.14(b) plots the results for MC traffic. Similarly,
Token-based TDM outperforms PhaseNoC by up to 20% before reaching saturation. More-
over, our approach increases network capacity. With a mixed-flow scenario, Token-based
TDM reaches also the best performance. Figures 4.14(c) and 4.14(d) show results for local
and MC traffic with 75% of local traffic and 25% of MC traffic. Token-based TDM reduces
PhaseNoC latency by roughly 10% and 20% for local and MC traffic, respectively. More-
over, the customized TDM scheme (TDM-esp) has higher network latency compared with
baseline TDM. However, for MC traffic TDM-esp matches accepted traffic before reaching
saturation. This behavior occurs because for a given domain with mixed flows, TDM-esp
provides higher bandwidth than baseline TDM, as each domain has two time slots, one for
intra-domain traffic and one for inter-domain traffic (for access to memory).

Similarly, for the 7-domain scenario (Figure 4.14(e-h)), Token-based TDM reduces net-
work latency by 8% in intra-partition traffic scenario and 15% in MC traffic scenario. For
50% mixed-flow scenario (Figures 4.14(g) and 4.14(h)), Token-based TDM gets the mini-
mum network latency, improving PhaseNoC by 7% on local traffic and 12% on MC traffic.
However, as seen above, TDM-esp achieves higher throughput.

Finally, we found that results obtained for the network of 16 nodes can be directly
extrapolated to the network of 64 nodes.

The fundamental explanation for the performance speedups documented above is that
while Token-based TDM introduces a configurable number of stops for DI tokens at specific
routers, PhaseNoC spreads the latency overhead everywhere.

4.6 Wrap-up

In this chapter we explained how Token-based TDM offers a flexible TDM NoC architecture
that can support a variable number of domains beyond design time configuration, while
preserving low-latency communications. Our philosophy is not to update the switch archi-
tecture to the execution scenario, but rather to change the scheduling commands sent to the
NoC via a token-based notification mechanism. Through extensive performance benchmark-
ing against state-of-the-art PhaseNoC, we documented the capability to match PhaseNoC
when perfect scheduling can be applied, while consistently reporting better performance in
the remaining case (generalized perfect scheduling) by exploiting the properties of the CDG.
Therefore, our approach enables smooth reconfigurability while combining it with better per-
formance scalability. In future work, implementation of the routers under test into industrial

65

CHAPTER 4. A LOW-LATENCY AND FLEXIBLE TDM NOC

technology libraries will enable timing, area and power analysis.

4.7 Deployment for Fog Computing

For the sake of deployment within a Fog hardware platform, we observe that a unified
NoC approach would end up penalizing the intra-partition traffic too much. In fact, most
of the time slots would be devoted to MC traffic, and the bandwidth reserved for local
communications would be largely insufficient. Similarly, NoC sharing among several kinds
of messages would lead to a latency degradation for MC traffic, which is at odds with the
latency-critical requirements of a Fog computing environment. As a result, we anticipate the
use of our Token-Based TDM NoC as the Memory Controller dedicated NoC, as stated in
Chapter 3, in the context of a dual-NoC architecture. The companion NoC would be instead
devoted to spatial partitioning, and is addressed in the next Chapter.

66

Chapter 5

A Routing Mechanism for Flexible Space
Partitioning

This chapter motivates the use of spatial division multiplexing for the isolated execution of
consolidated IoT services. Then, a flexible and dynamically reconfigurable routing frame-
work is proposed for the on-chip interconnection network, whose effectiveness for the fast
reconfiguration of the partitioning pattern is demonstrated in the final experimental results.
This work stems from a joint collaboration with Universidad Politecnica de Valencia, and
with prof. Josè Flich in particular. We also acknowledge the seminal work of former student
Marco Balboni at UNIFE, and prof. Andrea Marongiu for the useful discussions.

5.1 Introduction

Previously, we demonstrated that Fog platforms are challenged by new design requirements,
encompassing low-overhead sharing mechanisms among IoT services, the strong isolation
of their execution environments and adaptive resource allocation to them, matching the
inherent dynamic nature of most IoT applications.

In the previous chapter, we have explained how our Token-based TDM approach satisfies
the strong isolation requirement for MC traffic, revolving around a low-latency schedule and
the capability of its dynamic reconfigurability.

In this Chapter we face the problem of spatially isolating the multiple IoT services that
will run concurrently in the PMCA. In fact, in Chapter 1 we anticipated that assigning all
parallel compute and memory resources to applications is not always reflected into congruent
execution speedups in Edge computing. Most applications exhibit a performance saturation
as the level of hardware parallelism is increased. As an example, Figure 5.2 shows the scal-
ability of several image processing kernels offloaded to a PMCA consisting of 9 clusters of
8 cores each [24]. The Y-axis shows speedup versus kernel execution on a single cluster (8
cores); the X-axis shows the number of clusters used. For this experiment, ideal memory
and interconnection are considered (i.e., each load/store is handled in 1 processor cycle),
since the only interest is in observing the scalability of the kernels themselves. As depicted

67

CHAPTER 5. A ROUTING MECHANISM FOR FLEXIBLE SPACE PARTITIONING

Figure 5.1: Focus of this Chapter: spatial isolation of compute and memory partitions.

Figure 5.2: Performance saturation with increased hardware parallelism.

in the graph, there is one benchmark (ROD) that presents a speedup very close to the ideal
case (it contains abundant embarassing parallelism). Four benchmarks (Distance, Convert,
ComputeKeypoints, DetectUniScaleResize) have an almost ideal speedup for a low numbers
of clusters but it starts to saturate for high cluster (core) counts. Three benchmarks (Gaus-
sianBlur, rBrief, FAST) emphasize a plateau in the speedup beyond 6 clusters.

When we combine these results with the observation that using the whole mesh would
result in a very high average and worst-case latency for each L2 access, the outcome is
that in the context of Fog computing a better use of manycore accelerators might be that
of allowing multiple offloaded kernels to co-exist in the PMCA at a given time, namely to
adopt space-division multiplexing (SDM) policies.

Topology-overlapped compute/memory partitions should be spatially isolated from one
another for the sake of composability, predictability and security. In particular, the on-chip

68

CHAPTER 5. A ROUTING MECHANISM FOR FLEXIBLE SPACE PARTITIONING

interconnection network plays a pivotal role to enforce such spatial isolation, in that all
possible mutual interferences can be removed through proper control of the routing paths.

The specific focus of this chapter is thus on the on-chip interconnection network of the
PMCA, which will provide hardware support to split the PMCA into strongly-isolated com-
pute and memory partitions, and for safely and efficiently reconfiguring their shapes, size
and location at runtime.

5.1.1 Which NoC routing mechanism for isolation?

The key intuition behind this work consists of identifying the fundamental role that the
routing mechanism of the NoC plays with respect to fulfilling the efficient, flexible and
secure sharing requirements of the PMCA among running services in the target Fog node.
This intuition stems from a twofold observation:

• A naive approach to spatial-division multiplexing (SDM) consists of the controlled
mapping of those tasks that belong to the same service onto nearby cores, thus forming
a partition. However, the lack of hardware-supported isolation prevents communication
packets logically pertaining to one partition from interfering with those from nearby
partitions, as already illustrated in Chapter 3 (Fig. 3.3(c)), thus raising vulnerability
concerns (e.g., denial of service attacks, formation of timing channels) and breaking
composability. This effect becomes unavoidable as partition shapes become irregular to
maximally exploit available resources and to flexibly reassign them with fine granularity
at runtime.

• Matching the context-sensitive computation requirements of services implies the run-
time evolution of the size and shape of the associated compute and memory partitions.
State-of-the-art platforms have been designed for more static scenarios, hence they are
not very efficient at the dynamic reconfiguration of resource assignments. Current rout-
ing technology for the NoC significantly contributes to this inefficiency. In fact, a global
and statically-defined routing algorithm for the network as a whole is not compatible
with a reconfigurable partitioning pattern at runtime, since the latter is equivalent to
frequent topology changes (i.e., each isolated partition can be logically viewed as a
self-contained smaller-scale topology to be routed). The most straightforward solution
of recomputing the routing function for each partition as its configuration is changed
leads to unacceptable runtime overhead.

5.1.2 Goal of this work

In order to tackle these challenges, our solution revolves around an extended logic-based
distributed routing framework capable of inferring isolated compute and memory partitions
in a cost-effective way, and of dynamically reconfiguring the shape and size of such isolated
partitions with overly limited overhead. For this purpose, a new routing logic is proposed that

69

CHAPTER 5. A ROUTING MECHANISM FOR FLEXIBLE SPACE PARTITIONING

autonomously finds suitable paths to destinations without requiring the costly modification
of the programmed routing function as partition configuration is evolved.

We named our framework Partition-Enabling Logic-Based Distributed Routing (pLBDR),
since this low-overhead routing mechanism builds upon past work on logic-based distributed
routing [120], but exhibits a distinguishing key feature to support flexible and isolated par-
titioning: it guarantees partition routability leveraging a unique, unaffected global routing
function. Thus, as the partition configuration needs to be modified at runtime, only the new
partition boundaries need to be reprogrammed in the routing mechanism (limited to just
a single 4-bit register per switch), while avoiding any routing path management overhead
in software and in hardware. For the sake of fast reconfigurability, the proposed mecha-
nism poses some restrictions to the irregularity of legal partition shapes. Nonetheless, this
is a significant step forward with respect to state-of-the-art approaches that, in the lack of
hardware-assisted isolation, prevent partition interference by restricting feasible shapes to
squares and rectangles only. Moreover, many of the infeasible partition shapes would hardly
be considered by system designers anyway, due to the network congestion they cause on
some specific links or to the large intra-partition communication latency that might affect
mapped tasks.

In the following section, we will detail the implementation of our routing mechanism.
Then, we will bolster its robustness using a mathematical proof. Finally, we will provide
a comparative study with state-of-the-art table-based routing, coupled with a topology-
agnostic routing algorithm to derive a suitable routing function for each partition shape at
hand.

5.2 Our Approach: pLBDR

In this section, we present the fundamental feasibility limitations of the LBDR routing
mechanism, for which background was provided in Chapter 2. Aware of the inherent benefits
of LBDR over routing tables, such limitations were an incentive to augment vanilla LBDR
with more flexibility. The improved routing mechanism, pLBDR, will be then elucidated
and demonstrated by a mathematical proof.

5.2.1 Enforcing Partition Boundaries

This work builds on vanilla LBDR, and thus accepts its fundamental feasibility domain: the
legal partition shapes (i.e., routable with LBDR) are those where minimal path routing with
respect to an ideal fully-connected network including the partition is feasible (see Fig.5.3).
Based on this definition, U-shaped partitions and their derivatives are not legal, and so
are partitions with holes. The reason is because they would end up routing packets from
sources to destinations located at opposite flanks of "U"-shaped regions by taking routing
paths contained within the spatial boundaries of the irregular partition for interference-free
communication. Unfortunately, such routing paths would be "minimal" (i.e., requiring the

70

CHAPTER 5. A ROUTING MECHANISM FOR FLEXIBLE SPACE PARTITIONING

minimum number of network hops) for the partition, but not for the 2D-mesh as a whole.
As a result, vanilla LBDR can not route packets across such globally non-minimal routing
paths.
In contrast, T-shapes, L-shapes and their variants are all legal ones since the number of
hops stays minimal, both locally and globally, for each routing path within the partition
boundary.
The above restriction is reasonable since it is nonetheless a significant flexibility extension
with respect to traditional approaches relying on squares and rectangles for interference free-
dom (e.g., [68]).
In any case, system designers would hardly pick up such illegal shapes, since communicat-
ing tasks placed at the opposite extremes of the partitions would end up incurring large
communication latency. At least, he would have to deal with more restrictive task mapping
constraints on the partition at hand.

Legal partition shapes Illegal partition shapes

Figure 5.3: Legal partition shapes are those where minimal-path routing is feasible.

Despite its flexibility limitations, vanilla LBDR can effectively constrain routing paths
within partitions: for this, connectivity bits can be programmed in a configuration register
per switch to model partition boundaries. If an output direction is specified as virtually non-
connected by such register, the routing logic would never select it as a productive output
port for packets.

This solution provides relevant disruptive advantages for spatial partitioning:

• First, partitioning can be implemented on top of a NoC without changing its global
routing algorithm, or without instantiating differentiated routing functions for each
partition. In fact, the algorithm is modified only when the routing restrictions are
modified, not the connectivity bits .

• Second, no additional mechanism is needed to provide freedom from deadlocks, since

71

CHAPTER 5. A ROUTING MECHANISM FOR FLEXIBLE SPACE PARTITIONING

this is delivered by the unmodified routing algorithm. Especially, no virtual channel is
needed, thus keeping the network extremely simple.

• Finally, connectivity bits can be reconfigured at runtime by a fabric controller or by
the host processor by means of the dual TDM NoC illustrated in Chapter 4.

Figure 5.4: (a) Global routing function. (b) Selective restriction masking. (c) pLBDR to flexibly
partition Manycores.

In Fig. 5.4 (a), 2 partitions are inferred by setting the connectivity bits of the border
switches either to 1 if the router is connected to a direction still within the partition, or to
0 if it is connected to a partition boundary. For example, the connectivity bits of router 5
to the north, east, south and west are 1, 0, 0 and 1 respectively.

Unfortunately, LBDR incurs a fundamental limitation to support flexible partitioning of
many-core devices: some partition shapes may turn out not to be routable although they
belong to the feasibility domain. The reason lies in a mismatch between the unmodified
global routing function and the partition shape to be inferred on top of it, as illustrated in
Fig.5.4 (b). Because of the routing restrictions at switches 14 and 15, no packet from the
south-west flank of partition 2 can reach the nodes to the north. For example, no packet
coming from router 12 can reach router 2. The opposite is also true.

The problem could be naively solved in one of the following ways:

• By forbidding partitions like this (although they belong to the feasibility domain of
LBDR), thus further restricting flexibility.

• By modifying the global routing function on-the-fly. However, previously-feasible par-
titions may turn out not to be feasible any more.

• A new routing algorithm could be recomputed for each partition, which would waste
the LBDR’s advantage over table-based routing.

72

CHAPTER 5. A ROUTING MECHANISM FOR FLEXIBLE SPACE PARTITIONING

5.2.2 pLBDR

The fundamental idea of this approach is to preserve a global and unique routing function
for the network as a whole and to infer partitions on top of it, while fully exploiting the
LBDR feasibility domain and avoiding the invalidation of running partitions. This global
routing function is presented in Fig. 5.4(a).

The basic intuition is that some routing restrictions make sense for the network as a
whole, but they uselessly limit routability at the partition-level. In particular, once partition
boundaries are set, some routing restrictions end up preventing the formation of cycles in
the channel dependency graph (i.e., deadlock) that include links and/or switches of different
partitions, or unused inter-partition links (see the cycle formed by switches 9, 10, 13 and
14 in Fig.5.4(b)). In practice, such cycles will never occur, since the cyclic dependency is
already broken by the inter-partition connectivity bits. As a result, in Fig.5.4(b)) the routing
restriction at switch 14 is useless for routing of Partition 2, while the one at switch 15 should
be enforced, since it prevents routing cycles inside the partition (e.g., switches 10, 11, 14
and 15). By masking the former, a legal and safe routing path would connect the west and
north partition flanks through switch 14. Thus, the packet will be routable from switch 12
to switch 2, and vice versa (Fig.5.4(c)).

Our proposal is thus to augment LBDR logic with the capability to recognize the useless
routing restrictions that can be ignored while preserving deadlock-free intra-partition rout-
ing. We express such an extension with the following behavioral rule that we enforce at each
switch:

IF direction x is a partition boundary THEN
at next hop in direction y ignore forbidden turn to direction x

AND
at next hop in direction z ignore forbidden turn to direction x

where
x, y, z ∈ {North, South, East,West}

and
(y, z) = (East,West) if x = North or South;

or
(y, z) = (North, South) if x = West or East;

5.2.3 Routing Strategy

We select segment-based routing (SR) [86] as the routing algorithm of choice. When used
with pLBDR, it serves as the global routing function for the network as a whole [86]. At the
end of this Chapter, it will be used with table-based routing as well to set up a state-of-the-
art solution for partition reconfiguration, and for comparison against pLBDR. In that case,
routing functions need to be custom-tailored to each partition shape individually, thus SR

73

CHAPTER 5. A ROUTING MECHANISM FOR FLEXIBLE SPACE PARTITIONING

serves as a topology-agnostic routing framework, capable of providing suitable routing paths
for arbitrary partition shapes (see Chapter 2).

With SR, the network is split into disjoint sets of interconnected switches and links called
segments. All network links and switches belong to one and only one routing segment. In
general, three kinds of segments can be defined in a generic topology:

• Initial segments are those that start and end on the same switch, thus forming a cycle
(see s1 in Fig.5.5).

• Regular segments instead start with a link, contain at least a switch, and end with a
link (see s2, s3, and s4 in Fig.5.5).

• Unitary segments consist of only one link.

Every routing segment, except for the initial segment, starts and ends on a switch already
part of a computed segment (see s2, s3, and s4 in Fig.5.5).

ROOT

D

A

B

C

s1

1
2

3 4

E

F
H

G

s2

I

s4

5

6

7

8

9

10

11

K

L

J

s3

12

13

14

15

Figure 5.5: Segmentation of an irregular topology, and placement of routing restrictions inside
segments for deadlock-free routing.

The next step consists of placing routing restrictions locally inside each segment. Since
segments are independent, then routing restrictions can be placed inside segments indepen-
dently from one another. Routing restrictions break potential dependency cycles within the
initial segment, and through all the successive segments added to it [86].

With SR on top of traditional table-based routing, implementing the baseline method-
ology in Chapter 2 for partition reconfiguration implies the following steps: (i) the runtime
computation of segments for the new partition shape, (ii) the assignment of routing restric-
tions to the segmented partition, (iii) the search for source-to-destination paths and (iv) the
derivation of updated routing tables, in addition to their reprogramming.

Since pLBDR uses a unique global routing function and infers partition boundaries on
top of it, it searches for segments on a complete 2D-mesh topology only once at design

74

CHAPTER 5. A ROUTING MECHANISM FOR FLEXIBLE SPACE PARTITIONING

time. Thus, it has no runtime software overhead for path management. An additional
advantage is that it can exploit knowledge of the baseline topology and of its properties for
optimized search. Following the analysis in [86], we infer segments in the complete 2D-mesh
by using only initial and regular segments, and opt for a partitioning pattern that places
bidirectional routing restrictions with a periodic regularity, and that has showed promising
performance results. In particular, this pattern places routing restrictions always between
any two contiguous directions of a switch, and never between two opposite ones (e.g., from
south to north or from east to west). Instead, table-based routing searches for segments inside
each partition, thus it has to undergo the compute-intensive segmentation methodology in
[86] each time a partition shape changes during the system lifetime.

REAST-NORTH = 1

cNORTH = ?

B A

cNORTH =?

Figure 5.6: Scenario considered for the deadlock-freedom and connectivity proof of pLBDR.

5.2.4 Deadlock freedom of pLBDR

In partitions where minimal path routing is feasible (with respect to the ideal 2D mesh),
pLBDR will always find a deadlock-free routing solution to connect any source-to-destination
pair within the partition.

To prove the deadlock freedom and connectivity properties, we focus on two connected
switches A and B, and assume that switch B has a routing restriction to direction y, which
is seen by switch A as Rxy = 1, where x, y ∈ {North, South, East,West}. This is pictorially
illustrated in Fig. 5.6 for x = East and y = North, but spanning x and y gives all the
possible situations in a real-life topology, given our optimized segmentation pattern in a
2D mesh. Next, we wonder whether switch A can safely ignore Rxy or not for routing
computation. We can distinguish three cases:
CASE 1: In this case we assume that connectivity bit of switch A in direction y is equal to
zero (CyA = 0), while the connectivity bit of switch B in the same direction does not matter.
In this situation we need at least a switch outside the partition to close a cycle (at least the
one connected to A in direction y), which will never happen, since no partition can invade the
others. Thus, the routing restriction can be safely ignored, and this is exactly the situation
that pLBDR captures. It is also possible to form larger cycles when the partition wraps the
unconnected node in direction y of A, but we explicitly omit partitions with holes from the
ground up. Therefore, this routing restriction should be ignored because it unnecessarily
restricts routing options to prevent a deadlock condition that will never occur. pLBDR
routing logic exactly captures this case. As a result, overwriting this routing restriction by
p-LBDR will not affect the routing since the cycle is created outside the partition.

75

CHAPTER 5. A ROUTING MECHANISM FOR FLEXIBLE SPACE PARTITIONING

CASE 2: In this case we assume that CyA = 1 in switch A and CyB = 1 in switch B. In
this situation, the switches connected in direction y of A and B belong to the partition, and
so will be their interconnecting links. As a result, the routing restriction prevents a possible
cycle inside the partition and should not be ignored. In fact, pLBDR is triggered only by
CyA = 0, and correctly accounts for this restriction.
CASE 3: In this case we assume CyA = 1 in switch A and CyB = 0 in switch B. The routing
restriction would prevent partition routing only in case there were destinations in the y − x
quadrant, which would imply a U-shaped partition or its derivatives. Hence, this can never
happen with the stated assumptions. pLBDR accounts for this restriction since CyA = 1,
but routability is not jeopardized.

5.3 Experimental Results

The first part of our experiments assesses the hardware and software overhead for establishing
configurations, while the second part performs analysis of individual legal partitions of a 2D-
mesh topology to analyze the execution efficiency of pLBDR. All results are compared to
the Table-based routing baseline solution, using SR as the partition-specific routing function
and going through the baseline reconfiguration methodology highlighted in Chapter 2.

5.3.1 Hardware Reconfiguration Cost

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Successive Parttoning Paterns

H
ar

d
w

ar
e

 R
ec

o
n

f
gu

ra
t

o
n

 C
o

st
 (f

it
s)

pLBDR (128 cycles)

Figure 5.7: Hardware reconfiguration overhead for 17 partitioning patterns, with the partition-
level breakdown for each pattern.

We consider 17 partitioning patterns of an 8x8 2D-mesh topology. Each pattern is de-
rived from the previous one by randomly reshaping existing partitions, and/or activating or

76

CHAPTER 5. A ROUTING MECHANISM FOR FLEXIBLE SPACE PARTITIONING

deactivating new/old partitions. Scenarios are manually hand-crafted to target high context
sensitivity and fine-grained resource remodulation in future shared Fog nodes (e.g., the num-
ber of partitions ranges from 2 to 11). The hardware configuration cost is reported in Fig.5.7,
in terms of the number of flits1 it takes to reprogram routing tables or pLBDR configura-
tion registers through the TDM NoC (cumulative and breakdown for each partition) when
transitioning from one scenario to the next. The overhead for packet headers is considered.
For table-based routing, in a partition of N clusters only N − 1 entries are updated in each
routing table, and only in case those entries differ from the old configuration by at least one
bit. As a result, programming packets for each network interface have variable lengths. For
pLBDR, connectivity bits are always re-programmed, hence 1 programming packet is sent
to each switch.

The hardware overhead for table-based reconfiguration ranges from 500 to 4000 flits
depending on the partitioning pattern, with an average value of 1476 flits. For comparison,
pLBDR requires 128 flits only, which is 74% lower in the worst case, and 96.8% lower in the
best case.

5.3.2 Algorithm Recomputation Overhead

Figure 5.8: Path management overhead (in software) for table-based routing. For comparison,
the design-time software overhead of pLBDR is reported (no runtime overhead though).

Table-based routing needs to recompute segments, routing restrictions and source-to-
destination paths for each partition that changes. This computation time was quantified on
a 2-core Intel(R) Core(TM) i7-7500U CPU clocked at 2.70GHz and 2.90 GHz, respectively.

Fig.5.8 reports the cumulative software overhead at runtime for table-based reconfigu-
ration across scenarios. It ranges from 5 to 7ms, with an average of 5.8ms. Segmentation

1Each configuration packet is split into 32-bit words, called flits, which are individually transmitted.
Hence, the number of flits dictates packet length.

77

CHAPTER 5. A ROUTING MECHANISM FOR FLEXIBLE SPACE PARTITIONING

and routing restriction assignment account on average only for 26.5% of the total software
overhead, while most of the time is spent for the computation of routing paths, and to de-
rive the new routing table configuration. pLBDR as no runtime overhead in software, but
only a 1-shot design-time overhead of 1.2ms to find segments and routing restrictions on the
network as a whole. This value is much lower than the runtime overhead for table-based
routing, since the procedure is invoked only once, and skips the most expensive tasks (i.e.,
path search, table update).

5.3.3 Execution Efficiency

We now want to verify whether pLBDR leads to sub-optimal routing paths. Thus, we
consider a 4x4 2D-Mesh topology, and all the "legal" partition shapes with a number of
clusters N ranging from 1 to 12. On the clusters of each of the 20 partition shapes under test,
we run the FAST image processing benchmark by means of the cycle-accurate VirtualSoC
simulation framework [37]. The benchmark has been parallelized into a scalable number
of clusters. With pLBDR, routing restrictions (i.e., the routing algorithm) are those of
the global network, while with table-based routing, the routing function is computed for
each partition shape individually. To search for paths to fill up routing tables, we test two
approaches: a baseline one that randomly selects from available shortest paths to destination,
and an optimized one that selects the path that minimizes link congestion.

Results are illustrated in Fig.5.9. The execution time with table-based routing is slightly
higher than our approach in some cases. The overhead is erased by the optimized path
search strategy. Overall, the key take-away is that the routing paths selected by pLBDR do
not affect execution efficiency.

Figure 5.9: Execution efficiency of FAST.

78

CHAPTER 5. A ROUTING MECHANISM FOR FLEXIBLE SPACE PARTITIONING

5.4 Conclusions

In this chapter, we presented an interconnect-centric approach to flexible partitioning and
isolation of many-core accelerators for future Fog computing nodes. The new requirements
of strong isolation, efficient sharing and dynamic reconfiguration raise a routing control
challenge in hardware that our work tackles through pLBDR. For a synthetic scenario of
flexible repartitioning, the hardware reconfiguration overhead is from 74% to 97% lower,
while no software overhead is incurred at runtime. In future work, pLBDR extensions will
be targeted to alleviate partition shape limitations and find out whether such relaxation
truly makes sense from the viewpoint of some non-functional system metric (e.g., resource
utilization, fragmentation, etc.).

79

Chapter 6

A Partition Manager for Elastic Fog
Nodes

In the wake of the hardware support for secure and flexible partitioning of a multi-tenant
Fog node, a resource manager will be in charge of the lining up of the elastic partitions.
The implementation of this resource manager will be the focus of this chapter. This work
is a joint collaboration with two other instructors at university of Ferrara: Prof. Nonato
Maddalena and Prof. Mauro Tortonesi.

6.1 Introduction

Previous Chapters have developed hardware support for the elastic partitioning of parallel
Fog node architectures, revolving around isolation capabilities in the on-chip interconnection
network in time and space, and around the efficient dynamic reconfigurability of the parti-
tioning pattern. The support for isolated execution and resource elasticity well matches the
public Fog scenario and the fluctuating workload of emerging IoT applications for it [15], in-
cluding mobility-as-a-service [35], recognition and perception-based mobile applications (e.g.,
image recognition) [42], multiplayer online gaming [146], or edge network content caching
for mobile streaming [80]. By combining awareness of dynamic application workloads with
resource allocation elasticity, the same (limited) pool of Fog resources could be dynamically
reassigned to running services to match their differentiated usage peaks or business models
[88].

However, the developed hardware support needs to be complemented by a suitable re-
source management framework capable of mastering the tuning knobs of the "dynamic"
hardware. Unfortunately, dynamic management of elastically-allocated Fog resources is a
challenging problem due to the large space of system states and available control actions, and
to the need for fast decision-making and small memory overhead to store the control policies
[41]. To some extent, Fog managers can take advantage of prior art on the consolidation
of diverse workloads with mixed-criticalities and/or varying resource demands on scalable
chip-scale manycore architectures [66, 71].

80

CHAPTER 6. A PARTITION MANAGER FOR ELASTIC FOG NODES

There is a vast literature on dynamically adapting application mapping (i.e., partitions
configuration) to optimize the system state in the presence of applications that frequently
come and go or with fluctuating workloads [66, 119]. However, existing approaches to re-
source elasticity are not entirely suitable for Fog computing for one or more of the following
reasons.
First, most state-of-the-art mapping frameworks target the optimality of the resulting sys-
tem state following a reconfiguration event, or trade such optimality for online computation
time, while not devoting the same effort to optimizing the reconfiguration cost (e.g., the
number of needed application migrations) [102].
In a Fog computing environment, this would cause a lack of control over the service suspen-
sion time for hosted users.
Second, a tight control over the geometric shape of the space partition is not enforced, hence
potentially giving rise to subtle interference effects on the NoC that break fundamental design
and operational properties of multi-tenant Fog nodes such as composability, predictability
[16] and secure-grade isolation [51].
Third, fundamental features of future multi-tenant public Fog architectures are not modelled
when formulating the resource management problem, including:

• The performance-sensitivity of partition placement on the computation grid. Response
latency or real-time requirements of IoT services impose a service-level agreement with
the public Fog provider bounding the maximum average distance of partition tiles
from the memory controller(s), or associating temporary exceptions with downgrade
adjustments of the pricing scheme.

• The strict prioritization of consolidated IoT services. Fog nodes are capacity-constrained
and cost-sensitive equipment; hence service priorities should be defined for partition
management not only to define the next system state accordingly (e.g., to correlate
memory controller proximity to latency criticality), but also to distribute the over-
head for system reconfiguration (e.g., it is important to determine not only how many
applications to remap, but also which ones, depending on their attitude to migrate).

• The "everything-as-a-service" provisioning concept of Fog computing. Optimizing the
system state and its evolution over time does not consist of maximizing an aggregate
performance metric of consolidated applications, but should rather aim at preserving
the correlation of costs and benefits to the priorities of affected services. For instance,
lightweight applications should be more frequently selected for migration, while appli-
cations with millisecond-range target response latencies should constantly be placed
close to the memory controller.

6.1.1 Goal of this work

This thesis tackles the challenge of mastering resource-elastic spatial partitions at runtime
on a scalable many-core architecture for Fog computing, while taking the distinctive features

81

CHAPTER 6. A PARTITION MANAGER FOR ELASTIC FOG NODES

of emerging public Fog environments into account.
The proposed partition manager fulfils the virtual resource reassignments performed by

high-level implementation-agnostic service managers by rearranging the physical partition
shapes on the actual computation grid in a non-overlapping way.
Our approach strives to pursue the correlation of partition proximity to the memory con-
troller(s) with the performance criticality of the associated IoT service, while minimizing the
perturbation of the system state, which is inherently related with the preservation of user
experience.

This work contributes to break existing barriers in the open literature between research
domains that should collaborate towards a complete, hierarchical resource management
framework for the Edge-Fog-Cloud continuum. On the one hand, we complement exist-
ing resource management frameworks for networks of Fog nodes or for integrated Fog-Cloud
systems [59] with another level of hierarchy locally managing the multi-tenant nature of
individual public Fog nodes. On the other hand, we bring dynamic resource management of
chip-scale many-core systems into the new ground of Fog computing, with its own features,
constraints and goals.

This last milestone of the thesis revolves around a well-known prior provisioning and
prompt allocation scheme of Fog resources [84]. The latter are reserved for future IoT use
based on accurate traffic predictions, so that when actual IoT requests arrive, it is assumed
the resources are available and immediate processing takes place. This paradigm already
finds wide applicability in some application domains where the workload can be easily pre-
dicted (e.g., online gaming [146] or smart cities [103]), but is gaining further momentum as
learning algorithms which are increasingly applied to learn complex prediction models [75].

This chapter is organized as follow: First we give a global view of the holistic (hardware
and software) Management Framework for IoT devices. Then, we expound the different
parts of our innovative optimization problem for elastic partitioning of Fog platforms un-
der dynamic operational behavior. Finally, we prove the efficiency of the proposed resource
management framework in managing elastic partitions while taking into account their re-
quirements and specifications.

6.2 Analysis of real workload characteristics

Designing resource management frameworks for the Fog has to face a difficult challenge:
we need to understand the workload variability rate of Fog applications, and to be aware
of their QoS requirements. This is non-trivial, since no large-scale general-purpose Fog
computing platform is currently available. As a result, few developers will spend significant
time building applications which exploit the capabilities of Fog computing platforms unless
these platforms already actually exist.

A recent report on the taxonomy and the requirements of Fog computing applications
has delivered a fundamental milestone to break this vicious cycle [15]. The report carefully

82

CHAPTER 6. A PARTITION MANAGER FOR ELASTIC FOG NODES

selected 30 actual or proposed applications that cover a wide range of usage types for future
Fog computing platforms. As expected, it turns out that support for dynamic workloads is
one of the specific features that Fog platforms should have to support specific categories of
applications. More in detail, the workload produced by the reference applications can be
categorized into two general categories and few sub-categories based on the characteristics
of such workloads:

• Stable: the workload is almost static.

• Dynamic: the workload varies according to some criterion:

– Location: the workload varies according to the location of the node.

– Time: the workload varies as a function of time.

– User: the workload varies according to the load generated by users.

Table 6.1: Workload characteristics of emerging Fog applications.
Category Sub category Applications Total

Stable

APP01, APP02, APP03,
APP04, APP06, APP07,
APP08, APP10, APP12,
APP14, APP15, APP16,
APP17, APP18, APP19,
APP20, APP21, APP22,
APP23, APP24, APP25
APP26, APP28

23

Dynamic
Location APP05, APP09, APP11 3
Time APP13 1
User APP27, APP29, APP30 3

Table 6.1 classifies emerging Fog applications, that cover a wide range of usage types for
future Fog computing platforms, according to their type of workload. We see that the work-
load for many fog applications is currently stable, due to the static resource management
nature of current hardware/software architectures they are designed for. In these scenarios,
sensors collect data periodically and send them to fog application for processing. For ex-
ample, APP04 [6] uses surveillance cameras to take pictures at periodic intervals and sends
them to the Fog for analysis.
These types of applications are present in different sectors such as transportation, health,
entertainment, smart cities, smart factories, smart buildings, and smart grid.
This does not mean that the workload of such applications will continue to be stable once
dynamic reconfiguration capabilities of the underlying hardware platforms will be exposed
to software developers. For instance, the scientific literature is already extensively reporting
several IoT frameworks where in-sensor intelligence can pre-process data so that the most
relevant ones are sent to the next computing layer (e.g., a Fog layer) for further processing.

83

CHAPTER 6. A PARTITION MANAGER FOR ELASTIC FOG NODES

Simply, the applications analyzed in [15] mostly reflect state-of-the-art COTS platforms, and
have been (or are being) developed for them.

In light of this, it is quite promising that a significant fraction of applications already
exposes a dynamic workload to platform managers. In fact, seven out of the surveyed appli-
cations have dynamic workloads, among which three are dynamic with respect to location,
one is dynamic with respect to time and the rest three are dynamic with respect to users.
In App09 the number of self-adaptive added stations may change [8]. In App11 the number
of surrounding fog nodes with which the fog node communicates may changes [7]. Finally,
App13 collects real-time transport demand in a mobile way which makes the workload change
[35].
We believe that the awareness of workload characteristics of fog applications helps in the
design of effective and efficient management and operation of fog computing platforms. Espe-
cially for fog applications with dynamic workloads, it is necessary for the fog infrastructures
and applications to be designed and deployed in a scalable manner. Meanwhile, fog man-
agement platforms need to incorporate intelligent application placement, dynamic resource
allocation mechanisms and automated operation systems to ensure acceptable QoS is guar-
anteed.

In this thesis, we focus on user-centric applications such as APP27 [42], APP29 [146],
APP30 [80], deploying their server part in Fog platforms. Interestingly, from [15] we can
deduce that applications with dynamic workload as a function of the load generated by users
are all latency-sensitive: the primary reason for them to use Fog computing is the expected
low response latency.

For these reasons, in designing our partition management framework we targeted emerg-
ing user-centric Fog applications with latency criticalities. We are aware that data velocity
requirements are quite diverse for such applications, ranging from < 10msec, 10-100msec,
100msec-1sec, 1-10 sec, or even more [15]. As a result, we consider the strict prioritization
of latency requirements, depending on their magnitude.

Predictive models of user load for the selected class of applications reveal that workload
variability takes place at a time scale of hours (see for instance [146]). Therefore, we find
that the online elastic partition management problem can even be solved to optimality given
the dynamic behavior of these realistic applications, as long as a computing budget of a few
seconds is not exceeded.

6.3 Global Management Framework for the Fog

Fog managers can take advantage of prior art on the consolidation of diverse workloads
with mixed-criticalities and/or varying resource demands on scalable chip-scale manycore
architectures [66, 71]. The most complete approaches share the same basic intuition of
decomposing the dynamic resource management problem into two hierarchical sub-problems

84

CHAPTER 6. A PARTITION MANAGER FOR ELASTIC FOG NODES

[36, 44, 73]. This separation of concerns allows to adopt the divide and conquer approach
to resource management, and develop independently solutions at the software and at the
hardware management layers.

At the top layer, the allocation problem of platform resources to applications is formu-
lated by leveraging an abstract view of both application requests (e.g., service levels [44])
and physical resources along both spatial and temporal dimensions (e.g., virtual private ma-
chines [73], cells [36], virtual processors [44]). This way, application and machine models
are implementation-independent and have non-functional characteristics (e.g., performance,
power, reliability) that are easier to reason about. We hereafter denote this management
problem as the application-level manager. At this level, the emphasis is typically on how
much of a resource to allocate, rather than on which exact resource [76]. There is extensive
literature on this topic, which can be reused for our target elastic Fog node as well [119].

At a lower abstraction layer, virtual resource assignments should be enforced by securely
multiplexing or distributing the concrete hardware resources among services. This mapping
step of virtual resources onto physical ones gives rise to an additional dimension of the
resource management problem in both time and space, which we hereafter denote as the
partition manager. In time, a common approach consists of the proportional-fair temporal
scheduling of one or more selected processing elements [151]. In space, it is generally rec-
ognized that applications perform better when the set of tiles allocated to it are contiguous
[102], that is, when they form a spatial partition of adjacent tiles connected by reserved links
and routers of the backbone on-chip interconnection network (NoC). As anticipated in the
introduction, the partition management problem has never been specialized for a Fog plat-
form, which comes with its own distinctive challenges: secure-grade isolation (i.e., partitions
should be contiguous and non-overlapped), performance-sensitive placement of applications
on the computation grid, strict prioritization of requests, delivering resource elasticity over
time, and prioritized distribution of reconfiguration overheads. For this reason, it is the
focus of this Chapter.

The context for the work of this chapter is thus illustrated in Fig. 6.1. A hierarchical
Global Management Framework (GMF) attempts to harmonize the conflicting requests of
IoT services for the limited pool of Fog resources, while exploiting workload dynamism
for opportunistic reassignment of resources among consolidated services over time. This
framework can leverage the multi-dimensional properties of the elasticity concept, including
resource, cost and quality elasticity, although the framework as a whole goes outside the
scope of this thesis. For instance, services could be able to adapt their quality-of-service to
their assigned level of resources.

Following the analysis in previous section, GMF leverages the number of users accessing
each IoT service at any given point in time as a theoretical foundation to realize fair resource
assignment: the more the users the more the resources to be devoted to each IoT service on
the Fog node.
In particular, we consider a common resource allocation policy for Fog computing where
predictive models of the workload are used by the top-level "Application Manager" to proac-

85

CHAPTER 6. A PARTITION MANAGER FOR ELASTIC FOG NODES

Figure 6.1: Global Management Framework

tively re-negotiate resources among IoT services for the next monitoring period. The latter
has a typical duration of a few hours for the emerging user-centric dynamic-workload appli-
cations in [15]. When the actual user requests will arrive, resources will have been already
allocated, and the deployment is almost immediate. Workload projections are translated
into an actual request for more or less resources by the Application Manager, which solves
conflicts based on some prioritization criteria, while fulfilling the service-level agreements
and using an adaptive pricing scheme. During this process, preassigned virtual resources
can be revoked when the system is overloaded. What matters to us is that this virtual
resource assignment is completely placement-agnostic, since the Application Manager does
not have to deal with the concrete physical resources but only with their abstract view. At
this level, variations in resource assignment have to compensate each other, that is, a pool of
services can be assigned more resources provided such resources are currently idle or revoked
to some other services.

Upon receiving the up/down-scale requests, an underlying "Partition Manager" computes
the optimal partition map for the given assignment. In Fog nodes, this problem has an
inherent geometrical structure, in that a partitioning pattern of the system has to be changed
into a new one, where existing partitions grow, shrink or remain neutral, and where new
partitions are set up or old partitions are removed (see Fig. 6.2).

There are a number of subtle effects that should be considered during this conversion of
a resource assignment into an actual resource allocation:

• shrinking partitions could hand over resources to growing partitions that are placed

86

CHAPTER 6. A PARTITION MANAGER FOR ELASTIC FOG NODES

Figure 6.2: Evolution of the physical partitioning pattern to fulfil reassignments of virtual re-
sources.

Figure 6.3: Problems in translating virtual resource assignments into actual resource allocations.

far apart on the computation grid, thus raising the need to shift neutral partitions
in-between (Fig. 6.3). This can have unpleasant chain repercussions on such neutral
partitions, which will undergo unwanted suspensions/transformations to shift and/or
adapt their shape and position.

• enabling the actual hand-over of resources implies the choice of the neutral partitions
to be shifted. This requires that its users will undergo application migration thus
affecting quality of experience. Clearly, the amount of system perturbation during this
reconfiguration stages is an unmistakable optimization target.

• During the adjustments of the partitioning pattern, the tiles assigned to a partition
should keep an average distance from the memory controller that should be kept corre-
lated to the latency criticality of the application. Since communication to the memory
controller can take place with predictable performance through the TDM NoC, control-
ling the position of the partition on the grid enables to fulfil the latency criticality of
the application at hand. Typically, a service level agreement will define the maximum
distance that each application can afford.

• The effort of preserving the correlation of grid positioning to latency criticality through-

87

CHAPTER 6. A PARTITION MANAGER FOR ELASTIC FOG NODES

out the dynamic reconfigurations of the system depends on the pattern of increment
and decrement requests from the Application Manager, and on how they map to the
grid. Therefore, we expect a trade-off between the number of user migrations and the
preservation of such correlation.

In order to find the optimal hardware allocation, our Partition Manager implements and
solves an ILP optimization model, which will be illustrated in the following section. The
optimization problem aims at a trade-off between the applications proximity to the mem-
ory controller depending on their latency criticality and the minimization of the migration
overhead which is stimulated by the number of tiles that are migrated in order to satisfy the
demands of running or new admitted services.

Figure 6.4: Mapping of user processes to the cores of the tiles of a reserved partition.

6.4 System Architecture Refinement

In light of the realistic Fog applications considered, and of the Partition Management con-
straints, we add details to the Global Architecture of Chapter 3, which are requested by the
specification of the management framework.

First, the PMCA is spatially partitioned among IoT services. In each computing tile
of a partition, users of the partition-specific IoT service are mapped to one or more cores
(core reservation scheme). In principle, they can own a different number of cores (see Fig.
6.4). The only constraint we pose is that each user process is allocated to one tile, that is,
its applications cannot be distributed throughout several tiles. This way, only loose inter-
dependencies can be modelled among tiles in the partition management problem. There are
exceptions to this, which however do not violate the assumption. In fact, several MMOG
applications instantiate virtual machines and do not correspond to users, but to virtual
regions of the game [40]. User load is then mapped to the different virtual machines. Such
virtual machines can sporadically communicate with each other. Again, we find that in
the partition management problem it is enough to preserve partition contiguity, rather than
modeling application-specific inter-tile dependencies.

Second, our approach enables hierarchical resource management, which is a mainstream
approach to tackle the management complexity of large manycores. In practice, we assume
that in each partition a local manager is set up by the IoT service provider in order to

88

CHAPTER 6. A PARTITION MANAGER FOR ELASTIC FOG NODES

allocate user processes to tiles and cores inside them. From this viewpoint, such local
managers can take advantage of the most advanced research findings in the open literature
for the dynamic mapping of applications to multi-/many-core architectures. For instance,
the partition could be multiplexed in time, like in [76], or the mapping of user processes
to tiles could be dynamically modified as a function of the service workload, or to evacuate
thermal hotspots, even in the presence of real-time constraints [108]. This local manager is
outside the scope of this paper.

Finally, we observe that in this chapter we address the management problem of spatial
partitions. We do not address the related management problem of time partitions in the
TDM NoC, under the simplifying assumption that each IoT service is getting the same
bandwidth on the TDM NoC. The co-design of the two management frameworks is left for
future work, and will have to deal with new degrees of freedom for the optimization problem.
In particular, the allowable distance of a partition from the memory controller will depend
also on the allocated bandwidth on the TDM NoC for MC traffic.

6.5 A Shape-Oriented Model For Optimal Partitioning

The dynamic reconfiguration process should allow to update the partition shape, size and
location on the PMCA so that the required resource remodulation is accomplished, i.e., the
demand is satisfied. The new configuration should comply with a few quality criteria, based
on the above discussion.

A first issue concerns how much the transition to the new configuration will affect the
computation. This depends on the migration overhead that user processes of each IoT
service experience during reconfiguration. Some services can be more sensitive than others,
depending on the amount of state to transfer from the source node to the destination node for
user process reactivation. This criterion is referred to as continuity. In principle, optimizing
the system dynamism for continuity means to minimize the number of user processes that
are migrated during reconfiguration events. This would mean to make the optimizer aware of
how many users are running at any given point in time on each tile, so that the least loaded
tiles could be preferentially migrated. While this is certainly possible with the proposed
framework through the insertion of an ad-hoc term to the objective function, in the first
stage of development we do not discriminate tiles based on their current loads, i.e., we
assume all tiles of a partition can be selected for migration with the same probability as
long as this leads to better aggregate system state and/or to a lower number of migrations
overall. This corresponds to scenarios where the local manager keeps the tiles of its partition
as uniformly loaded as possible.
A second issue concerns the location of partitions on the PMCA grid. Since the distance of
a tile to its memory controller port affects communication latency, the closest the tiles of a
partition are to it, the better the performance will be for the IoT service; again, different
services may have different latency criticalities and be affected in a different manner by a

89

CHAPTER 6. A PARTITION MANAGER FOR ELASTIC FOG NODES

change in proximity to the memory controller access port. This second criterion is thus
referred to as priority, and boils down to preserving the correlation between positioning on
the grid and latency criticality.

A reconfiguration is spurred by a resource remodulation that changes the number of tiles
assigned to one or more partitions. This, in turn, induces changes in the partition shapes
and in their allocation on the PMCA.
Finally, partitions mutually compete for the best positions on the PMCA. All these decisions
are so deeply intertwined that, if taken sequentially in a greedy way, may prevent not only
solution quality but also feasibility, due to geometrical constraints. An alternative is to code
the problem, i.e. decisions, constraints, and quality criteria, into a mathematical model and
solve it to (near) optimality.

An instance is defined by the current configuration, i.e., the set of the partitions and
their location on the grid, and the partition size increments and decrements yielded by
the Application Manager’s reassignments (the requests). We assume that: (i) requests are
zero sum (they balance each other), while (ii) the number of growing partitions may be
different from the number of shrinking ones. In both cases, we refer to these partitions as
the demanding IoT services as opposed to neutral ones, that do no ask for any change in
resource assignment.

6.5.1 Model assumptions

The optimization framework relies on the following assumptions:

• Demands are always feasible (zero sum).

• The memory controller access port is located at the bottom-right corner of the 2D-mesh
topology. The model can be easily extended with other memory controller ports.

• The main focus is on trading the optimality of the execution state after reconfiguration
with the reconfiguration overhead.

• The optimality of the execution state is defined as the preservation of a correlation
between average Manhattan distance of partition tiles to the memory controller with
the performance criticality level of the IoT service mapped to that partition.

• The model bounds the management overhead of neutral partitions affected by recon-
figuration rounds by allowing them only to shift and not to be resized.

• We consider a congested scenario where several IoT services at a time compete for
scarce resources. Even in case the system is not overloaded, our GMF tends to allocate
all resources to partitions anyway as a backup solution in case the workload of IoT
services has been incorrectly predicted for the next monitoring period.

90

CHAPTER 6. A PARTITION MANAGER FOR ELASTIC FOG NODES

• Without lack of generality, only squared and rectangular partition shapes are consid-
ered in this chapter. In principle, all legal partition shapes enabled by pLBDR can be
modelled and managed through the proposed Partition Manager, however the focus of
this work is primarily on how to trade-off reconfiguration overhead with system state
optimality (i.e., on the formulation of the optimization problem itself), rather than on
the trade-offs between regular vs. irregular partition shapes (i.e., not on the compar-
ative efficiency of several partitioning strategies). Given the outcome of this chapter,
the proposed Partition Manager is indeed ready for the latter research goal as well,
which is however left for future work.

From now on, an IoT service component will be more conveniently denoted as an applica-
tion and the 2D-mesh topology as a grid. We propose an Integer Linear Programming (ILP)
shape-based model which builds on a predefined set of partition shapes, i.e., all rectangular
partitions that are feasible in an n×n 2D-mesh, up to a certain size specified by the system
designer. We focus on a single iteration where the partition map P of the current configura-
tion is reconfigured into P ′ to accomplish size variations while optimizing the aforementioned
quality criteria.

6.5.2 Model inputs

The model receives in input i) a formal description of the grid and its geometry, ii) the
current configuration, iii) the list of the application priorities and requests. Formally:
- The square grid G, made of n2 tiles identified by their position (ij) in the grid, 1 ≤ i, j ≤ n.
- The ordered list of predefined shapes s ∈ S(c), made of all rectangles s = [l, w] of cardinality
c = lw, for all admitted sizes c. l and w are respectively the number of columns and the
number of rows of the rectangle, which allows to distinguish orientation when l 6= w. A
shape’s placement on the grid is described as the coordinates of its handle, i.e., the top-left
corner of the shape. Therefore, Gsc, the set of potential locations of a shape’s handle is
known for each s ∈ S(c). Likewise, for each (i, j) ∈ Gsc, the set Gij

sc of the grid points
occupied by s when its handle is at (i, j) is also known.
- The current partition map P in terms of the status of the tiles: either (ij) is free or it has
been assigned to an application t = P(i, j). Based on these tile level information, P may
also be described at the application level, for each t ∈ T , in terms of i) GP (t) the partition
assigned to t in P , ii) its cardinality cP (t) = |GP (t)|, iii) its shape s ∈ S(cP (t)), and iv) the
handle’s coordinates (h, k) so that Gij

sc = GP (t).
- The demand dt for each t ∈ T , intended as the variation with respect to cP (t). If dt = 0

we speak of a neutral application, t ∈ T 0. Otherwise (dt > 0 or dt < 0), t is a requester and
t ∈ TD = T \ T 0.
- The application priorities pt ∈ {1, · · · ,maxp} with respect to the VoI of the application of
which application t is implementing a service component, as well as p̃pt ∈ {1, · · · ,maxp̃},
related to the migration overhead, had the application to be suspended.

91

CHAPTER 6. A PARTITION MANAGER FOR ELASTIC FOG NODES

6.5.3 Decision variables

The new partition map P ′ after reconfiguration is described in terms of the following (binary)
variables.

• xtij ∈ {0, 1},∀t ∈ T, (ij) ∈ G : is equal to 1 if tile (ij) is assigned to application t.

• ztsc ∈ {0, 1},∀t ∈ T, s ∈ S(c), c = dt + cP (t): is equal to 1 if shape s ∈ S(c) is assigned
to application t.

• wij,t
sc ∈ {0, 1},∀t ∈ T, (ij) ∈ Gsc: is equal to 1 if the handle of shape s ∈ S(c) is located

at (i, j) and s is assigned to t.

For a given c, the number of shapes |S(c)| is linear in c, and the possible handles are
bounded by n2. Therefore, the number of variables at each iteration is polynomial with
respect to n. For sake of readability, it will be assumed c = dt + cP (t) whenever speaking of
ztsc and wij,t

sc , without further specification.

6.5.4 Constraints

The following constraints filter out unfeasible tile allocations.
Partition constraints (6.1) ensure that each tile is assigned to at most one application.

Constraints (6.2) ensures that after the reconfiguration t will be assigned exactly one shape
s ∈ S(c). Constraints (6.3) ensure that each assigned shape s has been properly located
on the grid. Constraints (6.4) state that tile (i, j) is assigned to application t if and only if
the handle’s location (h, k) of the shape assigned to t is such that (i, j) ∈ Ghk

sc . Reversely,
constraints (6.5) state that if the handle of shape s ∈ S(c) is located in (i, j) and s is assigned
to t then each tile in Gij

sc is assigned to t. Constraints (6.6) establish the relation between the
number of tiles t requires and the size of the assigned shape. Finally, constraints (6.7-6.9)
enforce integrality for tile assignment, shape, and handle variables.

∑
t∈T

xtij ≤ 1 ∀i, j ∈ G (6.1)∑
s∈S(c)

ztsc = 1 ∀t ∈ T (6.2)

ztsc =
∑

(i,j)∈Gsc

wij,t
sc ∀t ∈ T, s ∈ S(c) (6.3)

xtij =
∑

s∈S(c)

∑
(hk):(ij)∈Ghk

sc

whk,t
sc ∀t ∈ T, (ij) ∈ G (6.4)

whk,t
sc ≤ xtij ∀t ∈ T, s ∈ S(c), (hk) ∈ Gsc, (ij) ∈ Ghk

sc (6.5)

92

CHAPTER 6. A PARTITION MANAGER FOR ELASTIC FOG NODES

∑
(i,j)∈G

xtij = c
∑

s∈S(c)

ztsc ∀t ∈ T (6.6)

xtij ∈ {0, 1} ∀t ∈ T, ∀(i, j) ∈ G (6.7)

ztsc ∈ {0, 1} ∀t ∈ T, s ∈ S(c) (6.8)

wij,t
sc ∈ {0, 1} ∀t ∈ T, (ij) ∈ G(s, c) (6.9)

6.5.5 Objective function

The objective function provides an analytical formulation of priority, i.e., how much partition
placement is aligned with applications latency criticality, as well as continuity, i.e., the
migration overhead due to reconfiguration.

Priority is formalized in terms of the minimization of the sum over all tiles (i, j) ∈ GP (t)

of the Manhattan Distance MDij from (ij) to the MC location, which we assumed in (n, n)

for all applications, weighted by the application priority pt, for all t ∈ T .
Regarding continuity, note that reconfiguration might affect any application, including neu-
tral ones, and not just requesters. Consider the borderline example of a requester asking for
additional tiles to host incoming demand, which is assigned a larger partition which includes
all its previous tiles. If additional demand is allocated to the new tiles, then none of the past
processes needs to be interrupted. On the opposite, a neutral application allocated next to
the requester in the current configuration may have to be shifted somewhere else on the grid,
to free the additional tiles required by the requester. It follows that continuity must take into
account the migration overhead of any tile that will be assigned to a different application
after reconfiguration, weighted by the application priority p̃t (application priorities may be
different in the two components). As continuity and priority are potentially conflicting, we
consider a weighted sum, and solve:

min α
∑
t∈T

 pt
∑
(i,j)

MDijxtij + γ p̃t
∑

(i,j)/∈GP (t)

xtij

 (6.10)

subject to (6.1 - 6.9). Taking α = 1, the weight parameter of the second term γ will be
experimentally calibrated in the next section. Note that the first component sums over
all tiles and models a feature of the new configuration. Therefore, this is a term without
memory. On the contrary, the second term contains a reference to the old configuration,
as the summation concerns only tiles that in the new configuration will be assigned to a
different application, therefore impacting the transition by penalizing the shift of tiles of
high priority applications.
Beyond continuity and priority: While here we focus on priority and continuity, many other
criteria could be formalized. Let us mention the most relevant ones.
The migration overhead could specifically differentiate among the tiles, by penalizing the
reallocation of those that are processing critical contents. Suppose that (ij) is such a tile

93

CHAPTER 6. A PARTITION MANAGER FOR ELASTIC FOG NODES

and αt
ij is a measure of its migration criticality. In such a case αt

ij

(
1− xtij

)
adds the penalty

term αt
ij if and only if the content of tile (ij) will be migrated.

Moreover, communication overhead between processes running on different tiles in the same
partition could be taken into account. In the worst case, the time depends on the distance
between the two furthest apart tiles, which in turn is correlated to the elongation of the
selected partition shape. For each s ∈ S(c), its elongation can be expressed as a function of
its sizes l and w, and multiplied by ztsc. By adding to the objective function a term which
penalizes the choice of elongated shapes (or more elongated than the current one) we can
model this criterion.
Finally, in case of particular applications with very high latency criticality, the required real
time throughput could be enforced by simply banning all those locations and shapes that do
not comply, due to the distance from the MC or a too elongated shape. This feature can be
checked in real time, and the variables corresponding to infeasible choices will be set to 0.

The ILP model (6.1 - 6.10) is efficiently solved by state of the art solvers for small n
and beyond, as discussed in Section 6.6.4. To efficiently scale further up with the grid size
to encompass many tile grids, it can be tightened by adding various types of cuts, such as
those exploiting conflicts based on shape geometry. Indeed, conflicts arise between decisions
causing overlapping, either detectable at the shape level or when locating handles on the
grid. Ad hoc separation algorithms can be devised to dynamically generate violated cuts
and speed up convergence within a Branch and Cut approach, which is left for future work.

6.6 Experimental results

The experimental part aims to calibrate the γ parameter and to assess the effectiveness of
the objective function. Then, the approach is tested against a simulated real case where the
dynamic workload spurs real time demand reconfiguration at the Edge’s devices. Finally,
the approach scalability is tested, in terms of the running time required to solve the model
to proven optimality on larger size instances.

6.6.1 Preserving ideal configurations

Starting from an ideal application placement i.e., such that distance from the MC access
port is inversely correlated to application priority, it will be verified that reconfigurations
of the partitioning pattern preserve this status despite the needed adjustments to fulfil the
assignment variations of placement-agnostic Application-level Managers. We consider a 4x4
2D-mesh topology with no idle tile and a set T of 5 applications with different priority,
ranging from (pt1 = 1) to (pt5 = 10), pt < pt+1, and pt = p̃t∀t ∈ T .
The initial configuration is obtained by solving the model with respect to the null configu-
ration (empty grid) and demand equal to the application size. In such a way, the objective
function is driven only by priority.
To avoid initial configuration biases, we consider 50 scenarios differing for TD, i.e., the re-

94

CHAPTER 6. A PARTITION MANAGER FOR ELASTIC FOG NODES

Figure 6.5: Average Manhattan distance after reconfiguration when starting from application
placements correlated with their priority.

questers in T , and their demand, to get 50 different ideal initial configurations.
For each of them, a random, 0 sum, demand is computed and the model is solved with
respect to 8 different objective function variants, say f 1, .., f 8, obtained by varying α, γ and
p̃t as follows:

• f 1=(α = 1, γ = 0). (Priority)

• f 2=(α = 0, γ = 1, p̃t = 1∀t). (Continuity)

• From f 3 to f 7, f i=(α = 1, p̃t = pt∀t, γ ∈ {0.5, 1, 5, 10, 50}).

• f 8=(α = 0, γ = 1, p̃t = pt∀t). (Weighted Continuity).

Note that coefficients pt do not vary.
In short, f 1 is only based on priority, then it is not influenced by the current configuration
state.
On the contrary, both f 2 and f 8 are driven by the minimum alteration of the current state,
but f 8 differentiates based on the application priority.
Finally, f 3, .., f 7 are weighted sums of f 1 and f 8 with an increasing weight on the latter.
First, let us analyze how the different functions affect the ideal initial configuration, in terms
of preserving the inverse correlation between application priority and the Manhattan distance
to the MC access port. Fig. 6.5 reports such distance for every application, averaged over
the 50 scenarios.
Applications are depicted in descending priority. For each application, the first column refers
to the initial configuration and the next ones are associated to the configurations obtained

95

CHAPTER 6. A PARTITION MANAGER FOR ELASTIC FOG NODES

by f 1 onward.
It can be noticed that f 1 the most preserves the ideal allocation, i.e., a slight improvement can
be noted for t1 and t5, their average Manhattan distance reached 4.85 and 1.19, respectively.
Slight differences are due to changes in partition sizes, as the distance is averaged over the
tiles of each application.
f 2 upgrades the status of the lowest priority application while downgrading the highest
priority one, i.e., t1 distance drops from 4.9 to 4.43 (p1 = 1) while t5’s one raises from 1.23

to 1.68 (p10 = 10).
Minor changes are observed for the other applications.
We argue that reconfiguration may often have entailed swaps between requesters’ partitions,
thus leaving neutral ones mostly untouched, rather than operating local adjustments such
as expanding or contracting requesters partitions, which would have greatly affected neutral
applications in a sort of a wave effect. When high priority applications are swapped with
low priority ones the existing distance-priority correlation is affected.
Concerning the other objective functions, we observe that for each application, whatever is
the change w.r.t. to ideal state, it gets emphasized along the growth of γ.
Indeed, one may think of f 8 as the extreme one gets when γ >> α.

f 4 (γ = 1) shows the best average Manhattan distance, as the results are very close to
f 1 where applications priority matters, while keeping at bay the number of migrated tiles.

Figure 6.6: Average migration overhead

For the same experimental setting, Fig. 6.6 outlines the average total number of migrated
tiles over the 50 scenarios.

96

CHAPTER 6. A PARTITION MANAGER FOR ELASTIC FOG NODES

The simulations are run for each of the previously discussed variants. The lowest average is
equal to 4.48, which is reported in the case f 2, while in f 1 we note the highest average of
migrations, i.e. 8.84. In the case f 4, when γ = 1, the average is 4.78, which confirms that
for this setting the tool provides the best trade off between priority and continuity. For the
sake of comparison, we also report the normalized total number of migrated tiles for each
application over the 50 scenarios, results are shown in Fig. 6.7. The results obtained in f 2

are normalized to 1 and other variants outcome is normalized accordingly.
Planned comparisons demonstrate two major things. First, comparing to f 1, the results
obtained using f 8 are substantially better in term of high priority applications migrations.
In fact, the normalized total number of tiles that migrate for t4 and t5 has decreased by 14%

and 26%, respectively. Second, the results confirm the choice of the value of γ. For this
setting (f 4), the normalized total number of tiles that migrate for t4 and t5, comparing to
f 1, has decreased by 6% and 12%, respectively. While for low priority applications it has
increased by 9%, 34% and 12% for t1, t2 and t3 respectively.
All together with the previous results, we conclude that using this value of γ, the tool hits a
very good trade-off between the average Manhattan distance from the MC access port and
the total number of tile migrations. In the next experiments, we will only consider this value
of γ.

Figure 6.7: Normalized total number of migrated tiles

97

CHAPTER 6. A PARTITION MANAGER FOR ELASTIC FOG NODES

Figure 6.8: Average Manhattan distance after reconfiguration when a new application is admitted

6.6.2 Model’s capability to optimally place new admitted applica-
tions

Next, we demonstrate the tool capability to optimally place new admitted applications when
starting from an ideal placement. We re-used the same 50 initial conditions of the previous
experiment. For every configuration among the 50 initial scenarios, we admit a new appli-
cation t6 and we run 20 instances where requesters and demands are randomly generated.
This experiment is repeated using different priorities of t6, where pt6 ∈ {1, 4, 10, 11}. Fig. 6.8
outlines the average Manhattan distance of every application, the existing ones and the new
admitted (t6), after reconfiguration as a function of the new application’s priority. When
pt6 = 1 (pt1 ≤ pt6 ≤ pt2), the average Manhattan distance of t6 is equal to 4.11 which is
bounded by the average Manhattan distance of t1 (4.70) and t2 (3.43). At the same time,
the other applications preserved their ideal placement. Using pt6 = 4 (pt2 ≤ pt6 ≤ pt3), t6
is ideally placed between t2 and t3. In contrast, when pt6 = pt5 = 10, both applications
are striving against one another to gain the ideal placement. However, as we have seen in
the last experiment, the second part of the objective function (Weighted continuity) prevent
from a high migration overhead by minimizing the tiles that change for the high priority
applications. For this reason, t6 cannot achieve a similar positioning as t5. To correct this
behavior, we increased pt6 to 11, in this case t6 got the ideal placement. Using the same
experiments, we highlighted the average total number of changed tiles shown in Fig. 6.9. We

98

CHAPTER 6. A PARTITION MANAGER FOR ELASTIC FOG NODES

Figure 6.9: Average total number of changed tiles as a function of the new admitted application’s
priority

notice a high average equal to 5, 4.96 and 5.12 when pt6 is equal to 1, 10 and 11, respectively,
while, when pt6 = 4 it produces the migration of the lowest number of tiles in order to place
the new application. This is an important finding in the understanding of the behavior of
the optimizer. On the one hand, admitting a new application in the grid’s borders, especially
when requesters are placed far away from each other, requires pushing many tiles in order
to free a space for the new application. On the other hand, placing the new application in
any position in the middle of the grid does not oblige many tiles to migrate.

6.6.3 Evaluating Simulated Traces

With the goal of experimenting the adoption of our ILP model on a realistic use case, we
leverage Phileas [106], a discrete event simulator for Edge and Fog computing environments.
More specifically, to reenact the behavior of image processing applications operating in a
Smart City environment, we extended an Edge Computing scenario set in Washington DC
area [106] to include 8 applications representing image processing algorithms, allocated on 4
edge devices, and 4 different user groups interacting with these applications.
In the experiments, we simulated a dynamically varying service demand, either increasing
or decreasing workload to trigger the re-configuration of resources on edge devices.
More specifically, the scenario considers a simulation time of 4 days, with workload changes
triggering resource reconfigurations every 15 minutes, for a total of 384 reconfiguration
events. We used the total number of users in each service during the simulation time as

99

CHAPTER 6. A PARTITION MANAGER FOR ELASTIC FOG NODES

Figure 6.10: Average Manhattan distance for dynamically generated traces

Figure 6.11: Normalized total number of migrations over traces

criterion to assign the application priorities, i.e, the application that produced lower number
of users will be assigned with lower priority following the notation where t1 has the lowest
priority (pt1 = 1) and t8 has the highest one (pt8 = 1010).

100

CHAPTER 6. A PARTITION MANAGER FOR ELASTIC FOG NODES

Results are illustrated in Fig. 6.10. With f 2, the average Manhattan distance is oscillating
and the solver does not perform well when it comes to high priority applications (t7’s and
t8’s average are equal to 3.56 and 2.21, respectively). With f 1, the results show a descending
trend line. In particular, the average Manhattan distance for t1 is 5.02, while for t8 is 0.38.
This demonstrates that applications were placed proportionally to their priorities. Using
γ = 1, the trend line is substantially comparable to the previous one except for t6, t7 and t8
where the average is higher than in the preceding results. This is on account of the intention
of the solver to minimize the migration of tiles belonging to big partitions and to high priority
applications. Another significant outcome of this experiment was that the normalized total
number of migrated tiles, presented in Fig. 6.11. The average total number of migrations is
normalized for the sake of comparison. Comparing to f 2, f 1 reaches the highest number of
changed tiles which is equal to 3.4 for t7. Using γ = 1, we observe a decreasing trend except
for t7. This outcome provides evidence to the part of the objective function that minimizes
migrations of tiles belonging to high priority applications. Together, the present findings
confirm that the value of γ = 1 is the one that obtained the most robust results in term of
establishing the balance between f 2 and f 1.

6.6.4 Coping with large grid size instances and with large number
of applications and requesters

Figure 6.12: Execution time as a function of the number of applications and requesters

Finally we challenged the ILP model ability to cope with large size instances and with
large number of applications and requesters. The size of an instance is characterized by the

101

CHAPTER 6. A PARTITION MANAGER FOR ELASTIC FOG NODES

grid size n (n2 tiles), the number of applications nT ≤ n2 and the number of requesters
nD ≤ nT . For every grid size n, with n ∈ {4, 8, 10, 12}, we run 100 scenarios with nT = 8.
The grid is always congested (no free tiles). The demands and the number of requesters
nD are randomly computed in every scenario, where nD is ranging from 2 to nT . Table 6.2

Table 6.2: The impact of large grid size instances on the model’s running time
Grid size (n) 4 8 10 12
Execution time (s) 0.03 0.57 1.85 2.81
Standard deviation 0.01 0.54 2.81 4.77

shows the impact of increasing grid’s size on the running time of the model. On small grids
convergence to optimality was reached, on average, after 0.03 (n = 4) and 0.57 (n = 8). On
the contrary, on large grids optimality is attained after 1.85 and 2.81 seconds for n = 10

and n = 12 respectively. Interestingly, the standard deviation also has the same upward
trend as the execution time. The observed increase in the running time is attributed to
the growth of the number of binary variables (linearly with n) and the feasible solutions
(exponentially with n). For the sake of examining the impact of the number of applications
and requesters on the model’s scalability, we did the following experiment: for a fixed grid
size (n = 10) and for every 100 configurations, we identify a number of applications nT ,
where nT ∈ 10, 20, 30, 40. As for the number of requesters nD we used 2 different variants
for every nT . In the first (2 req), we considers a fixed number of requesters nD = 2. As for
the second variant (rand req), we randomly generated nD, where nD ∈ [2, nT].

Fig. 6.12 outlines the average execution time over the 100 instances while increasing nT

and using the two aforementioned variants to identify nD. In both cases (2 req and rand req)
the average execution time trend is linear with respect to the number of applications, it ranges
from 0.75 for nT = 10 to 3.05 for nT = 40, respectively (When using the 2 req ’s variant).
Using rand req, the optimizer needs more time than in 2 req to converge to optimality. In
this case, the average execution time is equal to 1.80 and 3.12 for nT = 10 and nT = 40,
respectively. In conclusion, the present results revealed that the model’s scalability does not
depend only on the grid size, but also on the number of applications and requesters.

Overall, measured execution times are typically lower than a few seconds, which is com-
patible with the online utilization of this solver with a "prior provisioning and prompt
allocation" scheme for those realistic Fog computing applications whose workload changes
at the time scale of hours.

6.7 Conclusions

In this work, we proposed a Partition Manager for the optimal elastic partitioning of a many-
core programmable accelerator in high-end shared nodes for Edge computing. We strike a
good balance between memory controller proximity correlation to performance criticality
and system state perturbation. The parameters of our objective function lend themselves to

102

CHAPTER 6. A PARTITION MANAGER FOR ELASTIC FOG NODES

online adaptivity to execution state and for dynamic goal management.
This effort represents a first glace toward embodying the elastic computing concept deeper
into the hardware/software hierarchies of Edge computing platforms.
Last but not least, the presented Partition Manager can be used to master the hardware
support for elastic spatial partitions elaborated in Chapter 5, and can be extended to master
the time partitions of Chapter 4 as well.

103

Chapter 7

Conclusions and Future Works

As Fog nodes are gaining momentum as a fundamental component of the Edge-Fog-Cloud
continuum, their multi-tenancy is becoming a daunting design and management challenge.
Elastic computing is a concept that has been originally conceived for the Cloud, and con-
sists of multi-dimensional properties of resource, quality and cost elasticity. The current
challenge consists of extending these properties to Fog platforms as well, as an effective way
of consolidating multiple IoT services onto shared public Fog nodes. Unfortunately, current
Fog nodes leverage on COTS devices that are not even optimized for the simplest of these
properties, that is, resource elasticity.

This thesis has translated the general resource-elastic computing principle into concrete
architectural design requirements for advanced Fog hardware platforms, and into concrete re-
quirements for the hardware-dependent resource management layer as well. Then, vertically-
integrated research contributions have been placed in both domains, leveraging a barrier-
breaking working methodology across related disciplines.

In particular, we believe that future Fog nodes should be designed as parallel computing
architectures enforcing isolated and composable compute environments, with the capability
to dynamically and elastically reassign resources among consolidated IoT services with min-
imum runtime overhead. At this level, the fundamental intuition has been to identify the
crucial role of the routing mechanism of chip-scale interconnection networks to fulfil these
requirements. Therefore, in this thesis a novel dual-layer network-on-chip architecture has
been proposed for Fog computing, and support for efficient, flexible and secure partitioning
in time and space has been designed. The time-division multiplexed NoC has been designed
for low-latency propagation of packets, leveraging the observation of the channel depen-
dency graph, and for schedule reconfigurability through an innovative propagation scheme
of scheduling commands. The space-division multiplexed NoC has been designed for com-
munication isolation through the tight control of the partition boundaries. Above all, fast
reconfigurability of the partitioning pattern has been achieved through a global unmodified
routing algorithm for the network as a whole, and through a lightweight routing logic that
selectively processes the routing restrictions depending on the shape of the partition at hand.

Finally, a software Partition Manager has been designed to master the elasticity of spatial

104

CHAPTER 7. CONCLUSIONS AND FUTURE WORKS

partitions during reconfiguration events. While traditional Application-level Managers for
workload-changing systems perform the reassignment of virtual resources based on abstract
application and system metrics, the proposed Manager changes virtual assignments into
concrete resource allocations. This gives rise to a new optimization problem where the the
partitioning pattern is formulated as a mapping of polyominoes, under a strict trade-off
between the performance-critical positioning of partitions on the computation grid and the
migration overhead of user processes from one tile into another. IoT services are strictly
prioritized, and both performance benefits and management overheads are kept correlated
(directly or inversely) to such priorities. Overall, this is a highly interdisciplinary piece
of work that paves the way for elastic Fog computing, and for a dynamically-orchestrated
Edge-Fog-Cloud continuum serving as seamless hosting environment for the next generation
of smart IoT services.

Future directions to improve this work include:
- Extension of the pLBDR routing mechanism to non-minimal partition shapes.
- Optimization of the TDM NoC for less buffering resources, trading latency for area and
power.
- Definition of a suitable programming model for an elastic Fog node, including awareness
of virtual resource allocation.
- Augmenting the resource management framework with a monitoring infrastructure coupled
with reinforcement or imitation learning.
- Extend the resource manager to applications with different kinds of QoS requirements (e.g.,
throughput guarantees vs. low latency responses).
- Co-optimizing the management of spatial partitions with that of time partitions.
- Assessing the trade-offs for using regular vs. irregular partitions from the viewpoint of
application and system quality metrics.
- Making the resource management framework aware of technology-related issues, such as
power consumption, reliability or thermal control.
- Integration of the Fog node with Edge nodes and with the Cloud for a complete continnum
with dynamic topology deployment.

105

Bibliography

[1] Code injecton common vulnerability and exposures (cve). https://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2019-14271. Accessed: 2020-02-19.

[2] Kalray MPPA Manycore 256. http://www.kalrayinc.com/portfolio/processors. Ac-
cessed: 2019.

[3] Kuberneets runc common vulnerability and exposures (cve). https://kubernetes.
io/blog/2019/02/11/runc-and-cve-2019-5736/. Accessed: 2019-06-08.

[4] Parallela reference manual. http://www.parallella.org/docs/parallella_manual.pdf.
Accessed: 2019.

[5] Vmware esx.

[6] Visual security and surveillance scenario (3.2). 2017.

[7] Autonomous driving. 2018.

[8] Real-time subsurface imaging. 2018.

[9] A. Abdi et al. Hystery. A hybrid scheduling and mapping approach to optimize tem-
perature, energy consumption and lifetime reliability of heterogeneous multiprocessor
systems. The Journal of Supercomputing, page 2213–2238, 2018.

[10] A. Psarras et al. Phasenoc: Tdm scheduling at the virtual-channel level for efficient
network traffic isolation. In In Proceedings of DATE, pages 1090–1095, 2015.

[11] A. Rahmani et al. The dark side of silicon. In 1st ed. Springer, 2016.

[12] A. Schupbach et al. Embracing diversity in the barrelfish manycore operating system.
In In Proc. of the Workshop on Managed Many-Core Systems (MMCS), 2008.

[13] A. Acquaviva, A. Alimonda, S. Carta, and M. Pittau. Assessing task migration impact
on embedded soft real-time streaming multimedia applications. In EURASIP JES, page
9:1–9:15, 2008.

[14] A.Hansson et al. Phasenoc: Tdm scheduling at the virtual-channel level for efficient
network traffic isolation. In In Proceedings of DATE, pages 250–255, 2009.

106

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-14271
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-14271
https://kubernetes.io/blog/2019/02/11/runc-and-cve-2019-5736/
https://kubernetes.io/blog/2019/02/11/runc-and-cve-2019-5736/

BIBLIOGRAPHY

[15] A. Ahmed, H. Arkian, D. Battulga, A. Fahs, M. Farhadi, D. Giouroukis, A. Gougeon,
F. Gutierrez, G. Pierre, P. Souza, M. Tamiru, and L. Wu. Fog Computing Applications:
Taxonomy and Requirements. In arXiv e-prints, page 1907.11621, 2019.

[16] B. Akesson, A. Molnos, A. Hansson, J. Ambrose, and K. Goossens. Composability and
Predictability for Independent Application Development, Verification, and Execution.
Book chapter in "Multiprocessor System-on-Chip", 2010.

[17] K. Akesson. Predictable and Composable System-on-Chip Memory Controllers. 2010.

[18] Y. Al-Dhuraibi, F. Paraiso, N. Djarallah, and P. Merle. Elasticity in cloud computing:
State of the art and research challenges. IEEE Transactions on Services Computing,
11(2):430–447, 2018. cited By 73.

[19] G. Alberto, L. Daniele, F. Triviño, A. Strano, J. Flich, J. L. Sánchez, F. Alfaro,
M. Favalli, and D. Bertozzi. A complete self-testing and self-configuring noc infrastruc-
ture for cost-effective mpsocs. ACM Trans. Embed. Comput. Syst., 12(4):106:1–106:29,
July 2013.

[20] A. Aljumah and T. A. Ahanger. Fog computing and security issues: A review. In 2018
7th International Conference on Computers Communications and Control (ICCCC),
pages 237–239, 2018.

[21] A.Mejia et al. On the potentials of segment-based routing for nocs. In In Proceedings
of ICPP, pages 594–603, 2008.

[22] S. Anderson, N. Bredeche, A. Eiben, G. Kampis, and M. van Steen. Adaptive collective
systems herding black sheep.

[23] B. Saha et al. Enabling scalability and performance in a large scale cmp environ-
ment. In In Proc. of the ACM SIGOPS European Conference on Computer Systems
(EuroSys), 2007.

[24] M. Balboni. NoC-Centric Partitionin and Reconfiguration Technology for the Effi-
cient Sharing of General-Purose Prorammable Many-core Accelerators. PhD thesis,
University of Ferrara, 2016.

[25] P. Bellavista, J. Berrocal, A. Corradi, S. K. Das, L. Foschini, and A. Zanni. A survey
on fog computing for the internet of things. Pervasive and Mobile Computing, 52:71 –
99, 2019.

[26] S. Bertozzi, A. Acquaviva, D. Bertozzi, and A. Poggiali. Supporting task migration in
multi-processor systems-on-chip: A feasibility study. In in Proc. of Date, page 15–20,
2006.

107

BIBLIOGRAPHY

[27] E. Bini and G. Buttazzo et al. Resource management on multicore systems: The actors
approach. In Micro, IEEE, pages 72–81, 2011.

[28] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli. Fog computing and its role in the
internet of things. In Proceedings of the First Edition of the MCC Workshop on Mobile
Cloud Computing, MCC ’12, pages 13–16, New York, NY, USA, 2012. ACM.

[29] T. L. Borden and J. P. Hennesy et al. Multiple operating systems on one processor
complex. In IBM Systems Journal, 1989.

[30] C. Delimitrou et al. Paragon: Qos-aware scheduling for heterogeneous datacenters. In
in ASPLOS, 2013.

[31] E. Carara and G. Almeida et al. Achieving composability in noc-based mpsocs through
qos management at software level. In In Proceedings of Design, Automation Test in
Europe Conference Exhibition (DATE), 2011.

[32] Y. Chen, X. Chen, W. Liu, Y. Zhou, A. Zomaya, R. Ranjan, and S. Hu. Stochastic
scheduling for variation-aware virtual machine placement in a cloud computing cps.
Future Generation Computer Systems, 105:779–788, 2020. cited By 3.

[33] M. Chiang and T. Zhang. Fog and iot: An overview of research opportunities. IEEE
Internet of Things Journal, 3(6):854–864, Dec 2016.

[34] C. Cicconetti, M. Conti, and A.Passarella. Uncoordinated access to serverless comput-
ing in mec systems for iot. In Computer Networks, 2020.

[35] Cisco. Enabling MaaS Through a Distributed IoT Data Fabric, Fog Computing and
Network Protocols.

[36] J. Colmenares, S. Bird, H. Cook, P. Pearce, D. Zhu, J. Shalf, S. Hofmeyr, K. Asanovic,
and J. Kubiatowicz. Resource management in the tessellation manycore os. In 2nd
USENIX Workshop on Hot Topics in Parallelism, 2010.

[37] D. Bortolotti et al. Virtualsoc: A research tool for modern mpsocs. In In ACM Trans.
Embed. Comput. Sys., 2016.

[38] D. Lo et al. Towards energy proportionality for large-scale latencycritical workloads.
In in ISCA, 2014.

[39] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters.
Comm. ACM, 51(1):107–113, 2008.

[40] E. Dhib, K. Boussetta, N. Zangar, and N. Tabbane. Modeling cloud gaming experi-
ence for massively multiplayer online games. In 2016 13th IEEE Annual Consumer
Communications Networking Conference (CCNC), pages 381–386, 2016.

108

BIBLIOGRAPHY

[41] J. Doppa, J. Rosca, and P. Bogdan. Autonomous Design Space Exploration of Com-
puting Systems for Sustainability: Opportunities and Challenges. In In IEEE Design
and Test, number 5, pages 35–43. IEEE, 2019.

[42] U. Drolia, K. Guo, J. Tan, R. Gandhi, and P. Narasimhan. Cachier: Edge-Caching for
Recognition Applications. In in Proc. ICDCS, pages 276–286, 2017.

[43] S. Dustdar, Y. Guo, B. Satzger, and H. Truong. Principles of elastic processes. IEEE
Internet Computing, 15(5):66–71, Sep. 2011.

[44] E. Bini et al. Resource management on multicore systems: The actors approach. In
in IEEE Micro, pages 72–81, 2011.

[45] E. Kasapaki et al. Argo: A real-time network-on-chip architecture with an efficient
gals implementation. In In IEEE Transactions on VLSI Systems, pages 479–492, 2016.

[46] E. Ong et al. System f6: Progress to date. In In Small Satellite Constellations: Strength
in Numbers.

[47] J. Flich and J. Duato. Logic-Based Distributed Routing for NoCs. Computer Archi-
tecture Letters, 7(1):13–16, 2008.

[48] W. Fu, T. Chen, C. Wang, and L. Liu. Optimizing memory access traffic via runtime
thread migration for on-chip distributed memory systems. In Supercomputing, page
1491–1516, 2014.

[49] G. Georgakoudis et al. Scalo: Scalability-aware parallelism orchestration for multi-
threaded workloads. In In ACM Trans. Archit. Code Optim., pages 54:1–54:25, 2017.

[50] M. Giordani, A. Zanella, T. Higuchi, O. Altintas, and M. Zorzi. Investigating value
of information in future vehicular communications. In 2019 IEEE 2nd Connected and
Automated Vehicles Symposium (CAVS), pages 1–5, 2019.

[51] M. Gorgues Alonso, J. Flich, M. Turki, and D. Bertozzi. A low-latency and flexible
tdm noc for strong isolation in security-critical systems. In IEEE 13th International
Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC), 2019.

[52] B. Grot, S. Keckler, and O. Mutlu. Preemptive virtual clock: a flexible, efficient
and cost-effective qos scheme for networks-on-chip. In In 42th Int. Symposium on
Microarchitecture, pages 269–279, 2009.

[53] H. Yang et al. Bubble-flux: Precise online qos management for increased utilization in
warehouse scale computers. In in ISCA, 2013.

[54] M.-H. Haghbayan, A. Kanduri, A.-M. Rahmani, P. Liljeberg, A. Jantsch, and H. Ten-
hunen. Mappro: Proactive runtime mapping for dynamic workloads by quantifying

109

BIBLIOGRAPHY

ripple effect of applications on networks-on-chip. New York, NY, USA, 2015. Associ-
ation for Computing Machinery.

[55] J. Heisswolf and R. Konig et al. Providing multiple hard latency and throughput guar-
antees for packet switching networks on chip. In Computers and Electrical Engineering,
2013.

[56] S. Heo, K. Barr, and K. Asanovi’c. Reducing power density through activity migration.
In Proc. of ISLPED, page 217–222, 2003.

[57] R. Hilbrich and J. van Kampenhout. Partitioning and task transfer on noc-based many-
core processors in the avionics domain. In Softwaretechniktrends, page 1–6, 2011.

[58] H.M.G. Wassel et al. Surfnoc: A low latency and provably non-interfering approach
to secure networks-on-chip. In In Proceedings of ISCA, pages 583–594, 2013.

[59] C.-H. Hong and B. Varghese. Resource management in fog/edge computing: A survey
on architectures, infrastructure, and algorithms. In Infrastructure, and Algorithms,"
ACM Comput. Surv., 2019.

[60] M. Iorga, L. Feldman, R.Barton, M. Martin, N. Goren, and C. Mahmoudi. Fog com-
puting conceptual model. In NIST Special Publication., 2018.

[61] K. G. J. Dielissen et al. Aethereal network on chip: Concepts, architectures, and
implementations. In IEEE Design and Test of Computers, 2005.

[62] J. Hamers et al. Scenario-based resource prediction for qos-aware media processing.
In Computer, 2010.

[63] J. Mars et al. Bubble-up: Increasing utilization in modern warehouse scale computers
via sensible co-locations. In in MICRO, 2011.

[64] J. Jann and L. M. Browning, et al. Dynamic reconfiguration: Basic building blocks
for autonomic computing on ibm pseries servers. In IBM Systems Journal, 2003.

[65] A. Jantsch, N. Dutt, and A. M. Rahmani. Self-awareness in systems on chip? a survey.
IEEE Design Test, 34(6):8–26, Dec 2017.

[66] K. Moazzemi et al. Trends in On-chip Dynamic Resource Management. In 21st Eu-
romicro Conference on Digital System Design (DSD), pages 62–69, 2018.

[67] R. Kaiser and S. Wagner. Evolution of the pikeos microkernel. 02 2007.

[68] N. Kapadia and S. Pasricha. Varsha: Variation and reliability-aware application
scheduling with adaptive parallelism in the dark-silicon era. In 2015 Design, Au-
tomation Test in Europe Conference Exhibition (DATE), pages 1060–1065, 2015.

110

BIBLIOGRAPHY

[69] K. Katre, H. Ramaprasad, A. Sarkar, and F. Mueller. Policies for migration of real-
time tasks in embedded multi-core systems. In in Work-in-Progress Proc. of RTSS,
page 17–21, 2009.

[70] S. Kobbe and L. Bauer et al. Distrm: Distributed resource management for on-chip
many-core systems. In In Proceedings of the International Conference on Hardware/-
Software Codesign and System Synthesis (CODES+ISSS), pages 119–128, 2011.

[71] A. Kumar, S. Piotr, D. Hashan, R. Mendis, and L. S. Indrusiak. A survey and com-
parative study of hard and soft real-time dynamic resource allocation strategies for
multi/many-core systems. In ACM Computing Survey, 2017.

[72] S. Kumaraswamy and M. Nair. Bin packing algorithms for virtual machine placement
in cloud computing: a review. In International Journal of Electrical and Computer
Engineering (IJECE), volume 9, pages 512–524, 2019.

[73] J. Kyle, M. Nesbit, J. F. A. Cazorla, M. Valero, and J. Smith. Multicore resource
management. In IEEE Micro, volume 3, pages 6–16, 2008.

[74] L. Tang et al. Compiling for niceness: Mitigating contention for qos in warehouse scale
computers. In in CGO, 2012.

[75] T. Le Duc, R. Leiva, P. Casari, and P.-O. Oestberg. Machine learning methods for
reliable resource provisioning in edge-cloud computing: A survey. In ACM Comput.
Surv., 2019.

[76] R. Liu, K. Klues, S. Bird, S. Hofmeyr, K. Asanovic, and J. Kubiatowicz. Tessellation:
space-time partitioning in a manycore client os. In In Proceedings of the First USENIX
conference on Hot topics in parallelism.

[77] M. P. Papazoglou et al. Introduction: Service-oriented computing. In Commun. ACM,
2003.

[78] M. Schoeberl et al. A statically scheduled time-division-multiplexed network-on-chip
for real-time systems. In In Proceedings of IEEE/ACM NoCs, pages 152–160, 2012.

[79] M. Wolf et al. Security in automotive bus systems.

[80] G. Ma, Z. Wang, M. Zhang, J. Ye, M. Chen, and W. Zhu. Understanding Performance
of Edge Content Caching for Mobile Video Streaming. In IEEE Journal on Selected
Areas in Communications, number 5, pages 1076–1089. IEEE, 2017.

[81] R. Marculescu, U. Ogras, N. Li-Shiuan Peh, E. Jerger, and Y. Hoskote. Outstanding
research problems in noc design: System, microarchitecture, and circuit perspectives.
IEEE Trans. Comput.-Aid. Des., pages 3–21, 2009.

111

BIBLIOGRAPHY

[82] G. Mariani, P. Avasare, G. Vanmeerbeeck, C. Ykman-Couvreur, G. Palermo, C. Sil-
vano, and V. Zaccaria. An industrial design space exploration framework for support-
ing run-time resource management on multi-core systems. In In Proceedings of IEEE
Conference on Design, Automation and Test in Europe (DATE), DATE, page 196–201,
2010.

[83] G. Mariani and V. Sima et al. Using multi-objective design space exploration to enable
run-time resource management for reconfigurable architectures. In In Proceedings of
Design, Automation Test in Europe Conference Exhibition (DATE), pages 1379–1384,
2012.

[84] I. Martinez, A. Hafid, and A. Jarray. Design, resource management and evaluation of
fog computing systems: A survey. In in IEEE Internet of Things Journal, 2020.

[85] P. Marwedel, J. Teich, G. Kouveli, I. Bacivarov, L. Thiele, S. Ha, C. Lee, Q. Xu,
and L. Huang. Mapping of applications to mpsocs. Conference on Hardware/Software
Codesign and System Synthesis, pages 109–118, 2011.

[86] A. Mejia, J. Flich, J. Duato, S. . Reinemo, and T. Skeie. Segment-based routing: an
efficient fault-tolerant routing algorithm for meshes and tori. In Proceedings 20th IEEE
International Parallel Distributed Processing Symposium, pages 10 pp.–, April 2006.

[87] D. Melpignano, L. Benini, E. Flamand, B. Jego, T. Lepley, G. Haugou, F. Clermidy,
and D. Dutoit. Platform 2012, a many-core computing accelerator for embedded socs:
Performance evaluation of visual analytics applications. In DAC Design Automation
Conference 2012, pages 1137–1142, June 2012.

[88] D. Moldovan, G. Copil, and S. Dustdar. Elastic systems: Towards cyber-physical
ecosystems of people, processes, and things. Computer Standards and Interfaces, 57:76
– 82, 2018.

[89] C. Mouradian, D. Naboulsi, S. Yangui, R. Glitho, M. Morrow, and P. Polakos. A com-
prehensive survey on fog computing: State-of-the-art and research challenges. IEEE
Communications Surveys and Tutorials, 20(1):416–464, 2018. cited By 209.

[90] M. Mukherjee, L. Shu, and D. Wang. Survey of fog computing: Fundamental, net-
work applications, and research challenges. IEEE Communications Surveys Tutorials,
20(3):1826–1857, thirdquarter 2018.

[91] P. Munk, B. Saballus, J. Richling, and H. U. Heiss. Position paper: Real-time task
migration on many-core processors. In ARCS 2015 - The 28th International Conference
on Architecture of Computing Systems, 2015.

[92] B. Nikoli’c and S. Petters. Towards network-on-chip agreement protocols. In in Proc.
of EMSOFT, page 207–216, 2012.

112

BIBLIOGRAPHY

[93] B. Nikoli’c, P. Yomsi, and S. Petters. Worst-case communication delay analysis for
many-cores using a limited migrative model. In in Proce. of RTCSA, page 1–10, 2014.

[94] O. Moreira et al. Online resource management in a multiprocessor with a network-on-
chip. In In Proceedings SAC, pages 1557–1564, 2007.

[95] O. Stan et al. Protecting military avionics platforms from attacks on mil-std-1553
communication bus. 2017.

[96] OpenFog Consortium Architecture Working Group. Openfog reference architecture for
fog computing. In OpenFog Consortium., 2008.

[97] O.Sander et al. A research perspective on fog computing. In In Int. Conf. on Service-
Oriented Computing, pages 198–210, 2017.

[98] P. Barham et al. Xen and the art of virtualization. In In Proc. of the ACM Symp. on
Operating Systems Principles (SOSP), 2003.

[99] P. Kleberger et al. Security aspects of the invehicle network in the connected car. In
In Proceedings of IEEE IV, pages 528–533, 2011.

[100] P. Ranganathan et al. Enterprise it trends and implications for architecture research.
In in HPCA, 2005.

[101] P. Patel, M. Intizar Ali, and A. Sheth. On using the intelligent edge for iot analytics.
IEEE Intelligent Systems, 32(5):64–69, Sep. 2017.

[102] A. Pathania, V. Venkataramani, M. Shafique, T. Mitra, and J. Henkel. Defragmenta-
tion of tasks in many-core architecture. ACM Transactions on Architecture and Code
Optimization, 2017.

[103] J. Perez, A. Gutierrez-Torre, J. Berral, and D. Carrera. A resilient and distributed
near real-time traffic forecasting application for fog computing environments. In Future
Generation Computer Systems, pages 198–212, 2018.

[104] T. Picornell, J. Flich, C. Hernández, and J. Duato. Dcfnoc: A delayed conflict-free time
division multiplexing network on chip. In 2019 56th ACM/IEEE Design Automation
Conference (DAC), pages 1–6, 2019.

[105] R. Piscitelli and A. D. Pimentel. Design space pruning through hybrid analysis in
system-level design space exploration. In In Proceedings of IEEE Conference on De-
sign, Automation and Test in Europe (DATE), DATE, page 781–786, 2012.

[106] F. Poltronieri, C. Stefanelli, N. Suri, and M. Tortonesi. Phileas: A simulation-based
approach for the evaluation of value-based fog services. volume 2018-September, 2018.

113

BIBLIOGRAPHY

[107] B. Pourmohseni, F. Smirnov, S.Wildermann, and J. Teich. Isolation-aware timing
analysis and design space exploration for predictable and composable many-core sys-
tems. In In the proceedings of the 31st Euromicro Conference on Real-Time Systems
(ECRTS 2019), 2019.

[108] B. Pourmohseni, F. Smirnov, S. Wildermann, and J. Teich. Real-Time Task Migration
for Dynamic Resource Management in Many-Core Systems. In Workshop on Next
Generation Real-Time Embedded Systems (NG-RES 2020), volume 77 of OpenAccess
Series in Informatics (OASIcs), pages 5:1–5:14, 2020.

[109] R. Hilbrich et al. Partitioning and task transfer on noc-based many-core processors in
the avionics domain. In In Software technik-Trends, 2011.

[110] F.-J. Rafael, F.-C. Santiago, J. Segura Garcia, P.-A. Adolfo, and L.-B. Jesus. Elastic
computing in the fog on internet of things to improve the performance of low cost
nodes. Electronics, 8:1489, 12 2019.

[111] A. M. Rahmani, A. Jantsch, and N. Dutt. Hdgm: Hierarchical dynamic goal manage-
ment for many-core resource allocation. IEEE Embedded Systems Letters, 10(3):61–64,
2018.

[112] B. Rimpy, L. Vijay, G. M. Singh, and F. José. D2-lbdr: Distance-driven routing
to handle permanent failures in 2d mesh nocs. In Proceedings of the 2015 Design,
Automation and Test in Europe Conference, DATE ’15, pages 800–805, San Jose, CA,
USA, 2015. EDA Consortium.

[113] S. Rodrigo, J. Flich, A. Roca, S. Medardoni, D. Bertozzi, J. Camacho, F. Silla, and
J. Duato. Cost-efficient on-chip routing implementations for cmp and mpsoc systems.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
30(4):534–547, April 2011.

[114] S. Boyd-Wickizer et al. Corey: an operating system for many cores. In In Proc. of the
ACM Symp. on Operating Systems Design and Implementation (OSDI), 2008.

[115] P. Saraswat, P. Pop, and J. Madsen. Task migration for fault tolerance in mixed-
criticality embedded systems. In SIGBED Rev, page 6:1–6:5, 2009.

[116] O. B. Sezer, E. Dogdu, and A. M. Ozbayoglu. Context-aware computing, learning, and
big data in internet of things: A survey. IEEE Internet of Things Journal, 5(1):1–27,
Feb 2018.

[117] S. Shahhosseini, I. Azimi, A. Anzanpour, A. Jantsch, P. Liljeberg, N. Dutt, and A. M.
Rahmani. Dynamic computation migration at the edge: Is there an optimal choice?
In Proceedings of the 2019 on Great Lakes Symposium on VLSI, GLSVLSI ’19, pages
519–524, New York, NY, USA, 2019. ACM.

114

BIBLIOGRAPHY

[118] A. Singh and A. Kumar et al. Accelerating throughput-aware runtime mapping for
heterogeneous mpsocs. In ACM Transactions on Design Automation of Electronic
Systems (TODAES), 2013.

[119] A. Singh, M. Shafique, A. Kumar, and J. Henkel. Mapping on multi/many-core sys-
tems: survey of current and emerging trends. In In Proceedings of the 50th Annual
Design Automation Conference, pages 1–10, 2013.

[120] S.Rodrigo et al. Cost-efficient on chip routing implementations for cmp and mpsoc
systems. In In IEEE TCAD, 2011.

[121] A. Strano, D. Bertozzi, F. Trivino, J. Sanchez, F. Alfaro, and J. Flich. Osr-lite: Fast
and deadlock-free noc reconfiguration framework. In SAMOS, pages 86–95, 2012.

[122] T. Marescaux et al. Introducing the supergt network-on chip. In In Proceedings of
IEEE/ACM DATE, pages 116–121, 2007.

[123] S. Tai, P. Leitner, and S. Dustdar. Design by units: abstractions for human and
compute resources for elastic systems. Internet Comput., 16(4):84–88, 2012.

[124] T.D.Nguyen et al. Towards mil-std-1553b covert channel analysis. 2015.

[125] The Multi-access Edge Computing (MEC) ETSI Industry Specification Group (ISG)
and represents the views of those members who participated in this ISG. Multi-access
edge computing (mec): Framework and reference architecture. In ETSI GS MEC 003
V2.1.1, 2019.

[126] T.Hoppe et al. Security threats to automotive can networks-practical examples and
selected short-term counter measures. In In Proceedings of SAFECOMP, pages 11–25,
2008.

[127] M. Tortonesi, M. Govoni, A. Morelli, G. Riberto, C. Stefanelli, and N. Suri. Taming
the iot data deluge: An innovative information-centric service model for fog computing
applications. Future Generation Comp. Syst., 93:888–902, 2019.

[128] M. Turki and D. Bertozzi. An interconnect-centric approach to the flexible partitioning
and isolation of many-core accelerators for fog computing. In XXXIV Conference on
Design of Circuits and Integrated Systems (DCIS), 2019.

[129] V. Petrucci et al. Octopus-man: Qos-driven task management for heterogeneous mul-
ticores in warehouse-scale computers. In in HPCA, 2015.

[130] P. van Stralen and A. D. Pimentel. Scenario-based design space exploration of mpsocs.
In In Proceedings of Conference on Computer Design (ICCD), page 305–312, 2010.

[131] M. Villari, M. Fazio, S. Dustdar, O. Rana, and R. Ranjan. Osmotic computing: A new
paradigm for edge/cloud integration. IEEE Cloud Computing, 3(6):76–83, Nov 2016.

115

BIBLIOGRAPHY

[132] P. Vogel, A. Marongiu, and L. Benini. Lightweight virtual memory support for zero-
copy sharing of pointer-rich data structures in heterogeneous embedded socs. IEEE
Transactions on Parallel and Distributed Systems, 28(7):1947–1959, July 2017.

[133] M. Vögler, J. M. Schleicher, C. Inzinger, and S. Dustdar. Optimizing elastic iot appli-
cation deployments. IEEE Transactions on Services Computing, 11(5):879–892, Sep.
2018.

[134] W. Otte et al. Partitioning and task transfer on noc-based many-core processors in
the avionics domain.f6com: A component model for resource-constrained and dynamic
space-based computing environments. In In Proceedings of ISORC, pages 19–21, 2013.

[135] W. Quan et al. A hybrid task mapping algorithm for heterogeneous mpsocs. TECS’15,
2015.

[136] A. Weichslgartner, D. Gangadharan, S. Wildermann, M. Glaß, and J. Teich. DAARM:
Design-time application analysis and runtime mapping for predictable execution in
many-core systems. In In Proceedings of the International Conference on Hardware/-
Software Codesign and System Synthesis, 2014.

[137] S. Wildermann and F. Reimann et al. Symbolic design space exploration for multi-
mode reconfigurable systems. In In Proceedings of the International Conference on
Hardware/Software Codesign and System Synthesis, pages 129–138, 2011.

[138] S. Wildermann and T. Ziermann et al. Game-theoretic analysis of decentralized core
allocation schemes on many-core systems. In In Proceedings of Design, Automation
Test in Europe Conference Exhibition (DATE), pages 1498–1503, 2013.

[139] D. William and T. Brian. Principles and Practices of Interconnection Networks. Mor-
gan Kaufmann Publishers Inc., San Francisco, CA, USA, 2003.

[140] J. Wu, B. Zhou, D. Qian, M. Xie, and W. Chen. Elastic resource allocation in the
cloud. In 2013 IEEE 16th International Conference on Computational Science and
Engineering, pages 1338–1342, 2013.

[141] Y. Ding et al. Qos aware dynamic time-slice tuning. In in IISWC, 2014.

[142] Y. Wang et al. Efficient timing channel protection for on-chip networks. In In Pro-
ceedings of IEEE/ACM NoCs, pages 142–151, 2012.

[143] Y. Wang et al. Efficient timing channel protection for on-chip networks. In In Pro-
ceedings of IEEE/ACM NoCs, pages 142–151, 2012.

[144] Y. Zhou et al. Cash: Supporting iaas customers with a sub-core configurable architec-
ture. In in ISCA, 2016.

116

BIBLIOGRAPHY

[145] Y. Yang, M. Interlandi, P. Grover, S. Kar, S. Amizadeh, and M. Weimer. Coded elastic
computing, 2018.

[146] Y.Lin and H. Shen. CloudFog: Leveraging Fog to Extend Cloud Gaming for Thin-
Client MMOG with High Quality of Service. In IEEE TPDS, pages 431–445. IEEE,
2017.

[147] A. Yousefpour, C. Fung, T. Nguyan, K. Kadiyala, F. Jalali, A. Niakanlahiji, J. Kong,
and J. Jue. All one needs to know about fog computing and related edge computing
paradigms: A complete survey. In Journal of Systems Architecture, 2019.

[148] W. Yu, F. Liang, X. He, W. G. Hatcher, C. Lu, J. Lin, and X. Yang. A survey on the
edge computing for the internet of things. IEEE Access, 6:6900–6919, 2018.

[149] B. Zhang, N. Mor, J. Kolb, D. Chan, N. Goyal, K. Lutz, E. Allman, J. Wawrzynek,
E. Lee, and J. Kubiatowicz. The cloud is not enough: Saving iot from the cloud. In
7th UNENIX Workshop on Hot Topics in Cloud Computing, 2016.

[150] X. Zhang, J. Schiffman, S. Gibbs, A. Kunjithapatham, and S. Jeong. Securing elastic
applications on mobile devices for cloud computing. In Proceedings of the 2009 ACM
Workshop on Cloud Computing Security, CCSW ’09, pages 127–134, New York, NY,
USA, 2009. ACM.

[151] S. Zhuravlev, J. Saez, S. Blagodurov, A. Fedorova, and M. Prieto. Survey of scheduling
techniques for addressing shared resources in multicore processors. In ACM Comput.
Surv, page 28 pages, 2012.

117

