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Abstract

Observations of the Cosmic Microwave Background (CMB) have substantially
changed how humanity perceived the Universe. Planck satellite measured the
temperature anisotropy with unprecedented precision, but we have only begun
to tap the information encoded in CMB polarization and CMB lensing. Hence,
lines of investigation seeking to extract information from the CMB beyond that
contained in its temperature anisotropies are particularly timing. Both these
lines of research are explored in this thesis.
In the first part, we will indeed explore the possibility of extracting new informa-
tion from CMB polarization. The idea is to infer, from the parity-violating power
spectra (e.g., EB and TB) and the CMB circular polarization power spectrum, the
optical properties of our Universe. We will discuss our formalism which describes
the in-vacuo conversion between polarization states of propagating radiation, also
known as generalized Faraday effect (GFE), in a cosmological context. Then,
thinking of GFE as a potential tracer of new, isotropy- and/or parity-violating
physics, we will recast the GFE parameters as the components of an effective
“cosmic susceptibility tensor”. For the case of a wavenumber-independent sus-
ceptibility tensor, we will also derive constraints using the current linear and
circular polarization data.
In the second part of this thesis, we will analyze the impact of masking bright
extragalactic sources on both the reconstructed CMB lensing potential and the
lensed CMB power spectra. This is particularly relevant for future data, where
large populations of extragalactic sources will be resolved. We will assess this bias
using realistic numerical simulations which include non-Gaussian correlated maps
of the CMB lensing convergence, tSZ and CIB emission at various frequencies as
well as a halo catalogue.
In the last part of this thesis, we will discuss the prospects of both these two
projects in view of the future CMB experiments.
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Introduction

The Cosmic Microwave Background (CMB) is the oldest light of the Universe,
dating back to about 400 000 years after the Big Bang, when the Universe moved
from opaque to transparent.
Our knowledge about the Universe, its history and its composition, is mainly due
to the crucial observation of this radiation, that allowed us to test the predictions
of the Hot Big Bang model and to compare different cosmological models with
each other. We might say that CMB observation enable us to set a milestone for
the confirmation of the standard cosmological model (ΛCDM).

The CMB was detected for the first time in 1964 by Arno Penzias and Robert
Wilson, that observed by chance an isotropic and homogeneous noise in the
microwave band, with an equivalent black-body temperature of about 3 K [1].
Then, thanks to the pioneering satellite experiment named COBE (Cosmic
Background Explorer), launched in 1989, we have been able to also detect the
temperature anisotropies (∆T/T < 10−5) of this radiation.

After COBE, several ground-based and satellite experiments have followed,
having as main goal the measurement of the CMB temperature anisotropies
with increasing angular resolution and accuracy. The dramatic technological
improvement culminated in the Planck satellite by ESA, launched in 2009 [2].
These measurements have allowed us to get tight constraints on cosmological
parameters, addressing questions about the structure, evolution, content, age
and ultimate fate of our Universe.

Additionally, more recently, it has been discovered that the CMB radiation is
also partially linearly polarized, with polarization anisotropies having an ampli-
tude of about 10% of temperature anisotropies [3]. There are two CMB linear
polarization modes, the E-modes and the B-modes, which have different behavior
under a parity transformation. This explains the nomenclature, chosen in analogy
with electric and magnetic fields.



Alongside these modes, we have also to mention the so-called V-modes, describing
the degree of circularly polarized CMB radiation. The CMB anisotropies are
expected to be linearly polarized by Compton scattering at the epoch of recombi-
nation. The circular polarization of CMB is therefore usually taken to be zero.
Nevertheless, a primordial degree of circular polarization is not observationally
excluded [4, 5], and, indeed, there are several standard and non-standard mecha-
nisms which could generate it. Part of the original work discussed in this thesis
is related to the studies of CMB circular polarization. The V-mode polarization
can be a powerful tool for constraining new physics beyond the standard model.

In the Planck legacy release of 2018, the collaboration delivered the ultimate
measurement of CMB temperature anisotropies in terms of accuracy with the
first small scale (E-mode) polarization measurement on large sky fractions [6].
Definitely, Planck has almost exhausted all the information contained in the
temperature field of the CMB, but we have only begun to tap the information en-
coded in CMB polarization. Constraining Cosmology through CMB polarization
is indeed the focus of the next-decade experiments.

In this context, the so-called B-modes of CMB polarization are the key
observable of the coming decade. These modes represent the imprinting, in the
CMB polarization maps, of the gravitational waves emitted during a brief phase
of accelerated expansion occurring in the primordial stages of our Universe, called
inflation.
The measurement of B-modes on large angular scales will be the focus of LiteBIRD
satellite, recently approved by the JAXA (Japan Aerospace Exploration Agency),
whose launch is expected in the next decade [7]. Alongside future space missions,
ground-based experiments must be also mentioned, including Simons Observatory
(SO) [8] and CMB-Stage4 (CMB-S4) [9], which are complementary to LiteBIRD
satellite and will target the measurement of CMB polarization at small angular
scales and high angular resolution. SO is expected to start observations in the
early 2020s, while the construction phase of CMB-S4 is planned to start in 2021.

Despite its incredible successes, ΛCDM still cannot explain fundamental
concepts in the understanding of our Universe, that, at the moment, is based on
unknown entities like dark energy, dark matter and inflation. The ΛCDM model
might be seen as an approximation to a more realistic scenario that still needs to
be fully understood. In the next decade, the main challenge would be to answer
this question, and the CMB polarization will help us to fulfill this task.

To this picture, we have to further add another important piece.
The CMB anisotropies can be indeed distinguished in two types depending on the
epoch in which these were originated. The primary anisotropies are imprinted
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at the CMB last scattering surface1 and, hence, due to effects that occur at the
time of recombination and before. They provide us an unparalleled probe of
the primordial density fluctuations that seeded large-scale structure formation,
opening a window on the primordial Universe.
The secondary anisotropies are instead generated by processes happening after
recombination. Among them, it is worth mentioning the gravitational lensing,
i.e. the slight distortion suffered by the temperature and the polarization fields,
generated when the CMB photons pass close to large distributions of matter. As
predicted by General Relativity, indeed, light is deflected by the gravitational
field generated by matter.
The gravitational lensing generates a spurious B-mode component that acts as a
contaminant for all the measurements of primordial B-modes. Thus to constrain
the primordial gravitational wave background and the physics of inflation, it has
to be accounted for in the analysis and potentially removed from CMB maps.

Moreover, the CMB lensing is, without any doubt, one of the crucial ob-
servables of 2020’s Cosmology, as it provides an invaluable tool to reconstruct
the integrated distribution of matter in the Universe, including dark matter,
and to place even more stringent constraints on neutrino masses. Hence, a
not completely exhaustive comprehension of this effect could preclude us the
possibility of constraining Cosmology, or even the chance to faithfully reconstruct
the spectrum of primordial B modes.
The lensing power spectrum, reconstructed from CMB maps, is, however, strongly
influenced by the way the initial CMB maps are masked; in other words by how
the regions most contaminated by signals other than the CMB (generally known
as foregrounds) are removed from the analysis [10]. The increase in angular
resolution of future experiments will allow us to observe the sky in more detail,
revealing a growing number of particularly bright point sources (e.g. clusters
of galaxies) that will have to be masked. To avoid biased estimate of both the
CMB lensing potential and the CMB unlensed field, studying the effect of these
masks is crucial, since it may impact substantially forthcoming high-resolution
experiments, such as SO and CMB-S4.

The purpose of this thesis can be framed into the questions: Which information
can be still extracted from the CMB? How to extract this information in a reliable
way?

1CMB radiation appears to come from a spherical surface around the observer such that
the radius of the shell is the distance each photon has travelled since it was last scattered at
the epoch of recombination. This surface is what is called the last scattering surface.
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The thesis is organized as follows:

1. In Chpt. 1, we introduce the theoretical background of CMB radiation,
laying the essential tools for the comprehension of the next chapters. We
start with a brief description of the processes giving rise to this radiation.
Then, we present the full set of Boltzmann equations for the evolution of
cosmological perturbations, providing a formal integration of this set of
equations. Finally, we derive the expressions for the angular power spectra
sourced by both scalar and tensor primordial perturbations. We show how
their peculiar shapes encode information on cosmological parameters.

2. In Chpt. 2, we go beyond the picture outlined in Chpt. 1. We review the
cosmic birefringence, presenting also the state-of-the-art measurements.
Moreover, we introduce the CMB circular polarization, discussing the possi-
bility that it can be generated by standard model extensions. We also review
the most recent experiments that have measured it. In this chapter, we
present then our unified model, a phenomenological framework describing
the mixing of different polarization states during CMB photon propagation.
This mixing is known as generalized Faraday effect (GFE). In the last part
of this chapter, we interpret GFE as the result of light propagating into a
medium with an anisotropic and/or parity-violating susceptibility tensor.
Finally, we present bounds on GFE from current cosmological data in the
case of a wavenumber-independent susceptibility tensor.
The results presented in this chapter are based on the following paper:

- [11, M. Lembo, M. Lattanzi, L. Pagano, A. Gruppuso, P. Natoli, F.
Forastieri, Through a dark crystal: CMB polarization as a tool to
constrain the optical properties of the Universe]

3. Chpt. 3 can be divided into two parts. In the first, we introduce the CMB
lensing theory, extracting the modifications induced on the CMB power
spectra. Then, we discuss how to reconstruct the lensing potential from the
observed CMB maps, focusing on the lensing reconstruction pipeline that
we use in the second part of this chapter. In the second part, we assess the
impact of masking bright extragalactic sources on CMB maps and, indeed
on the lensing reconstruction itself. We explore this fundamental topic in
view of the next-decade CMB experiments.
The results presented in this chapter are based on the following papers:

− 8 −



- [12, G. Fabbian, J. Carron, A. Lewis, M. Lembo, Lensed CMB power
spectrum biases from masking extragalactic sources ]

- [13, M. Lembo, G. Fabbian, J. Carron, A. Lewis CMB lensing recon-
struction biases from masking extragalactic sources ]

4. In Chpt. 4, we provide an overview of the state-of-the-art CMB measure-
ments, highlighting the achievements and the open questions that have
to be addressed. Then, we discuss the near-future experiments, placing
our works in this context. In particular, we discuss the implications of the
results reported in Chpt. 2 and Chpt. 3 for next-generation experiments.





1
The Cosmic Microwave Background

Much of what we know about the origin and early history of the Universe
comes from a relic radiation discovered by chance more than 50 years ago: the
Cosmic Microwave Background (CMB).
In 1948, this radiation was hypothesized as a probe of the Hot Big Bang model,
by Alpher and Herman, following the arguments by Gamow [14,15].
The CMB was actually observed for the first time in 1964, when two researchers
of the Bell Industries, Arno Penzias and Robert Wilson, working with a Dicke
radiometer, accidentally bumped into a temperature excess of about 4.2 K. They
were looking at an isotropic radiation in the radio-microwave region of the
electromagnetic spectrum, a panoramic snapshot of the Universe around 400.000
years after the Big Bang, when photons started to travel freely through space
rather than constantly being scattered by electrons and protons in plasma.
Fourteen years later, Penzias and Wilson received the Nobel Prize in physics for
this discovery.

After this first observation, many (ground-based, airborne and space) ex-
periments came one after another targeting this microwave radiation from the
early Universe. The first accurate measurements of the CMB frequency spectrum
and the first detection of small temperature anisotropies (δT/T ∼ 10−5) were
performed by the COBE (COsmic Background Explorer) satellite launched by
NASA in 1992 [16]. The scientific goals reached were: a full sky map of the
CMB radiation, showing the small temperature fluctuations at large angular
scales, and a remarkably precise measurement of the black body spectrum with
T = 2.72548± 0.00057 K. This was a turning point for modern Cosmology since
these anisotropies can be traced back to small quantum fluctuations in the early
Universe, and paved the way for the new generation space missions.
WMAP (Wilkinson Microwave Anisotropy Probe) of NASA [3] and Planck of



ESA [2], launched in 2001 and 2009 respectively, were devoted to fully analyze
the anisotropies with an improved sensitivity and angular resolution.
In 2018, Planck collaboration, made up of hundreds of scientists around the
world, delivered the ultimate measurement of CMB temperature anisotropies in
terms of accuracy together with the first polarization measurement on large sky
fractions [6].
CMB radiation, in fact, is also linearly polarized at the ' 10% level (δP ∼ 0.1 δT ).
The first detection was actually achieved by DASI (Degree Angular Scale Inter-
ferometer) instruments in 2002 [17]. This degree of polarization is mainly due to
Thomson scattering during the epoch of recombination (please see Sec. 1.1 and
Sec. 1.2.1.1 for details).

Figure 1.1: CMB radiation as seen by COBE, WMAP and Planck,
from left to right. For comparison, on the right, a picture of Earth

showing the increase in resolution and sensitivity.

Thanks to these measurements with unprecedented precision, Planck provided
the most accurate estimates of several key cosmological parameters. Nevertheless,
we have only begun to tap the information encoded in the CMB radiation.
Constraining Cosmology through CMB polarization is, indeed, the focus of the
next-decades experiments, such as LiteBIRD satellite [7], recently approved by the
JAXA (Japan Aerospace Exploration Agency) or the ground-based experiments,
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THE COSMIC MICROWAVE BACKGROUND

like Simons Observatory [8] and CMB-Stage4 [9]. See Chpt. 4 for more details
about next-generation CMB experiments.
CMB polarization together with the CMB lensing (discussed in more detail in
Chpt. 2 and Chpt. 3, respectively) are truly 21st century-phenomena, that will
allow us to to test, confirm or rule out cosmological models and our understanding
of the fundamental physical laws of the Universe we live in.

This chapter is organized as an overview of the CMB theory, laying the
essential tools for the comprehension of the next chapters. After a brief description
of the thermal history of the early Universe, in Sec. 1.1, the main steps to write
the Boltzmann equations for photons are outlined in Sec. 1.2. All the information
about the formation and the evolution of CMB anisotropies are encoded in these
two coupled differential equations, one for temperature and one for polarization
anisotropies. At the end of this section, a formal integration of this set of
equations, following the line of sight approach introduced by U. Seljak and M.
Zaldarriaga in 1996 [18], is also provided. In Sec. 1.3, we finally construct the
auto- and cross-correlation power spectra describing their peculiar shapes and
outlining their dependencies on cosmological parameters, Sec. 1.4.

1.1 A brief thermal history of early time

We are living in an expanding and adiabatically cooling Universe (a prediction
of the Hot Big Bang model). Hence, going back in time means meeting epochs
with increasing temperatures and energies. If we push this concept to the extreme,
we inevitably reach a singularity, a point of infinite density, temperature and
gravity, where (or when) the Einstein theory of General Relativity is not able
to describe anymore what is going on. This initial singularity, called Big Bang,
is located at a finite time in the past, around 13.78 billion years ago. The
measurement of the age of the Universe is another achievement that was possible
thanks to CMB observations [19].

After the Big Bang, the Universe has experienced an epoch of exponential
expansion called inflation. This epoch was theorized about 50 years ago by
several theoretical physicists, notably Alexei Starobinsky, Alan Guth and Andrei
Linde. Beside solving some problems of the standard cosmological model (e.g.
flatness and horizon problems), inflation provides an elegant explanation to the
homogeneity and isotropy of the Universe, seeding the primordial perturbations
(of both kinds, scalar and tensor). These perturbations are therefore the imprint
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A brief thermal history of early time

generated by the inflaton field (i.e. the hypothetical scalar field which has driven
cosmic inflation) during the accelerated expansion. This means that measuring
the amplitudes of these perturbations can provide us information on the energy
scale of inflation. We will shortly come back to this point in the last section of
this chapter, Sec. 1.4.
Nevertheless, the inflationary paradigm is not the subject of this thesis and we
limit ourselves to start our brief description of the Universe thermal history
from times (and energies) where the Universe was composed by all the species
described in the standard model of particles. Interested readers might see e.g.
Refs. [20–24].

Hence, considering our starting point the end of inflation, the CMB radiation
is the final result of a chain of processes which can be described through strong
and electroweak interactions of the standard model of particles.
The first relevant event is baryogenesis, the production of a slight matter-
antimatter asymmetry that will evolve in the imbalance of particles and an-
tiparticles seen in the today observed Universe. The origin of this process is still
a matter of discussion.
Baryogenesis could be the result (i.e. the observable) of the first symmetry
breaking phase transition predicted by the standard model of particles, the
so-called electroweak phase transition. It occurred ∼ 10−12 seconds after the Big
Bang, when the temperature was ∼ 1015 K. This transition, through the Higgs
mechanism, leads particles to have mass. See e.g. Refs. [25, 26] for details.
At the end of this phase, the Universe was a plasma mainly filled by leptons
and quarks. The latter behaved like free particles since the coupling constant for
strong interactions was still small enough. Usually this state is called quark-gluon
plasma. As the Universe cooled further, at the temperature of ∼ 1012 K, quarks
passed from being free in the quark-gluon plasma to be confined into hadrons
due to strong interaction. The standard model of particles predicts here the
second and last phase transition, the so-called quantum chromodynamics phase
transition. At this point the only relativistic particles left in the primordial soup
were photons, neutrinos and electrons.

Going further, when the Universe was ∼ 1 second old, neutrinos, which have
been in equilibrium due to weak interactions, such as

ν̄ + ν 
 e+ + e− and e− + ν̄ 
 e− + ν̄ , (1.1)

started decoupling and propagating freely, with their distribution temperature
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THE COSMIC MICROWAVE BACKGROUND

scaling as a−1 1. This process happened when the temperature of the Universe
was the same of a supernovae, ∼ 1010 K.

When the temperature dropped below 109 K (t ∼ 10 s), the Universe went
through a period where the temperature and density of the baryon component
(protons and neutrons) allowed nuclear reactions to be efficient in building nuclei.
This phase is called the Big Bang Nucleosynthesis (BBN) [27]. Initially, nuclear
reactions between neutrons and protons form deuterium

n+ p 
 D + γ . (1.2)

However, the temperature was still high enough, so many photons have an energy
greater than the binding energy of deuterium 2. At this stage, any deuterium
that was formed was immediately destroyed. This impasse at the beginning of
BBN is called deuterium bottleneck. Once this deadlock is overcome, heavier
nuclei starts to form, in particular tritium, 3H, and helium 3He, 4He. As the light
elements production ends, other elements have been produced in relatively low
abundance such as lithium 7Li, and beryllium 7Be, but the synthesis of heavier
elements is hampered by the absence of stable mass-8 nuclei.
After 103 seconds from the Big Bang, T ∼ 107 K, the BBN can be considered as
ended and the baryon content is now divided into ∼ 75% of H nuclei (i.e. free
protons), ∼ 25% of 4He nuclei and traces of other elements, mainly D, 3H, 7Li,
7Be.The primordial soup is now made of e−, survived to electron-positron annihi-
lation due to matter-antimatter asymmetry, γ, p and light nuclei produced during
BBN. In the following, we neglect the number of helium atoms forming during
recombination. Moreover, the neutrinos do not influence directly the dynamics
of this epoch, since they have already started to free-stream.
The thermal equilibrium is still valid through reactions such as e− + p 
 H + γ,
where neutral hydrogen atoms are continuously formed and then ionized due to
interaction with photons. On the other hand, photons and electrons are tightly
coupled via Compton scattering, while electrons and protons strongly interact via
Coulomb scattering. In this situation of thermal equilibrium, Teq = T , the num-
ber densities ni follow the Maxwell-Boltzmann distribution for non-relativistic

1Also known as Robertson Walker scale factor, a ≡ a(t) is the dimensionless scale factor of
the expansion. Moreover, the Hubble parameter (i.e. the expansion rate of the Universe) is
define as H ≡ ȧ(t)/a(t). We will come back later on this factor, Eq. 1.26.

2The binding energy of deuterium is ∼ 2225 keV.
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A brief thermal history of early time

Figure 1.2: BBN timeline [28].

particles (T < mi) [29]

ni = gi

(
miT

2π

)3/2

e−
mi
T , i = e(= e−), p and H ; (1.3)

where gi is the statistical weight and mi the mass of the particle i. Using Eq. 1.3
in the equilibrium abundance ratio among hydrogen atoms, protons and electrons

nenp
nH

=
gegp
gH

(
memp

mH

)3/2 (
T

2π

)3/2

e−
(me+mp−mH)

T '
(
meT

2π

)3/2

e−
BH
T , (1.4)

where BH ≡ (me +mp −mH) is the binding energy of the hydrogen atom,
ge = gp = 2 and gH = 4. In the prefactor, we have used mH ' mp.
Because of the neutrality of the Universe, we can assume np = ne. Moreover,
since we are neglecting the relatively small number of helium atoms, np + nH
is equal to the the baryon density, nb ∼ 10−9T 3. Therefore, defining the free
electron fraction as

Xe ≡
ne

npnH
, (1.5)

Eq. 1.4 reads
X2
e

1−Xe

=
109

T 3

(
meT

2π

)3/2

e−
BH
T . (1.6)

This equation is known as Saha equation. As long as T & BH , Xe is ≈ 1, i.e. all
hydrogen is ionized. While, when T becomes well below BH , the right side of
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THE COSMIC MICROWAVE BACKGROUND

Eq. 1.6 decreases very rapidly and Xe goes fast to zero, i.e. hydrogen atoms are
forming.

The recombination temperature, Trec is usually defined as the tempera-
ture when almost 90% of electrons are already bounded into hydrogen atoms,
Xe (Trec) ∼ 0.1. Hence, using Saha equation, Trec ' 0.3 eV ' 3600 K, implying a
recombination redshift zrec ' 13203.
Recombination happens when the Universe is already dominated by matter4 and,
using the fact that the scale factor goes as

a (t) =

(
t

t0

)2/3

, (1.7)

the time of recombination is trec ≈ 290000 yrs.
Before recombination, free electrons interacted frequently with photons

through Thomson scattering

e+ γ 
 e+ γ , (1.8)

but, when hydrogen recombines, the free electron density drops down quickly
and photons inside the plasma no longer interact. They start to free stream in a
neutral Universe. This process takes the name of photon decoupling.

We can evaluate the temperature of decoupling by considering that Compton
scattering is efficient until Γ & H, where Γ is the scattering rate and H is Hubble
rate of expansion. Therefore, Γ (Tdec) ∼ H (Tdec) implies Tdec ' 0.27eV ' K.
Following the above calculation, zdec ' 1100 and tdec ' 380000 yrs. This is the
last moment when photons interact with the primordial plasma, the so-called
Last Scattering Surface (LSS). It is worth highlighting that, even if the two events
(recombination and decoupling) are quite close in time, they originate a last
scattering layer. Nevertheless, comparing its size (thickness) with the Universe
time scale, it can be considered a surface.
From now on, photons are free to travel in the Universe that is, now, transparent
to electromagnetic radiation. These photons, carrying on information of the
pre-last-scattering Universe, combine together and form the relic radiation known
as Cosmic Microwave Background (CMB) radiation: one of the most important
discoveries of mankind.

3Trec = T0 (1 + zrec), with T0 the photon temperature today.
4The Universe is supposed to be dominate by different components during its timeline. At

very early time, most of the energy in the Universe was in the form of radiation. Nevertheless,
since the energy of a relativistic particle falls as 1/a while that of non relativistic matter remains
constant at m, matter overtook radation. At relatively recent times, the Universe seems to be
dominated by another component whose density remains constant with time, dark energy.
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Before moving on, it is worth underlining that the physics behind the decou-
pling cannot be explained only using the Saha equation, see Fig. 1.3. We need a
complete discussion through the Boltzmann equation, as we will see in the next
section.

Figure 1.3: Free electron fraction as function of redshift [29].

1.2 Boltzmann equation for photons

To derive the fluctuations of the CMB radiation, we will have to follow the
complicated set of interactions between all the components until recombination.
The photons are affected by gravity and by Compton scattering with free elec-
trons. The latter are tightly coupled to protons by Coulomb interaction. Both
are affected by gravity. The metric (scalar and tensor) perturbations couple grav-
itationally to all these components in the primordial plasma, including neutrinos
and dark matter. Thus, to solve for the photon distributions, we need to solve
the other components, see Fig 1.4.

The main tool for doing this is the Boltzmann equation, that schematically
can be written as

df

dt
= C [f ] , (1.9)
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Figure 1.4: The intricate ways in which the different components of
the Universe interact with each other. Based on [29].

where f is the phase-space distribution function of a single species and C is
the collision term, that, in principle, can depend on the distribution functions
of several species, i.e. we will have coupled equations. In absence of collisions,
the distribution function clearly obeys to the collisionless Boltzmann equations
df/dt = 0, also known as Liouville equation.
We are interested in the evolution of the photon distribution function, fγ ≡ f .
Photons mostly interact with the electrons, so Eq. 1.9 reads

df

dt
= C [f, fe] . (1.10)

Nevertheless, due to Coulomb scattering, electrons are strongly coupled to the
rest of the plasma. For this reason, electrons and baryons can be treated as a
single tightly-coupled fluid and it makes no difference to think at the right-hand
side of Eq. 1.10 as the photon-electron or photon-baryon coupling term.

The common procedure to write down the full Boltzmann equation for photons
consists in spitting the problem in half, calculating the collision term alone and
the Liouville equation separately. Moreover, the former is usually computed
assuming the Thomson amplitude as constant and independent on propagation
direction and polarization of the radiation. In this way, we are only accounting
for temperature anisotropies. For more detail about this calculation, see [29].

For the purpose of this thesis, we include polarization from the beginning. As
we will see in the next section, Sec. 1.2.1, Thomson scattering couples the total
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intensity of radiation with its polarization. Therefore, it is convenient to adopt
the density matrix formalism [30].
The density matrix, ρ, for a system of photons, in terms of the Stokes parameters
(please see App. C for a review), can be written as

ρ =

 I +Q U − iV

U − iV I −Q

 =

=
1

2
(I1+Qσ3 + Uσ1 + V σ2) , (1.11)

where 1 is the identity matrix and σi are the Pauli spin matrices. Following [30],
the Boltzmann equation for the density matrix, a generalization of Eq. 1.10, can
be written as

dρij(p)

dt
= − 1

2Ξ p0

∫ +∞

−∞
〈
[
HI(t),

[
HI(0), D0

ij(p)
]]
〉 ≡ C . (1.12)

The right-hand side, C, is simply the collision term, with HI the interaction
Hamiltonian describing Compton scattering of photons off electrons 5. Dab(p)

is the photon number operator, Dij(p) ≡ a†i(p
′)aj(p), with the superscript

(0) referring to the free-field operators. {a†r, ar} are the photon creation and
annihilation operators. The expectation value of D is related to the density
matrix through the constant Ξ, 〈Dab(p)〉 = Ξ p0 ρab(p).

In the next sections, we hint the calculations, computing Compton scattering
term in Sec. 1.2.1 and the collisionless equation in Sec. 1.2.2. We will assemble
all the ingredients in Sec. 1.2.3, achieving the final evolution equations for both
temperature and polarization anisotropies, starting from both scalar and tensor
perturbations.
The interested reader can find more details about these calculations in [29–33].

1.2.1 Collision term

1.2.1.1 Thomson scattering

As already mentioned in the previous section, the dominant scattering process
close to recombination is the Thomson scattering of the photons off the free

5In principle, a second coupled equation for the electron density matrix must be solved
simultaneously. However, in the early Universe, the electrons are, with good approximation, in
a thermal distribution. Therefore, the evolution of their density matrix becomes trivial.
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electrons in the plasma,

e(q) + γ(p) 
 e(q′) + γ(p′) . (1.13)

Thomson scattering is the low-energy limit of Compton scattering and is a valid
description in the regime where the photon energy is much less than the rest-mass
energy of the electron. An important feature of Thomson scattering is that an
initially unpolarized radiation can be polarized if the incident intensity varies
with direction.

Figure 1.5: Scheme of the reference frames defined for incoming and
outgoing radiation involved in Thomson scattering.

Let us describe the outgoing radiation in terms of the Stokes I , U , Q and V
parameters with the subscript out and the incoming radiation with the subscript
in.
We choose the ẑ-axis to lie in the direction of the outgoing radiation, and we
define the outgoing radiation reference frame, x̂out, ŷout, and, respectively, the
incoming radiation reference frame, x̂in, ŷin, such that x̂out and x̂in are orthogonal
to the scattering plane and, ŷout and ŷin are in the polarization plane. See Fig. 1.5.
Therefore, the Thomson scattering differential cross-section for an incident wave
with linear polarization Êin into a scattered wave with linear polarization Êout is
given by

dσ

dΩ
=

3σT
8π
|Êin · Êout|2 , (1.14)
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where σT is the total Thomson cross-section,

σT =
8π

3

(
q2
e

4πε0mec2

)2

= 6.6 · 10−25 cm2 . (1.15)

To derive the Stokes parameters of scattered radiation in terms of those of
incoming radiation, it is useful to introduce the incoming (outgoing) radiation
intensities along the x̂in and ŷin (x̂out and ŷout) directions as

Ix =
I +Q

2
; (1.16a)

Iy =
I −Q

2
. (1.16b)

The scattered intensities are [30]:

Ix, out =
3σT
8π

[
Ix, in (ε̂x, in · ε̂x, out)

2 + Iy, in (ε̂y, in · ε̂x, out)
2] =

=
3σT
16π

Iin ; (1.17a)

Iy, out =
3σT
8π

[
Ix, in (ε̂x, in · ε̂y, out)

2 + Iy, in (ε̂y, in · ε̂y, out)
2] =

=
3σT
16π

Iin cos2 θ , (1.17b)

where ε̂j, in(out) are the unit vectors along the j = x, y directions and cos θ ≡
ε̂y, in · ε̂y, out.
Thus, using Eq. 1.16, the Stokes parameters of the scattered radiation in terms
of the incoming radiation intensity reads

Iout =
3σT
16π

Iin
(
1 + cos2 θ

)
; (1.18a)

Qout =
3σT
16π

Iin sin2 θ . (1.18b)

This calculation gives no information about the Stokes U or V parameters. As
will be shown later, the V parameter remains zero after Thomson scattering. In
other words, circular polarization is not expected to be present at the time of last
scattering. As we will see later, it can be generated by known physics as CMB
photons propagate across the Universe [34–38], but only in tiny amounts; however,
physics beyond the standard model might be responsible for the generation of a
larger amount of circular polarization [39–47].
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The Stokes U is, instead, zero only in this reference frame. Therefore, rotating the
{xin , yin} reference frame by an angle φ, and using the transformation properties
of the Stokes Q and U parameters (see App. C), we get

Iout =
3σT
16π

∫
dΩ
(
1 + cos2 θ

)
Iin(θ, φ) ; (1.19a)

Qout =
3σT
16π

∫
dΩ sin2 θ cos 2φIin(θ, φ) ; (1.19b)

Uout = −3σT
16π

∫
dΩ sin2 θ sin 2φIin(θ, φ) . (1.19c)

We have also integrated over all the incoming directions. Eq. 1.18 is, indeed, valid
for a single incoming propagation direction at a time. It is interesting to note
that the outgoing polarization state depends only on the intensity distribution of
the unpolarized incident radiation.
Then, simply expanding the intensity of the incident radiation in spherical
harmonics,

Iin (θ, φ) =
∑
`m

a`mY`,m (θ, φ) , (1.20)

leads to the following

Iout =
3σT
16π

[8

3

√
π a00 +

4

3

√
π

5
a20

]
; (1.21a)

Qout =
3σT
4π

√
2π

15
Re a22 ; (1.21b)

Uout = −3σT
4π

√
2π

15
Im a22 . (1.21c)

These expressions are telling us the already anticipated important property of the
Thomson scattering: the outgoing radiation originating from the scattering of an
originally unpolarized radiation gets linearly polarized if the incoming radiation
has a non-zero quadrupole.
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1.2.1.2 (A hint of ) Computation of the scattering term

In the following, the calculation for the right-hand side of Eq. 1.12 is outlined.
The full calculation are performed in [30]. This term is quite lengthy to evaluate
since it is quadratic in the interaction Hamiltonian

HI ≡ HQED(t) =

∫
d3x HQED , (1.22a)

with
HQED(x) = −e : ψ(x)A(x)ψ(x) : , (1.22b)

where ψ is the electron field operator, A ≡ Aµγµ is the photon field operator
contracted with the covariant gamma matrices, and : ... : means normal order-
ing of the operator product [48]. After some math, the resulting interaction
Hamiltonian can be re-arranged as

H0
I (t) =

∫
d3qme

(2π)3 q0

d3q′me

(2π)3 q′0
d3p

(2π)3 2p0

d3p′

(2π)3 2p′0
(2π)3δ3 (q′ + p′ − q− p) ×

× exp
[
i
(
q′0 + p′0 − q0 − p0

)
t
][
b†r′(q

′)a†s′(p
′) (M1 +M2) as(p)br(q)

]
, (1.23a)

where the scattering matrices are

M1 ≡ e2 ur′(q
′)εs′(p

′) [p+ q +me] εs(p)ur(q)

2 (p · q)
; (1.23b)

M2 ≡ −e2 ur′(q
′)εs′(p

′) [q − p+me] εs(p)ur(q)

2 (p′ · q)
. (1.23c)

In the previous expression the summation convention over repeated spin and
polarization indices is always implied and

• q and q′ are the electrons momenta;

• p and p′ are the photons momenta;

• ur is the spinor solution to the Dirac equation with spin index r = 1, 2;

• εµs is the photon four-vector, chosen to be real, with index s = 1, 2 labelling
the physical transverse polarizations of the photon;

• {b†r, br} and {a†r, ar} are the creation and annihilation operators for photons
and electrons, respectively.
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After substituting Eq. 1.23 in Eq. 1.12, the collision term can be written as

C[x,p] =

− e4

16 p

∫
d3q

(2π)3 q0

d3p′

(2π)3 2p0

1

E(q + p− p′)
δ
(
E(q + p− p′) + p′ − E(q)− p

)
×

×
[
ne(x,q) δs2s′1

(
δis1 ρs′2j(x,p) + δjs′2 ρis1(x,p)

)
− 2ne(p,q

′) δis1 δjs′2 ρs′1s2(x,p
′)

]
×

×
{
S
[(

εs′1(p
′) · εs1(p)

)(
εs′2(p) · εs2(p

′)

)
−
(
εs1(p) · εs2(p

′)

)(
εs′1(p

′) · εs′2(p)

)
+

+ δs′1s2 δs1s′2

]
+

+ 2

[(
εs′1(p

′) · εs1(p)

)(
εs′2(p) · εs2(p

′)

)
+

(
εs1(p) · εs2(p

′)

)(
εs′1(p

′) · εs′2(p)

)
+

− δs′1s2 δs1s′2

]}
, (1.24)

where S ≡
(
q · p′
q · p + q · p

q · p′
)
, E(q) =

(
q2 + m2

e

)1/2

is the energy of an electron

with momentum q and ne (x,q) is the unpolarized thermal Maxwell-Boltzmann
distribution.

It is safe to assume that the photons and electrons kinetic energies are small
compared to the electron mass, so that p� me and q � me. Moreover, in the
tight coupling regime, the temperatures of photons and electrons are the same,
implying that the kinetic energy of the photons are much smaller than those of
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electrons, p� q. Under these assumption Eq. 1.24 becomes

dρij(x,p)

dt
= C[x,p] =

=
e4ne(x)

16πm2
e p

∫ ∞
0

dp′ p′
∫

dΩ

4π

[
δ
(
p− p′

)
+
(
p− p′

)
· v(x)

∂δ
(
p− p′

)
∂p′

]
×

×
{
− 2

(
p′

p
+
p

p′

)
ρij(x,p) + 4

(
p̂′ · ε̂i(p)

)(
p̂′ · ε̂1(p)

)
ρ1j(x,p) +

+ 4

(
p̂′ · ε̂i(p)

)(
p̂′ · ε̂2(p)

)
ρ2j(x,p) +

(
p′

p
+
p

p′
− 2

)
δij

(
ρ11(x,p′) + ρ22(x,p′)

)
+

+

(
p′

p
+
p

p′

)
×
[(
εi(p) · ε1(p′)

)(
εj(p) · ε2(p′)

)
−

+

(
εi(p) · ε2(p′)

)(
εj(p) · ε1(p′)

)](
ρ12(x,p′)− ρ21(x,p′)

)
+

+ 2

[(
εi(p) · ε1(p′)

)(
εj(p) · ε2(p′)

)
+

+

(
εi(p) · ε2(p′)

)(
εj(p) · ε1(p′)

)](
ρ12(x,p′) + ρ21(x,p′)

)
+

+ 4

(
εi(p) · ε1(p′)

)(
εj(p) · ε1(p′)

)
ρ11(x,p′) +

+ 4

(
εi(p) · ε2(p′)

)(
εj(p) · ε2(p′)

)
ρ22(x,p′)

}
(1.25)

This equation describe the evolution of the photon density matrix to the first
order in the kinematic variables. Before performing the final angular integrals,
we must consider the left-hand side of Eq. 1.12 that depends on the space-time
geometry we are interested on. This is done in the next section.

1.2.2 Collisionless Boltzmann equation

The left-side of Eq. 1.12 describes the propagation of photons in the space-
time. To deal with it we must specify the form of the metric. For the purpose
of this manuscript, we account for scalar and tensor perturbations around the
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smooth Universe described by

gµν =



1 0 0 0

0−a2(t) 0 0

0 0 −a2(t) 0

0 0 0 −a2(t)


, (1.26)

where the function a(t) is the usual cosmological scale factor. This metric, called
the Friedmann-Lemaître-Robertson-Walker (FLRW) metric6, is describing an
expanding flat Universe. Whereas the smooth Universe is characterized by a
single function, a(t), which depends only on time and not on space, the perturbed
Universe requires more functions depending on both space and time.
In the following we take into account scalar and tensor perturbations, neglecting
vector perturbations since, in absence of topological defects, they kinematically
decay as ∝ a−1 [49]. The scalar perturbations are also called density perturbations
since they arise as a result of the varying distribution of mass density across the
Universe. Whereas tensor perturbations, also known as gravity waves, are caused
by freely traveling gravitational radiation (i.e. waves).

In this case, the metric becomes

g00(x, t) = 1 + 2Φ(x, t) ;

g0i(x, t) = 0 ;

gij(x, t) = −a2(t) [(1− 2Ψ(x, t)) δij + hij(x, t)] , (1.27)

where the Roman subscripts refer to spatial indices running from 1 to 3. The
scalar perturbations, defined in the longitudinal gauge (or conformal newtonian
gauge), are given by the two scalar function, Φ and Ψ, also known as the Bardeen
potentials, while the tensor perturbations, hij, are defined in the transverse-
traceless gauge and are subject to the constraints

hii = 0 and ∂ihij = 0 . (1.28)

Note that, physically, hij precisely corresponds to gravitational wave fluctuations.
With the definition in Eq. 1.28, no residual gauge freedom remains, in contrast to
the synchronous gauge condition7. Moreover, an advantage of this gauge choice

6The metric signature is (+ - - - ), as in [30]. In Ref. [29], (- + + +) is used.
7A treatment of the cosmological perturbation theory both in the synchronous and conformal
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is that the metric perturbation Φ, in the Newtonian limit, simply corresponds to
the Newtonian potential [50].

Considering now Eq. 1.12 with no collision term on the right side

dρ

dt
=

∂ρ

∂xµ
dxµ

dt
+

∂ρ

∂pµ
dpµ

dt
= 0 , (1.29)

with xµ and pµ the photon space-time coordinate and the four-momentum,
respectively. This equation describes the evolution of a collisionless system of
photons.

We expand, to the first order in perturbations, the density matrix as

ρ(x, t, p) = ρ(0)(p, t) + ρ(1)(x, t, p) . (1.30)

Notice that, since the zero order is only unpolarized radiation, we have ρ(0)
11 =

ρ
(0)
12 = ρ

(0)
21 = ρ

(0)
22 = 0. The first-order Liouville equation with the metric

considered in Eq. 1.27 is

∂

∂t
ρ̃(1)(k, t, p, p̂) +

i

a

(
k · p̂

)
ρ̃(1)(k, t, p, p̂) − ȧ

a
p
∂

∂p
ρ̃(1)(k, t, p, p̂) +

− p
∂

∂p
ρ̃(0)(p)

[
∂

∂t
Φ̃(k, t)− ∂

∂t
Ψ̃(k, t) +

i

a

(
k · p̂

)
Φ̃(k, t) +

1

2
p̂ip̂j

∂

∂t
h̃ij(k, t)

]
= 0 ,

(1.31)

where we have performed a Fourier transform over the spatial dependence.
Before moving to the next section, where we are going to assemble these results

with the results of Sec. 1.2.1, it is worth underlining that, for scalar perturbations,
ρ̃(1) depends only on the angle between p and k, ρ̃(1)(k, t, p, p̂) = ρ̃(1)(k, t, p, µ)

with µ = k · p, while tensor perturbations exhibit an azimuthal dependency,
ρ̃(1)(k, t, p, p̂) = ρ̃(1)(k, t, p, µ)G(2φ).

1.2.3 Complete Boltzmann equation

Before writing the final set of evolution equations, both for scalar and tensor
perturbations. it is useful to convert the density matrix elements ρ̃(1)

ij to Stokes

newtonian gauge is given in [50].
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parameter brightness perturbations [30,50]

∆̃
(i)
I (k, t, p, µ) ≡ 4

p

[
∂ρ̃

(0)
11 (p, t)

∂p

]−1(
ρ̃

(1)
11 (k, t, p, µ) + ρ̃

(1)
22 (k, t, p, µ)

)
;

∆̃
(i)
Q (k, t, p, µ) ≡ 4

p

[
∂ρ̃

(0)
11 (p, t)

∂p

]−1(
ρ̃

(1)
11 (k, t, p, µ)− ρ̃(1)

22 (k, t, p, µ)
)

;

∆
(i)
U (k, t, p, µ) ≡ 4

p

[
∂ρ̃

(0)
11 (p, t)

∂p

]−1(
ρ̃

(1)
12 (k, t, p, µ) + ρ̃

(1)
21 (k, t, p, µ)

)
;

∆̃
(i)
V (k, t, p, µ) ≡ −i 4

p

[
∂ρ̃

(0)
11 (p, t)

∂p

]−1(
ρ̃

(1)
12 (k, t, p, µ)− ρ̃(1)

21 (k, t, p, µ)
)
,

(1.32)

where i stands for scalar (S) and tensor (T) perturbations. In this case ∆T = ∆I/4

is the temperature fluctuation δT/T0.
Then gathering all the results of the previous sections, we are able to write

the evolution equations in terms of Eqs. 1.32.

1.2.3.1 Scalar perturbation

˙̃∆
(S)
T + ikµ∆̃

(S)
T +

[
˙̃Ψ− ikµΦ̃

]
= −κ̇

[
∆̃

(S)
T − ∆̃

(S)
T0 + vbµ−

1

2
P2(µ)Π

]
;

˙̃∆
(S)
Q + ikµ∆̃

(S)
Q = −κ̇

[
∆̃

(S)
Q +

1

2
(1− P2(µ)) Π

]
;

˙̃∆
(S)
U + ikµ∆̃

(S)
U = −κ̇ ∆̃

(S)
U ;

˙̃∆
(S)
V + ikµ ∆̃

(S)
V = −κ̇

[
∆̃

(S)
V −

3

2
µ∆̃

(S)
V 1

]
, (1.33)

where Π = ∆̃
(S)
T2 + ∆̃

(S)
Q2 − ∆̃

(S)
Q0 and

∆̃
(S)
T (p, µ) =

∞∑
`=0

(2`+ 1)(−1)`∆̃
(S)
I` (p)P`(µ) , (1.34)

with P` the Legendre polynomial of order ` and p the comoving wave number.
The dot over variables indicates derivatives taken with respect to conformal time,
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η. We have defined the total optical depth as the integral

κ(η) =

∫ η0

η

dη κ̇(η) , with κ̇ = a(η)n̄eσT , (1.35)

where n̄e is the mean electron density.
Looking at Eq. 1.33, it is clear that, if we take into account only scalar perturba-
tions, the evolution of the brightnesses depends only on the magnitude of p and
not on its direction. Moreover, the equations for the Stokes U and the Stokes V
have no source term, meaning that, the evolution leaves U = V = 0. Regarding
V = 0, we have already clarified that, by symmetry, Thomson scattering can
not generate circular polarization. Rather, the amazing fact is that these scalar
perturbations only create polarization patterns of a particular type, known as E
modes, while B modes can be only sourced by tensor perturbations. This will be
clarified in the next section, Sec. 1.3.

1.2.3.2 Tensor perturbation

˙̄∆
(T )
T + ikµ∆̄

(T )
T = −ḣ− κ̇

[
∆̄

(T )
T + Λ

]
;

˙̄∆
(T )
P + ikµ∆̄

(T )
P = −κ̇

[
∆̄

(T )
P − Λ

]
;

˙̄∆
(T )
V + ikµ ∆̄

(T )
V = −κ̇ ∆̄

(T )
V , (1.36)

where

Λ = − 1

10
∆̄

(T )
T0 +

1

7
∆̄

(T )
T2 −

3

70
∆̄

(T )
T4 +

3

5
∆̄

(T )
P0 +

6

7
∆̄

(T )
P2 +

3

70
∆̄

(T )
Q4 . (1.37)

The bar over the brightnesses indicates the variables introduced by Polnarev
in [51], ∆̄

(T )
i , to describe the temperature and polarization perturbations generate

by gravity waves. These variables are related to the usual variables, ∆̃
(T )
i , defined
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as in Eq. 1.34, by the following

∆̃
(T )
T (k, η, p̂) =

[(
1− µ2

)
e2iφξ1(k) +

(
1− µ2

)
e−2iφξ2(k)

]
∆̄

(T )
T (k, η, µ);(

∆̃
(T )
Q + i∆̃

(T )
U

)
(k, η, p̂) =

[
(1− µ)2 e2iφξ1(k) + (1 + µ)2 e−2iφξ2(k)

]
∆̄

(T )
P (k, η, µ) ;(

∆̃
(T )
Q − i∆̃

(T )
U

)
(k, η, p̂) =

[
(1 + µ)2 e2iφξ1(k) + (1− µ)2 e−2iφξ2(k)

]
∆̄

(T )
P (k, η, µ) ,

(1.38)

where
ξ1 =

(ξ+ − iξ×)√
2

and ξ2 =
(ξ+ + iξ×)√

2
(1.39)

are the independent random variables used to characterize the statistics of the
gravity waves. These variables satisfy the following

〈ξ1∗(k1)ξ1(k2)〉 = 〈ξ2∗(k1)ξ2(k2)〉 =
Ph(k)

2
δ(k1 − k2) ; (1.40a)

〈ξ1∗(k1)ξ1(k2)〉 = 0 , (1.40b)

where Ph(k) is the primordial power spectrum of gravity waves. We will see later
the analogous for scalar perturbations.

1.2.4 Integrating the Boltzmann equations

The results of the previous sections are two sets of equations, one for each
kind of metric perturbations considered, describing the evolution of temperature
anisotropies and polarization of CMB. The next step is to write down the CMB
temperature and polarization anisotropies observed today. This is useful for
the purposes of comparing the predictions coming from this model with the
observations that we are able to perform.
Therefore, in this section we integrate, at least formally, the Boltzmann equations
up to our time, η0.

Each equation in the sets of Eqs. 1.33 and Eqs. 1.36 can be generically written
as

˙̃∆
(i)
X (η) +

(
ikµ+ κ̇(η)

)
∆̃

(i)
X (η) = Bi,X(η) , (1.41)

where only the time dependence is shown. The left-hand side of this equation
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can be arranged as

e−ikµ η+κ(η) d

dη

(
∆̃

(i)
X (η)eikµ η−κ(η)

)
= Bi,X(η) . (1.42)

Then, performing a formal integration of Eq. 1.42 along the photon past light
cone we get (

∆̃
(i)
X (η)eikµ η−κ(η)

)∣∣∣η0
0

=

∫ η0

0

dη eikµ η−κ(η) Bi,X(η) . (1.43)

Then, since κ(η0) = 0 by definition and, at early enough times, the optical depth
is large enough that e−κ(η�0) vanishes, it follows

∆̃
(i)
X (η0) =

∫ η0

0

dη eikµ (η−η0)−κ(η) Bi,X(η) . (1.44)

Moreover, expanding ∆̃
(i)
X into Legendre polynomials through Eq. 1.34 and

noticing that

eikµ(η−η0) =
∞∑
`=0

(2`+ 1)i`j`
[
k(η0 − η)

]
P`(µ) , (1.45)

we get an equation for each multipole moment ∆̃
(i)
X`:

∆̃
(i)
X`(η0, k) =

∫ η0

0

dη j`
[
k(η0 − η)

]
S

(i)
X (η, k) , (1.46)

where S(i)
X ≡= e−κ Bi,X , usually called source term and j`(x) are the Bessel

functions and we have used the orthogonality of Legendre polynomials.
This procedure can be repeated for all the brightness ∆̃

(i)
A with i = S, T and

A = T, Q, U, V . In the following, only the results are reported. More details
about the calculations can be found in [33].

S
(S)
T (η, k) = g

(
∆̃

(S)
T0 + Ψ̃− v̇b

k
− Π

4
− 3Π̈

4k2

)
+

+ e−κ
( ˙̃Φ ˙̃Ψ

)
− ġ
(vb
k

+
3Π̇

4k2

)
− 3g̈Π

4k2
; (1.47a)

S
(S)
E (η, k) = − 3

4k2

[
g
(
k2Π + Π̈

)
+ 2ġΠ̇ + Π̈

]
; (1.47b)

− 32 −



THE COSMIC MICROWAVE BACKGROUND

S
(T )
T (η, k) =

(
− ḣe−κ + gΛ

)
; (1.47c)

S
(T )
E (η, k) = g

(
Λ− Λ̈

k2
+

2Λ

k2(η0 − η)2
− Λ̇

k(η0 − η)

)
+

− ġ
(2Λ̇

k2
+

4Λ

k2(η0 − η)

)
− 2g̈

Λ

k2
; (1.47d)

S
(T )
B (η, k) = g

( 4Λ

k(η0 − η
+

2Λ̇

k

)
+ 2ġ

Λ

k
. (1.47e)

Let us clarify some aspects of the above equations8. First of all, we have introduced
the the visibility function g(η) = κ̇e−κ, that is, basically, the probability that a
photon is last scattered at a given η. It is peaked at recombination time and
rapidly declines after that. See Fig. 1.6 for its profile in terms of the scale factor.
Another thing to be noticed is the appearance of (E,B). Switching from (Q,U)
to these new parameters is a little tricky but useful from both the observationally
and theoretically point of view. Please see App. D for more details.

Before moving to the next section, where we finally get in touch with the
theoretical power spectra of the CMB radiation, it worth mentioning that the
source terms in Eqs. 1.47 are the key ingredients of many codes numerically
computing CMB anisotropies, such as camb [52]. In this thesis, this code has
been largely used to compute the power spectra.

1.3 Statistical treatment of anisotropies

The main results of the previous section is that the primordial inhomo-
geneities, generated in the inflationary epoch, are in some way related to the
CMB anisotropies seen today. The purpose of this section is to express these
anisotropies in such a way to allow an easy comparison with observations.

The better way to study the anisotropies is expanding them in harmonic
space, so operating an angular decomposition

∆
(i)
X (x, η, p̂) =

∞∑
`=0

∑̀
m=−`

aX`m(x, η)Y`m(p̂) . (1.48)

8In the case of S(T )
T (η, k) we have to multiply the integral in Eq. 1.46 by

√
(`+2)!
(`−2)!
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Figure 1.6: Visibility function g, monopole term Θ0 + Ψ (Θ0 ∝ ∆̃
(S)
I0 )

and Bessel function j` contributions in function of the scale factor [29].

This equation can be inverted by multiplying both sides by Y ∗`m(p̂), reading

aX`m(x, η) =

∫
d3k

(2π)3
eik ·x

∫
dΩ Y ∗`m(p̂) ∆̃

(i)
X (k, η, p̂) , (1.49)

where we have already performed the Fourier transform. All the information
contained in the field ∆

(i)
X is also encoded in the space-time dependent amplitudes

aX`m.
The potential fluctuations as well as the matter inhomogeneities, the temperature
anisotropies and all the structure on large scales are originated from primordial
quantum fluctuations. However, the theory is only able to give predictions about
the stochastic properties of the primordial perturbations. Thus, it has no meaning
to study every fluctuation one by one, the most important information is, by far,
the statistical distribution of the anisotropies. Moreover, inflation predicts that
the initial perturbations are, to a high degree, Gaussian distributed, and, if the
evolution is linear, the Gaussianity is conserved in time [53].
Under this assumption, the a`ms follow the Normal distribution with zero mean
value and non-zero variance:

〈a`m〉 = 0 , 〈a`m a∗`′m′〉 = δ``′δmm′ C` . (1.50)

− 34 −



THE COSMIC MICROWAVE BACKGROUND

Note that the variance C` is independent on both m and x, while 〈...〉 denotes
the average over the ensemble of all the possible realizations of the stochastic
fluctuations that generated the anisotropies.
Let us start, computing the two-point correlation function

CXY (θ) = 〈∆X(x, η, p̂)∆∗Y (x, η, p̂′)〉 =
∑
`m

∑
`′m′

Y`m(p̂)Y ∗`′m′(p̂
′) 〈aX`m a∗Y`′m′〉 =

=
∑
`m

∑
`′m′

Y`m(p̂)Y ∗`′m′(p̂
′) δ``′δmm′ C

XY
` =

∑
`

2`+ 1

4π
P`(p̂ · p̂′)CXY

` , (1.51)

where we have used Eq. 1.50 and the addition theorem for spherical harmonic
(the standard proof of this theorem can be found in Ref. [54])∑

m

Y`m(p̂)Y ∗`′m′(p̂
′) =

2`+ 1

4π
P`(p̂ · p̂′) , (1.52)

where P` is the Legendre polynomial of degree `. From Eq. 1.51 we can deduce
the relation for the angular power spectrum

CXY
` =

1

2`+ 1

∑̀
m=−`

〈aX`m a∗Y`m〉 , (1.53)

which is the statistical object to which we are interested in.
The expectation value 〈aX`m a∗Y`m〉 is related, through Eq. 1.49, to the quantity
〈∆̃(i)

X ∆̃
∗(i)
Y 〉, which, in turn, depends, on one hand, on the initial amplitude and

phase of the perturbation chosen from a Gaussian distribution during infla-
tion, and, on the other hand, on the evolution of this initial perturbation into
anisotropies, discussed in the previous sections. For this reason, the quantity
∆̃(k, η, p̂) can be decomposed [33,50] as the product of a random unitary gaussian
variable ξ(k), related to the primordial fluctuation by

〈ξ(k1) ξ(k2)〉 = P (k)δ3(k1 − k2) , (1.54)

and a function ∆̃(k̂, η, p̂), depending on the direction of k. This is true for
scalar perturbations, with P (k) = Pφ(k) the initial power spectrum for scalar
perturbations. We have already seen this decomposition for tensor perturbations
in Sec.1.2.3.2, see Eq. 1.38.

Going back to Eq. 1.53, using the decomposition mentioned above, another
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way to write the C` is in terms of the primordial power spectra, as

C
(i),XY
` = (4π)2

∫
k2dk Pi(k) ∆̃

(i)
X`(k, η0)∆̃

(i)
Y `(k, η0) , (1.55)

where i = φ, h, for scalar and tensor perturbations, respectively. To get Eq. 1.55,
we have also used Eq. 1.34.
Moreover, in linear perturbation theory, the scalar and tensor perturbations
evolve independently and, therefore, the total angular power spectrum is simply
given by the sum of the two contributions,

CXY
` = C

(S),XY
` + C

(T ),XY
` . (1.56)

Hence, Eq. 1.55, combined with Eq. 1.46 and Eqs. 1.47, are the expressions we
are looking for: the angular power spectrum describing the temperature and the
polarization anisotropies as they are seen today. For completeness, the angular
power spectrum is usually plotted using the combination

D` =
`
(
`+ 1

)
2π

C` . (1.57)

Before looking in detail at the unique shapes of the CMB angular power
spectra, let us highlight the existence of an intrinsic limit, particularly at small `,
in the evaluation of the angular power spectrum. Looking at Eq. 1.50, we can
note that for a given `, each a`m has the same variance. Basically, since we can
observe only one CMB sky, for every multipole the quantity of information that
we can get is limited and encoded in the amount of m ∈ [−`, `], i.e. (2` + 1)

moments. For examples, for ` = 500, all 1001 a500m’s are drawn from the same
distribution. When we measure these 1001 coefficients, we are sampling the
distribution. This will give us a good handle on the underlying variance of the
distribution. Whereas, the information that we get when we measure the 5 a2m’s
is definitely less.
This unavoidable uncertainty, called cosmic variance, scales as

(∆C`
C`

)
=

√
2

2`+ 1
. (1.58)

Hence, as anticipated, this quantity decreases with larger `, implying that the
larger uncertainties in determining the angular power spectrum are related to
low multipoles.
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1.3.1 Temperature power spectra

Collecting the results of the previous sections, we can write the temperature
(TT) angular power spectrum

CTT
` = (4π)2

{∫
k2dk Pφ(k)

[
∆̃

(S)
T,`(k)

]2

+

∫
k2dk Ph(k)

[
∆̃

(T )
T,` (k)

]2
}
, (1.59)

with ∆̃
(S/T )
T,` given in Eq. 1.46 and Eqs. 1.47.
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Figure 1.7: Top: Temperature anisotropies power spectrum from
scalar, tensor and scalar plus tensor perturbations. Bottom: Relative

difference between the temperature anisotropies power spectrum
generated by scalar plus tensor perturbations and the one from scalar
only. This plot has been produced using camb code with the Planck 2018
best-fit values for the ΛCDM parameters [55]. The tensor-to-scalar

ratio is r = 0.07.

The peculiar shape of the function in Eq. 1.59, shown in Fig. 1.7, gives us all
the information discussed in the following (see also Sec. 1.4 for a more detailed
discussion on how the cosmological parameters can affect this shape). First of all,
we can distinguish between the two components, coming from scalar and tensor
perturbations, respectively. Looking at the relative difference between the total
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and the scalar power spectra, the imprinting of tensor perturbations on the total
power spectrum is mostly located at small `. The tensor-to-scalar ratio used is
r = 0.079.

Besides, looking at Fig. 1.7 in a more general way, this is the result of
essentially two components, also known as primary and secondary anisotropies.
The former are related to “intrinsic temperature variations” which happen directly
at the decoupling, the latter are, instead, related to photons energy variation on
their journey from the last scattering source to us.

Looking more closely Fig. 1.7 we can recognize three different regimes, a flat
plateau, at very small `, a series of bumps and wiggles and finally, at large `,
a quasi-exponentially dump. The origin of these features can be found going
back in time to just before recombination, when the Universe was made up by
photons tightly coupled with baryons and dark matter. The perturbations in
the dark matter grow continuously in time, whereas the perturbations in the
baryon-photon fluid are in a dance conducted by gravity and pressure force of
the photons. Eventually, photon pressure stops the collapse. On the other side,
the expansion is slowed and halted owing to the weight of the fluid and the
gravitational potential, causing the mode to recollapse once more. In other word,
this is producing an acoustic wave, with gravity the driving force and pressure
the restoring force. This statement allow us to understand the aforementioned
features.
Starting from the plateau at ` < 100, also known as Sachs-Wolfe plateau [56],
this is due to perturbations having a period longer than the age of the Universe
at the last scattering surface. In other words, these perturbations are larger
than the horizon, and, so, are essentially frozen in their initial configuration,
providing us information about the pre-recombination physics. When CMB
photons emerge from the potential wells associated with these long-wavelength
density perturbations, they lose energy. The differences in the gravitational
potentials at the time of the last scattering reflects, indeed, the temperature
differences seen on the CMB sky today. Tensor perturbations of spacetime do
not create the same baryon-photon oscillations that we see in the other zones,
but can contribute to the Sachs-Wolfe plateau.
In the central region of the spectrum, 100 < ` < 1000, we have to deal with
perturbations that enter the horizon, or are already sub-horizon, before recom-
bination. We are in a condition of ionized plasma where all the electrons are
unbound. The photon mean free path is much smaller that the horizon size and
Compton scattering keep photons and baryons tightly coupled. In this regime,

9This parameter is the ratio between Pφ and Ph computed at a given pivot scale k∗ = 0.05
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the baryon-photon fluctuations have sufficient time to undergo the oscillations,
leading to peaks and valleys in the angular power spectrum.
Finally, we arrive to the third zone, ` > 1000, where we observe a reduction of
the inequalities, i.e. anisotropies, of the early Universe.
During recombination, the photons can random walk a distance given by the
mean free path times the square root of the number of scatterings. This means,
that photons can diffuse out of any overdensity having a smaller scale than
this distance, that is increasing since the mean free path is increasing during
recombination. This leads to an exponential damping of the spectrum on small
scales. This process is also known as Silk damping [57]. Hence, this damping is
due to the finite thickness of the last scattering surface, that, indeed, is a layer
not a surface.

Upon a closer inspection of Fig. 1.7, we should mention some of the secondary
effects. First of all, the integrated Sachs-Wolfe (ISW) effect [56, 58]. As photons
travel through the Universe from the last scattering surface to us, they interact
gravitationally with the matter. If the gravitational potentials are still evolving,
additional temperature perturbations are generated. Let us consider a photon
falling into a gravitational potential. If the potential is varying in time, the
energy that the photon gained falling in will be different from the amount of
energy used to climbing back out of the well. This leads to a net anisotropy.
We can distinguish between the Early ISW, just after recombination, when
radiative component is not completely negligible yet, and the Late ISW, in the
Dark Energy dominated Universe.
Moreover, even in the matter dominated Universe, when non-linear structures
form the potential can change with time, leading to new anisotropies. This effect,
nearly negligible, is known as Rees-Sciama effect [59].

Another effect to be considered is reionization [60–62], when photons can again
scatter off free electrons, in a second scattering surface. However, the electron
density in this epoch is quite low, and the baryons and photons do not become
tightly coupled. Because of this the two fluids can have a large relative velocity,
which enhances the power of the Doppler effect. Reionization damps power on
angular scales smaller than the horizon subtended by the epoch of reionization
while generating extra power owing to Doppler effect [63]. It is unlikely that
the reionization of the Universe will occur uniformly throughout space, so other
anisotropies will be generated owing to the “patchiness” of reionization.

At this point, once structure formation is well underway, the photons can
interact with hot gas in the intergalactic medium. In hot clusters of galaxies,
electrons of ionized gas (T ∼ 107 K) interact through Inverse Compton with
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CMB photons. The energy of the latter increases and this produces a distortion
in the frequency spectrum. This effect, known as thermal Sunyaev-Zeldovich
(tSZ) effect [64], is probably the largest source of anisotropy on small scales,
` > 2000. This will be discussed in Chpt. 3.
Beside this, we also have to mention the kinetic Sunyaev-Zeldovich (kSZ) effect
[65], which is related to clusters motion along the line of sight.

On top of these effects, of course, there are foregrounds, such as dust, free-free
emission, synchrotron, point sources and many others, which mask the real CMB
signal [66, 67].

We have not mentioned yet the slight experienced distortion by the photon
path when they pass close to large distributions of matter. Light is deflected by
the gravitational field generated by matter. This distortion, called gravitational
lensing, does not constitute a primordial effect and it is, indeed, one of the most
important mechanisms that can generate secondary anisotropies in the CMB.
Not only the temperature but also, and specially, polarization power spectra are
affected by gravitational lensing. We will come back on this topic in Chpt. 3.

1.3.2 Polarization power spectra

Collecting again the results of the previous sections, we can now write the
polarization power spectra for E and B modes:

CEE
` = (4π)2

{∫
k2dk Pφ(k)

[
∆̃

(S)
E,`(k)

]2

+

∫
k2dk Ph(k)

[
∆̃

(T )
E,`(k)

]2
}

;

(1.60a)

CBB
` = (4π)2

∫
k2dk Ph(k)

[
∆̃

(T )
E,`(k)

]2

, (1.60b)

with ∆̃
(S/T )
E,` and ∆̃

(T )
B,` given in Eq. 1.46 and Eqs. 1.47.

Looking at Fig. 1.8, two things “strike the eye”: as anticipated, scalar pertur-
bations generate only E-modes polarization while tensor perturbations create
both, and the power contained in CMB polarization fluctuations is about a factor
of 100 less than the power contained in the temperature fluctuations.

Since E-modes polarization are due to velocity gradients in the photon-baryon
fluid, we see again acoustic oscillations. In particular, the acoustic peaks in the
EE power spectra are out of phase with those in the temperature one. Given the
different origin of B-modes, we do not see acoustic peaks in BB power spectra.

As for the temperature power spectrum, we can recognize the imprint of
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Figure 1.8: Top: Polarization anisotropies power spectrum from
scalar, tensor and scalar plus tensor perturbations. E-modes and
B-modes are both shown. Bottom: Relative difference between the

E-mode power spectrum generated by scalar plus tensor perturbations
and the one from scalar only. This plot had been produced using camb
with the Planck 2018 best-fit value for the ΛCDM parameters [55]. The

tensor to scalar ratio r = 0.07.

different phases of the evolution of the Universe. The bump at ` . 10 is certainly
noteworthy. In fact, at large scales, polarization power spectra should have a
power-law decay trend, since those scales are larger than the photon mean free
path at recombination.
However, after recombination, when reionization is supposed to happen, as already
said, photons can again scatter off free electrons. This interaction with re-ionized
matter produces a bump, also known as reionization bump, in the power spectra
at low multipoles.

High-precision measurements of CMB polarization are indeed able to constrain
the still quite unknown reionization process better than CMB temperature.
Moreover, B modes are considered to be a smoking gun for detecting primordial
gravitational waves created during inflation.
Definitely, the polarization of the CMB still contains a lot of valuable information
about our Universe and, not surprisingly, it is the target of the next-decade CMB
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experiments.
Also in this case, we have variations in power spectra due to gravitational

effects. We are going to discuss them in detail in Chpt. 3.
Before proceeding further, it is worth noticing that the B-modes so far

discussed are the so-called primordial B-modes (see Fig. 1.12). In Chpt. 3, we
will discuss the spurious B-modes generated by gravitational lensing effect (see
also Fig. 3.2).
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Figure 1.9: Top: Temperature and Polarization anisotropies cross
spectrum from scalar, tensor and scalar plus tensor perturbations.

Bottom: Relative difference between the cross spectrum generated by
scalar plus tensor perturbations and the one from scalar only. This plot
had been produced using camb with the Planck 2018 best-fit value for

the ΛCDM parameters [55]. The tensor to scalar ratio r = 0.07.

1.3.3 Temperature-polarization cross spectra

Since, in standard Cosmology, the physics governing photon propagation is
parity invariant, the only non-vanishing combination is TE. Please check the
App. D for more information.
As we will see in the Chpt. 2, TB and EB correlations can arise in presence of
parity violation theories.
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Collecting again the results of previous sections, the cross spectrum between
temperature and E-mode polarization reads

CTE
` = (4π)2

{∫
k2dk Pφ(k)

[
∆̃

(S)
T,`(k) ∆

(S)
E,`(k)

]
+

∫
k2dk Ph(k)

[
∆̃

(T )
T,` (k) ∆̃

(T )
E,`(k)

]2
}
,

(1.61)
with ∆

(S/T )
T/E,` and ∆

(S/T )
T/E,` given in Eq. 1.46 and Eqs. 1.47.

The relevant thing to be noticed is that, as in temperature and E-mode
polarization power spectra, the cross spectrum also shows pronounced acoustic
peaks.

1.4 Cosmology from CMB power spectra

From what we have seen in previous sections, it is clear that that the physics
beyond the formation of temperature and polarization anisotropies is fully related
to the evolution of the Universe, from early times until the present. In this respect,
the shape of the CMB power spectrum depends on cosmological parameters, and
so it can be used to constrain the standard cosmological model (ΛCDM) and
some extensions.

The ΛCDM model is based on only six independent parameters. The specific
set of six parameters used to define the cosmological model is somewhat open to
choice. Nevertheless, within the context of fitting a ΛCDM model to CMB data,
there are preferred combinations, chosen to avoid degeneracies [68]. In Planck
2018 [55], the baseline parameters are the baryon and cold dark matter density,
Ωbh

2 and Ωch
2, respectively (where h = H0/(100km s−1 Mpc−1) is the reduced

Hubble constant), the amplitude of primordial curvature perturbations, As, and
its spectral index ns, the optical depth τ and the angular size of the sound
horizon, θ∗ ≡ r∗/DM , where r∗ is the comoving sound horizon at recombination
and DM is the comoving angular diameter distance.

The two parameters, As and ns, define the shape of the power spectrum of
the primordial scalar perturbations, as

Pφ(k) = As(k∗)
( k
k∗

)ns−1

, (1.62)

where k∗ is a reference scale (pivot). This is generally fixed to k∗ = 0.05 Mpc−1.
We have already introduced this power spectrum in the previous section, see
Eq. 1.54 and the power spectra in Eqs. 1.59, 1.60 and 1.61.
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Figure 1.10: Impact on the EE power spectrum of varying the optical
depth, τ . This plot has been produced using camb code with the Planck
2018 best-fit values for the ΛCDM parameters [55]. The tensor-to-scalar

ratio is r = 0. Then, we have varied τ , keeping the others fixed.

Starting from the amplitude As, changing As obviously just shifts the CMB
spectrum up and down. The ns parameter is, instead, the tilt of scalar pertur-
bations spectrum, and, as the name promises, it tilts the CMB spectrum. For
ns = 1 the spectrum `(` + 1)C` has equal power on all scales, while for ns > 1

(ns < 1) it has more power on small (large) scales.
As it will be discussed later in this section, these parameters are related to
the inflation mechanisms and their predictions. The simplest models of cosmic
inflation predict an almost scale invariant primordial spectrum with ns ≈ 1 (see
e.g. Refs. [21, 22]).

Baryon and cold dark matter abundances, Ωbh
2 and Ωch

2 respectively, affect
the acoustic peaks in temperature power spectrum. We can distinguish different
effects. First of all there is the so called baryon drag, that has the effect of
shifting the equilibrium position in the photo-baryon fluid oscillation. It causes
mainly a modulation in odd and even peaks, in particular odd peaks have higher
amplitude than even ones. The increase in baryon abundance leads therefore in
higher amplitude of odd peaks. Moreover, decreasing Ωbh

2 causes the baryon
damping, a general smoothing in acoustic peaks amplitude.
In general, the total matter content has strong effects on angular power spectrum,
in particular it determines the matter-radiation equality and therefore which
scales enter the horizon before or after this equality and how they evolve. Lowering
the matter density shifts matter-radiation equality to later times, i.e. closer to
recombination. This affects the forcing term for the photon-baryon oscillations.
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In particular, the forcing term is stronger near equality, so the heights of the
peaks are higher when the matter density is lower.
As we have described in the previous section, as dark energy becomes the dominant
component, the gravitational potential stops being time-independent. This leads
to the late ISW effect which boosts the power of the low-` modes.

Regarding the optical depth, τ , this is strictly related to reionization. The
Universe is supposed to became reionized at late times, around z ∼ 6. This
increases the optical depth to last-scattering. On scales smaller than the horizon
after reionization, the CMB anisotropies get suppressed by a factor of e−τ due to
the rescattering of photons. This effect is somewhat degenerate with an ns > 1

tilt of the primordial spectrum. Nevertheless, the effect on the polarization
spectrum is distinct and from the EE power spectra we can constrain directly
the optical depth of reionization.
In Fig. 1.10, the “bump” in the EE power spectrum is shown for different values
of τ .

To conclude, the acoustic angular scale, θ∗, has the effect of horizontally
shifting the acoustic peaks. Because of its simple geometrical interpretation, this
parameter is almost independent of the cosmological model and its measurement
is very robust.
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Figure 1.11: Impact on the TT power spectrum of varying the
six-baseline cosmological parameters. These plots have been produced
using camb code with the Planck 2018 best-fit values for the ΛCDM

parameters [55]. The tensor-to-scalar ratio is r = 0. Then, in each panel,
we have varied a single parameter, keeping the others fixed.
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In Fig. 1.11, we can appreciate the impact on the TT power spectrum of
varying these six parameters
It is worth mentioning that Fig. 1.11 is obtained assuming a flat Universe.
If we allow the curvature parameter, ΩK , to vary, it affects the position of
the first peak of the temperature power spectrum. This is a very sensitive
feature that allows the Planck collaboration to constrain the curvature of the
Universe with an astonishing precision level, ΩK = −0.0106± 0.0065 (68%, using
TT,TE,EE+lowE+lensing) [55].

Beyond the baseline-ΛCDM model, there are many interesting extensions to
be considered. Here we are considering only, the tensor-to-scalar ratio, r, and
the effective number of relativistic species, Neff .

Introducing tensor perturbations, as we have seen, generates a new kind of
polarization mode, the so-called primordial B-modes. As for scalar perturba-
tions, we can introduce the amplitude, At, and the spectral index, nt, of tensor
perturbations. The power spectrum of the primordial tensor perturbations is,

Ph(k) = At(k∗)
( k
k∗

)nt

, (1.63)

where k∗ is again the pivot scale. The tensor-to-scalar ratio, used to parametrized
tensor perturbations inside the standard cosmological model, is therefore defined
as

r ≡ Ph
Pφ

∣∣∣∣∣
k∗

, (1.64)

where the two power spectra are measured at the same pivot scale, k∗.
Moreover, since r provides a measure of the expansion rate during inflation, which
can be related to the energy scale of inflation 10,

V 1/4 ∼
( r

0.01

)1/4

1016 GeV , (1.65)

a measurement of the tensor-to-scalar ratio with r ∼ 0.01 would therefore asso-
ciate inflation with physics at the Grand Unified Theory (GUT) scale, estimated
to be around 1016 GeV. These energy scales are far beyond the reach of the LHC
or any conceivable collider experiment. Moreover, the measurement of the energy
scale of inflation would have implications for many other aspects of fundamental
physics, including, for example, string theory.
It is clear now why the detection of primordial B-mode polarization is the target

10We have considered Pφ roughly constant and Ph ∝ H2 ∼ V .
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of the next-decade CMB experiments. A detection would confirm definitively the
validity of inflationary scenario, constraining also (with the tensor-to-scalar ratio
r and the tensor tilt nt) the specific model for inflation.
However, the gravitational waves decay inside the horizon, so the tensor con-
tribution is only significant on large scales (small `). This feature makes the
detection of B-modes harder. Moreover, the already mentioned spurious B-modes
complicate the picture. See Fig. 1.12 or Chpt. 3 for more details. In Fig. 1.12, we
show the effect of increasing r on primordial B-modes. The black line, represents
the spurious B-modes due only to gravitational lensing (r = 0).
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Figure 1.12: Impact on the BB power spectrum of varying the
tensor-to-scalar ratio, r. This plot has been produced using camb code
with the Planck 2018 best-fit values for the ΛCDM parameters [55].

Then, we have varied r, keeping the other parameters fixed. The black
line shows the lensed BB power spectrum with r = 0.

Concerning the parameter Neff , the standard model predicts Neff = 3.046.
This parameter is well constrained by Planck satellite, since deviations from the
standard model value can affect the damping tail and shift the phase of the
acoustic peaks.

In conclusion, it is clear, from the picture we have drawn, the importance
of measuring both the temperature and polarization anisotropies, since the
information encoded are nearly complementary. Polarization depends on some
cosmological parameters differently than the temperature anisotropy, allowing
us to remove degeneracies in the fitted parameters and to largely improve the
constrains.
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2
The polarization of the CMB

Lines of investigation, seeking to extract information from the CMB beyond
that contained in its temperature anisotropies, are particularly timing.
The primary scientific target of the next ground- and space-based CMB ex-
periments, such as LiteBIRD, SO, and CMB-S4, is, indeed, the detection of
primordial tensor perturbations (see Chpt. 4).
Next-generation projects have the potential of measuring the CMB E-mode
polarization down to the cosmic variance limit over a wide range of angular scales,
and, moreover, to push the search for primordial B-modes down to a tensor to
scalar ratio r ∼ 0.001. Primordial B-modes, as already discussed in Chpt. 1 are
extremely sought for both Cosmology and fundamental physics because they
provide a measure of the energy scale driving inflation.

Nevertheless, there is more beyond this standard picture. The physics that
governs the CMB is purely electromagnetic. This means that observing properties
of the CMB pattern can be used to constrain deviations from the standard model
of particle physics, and so, to search for violations in the photon sector.
Since the Maxwell lagrangian in the standard model is expected to conserve
parity (hereafter P symmetry), in Chpt. 1, we have seen that we can potentially
extract information from four1 CMB angular power spectra: TT, EE, BB and
TE. The cross-correlation between temperature and B-mode polarization and
E-mode and B-mode polarization are forbidden in a P invariant Universe2.
Models beyond the standard model predict, instead, P violations that may also

1In principle, we also have the lensing potential and its cross-correlations, but we will
discuss this topic in Chpt. 3.

2It is worth underlining that the sources (e.g. scalar and tensor perturbations in standard
inflationary setting) are also parity invariant, hence vanishing TB and EB spectra come from
both parity invariant source of anisotropies and the properties of electromagnetism.



result in a global violation of the CPT symmetry. Moreover, CPT violation implies
Lorentz-symmetry breakdown, as it has recently been proved in Greenberg’s
“anti-CPT theorem” [69].
In this kind of theory, the cross-correlation TB and EB angular power spectra
might arise, becoming the litmus test for constraining physics beyond the standard
model.

In this generalized picture, we are still missing something. As we have seen
in Chpt. 1, CMB photons are expected to be linearly polarized by Compton
scattering at the epochs of recombination and reionization. In contrast, circular
polarization is not expected to be present at the time of last scattering. It can
be generated, on one hand, by known physics as CMB photons propagate across
the Universe, but only in tiny amounts; on the other hand, the aforementioned
models, or some generalization of them, might be responsible for the generation
of a larger amount of circular polarization. Hence, observing circular polarization
in the CMB, and its cross-correlations with temperature and E and B mode
polarization, could provide evidence for new physics or constrain certain classes
of extensions of the standard model of particle physics.

It is worth also mentioning that these effects, a non zero TB/EB power spectra
and/or a degree of circular polarization in the CMB radiation, might also arise
from observational systematics as for example miscalibration of polarimeters (see
e.g Ref. [70]), as well as interaction of CMB photons with magnetic fields (see
e.g Refs. [37, 71,72]).

This chapter has definitely a phenomenological imprint. In Sec. 2.1, the
cosmic birefringence is introduced. This phenomena, that consists in the rotation
of linear polarization direction during the in vacuo propagation of radiation, can
be the visible tip of Lorentz- and CPT- violating theories. The CMB circular
polarization is, instead, discussed in Sec. 2.2. In Sec. 2.3, we present our unified
model, a phenomenological framework allowing to describe the mixing of different
polarization states during CMB photon propagation. This section is based on [11].
Finally, in the last section, Sec. 2.4, we interpret this mixing as the result of
light propagating into a medium with an anisotropic and/or parity-violating
susceptibility tensor. This allows us to take a step back and to relate our
phenomenological framework to physical models.
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2.1 Cosmic birefringence

In the cosmological literature, the term “cosmic birefringence” usually describes
the specific case of different propagation velocity of circular polarization states,
leading to in-vacuo rotation of the linear polarization plane. In crystal optics,
the same effect is dubbed “optical activity”. If the radiation is propagating in a
magnetic medium, leading again to a rotation of linear polarization plane, it is
common to use the term “Faraday rotation”. In the rest of this chapter, we will
use the term “Faraday rotation” without implying the presence of a magnetic
field.

In a completely general way, we can say that “cosmic birefringence” naturally
arises in different theoretical contexts, which can be roughly broken down into
two main classes: parity-violating extensions of the standard model, e.g. [73–76]
and primordial magnetic fields, e.g [77–79]. Depending on the specific details
of the physical process sourcing this rotation, we can expect a uniform rotation
angle ∆χ, an anisotropic rotation ∆χ(n̂) across the sky, or both.

Focusing on the parity-violating scenario, that is the one of our interest,
birefringence usually arises when we add to the Maxwell Lagrange density, LEM ,
a Chen-Simons term, such as [73]

LCS = −1

2
pµAνF̃

µν , (2.1)

where F̃ µν is the dual electromagnetic tensor and pµ is a generic four-vector
coupling with the photon field, Aν . As a result, the Maxwell equations, which
follow from L = LEM + LCS, are modified as

∂µF
µν = pµF̃

µν , (2.2a)

or in terms of the electric, E, and magnetic, B, fields

∇E = 4πρ− p · B , (2.2b)

− ∂t +∇×B = −p0B + p · E . (2.2c)

Note that the homogeneous Maxwell equations F̃αβ = 0 are not modified.
From Eqs. 2.2, we can compute the wave equation and the corresponding disper-
sion relation, that is [73]

ω2 − k2 = ±
(
p0k − ωp cos θ

)(
1− p2 sin θ

ω2 − k2

)− 1
2
, (2.3)
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where ω is the frequency, k is the module of the wave vector, p is the module of
the spatial component of the four-vector coupled with the photon field and θ is
the angle between p and k. The + and − stand for the right- and left-handed
circularly polarized waves, respectively. Hence, the Chern-Simons term, in Eq. 2.1,
affects the propagation of right- and left-handed photons asymmetrically, giving
rise to the rotation of the plane of linear polarization.

For the moment, let us suppose that birefringence arises because of a “sudden
rotation” by an angle ∆χ > 03 of the polarization after photon propagation from
the last scattering surface to now. Then the Stokes parameters Q and U get
mixed in the following way,

Qobs = Q̃ cos 2∆χ+ Ũ sin 2∆χ ; (2.4)

U obs = Ũ cos 2∆χ− Q̃ sin 2∆χ , (2.5)

or, in a more compact way, as(
Q± iU

)obs
= exp

(
∓ 2i∆χ

)(
Q̃± iŨ

)
. (2.6)

The tilde’s indicates the Stokes parameters in absence of polarization rotation
(i.e., in absence of cosmic birefringence). From now on, for simplicity, we drop
the superscript obs, that stands for “observed”.

Let us assume that the rotation angle is homogeneous and isotropic, ∆χ = ∆χ̄.
In this case, the so-called isotropic birefringence, the CMB power spectra would
be rotated as [75,80]

CTT
` = C̃TT

` ; (2.7a)

CTE
` = C̃TE

` cos(2∆χ̄)− C̃TB
` sin(2∆χ̄) ; (2.7b)

CTB
` = C̃TE

` sin(2∆χ̄) + C̃TB
` cos(2∆χ̄) ; (2.7c)

CEE
` = C̃EE

` cos2(2∆χ̄) + C̃BB
` sin2(2∆χ̄)− C̃EB

` sin(4∆χ̄) ; (2.7d)

CBB
` = C̃BB

` cos2(2∆χ̄) + C̃EE
` sin2(2∆χ̄) + C̃EB

` sin(4∆χ̄) ; (2.7e)

CEB
` =

1

2

(
C̃EE
` − C̃BB

`

)
sin(4∆χ̄) + C̃EB

`

(
cos2(2∆χ̄)− sin2(2∆χ̄)

)
, (2.7f)

3The rotation is chosen to be counterclockwise looking at the photons coming toward us,
corresponding to a rotation of the reference frame from the x̂ axis to the ŷ axis. This is different
from the convention considered in [75].
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where C̃EB
` = C̃TB

` = 0, if the physics before the rotation is not parity-violating.
As we aspected, the rotation of the linear polarization plane has no effects on
the temperature and, moreover, it is not able to generate circular polarization.
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Figure 2.1: Parity-violating CMB power spectra in presence of
isotropic birefringence, according to Eqs. 2.7. The rotation angles are
1.0◦ (dashed lines) and 0.35◦ (dash-dotted lines). This plot has been
produced using camb code with the Planck 2018 best-fit values for the

ΛCDM parameters [55]. The tensor-to-scalar ratio is r = 0.07.

In Fig. 2.1, we can see the parity-violating power spectra, while in Fig. 2.2,
we can appreciate the effect of this rotation on the standard power spectra, which
are computed, using the Boltzmann code camb, assuming the best-fit Planck 2018
Cosmology [55]. Two values have been considered for the rotation angle, 1.0◦, a
value already excluded by observations, simply to make more visible the effect,
and 0.35◦.
Using Planck 2015 data, there is still no evidence for a nonzero ∆χ̄. The
collaboration has found, indeed, a uniform rotation angle of ∼ 0.3◦, with statis-
tical errors of 0.05◦ and systematic uncertainties dominating the error budget,
σsyst = 0.28◦ [81, 82].
The issue of this measurement using CMB data is that ∆χ̄ is degenerate with
β, that is, the angle at which the polarimeter is maximally sensitive to a linear
polarization, in the telescope reference frame. A miscalibration of this angle leads
to the same effect of the isotropic rotation angle, ∆χ̄. In the result quoted above,
the most relevant uncertainty is, indeed, due to this effect.
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Figure 2.2: Rotated CMB power spectra in presence of isotropic
birefringence, according to Eqs. 2.7. The rotation angles are 1.0◦

(dashed lines) and 0.35◦ (dash-dotted lines). Solid lines are the CMB
power spectra that we would observe in absence of this effect. In the

bottom part, the absolute differences between the observed CMB power
spectra in presence of cosmic birefringence and the ones that we would
observe in absence of this effect. This plot has been produced using

camb code with the Planck 2018 best-fit values for the ΛCDM
parameters [55]. The tensor-to-scalar ratio is r = 0.07.

In Ref. [83], the authors have solved this problems estimating ∆χ̄ and β simulta-
neously. This has been done using the fact that while both CMB and Galactic
foreground emission are rotated by β, CMB might be, instead, the only rotated
by ∆χ̄ [84, 85]. Hence, they estimated ∆χ̄ = 0.35◦ ± 0.14◦, where, in the error
budget, σsyst = σ(β) is no longer included. This result is still consistent with the
Planck 2015 result, but excludes ∆χ̄ = 0 with a statistical significance of 2.4σ.

In principle, the rotation angle in Eqs. 2.7 might depend on time as well as
position. We can therefore consider a more general case, where the rotation angle
can be written as

∆χ = ∆χ̄+ ∆δχ . (2.8)

We have separated the angle in two components: the background part, ∆χ̄,
which is homogeneous and isotropic, and the perturbation, which is randomly
distributed on the sky, ∆δχ. In this case, the term anisotropic cosmic birefringence
is generally used .
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We can expand ∆δχ on the sky [86] as

∆δχ =
∑
`m

b`mY`m(n̂) , (2.9)

and define its angular power spectrum as

< b∗`′m′ b`m >= Cχ
` δ`′` δm′m , (2.10)

where we have also assumed the statistical isotropy of b`m. Moreover, summing
over the multipoles `, we find∑

`

(
2`+ 1

)
Cχ
` = 4π < ∆δχ2 > . (2.11)

Using Eq. 2.6, we can calculate the expansion coefficients, ±2a`m, after the
rotation of the angle in Eq. 2.8

±2a`m =

∫
dΩ ±Y

∗
`m(n̂)

(
Q± iU

)
(n̂) =

=

∫
dΩ ±Y

∗
`m(n̂) exp(∓i2∆χ)

(
Q̃± iŨ

)
(n̂) =

=

∫
dΩ ±2Y

∗
`m(n̂) exp(∓i2∆χ)

∑
`′m′

±2ã`′m′ ±2Y`′m′(n̂) =

= exp(∓i2∆χ̄)
∑
`′m′

±2ã`′m′ F±`m`′m′ (2.12)

where
F±`m`′m′ =

∫
dΩ ±2Y

∗
`m(n̂) exp(∓i2∆δχ) ±2Y`′m′(n̂) . (2.13)

If we consider ∆δχ = 0 in the above equations, after some math, we are able to
recover the angular power spectra of the isotropic cosmic birefringence , shown
in Eqs. 2.7.
In the case of anisotropic birefringence, instead, the computation is slightly more
complicate, because of ∆δχ = ∆δχ(η,x).
Hence, supposing that the rotation angle is small everywhere, up to the quadratic
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order in ∆δχ, the angular power spectra are [75]

CTT
` = C̃TT

` ; (2.14a)

CTE
` = C̃TE

` cos(2∆χ̄)
(
1− 2 < ∆δχ2 >

)
; (2.14b)

CTB
` = C̃TE

` sin(2∆χ̄)
(
1− 2 < ∆δχ2 >

)
; (2.14c)

CEE
` =

[
C̃EE
` cos2(2∆χ̄) + C̃BB

` sin2(2∆χ̄)
](

1− 4 < ∆δχ2 >
)

+

+
∑
`1`2

` `1 `2

2−2 0

2 (
2`1 + 1

)(
2`2 + 1

)
2π

Cχ`2 ·

·
{[

1 + (−1)L+1 cos(4∆χ̄)
]
C̃EE`1 +

[
1 + (−1)L cos(4∆χ̄)

]
C̃BB`1

}
; (2.14d)

CBB
` =

[
C̃BB
` cos2(2∆χ̄) + C̃EE

` sin2(2∆χ̄)
](

1− 4 < ∆δχ2 >
)

+

+
∑
`1`2

` `1 `2

2−2 0

2 (
2`1 + 1

)(
2`2 + 1

)
2π

Cχ`2 ·

·
{[

1 + (−1)L+1 cos(4∆χ̄)
]
C̃BB`1 +

[
1 + (−1)L cos(4∆χ̄)

]
C̃EE`1

}
; (2.14e)

CEB
` =

1

2
sin(4∆χ̄)

(
C̃EE
` − C̃BB

`

)(
1− 4 < ∆δχ2 >

)
+ sin(4∆χ̄) ·

·
∑
`1`2

` `1 `2

2−2 0

2 (
2`1 + 1

)(
2`2 + 1

)
2π

Cχ`2 (−1)L+1
(
C̃EE`1 − C̃BB`1

)
, (2.14f)

where L = `+ `1 + `2, and, we have already set C̃TB
` = C̃TE

` = 0.
We also have introduced the Wigner-3j symbol `1 `2 `3

m1m2m3

 , (2.15)

that are defined in App. A.
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Figure 2.3: Rotated CMB power spectra in presence of anisotropic
birefringence, according to Eqs. 2.14. The rotation-angle power spectra,
Dχ` , has been consider scale-invariant up to a certain `max. We choose
∆χ̄ = 0. Solid lines are the CMB power spectra that we would observe
in absence of this effect. In the bottom part, the absolute differences

between the observed CMB power spectra in presence of cosmic
birefringence and the ones that we would observe in absence of this
effect, only for TE and EE. This plot has been produced using camb

code with the Planck 2018 best-fit values for the ΛCDM
parameters [55]. The tensor-to-scalar ratio is r = 0.07.
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In the above angular power spectra, if we chose ∆δχ = 0, we recover again
Eqs. 2.7.
Moreover, it is interesting to note that CTB

` and CEB
` are proportional to sin(∆χ̄),

which vanish when ∆χ̄ = 0. This means that P is violated only by the background
field, at least up to the second order in ∆δχ. This can be also seen in Fig. 2.3,
where, since we have chosen ∆χ̄ = 0, CTB

` and CEB
` are vanishing. Again,

the standard power spectra are computed using the Boltzmann code camb and
assuming the best-fit Planck 2018 Cosmology [55].
Following a standard procedure (see e.g. [87]), we have assumed a scale-invariant
spectrum for ∆δχ: Dχ` = Aχ up to a certain `max, then Dχ` = 0 from ` > `max.
In Fig. 2.3, four cases are considered :

(i) Aχ = 0.1 deg2 with `max = 10 (long-dashed lines);

(ii) Aχ = 0.1 deg2 with `max = 100 (dashed lines);

(iii) Aχ = 0.01 deg2 with `max = 10 (long-dash-dotted lines);

(iv) Aχ = 0.01 deg2 with `max = 100.

Clearly, as we increase Aχ and `max, the modifications on the standard power
spectra grow. The most relevant modifications are on the BB spectra. It is
dramatically modified due to the power leaks from the much larger E-modes.

The most updated constraints on Aχ, using Planck 2018 data, can be found
in [87]. They claim that no evidence of birefringence within the error budget,
obtaining Aχ < 0.104 deg2.

2.2 CMB circular polarization

As we have already seen in the previous chapter, the circular polarization of
the cosmic microwave background, also called V-mode polarization, is usually
taken to be zero since it is not generated by Thomson scattering.
Nevertheless, there are several physical mechanisms that, at the second order in
the primordial-perturbation amplitude, can induce circular polarization from the
primordial linear polarization. In addition to this, circular polarization might
be induced at a more significant level, by other late-time astrophysical effects,
and/or by new physics beyond the standard model.
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In [88], for example, it is shown that CMB photons can acquire circular polariza-
tion when propagating through a magnetized plasma, through the conversion of
linear polarization. This mechanism is the so-called “Faraday conversion”. In the
rest of this thesis, we somehow inappropriately use this term to generally refer to
the in-vacuo generation of circular polarization from linear polarization.
Many standard and non standard physical mechanism can source a degree of
circular polarization in the CMB photons through this conversion of the linear
polarization generated at the surface of last scattering. Among the former, it is
worth mentioning the photon-photon interactions via Heisenberg-Euler interac-
tion at recombination, that produces the strongest circular polarization. See e.g.
Refs. [89, 90] for more details.

Moreover, although we do not expect such a process from conventional physics,
CMB photons could become circularly polarized because the anisotropies of the
cosmic neutrino background acts as a birefringent medium [91].
Looking at extensions of QED, V-modes arise when Lorentz-violating operators
are considered [40,92,93]. In Ref. [94], instead, it is shown that a cosmological
pseudo-scalar field may generate circular polarization in the CMB. Also axion
inflation, as it is discussed in Ref. [95], leads to V-mode generation. There is
also a class of effects called magneto-optic effects which generate CMB circular
polarization, see [71,96,97]

For an exhaustive compilation of mechanisms that can source V-mode polar-
ization in the CMB radiation, see Ref. [37, 98].

In any case, as we can deduce from the above list, there are several mechanisms,
with a completely different physical background, that can induce a degree of
circular polarization in the CMB radiation. Therefore, despite the fact that, so
far, not too much attention has been devoted to CMB circular polarization, its
detection might reveal interesting phenomena occurring in the evolution of the
Universe.

Moreover, from the observational point of view, a relative large degree of
CMB circular polarization is not excluded.

The SPIDER collaboration has recently provided new constraints on the Stokes
parameter V at 95 and 150 GHz, by observing angular scales corresponding to
33 < ` < 307 [4]. These upper limits have been obtained by exploiting the
non-idealities of the half-wave plate (HWP) polarization modulators used by
SPIDER to measure linear polarization during a 2015 Antarctic flight. Let us
briefly go into more details.
A birefringent material forms a HWP when the difference in the optical path
length between waves polarized along the fast and slow crystal axes is exactly
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half of the photon wavelength [99]. This means that the polarization plane of
the light passing through an ideal HWP is rotated by 2θHWP , where θHWP is the
angle between the incoming polarization plane and the slow crystal axis, with no
coupling between linear and circular polarization.
A HWP can be described by four parameters: the total transmission T , the
difference in transmission between the fast and slow axes ρ, the linear polarization
response c, and the coupling to circular polarization s. For an ideal HWP, T = 1,
c = −1, and ρ = s = 0. However, in real HWPs, these parameters can deviate
significantly from these values. They can be calculated as described in [100],
from the thicknesses and refractive indices of the HWP materials, the spectrum
of the observed source, and the shape of the observing band.
The sky signal in the detector d, in terms of the Stokes parameters I , Q , U ,
and V and the instrument Mueller matrix elements MXY , is

d = I MII +QMIQ + U MIU + V MIV , (2.16)

where the part concerning our discussion is MIV , that reads

MIV = sγ sin (2θHWP − 2ξdec) (2.17)

where ξdet and γ are the detector orientation angle and the polarization efficiency,
respectively. It is interesting to note that in Eq. 2.16, s does not appear in the
MII , MIQ, or MIU matrix elements. This means that the coupling with linear
polarization is not problematic for detecting a B-mode signal.

Even more recently, another experiment placed constraints on the VV power
spectra. Precisely, CLASS, the Cosmology Large Angular Scale Surveyor based
in the Atacama desert, presented a new upper limit, at 95% C.L., of 0.4 µK2

to 13.5 µK2 on `(`+ 1)CV V
` /2π between 1 ≤ ` ≤ 120. This is the result of the

first two years of observation with the 40 GHz polarimeter and it represents a
two-orders-of-magnitude improvement over the previous limits, as you can see in
Fig. 2.4.
The CLASS experiments, differently from SPIDER, is designed to measure circular
polarization, in that it employs the Variable-delay Polarization Modulator (VPM)
technology.

The VPM is a simple instrument, only made by a flat mirror and, in parallel,
a polarizing grid, placed in front of the mirror. The light approaching the grid
is therefore reflected or transmitted depending on along which axis is polarized.
Due to the mirror (that is placed after the grid), the transmitted light is reflected,
and, then, it recombines with light reflected by the grid with an optical path
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difference that depends on the grid-mirror separation. Choosing coordinates such
that Stokes Q gives the difference between the polarization states parallel and
perpendicular to the grid, the polarization transfer function can be expressed as

U ′ = U cos δ + V sin δ , (2.18)

where the Stokes U and V are the input parameters and the Stokes U ′ is the output
parameter. The phase δ encodes the delay between the polarized transmitted
and reflected component at the output port of the device. This parameter is
proportional to the grid-mirror separation and to the cosine of the light incident
angle. This means that during one cycle of operation, the VPM switches the
Stokes parameter U for the incoming light into Stokes V , and then into Stokes
−U , see Fig. 1 of [101].

CLASS has been observing 75% of the sky with the 40 GHz instrument since
2016 (even though CLASS collaboration reports the results over 56% of the sky),
and the remaining frequencies of 90, 150, and 220 GHz have been deployed and
are currently collecting data.

Alongside these experiments, it is also worth mentioning the LiteBIRD satellite
(see Chpt. 4 for more details), planned to be launched in 2027, is equipped with
an HWP, so potentially new measurements of circular polarization are going to
come in the next decades.

This wealth of data, along with the plenty of mechanisms sourcing a degree of
circular polarization in the CMB radiation, brings into focus the importance of
having a formalism able to account for all of them, or at least most of, and going
one step further, that will allow us to easily set constrains on the parameters of
these models.
Such a goal is one of the main purpose of this thesis. In the next section, we are
going to see a unified framework describing the mixing of different polarization
states during CMB photon propagation, that could also lead to the generation of
CMB circular polarization from a pure linearly polarized initial state.

2.2.1 V-mode polarization power spectra

For completeness, let us define the angular power spectra of circular polariza-
tion, as done for temperature and linear polarization in Sec. 1.3.
We can consider V (n̂) as the amount of circular polarization at a given direction
n̂ on the sky. The Stokes V is a scalar quantity (see App. C). Hence, V (n̂) can
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Figure 2.4: MIPOL [5], SPIDER and CLASS 95% C.L. upper limits
to extraterrestrial circular polarization.

be expanded as

V (n̂) =
∑
`m

aV,`m Y`m(n̂) and aV,`m =

∫
dn̂ V (n̂)Y ∗`m(n̂) , (2.19)

where Y`m(n̂) is a scalar spherical harmonics. It is worth mentioning that V is a
pseudo-scalar under parity transformation, i.e. transforms as V (n̂′) = −V (n̂)

(see App. C for more details).
As in Sec. 1.3, we can assume that these aV,`ms follow the normal distribution
with zero mean value and non-zero variance, CV V

`
4.

So that, the angular power spectrum of V-mode polarization can be therefore
defined as

CV V
` =

1

2`+ 1
〈a∗V,`m aV,`m〉 , (2.20)

where the aV,`ms are given in Eq. 2.19.

4This assumption is motivated by the fact that inflation predict initial Gaussian perturba-
tions.
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2.3 A unified framework 5

The common line between 2.1 and 2.2 lies in the fact that both cosmic bire-
fringence and generation of a degree of circular polarization in the CMB can be
seen as the result of a mixing among the CMB polarization components.
For this reason, we have studied the in-vacuo conversion between different po-
larization states of propagating radiation in a cosmological setting and, in the
following, we are going to present the unified framework describing such a con-
version. Precisely, the framework allows describing the “generalized Faraday
effect” (GFE), the mixing among all polarization components, occurring when
the natural modes of the radiation are elliptically polarized.

The starting point is the radiative transfer equation in terms of the Stokes
parameters, as it is written and broadly discussed in many books of electro-
magnetism. After some assumptions, we will able to write this equation in a
perturbed FLRW Universe and to solve it. Then, we will use the powerful tool
of spherical harmonics expansion, to calculate the CMB angular power spectra.
These formulas, Eqs. 2.49, express, in a completely general way, the modifications
to the angular power spectra of CMB polarization induced by GFE in terms of
the angular power spectrum of the GFE itself and of the CMB power spectra
that would be observed if the GFE were absent. In the appropriate limits, these
spectra describe cosmic birefringence and Faraday conversion, respectively.

2.3.1 Radiative transfer equation in perturbed FLRWUni-
verse

The transfer equation for polarized radiation in a weakly6 anisotropic medium
reads [102–104]

d

ds



I

Q

U

V


=



εI

εQ

εU

εV


−



ηI ηQ ηU ηV

ηQ ηI ρV −ρU
ηU −ρV ηI ρQ

ηV ρU −ρQ ηI





I

Q

U

V


, (2.21)

where s is some affine parameter measuring length along the photon path, the
ε’s are the spontaneous emissivities, the ηabs’s describe absorption, and the

5Based on M. Lembo et al. [11].
6We want to treat the anisotropies as a perturbation.
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ρ’s describe what we have called the generalized Faraday effect: the mixing
between different polarization components. In particular, ρV mixes Q and U

polarization and is thus responsible for Faraday rotation, while ρQ and ρU mix
linear polarization with V and are responsible for Faraday conversion.
It is worth underlining that the Stokes parameters, as well as the elements of the
mixing matrix and the emissivities, depend, in principle, on conformal time η,
position x and radiation wavenumber p.

To reach the case of our interest, we have to make some assumptions. First
of all, we only consider the case of a non-absorbing medium7, and thus all the
ηabs’s are equal to 0. In this case, the total intensity decouples from polarization,
and we are allowed to write an equation for the polarization-only Stokes vector
S ≡ (Q, U, V ).
Moreover, as described in Chpt. 1, CMB linear polarization is sourced by Thomson
scattering at the epochs of recombination and reionization. This enables us to
assume that the V emissivity is always zero, while the Q and U emissivities
are strongly peaked at the time of hydrogen recombination, τrec, but vanishing
elsewhere, and study Eq. 2.21 with ε = 0 for τ > τrec and suitable initial
conditions at recombination. Note that this basically amounts to neglecting the
linear polarization generated at the time of cosmic reionization, see Chpt. 1. We
also neglect the effect of gravitational lensing due to matter distribution along
the line of sight. We will come back to these approximations later.

In light of these assumptions, Eq. 2.21 can be recast as

dS

ds
= ρ ∧ S , (2.22)

where we have introduced the vector in polarization space ρ ≡ (ρQ, ρU , ρV ),
while ∧ represents the usual cross product.
Looking at Eq. 2.22, it is clear that the direction of ρ defines the polarization
of the natural modes of the medium: when ρ is aligned along the V direction
(ρQ = ρU = 0, ρV 6= 0), the normal modes are circularly-polarized waves and
Faraday rotation arises; when ρ is orthogonal to the V direction (ρQ, ρU 6= 0,
ρV = 0) the normal modes are linearly-polarized and Faraday conversion takes
place. In the general case, the normal modes are elliptically-polarized states.
Moreover, in this form, the equation lends itself to a simple interpretation: total

7We have made this assumption since the two effects (absorption and mixing of polarization
states) are not necessarily related, and we were interested in studying the effects due to the
mixing of the polarization states only. As a concrete example of a model in which one has GFE
but not absorption, please see e.g. Ref. [40] and in particular their Eqs. (46-49) and (58-61).
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polarization intensity P = |S| = (Q2 +U2 + V 2)1/2 is conserved and the vector S

precedes with angular velocity |ρ| around the direction of ρ, ρ̂. In other words,
after some time t, the vector S will have been rotated by an angle 2α(t) =

∫
|ρ| dt′

around ρ̂. we have defined the precession angle with a factor 2 so that, in the
Faraday rotation limit, α is the angle of rotation of the linear polarization plane.
Indeed, if we think of S and ρ as vectors in polarization space, we have that a
rotation of an angle α in the plane of the polarimeter corresponds to a rotation
of an angle 2α in polarization space around the V axis for both vectors:

R̂
(2)

=

 cosα sinα

− sinα cosα


︸ ︷︷ ︸

plane orthogonal to the propagation direction

−→ R̂pol =


cos 2α sin 2α 0

− sin 2α cos 2α 0

0 0 1


︸ ︷︷ ︸

polarization space

(2.23)

It is straightforward to show that, under the above rotations, Eq. 2.22 behaves
well because the cross-product on the RHS is still a “good” vector and conserves
the total polarization intensity P = |S| = (Q2 + U2 + V 2)1/2.

For the purpose of calculating CMB anisotropies, it is more convenient to work
with quantities with definite spin. Let us introduce the auxiliary polarization
vector

∆P (η, x, q) =
(

∆P+,∆P−, V
)
, (2.24)

where ∆P± = (Q± iU)/
√

2 are the usual spin ±2 combinations of Q and U . See
App. C for more details. The effect of a rotation of the polarimeter by an angle
α, i.e. a rotation in the plane orthogonal to the direction of light propagation, is
thus equivalent to multiplying ∆P by

R̂(α) ≡


e+2iα 0 0

0 e−2iα 0

0 0 1

 . (2.25)

Similarly, let us define ρ± ≡ (ρQ ± iρU)/
√

2 and, from the above considerations,
it follows that these should also be spin ±2 quantities, respectively, while ρV
is a pseudo-scalar. Note that we have introduced the comoving wavenumber
q = ap, with a(η) being the cosmological scale factor, to describe the wavenumber
dependence.
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Since we are interested in a cosmological setting, we have to write Eq. 2.22
in a perturbed FRLW Universe, see Eqs. 1.26 in Sec. 1.2.2. Expanding the
spatial dependence of ∆P in Fourier modes and keeping terms up to first order
in cosmological perturbations yields

∂∆P

∂η
+ ikµ∆P = iK∆P , (2.26)

where we have taken into account the fact that the background radiation field
is unpolarized. This equation is valid both for scalar and tensor modes. Here,
k is the wavevector of the perturbation, µ ≡ k̂ · q̂, and K is the mixing matrix,
defined as

K ≡


ρV 0 −ρ+

0 −ρV ρ−

−ρ− ρ+ 0

 . (2.27)

In deriving Eq. 2.26, we have assumed that the ρ’s do not depend on x. This
is equivalent to require that the physics behind the generalized Faraday effect
preserves homogeneity. In other words, we are considering a medium that is
anisotropic/parity not conserving, but homogeneous.
Note that K is hermitian, because ρ+ = ρ∗−, and that a rotation around the
direction of propagation sends K̂→ R̂(α)KR̂(α)−1.

We also require that the ρ’s have the same time-dependency, e.g. from the
scale factor. This case is still quite general, since it is not unreasonable to assume
that the mixing parameters depend on time in the same way, if they share a
common physical origin.
This is equivalent to consider

K = f(η)K0 , (2.28)

where f(η) is a generic function of time encoding the time-dependency of the ρ’s
and K0 is the time-independent part of Eq. 2.27.

A formal solution to this equation with given initial conditions at last scatter-
ing ∆P (ηLS) = ∆LS can be written as:

∆P (η) = exp

(
i

∫ η

ηLS

Kdη′
)

∆̃P (η) , (2.29)
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where ∆̃P is a solution of the initial value problem

∂∆̃P

∂η
+ ikµ∆̃P = 0 ; ∆̃P (ηLS) = ∆LS . (2.30)

In other words, Eq. 2.30 ensures that the components of ∆̃ are ∆̃’s that would be
observed in the absence of GFE, already calculated in Chpt. 1. Thus, it suffices
to rotate these solutions through Eq. 2.29 to get the polarization perturbations
modified by the GFE, at the present time.

It is worth mentioning that the solution as is written in Eq. 2.29 is valid only
if the commutator

[
K(t1), K(t2)

]
is equal to 0 for any pair of t1 and t2 (i.e.,

K(t1)K(t2)−K(t2)K(t1) = 0). Clearly, this condition is trivially satisfied if K
is independent of time or if we assume Eq. 2.28.
If we want to consider the case in which K depends on time in a more general
way, we have to replace the integral in Eq. 2.29 with the Magnus series. Hence,
Eq. 2.29 becomes

∆P (η) = exp
[
Ω(η, ηLS)

]
∆̃P (η) , (2.31)

where

Ω(η, ηLS) =
∞∑
k=1

Ωk(η, ηLS) (2.32)

is the Magnus series. The terms of this series are defined as

Ω1(η, ηLS) =

∫ η

ηLS

dη1 iK(η1) ;

Ω2(η, ηLS) =
1

2

∫ η

ηLS

dη1

∫ η1

ηLS

dη2

[
iK(η1), iK(η2)

]
, ;

Ω3(η, ηLS) =
1

6

∫ η

ηLS

dη1

∫ η1

ηLS

dη2

∫ η2

ηLS

dη3

([
iK(η1),

[
iK(η2), iK(η3)

]]
+

+
[
iK(η3),

[
iK(η2), iK(η1)

]])
;

... (2.33)

In applications, one can rarely sum exactly the Magnus series, and, it is usual
to get approximate solutions, truncating the series. However, we have chosen to
directly solve Eq. 2.29, assuming Eq. 2.28.

Let us rearrange Eq. 2.29 in a more convenient way. We can define the average
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angular velocity K̄ as

K̄ ≡ 1

η − ηLS

∫ η

ηLS

K(η′)dη′ =
1

η
K0

∫ η

ηLS

f(η′)dη′ , (2.34)

and, the elements of K̄ are, therefore, quantities averaged along the line of sight,

ρ̄X ≡
1

η − ηLS

∫ η

ηLS

ρX(η′)dη′ =
1

η − ηLS

ρ0,X

∫ η

ηLS

f(η′)dη′ . (2.35)

With the above definitions, Eq. 2.29 becomes

∆P (η) = exp
(
iK̄∆η

)
∆̃P (η) . (2.36)

Defining ρ̄ ≡ ρ̄2
Q + ρ̄2

U + ρ̄2
V = 2ρ̄+ρ̄− + ρ̄2

V and 2α(η) ≡ ρ̄(η − ηLS), and, using
the Rodrigues’ rotation formula, the exponential in the RHS of Eq. 2.36 reads

exp
(
iK̄∆η

)
= exp

(
iρ̄∆ηK̄

′
)

=

= 1 + iρ̄∆η K̄
′ − (ρ̄∆η)2

2
K̄
′2 − i(ρ̄∆η)3

3!
K̄
′
+

(ρ̄∆η)4

4!
K̄
′2

+ · · · =

= 1 + [i sin 2α(η)]K̄
′
+ [cos 2α(η)− 1]K̄

′2
, (2.37)

where ∆η = η − ηLS and K̄ ′ = K̄/ρ̄,

K̄
2 ≡


ρ̄−ρ̄+ + ρ̄2

V −ρ̄2
+ −ρ̄+ρ̄V

−ρ̄2
− ρ̄−ρ̄+ + ρ̄2

V −ρ̄−ρ̄V
−ρ̄−ρ̄V −ρ̄+ρ̄V 2ρ̄−ρ̄+

 , and K̄
3

= ρ̄2K̄. (2.38)

Collecting all the above results, we get the following relations between the
components of ∆ and ∆̃ at a given time:

∆P+(η) = ∆̃P+ + i sin 2α(η)
ρ̄V ∆̃P+ − ρ̄+Ṽ

ρ̄
+

+
(
1− cos 2α(η)

) 1

ρ̄2

[(
ρ̄+ρ̄− − ρ̄2

)
∆̃P+ + ρ̄2

+∆̃P− + ρ̄+ρ̄V Ṽ

]
; (2.39a)
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∆P−(η) = ∆̃P− − i sin 2α(η)
ρ̄V ∆̃P− − ρ̄−Ṽ

ρ̄
+

+ (1− cos 2α(η))
1

ρ̄2

[
ρ̄2
−∆̃P+ +

(
ρ̄+ρ̄− − ρ̄2

)
∆̃P− + ρ̄−ρ̄V Ṽ

]
; (2.39b)

V (η) = Ṽ − i sin 2α(η)
ρ̄−∆̃P+ − ρ̄+∆̃P−

ρ̄
+

+ (1− cos 2α(η))
1

ρ̄2

[
ρ̄−ρ̄V ∆̃P+ + ρ̄+ρ̄V ∆̃P− +

(
ρ̄2
V − ρ̄2

)
Ṽ

]
. (2.39c)

These equations are the exact solution of Eq. 2.29 and express the polarization
perturbations after the mixing, the “un-tilded” quantities appearing in the LHS, in
terms of those that would be realized in the sky if such a mixing were absent, the
“tilded” quantities appearing on the RHS. They can be seen as a generalization
of the equations for anisotropic cosmic birefringence, that is sourced by Q− U
mixing, to the case of a Q− U − V mixing.

2.3.2 CMB power spectra in presence of GFE

In order to characterize the statistics of the CMB perturbations, we need to
calculate angular power spectra. We thus expand in spherical harmonics both
sides of Eqs. 2.39b.
While V , Ṽ and ρ̄V are scalar quantities and can be naturally expanded in spin-0
spherical harmonics, ∆P±, ∆̃P± and ρ̄± should be expanded in spin-weighted
s = ±2 harmonics. See App. B for more details about the spin-wighted harmonics.
Therefore:

V (n̂) =
∑
`m

aV,`mY`m(n̂) , Ṽ (n̂) =
∑
`m

ãV,`mY`m(n̂) ; (2.40a)

∆P+(n̂) =
∑
`m

a2,`m 2Y`m(n̂) , ∆̃P+(n̂) =
∑
`m

ã2,`m 2Y`m(n̂) ; (2.40b)

∆P−(n̂) =
∑
`m

a−2,`m −2Y`m(n̂) , ∆̃P−(n̂) =
∑
`m

ã−2,`m −2Y`m(n̂) , (2.40c)

and

∆η ρ̄V (n̂) =
∑
`m

bV,`mY`m(n̂) ; (2.40d)
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∆η ρ̄+(n̂) =
∑
`m

b2,`m 2Y`m(n̂) ; (2.40e)

∆η ρ̄−(n̂) =
∑
`m

b−2,`m −2Y`m(n̂) , (2.40f)

where ∆η = η − ηLS.
Given an explicit form of the ρ’s, the b`m’s can be computed explicitly, as it will
be done in the next section.

Since we expect violations of isotropy/parity conservation to be small, we
keep only terms up to second order in α. This allows us to drop all the terms of
order higher than the second in Eqs. 2.39b, obtaining

∆P+ =

(
1 + i∆η ρ̄V −

∆η2 ρ̄V ρ̄V
2

− ∆η2 ρ̄+ρ̄−
2

)
∆̃P+ +

∆η2 ρ̄+ρ̄+

2
∆̃P− ;

∆P− =

(
1− i∆η ρ̄V −

∆η2 ρ̄V ρ̄V
2

− ∆η2 ρ̄+ρ̄−
2

)
∆̃P− +

∆η2 ρ̄−ρ̄−
2

∆̃P+ ;

V =

(
− i∆η ρ̄− +

∆η2 ρ̄−ρ̄V
2

)
∆̃P+ +

(
iρ̄+ +

∆η2 ρ̄+ρ̄V
2

)
∆̃P− , (2.41)

where we took Ṽ = 0, coherently with the standard model expectation of vanishing
primordial V-mode.

Before proceeding further, let us simplify the calculation introducing the
expansion coefficients Bxy,`m for the product ∆η2 ρ̄xρ̄y. For example:

∆η2 ρ̄V ρ̄V =
∑
L1

∑
L2

bV,L1YL1 bV,L2YL2 = (2.42a)

=
∑

L,L1,L2

(−1)mF``1`2

 `1 `2 `

m1m2m

`1 `2 `

0 0 0

 bV,L1bV,L2 YL =

=
∑
L

BV V,L YL ,

with

BV V,L = (−1)m
∑
L1L2

F``1`2

 `1 `2 `

m1m2m

`1 `2 `

0 0 0

 bV,L1bV,L2 , (2.42b)
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where F``1`2 =

[
(2`+ 1

)(
2`1 + 1

)(
2`2 + 1

)
/
(
4π
)](1/2)

and L = (`,m). The latter

notation will be often used in this Chapter. In the above calculation, we have
used the contraction rule of two spherical harmonics, that can be extended to
the case of spin-weighted spherical harmonics (see App. B). Similarly, we get:

∆η2 ρ̄+(n̂)ρ̄−(n̂) =
∑
L

B+−,L YL(n̂) ; (2.43a)

∆η2 ρ̄+(n̂)ρ̄+(n̂) =
∑
L

B++,L 4YL(n̂) ; (2.43b)

∆η2 ρ̄−(n̂)ρ̄−(n̂) =
∑
L

B−−,L −4YL(n̂) ; (2.43c)

∆η2 ρ̄+(n̂)ρ̄V (n̂) =
∑
L

B−V,L 2YL(n̂) ; (2.43d)

∆η2 ρ̄−(n̂)ρ̄V (n̂) =
∑
L

B−V,L −2YL(n̂) , (2.43e)

where

B+−,L = (−1)m
∑
L1L2

F``1`2

 `1 `2 `

m1m2m

 `1 `2 `

−2 2 0

 b+,L1b−,L2 ; (2.44a)

B++,L = (−1)m
∑
L1L2

F``1`2

 `1 `2 `

m1m2m

 `1 `2 `

−2−2 4

 b+,L1b+,L2 ; (2.44b)

B−−,L = (−1)m
∑
L1L2

F``1`2

 `1 `2 `

m1m2m

`1 `2 `

2 2 −4

 b−,L1b−,L2 ; (2.44c)

B+V,L = (−1)m
∑
L1L2

F``1`2

 `1 `2 `

m1m2m

 `1 `2 `

−2 0 2

 b+,L1bV,L2 ; (2.44d)

B−V,L = (−1)m
∑
L1L2

F``1`2

 `1 `2 `

m1m2m

`1 `2 `

2 0 −2

 b−,L1bV,L2 . (2.44e)

Projecting both sides of Eqs. 2.41 over the appropriate spherical harmonics
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and keeping only terms up to second order in α, we get:

aE,L = ãE,L +
(
G(1)
L1L
−H(1)

L1L
+H(3)

L1L

)
ãE,L1 −

(
G(2)
L1L

+H(2)
L1L
−H(4)

L1L

)
ãB,L1 ;

aB,L = ãB,L +
(
G(1)
L1L
−H(1)

L1L
−H(3)

L1L

)
ãB,L1 +

(
G(2)
L1L

+H(2)
L1L

+H(4)
L1L

)
ãE,L1 ;

aV,L =
(
G(3)
L1L
−H(5)

L1L

)
ãE,L1 −

(
G(4)
L1L

+H(6)
L1L

)
ãB,L1 , (2.45)

where we have made the usual definition aE,L = −(a2,L + a−2,L)/2 and aB,L =

i(a2,L − a−2,L)/2, and, from now on, if not specified, summation over repeated
indices is understood.
The G and H kernels contain only geometrical factors (products of Wigner-3j
symbols), and, the b and B expansion coefficients respectively, and as such do
not depend on the other cosmological parameters. Their explicit form is given in
App. E.

We can now use Eqs. 2.45 to build correlators CXY
LL′ ≡ 〈aX,La∗Y,L′〉. Note

that the ordering of the fields is important: CXY 6= CY X . However, CY X
LL′ =

(−1)m+m′CXY
−L−L′ =

(
CXY
L′L

)∗.
Then, using 〈ãX,Lã∗Y,L′〉 = C̃XY

` δ``′δmm′ for the “unrotated” fields, and the fact
that primordial TB and EB correlations should be vanishing, we get (no implicit
summation in the following):

CTE
LL′ =

[
δ``′δmm′ − G(1)

L′L −H
(1)
L′L + H(3)∗

LL′ +

]
C̃TE
` ; (2.46a)

CTB
LL′ =

[
G(2)
L′L −H

(2)
L′L + H(4)∗

LL′

]
C̃TE
` ; (2.46b)

CTV
LL′ =

[
G(3)∗
LL′ −H

(5)∗
LL′

]
C̃TE
` ; (2.46c)

CEE
LL′ = C̃EE

` δ``′δmm′ −
[
G(1)
L′L +H(1)

L′L −H
(3)∗
LL′

]
C̃EE
` +

[
G(1)
L′L −H

(1)
L′L +H(3)

L′L

]
C̃EE
`′ +

−
∑
L1

[
G(1)
L′L1
G(1)
L1L

C̃EE
`1
− G(2)

L′L1
G(2)
L1L

C̃BB
`1

]
; (2.46d)

CBB
LL′ = C̃BB

` δ``′δmm′ −
[
G(1)
L′L +H(1)

L′L +H(3)∗
LL′

]
C̃BB
` +

[
G(1)
L′L −H

(1)
L′L −H

(3)
L′L

]
C̃BB
`′ +

−
∑
L1

[
G(1)
L′L1
G(1)
L1L

C̃BB
`1
− G(2)

L′L1
G(2)
L1L

C̃EE
`1

]
; (2.46e)
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CEB
LL′ =

[
G(2)
L′L −H

(2)
L′L +H(4)∗

LL′

]
C̃EE
` −

[
G(2)
L′L +H(2)

L′L −H
(4)
L′L

]
C̃BB
`′ +

+
∑
L1

[
G(2)
L′L1
G(1)
L1L

C̃EE
`1

+ G(1)
L′L1
G(2)
L1L

C̃BB
`1

]
; (2.46f)

CEV
LL′ =

[
G(3)∗
LL′ −H

(5)∗
LL′

]
C̃EE
` +

∑
L1

[
G(3)∗
L1L′
G(1)
L1L

C̃EE
`1

+ G(4)∗
L1L′
G(2)
L1L

C̃BB
`1

]
; (2.46g)

CBV
LL′ = −

[
G(4)∗
LL′ +H(6)∗

LL′

]
C̃BB
` −

∑
L1

[
G(4)∗
L1L′
G(1)
L1L

C̃BB
`1
− G(3)∗

L1L′
G(2)
L1L

C̃EE
`1

]
; (2.46h)

CV V
LL′ =

∑
L1

[
G(3)∗
L1L′
G(3)
L1L

C̃EE
`1

+ G(4)∗
L1L′
G(4)
L1L

C̃BB
`1

]
. (2.46i)

In view of comparison with observations, let us focus on the diagonal compo-
nents (L = L′), but, in principle, there is potentially valuable information also in
the off-diagonal terms.
Averaging over m and introducing

CXY
` ≡ 1

2`+ 1

+∑̀
m=−`

CXY
LL , (2.47)

we end up with the following expressions:

CTE
` =

[
1− 1

2`+ 1

+∑̀
m=−`

(
G(1)
LL +H(1)

LL −H
(3)∗
LL

)]
C̃TE
` ; (2.48a)

CTB
` =

[
1

2`+ 1

+∑̀
m=−`

(
G(2)
LL −H

(2)
LL +H(4)∗

LL

)]
C̃TE
` ; (2.48b)

CTV
` =

[
1

2`+ 1

+∑̀
m=−`

(
G(3)∗
LL −H

(5)∗
LL

)]
C̃TE
` ; (2.48c)

CEE
` =

[
1− 1

2`+ 1

+∑̀
m=−`

(
2H(1)

LL −H
(3)
LL −H

(3)∗
LL

)]
C̃EE
` +

− 1

2`+ 1

∑
L1

[(
+∑̀

m=−`

G(1)
LL1
G(1)
L1L

)
C̃EE
`1
−
(

+∑̀
m=−`

G(2)
LL1
G(2)
L1L

)
C̃BB
`1

]
; (2.48d)
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CBB
` =

[
1− 1

2`+ 1

+∑̀
m=−`

(
2H(1)

LL +H(3)
LL +H(3)∗

LL

)]
C̃BB
` +

− 1

2`+ 1

∑
L1

[(
+∑̀

m=−`

G(1)
LL1
G(1)
L1L

)
C̃BB
`1
−
(

+∑̀
m=−`

G(2)
LL1
G(2)
L1L

)
C̃EE
`1

]
; (2.48e)

CEB
` =

1

2`+ 1

+∑̀
m=−`

[(
G(2)
LL −H

(2)
LL +H(4)∗

LL

)
C̃EE
` −

(
G(2)
LL +H(2)

LL −H
(4)
LL

)
C̃BB
`

]
+

+
1

2`+ 1

∑
L1

[(
+∑̀

m=−`

G(2)
LL1
G(1)
L1L

)
C̃EE
`1

+

(
+∑̀

m=−`

G(1)
LL1
G(2)
L1L

)
C̃BB
`1

]
; (2.48f)

CEV
` =

[
1

2`+ 1

+∑̀
m=−`

(
G(3)∗
LL −H

(5)∗
LL

)]
C̃EE
` +

+
1

2`+ 1

∑
L1

[(
+∑̀

m=−`

G(3)∗
L1L
G(1)
L1L

)
C̃EE
`1

+

(
+∑̀

m=−`

G(4)∗
L1L
G(2)
L1L

)
C̃BB
`1

]
; (2.48g)

CBV
` = −

[
1

2`+ 1

+∑̀
m=−`

(
G(4)∗
LL +H(6)∗

LL

)]
C̃BB
` +

+
1

2`+ 1

∑
L1

[(
+∑̀

m=−`

G(4)∗
L1L
G(1)
L1L

)
C̃BB
`1
−
(

+∑̀
m=−`

G(3)∗
L1L
G(2)
L1L

)
C̃EE
`1

]
; (2.48h)

CV V
` =

1

2`+ 1

∑
L1

[(
+∑̀

m=−`

G(3)
L1L
G(3)∗
L1L

)
C̃EE
`1

+

(
+∑̀

m=−`

G(4)
L1L
G(4)∗
L1L

)
C̃BB
`1

]
.

(2.48i)

Note that now, since we have chosen L = L′, the order of the fields is unimportant:
CXY
` = CY X

` . Also, the C`’s are real.
Some of the sums can be further simplified by using the properties of the

Wigner symbols (see App. E).
Definitely , the spectra that are not trivially equal to their “unrotated” counter-
parts are (note that we have restored the implicit summation convention here):
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CTE
` =

(
1− Z

2

)
C̃TE
` ; (2.49a)

CTB
` =

bV,00√
4π

C̃TE
` ; (2.49b)

CEE
` =

(
1−Z

)
C̃EE
` + K11

`1`
C̃EE
`1

+ K22
`1`
C̃BB
`1

; (2.49c)

CBB
` =

(
1−Z

)
C̃BB
` + K11

`1`
C̃BB
`1

+ K22
`1`
C̃EE
`1

; (2.49d)

CEB
` =

bV,00√
4π

(
C̃EE
` − C̃BB

`

)
; (2.49e)

CEV
` = K13

`1`
C̃EE
`1

+ K24
`1`
C̃BB
`1

; (2.49f)

CBV
` = K23

`1`
C̃EE
`1
− K14

`1`
C̃BB
`1

; (2.49g)

CV V
` = K33

`1`
C̃EE
`1

+ K44
`1`
C̃BB
`1

, (2.49h)

where we have defined the K kernels as

Ka b`1` = (2`+ 1)−1
∑
m1,m

G(a)
L1L
G(b)∗
L1L

, (2.50)

and
4πZ =

∑
`m

(
|bV,`m|2 + |b2,`m|2

)
. (2.51)

It is interesting to note that, if the ρ’s have to be interpreted as stochastic
quantities, Z gives their variance.

In the following table, we gather each kernels appearing in Eqs. (2.49), K and
Z, with their dependences in terms of the ρ’s coefficients. The full expression of
these kernels is shown in App. E. Moreover, in the last column, we added the
power spectra in which these kernels appear.

Equations 2.49 encode, in a very general way, the modifications due to GFE,
linking the modified power spectra to the power spectra that we would have in
absence of this effect: they follow quite strightly from Eq. 2.21, after assuming a
non-absorbing medium, ηabs = 0, a zero emissivity for V, εV = 0, and neglecting
the linear polarization generated at the time of cosmic reionization, εQ = εU = 0.
It is useful to recall that we have also made the assumption in Eq. 2.28 to ensure[
K(η1), K(η2)

]
= 0. Moreover, Eqs. 2.49 are valid only up to second order in α
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Kab - Z ρx CAB
`

K11 ρV (odd multipoles only) CEE
` , CBB

`

K13 ρV , ρQ, ρU (odd multipoles only) CEV
`

K14 ρV , ρQ, ρU (odd multipoles only) CBV
`

K22 ρV (even multipoles only) CEE
` , CBB

`

K23 ρV , ρQ, ρU (even multipoles only) CBV
`

K24 ρV , ρQ, ρU (even multipoles only) CEV
`

K33 ρQ, ρU CV V
`

K44 ρQ, ρU CV V
`

Z ρV , ρQ, ρU CTE
` , CEE

` , CBB
`

and assuming no primordial EB/TB spectra.
Let us recall the behavior of the Stokes parameters under parity transfor-

mations: T and E are scalars while B and V are pseudo-scalars. As aspected,
the mixing among the polarization components leads to parity-violating power
spectra, such as EB, TB and EV.

To deeply understand the strength of this formalism, we can consider some
limiting cases of Eqs. 2.49.

2.3.2.1 Cosmic birefringence, ρV 6= 0 and ρQ = ρU = 0:

The Stokes vector rotates around the V−direction and only Q and U mix.
This is the “cosmic birefringence”, widely discussed in Sec. 2.1. It is immediate
to convince oneself that in this case α is the birefringence angle, i.e. the angle of
rotation of the plane of linear polarization. From Eqs. 2.49, we get

CTE
` =

1− 1

2

(
b2
V,00

4π
+
∑
`m
`≥1

|bV,`m|2
4π

) C̃TE
` ; (2.52a)

CTB
` =

bV,00√
4π

C̃TE
` ; (2.52b)

CEE
` =

1−
(
b2
V,00

4π
+
∑
`m
`≥1

|bV,`m|2
4π

) C̃EE
` +K11

`1`
C̃EE
`1

+K22
`1`
C̃BB
`1

; (2.52c)
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CBB
` =

1−
(
b2
V,00

4π
+
∑
`m
`≥1

|bV,`m|2
4π

) C̃BB
` +K11

`1`
C̃BB
`1

+K22
`1`
C̃EE
`1

; (2.52d)

CEB
` =

bV,00√
4π

(
C̃EE
` − C̃BB

`

)
, (2.52e)

and we recover the second-order equations for both isotropic, Eqs. 2.7, and
anisotropic birefringence, Eqs. 2.14, with the identifications

2∆χ̄ ≡ bV,00√
4π

and 4〈∆δχ2〉 ≡
∑
`m
`≥1

|bV,00|2
4π

. (2.53a)

2.3.2.2 Faraday Conversion, ρV = 0, ρQ 6= 0 and/or ρU 6= 0:

Circular polarization is generated by conversion of the primordial linear
polarization as CMB photon propagate through a birefringent medium along the
line of sight. See Sec. 2.2 for more details. In particular, from Eqs. (2.49), it can
be seen that a non-zero VV power spectrum is sourced, while the cross-spectra
between circular and linear polarization remain vanishing, at least up to second
order, if ρV = 0. From Eqs. 2.49,

CTE
` =

(
1− 1

2

∑
`m

|b2,`m|2
4π

)
C̃TE
` ; (2.54a)

CEE
` =

(
1−

∑
`m

|b2,`m|2
4π

)
C̃EE
` ; (2.54b)

CBB
` =

(
1−

∑
`m

|b2,`m|2
4π

)
C̃BB
` ; (2.54c)

CV V
` = K33

`1`
C̃EE
`1

+ K44
`1`
C̃BB
`1

. (2.54d)
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2.4 A tool to constrain the optical properties of
the Universe8

The unified framework introduced in the previous section, and so even better
Eqs. 2.49, allow for in-vacuo conversion of polarization states in a cosmological
setting is understood.
Mixing of the polarization components can arise through several mechanisms,
involving either known physics or more exotic models. Given such a mechanism,
the ρ’s in Eqs. 2.49 can be computed and specific predictions for the observed
power spectra can be obtained. Moreover, even though the mixing of CMB
polarization states has been studied in the literature, most of the previous studies
concentrated on specific models giving rise to mixing between linear polarization,
or to the conversion of linear to circular polarization. There was no attempt to
provide a general, model-independent framework to study these effects. In this
sense, this framework filled that gap, also providing a neat physical description
of the GFE as the precession of the Stokes vector.

Here, we make a further step. Drawing inspiration from the propagation
of light in anisotropic or chiral media (e.g., crystals), we can describe GFE
as the result of light propagating into a medium with an anisotropic and/or
parity-violating susceptibility tensor. In other words, we are relating the GFE
parameters to the optical properties of the medium traversed by CMB photons.

Let us start from fundamental concepts. The polarization P produced in a
medium by a given electric field E is related to the field itself by

P = ε0χE , (2.55)

where ε0 is the dielectric constant. If the medium is anisotropic (e.g. a crystal),
P and E are not aligned and χ is a tensor, called the susceptibility tensor. This
tensor encodes all the optical properties of the medium.

If we consider a non-dispersive medium, the more general form of the suscep-
tibility tensor is

χ =


χxx i χxy −i χxz
−i χxy χyy i χyz

i χxz −i χyz χzz

 , (2.56)

where the χij’s are all real. The reference frame in which the susceptibility
8Based on M. Lembo et al. [11].
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tensor takes this form is the one aligned with the principal axes of the crystal,
i.e., the eigenvectors of Re(χ). The elements of χ in this basis have a simple
physical interpretation. The diagonal elements are responsible for different linear
polarization states propagating with different velocities, and as such they violate
isotropy. These elements are so related to birefringence. The off-diagonal elements
are, instead, related to optical activity. In other words, waves with different
chirality are propagating with different speeds, violating parity.

We assume that the medium is homogeneous (homogeneous does not mean
isotropic), therefore χ in Eq. 2.56 does not depend on position; it might however
depend on the radiation wavenumber.

To the purpose of making a connection between the three-dimensional sus-
ceptibility tensor and the ρ’s, we compare Eq. 2.21 with the radiative transfer
equation written in terms of the susceptibility tensor [102,103,105]:(

∂

∂t
+ p̂ ·∇

)
Iab = Eab + i(2πν)

(
χ(2)
ac Icb − Iac(χ(2)†)cb

)
, (2.57)

where Iab is the polarization tensor,

Iab = 〈EaE∗b 〉 =
1

2

 I +Q U + iV

U − iV I −Q

 , (2.58)

Eab is the tensor of spontaneous emission intensity per unit volume, ν is the
radiation frequency, and χ(2)

ab is the susceptibility tensor in the plane perpendicular
to the direction of light propagation,

χ(2) =

(χxxc2
φ + χyys

2
φ

)
c2
θ + χzzs

2
θ (χyy − χxx)cθsφcφ

(χyy − χxx)cθsφcφ
(
χxxs

2
φ + χyyc

2
φ

)
+

+ i

 0 χxycθ + (χyzcφ + χxzsφ) sθ

−χxycθ − (χyzcφ + χxzsφ) sθ 0

 , (2.59)

where we have introduced the short-hand notation sX ≡ sinX and cX ≡ cosX.
For the moment, we do not make any assumption about χ and χ(2), so the latter
should be regarded as the most general 2× 2 tensor, having 8 degrees of freedom.
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Eq. 2.57 can be rearranged in terms of the Stokes vector S = (I, Q, U, V ) as

d

ds



I

Q

U

V


=



εI

εQ

εU

εV


+ 2πν



TII TIQ TIU TIV

TQI TQQ TQU TQV

TUI TUQ TUU TUV

TV I TV Q TV U TV V


︸ ︷︷ ︸

T



I

Q

U

V


, (2.60)

where

εI = E11 + E22; εQ = E11 − E22; εU = E12 + E21; εV = −i (E12 − E21) , (2.61)

and
TII = TQQ = TUU = TV V = − Im

{(
χ

(2)
11 + χ

(2)
22

)}
; (2.62)

TIQ = TQI = − Im
{(
χ

(2)
11 − χ(2)

22

)}
; (2.63)

TIU = TUI = − Im
{(
χ

(2)
12 + χ

(2)
21

)}
; (2.64)

TIV = TV I = Re
{(
χ

(2)
12 − χ(2)

21

)}
; (2.65)

TQU = −TUQ = − Im
{(
χ

(2)
12 − χ(2)

21

)}
(2.66)

TQV = −TV Q = Re
{(
χ

(2)
12 + χ

(2)
21

)}
; (2.67)

TUV = −TV U = −Re
{(
χ

(2)
11 − χ(2)

22

)}
. (2.68)

Note that T has 7 independent components, even though we started with 8
d.o.f.’s from χ(2). The reason lies in the fact that the real part of the trace of
χ(2) does not enter the RHS of Eq. 2.57, since

AδacIcb − Iac(Aδcb)† = (A− A∗)Iab = 0 , (2.69)

if A is a real quantity. In other words, the substitution χ(2)
ab → χ

(2)
ab +Aδab, where

A is a real scalar, does not change the RHS of Eq. 2.57.
Let us go back to the case of our interest: no absorption, TII = TIQ = TIU =

TIV ∝ ηI = 0, so we end up with an hermitian susceptibility tensor, and no
emission, εII = εIQ = εIU = εIV = 0, at least studying the equation for τ > τrec.

In that case, the number of dof’s of χ(2) goes down to 3 (4 minus 1 for the
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trace) and the only surviving components of T are:

ρQ ≡ −(2πν0)TUV = (2πν0)
(
χ

(2)
11 − χ(2)

22

)
; (2.70a)

ρU ≡ (2πν0)TQV = (4πν0) Re
{
χ

(2)
12

}
; (2.70b)

ρV ≡ −(2πν0)TQU = (4πν0) Im
{
χ

(2)
12

}
, (2.70c)

where we have introduced the ρ’s to make connection with the notation that
we have been using since the beginning of this chapter. Moreover, since we are
interested in the radiative transfer problem in an expanding Universe, we have
introduced ν0 = aν.

The final step is to make connection with the three-dimensional susceptibility
tensor. Combing Eqs. 2.70 with Eq. 2.59, we get:

ρQ = 2πν0

[(
χxxc

2
θ − χyy

)
c2
φ +

(
χyyc

2
θ − χxx

)
s2
φ + χzzs

2
θ

]
; (2.71a)

ρU = 4πν0

(
χyy − χxx

)
cθsφcφ ; (2.71b)

ρV = 4πν0

(
χxycθ + χyzsθcφ + χxzsθsφ

)
, (2.71c)

or introducing the time-averaged variables χ̄ij ≡ (η − ηLS)−1
∫ η
ηLS

χij dη,

ρ̄Q = 2πν0

[(
χ̄xxc

2
θ − χ̄yy

)
c2
φ +

(
χ̄yyc

2
θ − χ̄xx

)
s2
φ + χ̄zzs

2
θ

]
; (2.72a)

ρ̄U = 4πν0

(
χ̄yy − χ̄xx

)
cθsφcφ ; (2.72b)

ρ̄V = 4πν0

(
χ̄xycθ + χ̄yzsθcφ + χ̄xzsθsφ

)
. (2.72c)

This set of equations allows us to connect the observed spectra in presence of
GFE to the components of an effective “cosmic susceptibility tensor”, that has
the makings of describing, in a completely model-independent way, the optical
properties of the Universe between us and the CMB last scattering surface. In
other words, we are recasting a mechanism that alters the propagation of photons
across cosmological distances, the GFE, in terms of an effective susceptibility
tensor, for example by looking at how the wave equation is modified.
Moreover, given a model predicting GFE, it will suffice to express its effects on
light propagation in terms of a susceptibility tensor, which can be easily done
by examining how, for example, Maxwell’s equations are modified in the model
under consideration, and apply Eqs. 2.49 combined with Eqs. 2.72, to get the
observed CMB spectra.
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In the following, we choose to carry on a phenomenological approach, and,
without making any assumptions on the physical mechanism beyond GFE, we
are going to focus on the simplest case: a susceptibility tensor that does not
depend on the radiation wavenumber.

2.4.1 Toy model: a wavenumber-independent susceptibil-
ity tensor

In this section, to see the formalism at work, we will consider a χ that does
not depend on the radiation wavenumber.

First of all, we have to explicitly compute the expression for the expansion
coefficients bx,`m in terms of the χij’s.
Let us start from

ρ̄V (θ, φ) = 4πν0

(
χ̄xycθ + χ̄yzsθcφ + χ̄xzsθsφ

)
=
∑
`m

bV,`mY`m(θ, φ) . (2.73)

Inverting this expression, we obtain

bV,`m =

∫ π

0

dθ sin θ

∫ 2π

0

dφ ρ̄V Y
∗
`m(θ, φ) = (2.74)

= (−1)m
∫ π

0

dθ sin θ

∫ 2π

0

dφ ρ̄V Y`−m(θ, φ) =

= (−1)m

√
2`+ 1

4π

(
`+m

)
!(

`−m
)
!

∫ π

0

dθ sin θ P−m` (cos θ)

∫ 2π

0

dφ e−imφ ρ̄V (θ, φ) .

It is easy to verify that the integral over φ is non-zero only if m = −1, 0, 1. Then,
solving Eq. 2.74 for these values of m, we found, as expected, that only the b`m’s
with ` = 1 survive. Therefore, we get:

bV,10 = (2πν0)

√
16π

3
χ̄xy ; (2.75a)

bV,11 = (2πν0)

√
8π

3
(iχ̄xz − χ̄yz) ; (2.75b)

bV,1−1 = −b∗V,11 = (2πν0)

√
8π

3
(iχ̄xz + χ̄yz) . (2.75c)

Turning to ρ̄± ≡ (ρ̄Q ± iρ̄U)/
√

2, since ρ̄− = ρ̄∗+, it follows that b−2,`m =

(−1)mb2,`m. This means that we only need to compute the coefficients for one
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between ρ̄+ and ρ̄+. Let us choose ρ̄+.
To simplify the calculation, we use the spin lowering operator, described in
App. B. Thus, since ρ̄+ is a spin-2 function,

′̄∂
2
ρ̄+ = ′̄∂

2∑
`m

b2,`m 2Y`m(n̂) =
∑
`m

[
(`+ 2)!

(`− 2)!

]1/2

b2,`mY`m(n̂) . (2.76)

Performing explicitly the derivative, after some manipulation, yields

′̄∂
2
ρ̄+ = ′̄∂

2
[
ρQ + iρU√

2

]
= (2.77)

= (2πν)
√

2
[

(χ̄xx + χ̄yy − 2χ̄zz)
(
1− 3 cos2 θ

)
+ 3 (χ̄xx − χ̄yy) cos 2φ sin2 θ

]
.

We expect this quantity to have only components with ` = 2 and |m| = 0, 2.
Indeed, it can be rearranged as

′̄∂
2
ρ+ = (2πν)

{√
32π

5
(−χ̄xx − χ̄yy + 2χ̄zz)Y20+

√
48π

5
(χ̄xx − χ̄yy) (Y22 + Y2−2)

}
.

(2.78)
Combining this result with Eq. 2.76, and, performing calculations similar to those
in Eq. 2.74, we arrive to

b2,20 = b−2,20 = (2πν0)

√
4π

15
(−χ̄xx − χyy + 2χ̄zz) ; (2.79a)

b2,22 = b2,2−2 = b−2,22 = b−2,2−2 = (2πν0)

√
2π

5
(χ̄xx − χ̄yy) . (2.79b)

Defining bE,`m ≡ −(b2,`m + b−2,`m)/2 and bB,`m ≡ i(b2,`m − b−2,`m)/2, we have

bE,20 = (2πν0)

√
4π

15
(χ̄xx + χ̄yy − 2χ̄zz) ; (2.80a)

bE,22 = bE,2−2 = (2πν0)

√
2π

5
(−χ̄xx + χ̄yy) , (2.80b)

while the bB’s are all vanishing.
Combing Eqs. 2.44 with Eqs. 2.75 and 2.79, we can easily recover the expansion
coefficients Bxy,`m.

Now, thanks to the above calculations and using some properties of the
Wigner-3j symbols (see App. A and App. E), we can simplify Eqs. 2.49. After
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some math, we get:

CTB
` = CEB

` = CEV
` = CBV

` = 0 ; (2.81a)

CTE
` = C̃TE

` − 1

2

(∑
m |bV,1m|

2 +
∑

m |bE,2m|
2

4π

)
C̃TE
` ; (2.81b)

CEE
` = C̃EE

` −
(∑

m |bV,1m|
2 +

∑
m |bE,2m|

2

4π

)
C̃EE
` +

+

{
2`+ 1

4π

 ` 1 `

−2 0 2

2

C̃EE
` +

2`+ 3

4π

`+ 1 1 `

−2 0 2

2

C̃BB
`+1 +

+
2`− 1

4π

`− 1 1 `

−2 0 2

2

C̃BB
`−1

}∑
m′

|bV,1m′|2 ; (2.81c)

CBB
` = C̃BB

` −
(∑

m |bV,1m|
2 +

∑
m |bE,2m|

2

4π

)
C̃BB
` +

+

{
2`+ 1

4π

 ` 1 `

−2 0 2

2

C̃BB
` +

2`+ 3

4π

`+ 1 1 `

−2 0 2

2

C̃EE
`+1 +

+
2`− 1

4π

`− 1 1 `

−2 0 2

2

C̃EE
`−1

}∑
m′

|bV,1m′|2 ; (2.81d)

CV V
` =

{
2`+ 5

π

`+ 2 2 `

−2 2 0

2

C̃BB
`+2 +

2`+ 3

π

`+ 1 2 `

−2 2 0

2

C̃EE
`+1 +

+
2`+ 1

π

 ` 2 `

−2 2 0

2

C̃BB
` +

2`− 1

π

`− 1 2 `

−2 2 0

2

C̃EE
`−1 +

+
2`− 3

π

`− 2 2 `

−2 2 0

2

C̃BB
`−2

}∑
m′

|bE,2m′|2 . (2.81e)
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It is useful to introduced the variables

β2
V ≡

∑
m

|bV,1m|2 =
16π

3

(
ξ 2
xy + ξ 2

yz + ξ 2
xz

)
; (2.82a)

β2
E ≡

∑
m

∣∣∣∣12(b2,`m + b−2,`m)

∣∣∣∣2 ≡ ∑
m

|bE,`m|2 =

=
8π

15

[
(ξxx − ξyy)2 + (ξyy − ξzz)2 + (ξzz − ξxx)2] , (2.82b)

where

ξij =

∫ η0

ηLS

2πν0 χij dη. (2.83)

Looking at Eqs. 2.81, we can immediately see that the amplitude of the non-
standard contributions to the power spectra is controlled by these two parameters,
β2
V and β2

E. Moreover, note that they are probing independent combinations
of the χij’s, since they only depend on the off - and on diagonal components,
respectively.

Using the above definition, Eqs. 2.81 can be recasted as

CTB
` = CEB

` = CEV
` = CBV

` = 0 (2.84a)

CTE
` = C̃TE

` − 1

2

(
β2
V + β2

E

4π

)
C̃TE
` ; (2.84b)

CEE
` = C̃EE

` −
(
β2
V + β2

E

4π

)
C̃EE
` +

β2
V

4π

[
W(1)

` C̃EE
` +W(1)

`+1 C̃
BB
`+1 +W(1)

`−1 C̃
BB
`−1

]
;

(2.84c)

CBB
` = C̃BB

` −
(
β2
V + β2

E

4π

)
C̃BB
` +

β2
V

4π

[
W(1)

` C̃BB
` +W(1)

`+1 C̃
EE
`+1 +W(1)

`−1 C̃
EE
`−1

]
;

(2.84d)

CV V
` =

β2
E

π

[
W(2)

`+2 C̃
BB
`+2 +W(2)

`+1 C̃
EE
`+1 +W(2)

` C̃BB
` +W(2)

`−1 C̃
EE
`−1 +W(2)

`−2 C̃
BB
`−2

]
,

(2.84e)

where the W kernels are combinations of Wigner 3j-symbols,

W(1)
`′ ≡ (2`′ + 1)

 `′ 1 `

−2 0 2

2

, W(2)
`′ ≡ (2`′ + 1)

 `′ 2 `

−2 2 0

2

. (2.85)
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Figure 2.5: Top: “Rotated” (solid line) and “unrotated” angular power
spectra (dashed line). For the rotated ones we have used β2

V = 0.03 and
β2
E = 0.14. In both case, the other cosmological parameters are the
best-fit values of Planck 2018 and r0.05 = 0.07. Bottom: Absolute
differences between “rotated” and “unrotated” for EE and TE.

The effect of these modifications are made clear in Fig. 2.5, and, both in
Fig. 2.6 and Fig. 2.7. Note that in generating the curves, only the polarization
produced at last scattering has been rotated.
The standard power spectra are, also in this case, computed using the Boltzmann
code camb, assuming the best-fit Planck 2018 Cosmology [55]. These spectra are
then rotated through Eqs. 2.84, in order to obtain the GFE-induced power spectra.
A Python code has been developed for the latter computation. You can find it
on github: https://github.com/mlembo00/circular-polarization.git.

In Fig. 2.5, we see the GFE-induced power spectra for β2
V = 0.03 and

β2
E = 0.14. A non-vanishing V-modes power spectrum is generated, whose shape

mostly follows that of the E-modes spectrum, as expected from Eqs. 2.84. The
B-modes power spectrum is dramatically affected even for relatively small values
β2
V , because power leaks from the much larger E-modes.
In Fig. 2.6, instead, we can appreciate the different effect that the two

parameters β2
V and β2

E have on the observed power spectra. Clearly, when β2
E = 0,

we will not have an induced VV power spectrum. This case is equivalent to
anisotropic birefringence with a very specific rotation-angle power spectrum:
Cχ
` 6= 0 only if ` = 1.
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On the other side, when β2
V = 0, the standard power spectra are just rescaled by

a factor 1− β2
E/8π for TE and 1− β2

E/4π for EE and BB. This rescaling is even
more evident looking at Fig. 2.7. In this case, circular polarization is produced.
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Figure 2.6: “Rotated” (solid line and dash-dotthed) and “unrotated”
angular power spectra (dashed line). On the left, β2

E = 0 and
β2
V = 1.0, 0.1; on the right, β2

V = 0 and β2
E = 1.0, 0.1. In both case the

other cosmological parameters are the best-fit values of Planck 2018 and
r0.05 = 0.07.
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2.4.2 Observational constraints

Observations of CMB polarization can be used to constrain the values of β2
V

and β2
E, in the framework of simple extensions of the ΛCDM model.

We have used observations of temperature and linear polarization anisotropies
from the Planck legacy release (Planck18) [106] and BICEP2/Keck 2015 (BK15)
[107] to derive bounds on both β2

V and β2
E in the presence of primordial tensor

modes., parameterized by the tensor-to-scalar ratio r. Precisely, Planck18 stands
for the sum of the lowE (EE power spectrum over 2 ≤ ` < 30) and Planck
TTTEEE (TT power spectrum over 2 ≤ ` . 2500, and EE and TE power spectra
over 30 ≤ ` . 2000) datasets, see Ref. [106] for more details; while BK15 consists
in a BB power spectrum over 20 < ` < 330 divided into 9 band-powers, see
Ref. [108] for details.

Our baseline model is ΛCDM + r, i.e. without GFE. To this baseline case,
we have added the GFE parameters. We have examined the following four cases:

BK15:

1(a). ΛCDM + r + β2
E;

1(b). ΛCDM + r + β2
V + β2

E;

BK15+Planck18:

2(a). ΛCDM + r + β2
E;

2(b). ΛCDM + r + β2
V + β2

E;

Additionally, we have also examined the ΛCDM + r + β2
V case, using both

datasets. This model is equivalent to consider anisotropic birefringence with
a non-zero rotation-angle power spectra only for `− 1, `, ` + 1. The result are
consistent with those discussed in Sec. 2.1.

To sample the posterior distributions for the model parameters, we have
used the Monte Carlo engine CosmoMC [109]. We have slightly modified the code
adding the GFE-parameters, β2

V and β2
E.

Using the Gelman-Rubin convergence statistics [110], we have assumed that our
MCMC chains have been converged when R −1 ∼ 0.001.

The one dimensional posterior probabilities for r, β2
V and β2

E are shown in
Fig. 2.8.
Looking at Fig. 2.8b, it is worth underlining that, if we use only B-modes data
(BK15), we are not able to set any constraints on β2

E, varying neither β2
E alone

nor both, β2
V and β2

E. The reason is evident considering the BB power spectrum
in Eqs. 2.84. The E-mode polarization power spectra is much bigger than the
B-mode polarization one, C̃EE

` � C̃BB
` . The modifications on CBB

` are therefore
driven by the terms ∝ β2

V C̃
EE
`±1, as you can see in Eq. 2.84d.

Hence, if we vary both β2
V and β2

E, we are able to constrain only β2
V since the

term ∝ β2
E is negligible.
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Figure 2.8: One dimensional posterior probability for β2
V , β

2
E and r.

In blue, we reported the constraints obtained using BK15, in orange, the
constraints obtained using Planck18 BK15. We show the results for

ΛCDM + r (solid lines), ΛCDM + r + β2
E (dashed lines) and

ΛCDM + r + β2
E + β2

V (dash-dotted lines).
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On the other hand, if we allow to vary β2
E only (β2

V = 0), Eq. 2.84d becomes
CBB
` =

(
1− β2

E

4π

)
C̃BB
` . The β2

E parameter is rescaling the B-modes power spectra.
The error bars of BK15 are still quite wide to appreciate a small effect as this is.

Regarding the tensor-to-scalar ratio, r, the bound on r is slightly stronger
that the corresponding value for β2

V = 0 due to degeneracy between the two
parameters. See Fig. 2.8c.

The combined BK15+Planck18 dataset has clearly more constraining power.
Hence, considering the more general case, the 2(b), we found β2

V < 0.030,
β2
E < 0.14 and r0.05 < 0.055 at 95% C.L.. It is worth mentioning that the data

have slight preference for a non-zero value of both β2
V and β2

E, as much as it is
not statistically significant (∼ 1σ).
Though, this can be related to the fact that β2

V = 0 and β2
E = 0 are the borders

of the priors in which the parameters are allowed to vary: the MCMC might have
trouble in sampling these points and they would appear less likely than others.

Moreover, since circular polarization data are also sensitive to β2
E, see Eq.

(2.84), we have used the V-modes CMB polarization data from the CLASS
telescope [101,111], discussed in Sec. 2.2 and shown in Fig. 2.4, to constrain β2

E

(see Eq. 2.84e).
Assuming the Planck 2018 best-fit EE and BB spectra, we found β2

E < 38 (95%
CL). This constrain clearly violates our assumption that ρQ,U � 1, nevertheless
it indicates that current V-mode data allow a large mixing of linear and circular
polarization. We have shown that such a large mixing is however excluded by
current observations of E and B polarization.
In Fig. 2.9, we show the current data on the CMB VV power spectrum, together
with theoretical power spectra for β2

E = 38, corresponding to the 95% upper limit
allowed by current circular polarization data, and β2

E = 0.14, corresponding to
the 95% upper limit allowed by current temperature and linear polarization data.

To conclude, it is interesting to notice that these constraints on the β’s can be
recasted in terms of the χij. Taking ν0 ' 150 GHz as the frequency of the CMB
photons today, ξij ' 1.5 · 1030 χij if the χ’s do not depend on time. The constraint
on β2

V implies a bound χij ≤ 2.7 · 10−32 for the largest off-diagonal element, while
the one on β2

E implies χii − χjj ≤ 1.3 · 10−31 for the largest difference between
diagonal elements.
In the case of a time-dependent susceptibility tensor, the same constraints apply
to the time-averages χij.
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Figure 2.9: V-modes power spectra as predicted by CLASS (solid
line) and Planck/BICEP2/Keck (dashed line), compared with

SPIDER [4] and CLASS [101] data.
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3
Gravitational lensing of the CMB

In Chpt. 1, we have introduced the nuts and bolts of CMB theory. In Chpt. 2,
instead, we have focused our attention on some less investigated aspects of CMB
polarization, proposing a phenomenological framework that might gather under
one flag several, and at first glance various, mechanisms affecting the polarization
states of the CMB radiation.
In this picture, we have only marginally touched a fundamental topic: the CMB
pattern we observe today is not the original distribution as it emerges from
the last scattering surface. The original CMB field is, indeed, in some way
distorted and modified as CMB photons interact with the forming structures
while traveling from recombination to the observer. These distortions are usually
called secondaries anisotropies.
Among them, weak gravitational lensing is one of the most important. According
to General Relativity, the gravitational potential of a mass bends light rays. This
means that the CMB photons are deflected from their original path due to the
presence of mass between the last scattering surface and us. As we will see,
regarding the temperature spectrum, lensing does not generate additional power,
but rather redistributes it from larger scales to smaller ones (for close multipoles).
More or less, the effect on the E-mode polarization is similar to the temperature
case: the convolution with the lensing potential smooths out the acoustic peaks
and troughs of the power spectrum.
The most intriguing effect is, instead, the generation, by distortion of the primor-
dial E-modes, of spurious B-modes, which unfortunately act as a contaminant for
all the measurements of primordial B-modes. Hence, B-mode polarization signal
can serve as a “smoking gun” for primordial gravitational waves, as long as we
are able to distinguish it from the lensing signal. Delensing, the act of measuring
and removing the effect of lensing from CMB maps, is therefore essential for



next-decade experiments in order to better constrain the tensor-to-scalar ratio r.
Beside this aspect, CMB lensing provides an invaluable tool to map the matter

distribution of the Universe between us and the last scattering surface. This
allows, in particular, to study the clustering of both dark and luminous matter,
and infer from it the key elements of structure formation (dark energy equation
of state, mass of neutrinos).

CMB lensing is thus, without any doubt, one of the crucial observables of
next-decade experiments, and a not completely exhaustive comprehension of this
effect could preclude us the possibility of constraining cosmology, or even the
chance to faithfully reconstruct the spectrum of primordial B-modes.

On top of this, CMB observations are also inevitably contaminated at some
level by foregrounds, from galactic dust and synchrotron emission to a range
of extragalactic signals including the cosmic infrared background (CIB) caused
by stellar dust, the already mentioned Sunyaev-Zeldovich effect from hot gas in
galaxy clusters, and radio point sources.
Much of these foreground signals can either be modeled or removed using their
distinct frequency dependence. However, bright sources can be problematic and
are often masked out. It is usually tacitly assumed that the CMB power spectra
estimated over the unmasked areas are then unbiased estimates that can be used
to study cosmology. As long as sources with a strong correlation to lensing are
not masked, for current data, this is likely to be a safe approximation. For future
data, where large populations of extragalactic sources will be resolved, corrections
may become important.

Assessing the impact of masking bright extragalactic sources on CMB maps
and, indeed on the lensing reconstruction itself, is a fundamental topic in view of
the next-decade CMB experiments, and is discussed in Sec. 3.4 and in Sec. 3.5.
These sections are based on two original works [12, 13], one of which is still in
preparation.
Before reaching Sec. 3.4, we introduce the bases of the lensing theory, in Sec. 3.1,
showing the modifications induced on the CMB power spectra in Sec. 3.2. In
Sec. 3.3, instead, how to reconstruct the lensing potential from the observed
CMB maps is discussed.
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3.1 The lensing deflection angle and the lensing
potential

The idea that gravity can bend light is a well-established result and dates
back over more than hundreds of years. The question we want to answer in this
section is about how much the gravitational potentials in the Universe will deflect
CMB photons.
Given the gravitational potential Ψ(x̂, η), the total deflection angle is a sum
over all of the individual deflections due to gravitational potentials between the
surface of last scattering and today

α(n̂) = −2

∫ χ∗

0

dχ
fK(χ ∗ −χ)

fK(χ∗) fK(χ)
∇n̂Ψ(χn̂, η0 − χ) , (3.1)

where ∇⊥Ψ = (∇n̂Ψ)/fK(χ). We have introduced the comoving distance between
the observer and the gravitational potential Ψ, χ, and the comoving distance
between the observer and the source, χ∗. fK(χ) is instead the angular diameter
distance, defined as

fK(χ) =



K−1/2 sin
(
K1/2χ

)
K > 0 (close)

χ K = 0 (flat)

|K|−1/2 sinh
(
|K|1/2χ

)
K < 0 (open)

. (3.2)

Notice that Eq. 3.1 has been derived assuming small angles (weak lensing) and to
the lowest order in the potential. For a more rigorous derivation, using General
Relativity, and also a discussion on higher-order corrections, you may check [112].

We can now define the lensing potential as

φ(n̂) ≡ −2

∫ χ∗

0

dχ
fK(χ ∗ −χ)

fK(χ∗) fK(χ)
Ψ(χn̂, η0 − χ) , (3.3)

so that α = ∇n̂φ. Moreover, assuming a flat geometry, we get

φ(n̂) ≡ −2

∫ χ∗

0

dχ
1

χ

(
1− χ

χ∗
)

Ψ(χn̂, η0 − χ) . (3.4)

In the above equation, the lensing potential appears to be formally divergent
because of the 1/χ term. However, this divergence only affects the monopole
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potential, which does not contribute to the deflection angle. Therefore, setting
the monopole term to zero, since the remaining multipoles will be finite, the
lensing potential field is well defined.

It is useful to consider the 2-point correlation of the lensing potential, or
equivalently, its harmonic transform, the lensing potential power spectrum. For a
Gaussian lensing potential, indeed, its power spectrum and the cross-correlation
with the CMB contain all the information we need to describe fully the statistics
of the lensed CMB.
Assuming the gravitational potential, Ψ, is statistically homogeneous, its power
spectrum is

〈Ψ(k, η) Ψ∗(k′, η′)〉 =
2π2

k3
PΨ(k, η, η′)δ(k− k′) , (3.5)

where we have expanded in harmonic space the gravitational potential as

Ψ(x, η) =

∫
d3k

(2π)3/2
Ψ(k, η)eik ·x . (3.6)

Using Eq. 3.5, we can now write the 2-point correlation function for the lensing
potential

〈φ(n̂)φ(n̂′)〉 = (3.7)

= 4

∫ χ∗

0

dχ
1

χ

(
1− χ

χ∗
)∫ χ∗

0

dχ′
1

χ′

(
1− χ′

χ∗
)∫ d3k

(2π)3

2π2

k3
PΨ(k, η, η′)eik ·xe−ik ·x′ ,

where x = χn̂ and x′ = χn̂′. Using the plane wave expansion

eik ·x = 4π
∑
`m

i`j`(kχ)Y ∗`m(n̂)Y ∗`m(k̂) , (3.8)

where j`(r) are the spherical Bessel functions, Eq. 3.7 becomes

〈φ(n̂)φ(n̂′)〉 = 16π
∑

``′mm′

∫ χ∗

0

dχ
1

χ

(
1− χ

χ∗
)∫ χ∗

0

dχ′
1

χ′

(
1− χ′

χ∗
)

· (3.9)

·
∫

dk

k
j`(kχ)j`(kχ

′)PΨ(k, η, η′)Y`m(n̂)Y`′m′(n̂
′)δ``′δmm′ ,

In the above calculation, we have also used the orthogonality of the spherical
harmonics.
The lensing potential, φ(n̂) is a scalar quantity and it can be expanded in spherical
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harmonics as
φ(n̂) =

∑
`m

φ`mY`m(n̂) , (3.10)

where Y`m(n̂) is a scalar spherical harmonics. If we assume a statistically isotropic
field1, we can assume that the coefficients φ`ms follow the normal distribution
with zero mean value and non-zero variance, Cφφ

` ,

〈φ`mφ`′m′〉 = δ``′δmm′C
φφ
` . (3.11)

where Cφφ
` is the angular power spectrum of the lensing potential.

Computing the 2-point correlation function of Eq. 3.10, we get

〈φ(n̂)φ(n̂′)〉 =
∑
``′mm′

〈φ`mφ`′m′〉Y`m(n̂)Y ∗`m(n̂′) = (3.12)

=
∑
``′mm′

δ``′δmm′C
φφ
` Y`m(n̂)Y ∗`m(n̂′) .

Definitely, comparing this result with Eq. 3.9, we find the theoretical power
spectrum for the lensing potential

Cφφ
` = 16φ

∫ χ∗

0

dχ

∫ χ∗

0

dχ′
1

χ

(
1− χ

χ∗
) 1

χ′

(
1− χ′

χ∗
)

·

·
∫

dk

k
j`(kχ)j`(kχ

′)PΨ(k, η0 − χ, η0 − χ′) . (3.13)

If we link the gravitational potential to the primordial comoving curvature
perturbation, R, via the transfer function, TΨ, as

Ψ(k, η) = TΨR(k) , (3.14)

the lensing potential power spectra can be rewritten as [112]

Cφφ
` = 16φ

∫
dk

k
PR(k)

[∫ χ∗

0

dχ TΨ(k; η0 − χ)j`(kχ)
1

χ

(
1− χ

χ∗
)]2

, (3.15)

where PR(k) is the primordial power spectrum of curvature perturbations . This
spectrum is related to the primordial power spectra of scalar perturbations

1This assumption is motivated by the fact that inflation predicts initial Gaussian perturba-
tions.
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through the following [113]:

PR(k) =
(aH
φ̇0

)2

Pφ(k) (3.16)

where φ̇0 is the conformal derivative of the primordial field (inflaton).
This power spectrum can be computed easily along with other CMB power

spectra using Boltzmann codes such as camb [52], as it is shown in Fig. 3.1.
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Figure 3.1: Lensing potential power spectra. This plot has been
produced using camb code with the Planck 2018 best-fit values for the

ΛCDM parameters [55].

Before moving on, let us define the magnification matrix in term of the
derivative of the deflection angle as

Aij ≡ δij +
∂

∂θi
αj =

 1− κγ1 −γ2 + ω

−γ2 − ω 1− κ+ γ1

 , (3.17a)

where

κ =
1

2

(
∂1∂1 + ∂2∂2

)
φ ; (3.17b)

γ1 =
1

2

(
∂1∂1 − ∂2∂2

)
φ ; (3.17c)

γ2 = ∂1∂2φ . (3.17d)
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The κ and γ parameters, known as convergence and shear (precisely is γ1 + iγ2),
respectively, quantify how lensed images are magnified, enlarged, and stretched.
In the weak lensing approximation, these parameters are � 1. The ω parameter,
instead, comes from second order effects. For more details see Ref. [114].

3.2 Lensed CMB power spectra

In this section, we calculate the effect of lensing on the CMB angular power
spectra. We start calculating the lensed correlation function in the flat-sky limit.
We will use the same approximation also in Sec. 3.5, since the effects of masking,
as we will see, are largely on small scales.
In this approximation the lensing effect can be described as a remapping of the
CMB, according to

T̃
(
x
)

= T
(
x +α

)
, (3.18a)[

Q̃± iŨ
](

x
)

=
[
Q± iU

](
x +α

)
, (3.18b)

where α ≡ α(x) is the deflection field defined in Eq. 3.1 and the tilded quantities
are the lensed temperature and linear polarization fields.

Let us start from the temperature field. To compute the lensed temperature
power spectra, we have to consider the lensed correlation function ξ̃(r), that is

ξ̃(r) ≡ 〈T̃ (x) T̃ (x′)〉 = 〈T (x +α)T (x′ +α′)〉 , (3.19)

where r = |x − x′|. As we can see from Eq. 3.19, ξ̃(r) only depends on the
separation between the points, r2.
From the above equation, it is clear that, in order to compute the lensed CMB
power spectrum, we first have to calculate the correlation 〈αα′〉.
It is convenient to introduce the 2D Fourier transform of the lensing potential,
φ(`), we have

α = i

∫
d2`

2π
`φ(`) ei` ·x . (3.20)

2As already done in Chpt. 1, we assume that the temperature fluctuations are statistically
isotropic.
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Therefore, the correlation tensor for the deflection angle can be written as

〈αi(x)αj(x
′)〉 =

∫
d2`

(2π)2
`i`j C

φφ
` ei` · (x−x′) =

=
1

4π

∫
d` `3Cφ

` j0(`r)δij −
1

2π

∫
d` `3Cφ

` j2(`r)r̂〈 ir̂j 〉 , (3.21)

where jn(x) is a Bessel function of order n, r = x− x′ and r̂〈 ir̂j 〉 = r̂ir̂j − δij/2
is the trace-free part of the tensor r̂ir̂j.
Following [115], let us introduce the quantities

Cgl(r) =
1

2π

∫
d` `3Cφφ

` j0(`r) , (3.22a)

and
Cgl,2(r) =

1

2π

∫
d` `3Cφφ

` j2(`r) , (3.22b)

so that, the correlation in Eq. 3.21 becomes

〈αi(x)αj(x
′)〉 =

1

2
Cgl(r)δij − Cgl,2(r)r̂〈 ir̂j 〉 . (3.23)

To move forward with the calculation of Eq. 3.19, we need to introduce the
flat-sky 2D Fourier transform for the temperature field,

T (x) =

∫
d`2

2π
T (`)ei` ·x , T (`) =

∫
dx2

2π
T (x)e−i` ·x . (3.24)

and the correlation function at two points of the temperature field, ξ, that, as ξ̃,
only depends on the separation between the points, r = |x− x′|,

ξ(r) ≡ 〈T (x)T (x′)〉 . (3.25)

Using Eq. 3.24, we find

〈T (`)T ∗(`′)〉 =

∫
d2x

2π

∫
d2x′

2π
e−i` ·xei`

′ ·x′ ξ(|x− x′|) =

=

∫
d2x

2π

∫
d2r

2π
ei(`

′−`) ·x ei`
′ · rξ(r) =

= δ(`′ − `)
∫

d2rei` · rξ(r) = δ(`′ − `)CTT
` , (3.26)
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where we have defined the unlensed power spectrum CTT
` , as

CTT
` =

∫
d2r e` · rξ(r) =

∫
rdr

∫
dφre

i`r cos(φ`−φr)ξ(r) = 2π

∫
rdr j0(`r)ξ(r) .

(3.27)
For more details about this calculation, see Ref. [112].
Hence, the lensed correlation function ξ̃(r) is given by [115]

ξ̃(r) ≡ 〈T̃ (x) T̃ (x′)〉 =

=

∫
d2`

(2π)2
CTT
` ei` · r〈ei` · [α(x)−α(x′)]〉 =

=
1

2π

∫
d` `CTT

` e−`
2σ2(r)/2 ·

·
[(

1 +
1

16
`4C2

gl,2(r)
)
j0(`r) +

1

2
`2Cgl,2(r)j2(`r) +

1

16
`4C2

gl,2(r)j4(`r)

]
, (3.28)

where σ2(r) ≡ Cgl(0) − Cgl(r). To reach the last step, we have expanded the
exponential and integrated term by term, keeping only terms up to second order
in Cgl,2. Higher order terms in Cgl,2 only contribute at the O(10−4) level on the
scales of interest (see Ref. [115] for a more detailed discussion).

The calculations are analogous but slightly more complicated for the polar-
ization observables, since, as already discussed in Chpt. 1 and Chpt. 2, we have
to deal with ±2 spin quantities (see also App. B).
As it was done for temperature in Eq. 3.24, we expand the polarization field
as [112]

P (x) =
[
Q+ iU

]
(x) = −

∫
d2`

2π

[
E(`) + iB(`)

]
e2iφ` ei` ·x ; (3.29a)

P ∗(x) =
[
Q− iU

]
(x) = −

∫
d2`

2π

[
E(`)− iB(`)

]
e−2iφ` ei` ·x , (3.29b)

with their inverse relations

E(`) + iB(`) = −
∫

d2x

2π
P e−2iφ` e−i` ·x ; (3.29c)

E(`)− iB(`) = −
∫

d2x

2π
P ∗ e2iφ` ei` ·x . (3.29d)

The e±2iφ` factors allow us to rotate between a natural basis defined in terms of
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`, and the fixed basis defined in terms of ex. Hence, the unlensed polarization
correlation functions are defined as

ξ+(r) ≡ 〈e−2iφrP ∗(x) e2iφrP (x′)〉 , (3.30a)

ξ−(r) ≡ 〈e2iφrP (x) e2iφrP ∗(x′)〉 , (3.30b)

ξX(r) ≡ 〈T (x) e2iφrP (x′)〉 . (3.30c)

Conventionally, X stands for TE. After some math, the lensed correlation
functions up to the second-order in Cgl,2 are

ξ̃+(r) =
1

2π

∫
d` `

(
CEE
` + CBB

`

)
e−`

2σ2(r)/2

[(
1 +

1

16
`4C2

gl,2(r)

)
j0(`r)+

+
1

2
`2Cgl,2(r)j2(`r) +

1

16
`4C2

gl,2(r)j4(`r)

]
; (3.31a)

ξ̃−(r) =
1

2π

∫
d` `

(
CEE
` − CBB

`

)
e−`

2σ2(r)/2

[(
1 +

1

16
`4C2

gl,2(r)

)
j4(`r)+

+
1

2
`2Cgl,2(r)

j2(`r) + j6(`r)

2
+

1

16
`4C2

gl,2(r)
j0(`r) + j8(`r)

2

]
; (3.31b)

ξ̃X(r) =
1

2π

∫
d` `CTE

` e−`
2σ2(r)/2

[(
1 +

1

16
`4C2

gl,2(r)

)
J2(`r)+

+
1

2
`2Cgl,2(r)

j0(`r) + j4(`r)

2
+

1

16
`4C2

gl,2(r)
J2(`r) + j6(`r)

2

]
. (3.31c)

See Ref. [115] for more details about this calculation.
The lensed correlation functions in Eq.3.28 and Eqs.3.31 are valid in the

flat-sky approximation. This is actually a good approximation at small scales,
but the spherical-sky case turns out to be crucial for getting high accuracy in
the lensed power spectrum on arcminute scales. Without entering in detail, the
above correlation functions can be generalized on a sphere. What will change is
all the geometrical factors between the square brackets: the dependencies by the
unlensed power spectra will remain the same.
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The lensed angular power spectra in the spherical-sky case are therefore

C̃TT
` = 2π

∫ 1

−1

d cos β ξ̃(β)d`00(β) ; (3.32a)

C̃EE
` − C̃BB

` = 2π

∫ 1

−1

d cos β ξ̃−(β)d`2−2(β) ; (3.32b)

C̃EE
` + C̃BB

` = 2π

∫ 1

−1

d cos β ξ̃+(β)d`22(β) ; (3.32c)

C̃TE
` = 2π

∫ 1

−1

d cos β ξ̃X(β)d`20(β) , (3.32d)

where the correlation functions, ξ̃, are those defined in the spherical case, β is
the angle between the two directions of observation n̂1 and n̂2, and

d`ss′ =
∑
m

sY
∗
`m(n̂1) ′sY`m(n̂2) . (3.33)

The above expressions are discussed and fully computed in e.g. Refs. [115,116].
A generalization, including EB and TB parity-violating power spectra can be
found in [80]. For a complete review on CMB lensing, you may also look at [112].

Let us now briefly discuss these results, also shown in Fig. 3.2.
For what concerns TT and EE (but also TE), the lensing effect is to smooth
out the acoustic peaks and troughs of the power spectrum. As anticipated, the
effect becomes relevant at small scales. For the lensed B-mode polarization
spectrum, the situation is clearly different. The lensing is dramatically modifying
the primordial spectrum. The reason is obvious looking at Eqs.3.32: B-mode
polarization is generated from E-mode polarization, even if the primordial BB
power spectrum is zero. This is somehow similar to the imprint of GFE (see e.g.
Eqs.2.49 and Fig. 2.5).

We have introduced the primordial B-modes in Chpt. 1, clarifying how their
observation would be of great interest as a way of discriminating different classes
of models of inflation and other models of the early Universe.
The problem is that we have no idea what the tensor amplitude is, in particular
how small it could be. On top of this, we have just seen that the lensing of purely
scalar E-mode polarization will produce a spurious lensed B modes in any case,
even if r = 0 (see Fig. 1.12).
Recognizing the effect of lensing in the CMB maps and isolating it is therefore a
fundamental task if we want to have at least the chance of measuring primordial
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B-modes. In the next section, we outline how to reconstruct the lensing potential
from the observed CMB maps.
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Figure 3.2: Lensed CMB power spectra (solid) and the unlensed
spectra (dashed). Both are computed assuming the best-fit Planck 2018
cosmology. On the bottom part, the fractional change in the power

spectra due to lensing.

3.3 Lensing reconstruction

We have seen that light is unavoidably bent by a gravitational potential. As
a consequence, the CMB pattern that we see today is distorted, due to the mass
bumped into by photons along their journey from the last scattering surface to us.
The unlensed CMB field is therefore unobservable, but its statistics are very well
understood, as discussed in Chpt. 1. This means that, from statistical measures
of the lensed CMB fields, we should be able to constrain the lensing potential.
Moreover, on small scales, where the power of unlensed CMB is small, the lensed
CMB measures the small-scale lensing potential more or less directly.

Even though, the lensing potential can also be partly reconstructed using
large-scale structure tracers, here we focus our attention on its reconstruction
from the CMB temperature and polarization maps (assuming that the primordial
fields are Gaussian).
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We are going to work in the flat sky approximation, adopting the formalism for
small sky patches [117], described in the previous section. You may also look at
Ref. [118], where the approximation for the full sky case is discussed.

Let us start considering the temperature field, as defined in Eqs. 3.24. From
Eq. 3.26, it is clear that harmonics with different ` are uncorrelated. This is
not true for the actual sky we observe: for a given fixed lensing potential, the
distribution of the observed temperature will not be isotropic. This suggests
that we might use the quadratic off-diagonal terms of the lensed correlation
〈T̃ (`1)T̃ (`2)〉 at fixed φ to constrain the lensing potential in our sky realization.
In other words, we want to use correlations between the temperature anisotropies
around each lensing clump to constrain the potential of the clump. This technique
is called quadratic estimator.
Hence, averaging over realizations of the unlensed temperature field, the two-point
correlation function becomes [117]

〈T̃ (`1)T̃ (`2)〉CMB = fTT (`1 , `2)φ(L) , (3.34a)

with
fTT (`1 , `2) = CTT

`1
L · `1 + CTT

`2
L · `2 , (3.34b)

where L = `1 + `2, with `1 6= −`2 and CTT
` is the unlensed temperature power

spectrum. The correlation returns indeed the value of the lensing potential
weighted with the unlensed power spectra.
This result can be used to build the quadratic estimator of the deflection field,
α(n̂), defined in Eq. 3.1. Let us therefore define the TT quadratic estimator of
α(n̂) as [117]

α̂TT (L) =
ATT (L)

L

∫
d2`1

(2π)2
T̃ (`1)T̃ (`2)FTT (`1 , `2) , (3.35a)

where

ATT (L) = L2

[ ∫
d2`1

(2π)2
fTT (`1 , `2)FTT (`1 , `2)

]−1

, (3.35b)

The normalization ATT (L) is chosen so that, averaging over an ensemble of
realizations of the temperature field, we recover the true deflection field:

〈α̂TT (L)〉CMB = α(L) ≡ Lφ(L) . (3.36)

The function FTT is usually called filter, and it can be optimally chosen in order
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to minimize the variance of the estimator, 〈α̂∗TT (L)α̂TT (L)〉. Therefore, we get:

FTT (`1, `2) =
fTT (`1, `2)

2 C̃TT,tot
`1

C̃TT,tot
`2

(3.37)

where C̃TT,tot
` = C̃TT

` + N`, N` is the noise contribution. Basically, C̃TT,tot
` is

the observed lensed TT power spectra, so it might also account for the cosmic
variance of the fields and the noise variance of the experiments.

Using the observed polarization maps instead of the temperature map, we
find expressions similar to those above, Eq. 3.35.
In general, there are 6 estimators, corresponding to the 3! pairs of T ,E,B.
Actually, they are 5. Indeed, since the signal of the B-mode polarization is
negligible compared with the others, α̂BB estimator has vanishing signal-to-noise.
Hence, we can define the i-estimator as [117]

α̂i(L) =
Ai(L)

L

∫
d2`1

(2π)2
X(`1)X ′(`2)FXY (`1, `2) , (3.38a)

where

Ai(L) = L2

[ ∫
d2`1

(2π)2
fi(`1, `2)Fi(`1, `2)

]−1

, (3.38b)

Fi(`1, `2) =
C̃X′X′,tot
`1

C̃XX,tot
`2

fi(`1, `2) − C̃XX′,tot
`1

C̃XX′,tot
`2

(`2, `1)

C̃XX,tot
`1

C̃X′X′,tot
`2

C̃X′X′,tot
`1

C̃XX,tot
`2

−
(
C̃XX′,tot
`1

C̃XX′,tot
`2

)2 , (3.38c)

and

fi(`1, `2) =



CTT
`1
L · `1 + CTT

`1
L · `2 , i = TT ;

CTE
`1

cos(ϕ`1`2)L · `1 + CTE
`1
L · `2 , i = TE ;

CTE
`1

sin(ϕ`1`2)L · `1 , i = TB ;[
CEE
`1
L · `1 + CEE

`2
L · `2

]
cos(ϕ`1`2) , i = EE ;[

CEE
`1
L · `1 − CBB

`2
L · `2

]
sin(ϕ`1`2) , i = EB ;[

CBB
`1
L · `1 + CBB

`2
L · `2

]
cos(ϕ`1`2) , i = BB ,

(3.38d)
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where ϕ`1`2 ≡ ϕ`1 − ϕ`2 = cos−1(x̂ · ˆ̀
1)− cos−1(x̂ · ˆ̀

2) and C` are the unlensed
power spectra.
The noise properties of these estimators follow from

〈α̂∗i (L)α̂j(L
′)〉 =

= δ(L−L′)
[
Cαα
L +Nij

]
≡ δ(L−L′)

[
L2Cφφ

L +Nij

]
, (3.39)

so that

Nij =
Ai(L)Aj(L)

L2

∫
d2`1

(2π)2
Fi(`1, `2) ·

·
[
Fj(`1, `2)C̃

XiXj ,tot
`1

C̃
X′iX

′
j ,tot

`2
+ Fj(`2, `1)C̃

XiX
′
j ,tot

`1
C̃
X′iXj ,tot

`2

]
, (3.40)

where i, j = TT, TE, TB,EE,EB and so e.g. if i = TT and j = TE, XiXj =

TT , X ′iX ′j = TE, XiX
′
j = TE and so on. Notice that for the minimum variance

filter, i.e. Fi as defined in Eq. 3.38c, Nij = Ai.
At high-L, the individual estimators are noise limited (see e.g., Ref. [118]). We
can combine them to reduce the noise, obtaining the so-called minimum variance
(MV) estimator

α̂MV (L) =
∑
i

ωiα̂i(L) , (3.41a)

where

ωi =

∑
m(N−1

L )im∑
mn(N−1

L )mn
, (3.41b)

with i,m, n = TT, TE, TB,EE,EB. Therefore, from

〈α̂∗MV (L)α̂MV (L′)〉 = δ(L−L′)
[
Cαα
L +NMV

]
, (3.42)

we find the noise variance

NMV =
1∑

mn(N−1
L )mn

. (3.43)

For current experiments α̂MV is dominated by the combinations involving temper-
ature, TT in particular. However, as the sensitivity of the experiments improves,
polarization will play a progressively more important role for the minimum
variance estimator, being mostly dominated by EB.

Let us comment Eq. 3.40 and Eq. 3.43. The spectra appearing are the observed
ones. So, one might wonder why it is the lensed fields that are determining the
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noise level. This is indeed a property only of the quadratic estimator. More
general methods have cosmic variance determined essentially by the unlensed
fields.

The picture drawn so far seems quite simple. In practice, the reconstruction
may not be so straightforward. The lensing signal can be complicated by contri-
butions from the kinetic-SZ effect, and non-linear evolution that might became
important on small scales. If not taken into account, these can significantly bias
the result obtained from the simple quadratic estimator derived above [119,120].
The kinetic-SZ signal comes predominantly from large clusters, so masking out
these sources using thermal-SZ measurements can help to reduce this source
of reconstruction error. Forthcoming high-resolution experiments, such as SO
and CMB-S4, will require to mask more of these sources correlated with the
underlying CMB lensing field. The question now is that this masking operation
has an impact on the lensing reconstruction and on the estimated unlensed power
spectra. We are going to discuss these two points in the next sections.
Using real data and masking region of the sky correlated with the lensing field
complicate a little the situation. Hence, before moving on, it worth briefly review-
ing the steps that we have followed in the lensing reconstruction implemented in
the next section.

3.4 CMB lensing reconstruction biases from mask-
ing extragalactic sources3

So far we have seen that the observed CMB temperature and polarization
maps are inevitably distorted by the gravitational lensing. However, the CMB
maps are also inevitably contaminated by foregrounds, some of which are usually
masked to perform the analysis. If this mask is correlated to the lensing signal,
measurements over the unmasked sky may give biased estimates and hence biased
cosmological inferences.

In the next section, we will see that the lensed (temperature) CMB power
spectra can be substantially altered when only measured over the unmasked
area. Here, instead, we quantify the size of the mask bias for lensing reconstruc-
tion, focussing primarily on the impact of masking resolved SZ clusters which
are correlated with the CMB lensing potential. Moreover, we have considered

3Based on M. Lembo et al [13]
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realistic numerical simulations which include non-Gaussian correlated maps of
the CMB lensing convergence, tSZ and CIB emission at at 217 GHz to create a
foreground mask by simply thresholding the aforementioned field. Furthermore,
we considered masks to remove resolved radio point sources. We refer to Sec. 3.4.1
for more details.
Although estimated to be negligible for Planck [10], the impact may be sub-
stantially larger for forthcoming high-resolution experiments obtaining more of
their information from the small-scale CMB where the foregrounds are more
important.

In principle, the non-blackbody spectrum of the foregrounds can be used to
clean the foregrounds by using combinations of observations at multiple frequen-
cies. Foreground cleaning has been very successfully used, particularly on large
scales, but inevitably comes with the cost of increased noise, especially on small
scales where the observational noise becomes comparable to the observed signal.
Alternatively, the foreground signal can simply be modelled, which is what is
often done at the power spectrum level for CMB likelihood analysis. In both
cases, it is often necessary to also apply some masking to the brightest sources,
including the galactic plane (which is not correlated to large-scale structure and
hence does not introduce a direct bias) but also extragalactic sources.
For CMB lensing reconstruction, the non-Gaussianity of the foregrounds is im-
portant and can produce a direct bias on lensing estimates that is difficult to
model [121,122]. For SZ foregrounds, the largest non-Gaussianity is associated
with the brightest SZ clusters, and hence can be substantially reduced by cluster
masking [121,122]. Point source and CIB foreground non-Gaussianity can also
be substantially reduced by masking the brightest sources. A variety of other
methods have been suggested to reduce lensing biases from small-scale tempera-
ture reconstruction [120,123–125], however, these are usually only applied after
the brightest sources have already been masked out.
To extract reliable information from small-scale CMB temperature observations it
is therefore likely to be necessary to understand the impact of the source masking,
especially if the correlated masking introduces substantial biases. The foreground
issue is less important for CMB lensing reconstruction using polarization, since
the polarized foreground amplitudes are expected to have substantially lower
amplitude, but should also be addressed. For near-future observations such as
Simons Observatory (SO), the temperature signal still contains a substantial
fraction of the available information, so fully exploiting the data will require
robust modeling of the temperature signal, which is what we focus on here.

To quantify the various effects, we built different sets of masks, using the
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WebSky simulations of Ref. [126] based on fast approximate numerical simulations
of large-scale structure. These cover the entire sky over a broad range of redshifts
and include correlated realizations of the various foregrounds and large-scale
structure tracers, as well as halo catalogues. The CMB lensing convergence map
is simulated in the Born approximation and includes the correlations to the halo
catalogue and foreground maps.
After describing in more details the sets of masks that we have used for our
analysis, Sec. 3.4.1, in Sec. 3.4.2, we first considered the case of directly masking
the lensing convergence field. This does not correspond to what is usually done
in practice, but it helps to roughly quantify the size of the expected direct effect
on the lensing power. In Sec. 3.4.3 we consider the impact that of masking the
lensed CMB fields on the reconstructed lensing potential.

3.4.1 Masks using WebSky simulation suite

We use the publicly available WebSky simulation suite4 which includes maps
of CMB lensing convergence κ, radio point sources, CIB, and tSZ produced
from the same underlying mass distribution at z ≤ 4.5, as well as the halo
catalogues. In Fig. 3.3, we report histograms showing the mass, M500,c (left),
angular size, θ500,c (middle) and redshift, z (right), distributions of halos in the
WebSky catalogue.

The aforementioned mass distribution was constructed with the accelerated
N-body mass-Peak patch approach [127, 128] from a 15.4 Gpc3, 12 2883 par-
ticle lightcone in a Planck 2018 cosmology. CIB and tSZ emission maps were
constructed starting from the same matter distribution and using halo models
matched to the latest CMB data from Planck, SPT (South Pole Telescope) and
ACT (Atacama Cosmology Telescope) as well as Herschel5 data at frequencies
relevant for CMB experiments. We refer the reader to Ref. [126] for more details
of the semi-analytical models adopted.

Using WebSky simulation, we build 5 sets of masks:
(i) halo mass-thresholding (Whalo)
We constructed masks inspired by a mass-limited SZ survey. Given the noise
properties of an experiment, the SZ flux limit corresponds to a mass-limit of
detected objects. We created different masks (Whalo), constructed by selecting all
the halos present in the WebSky halo catalogue having a mass above a certain

4https://mocks.cita.utoronto.ca/index.php/WebSky_Extragalactic_CMB_Mocks
5The Herschel Space Observatory was a space observatory built and operated by the

European Space Agency (ESA). It was active from 2009 to 2013, and was the largest infrared
telescope ever launched.
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mass cut, M cut. The mass cut has been done in term of M500,c, a spherical
overdensity enclosing 500 times the critical density of the Universe. We masked a
disk centered on the halo position with a radius that is a multiple n of the θ500,c

halo angular size. In the following, we will adopt n = 2 as our default setup, and
will show results for M cut = (1.0, 1.8, 3.0) · 1014M�.
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Figure 3.3: Histograms showing the mass, M500,c (left), angular size,
θ500,c (middle) and redshift, z (right), distributions of halos in the

WebSky catalogue. Here we have already considered a reduced catalogue,
selecting only halos with M200,m > 1014 ·M�, that is the mass limit for

detectable SZ clusters.

(ii) κ-thresholding (Wκ)
We create a foreground masks by simply thresholding the CMB lensing κ field.
These masks are therefore 100% correlated with CMB lensing.
Since the total bias is sensitive to the overall sky fraction removed by the mask,
as well to the specific correlation between the mask and the convergence, we
tested different configurations. To test the dependency on the sky fraction we
thresholded the field masking all the pixels above a specific κ value so that
a sky fraction fmasksky is removed. This generates masks with large numbers of
small holes. To test the effect of the correlation scale of the deflection field and
the shape of the mask, we also created masks by smoothing the κ field with
Gaussian beams of different full width at half maximum (FWHM, θ1/2) prior
to the thresholding step. This results in more regular and connected holes due
to the longer correlation length, and also effectively reduces the shot noise of
the foreground map (i.e. κ) due to the finite number of particles in the WebSky
N-body simulation.
For reference, we have used fmasksky = 0.6%, 2.3%, 6.7% and FWHM = 1.7, 5.1

arcmin.
(iii) CIB-thresholding (WCIB) The CIB is produced by star-forming galaxies
through the absorption of stellar radiation by dust grains which is later re-
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emitted in the infrared. The clustering of halos, and consequently of the galaxies
within, then generates the observed CIB intensity fluctuations [129]. In addition
to providing important constraints on the physics of star formation over a wide
range of redshifts and halo and galaxy masses, especially for the objects with low
luminosity that cannot be studied individually, the CIB acts as an important
contaminating emission at microwave frequencies. Due to its spectral energy
distribution (SED) similar to thermal dust emission it is difficult to disentangle
CIB and galactic dust through component separation and perfectly remove both
components, in particular at small angular scales and high observing frequencies.
CIB residuals then propagate to data products derived from CMBmaps. For CMB
lensing and Compton y maps, CIB residuals are potentially particularly harmful
as they are highly correlated with the underlying cosmological signals [130–132],
and hence can then bias cosmological analyses. The CIB is therefore an example
of a foreground highly correlated with CMB lensing (70% for ` = 1000 where
clustering of the emission is important).
We constructed a threshold mask (WCIB) following the procedure outlined in the
previous section starting from the WebSky CIB map at 217GHz. This frequency
was chosen as it is the highest relevant frequency typically used for CMB power
spectrum analysis based on multi-frequency cross-correlation as done for e.g.
Planck.
(iv) tSZ-thresholding (Wy)
Observation of the tSZ effect, the inverse Compton scattering of CMB photons
by free electrons, is a well established way to construct roughly mass-limited
samples of galaxy clusters that are independent of redshift and thus very powerful
cosmological probes [133–135]. tSZ clusters mark out large-scale density peaks,
and as such have substantial correlation to CMB lensing, at the 30 - 50% level,
and the emission also follows highly non-Gaussian statistics [136, 137]. If tSZ
clusters are masked out, the CMB lensing-mask correlation can be substantial.
Current CMB surveys from the ground and from space have blindly detected
approximately 3200 tSZ clusters with redshift measurements to date [138–140].
Due to its characteristic spectral signature, tSZ emission can be subtracted from
CMB maps using component separation. However this becomes difficult on small-
scales where noise becomes important, and foreground-cleaning residuals are
less simple to model. Thus tSZ is not usually cleaned for CMB power spectrum
analysis, and its contribution to the observed power spectra is directly modeled
and accounted for. Nevertheless, to minimize complex foreground residuals, for
various higher-point statistics (including CMB lensing reconstruction) it is often
useful and common practice to remove some of this source of highly non- Gaussian
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signal by masking the SZ clusters (see e.g. [122]). Planck data were shown to be
robust to these effects [10], however future ground-based surveys such as SO and
S4 will detect one order of magnitude more clusters and thus cluster masking
might potentially soon become a more significant issue.
We followed the same procedure outlined in previous sections and constructed a
mask based on the thresholding of the WebSky tSZ Compton y parameter map
Wy.
(v) radio sources (Wrs)
Furthermore, we considered masks to remove resolved radio point sources, where
the radio source catalogue is constructed from the Websky halos as described
in Ref. [12]. Then, we selected all the sources with a measured flux above the
detection limit of particular experiments, Planck, SO and S4. Each of these
masks is built as product of three masks obtained selecting the sources in the
three frequency bands most relevant for small-scales power spectra measurements,
labelled LOW, MID and HIGH (for more details, see Table I of Ref. [12]). The
size of the holes is 2θ1/2.

Each of the above described masks WX has been randomly rotated to give a
new mask W rot

X , which is uncorrelated with the CMB lensing convergence field
κ, but retains all the other non-trivial mode-coupling effects due to cut sky and
hole shapes (we neglect the small area of residual correlation around the poles of
the random rotation axis).

In Fig. 3.4, we show a zoom of both κCMB (top) and tSZ y-parameter maps
(bottom) from the Websky simulation. The first two columns display the masked
fields (the masked pixels are shown in black) for one of the Whalo masks employed
in this work. The latter is the “random” version of the mask applied in the first
column. In this case, there is no correlation between the mask and the field. In
the other columns, we show the Wκ, WCIB, Wy and Wrs masks. Clearly, the Wκ

is perfectly correlated, and the Wy directly removes the peaks of the y-parameter
map. The Whalo mask is strongly correlated to the Wy mask, since the main
peaks of the y-parameter map are associated with massive clusters.
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3.4.2 Masking the converge field

A conservative estimate of the effect of an LSS-correlated mask on the
κCMB can be obtained computing the κκ−power spectrum from the the masked
κCMB. Even though, as the κCMB is not directly accessible but it has to be
reconstructed from CMB maps this would only provide a good estimate of the
expected amplitude of the effect if the lensing reconstruction delivered a fully
local noiseless unbiased estimate of the true underlying field, but it nonetheless
makes a useful benchmark for comparison that can also be modelled analytically.
Hence, we applied the masks described in Sec. 3.4.1, WX , to the WebSky κ map.
Then, we reconstruct the κκ−power spectrum deconvolving the effect of the mask
using the MASTER algorithm [141] as implemented in the publicly available
code NaMaster [142]6. Finally, we compare the reconstructed power spectrum
with the true one, obtained from the WebSky κ map on the full sky. The results
are shown in Fig. 3.5, for the considered WX masks. The error bars correspond
to the cosmic variance.

Our masks select areas of the sky where mass over-densities are present.
Hence, as expected, the recovered power spectrum displays less power compared
to its value computed on the full sky. Reducing M cut or the cut-threshold, and
hence increasing the fraction of sky area that is masked, the power deficit induced
by masking becomes more important, with a clear suppression of power. This
suppression is more relevant at very large scales and, at least for Whalo and Wy,
at scales L ∼ 2000. The shape of the biases induced by Whalo and Wy are similar.
This is due to the fact that both these masks, even if they are build in different
way, are masking almost the same area, see the discussion at the end of Sec. 3.4.1.
For the uncorrelated rotated masks, the biases are nearly zero as expected. See
dashed lines in Fig. 3.5.

6https://github.com/LSSTDESC/NaMaster
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Figure 3.5: Effect of masking on the CMB lensing convergence power
spectrum CκκL as fractional difference between the CκκL computed on the
masked sky and its value computed on the full sky. Different colors show
the result for masks retaining different fractions of the sky after masking.
No apodization is applied. Simulation measurements are shown as data
points and the semi-analytic theory predictions in solid. Dashed lines
correspond to rotated masks, where the should be no mask correlation.
The top left plot shows the result for masking lines of sight containing
halos with mass M >M cut, see Sec. 3.4.1, where the legend shows the
corresponding M cut. Proceeding, we show the effect of Wy, WCIB, Wκ

and Wrs, respectively. The radio source masks Wrs are shown for the
approximate source count detection limits of the experiments listed in
the legend. The error bars correspond to the cosmic variance. Dashed

lines correspond to rotated masks, W rot
X , cases.
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3.4.3 Lensing reconstruction on masked fields

In Sec. 3.4.2, we have directly masked the CMB lensing converge field κ

to roughly quantify the bias induced by the foreground masks described in
Sec. 3.4.1. In real-world analyses, we can not straightly access the κ field since
it is reconstructed from the observed CMB maps. Hence, in this section, we
mask CMB maps that are then used for quadratic-estimator reconstruction of
the lensing potential.
For this first analysis, we only used the CMB temperature field, since the
foreground contamination is less important for polarization and the properties of
the polarized sources are currently much less well understood.

For the reconstruction of the lensing potential, we mainly followed the same
steps as Planck lensing pipeline described in Ref. [10], which for reconstruction
from the CMB temperature is an optimized and generalized version of the lensing
quadratic estimator described in Sec. 3.3 (see also Ref. [118]). We also refer the
reader to Ref. [143] for more details. For the implementation, we made use of
the public plancklens code7.

The procedure can be summarized in 4 steps: 1) Filtering of input “data” CMB
maps 2) Construction of the lensing quadratic lensing estimator; 3) Mean-field
subtraction and normalization; 4) Calculation of the lensing power spectrum and
subtraction of additional biases (i.e. RD-N (0)).

We created two sets of Monte Carlo simulations of lensed CMB realizations.
In the first set (hereafter, NG set), the unlensed CMB realizations were all lensed
using the same deflection field constructed from the WebSky κ simulation. In
the second set (hereafter, G set), the same unlensed CMB simulations were each
lensed with a different Gaussian random realizations of the deflection field having
the same angular power spectrum as the WebSky κ map.
We used the NG set to isolate the bias as it would appear on real data, while the
G set was used to compute the mean field and the RD-N (0) noise bias assuming no
mask-lensing correlation. We discuss these two terms in the following. Moreover,
we used the G set to estimate error bars on the auto- and cross-spectra estimators
described in the following.

We start by convolving the input simulated lensed CMB sky with a beam of
1.5 arcmin FWHM, and adding homogeneous noise with a noise level of ∼6.7
µK-arcmin (for temperature). This corresponds to noise levels expected for the
baseline SO configuration8.

7https://github.com/carronj/plancklens
8Details of the noise model for SO can be found at https://github.com/simonsobs/so_

noise_models
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We have used a different noise only for the Wrs mask with fsky = 94.1% obtained
selecting all the sources with a measured flux above the detection limit for CMB-
S4, see Sec. 3.4.1. In this case, the input simulated lensed CMB sky are convolved
with a beam of 1.0 arcmin FWHM, and isotropic uncorrelated noise is added
with noise level ∼1 µK-arcmin (for temperature)9.

The input maps are then masked using each of the unapodized WX masks
being considered in Sec. 3.4.1. Now, the first step, the filtering, is a linear
operation that is applied to the CMB maps

X = X̃ + n , (3.44)

where n is the instrumental noise and X̃ is the beamed and lensed CMB given
in terms of the unlensed field.
The results is a filtered CMB field

X̄ ≡ FX , (3.45)

where F is some linear filtering matrix that is designed to removed masked areas
and (optionally but not in this case) down-weight noisier pixels or other noisy or
contaminated modes. For optimal filtering, F is non-diagonal and can be written
as

X̄ ≡
(
bCfidbT +N

)−1

X , (3.46)

where b is the transfer function (as discussed above, we consider a simple isotropic
Gaussian beam of 1.5 or 1.0 arcmin FWHM), N is the covariance of the noise
and Cfid is a set of fiducial lensed power spectra.
We used a fiducial lensed CMB temperature spectrum with multipoles between
100 ≤ ` ≤ 4000, cutting multipoles ` < 100 (with little loss of information for
lensing reconstruction). We use lensed CMB spectra in all terms of filter to
make the estimator nearly unbiased to non-perturbative order [144, 145]. The
cosmology used to build these spectra is consistent with the results of Planck
2018 and is the one used in WebSky simulation [126], discussed in the Sec. 3.4.1.

Optimal filtering is particularly valuable with the kind of masks we are using:
Figure 3.6 shows how the filtering operation is able to fill some information
inside small masked regions, effectively recovering information that was masked.
This increases the information available, reduces any complications due to sharp
mask cuts, and because the masked area is effectively reduced, can substantially

9Details can be found at https://cmb-s4.org/wiki/index.php/Survey_Performance_
Expectations
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reduce biases when the mask is correlated to the signal. We refer the reader to
Refs. [143,146–148] for more details.

Masked CMB

-300 300

Non-optimally filtered CMB

-300 300

Optimally filtered CMB

-300 300KK K

Figure 3.6: We show the comparison between optimal and
non-optimal filtering. From left to right, the masked CMB field

(fsky = 98%), the filtered CMB field using a non-optimal method and
the filtered CMB field using optimal filtering, as described in e.g.

Refs. [143,146–148].

Proceeding to the second step, the real-space lensing deflection estimator is
then built from a pair of filtered maps discussed above. The gradient part10 of the
lensing deflection estimator, ĝLM , contains information on the lensing potential,
which is then estimated by [10]

φ̂LM ≡
1

Rφ
L

(
ĝLM − 〈ĝMF

LM〉
)
, (3.47)

where Rφ
L is the non-perturbative response function defined to make the lensing

reconstruction unbiased on the full sky [120,145]. This is defined by the condition

〈ĝLM〉 = Rφ
LφLM (3.48)

that is the same condition of Eq. 3.36.
The 〈ĝMF

LM〉 term is instead the mean field that is the map-level signal expected
from mask, noise and other anisotropic features of the map in the absence of
lensing. We have to subtract it.
In our analysis, we construct two independent estimates of the mean field for each
case considered (both correlated and uncorrelated masks), using two different
independent sets of 25 G simulations.

10The curl component is expected to be zero to a good approximation, and is zero in the
WebSky lensing field by construction.
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Figure 3.7 shows a typical mean-field power spectrum (corrected for the response),
estimated by cross-correlation of two independent pairs of estates of the mean
field for a fixed halo mask to avoid reconstruction noise (computed over 50 G
simulations in total). Note that we are constructing our lensing estimators in
the null hypothesis of no lensing-mask correlation, as appropriate for quantifying
the bias on standard methods (rather than, for example, defining the mean field
by averaging over simulations with lensing fields correlated to the fixed mask).
Since the mean field depends on the mask, for lensing-correlated masks the mean
field is then correlated to the true lensing potential φ.

101 102 103

L

10 14

10 12

10 10

10 8

10 6

C L

Whalo, fsky = 98% (Mcut
500, c = 3.0 1014 M )

Websky -spectrum
RD-N(0)

L  (20 sims)
Mean Field (50 sims)

Figure 3.7: The RD-N (0)
L bias (black, as described in Eq. 3.50) and

mean-field power spectrum corrected for the response (grey) for the case
of the fixed halo mask described in the plot title. We show (in purple)

the WebSky κκ power spectrum on the full sky for comparison.

From the two mean-field estimates we build two lensing map estimates φ̂1

and φ̂2 for each simulation. The estimate of the lensing power spectrum is then
obtained from φ̂1 and φ̂2 using

Ĉ φ̂1φ̂2
L ≡ 1

(2L+ 1)fsky

L∑
M=−L

φ̂∗1,LM φ̂2,LM , (3.49)

where fsky =
∑

pWXp/Npix is the unmasked sky fraction.
From the above estimator, we then subtract the realization-dependent estimate

of the gaussian (disconnected) lensing bias, RD-N (0)
L [149]. Subtracting this

term, together with the mean-field subtraction, has the effect of removing the
disconnected signal expected from Gaussian fluctuations even in the absence of
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lensing [144,149]. The RD-N (0)
L bias is defined as

RD-N (0),d
L ≡ 〈4Ĉdi

L − 2Ĉij
L 〉 , (3.50)

where angle brackets denote an average over pairs of distinct i, j G simulations.
Here Ĉdi

L is the estimator in Eq. 3.49 with φ̂1 reconstructed from the d-th CMB
realization of the NG set and φ̂2 using the i-th simulation of the G set; Ĉij

L is
instead the estimator in Eq. 3.49 with φ̂1 and φ̂2 reconstructed from the i-th and
the j-th simulations of the G set, respectively. For each mask (both correlated
and uncorrelated), RD-N (0),d is calculated for each NG “data” simulation d using
20 different pairs of 20 independent G simulations. See Fig. 3.7 for a typical
estimate.
The estimates of φ̂ are quadratic since they are built using 2-point functions of
the CMB fields, thus the cross-spectrum C φ̂φ̂

L between estimates of φ̂ is related to
the 4-point function (trispectrum) of the CMB. This term includes contributions
from disconnected and connected pieces 11, some of which contain information
about Cφφ

L . The remaining part is usually called “noise bias” and has to be
removed from C φ̂φ̂

L .
The mean-field discussed above is one of this noise bias together with the
realization-dependent Gaussian noise lensing bias, RD-N (0), that is called “N (0)”
because it is zeroth-order in Cφφ

L . It is worth mentioning that, among the noise
bias terms, there is also the so-called N (1), that instead depends linearly on
Cφφ
L . We are not considering this noise bias term in our analysis, that has been

considered as part of the signal rather than trying to subtract it. For more details
on this topic you may look Ref. [119].

Definitely, subtracting RD-N (0), together with the mean-field, has the effect
of removing from C φ̂φ̂

L all the signals that are not related to Cφφ
L .

Hence, reaching the fourth step, we define the lensing power spectrum esti-
mator

C φ̂1φ̂2,RD
L =

(
Ĉ φ̂1φ̂2
L − RD-N (0)

L

)
, (3.51)

This estimator is somewhat biased, so that even for Gaussian uncorrelated
simulations 〈C φ̂1φ̂2,RD

L 〉 6= Cφφ
L because there is a connected N (1)

L signal-dependent
contraction [119]. Here, as anticipated, we regard N

(1)
L as part of the signal

contained in C φ̂1φ̂2,RD
L , and only consider differences between correlated and

uncorrelated (rotated) masks. This remains a valid way to quantify the impact
11The n-point correlation functions are decomposed into parts, which are purely Gaussian in

nature and those which signify departures from Gaussianity. These are also known as connected
and disconnected terms because of their representation by respective diagrams (see Ref. [150])
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of correlated masking on the total signal.
From the lensing reconstruction field, we also compute the cross-spectrum

estimator with the true field

C φ̂φ
L ≡ 1

(2L+ 1)fsky

L∑
M=−L

φ̂∗LMφLM , (3.52)

where φ̂ is the lensing potential estimator (see Eq. 3.47) and φ is the true lensing
potential field.

The entire pipeline has been repeated 20 times for each mask (both correlated
and uncorrelated), choosing each time as data one of the NG simulations, and
then averaging over simulations. This reduces Monte Carlo noise from variations
of the unlensed CMB, but we cannot average over the cosmic variance of the
lensing field since the entire set of NG simulations are based on the same single
WebSky simulation that is currently available.

To make a comparison with the results obtained in Sec. 3.4.2, we plot results
for the reconstructed κ̂ instead of φ̂12.

The effect of the mean-field and RD-N (0)
L bias on the reconstructed κ̂κ̂-

spectra is shown in the first row of Fig. 3.8 as relative differences between the
reconstructed κ̂κ̂-spectrum and the true WebSky κκ-spectrum for three different
Whalo masks. From left to right, the reconstructed auto-spectra are plotted
without mean-field and RD-N (0)

L corrections, then subtracting the mean field only,
and finally subtracting both mean field and the RD-N (0)

L . The main correction
to the reconstructed κ̂κ̂-spectra comes from subtracting the RD-N (0)

L bias. The
rise on small scales is related to N (1)

L , and could be reduced by subtracting it
(but here we regard it as part of the lensing reconstruction signal). The second
row of Fig. 3.8 shows the effect of the mean-field subtraction on the relative
differences between the cross spectrum κ̂κ and the true WebSky κκ-spectrum.
The bias induced by the mask on the κ̂κ spectra is strongly reduced, specially
at intermediate scales, when we remove the mean-field term. In all the plots of
Fig. 3.8, the full-sky cases are shown in black as reference. Similar results are
obtained for all the other masks described in Sec. 3.4.1.

By construction, theWX masks are correlated with the CMB lensing potential
field. To remove the effects due to this correlation, we subtract to the results
obtained usingWX , those obtained using the rotated masks,W rot

X . This difference
is uncorrelated with the lensing field, but retain all the other non-trivial mode-
coupling effects due to cut sky and hole shapes.

12Note that κ̂LM ≡ 1
2L(L+ 1) φ̂LM
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Figure 3.8: From top left, proceeding in order, the reconstructed
auto-spectra subtracting both mean field and the RD-N (0)

L , the
reconstructed cross-spectra without and with the mean-field subtraction,
the reconstructed auto-spectra without mean-field and the RD-N (0)

L

corrections, the reconstructed auto-spectra subtracting the mean field
but without the RD-N (0)

L correction. The results shown are obtained
using the Whalo masks, i.e. masking lines of sight containing halos with
mass M >M cut, see Sec. 3.4.1. The legend shows the corresponding
fsky. Black lines correspond to the full-sky analysis, where for the

cross-correlation the result is dominated by the full-sky non-Gaussian
N (3/2) reconstruction bias, and for the auto-spectrum is dominated by
N (1). Dashed-lines are the results obtained using the randomly rotated

(uncorrelated) masks, W rot
halo. (N

(3/2) is a typical negative bias,
∼
(
Cφφ

)3/2, first identified in Ref. [151], where they investigated the
effect of large-scale structure non-Gaussianity on CMB lensing

reconstruction. See e.g. Refs. [120,152] for more details on this topic.)
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The results of this subtraction are shown in Fig. 3.9 and Fig. 3.10 for the
reconstructed auto and the cross spectra, respectively. We show the results for
all the (unapodized) masks considered in this analysis, Whalo, Wκ, WCIB, Wy and
Wrs. The error bars have been obtained using the CMB simulations of the G
set. We compute the estimators in Eq. 3.49 and Eq. 3.52 for both WX and W rot

X

using as “data” an independent set of 20 G simulations. The errors are then
the standard deviations of the differences between correlated and uncorrelated
(randomly rotated) masks results.

Figure 3.9 shows the bias as the difference between the reconstructed C φ̂1φ̂2,RD
L

(see Eq. 3.51) computed when using correlated and uncorrelated masks as a
fraction of the true WebSky κκ spectrum. The biases induced by Whalo and Wy

masks are relevant only at small scales, where we are dominated by errors. For
theWκ andWCIB masks, instead, the bias is roughly constant across all the scales,
and it is of ∼ 1− 10% level depending of the fsky. Clearly, the bias induced by
Wκ is larger, since this is the limiting case where the mask is 100% correlated
with the κ field (see Sec. 3.4.1 for more details). Finally, the bias induced by Wrs

is completely negligible even for S4.
As expected, the biases become larger as we increase the masked fraction

of the sky. However, the amplitude of the lensing reconstruction biases are
significantly reduced with respect to those obtained from directly masking the
lensing field in Sec. 3.4.2 (compare Fig. 3.9 with Fig. 3.5). The optimal filtering
used by the lensing reconstruction pipeline substantially reduces the fraction of
the lensing information that is removed by the mask, both because the filtering
recovers some of the CMB modes inside the mask holes, and because the lensing
reconstruction itself is able to recover much of the information about lensing
modes on scales larger than the hole size.

In the next chapter, we will see if this bias is an effect that should be taken
into account by the future ground-based experiments, that will deeply explore
the small angular scales of the CMB.
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Figure 3.9: Effect of masking on the CMB lensing convergence auto
spectrum, after the lensing reconstruction, defined in Eg. 3.51. The mask
biases are computed as differences between correlated and uncorrelated
(randomly rotated) masks results. The top left plot shows the result for

masking lines of sight containing halos with mass M >M cut, see
Sec. 3.4.1, where the legend shows the corresponding M cut in

parenthesis. Proceeding, we show the effect of Wy, WCIB, Wκ and Wrs,
respectively. The radio source masks Wrs are shown for the approximate
source count detection limits of the experiments listed in parentheses.
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Figure 3.10: Effect of lensing-correlated masking on the CMB lensing
convergence cross spectrum, after the lensing reconstruction. The mask
biases are computed as fractional differences between correlated and
uncorrelated (randomly rotated) mask results. The top left plot shows

the result for masking lines of sight containing halos with mass
M >M cut, see Sec. 3.4.1, where the legend shows the corresponding
M cut in parenthesis. Proceeding, we show the effect of Wy, WCIB, Wκ

and Wrs, respectively. The radio source masks Wrs are shown for the
approximate source count detection limits of the experiments listed in

parentheses.
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3.5 Impact of masking bright extragalactic sources
on CMB spectra13

In the previous section, we have discussed the impact of masking bright
extragalactic sources on the reconstructed lensing potential. In this section,
instead, the focus is on the lensed CMB power spectra.

The CMB is lensed by the large-scale structure along the line of sight, and
hence some correlation between extra-galactic sources and the CMB lensing
convergence is inevitable.
As already discussed in Sec. 3.2, the effect of CMB lensing on the full-sky CMB
power spectra is a small smoothing of the peaks in the power spectrum and
also an increase of the power in the CMB damping tail. These effects are both
quadratic in the lensing.
However, if bright extra-galactic sources are masked, due to the correlation of the
source density with the lensing, this will preferentially be removing peaks of the
CMB lensing convergence. If the power spectrum is now estimated only using
the unmasked area, there can be an additional net effect that is linear in the
lensing. The correlation between the deflection angle around convergence peaks
is relatively long range, peaking at around 20 arcmin, so every masked peak is
associated with a surrounding area of correlated deflection angle that distorts
(magnifies) the unlensed CMB. When these peaks are masked, the corresponding
regions of demagnifying deflection angle are no longer fully balanced, and the
net effect is a scale-dependent net average demagnification.

The effect of a constant demagnification on the CMB is easily understood:
it simply shifts angular scales so that everything looks smaller and the CMB
power spectrum is therefore shifted towards higher harmonic multipole `. At
any given observed `, the CMB power is then the same as that at a lower,
pre-demagnification `, which on small scales is larger because the CMB power
decreases rapidly with `, leading to an increase in power on small scales (and a
corresponding decrease on large scales). The angular acoustic scale is shifted to
smaller values, corresponding to the acoustic peaks being shifted to smaller scales,
and there is also a strongly oscillatory difference between the power spectra.
Due to the steep fall of the CMB spectrum with ` in the damping tail, a small
constant demagnification can lead to non-negligible signatures on the power
spectrum. Plausible numbers may be given as follows: removing 2% of the sky
on the convergence peaks would give a mean convergence 〈κ〉 ≈ −0.003 over

13Based on G. Fabbian, M. Lembo at al. [12]
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the remaining unmasked area. This leads to a significant 1% change in the
temperature spectrum at ` ∼ 2000, and larger on smaller scales.
This crude estimate is one motivation to the more careful analysis that we see in
the following. In fact, for future data, with the CMB power spectrum measured
to nearly cosmic variance out to small scales, any small percent-level corrections
would have to be carefully accounted for. We will discuss this topic in the next
chapter, see Sec. 4.3.2.5.
In this constant demagnification picture, the effect would be almost degenerate
with a change in the angular diameter distance to the CMB. However, this model
is not accurate, since the effective net demagnification is both mode-orientation
and scale dependent. The degree-scale acoustic features are only slightly affected
because the deflection-convergence correlation peaks on smaller scales, about 20
arcmin. The corresponding effect on the power spectrum is therefore distinctive,
and important corrections actually arise mostly from relatively smaller-scale
lenses.

A simple leading-order analytic model for the effect is given in [12]. The
model accounts for the case of masking the most relevant CMB extragalactic
foreground emission correlated with CMB lensing: Poisson point sources (an
approximate model for radio sources), and peaks above some threshold in a
Gaussian isotropic convergence or foreground field (a model for tSZ sources and
a component of the infrared sources).
In the following, we test this model, comparing analytical predictions with results
based on realistic numerical simulations. The masks used are those described
Sec. 3.4.1 except for Whalo and Wrs masks. See Sec. 3.4.1 for more details.
Before starting the analysis, we apodized all these masks, with different apodiza-
tion lengths (reported in the figures) to control ringing effects in harmonic space.
The apodization is realized using the C2 function (effectively a cosine) [142].
This approach follows common practice in CMB analyses including small angular
scales and is described by the analytical modeling presented in [12].

The bias induced by WX is then estimated as the difference between the
power spectra obtained using the original (unrotated) mask, and a randomly
rotated mask, both using the same NG lensed CMB realizations.
As already discussed in Sec. 3.4.1, the rotated mask W rot

X is derived from a
random rotation of the original WX so that it is uncorrelated with the lensing
field, but retains all the other non-trivial mode-coupling effects due to cut sky
and hole shapes. The correlated mask bias evaluated in this way is therefore
insensitive to numerical effects only due to an incomplete sky coverage. This
procedure is completely analogous to what has been done in the previous section.
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For each case, we have masked our simulated CMB map (NG, see Sec. 3.4)
and then we have computed the power spectrum of the masked CMB skies using
a pseudo-C` method as implemented in the NaMaster package [142]14. This is the
same method that we have used in Sec. 3.4.2 to compute the lensing convergence
power spectrum from the masked lensing convergence field. We have repeated
this procedure on the G set of simulation (see Sec. 3.4) to compute the error
bars of our measurements. Hence, the error bars displayed in the figures do not
include any non-Gaussian contribution to the covariance, and, therefore, they
represent the error on the average measured on the G simulations.

The results are shown in Fig. 3.11, Fig. 3.12 and Fig. 3.13. We considered
only the bias on the temperature power spectra, the effect on polarization is
briefly discussed in the next chapter in view of the next-decade experiments.

Overall, the semi-analytical model describes the effect on large scales up to
` ≈ 3000 remarkably well for all the configurations considered here. On smaller
scales, the agreement between simulations and predictions gets worse, but a
better fit can be achieved using the non-perturbative calculations discussed in
Appendix B of [12].

Precisely, in Fig. 3.11 we show the measurements of the correlated mask bias
from simulations as data points, together with the semi-analytical perturbative
prediction described in [12]. For this case, we have also considered the bias
measured on CMB simulations lensed with a deflection field with an inverted
sign (NG− set). As we can see the bias has the opposite sign compared to the
case of the top panel on scales where the leading order predictions are accurate.
This is due to the fact that the leading-order effect of the mask correlation is
linear in the lensing.

Fig. 3.12 shows the correlated mask bias measured from simulations adopting
the same C2 function of the previous section and using two different apodization
lengths (3′ and 12′), again compared to the semi-analytic perturbative predictions.
As for the case of the Wκ mask, the theoretical predictions match the simulation
measurements very well up to scales ` . 2500. The amplitude of the mask bias at
small scales has a peak and then decreases on scales smaller than the characteristic
scale imposed by the mask hole size. When masking the CIB peaks without
applying any smoothing of the CIB maps prior to thresholding (orange lines and
points in Fig. 3.12), there are many very small holes due to the relatively blue
shape of the CIB angular power spectrum. A larger apodization scale increases

14As we discuss in Ref. [12], alternative estimators capable of effectively recovering the
information inside the holes of the mask would give different results and potentially have a
reduced effect.
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Figure 3.11: Bias induced by masking the lensed CMB temperature
with a foreground mask generated by thresholding the WebSky CMB
lensing κ field after smoothing to a scale of 1.7′ (orange) or 5.1′ (green).
In the top panel data points measured from simulations are compared to
perturbative semi-analytic predictions in solid. The semi-analytic model
is discussed in Ref. [12]. Results obtained by masking different sky areas

are shown in different columns. We apodized each mask with an
apodization length of 0.2 deg. The masked area prior to apodization is
reported in the title and the effective sky area after apodization used to
compute CTT` is shown in the legend. The bottom panel shows the bias
measured on CMB simulations lensed with a deflection field with an

inverted sign (NG− set).

the fraction of sky that is masked for fixed underlying hole distribution, increasing
the bias on larger scales (where noise and foreground power is lower, and therefore
potentially more important in the analysis of real data).
Although masks on real data are usually not designed to remove peaks of CIB
emission per se, the case where we masked the highest peaks so that only the
0.6% of the sky is removed is of particular interest. Infrared sources that are
local dusty galaxies are expected to have a low correlation to CMB lensing due to
the short path length. However, chance radial alignments of sources for the CIB,
high-redshift protoclusters, and lensed high-redshift galaxies, may make up an
important fraction of the point sources detected in CMB maps [153,154], all of
which may have a significant correlation to the line of sight CMB lensing [155–157].
The brightest of these objects are usually removed by point sources masks. Despite
the reduced masked sky area, the bias in this case is potentially significant and
could lead to important detectable effects as we will see in the following chapter.

In Fig. 3.13 we show the comparison of the theoretical predictions with the

− 130 −



GRAVITATIONAL LENSING OF THE CMB

Figure 3.12: Bias induced by masking the lensed CMB temperature
with a foreground mask generated by thresholding the CIB map at 217
GHz of the WebSky suite after smoothing to a scale of 1.7′ (orange) or

5.1′ (green). Data points show the measurements of the bias on
simulations while perturbative semi-analytic predictions are shown in
solid lines. The semi-analytic model is discussed in Ref. [12]. Masks

with different sky fractions are shown in different columns. The top row
shows results with 3′ mask apodization tapering function, the bottom
row using a larger 12′ apodization (giving substantially larger masked

areas as shown in the legend).

simulation measurements for the Wy case.
Compared to the case of κ and CIB thresholding, the agreement between the
perturbative model and simulation results is worse, with significant discrepancies
observed already at multipoles ` ≈ 2500 and reaching a factor between 2 to 4 at
` ≈ 4000 in particular when only the highest peaks are masked (right panel). For
more aggressive masks where a significant fraction of the peak is masked however
the agreement (left panel) between simulations and analytic predictions improve
substantially. Since the bulk of the tSZ emission is localized in highly clustered
and dense regions at relatively low redshift for a threshold that is sufficiently small,
Wy contains holes with a larger angular size around the overdensity corresponding
to the galaxy cluster. The masked region at each cluster may therefore remove a
significant area of high lensing signal associated with the cluster (rather than
just a small area at the very peak of the overdensity). We therefore checked
whether higher-order effects beyond the linear term modelled in the previous
section could be responsible for the observed discrepancy, for example from the
reduction in lensed CMB signal over the cluster mask.
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To test higher-order effects we constructed another set of lensed CMB sim-
ulations with the same masks as the NG set, but lensed with a deflection field
with an inverted sign. We refer to this set of simulations as NG− in the following.
Since the leading-order effect of the mask correlation is linear in the lensing, in
these maps it should have opposite sign (see Fig. 3.11). Higher-order effects
that are quadratic or involve a higher even power of the lensing can be isolated
on simulations using the half sum of the mask biases measured on the NG and
NG− sets using the same threshold mask for both NG and NG−. In the bottom
panel of Fig. 3.13 we show that higher-order effects induce a negative correction
to the leading order predictions that explains the discrepancy. When only a
reduced fraction of the sky is masked, the higher-order effects become important
at ` ≈ 2000 and suppress the bias by a factor of 4 compared to the leading order
predictions at ` ≈ 4000. In the limiting case where we mask a large fraction of
the sky, the corrections become relevant at progressively smaller angular scales
and their relative importance is reduced.

Corrections that are quadratic in the lensing largely account for a change in
the underlying lensed CMB power spectrum due to the masking of areas where
the lensing is larger. An approximate analytic estimate of this higher-order bias
can be obtained by computing the lensed CMB power spectrum (approximately
a convolution of the CMB lensing and the unlensed CMB power spectra) where
the CMB lensing power spectrum is derived from the lensing convergence power
spectrum computed over the masked sky using theWy mask. Fig. 3.13 shows that
this simple model describes the effect seen in the simulations quite accurately (a
more accurate analytic calculation, including all orders for a Gaussian foreground,
is described in the Appendix B of [12]).

To conclude, we have seen that these kind of masks correlated with the lensing
signal, when applied on the observed CMB maps, can induce a bias in the lensed
temperature power spectra recovered from the unmasked area. This bias is clearly
relevant on small scales. We will discuss these results in view of the next-decade
ground-based CMB experiments in the next chapter.
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Figure 3.13: Top: Bias induced by masking the peaks of the tSZ
emission (after smoothing to a scale of 1.7′, orange, or 5.1′, green) on
the lensed CMB temperature as measured on simulations compared to

perturbative leading order analytical predictions (solid line). The
semi-analytic model is discussed in Ref. [12]. Masks with different sky
fractions are shown in different columns. We adopted a 6′ apodization

length for the mask tapering function. Bottom: Measurement on
simulations of the even higher-order biases responsible for the

discrepancies between the leading order predictions and the simulation
results shown in the upper panel. Approximate analytical predictions of

the second-order terms are shown as solid lines.
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4
Prospects for next-generation CMB

experiments

Since its discovery 55 years ago, the cosmic microwave background radiation
has played a primary role for cosmology. CMB radiation has been a powerful tool
to confirm or rule out cosmological models and to strengthen our understanding
of the fundamental physical laws of the Universe we live in. As we have seen in
Chpt. 1, the physics behind a CMB map is straightforward and well understood.
Starting with the COBE detection, the mapping of the primordial temperature
and polarization anisotropies, produced by the WMAP and, with higher pre-
cision, Planck satellites, has allowed us to characterize the initial cosmological
perturbations at about the percent level and to constrain with unprecedented
accuracy the six parameters governing ΛCDM model.
Today, even after more than 50 years of intensive studies and observations, more
accurate measurements can still provide new information improving our knowl-
edge about the origin and the composition of our Universe.
Despite the incredible achievements of the last few years, ΛCDM model is not able
to complete our understanding of the Universe, which is still based on unknown
entities like dark energy, dark matter and the inflaton.

The aim of this last chapter is to provide, on one hand, an overview of the
state-of-the-art CMB measurements and what we can (or not) extract from them,
Sec. 4.1 and Sec. 4.2, and, on the other hand, a hint of the near-future plans,
Sec. 4.3, placing our works in this context.



State of the art

4.1 State of the art

Before addressing questions on what comes next, we have to make the point
on where we stand. In Fig. 4.1, the most updated compilation of CMB data is
shown. We can appreciate the amazing concordance between all the spectra from
different datasets. The Planck measurements [6] are in blue, compared with those
of other, contemporary, experiments: WMAP data from Ref. [158], ACT and
ACTpol data from Refs. [159–161], SPT and SPTpol data from Refs. [162–164],
PolarBear data from Ref. [165] and BICEP2/Keck data from Refs. [166, 167].
Planck dominates the temperature and the E-mode polarization power spectra
up to ` ∼ 1000. For higher multipoles, up to ` ∼ 3000, as well as B-mode
polarization, the ground-based experiments, with higher angular resolution and
sensitivity, provide better measurements. Regarding the lensing power spectrum,
the next generation of experiments is going to get better measurements.

Definitely, Planck mission has exhausted the information content of the CMB
temperature anisotropies, reaching the cosmic variance limit down to ∼ 5 arcmin
angular scales, but we have only begun to tap the information encoded in CMB
polarization, CMB lensing and other secondary effects.
Before moving forward, let us briefly review the outstanding Planck achievements,
which include temperature and linear polarization maps. The state of the art of
the CMB circular polarization has been already discussed in Sec. 2.2.

4.1.1 Planck legacy

Planck was the third-generation space mission dedicated to measurements
of CMB anisotropies. It was launched by ESA in May 2009 and operated
until October 2013. Planck data, already shown in Fig. 4.1, are in remarkable
agreement with the standard spatially-flat 6-parameter ΛCDM cosmology, having
a power-law spectrum of adiabatic scalar perturbations. In Sec. 1.4, even more in
Fig. 1.11, we have indeed seen how the temperature power spectrum is sensible
to the ΛCDM parameters.
In Fig. 4.2, the 68% confidence intervals for the base-ΛCDM parameters are
shown. These constraints have been obtained combining Planck CMB power
spectra with CMB lensing reconstruction and BAO (baryon acoustic oscillation).
Alongside the six baseline-parameters, we see the constraints for the derived
parameters, such as the Hubble constant, H0, the matter density, Ωm, and the
matter fluctuation amplitude, σ8. As already discussed in Sec. 1.4, the ΛCDM

model has indeed only six independent parameters, the others can be inferred
from them.
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Figure 4.1: Compilation of recent CMB angular power spectrum
measurements. From top to bottom, power spectra of the temperature
and E-mode and B-mode polarization signals, the cross-correlation

spectrum between T and E and the lensing deflection power spectrum.
Different colors correspond to different experiments, each retaining its
original binning. For Planck, ACTPol, and SPTpol, the EE points with
large error bars are not plotted (to avoid clutter). The dashed line shows
the best-fit ΛCDM model to the Planck temperature, polarization, and

lensing data. Credits: Planck Legacy Archive [6].

Using only these 6 baseline-parameters, a very good fit of the temperature
power spectrum is achieved. Hence, despite the many extensions that have been
explored, there seems to be no statistically significant evidence for the need to
add more parameters.
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Figure 4.2: Parameter 68% intervals for the base-ΛCDM model from
Planck CMB power spectra, in combination with CMB lensing

reconstruction and BAO [55].

One of the most significant findings, first made by WMAP satellite at modest
statistical significance, is that the primordial power spectrum is not exactly scale-
invariant: in other words, ns 6= 1. This means that, at least at the sensitivity level
of presently available data, the initial conditions of the Universe are described by
just two numbers: the amplitude of primordial curvature perturbations, As, and
its spectral index ns. With this information, our capability to discern among
different inflationary models is really low.
Only upper limits are available on other quantities that can provide more detailed
information about inflation such as the “running” of the spectral index of scalar
perturbations, i.e. its dependence on the scale of perturbations, dns/dlnk, the
amplitude, At, and spectral index, nt, of tensor perturbations or better the tensor
to scalar ratio r = At/As, just to mention a few. For example, combining Planck
data with data from BAO, BICEP2, and Keck Array data, Planck collaboration
places a limit on the tensor-to-scalar ratio r0.002 < 0.06. Crucial information
is expected to be obtained from primordial B-mode polarization. In this sense,
near future CMB experiments can provide more detailed information about the
physics of the inflationary era.

Despite this almost perfect picture, the improvement in estimating the uncer-
tainties has also led to tensions between the preferred values of some cosmological
parameters. Precisely, the tension is between the value obtained from fits to
cosmological data sets assuming ΛCDM model and direct measurements of these
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cosmological parameters.
There is a 4.4σ tension in the preferred value of the Hubble constant (as shown in
Fig. 4.2, Planck provides a value of 67.37± 0.54 kms−1Mpc−1 while the cosmolog-
ical distance ladder measurement by SH0ES a value of 74.02± 1.42 kms−1Mpc−1

[168]), followed by the 2 − 3σ tension on S8 = σ8

√
Ωm/0.3, which measures

matter clustering, between Planck and weak lensing experiments and clustering
abundance surveys [169–171].
The disagreement might be explained by an underestimated or unmodeled system-
atic (see e.g. Refs. [172–177]). Nevertheless, since these tensions exist between
multiple data sets breaking down the cosmological epoch, they might suggest
the need for physics beyond the standard model of cosmology. There are many
attempts to solve these tensions, please see Refs. [178–190] (this is definitely not
a comprehensive list).

Additionally, it is worth mentioning the ∼ 2.5σ tension between the preferred
values of parameters like the physical cold dark matter density, ωc, between
Planck TT ` ≤ 1000 and Planck TT ` > 1000, which can be resolved by allowing
the amplitude of the lensing contribution to the CMB power spectra to vary.
This consists in extending ΛCDM to include a phenomenological amplitude, AL,
which rescales the amplitude of the lensing power spectrum. AL = 1 corresponds
to the expected weak lensing scenario [191].

Regarding extensions to the ΛCDM model, it is worth mentioning the already
anticipated (see Sec. 2.1) latest constraints on the cosmic birefringence. Regarding
anisotropic birefringence, in Ref [87], using Planck 2018 CMB polarized data,
no evidence of birefringence was found within the error budget, obtaining as
constraints A∆δχ∆δχ < 0.104

[
deg2

]
and A∆δχT = 1.50+2.41

−4.10 [µK · deg] both at 95%
C.L.. However, these limits, especially the latter, are competitive in constraining
a few early dark energy models. This kind of models have been recently proposed
to alleviate the H0 tension, see e.g. [183].
The latest constraints on isotropic birefringence using Planck 2018 CMB polarized
data are instead reported in Ref. [83]. As already discussed in Sec. 2.1, the
novelty lies in the independent treatment of the systematic error using Galactic
foreground emission. The quoted value for ∆χ̄ is 0.35± 0.14 deg, which excludes
∆χ̄ = 0 by 99.2 % C.L.. This measurement is still consistent with the result found
by Planck collaboration with the 2015 data release [81,82], but the uncertainty
has been remarkably reduced, since it no longer contains the ground calibration
uncertainty.

This section is a very short summary of the achievements reached by Planck.
Please see Refs. [6, 10,55] for more details.
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4.2 Open questions

The ΛCDM model provides an extremely good fit of the data, so even though,
as discussed in the previous section, there exists some tensions, deviations from
the model are not expected to be too drastic from the phenomenological point of
view, even if they can be conceptually really different. We can therefore consider
the ΛCDM model as an approximation to a more realistic scenario that still
needs to be fully understood.

To emerge from the fog, in the next decades, the target of both theorists and
experimentalists will be to answer the following questions:

• What is the nature of dark energy and dark matter?

• Did the Universe have an inflationary period? How did it happen? What
is the level of non-gaussianities?

• Is the Universe flat or closed?

• How much does a neutrino weigh? Is there any sterile neutrino?

• Do we actually need physics beyond the standard model Model (SM) of
particle physics?

• What is the origin of baryogenesis?

• What is the origin of the sharpened tension in the observed and inferred
values of H0 and S8? And what about AL? Is there an underlying new
physics that can accommodate this tension?

This (definitely not complete) list of questions can be largely reduced (or at least
modified with new questions) in the next decade, thanks to a coordinated effort
from the side of theory, data analysis, and observation.

The next decade will provide a compelling and complementary view of the
cosmos through a combination of upgraded experiments, next-generation space-
missions and facilities on Earth. A wealth of data, not only CMB observations,
mainly polarization, but also LSS measurements, will be available soon. An
optimal combination of cosmological and astrophysical datasets will bring us any
closer to understand the detailed nature of the Universe.
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4.3 Next-decade CMB experiments

Next-generation projects have the makings of solving some questions listed
above, providing a dramatic leap forward in our understanding of the cosmos.
The focus will be on CMB polarization, measuring E-mode polarization down to
the cosmic variance limit over a wide range of angular scales and pushing the
search for primordial B-modes down to a tensor-to-scalar ratio r ∼ 0.001.

Several projects have already been planned to start over the next decade.
Among them, let us mention LiteBIRD, the Simons Observatory and CMB-
Stage4.
LiteBIRD is satellite-mission proposed by JAXA (the japanese equivalent of
ESA) in early 2015 and is expected to be launched in the middle of the 2020s. It
is designed to measure CMB temperature and polarization anisotropies over the
full sky in the multipole range 2 ≤ ` ≤ 200.
LiteBIRD, in a 3-year mission, will map the entire sky in 15 microwave frequency
bands from 34 to 448 GHz, using two telescopes, a Low Frequency Telescope
(LFT) and a High Frequency Telescope (HFT). Each telescope is equipped with
a half-wave plate system for polarization signal modulation and a focal plane
filled with polarization-sensitive TES bolometers [192].
Unlike Planck, LiteBIRD is designed and optimized for measuring polarization.
Moreover, as already mentioned in Chpt. 2, studying the non-idealities of the
HWP we can constrain the amount of circular polarization in the CMB radiation.

The Simons Observatory (SO) is a new CMB ground-based experiment, and it
is expected to start observations in the early 2020s. SO is located in the Atacama
Desert (in Chile), sharing the site with other ground-based experiments, such as
ACT, CLASS and the planned CMB-Stage 4.
The SO collaboration, that is made of more than 200 scientists from around 40
institutions, is building a Large ApertureTelescope (LAT) with a 6-meter primary
and three 0.5-meter refracting Small Aperture Telescopes (SATs). The initial
plan is to deploy a total of around 60 000 detectors, approximately evenly split
between the LAT and the set of SATs. The plan for sky coverage is to observe
∼ 40% of the sky with the LAT, and ∼ 10% with the SATs. This amount of
detectors represents a record: it is about more than an order of magnitude over
the size of current microwave detector arrays, and moreover, it is more than
the number of total detectors deployed by all previous microwave background
experiments combined together. With this equipment, SO will observe the sky in
six frequency bands: 27, 39, 93, 145, 225 and 280 GHz [8].
As for LiteBIRD, primordial B-mode polarization at large angular scales is the
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main target. Additionally, instead of LiteBIRD, SO has the capability to explore
the small angular scales, ranging from an arcmin to tens of degrees. This will
allow us to shed light on the phenomena affecting the damping tail (high-` region)
of the CMB power spectra both in temperature and in polarization, as well as
the growth of structure revealed by CMB lensing.

CMB-Stage 4 (CMB-S4) is another CMB ground-based experiment, covering
more than 50% of the sky, over the frequency range ∼ 20− 280 GHz [9]. The
construction phase is planned to start in 2021 [193]. CMB-S4 collaboration
targets to deploy ∼ 500 000 detectors, so more than an order of magnitude over
the SO number. Again, these detectors will be almost equally split among LAT
and SATs, and they will be located in both the Atacama Desert and the South
Pole.
Small telescopes have the role of setting the most sensitive constraints on the
degree scale, i.e. on the recombination peak of polarization power spectra. Large
telescope, instead, will have primary apertures in the 2− 10m diameter range, in
order to achieve angular scales between 1− 4 arcminutes: CMB-S4 will provide
us measurements of CMB power spectra up lmax ∼ 5000 [194].

4.3.1 Satellite vs ground-based

From the above descriptions, the first thing that stands out, comparing
satellite missions with ground-based experiments, is that measurements from
Earth have the advantage of employing large aperture telescopes, with diameters
of several meters. SO and CMB-S4 can achieve much higher multipoles, i.e. small
angular scales. In principle, a large telescope could be launched in space too.
Nevertheless, this would require exorbitant cost. Large ground-based programs,
instead, can target amazing sensitivities and angular resolutions with a far lower
amount of money. They can operate for much longer times and are able to easily
take advantage of the latest technological advances.

On the other hand, a crucial point is that ground-based experiments can
cover a limited number of frequency bands due to atmospheric emission. This
limits their capability of removing foreground emissions (see Ref. [195] for more
details), and limits the observations only to the cleanest sky regions, i.e. reduced
sky coverage than satellite mission.

It is therefore necessary a synergy between satellite-based and ground-based
measurements. In the next-decade SO and, even more, CMB-S4 will provide us
the definitive CMB measurements at angular scales from tens of degrees to arc
minutes, while LiteBIRD will cover the largest angular scales, corresponding at
multipoles ` < 20.
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4.3.2 Science goals

4.3.2.1 Tensor-to-scalar ratio

The first and probably major science goal, that the aforementioned experi-
ments will target, is the measurements of the imprint of primordial gravitational
waves on the CMB polarization pattern. In other words, the aim is to measure or,
possibly, to set an upper bound on the tensor-to-scalar ratio, r. Both LiteBIRD
and CMB-S4 will set an upper limit of r < 0.002 at 95% C.L., if they do not
detect any signal. In any case, this is a huge improvement over current limits,
and would significantly advance our understanding of inflation, ruling out broad
classes of inflationary models. For a detailed discussion, see Refs. [8, 9, 192,193].
Of course, if they will instead effectively measure r, the impact of such a discovery
will be enormous. It would constitute direct evidence for cosmic inflation , and,
as already discussed in Sec. 1.4, we can infer from r also information on the
energy scale of inflation.

4.3.2.2 Cosmic Birefringence and GFE

As a byproduct of this primary scientific target, the future CMB experiments
will significantly improve constraints on cosmic birefringence. In Fig. 4.3, we
show the corresponding expected 68% C.L. bounds on the amplitude of the
scale-invariant rotation-angle spectrum Aχ (in Fig. 4.3, χ ≡ α). The current
bound derived using Planck 2018 data [87] is close to the green line. The
improvement will be remarkable. As already discussed in Chpt. 2, the prospect of
accurate measurements of this effect presents an opportunity for probing physics
beyond the standard model, such as parity-violating axion-photon interactions.
In Ref. [196], the bound on Aχ is indeed translated into in a bound on the
axion-photon coupling,f−1a, finding for CMB-S4 fa ≥ few× 103V , where V is
the energy scale of inflation. This limit will place stringent constraints on the
string theory axions.

The formalism proposed in Chpt. 2 perfectly fits in this context. Comic
birefringence is indeed a limiting case, as shown in Sec. 2.3.2.1.
Given the wealth of CMB polarization data that will become available by the
end of 2020s, the formalism described in Chpt. 2 (see from Sec. 2.3) can be used
to easily obtain constraints on the GFE parameters, as it has been done for the
toy model considered in Sec. 2.4.1.
Regarding this model of a wavenumber-independent susceptibility tensor, future
linear polarization measurements will further improve the constraints on β2

V and
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β2
E (for the observational constraints found using current linear polarization data,

see Sec. 2.4.2).

Figure 4.3: The thick lines show the statistical uncertainty in Cχ
(≡ Cαα) forecasted for the four experiments considered in Ref. [196].

The thinner horizontal lines indicate the corresponding expected 68% CL
bounds on the amplitude of the scale-invariant angle-rotation spectrum
Aχ. The thin green solid line shows the current bound on Aχ from

BICEP2/Keck. Figure from Ref. [196].

Let us remember that while the β2
V parameter is basically related to cosmic

birefringence, the β2
E parameter is instead responsible for the generation of a

degree of circular polarization in the CMB radiation from the coupling with
linear polarization. We have shown that much better constraints on β2

E can be
found using current linear polarization data. This allow us to set more stringent
constraints on the amount of CMB circular polarization allowed than the amount
predicted by current circular polarization data.
Moreover, future linear polarization measurements from the LiteBIRD satellite
will improve the bound on β2

E by roughly a factor 3, down to β2
E < 0.05. These

bounds could be further improved using SO and CMB-S4 data.
We thus argue that linear polarization measurements from forthcoming experi-
ments will likely yield stronger constraints on GFE than direct observations of
circular polarization, at least in the case of a wavenumber-independent effective
susceptibility tensor.

As already discussed in Chpt. 2, cosmic birefringence and CMB circular
polarization could be the symptom of parity-violating physics. Hence, the
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formalism proposed in Sec. 2.3 will give us the chance of using CMB polarization as
a tool to constrain the optical properties of the Universe. This can be particularly
useful to achieve one of the goals of the future CMB experiments: constraining
physics beyond the standard model.

4.3.2.3 Constraining Cosmology from the high angular scales: opti-
cal depth

Moving to a different topic, but still related to the improvement on polarization
measurements, LiteBIRD, covering very high angular scales, will be the only
experiment able to access the predicted “reionization bump” in the B-mode power
spectrum at ` < 10. The height of the reionization bump is related to the optical
depth, τ (as we have seen in Sec. 1.4). LiteBIRD will provide a cosmic variance
limited determination of τ . This value of τ , on one hand, will provide us an
integrated constraint on the reionization history of the Universe, on the other
hand, will reduce the uncertainty in the neutrino mass by more than a factor of
two [192].

4.3.2.4 Constraining Cosmology from the small angular scales

A complementary constrain of the neutrino mass will be provided by the small
angular scales of both SO and CMB-S4. CMB-S4 is also particularly sensitive
to the possible existence of additional neutrinos that interact even more weakly
than the neutrinos in the standard model, the so-called sterile neutrinos [9, 197].

Regarding the small angular scales reached by SO, and, even more, by CMB-
S4, these measurements will allow us to also improve the constrains on the
number of relativistic species in the early Universe, Neff , the expansion rate of
the Universe, H0, the abundances of primordial elements and the particle nature
of dark matter and its interactions. These are, indeed, all phenomena affecting
the damping tail (high-` region) of the CMB power spectra in both temperature
and polarization. See Refs. [8, 9, 193].

4.3.2.5 CMB gravitational lensing: impact of masking extragalactic
sources

To conclude, SO and even more CMB-S4 are expected to produce high-fidelity
maps over large fractions of the sky, improving on the signal-to-noise of the
Planck lensing maps by more than an order of magnitude. Therefore, to extract
reliable information from small-scales observations it is of the utmost importance
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to understand the impact of the source masking, especially because applying
correlated masks introduces substantial biases, as we have seen in Sec. 3.4 and
Sec. 3.5.

Despite not being detectable on current data sets (e.g. Planck), in Sec. 3.5,
we have seen that correlated masks can introduce substantial biases on the power
spectrum if not accounted for, and they may be important for forthcoming
more sensitive experiments that measure small angular scales. We therefore
calculated the detectability of the biases induced by masking of tSZ and CIB
for SO and S4 assuming a sky coverage of fsky = 40%. We have used the
realistic publicly available noise power spectra in temperature and polariza-
tion after a component separation procedure based on a standard1 internal
linear combination algorithm. Details of the noise model for SO can be found
at https://github.com/simonsobs/so_noise_models, while the noise speci-
fications for S4 have been taken from https://cmb-s4.org/wiki/index.php/
Survey_Performance_Expectations. For SO we used the so-called baseline
noise.

Figure 4.4: Detection significance of the mask bias as a function of
maximum multipole `max included in the analysis for different sources
for future high-resolution ground-based experiments. SO is shown in
solid line while S4 is shown in dashed line. We made the conservative
choice of no apodization applied to the mask prior to the computation of
the power spectrum to retain the largest sky area fobs = 40%. The
retained fraction of the sky area after masking based on foreground

thresholding is shown in the title as fmask
sky . The significance reported is

assuming the full sky CMB spectra are known perfectly (and an error
model only accounting for foreground-cleaned noise).

In Fig. 4.4, we can see the detectability of the bias in terms of achievable
1We consider the standard version of the algorithm the one that does not explicitly deproject

any extragalactic foreground component.
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detection significance as a function of the highest multipole included in the
analysis. More details about this discussion can be found in [12]. If tSZ and the
brightest regions of CIB emission are masked, biases on the lensed temperature
power spectrum, C̃TT , will be detected with a statistical significance well above
5σ for both SO and CMB-S4.

Regarding polarization, we have seen that measurements of the lensed E-mode
polarization power spectrum, C̃EE, are generally less affected by the bias. The
effect can be neglected for SO, while for S4 it will be needed to account for it, as
the statistical significance is ∼ 3σ.
Regarding the lensed B-mode polarization spectrum, the size of the bias is,
instead, highly dependent on the choice of the estimator. Standard pseudo-C`
estimators not accounting for E-to-B leakage due to partial sky coverage in
the E-B separation will lead to a very significant detection of the bias also on
sub-degree scales. However, estimators that remove the E-to-B leakage, such as
the pure-pseudo-C`, can remove the majority of the bias and leave the residual
effect below the detection threshold.

So overall, the bias from masking bright extragalactic sources can be relevant
for fourth-generation CMB observations. Hence, for future data, with much
larger populations of resolved sources, care will be required to either include the
correlated mask bias in the model, or ensure that mask hole sizes and number
densities are sufficiently low that the bias remains negligible.

We have performed a similar analysis on the lensing reconstruction bias
described in Sec. 3.4. The results for all the WX masks considered in this analysis
are shown in Fig. 4.5, where the detection significance of the mask bias as a
function of maximum multipole Lmax is reported. The even columns show the
bias obtained directly masking the κ convergence field (see Sec. 3.4.2) while the
odd columns show the bias obtained masking the observed CMB field and then
reconstructing the κ convergence field, as discussed above. Comparing the even
columns with the odds, we can see that the bias is mitigated to some extent by
optimal filtering of the CMB maps, which effectively fills some of the information
in the small mask holes (see also Fig. 3.6). Moreover, we show the ideal case
of total coverage (first and second columns) together with the more realist case
where f obs

sky = 40%. Hence, looking at the third column for each mask, we see
that the bias is indeed detectable with a statistical significance . 1σ. It is worth
underline that, except for Wrs with fsky = 94.1% (obtained selecting all the
sources with a measured flux above the detection limit for CMB-S4), all the
analysis has been done considering only the SO baseline noise. It is not excluded
therefore that the bias can be relevant for CMB-S4.
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Figure 4.5: Detection significance of the mask bias as a function of
maximum multipole Lmax included in the analysis for different sources
for future high-resolution ground-based experiments. We show the ideal
case of total coverage (first and second columns) together with the more

realist case where fobs = 40%. The even columns show the bias
obtained directly masking the κ convergence field (see Sec. 3.4.2) while
the odd columns show the bias obtained masking the observed CMB
field and then reconstructing the κ convergence field from the these

maps, using the pipeline described above in this section.
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Conclusions

In this thesis, we have dug into the Cosmic Microwave Background (CMB)
radiation looking for what remains to be uncovered.
On one hand, we have presented a new tool to extract, from CMB polarization,
information regarding the optical properties of our Universe. On the other hand,
we have assessed the impact of masking bright extragalactic sources on both the
reconstructed CMB lensing potential and the lensed CMB power spectra.
These lines of research are particularly timing given the wealth of CMB data
that will become available in the next decade or so.

We have opened this thesis, in Chpt. 1, laying the foundations for the full
comprehension of the following chapters. We gave a detailed description of the
processes that lead to the CMB anisotropies formation and we explained the
physics encoded inside the CMB power spectra, showing how the parameters of
the standard cosmological model (ΛCDM) affect their shape.

In Chpt. 2, we have focused our attention on the polarization of the CMB.
Since the physics that governs the CMB is purely electromagnetic, the properties
of the CMB pattern can be used to constrain deviations from the standard model
of particle physics. We have therefore introduced the cosmic birefringence, that,
due to a rotation of the plane of linear polarization, generates parity-violating
power spectra, and the CMB circular polarization, also known as V-modes. Both
these phenomena can be used as potential tracers of new, isotropy- and/or
parity-violating physics. Hence, in the second part of this chapter, reserved for
the original work, we have studied the in-vacuo conversion between polarization
states of propagating radiation in a cosmological setting. We have presented a
unified framework able to describe such conversion. The framework expounds
the generalized Faraday effect (GFE), i.e. the mixing among all polarization
components occurring when the natural modes of the radiation are elliptically
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polarized. This reproduces, in the appropriate limits, both Faraday rotation
(natural modes of the radiation are circularly polarized) and Faraday conversion
(natural modes of the radiation are linearly polarized). We have applied the
framework to derive general formulas that allow for an easy computation of the
CMB spectra in the presence of GFE, see Eqs. 2.49. To derive these equations, we
have neglected the linear polarization generated at the time of cosmic reionization
and the effect of gravitational lensing due to matter distribution along the line of
sight.
Eqs. 2.49 are one of the main results of this thesis, they encode, in a very general
way, the modifications due to GFE, linking the modified power spectra to the
power spectra that we would have in absence of this effect. They follow quite gen-
erally from the transfer equation for polarized radiation in a weakly anisotropic
medium, see Eq. 2.21.
Then, we did a step forward. We connected the observed spectra to the compo-
nents of an effective “cosmic susceptibility tensor” describing, in a completely
model-independent way, the optical properties of the Universe between us and
the CMB last scattering surface. We tested our formalism, considering a toy
model, where the susceptibility tensor is wavenumber-independent, see Eqs. 2.84.
We have derived bounds on the parameters of the GFE and on the components
of the cosmic susceptibility tensor from the most up-to-date observations of CMB
polarization, including circular polarization. This allowed us to set an observa-
tional bound on a GFE-induced CMB circularly polarized power spectrum, at
CV V
` < 2 · 10−5µK2 at its peak at ` ' 370, at the 95 % CL, which is some three

order of magnitude better than presently available direct VV measurements. To
our knowledge, it is the first times that such limits appear in the literature.
The GFE parameters themselves are proxies for parity- or isotropy- violation
effects occurred in the Universe at z < 1000. Hence, these results might change
the way in which in-vacuo conversion of polarization states in a cosmological
setting is understood, and significantly help advancement in this field.
Even though the mixing of CMB polarization states had been studied in the
literature, most of the previous studies concentrated on specific models giving rise
to mixing between linear polarization, or to the conversion of linear to circular
polarization. There was no attempt to provide a general, model-independent
framework to study these effects. We have filled that gap, also providing a neat
physical description of the GFE as the precession of the Stokes vector.
Moreover, the results are of interest for a broad audience, going from theorists
to observers. It deepens understanding of a physical effect that is potentially
observable and can be used to probe the properties of the cosmic medium between

− 152 −



PROSPECTS FOR NEXT-GENERATION CMB EXPERIMENTS

us and the last scattering surface. Theorists will benefit from the framework that
allows to quickly derive observational predictions. Observers will have a new
target for future measurements.

In Chpt. 3, we have moved our attention to CMB lensing. The CMB pattern
we observe today are indeed unavoidably distorted by the presence of mass
between us and the last scattering surface. CMB lensing, together with CMB
polarization, are, without any doubt, the key-observables for next-decade CMB
experiments. Hence, a not completely exhaustive comprehension of this effect
could preclude us the possibility of constraining cosmology, or even the chance of
faithfully reconstruct the spectrum of primordial B-modes.
We opened the chapter, reviewing the bases of lensing theory. We computed the
relations that link the unlensed power spectra (that are undetectable) with the
lensed CMB power spectra and we discussed how to reconstruct the CMB lensing
potential from these spectra. As before, we reserved the second part of this chapter
to the presentation of original results. We have studied the masking complications
of the real data and the impact that these masks could have on both the lensed
CMB power spectra and the reconstructed CMB lensing power spectrum. The
CMB that we actually observe is indeed contaminated by both galactic dust and
other extragalactic signals, such as the cosmic infrared background (CIB), the
Sunyaev-Zel’dovich (SZ) effect and radio sources. Some of these foregrounds,
particularly the bright sources, can be problematic and are often masked out
to perform the analysis. This means that the CMB power spectra, including
the CMB lensing spectrum, are extracted from the unmasked area only. We
built our masks, using the WebSky simulations [126], based on fast approximate
numerical simulations of large-scale structure. These simulations cover the entire
sky over a broad range of redshifts and include correlated realizations of the
various foregrounds and large-scale structure tracer, as well as halo catalogues.
We quantified the size of the mask bias for lensing reconstruction, focussing
primarily on the impact of masking resolved SZ clusters which are correlated
with the CMB lensing potential. Our results are shown in Fig. 3.8 and Figs. 3.9
- 3.10 . The bias is mitigated to some extent by optimal filtering of the CMB
maps, which effectively fills some of the information in small mask holes (see
Fig. 3.6), but a power spectrum bias remains at the ∼ 1− 10% level depending
of the masked fraction of the sky, fsky.
Then, we have shown that the lensed CMB power spectra can be substantially
altered when only measured over the unmasked area. The results are shown in
Fig. 3.11 - Fig. 3.13.

We finally opened Chpt. 4 presenting the state-of-the-art of CMB measure-
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ments and briefly reviewing the amazing achievements reached by Planck. We
have then put the spotlight on the questions that, in spite of all the accurate
measurements and intensive studies carried on in the last 50 years, have still to
be assessed. Our understanding of the Universe is still based on unknown entities
like dark energy, dark matter and the inflaton. We devoted the last part of the
chapter to introduce the next-decade CMB experiments, and to frame in them
the researches proposed in this thesis.
We discussed the goals of LiteBIRD satellite, that will provide us measurements
on the large angular scales. This data will definitely improve our constrain on
cosmic birefringence and more in general on GFE parameters. This will help us
to constrain extensions to the standard model of both cosmology and particles.
For examples, for the aforementioned toy model (with the wavenumber-independent
susceptibility tensor), we have shown that LiteBIRD satellite will improve the
bound on the GFE parameter sourcing CMB circular polarization by roughly a
factor 3. Future linear polarization surveys, expected within this decade, will
therefore provide, as a byproduct, superior bounds on GFE-induced circular
polarization of the CMB. This is a great step forward for constraining models
predicting a non-zero value of circular polarization, since, from the observational
point of view, current data allow a large amount of CMB circular polarization.

Alongside LiteBIRD satellite, still in Chpt. 4, we discussed the next-decade
ground-based CMB experiments, Simons Observatory (SO) and CMB-Stage4
(CMB-S4), which are devoted to the exploration of the small angular scales. They
are therefore complementary to the LiteBIRD mission. We reviewed the results
found in Chpt. 3 in light of these experiments.
Using available noise data of SO and CMB-S4 experiments, we showed the
detectability of the biases on both the reconstructed lensing potential and the
lensed CMB spectra induced by masking extragalactic sources. The results are
shown in Fig. 4.4 and Fig. 4.5. For the reconstructed CMB lensing potential, we
saw that the effect is still under control, at least for SO. The situation may be
different for the lensed (temperature) power spectra, where we found a statistical
significance well above 5σ to detect the biases if tSZ and the brightest regions of
CIB emission are masked. Hence, for future data, with much larger populations of
resolved sources, care will be required to either include the correlated mask bias
in the model, or ensure that mask hole sizes and number densities are sufficiently
low that the bias remains negligible.

To conclude, the advancement of CMB experiments over the last decades,
from the pioneer satellite COBE to the outstanding Planck mission, have trans-
formed Cosmology from a qualitative venture to a precision science. The CMB
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radiation, our window to the history of the Universe, provided the most strin-
gent constraints on cosmological parameters and it has been crucial to unveil
aspects of fundamental physics. Nevertheless, many questions remain still open.
The next-decade CMB experiments will play a crucial role in our attempt to
comprehensively understand the Universe where we live.
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A
Wigner-3j symbols

In this appendix, we summarize the basic properties of the Wigner-3j symbols.
For more details, see Ref. [198].
The Wigner-3j symbol, somehow also called 3j symbol or Wigner coefficient, `1 `2 `3

m1m2m3

 , (A.1)

is related to the Clebsh-Gordan coefficients, which, in turn, describe coupling of
two angular momenta in the quantum mechanics.
The parameters of the Wigner-3j symbol have to satisfy the following selection
rules:

(i) −`i ≤ mi ≤ `i for i = 1, 2, 3;

(ii) m1 +m2 +m3 = 0;

(iii) |`1 − `2| ≤ `3 ≤ `1 + `2 (tso-called triangular inequalities);

(iv) `1 + `2 + `3 is an integer, and, moreover, if m1 = m2 = m3 = 0 an even
integer (so-called integer rule).

In other words, the Wigner 3-j symbol is zero unless all these conditions are
satisfied.



Symmetry properties The Wigner 3-j symbol is invariant under even per-
mutations of the columns `1 `2 `3

m1m2m3

 =

 `3 `1 `2

m3m1m2

 =

 `2 `3 `1

m2m3m1

 . (A.2)

An odd permutation of the columns gives, instead, a phase factor `1 `2 `3

m1m2m3

 (−1)`1+`2+`3 =

=

 `2 `1 `3

m2m1m3

 =

 `1 `3 `2

m1m3m2

 =

 `3 `2 `1

m3m2m1

 . (A.3)

Hence, if `1 + `2 + `3 is even, it is invariant under odd permutations.
The phase also changes under the transformation of m1 +m2 +m3 → −(m1 +

m2 +m3)  `1 `2 `3

m1m2m3

 =

 `1 `2 `3

−m1−m2−m3

 (−1)`1+`2+`3 . (A.4)

Again, if `1 + `2 + `3 is even, it is invariant.

Orthogonality relations The Wigner 3-j symbol has the following orthogo-
nality properties:

(
2`3 + 1

) ∑
m1m2

 `1 `2 `3

m1m2m3

 `1 `2 `′3

m1m2m
′
3

 = δ`3`′3δm3m′3
, (A.5)

and ∑
`3m3

(
2`3 + 1

) `1 `2 `3

m1m2m3

 `1 `2 `3

m′1m
′
2m3

 = δm1m′1
δm2m′2

. (A.6)



Other useful relations The first one is:

1√
2`+ 1

+∑̀
m=−`

(−1)`−m

 ` ` `′

m−m 0

 = δ`′0 . (A.7)

Using the above relation, we also found ` 0 `

−2 0 2

 =
(−1)`√
2`+ 1

. (A.8)

Another property, involving two Wigner-3j symbols is

∑
m1,m2

(−1)m1+m2

 `1 ` `2

m1m2 −m1−m2

 `2 `′ `1

m2m1 −m2−m1

 =
(−1)`δ``′

2`+ 1
.

(A.9)
Proof of Eq. A.9:

First of all, using the selection rules, the orthogonality relation, Eq. A.5 can
be rewritten as:

(2`+ 1)

+`1∑
m1=−`1

 `1 `2 `

m1−m1 −mm

 `1 `2 `′

m1−m1 −m′m′

 = δ``′δmm′ . (A.10)

Now, let us consider the LHS of (A.9):

S ≡
+`1∑

m1=−`1

+`2∑
m2=−`2

(−1)m1+m2

 `1 ` `2

m1m2 −m1−m2

 `2 `′ `1

m2m1 −m2−m1

 =

=(−1)`+`
′

+`1∑
m1=−`1

+`2∑
m2=−`2

(−1)m1+m2

 `1 `2 `

m1−m2m2 −m1

 `1 `2 `′

m1−m2m2 −m1


(A.11)

where in the last equality we have used the symmetry properties of the 3j’s to
change the order of the columns and the signs of the m’s. The terms in the sum
on the RHS can be put in a similar form as the terms on the LHS of Eq. A.10 by



changing variable from m2 to m = m2 −m1:

S = (−1)`+`
′

+`1∑
m1=−`1

+`2−m1∑
m=−`2−m1

(−1)m

 `1 `2 `

m1−m1 −mm

 `1 `2 `′

m1−m1 −mm


(A.12)

Now we would like to exchange the two sums but it seems like this is not possible
because apparently the extrema of the m-sum depend on m1. However, the sum
can be performed by letting m run from −` to +` without changing the result.
Here is how to see it: if `2 −m1 > `, all terms with m > ` will be zero because
of the selection rule |m| ≤ `, so we can cut the sum there. On the other hand,
if `2 −m1 < `, the terms with m > `2 −m1 will vanish since they violate the
selection rule |m+m1| < `2, and we can extend the sum up to m = +`. A similar
argument holds for the lower bound of the sum. Then,

S = (−1)`+`
′

+∑̀
m=−`

(−1)m
+`1∑

m1=−`1

 `1 `2 `

m1−m1 −mm

 `1 `2 `′

m1−m1 −mm

 .

(A.13)

Eq. A.10 implies that the internal sum is equal to δ``′/(2`+ 1), and

S =
δ``′

2`+ 1

+∑̀
m=−`

(−1)m =
(−1)`δ``′

2`+ 1
, (A.14)

which is Eq. A.9.

Another useful relation. Taking m = m′ in Eq. A.10 and summing over m on
both sides, gives:

+∑̀
m=−`

+`1∑
m1=−`1

 `1 `2 `

m1−m1 −mm

 `1 `2 `′

m1−m1 −mm

 = δ``′ (A.15)



B
Spin-weighted functions

In this Appendix, we review the theory of spin-weighted functions and their
expansion in spin-s spherical harmonics following the discussion of Goldberg
(1967) [199], which is based on the work by Penrose (1967) [200].

If we consider a given direction on the sphere specified by the angles (θ, φ),
we can define three orthogonal vectors, one radial, n, and two tangential to the
sphere, ê1 and ê2.
The function sf(θ, φ), defined on the sphere, is said to have spin-s if, under a
right-handed rotation of (ê1, ê2) by an angle α, it transform as

sf
′(θ, φ) = e−isα sf(θ, φ) . (B.1)

It is possible to raise, or to lower, the spin of a spin-weighted function through
the spin raising, or lowering, operators, ′∂ and ′∂ , respectively. Their explicit
expression is given by

′∂ sf(θ, φ) = − sins(θ)

[
∂

∂θ
+ i csc(φ)

∂

∂θ

]
sin−s(θ) sf(θ, φ) ; (B.2a)

′∂ sf(θ, φ) = − sin−s(θ)

[
∂

∂θ
− i csc(φ)

∂

∂θ

]
sins(θ) sf(θ, φ) . (B.2b)

In this thesis we are interested in CMB polarization, so, as you can read in
Appendix C, we have to deal with spin-2 quantities. If we want to work with
spin-0 quantities, we need to act twice on a function ±2f(θ, φ) with the ′∂ and



′∂ operators, respectively. Hence, Eqs.B.2 become

′∂ 2
−2f(µ, φ) =

(
− ∂µ −

m

1− µ2

)2[(
1− µ2

)
−2f(µ, φ)

]
; (B.3a)

′∂ 2
2f(µ, φ) =

(
− ∂µ +

m

1− µ2

)2[(
1− µ2

)
2f(µ, φ)

]
, (B.3b)

where µ = cos(θ) and m is given by ∂φ sf = im sf .
Once we have defined the spin-weighted functions, we can introduced the spin-

weighted spherical harmonics. As a scalar field on the sphere can be expanded
in spherical harmonics, Y`m(θ, φ), spin-weighted functions with s 6= 0, can be
expanded on the sphere in terms of the spin-s spherical harmonics, sY`m(θ, φ).
These sets of functions (one set for each particular spin, s) satisfy the analogue
completeness and orthogonality relations of the spin-0 spherical harmonics∫ 2π

0

dφ

∫ 1

−1

d cos θ sY
∗
`′m′(θ, φ) sY`m(θ, φ) = δ``′ δmm′ ; (B.4a)

∑
`m

sY
∗
`m(θ, φ) sY`m(θ′, φ′) = δ

(
φ− φ′

)
δ
(

cos θ − cos θ′
)
. (B.4b)

Using the spin raising and lowering operators, Eqs.B.2, we can express the
spin-s spherical harmonics sY`m in terms of the spin-0 spherical harmonics Y`m
as

sY`m =

[(
`+ 2

)
!(

`− 2
)
!

]−1/2

′∂ sY`m , with 0 ≤ s ≤ ` ; (B.5a)

sY`m =

[(
`+ 2

)
!(

`− 2
)
!

]1/2

(−1)s ′∂ −sY`m , with − ` ≤ s ≤ ` . (B.5b)



The following properties of spin-weighted harmonics are also useful:

sY
∗
`m = (−1)s −sY`−m ; (B.6a)

′∂ sY`m =
[(
`− s

)(
`+ s+ 1

)]1/2

s+1Y`m ; (B.6b)

′∂ sY`m = −
[(
`+ s

)(
`− s+ 1

)]1/2

s−1Y`m ; (B.6c)

′∂ ′∂ sY`m = −
(
`− s

)(
`+ s+ 1

)
sY`m . (B.6d)

For the calculations computed in this thesis, it is also convenient to remember
the relation for the integral of three spin-weighted harmonics in terms of the 3-j
symbols, that reads∫

dΩ s1Y`1m1 s2Y`2m2 s3Y`3m3 =

=

√(
2`1 + 1

)(
2`2 + 1

)(
2`3 + 1

)
4π

 `1 `2 `3

m1m2m3

  `1 `2 `3

−s1−s2−s3

 ,

(B.7)

with the condition s1 + s2 + s3 = 0.



C
Stokes parameters

The Stokes parameters are a powerful mathematical tools introduced by
George Gabriel Stokes in 1852 in order to describe polarized light.

Let me consider a monochromatic, or nearly monochromatic1, plane elec-
tromagnetic wave, with frequency ω0, propagating in the z-direction. The
components of the electric field at given point in the space can be written as

Ex = ax(t) cos(ω0t− θx(t)) , and Ey = ay(t) cos(ω0t− θy(t)) , (C.1)

where ax, ay are the amplitudes and θx, θy are the phase angles. The requirement
that the wave is at least nearly monochromatic ensures that the amplitudes and
the phase angles are slowly varying functions of time.
The Stokes parameters are then defined as [30]

I ≡< a2
x > + < a2

y > ; (C.2a)

Q ≡< a2
x > − < a2

y > ; (C.2b)

U ≡< 2axay cos(θx − θy) > ; (C.2c)

V ≡< 2axay sin(θx − θy) > , (C.2d)

where < ... > are time averages. The I parameters gives the intensity of the
radiation, which, by definition, is alway positive. The other three parameters are,
instead, related to the polarization state of the wave, and can have either positive
and negative sign. More precisely, the U and Q parameters carry information
about the linear polarization, whereas V is a measure of the elliptical polarization,

1We can relax this condition, and consider a nearly monochromatic wave. Nearly in the
sense that its frequency components are closely distributed around the mean frequency, ω0.



with the special case of circular polarization when ax = ay and δ = θx−θy = ±π/2.
Unpolarized radiation is defined by the condition Q = U = V = 0.

An important thing to be mentioned is that I and V are physical observables,
independent from the choice of a particular coordinate system, whereas Q and U
depend on the orientation of the x and y axes. If we rotate the x and y axes by
an angle φ, the Stokes Q and U parameters transform as

Q′ = Q cos(2φ) + U sin(2φ) ; (C.3a)

U ′ = −Q sin(2φ) + U cos(2φ) . (C.3b)

From the equations above, we can easily verify that the quantity Q2 + U2 is
invariant under the considered rotation. Moreover, it can be defined the angle

Φ =
1

2
arctan

(U
Q

)
, (C.4)

which identify a constant direction.
Hence, the physically observable for a linearly polarized wave is the vector
P, defined as orthogonal to the direction of propagation, having magnitude(
Q2 + U2

)1/2 and polar angle Φ.
From Eqs.C.3, we can formally say that the Q and U parameters, under a

coordinate transformation defined as

x′i = Aki xk , (C.5a)

transform as
P ′ij = AkiA

l
j Pkl . (C.5b)

More explicitly, Q and U are the components of a symmetric trace-free 2 x 2
tensor Q′ U ′

U ′−Q′

 =

 cos φ sin φ

− sin φ cos φ

Q U

U −Q

cos φ− sin φ

sin φ cos φ

 , (C.6)

or, equivalently, a spin-2 field.
It is interesting to verify the behavior under parity transformation of the Stokes

parameters. Basically, we are considering a transformation that, in spherical
coordinates, reverses the sign of the azimut angle but leaves the other unchanged.



Hence, the Stokes parameters transform as

T (n̂′) = T (n̂) ; (C.7a)

Q(n̂′) = Q(n̂) ; (C.7b)

U(n̂′) = −U(n̂) ; (C.7c)

V (n̂′) = −V (n̂) , (C.7d)

where T ∝ I4.



D
E and B modes

The common way to deal with the CMB polarization field is to introduce the
two combination Q+ iU and Q− iU , that are still spin-2 quantities. As we have
seen in Appendix C, these quantities are not rotationally invariant(

Q′ ± iU ′
)

= e∓iφ
(
Q± iU

)
. (D.1)

Hence, unlike a scalar (spin-0) function, as T ∝ I4 and V , linear polarization
can not be expanded by the usual spherical harmonics on the surface of a sphere.
The mathematical machinery necessary to represent angular distribution of the
linear polarization of the CMB on the celestial sphere is actually the spin-weighted
harmonics sY`m(n̂). More details about these functions are given in Appendix B.

Expanding Q± iU in the appropriate spin-weighted basis, we get(
Q+ iU

)
(n̂) =

∑
`m

2a`m 2Y`m(n̂) ; (D.2a)

(
Q− iU

)
(n̂) =

∑
`m

−2a`m −2Y`m(n̂) (D.2b)

By using Eqs.B.6, it can be shown that the expansion coefficients for the polar-
ization variables satisfy −2a

∗
`m = 2a`−m.

It is more convenient to deal with spin-0 quantities as they are rotationally
invariant, and, moreover, it is meaningless to deal with power spectra computed
from observer-dependent quantities as the Stokes Q and U parameters. We can
get spin-0 quantities by using the spin raising, ′∂ , and lowering, ′∂ , operators,
respectively. These operators are properly defined in Appendix B. Thus, acting



twice with and on Q± iU , we get

′∂ 2
(
Q+ iU

)
(n̂) =

∑
`m

[(
`+ 2

)
!(

`− 2
)
!

]1/2

2a`mY`m(n̂) ; (D.3a)

′∂ 2
(
Q− iU

)
(n̂) =

∑
`m

[(
`+ 2

)
!(

`− 2
)
!

]1/2

−2a`mY`m(n̂) . (D.3b)

The expressions for the expansion coefficients are

2a`m =

∫
dΩ 2Y

∗
`m(n̂)

(
Q+ iU

)
(n̂) =

=

[(
`+ 2

)
!(

`− 2
)
!

]−1/2 ∫
dΩ Y ∗`m(n̂) ′∂ 2

(
Q+ iU

)
(n̂) ; (D.4a)

−2a`m =

∫
dΩ −2Y

∗
`m(n̂)

(
Q+ iU

)
(n̂) =

=

[(
`+ 2

)
!(

`− 2
)
!

]−1/2 ∫
dΩ Y ∗`m(n̂) ′∂ 2

(
Q− iU

)
(n̂) . (D.4b)

Finally, we can introduce, in real space, the two quantities that are commonly
used by the CMB community, namely the gradient-E and curl-B fields

E(n̂) =
∑
`m

aE`m Y`m(n̂) ; (D.5a)

B(n̂) =
∑
`m

aB`m Y`m(n̂) , (D.5b)

where we have defined the two linear combinations of ±2a`m as

aE`m = − 2a`m + −2a`m
2

; (D.6a)

aB`m = − 2a`m − −2a`m
2i

. (D.6b)

The quantities in Eqs.D.5, E(n̂) and B(n̂), are the rotationally invariant param-
eters we were looking for.

Last thing to be noticed is again the behavior under parity transformation of



these parameters. Using Eqs.D.8 and Eqs. B.2, we find

′∂ 2
(
Q+ iU

)′
(n̂′) = ′∂ 2

(
Q+ iU

)
(n̂) ; (D.7a)

′∂ 2
(
Q− iU

)′
(n̂′) = ′∂ 2

(
Q+ iU

)
(n̂) . (D.7b)

Hence,

E(n̂′) = E(n̂) ; (D.8a)

B(n̂′) = −B(n̂) . (D.8b)

The two new variables behave differently: E is invariant under parity transforma-
tions, while B is not. This explain the choice of the two letter, reminding the
analogy with electric and magnetic fields.



E
G’s, H’s, K’s kernels

G’s kernels The explicit form of the G’s kernels appearing in the G’s and H’s
kernels is

GL1L2L ≡ F`1`2`

 `1 `2 `

m1m2−m

 `1 `2 `

−2 0 2

 ; (E.1a)

G′L1L2L
≡ F`1`2`

 `1 `2 `

m1m2−m

 `1 `2 `

−2 2 0

 ; (E.1b)

G′′L1L2L
≡ F`1`2`

 `1 `2 `

m1m2−m

`1 `2 `

2 −4 2

 (E.1c)

and F``1`2 =

[
(2`+1

)(
2`1+1

)(
2`2+1

)
/
(
4π
)](1/2)

. We have also used the compact

notation L = (`,m), that will be widely used in the rest of this appendix.



Eq. A.7 and Eq. A.8 imply the following properties of the G’s kernels:

1

2`+ 1

+∑̀
m=−`

(−1)mGLL2L =
δ`20√

4π
, (E.2a)

1

2`+ 1

+∑̀
m=−`

(−1)mG′LL2L
= 0 , (E.2b)

1

2`+ 1

+∑̀
m=−`

(−1)mG′′LL2L
= 0 . (E.2c)

Note that the first and third indices in the G’s are the same.
For what concerns the (double) sums of the product of two G’s kernels, we

are interested in computing e.g.:∑
m1m2

(−1)m1+m2GL1LL2 GL2L′L1δm,m2−m1δm′,m1−m2 =

= F`1``2F`2`′`1

 `1 ` `2

−2 0 2

 `2 `
′ `1

−2 0 2

 ·

·
∑
m1m2

(−1)m1+m2

 `1 ` `2

m1m−m2

 `2 `′ `1

m2m
′−m1

 δm,m2−m1δm′,m1−m2

︸ ︷︷ ︸
Sm1m2

. (E.3)

Focusing on the m1, m2 sum, we have

Sm1m2 = (−1)mδm′,−m
∑
m1

 `1 ` `2

m1m−m−m1

 `2 `′ `1

m+m1m
′−m1

 =

= (−1)mδm′,−m(−1)`+`
′∑
m1

 `1 `2 `

m1−m−m1m

 `1 `2 `′

m1−m−m1m

 =

=
(−1)mδm′,−mδ``′

2`+ 1
(E.4)



where we have used Eq. A.10 in the last equality. Then∑
m1m2

(−1)m1+m2GL1LL2 GL2L′L1δm,m2−m1δm′,m1−m2 =

= (−1)mF 2
`1``2

 `1 ` `2

−2 0 2

2

δ``′δm,−m′

2`+ 1
. (E.5)

This equation can be written in a more convenient way, as

∑
m1m2

GL1LL2 GL1L′L2δm,m2−m1δm′,m2−m1 = F 2
`1``2

 `1 ` `2

−2 0 2

2

δ``′δm,m′

2`+ 1
. (E.6)

Similarly,

∑
m1m2

G′L1LL2
G′L1L′L2

δm,m2−m1δm′,m2−m1 = F 2
`1``2

 `1 ` `2

−2 2 0

2

δ``′δm,m′

2`+ 1
, (E.7)

∑
m1m2

GL1LL2 G
′
L1L′L2

δm,m2−m1δm′,m2−m1 = F 2
`1``2

 `1 ` `2

−2 0 2

 `1 ` `2

−2 2 0

 δ``′δm,m′

2`+ 1
,

(E.8)

...

G’s and H’s kernels The explicit form of the G’s and H’s kernels that appears
for the first time in Eqs. 2.45 is

G(1)
L1L

= (−1)m i
∑
`2

`+`1+`2 odd
m2=m−m1

GL1L2L bV,L2 ; (E.9a)

G(2)
L1L

= (−1)m
∑
`2

`+`1+`2 even
m2=m−m1

GL1L2L bV,L2 ; (E.9b)



G(3)
L1L

= (−1)m i
∑
`2

m2=m−m1

G′L1L2L

[(
b−2,L2 − (−1)`+`1+`2 b2,L2

)]
; (E.9c)

G(4)
L1L

= (−1)m
∑
`2

m2=m−m1

G′L1L2L

[(
b−2,L2 + (−1)`+`1+`2 b2,L2

)]
; (E.9d)

H(1)
L1L

=
(−1)m

2

∑
`2

`+`1+`2 even
m2=m−m1

GL1L2L (BV V,L2 + B+−,L2) ; (E.9e)

H(2)
L1L

=
(−1)m

2
i

∑
`2

`+`1+`2 odd
m2=m−m1

GL1L2L (BV V,L2 + B+−,L2) ; (E.9f)

H(3)
L1L

=
(−1)m

4

∑
`2

m2=m−m1

G′′L1L2L

[(
B−−,L2 + (−1)`+`1+`2 B++,L2

)]
; (E.9g)

H(4)
L1L

=
(−1)m

4
i

∑
`2

m2=m−m1

G′′L1L2L

[(
B−−,L2 − (−1)`+`1+`2 B++,L2

)]
; (E.9h)

H(5)
L1L

=
(−1)m

2

∑
`2

m2=m−m1

G′L1L2L

[(
B−V,L2 + (−1)`+`1+`2 B+V,L2

)]
; (E.9i)

H(6)
L1L

=
(−1)m

2
i

∑
`2

m2=m−m1

G′L1L2L

[(
B−V,L2 − (−1)`+`1+`2 B+V,L2

)]
, (E.9j)

where the G’s kernels are defined in Eqs. E.1
Note that the G’s are complex quantities satisfying:

G( · )∗
LL′ = (−1)m

′−m G( · )
−L−L′ , (E.10)

where we use the notation −L ≡ (`, −m). This relation is still valid considering
the H’s kernels. Moreover, we found

G(1)
LL′ = (−1)m

′−m+1G(1)
−L′−L ; (E.11a)

G(2)
LL′ = (−1)m

′−mG(2)
−L′−L , (E.11b)



and

H(1)
LL′ = (−1)m

′−mH(1)
−L′−L ; (E.11c)

H(2)
LL′ = (−1)m

′−m−1H(2)
−L′−L . (E.11d)

No similar property for the other G’s and H’s kernels.

Computing m-averages of the G’s and H’s kernels Using Eqs. (E.2) it
is pretty straightforward to show that

1

2`+ 1

+∑̀
m=−`

G(n)
LL = 0 n = 1, 3, 4 ; (E.12)

1

2`+ 1

+∑̀
m=−`

G(2)
LL =

1

2

bV,00√
4π

, (E.13)

and, analogously, for the H’s kernels,

1

2`+ 1

+∑̀
m=−`

H(n)
LL = 0 n = 2, 3, 4 5 6 ; (E.14)

1

2`+ 1

+∑̀
m=−`

H(1)
LL =

BV V,L2 + B+−,L2√
4π

, (E.15)

Now let us turn to the m-averages of the product of two kernels, starting
from:∑
m1,m2

G(1)
L1L2
G(1)
L2L1

=

=
∑
``′

`1+`2+` odd
`1+`2+`′ odd
m=m2−m1
m′=m1−m2

[∑
m1m2

(−1)m1+m2+1GL1LL2 GL2L′L1

]
bV,LbV,L′ =

=
∑
LL′

`1+`2+` odd
`1+`2+`′ odd

[∑
m1m2

(−1)m1+m2+1GL1LL2 GL2L′L1 δm,m2−m1δm′,m1−m2

]
bV,LbV,L′ =



=
∑
LL′

`1+`2+` odd
`1+`2+`′ odd

(−1)m+1F 2
`1``2

 `1 ` `2

−2 0 2

2

δ``′δm,−m′

2`+ 1

 bV,LbV,L′ =

=
(2`1 + 1)(2`2 + 1)

4π

∑
`m

`1+`2+` odd

(−1)m+1

 `1 ` `2

−2 0 2

2
 bV,`mbV,`−m =

= −(2`1 + 1)(2`2 + 1)

4π

∑
`m

`1+`2+` odd

 `1 ` `2

−2 0 2

2

|bV,`m|2 . (E.16)

Similarly,

∑
m1,m2

G(2)
L1L2
G(2)
L2L1

=
∑
``′

`1+`2+` even
`1+`2+`′ even
m=m2−m1
m′=m1−m2

[∑
m1m2

(−1)m1+m2GL1LL2 GL2L′L1

]
bV,LbV,L′ =

. . . . . . =

=
(2`1 + 1)(2`2 + 1)

4π

∑
`m

`1+`2+` even

 `1 ` `2

−2 0 2

2

|bV,`m|2 ; (E.17)

∑
m1,m2

G(1)
L1L2
G(2)
L2L1

= i
∑
``′

`1+`2+` odd
`1+`2+`′ even
m=m2−m1
m′=m1−m2

[∑
m1m2

(−1)m1+m2GL1LL2 GL2L′L1

]
bV,LbV,L′ =

. . . . . . =

= i
∑
LL′

`1+`2+` odd
`1+`2+`′ even

(−1)mF 2
`1``2

 `1 ` `2

−2 0 2

2

δ``′δm,−m′

2`+ 1

 bV,LbV,L′ = 0 ; (E.18)



∑
m1,m2

G(3)
L1L2
G(3)∗
L1L2

=

=
∑
``′

m=m2−m1
m′=m2−m1

[∑
m1m2

G′L1LL2
G′L1L′L2

]
·

·
[
b−2,L − (−1)`+`1+`2 b2,L

][
b−2,L′ − (−1)`

′+`1+`2 b2,L′

]∗
=

=
∑
LL′

F 2
`1``2

 `1 ` `2

−2 2 0

2

δ``′δm,m′

2`+ 1
·

·
[
b−2,L − (−1)`+`1+`2 b2,L

][
b−2,L′ − (−1)`

′+`1+`2 b2,L′

]∗
=

=
(2`1 + 1)(2`2 + 1)

4π

∑
`m

 `1 ` `2

−2 2 0

2 ∣∣b−2,L − (−1)`+`1+`2 b2,L

∣∣2 ; (E.19)

and so on.
At the end, this is what we get for the various products:

∑
m1,m2

G(1)
L1L2
G(1)∗
L1L2

=
(2`1 + 1)(2`2 + 1)

4π

∑
`m

`1+`2+` odd

 `1 ` `2

−2 0 2

2

|bV,`m|2 ;

(E.20a)

∑
m1,m2

G(2)
L1L2
G(2)∗
L1L2

=
(2`1 + 1)(2`2 + 1)

4π

∑
`m

`1+`2+` even

 `1 ` `2

−2 0 2

2

|bV,`m|2 ;

(E.20b)

∑
m1,m2

G(1)
L1L2
G(2)∗
L1L2

= 0 ; (E.20c)



∑
m1,m2

G(3)
L1L2
G(3)∗
L1L2

=
(2`1 + 1)(2`2 + 1)

4π

∑
`m

 `1 ` `2

−2 2 0

2 ∣∣b−2,L − (−1)`+`1+`2 b2,L

∣∣2
(E.20d)

∑
m1,m2

G(4)
L1L2
G(4)∗
L1L2

=

=
(2`1 + 1)(2`2 + 1)

4π

∑
`m

 `1 ` `2

−2 2 0

2 ∣∣b−2,L + (−1)`+`1+`2 b2,L

∣∣2 ; (E.20e)

∑
m1,m2

G(1)
L1L2
G(3)∗
L1L2

=

=
(2`1 + 1)(2`2 + 1)

4π

∑
`m

`1+`2+` odd

 `1 ` `2

−2 0 2

 `1 ` `2

−2 2 0

 bV,L
(
b∗−2,L + b∗2,L

)
;

(E.20f)

∑
m1,m2

G(1)
L1L2
G(4)∗
L1L2

=

= i
(2`1 + 1)(2`2 + 1)

4π

∑
`m

`1+`2+` odd

 `1 ` `2

−2 0 2

 `1 ` `2

−2 2 0

 bV,L
(
b∗−2,L − b∗2,L

)
;

(E.20g)

∑
m1,m2

G(2)
L1L2
G(3)∗
L1L2

=

= −i (2`1 + 1)(2`2 + 1)

4π

∑
`m

`1+`2+` even

 `1 ` `2

−2 0 2

 `1 ` `2

−2 2 0

 bV,L
(
b∗−2,L − b∗2,L

)
;

(E.20h)



∑
m1,m2

G(2)
L1L2
G(4)∗
L1L2

=

=
(2`1 + 1)(2`2 + 1)

4π

∑
`m

`1+`2+` even

 `1 ` `2

−2 0 2

 `1 ` `2

−2 2 0

 bV,L
(
b∗−2,L + b∗2,L

)
;

(E.20i)

...

K’s kernels We have defined the K kernels as

Ka b`1` = (2`+ 1)−1
∑
m1,m

G(a)
L1L
G(b)∗
L1L

, (E.21)



so that,

K11
`1`

=
1

2`+ 1

∑
m1,m

G(1)
L1L
G(1)∗
L1L

=

=
2`1 + 1

4π

∑
L2

`1+`2+` odd

 `1 `2 `

−2 0 2

2

|bV,L2|2 ; (E.22a)

K22
`1`

=
1

2`+ 1

∑
m1,m

G(2)
L1L
G(2)∗
L1L

=

=
2`1 + 1

4π

∑
L2

`1+`2+` even

 `1 `2 `

−2 0 2

2

|bV,L2|2 ; (E.22b)

K13
`1`

=
1

2`+ 1

∑
m1,m

G(1)
L1L
G(3)∗
L1L

=

=
2`1 + 1

4π

∑
L2

`1+`2+` odd

 `1 `2 `

−2 0 2

 `1 `2 `

−2 2 0

 bV,L2

(
b∗−2,L2

+ b∗2,L2

)
; (E.22c)

K23
`1`

=
1

2`+ 1

∑
m1,m

G(2)
L1L
G(3)∗
L1L

=

= −i 2`1 + 1

4π

∑
L2

`1+`2+` even

 `1 `2 `

−2 0 2

 `1 `2 `

−2 2 0

 bV,L2

(
b∗−2,L2

− b∗2,L2

)
; (E.22d)

K24
`1`

=
1

2`+ 1

∑
m1,m

G(2)
L1L
G(4)∗
L1L

=

=
2`1 + 1

4π

∑
L2

`1+`2+` even

 `1 `2 `

−2 0 2

 `1 `2 `

−2 2 0

 bV,L2

(
b∗−2,L2

+ b∗2,L2

)
; (E.22e)



K14
`1`

=
1

2`+ 1

∑
m1,m

G(1)
L1L
G(4)∗
L1L

=

= i
2`1 + 1

4π

∑
L2

`1+`2+` odd

 `1 `2 `

−2 0 2

 `1 `2 `

−2 2 0

 bV,L2

(
b∗−2,L2

− b∗2,L2

)
; (E.22f)

K33
`1`

=
1

2`+ 1

∑
m1,m

G(3)
L1L
G(3)∗
L1L

=

=
2`1 + 1

4π

∑
L2

 `1 `2 `

−2 2 0

2 ∣∣b−2,L2 − (−1)`+`1+`2 b2,L2

∣∣2 ; (E.22g)

K44
`1`

=
1

2`+ 1

∑
m1,m

G(4)
L1L
G(4)∗
L1L

=

=
2`1 + 1

4π

∑
L2

 `1 `2 `

−2 2 0

2 ∣∣b−2,L2 + (−1)`+`1+`2 b2,L2

∣∣2 , (E.22h)
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