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Introduction

The main scope of this work is to give new insights into the theory of functions of bounded
variation (BV ) in the non-smooth context of metric measure spaces. To this aim, in
order to make the dissertation as self-contained as possible and to motivate the results we
established during our research, we attempted to give an exhaustive - albeit far from being
complete or detailed - survey on the field, discussing different notions of Sobolev and BV
spaces, with particular emphasis on the connections and equivalences among them.

The Thesis is organized as follows:

• In Chapter 1 we introduce the basic notions of our analysis, namely the notion
of p-summable functions Lp(X ) on metric spaces, the fundamental concept of a
metric measure space (X , d, µ) along with its most notable properties, and doubling
measures.

• Chapter 2 can be considered as the actual starting point of our discussion. Fol-
lowing the classical approach of [HKST], we introduce the concept of modulus of
families of curves on metric measure spaces, which eventually leads to the definition
and properties of (weak) upper gradients. This tool allows for the characterization
of the first-order Newton-Sobolev spaces N1,p(X ), 1 ≤ p < ∞, which are proven
to be Banach spaces ([Sh1], [Sh2]). The chapter culminates in the discussion of
Poincaré Inequalities and their consequences, the most notable - assuming addition-
ally (X , d, µ) to be doubling - being the density of Lipschitz functions inside Sobolev
spaces.

• In Chapter 3 our attention shifts to other definitions of Sobolev spaces in metric
measure spaces. We first consider the test-plan approach ([AGS2], [AGS3]), which
is inherited from the theory of Optimal Transportation ([Vi]) and, making use of
probability measures defined on the space of curves, allows for a characterization
of weak gradients in duality with the speed of p-absolutely continuous curves. The
discussion does not rely on particular assumptions on the underlying metric measure
space, like the validity of a Poincaré inequality or the doubling property for the
reference measure. However, Lipschitz functions are again proven to be dense inside
Sobolev spaces ([AGS4], [Gi1]) and the respective notion of weak gradient turns
out to be equivalent with the Newtonian one ([AGS4]). Next, we focus on the
derivations approach described in [Di1]; this tool is reminiscent of the work [We]
and makes possible to define properly a notion of divergence by simply imposing
an integration by parts formula, from which we obtain a further definition of weak
gradients and the corresponding Sobolev spaces. As for test-plans, no structural
hypothesis is assumed about the ambient space but, again, a further equivalence
among the various definitions of Sobolev spaces is established.

• Chapter 4 deals with three different notions of BV functions in metric measure
spaces, in the same spirit of Chapters 2 and 3. We start with the well known relax-
ation procedure over sequences of weak upper gradients of Lipschitz - or, Sobolev -
functions ([Mi], [Sh3]) under the hypothesis that (X , d, µ) is doubling and supports
a Poincaré inequality. We recall the notions of total variation of a function and of
perimeter of a set; then, we state the Coarea Formula for BV functions along with
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the Isoperimetric Inequality ([Mi]) and illustrate the concentration and absolute con-
tinuity properties of the perimeter measure ([Am2]). Next, dropping the structural
assumptions on the metric measure space, we briefly survey the characterization of
BV functions via ∞-test plans ([AD]) and then we follow again [Di1] to describe
the BV space via derivations. Similarly to Chapter 3, the analysis culminates in the
equivalence between the three definitions of BV functions.

• Chapter 5 surveys the differentiable structure anticipated in [Gi1] and then developed
and discussed in [Gi2]. The key-tool for this machinery is the notion of Lp(µ)-normed
module, which arises as a generalization of the L∞(µ)-modules already introduced
in [We]. While in [Gi2] the author focuses on the L2 theory, here we preferred to
re-adapt and to broaden the analysis to any exponent p ∈ [1,∞]. Thus, we define
the cotangent module Lp (T ∗X ) via the differentials of Sobolev functions. Since
the notion of differential is tailored to the weak gradients arising from test-plans,
which are in turn defined in duality with the speed of curves, this tool yields a sort
of cotangent object, whence the terminology. As expectable, the elements of the
cotangent module Lp (T ∗X ) play the role of differential forms and, by duality with
Lp (T ∗X ), the tangent module Lq(TX ), 1

p + 1
q = 1, is defined as the Lq(µ)-normed

module having vector fields as its elements. All this formalism allows for a well posed
notion of divergence of a vector field and, moreover, it yields a characterization of
the gradient of a given function as a vector field. Eventually, the hypothesis of
infinitesimal Hilbertianity of the space - namely, requiring W 1,2(X ) to be a Hilbert
space - is introduced and discussed; the most notable byproducts of this assumption
are the uniqueness of the gradient for every Sobolev function, and the possibility to
express the Laplace operator as the divergence of the gradient.

In the concluding two chapters we illustrate the results which arose from our studies:

• Chapter 6 starts by reviewing en passant the definition of RCD(K,∞) spaces, the
heat flow ht along with the related Bakry-Émery contraction estimate involving the
curvature of the space, and the notions of test functions and of test vector fields
([Gi2]). We then give a new notion of BV functions which, quite similarly to the
classical one, features the suprema over divergences of suitable vector fields. We
show that the RCD(K,∞) structure allows for a definition of BV via a relaxation
procedure over test functions which is equivalent with the more classical of [Mi] and
[Sh3]. If moreover (X , d, µ) is also doubling and supports a Poincaré inequality,
then the equivalence involves all the characterizations we have encountered so far
([Mi], [Sh3], [AD], [Di1]), including also our definition. We eventually discuss the
possibility of generalizing our notion - and thus, of an integration by parts formula
- to any domain Ω ⊂ X ; this, however, is still an open problem since it is not quite
clear to us how to properly choose the class of vector fields to work with.

• Chapter 7 is devoted to the issue of Gauss-Green formulæ and of traces of BV func-
tions in metric measure spaces. Inspired by [MMS], we introduce the class of regular
domains, which proves to be the appropriate class of domains where an extended
Gauss-Green formula holds for every divergence-measure vector field F ∈ DM∞(X ),
namely those vector fields whose divergence is a measure with bounded total vari-
ation in X . The issue is then discussed in the specific context of an RCD(K,∞)
space and tailored to a suitable sub-class of test vector fields. Next, we step back to
the more classical setting of a doubling metric measure space supporting a Poincaré
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inequality, where we reformulate the theory of rough traces of BV functions ([Ma]).
We establish a further Gauss-Green type formula, this time involving explicitly the
rough trace of a BV function. The last part of Chapter 7 deals with the compari-
son between the rough trace and the trace defined via Lebesgue points. This study
was carried on during our stay at the University of Cincinnati (Ohio, USA) in col-
laboration with Prof. N. Shanmugalingam. Starting from the paper [LS], where
the authors determine the conditions for a linear trace operator to exist on BV (Ω)
- with Ω ⊂ X bounded open set supporting a (1, 1)-Poincaré inequality and such
that µ⌊Ω is doubling - and find that, for u ∈ BV (Ω), this trace Tu(x) coincides
with the approximate limits of its zero-extension almost everywhere on ∂Ω, we first
established that every bounded BV function on a domain admits a zero-extension
which is of bounded variation on the whole metric space, and then that the rough
trace coincides with Tu(x) for almost every x ∈ ∂Ω. A very interesting consequence
of this equality is that the rough trace of a BV function defines a fortiori a linear
operator.

The contents of Chapters 6 and 7 will be included in two joint works ([BM1], [BM2]) with
Prof. M. Miranda, advisor for this Ph.D. Thesis.
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1 Preliminary notions

In this introductory chapter, we shall survey the basic tools and notions which will recur
thoroughly in our work.
We assume the reader to be familiar with the notions of (outer) measure, σ-finiteness,
completeness (in the sense of measure theory), measurability (of sets and functions), Borel
sets, measures and functions, Radon measures, Haudorff measures (classical, spherical) and
dimension.
The main reference for the following sections is Chapter 3 of [HKST]. Due to the intro-
ductory nature of the material presented below, we shall limit ourselves to the statement
of results only.

1.1 Lebesgue Spaces Lp(X , µ; Y) and Metric Measure Spaces

In view of the theory of Newton-Sobolev functions which will be surveyed in Chapter 2,
we focus here on the spaces of Banach space-valued Lp functions and discuss the concept
of a metric measure space, a tool of fundamental importance. The choice of an arbitrary
Banach space instead of the field of real numbers R is just for the sake of generality; the
topics we shall discuss apply in a straightforward way to the real case.

Let (X , µ) and Y denote a σ-finite measure space and a Banach space, respectively.

1.1.1 Definition (Bochner Integrability). Consider a simple function f : X → Y,
that is,

f =
n∑

i=1
vi · 1Ei ,

where vi ∈ Y, the Ei’s are measurable sets forming a partition of X and 1Ei denotes the
characteristic function of Ei. Recall that any function g : X → Y is called measurable
whenever it is a pointwise almost-everywhere limit of a sequence of simple functions.
Assume vi = 0 for all the indices i such that µ (Ei) = ∞. Then we define the integral of
f over X with respect to the measure µ as

ˆ
X
fdµ :=

n∑
i=1

µ (Ei) vi.

The above expression gives a well defined element of Y; being |f | measurable for every
simple function, see [HKST, Remark 3.1.1], we have

⏐⏐⏐⏐ˆ
X
fdµ

⏐⏐⏐⏐ ≤
ˆ

X
|f |dµ =

n∑
i=1

µ (Ei) |vi| < ∞. (1.1)
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Then, such a simple function f will be said integrable.
A measurable function f : X → Y is called Bochner integrable if there exists a sequence
(fn)n∈N of integrable simple functions such that

lim
n→∞

ˆ
X

|f − fn| dµ = 0.

Thus, the Bochner integral of f is given by
ˆ

X
fdµ := lim

n→∞

ˆ
X
fndµ.

By (1.1), the above definition is well posed in the sense that the integral of f - as an
element of Y - does not depend on the particular sequence (fn)n∈N chosen.
If E ⊂ X is any measurable subset and f : E → Y is a function, we shall say that f is
integrable over E if f · 1E : X → Y is integrable; so, we set

ˆ
E
fdµ :=

ˆ
X
f · 1Edµ.

1.1.2 Proposition [HKST, Proposition 3.2.4]. If

X =
∞⋃

k=1
Ek

where the Ek’s are pairwise disjoint measurable sets and f : X → Y is an integrable
function over each Ek with

∞∑
k=1

ˆ
Ek

|f |dµ < ∞,

then f is integrable over X and, moreover,

ˆ
X
fdµ =

∞∑
k=1

ˆ
Ek

fdµ.

□

1.1.3 Proposition [HKST, Proposition 3.2.7]. Bochner-integrable functions coincide
with measurable functions f such that |f | is integrable.

□

1.1.4 Definition (Lp(X , µ; Y) Spaces). Let p ∈ [1,∞[. Given a measurable function
f : X → Y we set

∥f∥L̃p(X ,µ;Y) :=
(ˆ

X
|f |pdµ

) 1
p

. (1.2)

10



This defines a semi-norm on the space

L̃p(X , µ; Y) :=
{
f : X → Y measurable; ∥f∥L̃p(X ,µ;Y) < ∞

}
;

it is not a norm, since for every function which vanishes µ-almost everywhere the formula
in (1.2) gives zero.
If we introduce an equivalence relation ∼ on L̃p(X , µ; Y) by declaring f ∼ g whenever
f − g = 0 µ-almost everywhere, then for the resulting equivalence classes [f ] one can
define ∥[f ]∥Lp(X ,µ;Y) with no ambiguity using (1.2) on any representative of [f ]; thus,
we define the Lebesgue Spaces Lp(X , µ; Y) as the spaces of equivalence classes [f ] with
∥[f ]∥Lp(X ,µ) < ∞, namely

Lp(X , µ; Y) := L̃p(X , µ; Y)
/{

f ∈ L̃p(X , µ; Y); ∥f∥L̃p(X ,µ;Y) = 0
}
.

Of course, the equivalence classes shall be dropped from the notation, so one simply writes
f and ∥f∥Lp(X ,µ;Y) instead of [f ] and ∥[f ]∥Lp(X ,µ;Y).
Endowed with the above norm, Lp(X , µ; Y) is a Banach space; elements of Lp spaces shall
be also addressed to as p-integrable functions.

1.1.5 Proposition [HKST, Proposition 3.2.13]. Given p ∈ [1,∞[, a measurable
function f : X → Y is in Lp(X , µ; Y) if and only if there exists a sequence of simple
functions (fn)n∈N ⊂ Lp(X , µ; Y) such that

lim
n→∞

ˆ
X

|f − fn|p dµ = 0.

□

1.1.6 Definition. For p = ∞ the space of essentially bounded measurable functions,
L∞(X , µ; Y), is the class of functions with bounded supremum norm,

∥f∥L∞(X ,µ;Y) := sup {λ ∈ R; µ ({x ∈ X : |f(x)| > λ}) ̸= 0} = ess-sup
x∈X

|f(x)|.

L∞(X , µ; Y) is a Banach space as well.
The notion of local Lebesgue spaces Lp

loc is given in the usual way.

1.1.7 Remark. Lq (X , µ; Y∗) embeds isometrically in Lp(X , µ; Y)∗, where p ∈ [1,∞[ and
q is its conjugate exponent, namely 1

p + 1
q = 1.

In the more usual case where Y = R, when p ∈]1,∞[ the dual of Lp(X , µ) is exactly
Lq(X , µ) and Lp-spaces are reflexive. Under the hypothesis of σ-finiteness, the dual of
L1(X , µ) is (canonically isomorphic to) L∞(X , µ); the dual of the latter can be described
as a space of finitely additive signed measures on X .
Notice that, under general assumptions, L1 and L∞ are not reflexive.
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Since they will be of practical use in the later chapters of our work, we recall here the
notions of “restriction” and of “extension” of a given measure:

1.1.8 Definition. A measure µ on a set Z determines a measure on every subset W ⊂ Z
by simply restricting µ - as a set function - to the subsets of W . The resulting measure,
denoted by µW , will be called the restriction of µ to W .
Alternatively, given a measure µ on a set Z, one may define its restriction to W ⊂ Z by
setting

µ⌊W (E) := µ(E ∩W ),

for E ⊂ Z.
If instead µ is a measure on a subset W ⊂ Z, we define its extension to Z as

µ̄(E) := µ(E ∩W ),

for E ⊂ Z. In this way, we have µ⌊W = µW .

Another recurring and useful notion will be the “push-forward” of a measure:

1.1.9 Definition. Let W and Z be two sets. If f : W → Z is any function and µ is a
measure on W , we define the push-forward measure f#µ on Z by setting

f#µ(E) := µ
(
f−1(E)

)

for E ⊂ Z, whenever the above formula makes sense.
When f is a Borel function and µ is a Borel measure, then f#µ is a Borel measure as well.

We now turn our attention to metric measure spaces, namely the key-tool for all the
forthcoming analysis and discussions.
Let us start with a characterization of balls in metric spaces:

1.1.10 Definition. By a ball in a metric space (X , d) we mean a set of the form

Bρ(x) = {y ∈ X ; d(x, y) < ρ} ,

where x ∈ X is the center and 0 < ρ < ∞ is the radius. The family of all balls in X will
be denoted by B(X ).
It is worth to underline that a ball, as a set, does not in general uniquely determine a
center and a radius, which then make sense with respect to the notation Bρ(x). The closed
ball Bρ(x) is given by

Bρ(x) = {y ∈ X ; d(x, y) ≤ ρ} .

12



As an alternative notation, we may sometimes choose to write λB, λ > 0, to denote the
“inflated” ball whose radius is λ times the radius of B.

1.1.11 Definition. A metric measure space is a triple (X , d, µ) where (X , d) is a separable
metric space and µ is a non-trivial - that is, µ(X ) > 0 - locally finite Borel measure on X .
In this context, by “locally finite” we mean that for every x ∈ X there exists ρ > 0 such
that µ (Bρ(x)) < ∞.

1.1.12 Remark. By the Lindelöf property of separable metric spaces - [HKST, Lemma
3.3.27] - every metric measure space can be written as a countable union of balls with
finite measure; thus, in particular, every metric measure space is σ-finite - see [HKST,
Lemma 3.3.28].
Notice that we are not assuming a metric measure space to be complete or even locally
complete as a metric space.
The restriction of the measure µ to a subset Z ⊂ X determines a metric measure space
(Z, d, µ⌊Z): in other words, subsets of metric measure spaces can be regarded as metric
measure spaces on their own. As a consequence, every metric measure space admits a
countable covering of pairwise disjoint subsets, each of them constituting itself a metric
measure space.

1.1.13 Proposition [HKST, Proposition 3.3.44]. If (X , d, µ) is a metric measure
space such that (X , d) is complete, then µ is a Radon measure. In particular, X can be
expressed as a countable union of compact sets plus a set of measure zero.

□

Taking into account Proposition 1.1.13 above, since in the following chapters and sections
we shall always consider complete metric measure spaces, from now on µ will be assumed
to be a Radon measure.

Let us now see some properties of Lebesgue Spaces in the context of metric measure spaces.

1.1.14 Proposition [HKST, Proposition 3.3.49]. If (X , d, µ) is a metric measure
space and p ∈ [1,∞[, then for every f ∈ Lp(X , µ; Y) and for every ε > 0 there exists
g ∈ C(X ,Y) such that ∥f − g∥Lp(X ,µ;Y) < ε.
If in particular µ is Radon, then the same holds with g being just a compactly supported
function from X to Y.

□

Since uniform limits of sequences of continuos functions are also continuous, a combination
of [HKST, Proposition 3.2.15] with Proposition 1.1.14 and [HKST, Remark 3.2.16] implies
the following:

1.1.15 Corollary [HKST, Corollary 3.3.51]. Under the same hypotheses of Proposi-
tion 1.1.14, for every f ∈ Lp(X , µ; Y) and for every ε > 0 there exists an open set A ⊂ X
with µ(A) < ε such that f |X \A is continuous.
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□

1.1.16 Proposition [HKST, Proposition 3.3.52]. Let (X , d, µ) be a metric measure
space with (X , d) locally compact and let p ∈ [1,∞[. Then, for every f ∈ Lp(X , µ; Y) and
for every ε > 0 there exists g ∈ Cc(X ,Y) such that

∥f − g∥Lp(X ,µ;Y) < ε.

□

1.1.17 Proposition [HKST, Proposition 3.3.55]. Let (X , d, µ) be a metric measure
space and let p ∈ [1,∞[. Then, Lp(X , µ; Y) is separable - as a Banach space - if and only
if Y is separable.

□

We conclude this section by recalling quickly the notion of Lipschitz functions between
metric spaces and some of their notable properties.

1.1.18 Definition. Let (X , dX ) and (Y, dY) be two metric spaces. A function f : X → Y
is called L-Lipschitz if there exists a constant L ≥ 0 such that

dY (f(w), f(z)) ≤ LdX (w, z) (1.3)

for every pair of points w, z ∈ X . The smallest value of L for which (1.3) holds is the
Lipschitz constant of f . The class of Lipschitz functions f : X → Y will be usually denoted
by Lip(X ,Y).
A bi-Lipschitz function is a bijective Lipschitz function whose inverse is Lipschitz as well.

Lipschitz functions are a dense class in the Lebesgue Spaces Lp(X , µ; Y):

1.1.19 Theorem [HKST, Theorem 4.2.4]. If (X , d, µ) is a metric measure space, Y is
a Banach space and p ∈ [1,∞[, then Lip(X ,Y) is dense in Lp(X , µ; Y). If moreover (X , d)
is locally compact, then Lipc(X ,Y) is dense in Lp(X , µ; Y).

□
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1.2 Doubling measures

Doubling measures constitute a notable tool in the field of nonsmooth analysis and will
be of great use in our work as well. Let us see the main definitions and properties.

1.2.1 Definition. A Borel measure µ on a metric space (X , d) will be called doubling
whenever for every ball Bρ(x) ⊂ X one has 0 < µ (Bρ(x)) < ∞ and there exists a constant
c ≥ 1 such that

µ (B2ρ(x)) ≤ cµ (Bρ(x)) (1.4)

for all x ∈ X and ρ > 0; in particular, µ is asymptotically doubling if

lim
ρ→0+

µ (B2ρ(x))
µ (Bρ(x)) < ∞

for all x ∈ X and ρ > 0. The smallest constant c fulfilling the condition in (1.4) will be
said doubling constant; it will be denoted by CD,

CD = sup
B∈B(X )

µ(2B)
µ(B) .

(X , d) is separable as a metric space and (X , d, µ) is a metric measure space by Remark
1.1.12 and [HKST, Lemma 3.3.30] respectively.
When µ is doubling on (X , d), then (X , d, µ) is called a doubling metric measure space.

1.2.2 Remark. A metric space (X , d) is called “metrically doubling” if there exists a
constant c ≥ 1 such that every set of diameter δ in X can be covered by at most c subsets
whose diameter is not larger than δ/2 ([He, 10.13]); in terms of balls, this is equivalent
to say that any ball Bρ(x) ⊂ X can be covered by at most c balls with radii ρ/2 ([BB,
Section 3.1] or [HKST, Section 4.1]).
A metric measure space (X , d, µ) equipped with a doubling measure µ is always metrically
doubling ([Ha, Lemma 4.3]); if moreover (X , d) is complete, then the two conditions are
equvalent ([Ha, Theorem 4.5]).
Observe that if one iterates the doubling condition (1.4) then

µ (Bλρ(x)) ≤ CDλ
log2(cD)µ (Bρ(x))

for every x ∈ X , λ ≥ 1 and ρ > 0; the quantity log2 (CD) can be thought as a sort of
“dimension” of a doubling metric measure space (X , d, µ). Indeed:

1.2.3 Proposition [BB, Lemma 3.3]. Assume (X , d, µ) is a doubling metric measure
space. Then, for every x, y ∈ X and for every 0 < ρ ≤ r < ∞ one has

µ (Bρ(x))
µ (Br(y)) ≥ 1

C2
D

(
ρ

r

)s
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with s = log2 (cD).

□
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2 Upper gradients and Newton-Sobolev Spaces N 1,p(X )

This chapter is devoted to first-order Sobolev spaces defined by means of upper gradients.
This approach relies heavily on the theory of modulus of curves in metric measure spaces
and gives rise to the so-called “Newton-Sobolev” Spaces N1,p, a term due to the fact that
the definition recalls the Fundamental Theorem of Calculus.
The concept of upper gradient made its first appearances in the works of J. Heinonen
and P. Koskela [HK1] and [HK2] under the name of “very weak gradients”, but soon, for
example in [KM], the denomination “upper gradient” was already preferred.
A systematic study of the theory of Sobolev Spaces via upper gradients was later carried
on by J. Cheeger in [Ch], making use of a weak differentiable structure, and soon after
in terms of p-modulus of curves by N. Shanmugalingam in her Ph.D. Thesis [Sh1] and
in [Sh2], where the author also proved this latter characterization to be equivalent to
Cheeger’s.
In order to make our discussion coherent with Chapter 1, here we shall closely follow
[HKST] again, in particular Chapters 5-8; another notable reference to be mentioned is
the monograph [BB], from which we shall take some additional definitions and remarks.

2.1 Modulus of families of curves in metric measure spaces

We start with the basic facts regarding curves in metric spaces in order to introduce and
discuss the concept of p-modulus of a family of curves.

2.1.1 Definition. A curve (or, path) on a metric space (X , d) is a continuous map
γ : I → X , where I is some real interval; we shall say that γ is compact, open or half-open
if so is I.
The interval I may also consist of one single point: in this case γ will be called a constant
curve; in general, every curve whose image consists of only one element, shall be said
constant.
Given a compact curve γ : I = [a, b] → X , its length is defined as

ℓ(γ) := sup
a=t0<t1<...<tk=b

k∑
i=1

d (γ (ti) , γ (ti−1)) , (2.1)

the numbers ti being a finite decomposition of the interval [a, b]; when γ is non-compact,
its length will be set to be the supremum of the lengths of its compact subcurves (i.e., of
the restrictions of γ to compact sub-intervals of its domain).
When ℓ(γ) is finite, we shall call the curve rectifiable; locally rectifiable if each of its
compact subcurves is rectifiable.

2.1.2 Remark. Given an L−Lipschitz map f : X →Y between metric spaces and a
rectifiable curve γ : I → X , the composition f◦γ is rectifiable as well and ℓ (f ◦ γ) ≤ Lℓ(γ).
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Moreover, it is possible to prove that the length of any rectifiable curve is bounded from
below by the 1-dimensional Hausdorff measure of its image H1(γ), see [AT, Section 4.1] .

2.1.3 Definition. To every rectifiable curve γ : [a, b] → X we associate a map, namely
the length function sγ : [a, b] → [0, ℓ(γ)] given by sγ(t) := ℓ

(
γ|[a,t]

)
.

Clearly, sγ satisfies

d (γ (t2) , γ (t1)) ≤ ℓ
(
γ|[t1,t2]

)
= sγ (t2) − sγ (t1) (2.2)

for a ≤ t1 ≤ t2 ≤ b.
It can be shown that the length function is increasing and continuous, see [HKST, Lemma
5.1.4].

2.1.4 Definition. Given a rectifiable curve γ : [a, b] → X , its arc length parametrization
is defined as the curve γs : [0, ℓ(γ)] → X ,

γs(t) := γ
(
s−1

γ (t)
)
.

By the continuity of the length function one finds that

s−1
γ (t) := sup {τ, sγ(τ) = t} = max {τ, sγ(τ) = t}

is the one-sided inverse of sγ ; moreover, s−1
γ is strictly increasing and right-continuous:

this allows us to say that γs is the only curve in X such that γ(t) = γs (sγ(t)).
Via the arc length parametrization, we can also give a notion of the “length” of a curve
γ in any set E ⊂ X : namely, denoting by L 1 the one-dimensional Lebesgue measure,
ℓ(γ ∩ E) := L 1 (γ−1

s (E)
)
. Of course, when E is the whole of X , this definition gives just

ℓ(γ).
We remark that by the properties of Hausdorff measures, one always has H1(γ ∩ E) ≤
ℓ(γ ∩ E).

2.1.5 Definition. If γ : [a, b] → X is a curve, we say that it is absolutely continuous
provided there exists a function f ∈ L1([a, b]) such that

d (γ(s), γ(t)) ≤
ˆ t

s
f(r)dr (2.3)

for every s, t ∈]a, b[ with s ≤ t. The space of absolutely continuous curves γ : [a, b] → X
will be denoted by AC([a, b],X ).
If the above holds for f ∈ Lp([a, b]), p ∈ [1,∞], then γ is called p-absolutely continuous
and the corresponding space of curves will be denoted by ACp([a, b],X ).

To every p-absolutely continuous curve it is possible to associate a “derivative”, namely
the metric derivative, by means of an incremental ratio:

2.1.6 Theorem [AGS1, Theorem 1.1.2] Let γ ∈ ACp([a, b],X ) with p ∈ [1,∞]. Then
the limit
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|γ̇| (t) := lim
s→t

d(γ(s), γ(t))
|s− t|

exists for L 1-almost every t ∈]a, b[ and defines a function in Lp(]a, b[). Moreover, |γ̇| (t)
is an admissible integrand for (2.3) and it is minimal in the sense that |γ̇| (t) ≤ f(t) for
L 1-almost every t ∈]a, b[ for all f satisfying (2.3).
We shall call |γ̇| (t) the metric derivative or the speed of γ(t).

□

The metric derivative was already defined for general curves in [AT, Section 4.1].

Before discussing the concept of “modulus” of a family of curves, we need a further tool,
namely line integration:

2.1.7 Definition. If γ : [a, b] → X is a rectifiable curve and ρ : X → [0,∞] is a
non-negative Borel function, we define the line integral of ρ over γ as the quantity

ˆ
γ
ρds :=

ˆ ℓ(γ)

0
ρ (γs(t)) dt. (2.4)

Note that ρ ◦ γs is a non-negative Borel function on [0, ℓ(γ)], so the integral exists and
attains its values on [0,∞].
When γ is locally rectifiable, the definition is adapted taking the supremum of the integrals
of ρ over all compact subcurves of γ.
Observe that, by the properties of the length function and by the fact that |γ̇(t)| = ṡγ(t),
when γ is absolutely continuous we can equivalently replace the right-hand side of the
previous definition by

ˆ b

a
ρ (γ(t)) |γ̇(t)| dt.

In other words, the line integral of a non-negative Borel function makes sense over locally
rectifiable curves, as no line integral is defined on curves which are not locally rectifiable;
moreover, as the above equivalent formulation suggests, line integrals over constant curves
are always zero.

Let us suppose that (X , d, µ) is a metric measure space such that (X , d) is separable and
µ is a locally finite Borel regular measure. In accordance with the notation of Chapter 1,
we recall that by “measure” we mean an outer measure.

2.1.8 Definition. Given a family of curves Γ in X , we define the p-Modulus of Γ,
1 ≤ p < ∞ as

Modp(Γ) := inf
A(Γ)

ˆ
X
ρpdµ, (2.5)
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where A(Γ) denotes the class of admissible functions (or densities) for the family Γ,

A(Γ) :=
{
ρ : X → [0,∞] Borel :

ˆ
γ
ρds ≥ 1 ∀ γ ∈ Γ locally rectifiable

}
.

The p-modulus can take values in [0,∞]; if Γ is the family of curves in X which are not
locally rectifiable, then Modp(Γ) = 0, while the modulus of every family containing a
constant curve is infinite.

2.1.9 Remark (properties of the p-modulus). First of all, we notice that Modp(∅) = 0
since the function ρ ≡ 0 is admissible, in this case.
If Γ1 and Γ2 are two families of curves such that Γ1 ⊂ Γ2, then Modp (Γ1) ≤ Modp (Γ2)
because A (Γ2) ⊂ A (Γ1); in particular, if Γ0 and Γ are two families such that every curve
γ ∈ Γ has a subcurve γ0 ∈ Γ0, one has Modp (Γ) ≤ Modp (Γ0): this happens by the simple
fact that every ρ which is admissible for Γ0 is also admissible for Γ.
The p-modulus is subadditive: in other words,

Modp

( ∞⋃
i=1

Γi

)
≤

∞∑
i=1

Modp (Γi) .

Indeed, let us assume - without loss of generality - that the right hand side above is finite;
for ε > 0 fixed and for every i ≥ 1 take ρi ∈ A (Γi) such that

ˆ
X
ρp

i dµ ≤ Modp (Γi) + 2−iε.

If we set

ρ(x) :=
( ∞∑

i=1
ρi(x)p

) 1
p

,

then ρ is Borel measurable and ρ ∈ A (Γi) for all i because ρ ≥ ρi. Thus, setting

Γ :=
∞⋃

i=1
Γi,

one has the following estimate:

Modp(Γ) ≤
ˆ

X
ρpdµ ≤

∞∑
i=1

Modp (Γi) + ε,

and letting ε → 0 gives the assertion.
In other words, the set function Γ ↦→ Modp(Γ) defines an outer measure on the families of
curves in X .

2.1.10 Definition. We shall call every family of curves Γ in X such that Modp(Γ) = 0 p-
exceptional; consequently, every property which fails to hold on a p-exceptional collection
of curves will be said to hold for p-almost every curve.
Of course, by the subadditivity and by the monotonicity of the modulus it follows that
Modp(Γ) = Modp (Γ\Γ′) whenever Γ′ is a subfamily of Γ with zero modulus.
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The following result provides an alternative characterization of p-exceptionality:

2.1.11 Lemma. A family Γ of locally rectifiable curves in X is p-exceptional if and only
if there exist a p-integrable Borel function ρ : X → [0,∞] satisfying

ˆ
γ
ρds = ∞ (2.6)

for all γ ∈ Γ.

Proof. We start with necessity. Since Modp(Γ) = 0, for each i ∈ N we can find an
admissible function ρi such that

ˆ
X
ρp

i dµ ≤ 2−ip.

The function

ρ(x) :=
∞∑

i=1
ρi(x),

is non-negative, p-integrable and Borel measurable; moreover, it satisfies (2.6) for every
path γ ∈ Γ as required.
Now assume that ρ : X → [0,∞] is a p-integrable Borel function satisfying (2.6) for all
the curves γ ∈ Γ; thus, for very ε > 0, ερ turns to be admissible, implying Modp(Γ) = 0.

□

2.1.12 Definition. Any set E ⊂ X is said to be p-exceptional when the family of all
non-constant curves which meet E is p-exceptional.
By the previous Lemma it is clear that E is p-exceptional if and only if the collection of
all non-constant, compact curves passing through E is p-exceptional.

2.1.13 Lemma. A countable union of p-exceptional sets is p-exceptional. Moreover, if
E ⊂ M and every x ∈ M has a neighborhood Ux such that E ∩ Ux is p-exceptional, then
E is p-exceptional as well.

Proof. By the subadditivity of the p-modulus we immediately have the first assertion.
For the second, we refer to [HKST, Lemma 3.3.27].

□

It is a well known fact from the classical Measure Theory that any convergent sequence of
functions in Lp has a pointwise almost everywhere convergent subsequence; the following
Lemma, proven by B. Fuglede in [Fu], shows that an analogous property holds as well
in the present setting, involving p-exceptional families of curves. This result will be of
great importance in the development of first-order Sobolev space theory in metric measure
spaces.
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2.1.14 Lemma (Fuglede) If (gi)i∈N is a sequence of Borel functions converging in
Lp(X , µ), p ∈ [1,+∞[, then there exists a subsequence (gik

)k∈N such that if g is any
Borel representative of the Lp-limit of (gi)i∈N, one has

lim
k→∞

ˆ
γ

|gik
− g| ds = 0

for p-almost every curve γ in X .

Proof. Take g as in the statement of the Lemma, and choose a subsequence (gik
)k∈N of

(gi)i∈N such that
ˆ

X
|gik

− g| dµ ≤ 2−k(p+1).

This subsequence is independent of the particular representative we have chosen.
Define

ρk := |gik
− g|

and let Γ be the family of locally rectifiable curves γ in X such that

lim sup
k→∞

ˆ
γ
ρkds > 0

Moreover, let Γk be the family of locally rectifiable curves in X satisfying
ˆ

γ
ρkds > 2−k.

Thus,

Γ =
⋂
j∈N

⋃
k≥j

Γk ⊂
∞⋃

k=j

Γk

for all j ≥ 1; but 2kρk is admissible for Γk for every k, and then

Modp (Γk) ≤ 2pk

ˆ
X
ρp

kdµ ≤ 2−k.

Consequently, the subadditivity of the modulus gives

Modp(Γ) ≤
∞∑

k=j

Modp (Γk) ≤ 2−j+1

for every j ≥ 1; this means Modp(Γ) = 0 as required.

□
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2.1.15 Proposition. Let Γ1 ⊂ Γ2 ⊂ ... be an increasing sequence of path families in X .
Then, setting Γ = ⋃∞

i=1 Γi, for all p > 1 it holds

lim
i→∞

Modp (Γi) = Modp(Γ).

Proof. By the monotonicity of the p-modulus, one has that the quantities Modp (Γi) form
an increasing sequence and, moreover, Modp (Γi) ≤ Modp(Γ) for every i. So, assuming
the above limit is finite, we need to prove the opposite inequality. For every i, consider an
admissible function ρi for Γi such that

ˆ
X
ρp

i dµ < M + 1
i
,

where M := lim
i→∞

Modp (Γi). From this we deduce that (ρi)i∈N is a bounded sequence in
Lp(X , µ) satisfying

lim
i→∞

∥ρi∥p
Lp(X ,µ) = M.

Since p > 1, by the reflexivity of Lp(X , µ) we get that the sequence converges weakly to
some ρ ∈ Lp(X , µ), and the lower semicontinuity of norms gives ∥ρ∥p

Lp(X ,µ) ≤ M . Now,
an application of Mazur’s Lemma - see for example Section 2.3 in [HKST] or the classical
monograph [Yo] - allows us to consider a convex combination of the ρi’s, say (ρ̃j)j∈N, such
that ρ̃j → ρ in Lp(X , µ) as well. Taking into account that (ρi)i∈N is increasing and that
the admissibility condition is unaltered by convex combinations, we can assume the ρ̃j ’s
to be admissible as well for the families Γj for every j. Then,

M ≤ lim
j→∞

∥ρ̃j∥p
Lp(X ,µ) = ∥ρ∥p

Lp(X ,µ) ≤ M.

By [HKST, Proposition 3.3.23] and by Fuglede’s Lemma, we may assume ρ to be a Borel
map such that

ˆ
γ
ρds ≥ 1

for p-almost every curve γ ∈ Γ. At this point, invoking again the subadditivity of the
p-modulus yields

Modp(Γ) ≤
ˆ

X
ρpdµ = M,

thus concluding the proof.

□

2.1.16 Lemma [HKST, Lemma 5.2.15]. If E ⊂ X has measure zero, then for p-almost
every curve γ in X one has ℓ(γ ∩ E) = 0; in particular, this means that H1(γ ∩ E) = 0.

□
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2.1.17 Lemma. Suppose that g and h are two non-negative Borel functions on X such
that g ≤ h almost everywhere. Then,

ˆ
γ
gds ≤

ˆ
γ
hds

for p-almost every curve γ in X and if the two functions agree almost everywhere, then
the above inequality becomes an equality for p-almost every γ as well.

Proof. Clearly, the set E = {x ∈ X , g(x) > h(x)} is µ-negligible. By Lemma 1.1.14
above, this gives H1 (γ−1 (E)

)
= 0 for p-almost every curve γ. By the definition of line

integrals, it follows ˆ
γ

(h− g) ds ≥ 0.

The linearity of line integrals allows us to conclude.

□

We explicitly remark that, unfortunately, it is impossible to give a precise value for the
modulus of a family of curves, except in a few cases; in general it can be also quite difficult
even to give good estimates. In what follows we collect, without proof, a few examples
of particular exceptions. We refer to Section 5.3 of [HKST] for the details and for other
notable examples.

2.1.18 Proposition [HKST, Lemma 5.3.1]. Let Γ be a family of curves in a Borel set
A ⊂ X such that for every γ ∈ Γ one has ℓ(γ) ≥ L > 0. Then, Modp(Γ) ≤ µ(A)L−p.

□

2.1.19 Proposition [HKST, Lemma 5.3.2]. Given a family of curves Γ in X and a
sequence of Borel subsets of X , (Bi)i∈N, if every curve in Γ has a non-rectifiable subcurve
in some Bi then Modp(Γ) = 0.

□

In other words, the p-modulus is not affected by “local” non-rectifiability of non-rectifiable
paths. In particular, non-rectifiable curves are p-exceptional whenever the volume growth
of X is at most polynomial of order p:

2.1.20 Proposition [HKST, Proposition 5.3.3]. If p > 1 and there exists x ∈ X such
that

lim sup
r→∞

µ (Br(x))
rp

< ∞,

then the p-modulus of the family of all non-rectifiable curves in X is zero.
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□

The following Proposition shows that lower semicontinuous functions can be chosen as
admissible densities:

2.1.21 Proposition [HKST, Proposition 5.3.13]. For every family of paths Γ in X
it holds

Modp(Γ) = inf
{ˆ

X
ρpdµ; ρ : X → [0,∞] lower semicontinuous : ρ ∈ A(Γ)

}
.

□

We end this section with a result regarding the behaviour of the modulus with respect to
the exponent p:

2.1.22 Proposition [HKST, Proposition 5.3.14]. Let Γ be a family of curves in a
Borel set A ⊂ X of finite measure. Then, for 1 ≤ q < p,

Modq(Γ)p ≤ µ(A)p−qModp(Γ)q.

In particular, if Γ is exceptional for some p > 1 then it is q-exceptional for all 1 ≤ q ≤ p.

□

2.2 Upper gradients

Throughout this section, (X , dX , µ) will be a metric measure space with (X , dX ) separable
and µ a locally finite Borel regular measure on X , (Y, dY) will be a metric space and
p ∈ [1,∞[.

2.2.1 Definition. A Borel function g : X → [0,∞] is called an upper gradient of u : X →
Y provided

dY (u(γ(a)), u(γ(b))) ≤
ˆ

γ
gds (2.7)

for every rectifiable path γ : [a, b] → X .
If the above inequality holds for p-almost every path γ, then g will be said a p-weak upper
gradient of u.
The definition naturally restricts to any subset A ⊂ X if one considers A as a metric
measure space itself.
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Even though the concepts of upper gradient and p-weak upper gradient are very different,
the former being purely metric and defined on an arbitrary metric space, the latter being
dependent both on p and on the metric structure, it can be shown that they not “move
too far” from one another:

2.2.2 Lemma. If g ≥ 0 is a Borel function on X such that it is finite-valued µ-almost
everywhere and if u : X → Y admits g as a p-weak upper gradient in X , then there
exists a sequence (gk)k∈N of upper gradients of u such that g ≤ gk+1 ≤ gk for every k and
∥g − gk∥Lp → 0 as k → ∞.

Proof. Denote by Γ the family of all non-constant compact rectifiable curves in X which
fail to satisfy the upper gradient condition (2.7) for the pair (u, g). Thus, Modp(Γ) = 0
and by Lemma 2.1.11 we can find a Borel map ρ : X → [0,∞] such that

ˆ
γ
ρds = ∞

for every γ ∈ Γ and ρ ∈ Lp(X ). Now, setting gk := g+2−kρ we obtain a sequence of upper
gradients of u which satisfies our claim.

□

We explicitly remark that any given function actually has infinitely many (p-weak) upper
gradients.

2.2.3 Example. Let us collect a few basic examples of upper gradients:

• The function g ≡ ∞ is an upper gradient of every function.

• If there exist no non-constant rectifiable curves on M, then g ≡ 0 is an upper gradient
of every function.

• If u is L-Lipschitz, then the constant function g ≡ L is an upper gradient of u.

• If f : Y → Z is an L-Lipschitz map between metric spaces, then Lg is an upper
gradient of f ◦ u : X → Z provided g is an upper gradient of u : X → Y.

• If u : X → Y, A ⊂ X and g is an upper gradient of u, then g|A is an upper gradient
of u|A.

• The collection of upper gradients of a given function is a convex set: indeed, if g and
h are upper gradients of some u and λ ∈ [0, 1], then the combination (1 − λ)g + λh
is an upper gradient of u.

2.2.4 Definition. Given a function u : X → Y, we define its pointwise lower Lipschitz
constant as

lipu(x) = lim inf
r→0

sup
y∈Br(x)

dY (u(x), u(y))
r

(2.8)

and, similarly, its pointwise upper Lipschitz constant,
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Lipu(x) := lim sup
r→0

sup
y∈Br(x)

dY (u(x), u(y))
r

. (2.9)

We observe that if u is continuous, then both lipu(x) and Lipu(x) are Borel regular
functions; see [HKST, Lemma 6.2.5] for a detailed discussion.

2.2.5 Lemma. If u : X → Y is a locally Lipschitz map, then lipu(x) is an upper gradient
of u.

Proof. Suppose γ : [0, ℓ(γ)] → X is a non-constant rectifiable curve parametrized by
arc-length. Since u ∈ Liploc(X ), then the composition u ◦ γ : [0, ℓ(γ)] → Y is absolutely
continuos and then [HKST, Proposition 4.4.25] grants

dY (u(γ(a)), u(γ(b))) ≤
ˆ ℓ(γ)

0

⏐⏐(u ◦ γ)′(t)
⏐⏐ dt. (2.10)

Moreover, if we take t ∈]0, ℓ(γ)[ and h ∈ R with |h| small enough, we find

dY ((u ◦ γ)(t), (u ◦ γ)(t+ h))
|h|

≤ sup
y∈B|h|(γ(t))

dY (u(γ(t)), u(y))
|h|

.

Since the left hand side goes to | (u ◦ γ)′ (t)| when |h| → 0 by [HKST, Theorem 4.4.8]
(previously established by L. Ambrosio in [Am1]), one may conclude that |(u ◦ γ)′(t)| ≤
lipu(γ(t)) for almost every t ∈]0, ℓ(γ)[. Combining this fact with inequality (1.9), we
conclude.

□

The following result shows that any non-negative Borel function which agrees almost-
everywhere with a p-weak upper gradient of some function u is an upper gradient as well:

2.2.6 Lemma [HKST, Lemma 6.2.8]. If g is a p-weak upper gradient of u : X → Y
and h : X → [0,∞] is a Borel function such that g = h µ-almost everywhere in X , then h
is a p-weak upper gradient of u.
Moreover, if E ⊂ X is a Borel set of measure zero and g is as above, then g · 1X \E is a
p-weak upper gradient of u.

□

We now pass to the study of maps with p-integrable upper gradients. To this aim, we start
with a generalization of the notion of absolute continuity on curves to the metric setting:

2.2.7 Definition. We shall say that a function u : X → Y is absolutely continuous on
a curve γ in X if γ is rectifiable and, moreover, the composition u ◦ γs : [0, ℓ(γ)] → Y is
absolutely continuous.

2.2.8 Remark. The definitions and the absolute continuity of line integrals entail that if
u : X → Y , γ is a rectifiable compact path in X , g : X → [0,∞] is a Borel function such
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that g is integrable over γ and the pair (u, g) satisfies the upper gradient condition (2.7)
on γ as well as on each compact subcurve of it, then u is absolutely continuous on γ.

2.2.9 Proposition. If g is a p-integrable p-weak upper gradient of some map u : X → Y,
then p-almost every compact rectifiable path γ in X is such that g is integrable over γ and
the pair (u, g) satisfies the upper gradient condition on γ as well as on each of its compact
subcurves.
In particular, every u : X → Y which has a p-integrable p-weak upper gradient is absolutely
continuous on p-almost every curve in X .

Proof. If we denote by Γ0 the family of those compact rectifiable curves γ such that
either (2.7) fails to hold or g is not integrable on γ, then Modp (Γ0) = 0 by definition
of weak upper gradients and by the subadditivity of modulus. Now, if Γ is the family
of all the compact curves in X which have a subcurve in Γ0, by Remark 2.1.9 we find
Modp(Γ) = 0 as well.
To prove the second assertion of the Proposition, it suffices to apply the first along with
Remark 2.2.8.

□

2.2.10 Proposition. Let u : X → Y be any map and let γ : [0, ℓ(γ)] → X be a rectifiable
curve parametrized by arc length. Suppose g : X → [0,∞] is a Borel function which is
integrable over γ and that the pair (u, g) satisfies the upper gradient condition on γ as
well as on each of its subpaths. Then, u is absolutely continuous on γ and⏐⏐⏐(u ◦ γ)′ (t)

⏐⏐⏐ ≤ (g ◦ γ) (t) (2.11)

for almost every t ∈ [0, ℓ(γ)].
In particular, if g is a p-integrable p-weak upper gradient of u : X → Y, then the above
inequality holds for p-almost every path γ : [0, ℓ(γ)] → X parametrized by arch length.
Moreover, if u has a p-integrable p-weak upper gradient in X and g : X → [0,∞] is a Borel
p-integrable map satisfying (2.11) for p-almost every absolutely continuous rectifiable curve
γ in X , then g is a p-weak upper gradient of u.

Proof. The absolute continuity of u on γ is a consequence of Remark 2.2.8.
Observe that, by hypothesis,

dY ((u ◦ γ) (t), (u ◦ γ) (t+ h))
h

≤ 1
h

ˆ t+h

t
(g ◦ γ) (s)ds

for every t ∈ [0, ℓ(γ)[ and for every h ∈]0, ℓ(γ) − t[. For almost every t, as h → 0 the left-
hand side of the above inequality tends to |(u ◦ γ)′(t)| again by [HKST, Theorem 4.4.8] and
[Am1], and the right-hand side becomes (g ◦ γ)(t) by Lebesgue’s Differentiation Theorem;
this allows us to conclude that (2.11) holds.
The second assertion follows from the first one and by applying Proposition 2.2.9; let
us then discuss the last statement. Recalling that if u has a p-integrable p-weak upper
gradient on X then it is absolutely continuous on p-almost every curve, the proof follows
by an application of [HKST, Proposition 4.4.25].
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□

2.2.11 Lemma. If u : X → Y is absolutely continuous on p-almost every curve γ in X ,
and if there exists c ∈ Y such that u ≡ c µ-almost everywhere inX , then the family ΓE of
all non-constant curves in X which meet the set

E := {x ∈ X , u(x) ̸= c}

has p-modulus zero. In particular, the constant null function is a p-weak upper gradient
of u.
As a consequence, if u has a p-integrable p-weak upper gradient and there exists c ∈ Y
such that u ≡ c µ-almost everywhere in X , then g ≡ 0 is a p-weak upper gradient of u.

Proof. For p-almost every non-constant rectifiable curve γ in X we have that u is
absolutely continuous on γ and that the length of γ in E is zero. So, by our hypotheses,
u ◦ γ ≡ c and therefore γ cannot pass through E. However, as every curve in ΓE meets
E, by Remark 2.1.9 we find Modp (ΓE) = 0. At this point, it is obvious that g ≡ 0 is a
p-weak upper gradient of u.
The latter assertion is a consequence of the previous ones together with Proposition 2.2.9.

□

An interesting byproduct of the above result is that p-integrable p-weak upper gradients
are actually a good substitute for the notion of derivative in the metric setting, since every
locally constant map has the null function as p-weak upper gradient.
We stress the hypothesis of absolutely continuity of u along p-almost every curve, since if
it fails to hold, then the statement of Lemma 2.2.11 is not true anymore.

It is possible to “build” new upper gradients from given ones:

2.2.12 Lemma [HKST, Lemma 6.3.8]. Let σ and τ be two p-integrable p-weak upper
gradients of a map u : X → Y; if E ⊂ X is a Borel set, then

g := σ·1E + τ·1X \E

is a p-weak upper gradient of u.

□

Combining this result with Fuglede’s Lemma we find out the important lattice property
of p-weak upper gradients:

2.2.13 Corollary [HKST, Corollary 6.3.12]. The collection Dp(u) of all p-integrable
p-weak upper gradients of a function u : X → Y is closed under the (pointwise) operations
of maximum and minimum; in other words, Dp(u) is a lattice in Lp(X , µ).

□
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2.2.14 Lemma [HKST, Lemma 6.3.14]. Assume that u : X → Y is absolutely
continuous on p-almost every compact rectifiable curve in X . Let E ⊂ X be a Borel set
and suppose there exists two maps v, w : X → Y such that u = v µ-almost everywhere in
E and u = w µ-almost everywhere in X \E. Then, if v and w possess p-integrable p-weak
upper gradients σ and τ respectively,

g := σ·1E + τ·1X \E

is a p-integrable p-weak upper gradient of u.

□

2.2.15 Corollary [HKST, Corollary 6.3.16]. Let g be a p-integrable p-weak upper
gradient of u : X → Y and take c ∈ Y. Then, g·1X \E is a p-integrable p-weak upper
gradient of u in every set E ⊂ {x ∈ X , u(x) = c}.

□

2.2.16 Definition. A p-integrable p-weak upper gradient g of a map u : X → Y such
that g ≤ h almost everywhere in X for every p-integrable p-weak upper gradient h of u
will be said a minimal p-weak upper gradient.
By Lemma 2.2.6 it is clear that if a minimal p-weak upper gradient exists, then it shall be
unique up to a set of measure zero; moreover, it has the smallest Lp-norm among all the
p-weak upper gradients.
The minimal p-weak upper gradient of a function u will by denoted by gu. The existence
of a minimal p-weak upper gradient will be discussed in Theorem 2.2.18 below.

2.2.17 Remark. It is quite easy to check that the minimal p-weak upper gradient - for
functions valued in some normed space - enjoys the following simple properties:

• gu = g−u,

• gu+v ≤ gu + gv,

• g|u| ≤ gu,

• if λ ∈ R, then gλu = |λ|gu,

• if f : Y → Z is an L-Lipschitz map between metric spaces, then gf◦u ≤ Lgu.

The notion of p-weak upper gradient depends on the exponent p: by the properties of
modulus, for any q ≤ p one has gu,q ≤ gu,p µ-almost everywhere. However, as it is
customary, this dependence will be omitted from the notation. See Remark 2.4.9 for
additional comments.

2.2.18 Theorem. For every p ∈ [1,∞[, the set of all p-integrable p-weak upper gradients
of a map u : X → Y is a closed convex lattice in Lp(X ) and, if non-empty, it has a unique
element of smallest Lp-norm. In particular, if a function has a p-integrable p-weak upper
gradient, then it possesses a minimal one.
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Proof. By Corollary 2.2.13, we already know that the collection Dp(u) of all p-integrable
p-weak upper gradients of u is a closed convex lattice in Lp(X , µ).
It is a known fact that, in general, any such set has an element of minimum Lp-norm.
Indeed, consider a sequence (gi)i∈N ⊂ Dp(u) such that

lim
i→∞

∥gi∥Lp(X ,µ) = inf
ρ∈Dp(u)

∥g∥Lp(X ,µ) .

If we take into account the lattice property and replace gi by min1≤j≤i gj , we can then
assume that the chosen sequence decreases pointwise. As the limit function gu := limi→∞ gi

is Borel regular, using Lebesgue’s Monotone Convergence Theorem we find that gi → gu

in Lp(X , µ); moreover, Fuglede’s Lemma grants that gu ∈ Dp(u).
Clearly, we can conclude that gu is minimal as required.

□

2.2.19 Proposition. Consider two maps u, v : X → Y with minimal p-weak upper
gradients gu and gv respectively. If u and v agree almost everywhere in some Borel set E,
then gu = gv almost everywhere in E.

Proof. The existence of p-integrable p-weak upper gradients allows us to infer that both
u and v are absolutely continuous on p-almost every compact curve, thanks to Proposition
2.2.9. Now, by Lemma 2.2.14, gu·1E + gv·1X \E is a p-integrable p-weak upper gradient
of v. Since gv is minimal, then gv ≤ gu almost everywhere in E. A symmetric argument
gives the proof.

□

Upper gradients behave well under truncation by real functions; in other words,

2.2.20 Proposition [HKST, Proposition 6.3.23]. Let u1, u2 : X → R be two mea-
surable functions with minimal p-weak upper gradients gu1and gu2 respectively. Then,

gmin{u1,u2} = gu1·1{u1≤u2} + gu2·1{u2<u1}, (2.12)
gmax{u1,u2} = gu1·1{u1>u2} + gu2·1{u2≥u1} (2.13)

pointwise almost everywhere in X .

□

Combining this Proposition with the fact that gu = g−u and with the definition of modulus,
|u| := max{u,−u}, we have that for u : X → R with a p-integrable p-weak upper gradient,
gu = g|u|. It is worth to remark that Proposition 2.2.20 does not assert that the functions
on the right hand sides of (2.12) and (2.13) are the minimal upper gradients of min {u1, u2}
and max {u1, u2} respectively; the statement actually holds only for Borel representatives
of these functions.

2.2.21 Proposition [HKST, Proposition 6.3.28]. Given a Banach space V, assume
that u : X → V and m : X → R are measurable functions that are absolutely continuous
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on p-almost every compact rectifiable curve in X . Assume also that g and h are p-weak
upper gradients of u and m respectively. Then, every Borel representative of |m|g + |u|h
is a p-weak upper gradient of mu : X → V and, in particular, if |m|g + |u|h ∈ Lp(X , µ),
one has

gmu ≤ |m|g + |u|h

almost everywhere in X .

□

2.2.22 Proposition [HKST, Proposition 6.3.29]. If u : X → Y is absolutely contin-
uous on p-almost every rectifiable curve in X and if there exists c ∈ Y such that u ≡ c
almost everywhere in X , then the set {x ∈ X , u(x) ̸= c} is p-exceptional. The same holds,
in particular, if u : X → Y has a p-integrable p-weak upper gradient.

□

2.2.23 Proposition. Let (ui)i∈N be a sequence of functions, ui : X → Y, with a cor-
responding sequence of p-integrable p-weak upper gradients (gi)i∈N. Suppose there exist
u : X → Y and a p-exceptional set E ⊂ X such that limi→∞ ui(x) = u(x) for every
x ∈ X \E; suppose also there exists a Borel function g : X → [0,∞] such that gi → g in
Lp(X ) as i → ∞.
Then, g is ap-weak upper gradient of u.

Proof. Combining the hypotheses with Fuglede’s Lemma, we find that p-almost every
compact rectifiable curve γ in X is such that:

i) each pair (ui, gi) satisfies the upper gradient condition (2.7) on γ;

ii) γ does not pass through E;

iii) lim
i→∞

´
γ gids =

´
γ gds.

Given such a curve γ : [a, b] → X , one has

dY
(
u(γ(a)), u(γ(b)

)
= lim

i→∞
dY (ui(γ(a)), ui(γ(b))) ≤ lim

i→∞

ˆ
γ
gids.

Applying iii), our claim follows.

□
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2.3 Newton-Sobolev Spaces N1,p(X )

Here we suppose that (X , d, µ) is a metric measure space, Y is a Banach space and p ∈
[1,∞[, unless otherwise stated.
In the classic, Euclidean theory, the Sobolev-Dirichlet class D1,p(Ω), Ω ⊂ Rn open set,
is defined as the class of locally integrable functions in Ω with distributional - or, weak -
derivatives in Lp(Ω), equipped with the semi-norm

∥u∥D1,p(Ω) :=
(ˆ

Ω
|∇u|p dx

) 1
p

.

∥·∥D1,p is just a semi-norm and not a norm because it vanishes on (locally) constant
functions which may not be identically zero.

In the metric setting, the notion of upper gradient allows us to extend the definition of
Dirichlet space in a straightforward way:

2.3.1 Definition. The Sobolev-Dirichlet class D1,p(X ,Y) consists of all the measurable
functions u : X → Y with a p-integrable p-weak upper gradient in X .
D1,p(X ,Y) is a vector space and we shall endow it with the semi-norm

∥u∥D1,p(X ,Y) := ∥gu∥Lp(X ) , (2.14)

where gu is the minimal p-weak upper gradient of u. When Y = R, we shall omit it from
the notation.

2.3.2 Remark. The above characterization coincides with the classical one when u is
defined on any open set Ω ⊂ Rn; we refer to [HKST, Proposition 7.1.2] for a proof of this
statement.

2.3.3 Lemma. If u ∈ D1,p(X ,Y) and v : X → Y is such that u = v outside a p-exceptional
set, then v is in D1,p(X ,Y) as well. Conversely, given two functions in D1,p(X ,Y) which
agree almost everywhere, then they agree outside a p-exceptional set.

Proof. By assumption, the set E := {x ∈ X , u(x) ̸= v(x)} is p-exceptional; moreover,
every p-integrable p-weak upper gradient of u is such for v as well, thus the first claim
follows.
Now assume u, v ∈ D1,p(X ,Y) are equal almost everywhere, so that E has measure zero.
Since u − v has a p-integrable p-weak upper gradient, it follows from Proposition 2.2.22
that E is p-exceptional.

□

The next result is just a simple application of the remarks given after Proposition 2.2.20:
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2.3.4 Lemma [HKST, Lemma 7.1.7]. If u ∈ D1,p(X ,Y), then |u| ∈ D1,p(X ) as well
and

∥|u|∥D1,p(X ) = ∥u∥D1,p(X ,Y) .

□

2.3.5 Proposition [HKST, Proposition 7.1.8]. Suppose u1, u2 ∈ D1,p(X ) and let
gu1 , gu2 be their respective minimal p-weak upper gradients. Then, the following hold
pointwise almost everywhere in X :

gmin{u1,u2} = gu1·1{u1≤u2} + gu2·1{u2<u1}, (2.15)
gmax{u1,u2} = gu1·1{u1>u2} + gu2·1{u2≥u1}. (2.16)

In particular, for u ∈ D1,p(X ) and t ∈ R one has gut ≤ gu, where ut ∈ D1,p(X ) is either
min {u, t} or max {u, t}.

□

As for Proposition 2.2.20, the right hand sides of (2.15) and (2.16) cannot be considered as
the minimal p-weak upper gradients of min {u1, u2} and max {u1, u2} respectively, since
they may not be Borel regular; however, it is possible to modify them on sets of zero
measure, finding Borel representatives for which the above identity is satisfied.

We shall not discuss further Sobolev-Dirichlet classes here, as what we already said is
enough to introduce first-order Newton-Sobolev spaces in the present setting. An alterna-
tive characterization of Sobolev-Dirichlet classes will be given later in Chapter 3 in terms
of curves defined in the space of probability measures, following the approach of the works
by L. Ambrosio, N. Gigli and G. Savaré ([AGS2], [AGS3], [AGS4]).

Given (X , d, µ), Y and p as above, let us denote by Ñ1,p(X ,Y) the collection of all p-
integrable functions u with an upper gradient in Lp(X ); in other words,

Ñ1,p(X ,Y) := D1,p(X ,Y) ∩ Lp(X ,Y).

The above definition has to be intended in terms of functions, not just equivalence classes.
Ñ1,p(X ,Y) is a vector space and it will be endowed with the semi-norm

∥u∥Ñ1,p(X ,Y) := ∥u∥Lp(X ,Y) + ∥gu∥Lp(X ) , (2.17)

gu denoting the minimal p-weak upper gradient of u. Given that a function u has an upper
gradient in Lp(X ) if and only if it has a p-weak upper gradient in Lp(X ), by Lemma 2.2.2
the above semi-norm can be equivalently rewritten as

∥u∥Ñ1,p(X ,Y) := ∥u∥Lp(X ,Y) + inf ∥g∥Lp(X ) , (2.18)

where the infimum is taken over all upper gradients of u.
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It is not difficult to see that ∥·∥Ñ1,p(X ,Y) is not a norm, in general: if E ⊂ X is a non-
empty p-exceptional set of measure zero, and if 0 ̸= c ∈ Y, then u := c·1E is a non-zero
function from X to Y but ∥u∥Ñ1,p(X ,Y) = 0.

2.3.6 Definition. The Newton-Sobolev space N1,p(X ,Y) is the normed space of equiva-
lence classes of functions in Ñ1,p(X ,Y), where u1 ∼ u2 if and only if ∥u1 − u2∥Ñ1,p(X ,Y) =
0. In other words,

N1,p(X ,Y) := Ñ1,p(X ,Y)
/{

u ∈ Ñ1,p(X ,Y), ∥u∥Ñ1,p(X ,Y) = 0
}
. (2.19)

We shall write ∥u∥N1,p(X ,Y) for the quotient norm. As for Sobolev-Dirichlet classes, when
Y = R we shall omit it from the notation.

2.3.7 Remark. For any subset E ⊂ X , the restricted measure µE gives us the corre-
sponding metric measure space (E, d, µE); it follows from the definitions that the restric-
tion operator u ↦→ u|E yields a bounded operator from Ñ1,p(X ,Y) to Ñ1,p(E,Y) such
that

∥u|E∥Ñ1,p(E,Y) ≤ ∥u∥Ñ1,p(X ,Y) . (2.20)

Passing to the quotient norm, we also have

∥u|E∥N1,p(E,Y) ≤ ∥u∥N1,p(X ,Y) , (2.21)

the inequality being of course intended in terms of equivalence classes.

2.3.8 Definition. We introduce Ñ1,p
loc (X ,Y) as the vector space of functions u : X → Y

with the property that for every x ∈ X there exists a neighborhood Ux in X such that
u ∈ N1,p (Ux,Y). Any two functions u1, u2 ∈ Ñ1,p

loc (X ,Y) will be said equivalent if every
x ∈ X has a neighborhood Ux (which, by the above remark, can be assumed to be open)
such that the restrictions u1|Ux and u2|Ux determine the same element in N1,p (Ux,Y).
The local Newton-Sobolev space N1,p

loc (X ,Y) is the vector space of equivalence classes of
functions in Ñ1,p

loc (X ,Y), under the same equivalence relation as in Definition 2.3.6.

2.3.9 Lemma. Two functions u1, u2 ∈ Ñ1,p
loc (X ,Y) determine the same element in

N1,p
loc (X ,Y) if and only if u1 − u2 = 0 in N1,p(X ,Y).

Proof. We just need to show that a function u : X → Y determines the zero element in
N1,p

loc (X ,Y) if and only if ∥u∥Ñ1,p(X ,Y) = 0.

If ∥u∥Ñ1,p(X ,Y) = 0, by (2.20) u determines the zero element in N1,p
loc (X ,Y), so we pass

directly to the converse implication assuming that u = 0 in N1,p
loc (X ,Y). Then, the set

E = {x ∈ X , u(x) ̸= 0} has measure zero by [HKST, Lemma 3.3.31]; we wish to show that
E is also p-exceptional.
Fix x ∈ X and denote by Ux a neighborhood of x such that u|Ux = 0 in N1,p (Ux,Y);
by Lemma 2.3.3, E ∩ Ux is p-exceptional and this implies, by Lemma 2.1.13, that E
itself is p-exceptional. Consequently, g ≡ 0 is a p-weak upper gradient of u and then
∥u∥Ñ1,p(X ,Y) = 0 as required.
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□

The following Proposition summarizes what we have discussed so far and its proof is an
easy byproduct of the previous Definitions and Lemmata.

2.3.10 Proposition [HKST, Proposition 7.1.31]. Given u ∈ Ñ1,p
loc (X ,Y) and a func-

tion v : X → Y which agrees with u outside a µ-negligible p-exceptional set, one has that
v ∈ Ñ1,p

loc (X ,Y) and the two functions determine the same element in N1,p
loc (X ,Y). If,

moreover, u ∈ Ñ1,p (X ,Y), then v ∈ Ñ1,p (X ,Y) as well and the two functions determine
the same element in N1,p (X ,Y).
Conversely, if any two functions in Ñ1,p

loc (X ,Y) agree almost everywhere, then they coincide
outside a p-exceptional set. In particular, if two µ-representative of a function in an
equivalence class of N1,p

loc (X ,Y) are both in Ñ1,p
loc (X ,Y), then they differ only in a µ-

negliglible p-exceptional set.

□

2.3.11 Remark. Every function u in N1,p (X ,Y) is also in Lp(X ,Y) by construction, and
the inclusion N1,p (X ,Y) ⊂ Lp(X ,Y) is a bounded embedding (and indeed an injection,
by the previous Proposition).

In some cases, namely those of metric spaces without non-constant rectifiable curves (for
example, totally disconnected and “snowflake” spaces), the Sobolev space N1,p reduces to
the Lebesgue space Lp; more generally, this happens if the p-modulus of the collection of
all non-constant curves in X is zero. The converse holds as well:

2.3.12 Proposition & Definition. The inclusion N1,p(X ,Y) ⊂ Lp(X ,Y) is strict if and
only if the p-modulus of the collection of all non-constant curves in X is positive.
In this case, we shall say that the Newton-Sobolev space N1,p (X ,Y) is non-trivial.

Proof. The necessary implication comes directly from the definitions; let us then pass
directly to sufficiency.
Using the subadditivity of the modulus and the fact that X can be covered by countably
many open balls Bq (xi), with the xi’s forming a countable dense subset of X and qi ∈ Q+

being fixed, we conclude that there exists an open ball B in X for which the p-modulus
of the family of curves in X with end points in B and X \B̄ respectively is positive. We
claim that the Lp function c·1B, 0 ̸= c ∈ Y, cannot have a representative in N1,p(X ,Y).
Arguing by contradiction, suppose there exists such a representative u; then there exists a
µ-negligible Borel set E ⊂ X such that u|B\E ≡ c and u|X\(B∪E) ≡ 0. Then, we can find
a path γ in X , parametrized by arc length, which passes through B\E and X \ (B ∪ E);
moreover, u is absolutely continuous on γ and γ intersects E in a set of zero length.
However, this cannot be the case since on the dense set γ\E the function u takes only
the two values 0 and c, and it takes both values on sets of positive length, thus violating
absolute continuity. The Proposition is proven.

□
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Next, we introduce the notion of Sobolev p-capacity. This tool is of fundamental impor-
tance in the present context since it allows to express p-exceptionality and Ñ1,p-equivalence
in terms of p-capacity, and it will make possible to show, in the manner of [HKST, Section
7.3] and [Sh2, Section 3], that the spaces N1,p are Banach spaces. As before, (X , d, µ) is
a metric measure space and 1 ≤ p < ∞.

2.3.13 Definition (Sobolev p-capacity). Given a set E ⊂ X , we define its p-capacity
as the (possibly infinite) quantity

Capp(E) := inf
(ˆ

X
|u|pdµ+

ˆ
X
gp

udµ
)
, (2.22)

the infimum being taken over all the functions u ∈ N1,p(X ) such that u|E ≥ 1 outside a
p-exceptional set of measure zero; such functions will be also said p-admissible or simply
admissible.

2.3.14 Remark. Of course, the above definition is well-posed since functions in N1,p(X )
are defined up to µ-negligible p-exceptional sets; then, any two equivalent functions in
N1,p(X ) are simultaneously admissible.
Without loss of generality, one may assume that admissible functions satisfy the condition
u ≥ 1 everywhere on E. Note also that, in the definition of p-capacity, the infimum can
be equivalently taken over the functions u in Ñ1,p(X ) such that u ≥ 1 on E.
When no admissible function exists for E, we set Capp(E) = ∞. Every µ-negligible p-
exceptional set has zero p-capacity: in fact, the characteristic function of such a set is an
admissible function.
The p-capacity satisfies Capp(∅) = 0 and a monotonicity property, that is, Capp (E1) ≤
Capp (E2) whenever E1 ⊂ E2; moreover, it turns out to be an outer measure:

2.3.15 Lemma. The p-capacity is a countably sub-additive set function, hence an outer
measure in X . In other words,

Capp

( ∞⋃
i=1

Ei

)
≤

∞∑
i=1

Capp (Ei) (2.23)

for any sequence of sets (Ei)i∈N in X .

Proof. To begin, we observe that the p-capacity can be equivalently defined as

Capp(E) := inf
(ˆ

X
|u|pdµ+

ˆ
X
gp

udµ
)
,

where the infimum is taken over the functions u ∈ N1,p(X ) such that 0 ≤ u ≤ 1 in
X and u|E = 1. In fact, if u ∈ N1,p(X ) is such that u|E ≥ 1, taking into account
Proposition 2.3.5 we deduce that ŭ := max {0,min {1, u}} ∈ N1,p(X ) is admissible and
∥ŭ∥N1,p(X ) ≤ ∥u∥N1,p(X ).
Let us now prove the Lemma. We assume that the right hand side of (2.23) is finite, the
opposite case being obvious.
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Fix ε > 0 and, for every i ∈ N, pick ui ∈ N1,p(X ) - pointwise defined - such that 0 ≤ ui ≤ 1
on X , ui|E = 1 and

ˆ
X
up

i dµ+
ˆ

X
gp

ui
dµ ≤ Capp (Ei) + 2−iε.

Proposition 2.3.5 grants that the functions vj := max {ui, 1 ≤ i ≤ j} are in N1,p(X ) and
v(x) := limj→∞ vj(x) is well defined for every x ∈ X . Moreover, v = 1 on the union of the
Ei’s.
Now, denote by gi = gui the minimal p-weak upper gradient of ui; again by Proposition
2.3.5, σj = max {gi, 1 ≤ i ≤ j} is a p-weak upper gradient of vj . Moreover, since

0 ≤ vp
j ≤

j∑
i=1

up
i

and

0 ≤ σp
j ≤

j∑
i=1

gp
i ,

one has

∥vj∥p
Lp(X ) +

gvj

p

Lp(X )
≤

∞∑
i=1

(
∥ui∥p

Lp(X ) + ∥gi∥p
Lp(X )

)
≤

∞∑
i=1

Capp (Ei) + ε (2.24)

for every j. The limit σ(x) := limj→∞ σj(x) is a Borel p-integrable function and σj → σ in
Lp(X ) by the Monotone Convergence Theorem. Thus, by Proposition 2.2.23 v ∈ N1,p(X )
and σ is a p-weak upper gradient for it. Moreover, v is an admissible function for ⋃∞

i=1Ei.
Now, as vj → v in Lp(X ), the estimates (2.24) imply that

Capp

( ∞⋃
i=1

Ei

)
≤ ∥v∥p

Lp(X ) + ∥σ∥P
Lp(X ) ≤

∞∑
i=1

Capp (Ei) + ε.

Letting ε → 0 gives the result. The Lemma is proven.

□

2.3.16 Proposition. A subset E ⊂ X satisfies Capp(E) = 0 if and only if it is p-
exceptional and µ(E) = 0.

Proof. The definitions imply that a µ-negligible p-exceptional set has zero p-capacity.
Indeed, the characteristic function 1E is p-integrable and admits g ≡ 0 as a p-weak upper
gradient; in other words, 1E ∈ N1,p(X ) and ∥1E∥N1,p(X ) = 0.
Now assume that Capp(E) = 0. For every i ∈ N there exists ui ∈ N1,p(X ) such that
0 ≤ ui ≤ 1 and ui|E = 1, satisfying
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∥ui∥p
Lp(X ) + ∥gui∥

p
Lp(X ) ≤ 2−i. (2.25)

Arguing as in the proof of Lemma 2.3.15, we find that for positive integers j ≥ j0 the
functions vj := min {ui, j0 ≤ i ≤ j} are in N1,p(X ) with p-weak upper gradients σj =
max {gi, j0 ≤ i ≤ j} by Proposition 2.3.5. Moreover, one has wj0(x) := limj→∞ vj(x) ∈
N1,p(X ) with p-weak upper gradient gj0 := limj→∞ σj , see Proposition 2.2.23. In particu-
lar, (2.25) implies ∥wj0∥N1,p(X ) ≤ 2−j0/p. Applying the Monotone Convergence Theorem
we find a limit function v ∈ N1,p(X ) such that ∥v∥N1,p(X ) = 0. Noting that the sequences
(wj)j∈N and (gj)j∈N are monotone increasing and decreasing respectively, by Proposition
2.3.10 we conclude that E is both µ-negligible and p-exceptional.

□

2.3.17 Corollary [HKST, Corollary 7.2.10]. Two functions in Ñ1,p(X ,Y) determine
the same element in N1,p(X ,Y) if and only if they agree outside a set of zero p-capacity.
Moreover, if two functions in Ñ1,p(X ,Y) agree almost everywhere, then they agree outside
a set of zero p-capacity.

□

2.3.18 Proposition [HKST, Proposition 7.2.12]. If X is a proper metric space (i.e.
closed and bounded subsets are compact), then

inf
U⊃E

U⊂X open

Capp(U) = 0

for every set E ⊂ X such that Capp(E) = 0.

□

We are now almost ready to show that the Newton-Sobolev space N1,p(X ,Y) is a Ba-
nach space; before doing so, we need to prove that every Cauchy sequence of N1,p(X ,Y)
functions admits a subsequence which converges in some sense.

2.3.19 Definition. A sequence of functions ui : X → Y is said to converge p-
quasiuniformly to u : X → Y if for every ε > 0 there exists a set Fε ⊂ X such that
Capp (Fε) < ε and ui → u uniformly on F c

ε .
It is clear that any p-quasiuniformly convergent sequence of functions converges pointwise
outside a set of zero p-capacity or, equivalently, outside a µ-negligible p-exceptional set.

2.3.20 Proposition. Every Cauchy sequence of functions in N1,p(X ,Y) contains a
p-quasiuniformly convergent subsequence. Moreover, the pointwise limit function is in
N1,p(X ,Y) as well and it does not depend upon the chosen subsequence.

Proof. Note that any Cauchy sequence in N1,p(X ,Y) is also a Cauchy sequence in
Lp(X ,Y); this means that any two limit functions agree almost everywhere, and combining
this fact with Proposition 2.3.10 we obtain the required independence.
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Given a Cauchy sequence inN1,p(X ,Y), choose a subsequence (ui)i∈N converging pointwise
almost everywhere to its Lp-limit ũ and such that

∥ui − ui+1∥p
Lp(X ,Y) + ∥gi+1,i∥p

Lp(X ) ≤ 2−i(p+1), (2.26)

where gi,j denotes the minimal p-weak upper gradient of ui − uj . We find out that, in
general,

gi := g1 +
i−1∑
k=1

gk+1,k

is a p-weak upper gradient of

ui = u1 +
i−1∑
k=1

(uk+1 − uk) .

Moreover,

∥gj − gj+i∥Lp(X ) ≤
j+i−1∑

k=j

∥gk+1,k∥Lp(X ) ≤
∞∑

k=j

2−k −→
j→∞

0.

Thus, the sequence of upper gradients (gi)i∈N is a Cauchy sequence in Lp(X , µ) and then
it converges in Lp(X , µ) to a non-negative Borel function g. Set

u(x) = lim
i→∞

ui(x); (2.27)

the limit exists because ui → ũ almost everywhere and one has u(x) = ũ(x) for almost
every x and, in particular, u ∈ Lp(X ,Y).
Now we consider the sets where the sequence (ui)i∈N does not have the Cauchy property,
namely

Ei :=
{
x ∈ X , |ui(x) − ui+1(x)| > 2−i

}
and define

Fj :=
∞⋃

i=j

Ei.

Outside Fj , one clearly has |ui(x) − ui+1(x)| ≤ 2−i for every i ≥ j; so (ui(x))i∈N is a
Cauchy sequence in Y and therefore it has a limit, which is u(x) as shown above. Moreover,
on the one hand

|u(x) − ui(x)| ≤ 21−i (2.28)

for all i ≥ j and x /∈ Fj ; that is, ui → u uniformly in F c
j . On the other hand, 2i |ui − ui+1| ∈

N1,p(X ) by Lemma 2.3.4 and this quantity is greater than 1 on each of the Ei’s by
construction. So by the estimate (2.26) it follows

Capp (Ei) ≤ 2ip ∥ui − ui+1∥p
Lp(X ) + 2ip ∥gi+1,i∥p

Lp(X ) ≤ 2−i.
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The sub-additivity of capacity implies

Capp (Fj) ≤
∞∑

i=j

2−i = 21−j

for every j ∈ N. This, together with (2.28), completes the proof.

□

2.3.21 Theorem. N1,p(X ,Y) is a Banach space.

Proof. Take a Cauchy sequence (ui)i∈N ⊂ N1,p(X ,Y); passing to a subsequence if
necessary, we may assume that (ui)i∈N satisfies Proposition 2.3.20 and the condition (2.26)
as well. In particular, the ui’s converge pointwise to a function u ∈ N1,p(X ,Y) outside a
µ-negligible p-exceptional set E. Since

u(x) − ui(x) =
∞∑

k=i

(uk+1(x) − uk(x))

for x ∈ Ec, and

n∑
k=i

gk+1,k −→
∞∑

k=i

gk+1,k

in Lp(X , µ) by (2.26), by Proposition 2.2.23 we have that

∞∑
k=i

gk+1,k

is a p-weak upper gradient of u− ui. Moreover, again by (2.26)

∥u− ui∥N1,p(X ,Y) ≤
∞∑

k=i

(
∥uk − uk+1∥Lp(X ,Y) + ∥gk+1,k∥LP (X )

)
≤ 2

∞∑
k=i

(
∥uk − uk+1∥p

Lp(X ,Y) + ∥gk+1,k∥p
LP (X )

) 1
p

≤ 2
∞∑

k=i

2k
(

1+ 1
p

)
≤ 4·2−i.

In other words, ui → u in N1,p(X ,Y). The Theorem is proven.

□
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2.4 Poincaré Inequalities and density of Lipschitz functions

Having the notion of upper gradient at our disposal, we can introduce Poincaré Inequalities
in the metric setting and discuss some of their consequences, the most important being a
density result for Lipschitz functions in the spaces N1,p(X ).
In the following, (X , d, µ) is a metric measure space, Y is a Banach space and p ∈ [1,∞[.

2.4.1 Definition. We say that (X , d, µ) supports a (1, p)-Poincaré Inequality if every ball
in X has positive finite measure and if there exist constants c = CP > 0 and λ ≥ 1 such
that, for every open ball B ∈ B(X ), for every u : X → R such that u ∈ L1(B,µ;R) and
every upper gradient g of u one has

 
B

|u− uB| dµ ≤ CPdiam(B)
( 

λB
gpdµ

) 1
p

,

uB denoting the integral average of u over B.
The above definition extends with no modifications to Banach-space valued functions,
apart from u being in L1(B,µ; Y) instead of L1(B,µ;R).

2.4.2 Remark. If (X , d, µ) is doubling and supports a (1, p)-Poincaré inequality for
functions attaining their values in some Banach space, then it supports a (1, p)-Poincaré
inequality for functions valued in every Banach space, see [HKST, Theorem 8.1.42].
If a space supports a (1, p)-Poincaré inequality for some p ∈ [1,∞[, then an immediate
application of Hölder’s Inequality yields the validity of a (1, q)-Poincaré inequality for all
q ≥ p.

We refer to Section 8.1 of [HKST] for a detailed discussion about Poincaré Inequalities
and their consequences; here we shall focus only on the density of Lipschitz functions
in the Newton-Sobolev spaces and on some geometric facts related with “generalized”
(q, p)-Poincaré Inequalities.

The following result is a re-adaptation of [HKST, Theorem 8.2.1]:

2.4.3 Theorem. If (X , d, µ) is a doubling metric measure space supporting a (1, p)-
Poincaré inequality, p ∈ [1,∞[, then Lip(X ,Y) is dense in N1,p(X ,Y).

Proof. Assume u ∈ N1,p(X ,Y). Since Newton-Sobolev functions with bounded support
are dense in N1,p(X ,Y) by [HKST, Proposition 7.1.35], we may take u to be zero outside
some given ball. Also, by passing to a representative we may assume u to be pointwise
defined everywhere.
Let Mf denote the Hardy-Littlewood maximal function of f : X → Y,

Mf(x) := sup
ρ>0

 
Bρ(x)

|f(x)|dµ.

By [HKST, Theorem 8.1.49] there exists a µ-negiglible set E ⊂ X such that
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|u(x) − u(y)| ≤ Cd(x, y) (Mgp
u(x) +Mgp

u(y))
1
p , (2.29)

where gu is the minimal p-weak upper gradient of u and x, y ∈ Ec. Now, for t > 0 consider
the p-superlevel sets of Mgp

u(x), namely

Et := {x ∈ X ; Mgp
u(x) > tp} .

The estimate (2.29) entails that the restriction of u to (Et ∪ E)c is c1t-Lipschitz for some
constant c1 > 0 independent of t. By the Lipschitz extension property in [HKST, Theorem
4.1.21] there exists a c2t-Lipschitz function ut : X → Y such that ut(x) = u(x) everywhere
on (Et ∪ E)c, with c2 independent of t as well.
Consider a ball B0 ∈ B(X ) such that u(x) = 0 outside of it; then, it must be Et ⊂ 2B0
for t > 0 large enough. Indeed, if x ∈ Et ∩ (2B0)c and we consider a ball B centered at x
and such that

tp <

 
B
gp

udµ,

then since gu = 0 in (B0)c by Proposition 2.2.19, we have B ∩ B0 ̸= ∅. So B0 ⊂ 3B and
then

tp < c

 
3B
gp

udµ ≤ c

µ (B0)

ˆ
X
gp

udµ := tp0,

which gives the claim. This implies ut = u = 0 µ-almost everywhere in (2B0)c for t ≥ t0.
Since u2 is c2t-Lipschitz on X , then |u| ≤ c3t for t ≥ t0 with c3 > 0 independent of t. Thus

ˆ
X

|u− ut|p dµ =
ˆ

{u̸=ut}
|u− ut|p dµ

≤ c

ˆ
{u̸=ut}

|u|pdµ+ ctpµ ({u ̸= ut}) ,

where c > 0 does not depend on t ≥ t0. As µ ({u ̸= ut}) ≤ µ (Et), the above inequality
and the properties of maximal functions in [HKST, Proposition 3.5.15] yield ut → u in
Lp(X , µ) as t → ∞.
Next, in order to conclude we need to prove the same convergence for the minimal p-weak
upper gradients of u and ut. Let F ⊃ Et ∪E be a Borel set such that µ(F ) = µ (Et ∪ E);
then u− ut = 0 in (F )c, so applying Remark 2.2.17 and Proposition 2.2.19 one gets

gu−ut(x) ≤ (gu(x) + c2t) · 1F (x)

for µ-almost every x ∈ X . Moreover, integrating over F gives
ˆ

X
gp

u−ut
dµ ≤ c

ˆ
F
gp

udµ+ ctpµ (Et)

with c > 0 independent of t ≥ t0. This conclusion allows us to state that gu−ut → 0 in
Lp(X , µ) as t → ∞.
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In other words, we have constructed a sequence of Lipschitz functions (ut)t≥0 such that

lim
t→∞

∥u− ut∥N1,p(X ,Y) = 0.

The Theorem is proven.

□

A result similar to Theorem 2.4.3 above had already been shown in [Ch], where under the
same hypotheses the author established the density of locally Lipschitz functions inside
Sobolev spaces.
The issue will be considered again at the end of Section 3.1 in the context of “test plans”
(namely, probability measures on the spaces of absolutely continuous curves), a tool intro-
duced by in [AGS2] and [AGS3], and which later in [AGS4] allowed the authors to prove
a similar result without any structural assumptions like doubling measures and Poincaré
inequalities.

We conclude this chapter with some comments about the aforementioned “generalized”
Poincaré Inequalities. Our main reference will be Section 4.4 of [BB], which we suggest
for a more detailed discussion as well as for the proofs of the results stated below.

2.4.4 Definition. Given q ≥ 1, we say that (X , d, µ) supports a (q, p)-Poincaré Inequality
if for every ball B ∈ B(X ), every integrable function uin X and all of upper gradients g
of u, there exist constants λ ≥ 1 and CP > 0 such that

( 
B

|u− uB|q dµ
) 1

q

≤ CPdiam(B)
( 

λB
gpdµ

) 1
p

.

The next result states that, under the hypotheses of doubling measure and (q, p)-Poincaré
inequality, balls satisfy a growth rate estimate with esponent s related to the “dimension”
s which already appeared in Proposition 1.2.3:

2.4.5 Proposition [BB, Proposition 4.20]. If (X , d, µ) is a doubling metric measure
space supporting a (p, q)-Poincaré inequality for some q > p, then for all balls B =
Bρ(x), B′ = Bρ′(x′) in X with ρ′ ≤ ρ one has

µ(B′)
µ(B) ≥ C

(
ρ′

ρ

)s

(2.30)

for some constant C > 0 and s = qp/(q − p).

□

2.4.6 Theorem [BB, Theorem 4.21]. If (X , d, µ) supports a (1, p)-Poincaré inequality
with dilation factor λ and the measure µ satisfies the condition (2.30) in Proposition 2.4.5
above for some s > p, then it supports a (p∗, p)-Poincaré inequality with p∗ = sp/(s− p)
and dilation factor 2λ.
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□

2.4.7 Corollary [BB, Corollary 4.22]. Assume (X , d, µ) supports a (1, p)-Poincaré
inequality with dilation factor λ and that (2.30) holds with s > p. If u ∈ N1,p(2λB) then
u ∈ Lp∗(B) with p∗ as in Theorem 2.4.6.

□

The two results above yield the “local” embedding of N1,p into Lp∗ :

2.4.8 Corollary [BB, Corollary 4.22]. Assume (X , d, µ) supports a (1, p)-Poincaré
inequality and that (2.30) holds for some s. Let Ω ⊂ X be an open set. If s > p then
N1,p

loc (Ω) ↪→ Lp∗

loc(Ω) with p∗ as above, while s ≤ p implies N1,p
loc (Ω) ↪→ Lq

loc(Ω) for all
q ∈ [1,∞[.

□

We point out that assuming s < p allows for q = ∞ in the above embedding; moreover,
as a further byproduct of Theorem 2.4.6, one has a (q, p)-Poincaré inequality with q ≥ p
whenever (X , d, µ) is doubling and supports a (1, p)-Poincaré inequality (with dilation
factors 2λ and λ respectively).

2.4.9 Remark. At the end of Remark 2.2.17 we made clear that, in general, the p-weak
upper gradient of a function depends on the exponent p; it was proven by J. Cheeger in
[Ch] that this dependence is cancelled under the hypotheses of a doubling measure and a
(1, p)-Poincaré inequality.
As proven in [GH], the dependence on p is not an issue as well in the context of RCD(K,∞)
Spaces, which will be the natural setting of Chapter 6.
Another question we didn’t consider in the previous sections - since a detailed discussion
would go beyond the scopes of our work - is that of the reflexivity of Newton-Sobolev
spaces, so we shall give some brief comments here. Again in [Ch], it was proven that if
(X , d, µ) is doubling and supports a (1, p)-Poincaré inequality with p ∈]1,∞[, then N1,p(X )
is always reflexive. The approach presented there is slightly different from the one giving
rise to N1,p(X ), but this is not an issue thanks to the aforementioned equivalence shown
by N. Shanmugalingam in [Sh1] and [Sh2].
Reflexivity of first-order Sobolev spaces was also proven in [ACD] under the hypothesis
that (X , d, µ) is such that (supp(µ), d) is doubling with the measure µ being finite on
bounded sets.
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3 Other notions of Sobolev Spaces

In this chapter we consider two other characterizations of Sobolev Spaces in the nonsmooth
setting, making use of tools such as “test plans” and “derivations” respectively. The
discussion will eventually lead to notable results such as the density of Lipschitz functions
inside Sobolev Spaces, and the Equivalence Theorem 3.2.9.
In both Sections 3.1 and 3.2, the underlying metric measure space (X , d, µ) will not be
supposed to satisfy any particular structural assumption, like a doubling measure or a
(1, p)-Poincaré Inequality.
The following survey is based on the works of L. Ambrosio, S. Di Marino, N. Gigli and G.
Savaré; the precise references will be given inside each section.

3.1 Sobolev Spaces via Test Plans

Basically speaking, test plans are probability measures over the spaces of absolutely contin-
uous curves. This tool was first introduced in [AGS2] and [AGS3] to provide an alternative
characterization of weak upper gradients - and thus, of Sobolev spaces - in the more ab-
stract context of “extended” metric spaces, namely those where the distance between two
points may also not be finite. There the authors also proved, for p = 2, the equivalence
between the resulting notion of Sobolev spaces and the “newtonian” ones, as well as the
density in energy of Lipschitz functions. The approach was then improved in [AGS4] to
be extended for all exponents p ∈ [1,∞[.
We preferred to follow N. Gigli’s work [Gi1] which discusses the characterization of Sobolev-
Dirichlet classes via test-plans in a more concise - yet exhaustive and self-contained -
manner; we shall also refer to [Gi2] for additional comments.

Let (X , d, µ) be a complete and separable metric measure space endowed with a non-
negative, locally finite Radon measure µ.
We shall consider C ([0, 1],X ), namely the space of continuous curves equipped with the
supremum norm; since the underlying metric space is complete and separable, C ([0, 1],X )
will be complete and separable as well.

3.1.1 Definition. We define the evaluation map et : C ([0, 1],X ) → X , t ∈ [0, 1] as

et(γ) := γt = γ(t) ∀ γ ∈ C ([0, 1],X ) .

Recall that by Definition 2.1.5, a curve γ ∈ C ([0, 1],X ) is called p-absolutely continuous,
p ∈ [1,∞], if there exists f ∈ Lp (]0, 1[) such that

d (γt, γs) ≤
ˆ s

t
f(r)dr, ∀ t, s ∈ [0, 1] with t < s,

and in this case we write γ ∈ ACp([0, 1],X ).
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Recall also that by Theorem 2.1.6, to every p-absolutely continuous curve we associate the
metric derivative (or, the speed) t ↦→ |γ̇t| ∈ Lp (]0, 1[) defined as the essential infimum of
all the f ∈ Lp (]0, 1[) satisfying the above condition, and which is representable in terms
of an incremental ratio for almost every t ∈ [0, 1]:

|γ̇| (t) := lim
h→0

d (γt+h, γt)
h

.

Below, P (C([0, 1],X )) denotes the space of probability measures along continuous curves.

3.1.2 Definition. Let π ∈ P (C([0, 1],X )). We say that π has bounded compression
whenever there exists a constant c = c(π) > 0 such that

(et)# π ≤ c(π)µ ∀ t ∈ [0, 1].

Let p ∈ [1,∞[; if π has bounded compression, it is concentrated on ACp([0, 1],X ) and

ˆ ˆ 1

0
|γ̇t|p dtdπ(γ) < ∞,

then it will called a p-test plan.

With the notion of p-test plans, we are entitled to define the Sobolev-Dirichlet classes
D1,p

π (X ):

3.1.3 Definition. Let p ∈ [1,∞[ and let q be its conjugate exponent, 1
p + 1

q = 1. The
Sobolev-Dirichlet class D1,p

π (X ) consists of all Borel functions f : X → R for which there
exists g ∈ Lp(X , µ) satisfying

ˆ
|f (γ1) − f (γ0)| dπ(γ) ≤

ˆ ˆ 1

0
g (γs) |γ̇s| dsdπ(γ) (3.1)

for every q-test plan π.
Following the usual tradition, we shall say that g is a p-weak upper gradient of f .

3.1.4 Remark. Observe that Remarks 2.2.17 and 2.4.9 apply also in this case: we are not
assuming (X , d, µ) to satisfy any structural properties, so p-weak upper gradients depend
on p. In particular, since the class of q-test plans contains the one of q′-test plans for
every q ≤ q′, then we have the inclusion D1,p

π (X ) ⊂ D1,p′
π (X ) for p ≥ p′; in particular if

f ∈ D1,p
π (X ) and g is a p-weak upper gradient, then it is also a p′-weak upper gradient.

The discussions in [AGS3, Section 5.2] and [AGS4, Section 4.5] entail that for every f in
the Sobolev-Dirichlet class D1,p

π (X ) there exists a minimal g ≥ 0 in Lp(X , µ) satisfying
(3.1) ; such g will be obviously called minimal p-weak upper gradient of f and we shall
denote it by |Df |. The choice of this notation is motivated, like in [Gi1], by the fact that
the notion is given in terms of duality with speed of curves and thus it is closer to the
(dual) norm of the differential, rather than of the gradient; in other words, this definition
yields some kind of “cotangent” object.

We continue our discussion giving some important properties of the classes D1,p
π (X ).
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3.1.5 Remark. D1,p
π (X ) is a vector space. Moreover,

|D(αf + βg)| ≤ |α||Df | + |β||Dg|

µ-almost everywhere for all f, g ∈ D1,p
π (X ) and α, β ∈ R. In particular, D1,p

π (X )∩L∞(X , µ)
is an algebra and a weak Leibniz rule holds, namely

|D(fg)| ≤ |f ||Dg| + |g||Df |

µ-almost everywhere for all f, g ∈ D1,p
π ∩ L∞(X , µ).

The minimal p-weak upper gradient is also a local object, in the sense that |Df | = |Dg|
µ-almost everywhere on {f = g} for all f, g ∈ D1,p

π (X ).
Another interesting - albeit expected - property of Sobolev-Dirichlet classes is the chain
rule: if f ∈ D1,p

π (X ) and φ : R → R is a Lipschitz function, then φ ◦ f ∈ D1,p
π (X ) and

|D(φ ◦ f)| = |φ′ ◦ f ||Df |

µ-almost everywhere.

3.1.6 Definition. On D1,p
π (X ) we define the semi-norm

∥f∥
D1,p

π (X ) := ∥|Df |∥Lp(X ,µ) .

Clearly, the above does not give a norm since it vanishes on (locally) constant non-zero
functions; thus, we introduce the Sobolev space W 1,p

π (X ) as

W 1,p
π (X ) := D1,p

π ∩ Lp(X , µ)

endowed with the norm

∥f∥p

W 1,p
π (X )

:= ∥f∥Lp(X ,µ) + ∥f∥
D1,p

π (X ) .

With this definition, W 1,p
π (X ) is always a Banach space; completeness follows from [Gi1,

Proposition 2.7].

As anticipated in the comments right after Theorem 2.4.3 and at the beginning of the
present section, test-plans allow to prove the density (in energy) of Lipschitz functions in
W 1,p

π (X ):

3.1.7 Theorem. Suppose (X , d, µ) is such that µ is finite on bounded sets and let
p ∈]1,∞[. Then, for every f ∈ W 1,p

π (X ) there exists a sequence of Lipschitz functions
(fn)n∈N ⊂ W 1,p

π (X ) such that

lim
n→∞

∥fn − f∥Lp(X ,µ) = 0
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and

lim
n→∞

∥fn∥
D1,p

π (X ) = lim
n→∞

∥|Dfn|∥Lp(X ,µ) = lim
n→∞

|Dfn|


Lp(X ,µ)
= ∥f∥

D1,p
π (X ) ,

where for any g : X → R the function |Dg| : X → [0,∞] is defined to be zero on isolated
points, and

|Dg|(x) := inf
ρ>0

sup
y1 ̸=y2∈Bρ(x)

|g (y1) − g (y2)|
d (y1, y2)

elsewhere.

Proof. Let (ψ)n∈N ⊂ Lipb(X ) be a sequence of 1-Lipschitz functions with bounded
support such that 0 ≤ ψn ≤ 1 for every n and ψn ≡ 1 on Bn(x̄) for some x̄ ∈ X fixed.
If we now fix f ∈ W 1,p

π (X ), by the Dominated Convergence Theorem we get fψn → f
in Lp(X , µ) as n → ∞. Moreover, the definition of the ψn’s and Remark 3.1.5 yield
|D (fψn)| = |Df | µ-almost everywhere on Bn(x̄) by the locality of the minimal p-
weak upper gradient, and by the weak Leibniz rule |D (fψn)| ≤ |Df | + |f | so that
∥fψn∥

D1,p
π (X ) → ∥f∥

D1,p
π (X ) as n → ∞ (actually, in Remark 3.1.5 we assumed the function

to be essentially bounded, but the present case works as well since the ψn’s are bounded
and Lipschitz).
Thus, (fψn) converges in energy to f in W 1,p

π (X ) as n → ∞. As fψn ∈ W 1,p
π (X ) and has

bounded support, applying [Gi1, Proposition 2.6], the finiteness of µ on bounded sets and
a diagonalization argument along with the results in [AGS4] allows us to conclude.

□

3.2 Sobolev Spaces via Derivations. The Equivalence Theorem

In this section we shall follow S. Di Marino’s Ph.D. Thesis [Di1, Chapter 7] and his work
[Di2], where the author introduced an alternative characterization of Sobolev (and also,
BV - see Section 4.3) functions in terms of “derivations”, which allow a definition via an
integration by parts formula.
The concept of derivation is basically taken from N. Weaver’s work [We], where the a more
general class of objects is considered, namely the “metric derivations”, defined as bounded
weak-* continuous linear maps from the space Lip(X ) to some W ∗-module over L∞(X , µ)
and satisfying the Leibniz rule.
Derivations will appear again - actually with a slightly different characterization - in
Section 5.5, in the context of N. Gigli’s differential structure.

As in Section 3.1, (X , d, µ) will be a complete and separable metric measure space en-
dowed with a non-negative, locally finite Radon measure µ; moreover, we shall suppose no
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further structural assumptions to hold, like the doubling condition or the (1, p)-Poincaré
Inequality.

3.2.1 Definition. Let L0(µ) denote the class of measurable functions. By a derivation we
mean a linear map d : Lip0(X , d) → L0(µ) satisfying the Leibniz rule and a weak locality
condition, namely

i) for every f, g ∈ Lip0(X , d), d(fg) = d(f)g + fd(g);

ii) there exists g ∈ L0(µ) such that |d(f)| (x) ≤ g(x)lipaf(x) for µ-almost every
x ∈ X and for every f ∈ Lip0(X , d).

Above, lipaf(x) denotes the asymptotic Lipschitz constant of f at x,

lipaf(x) := inf
ρ>0

Lip (f,Bρ(x)) = lim
ρ→0+

Lip (f,Bρ(x)) .

The smallest function g satisfying ii) will be denoted by |d|. By Der(X ) we shall denote
the set of all derivations; d ∈ Lp(µ) has to be intended as |d| ∈ Lp(µ).

If we impose the integration by parts formula to hold, we are allowed to give the definition
of divergence as follows:

3.2.2 Definition. Given a derivation d ∈ L1
loc(µ), we define its divergence div(d) as the

operator Lip0(X ) → R given by

Lip0(X , d) ∋ f ↦−→ −
ˆ

X
d(f)dµ =

ˆ
X
fdiv(d)dµ,

whenever the above formula makes sense. We write div(d) ∈ Lp(µ) to signify that the
operator admits an integral representation via an Lp(µ) function h,

−
ˆ

X
d(f)dµ =

ˆ
X
hfdµ =

ˆ
X
fdiv(d)dµ

for every f ∈ Lip0(X , d), and in this case it we shall write, with a slight abuse of notation,
h = div(d).
When div(d) ∈ Lp(µ), then it is unique. Besides Der(X ) we shall also consider the spaces

Derp(X ) := {d ∈ Der(X ); d ∈ Lp(X , µ)}

and

Derp,q(X ) := {d ∈ Der(X ); d ∈ Lp(X , µ), div(d) ∈ Lq(X , µ)} .

By definition, Der(X ), Derp(X ) and Derp,q(X ) are real vector spaces; in particular, the
last two are also Banach spaces if we endow them with the norms
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∥d∥Derp(X ) := ∥|d|∥Lp(µ)

∥d∥Derp,q(X ) := ∥|d|∥Lp(µ) + ∥div(d)∥Lq(µ)

respectively. When both p and q are ∞, we shall write Derb (“bounded” derivations)
instead of Der∞,∞.
The domain of the divergence is the space

D(div) =
{
d ∈ Der(X ); |d| ,div(d) ∈ L1

loc(µ)
}
.

Notice that for every p, q ∈ [1,∞], one has the inclusion Derp,q(X ) ⊂ D(div).

3.2.3 Definition. We define the multiplication of a derivation by a scalar function as
follows: if d ∈ Der(X ) and u ∈ L0(µ), then ud(f)(x) := u(x) · d(f)(x) for µ-almost every
x ∈ X and for every f ∈ Lip0(X , d).

The set of derivations is closed under multiplication by scalar functions; moreover,

3.2.4 Lemma [Di1, Lemma 7.1.2]. If d ∈ Der(X ) and u ∈ L0(µ), then |ud| = |d| · |u|.
In particular, if d ∈ Derp,q(X ) and u ∈ Lipb(X , d), then ud is a derivation such that

div(ud) = udiv(d) + d(u)

and ud ∈ Derp,r(X ), with r = max {p, q}.

□

Derivations behave well with respect to locality in D(div); indeed, we have the following
result:

3.2.5 Lemma [Di1, Lemma 7.1.3]. If d ∈ D(div), then for all f, g ∈ Lip(X , d) one
has

i) d(f) = d(g) µ-almost everywhere in {f = g};

ii) d(f) ≤ |d| · lipa (f |C) µ-almost everywhere for every closed set C ⊂ X .

□

With these premises done, we can now introduce Sobolev spaces in terms of derivations:

3.2.6 Definition. Let f ∈ Lp(µ), p ∈ [1,∞[. Then f ∈ W 1,p
d (X ) if, denoting by q

the conjugate exponent of p, there exists a linear continuous operator Lf : Derq,q(X ) →
L1(X , µ) such that

ˆ
X
Lf (d)dµ = −

ˆ
X
fdiv(d)dµ (3.2)
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for all d ∈ Derq,q(X ) and Lf (hd) = hLf (d) for every h ∈ Lipb(X , d), d as above.
When p = 1, we need to ask also that Lf can be extended to an L∞-linear map in
Der∞

b := L∞ · Derb.

We check that Definition 3.2.6 is well posed showing that the map Lf is uniquely defined.

3.2.7 Remark. Fix d ∈ Derq,q(X ) and f ∈ W 1,p
d (X ). If Lf and L̃f are two different

linear maps as in the definition of W 1,p
d (X ) and we take h ∈ Lipb(X , d), by Lemma 3.2.4

hd ∈ Derq,q(X ) and by applying (3.2) and the L∞-linearity we get
ˆ

X
hLf (d)dµ =

ˆ
X
Lf (hd) = −

ˆ
X
fdiv(d)dµ,

and the same holds for L̃f as well. Moreover, as the last term does not depend on Lf ,
ˆ

X
hLf (d)dµ =

ˆ
X
hL̃f (d)dµ,

so the arbitrariness of h ∈ Lipb(X , d) is enough to conclude that Lf (d) = L̃f (d) µ-almost
everywhere. This common value will be denoted by d(f).
Of course, the arguments apply also to the case p = 1 when d ∈ Der∞

b .

As one may expect, the present framework allows for a consistent notion of p-weak upper
gradient. So, we are given the following statement:

3.2.8 Theorem & Definition [Di1, Theorem 7.1.6]. If f ∈ W 1,p
d (X ), then there

exists gf ∈ Lp(X , µ) such that

|d(f)| ≤ gf · d (3.3)

µ-almost everywhere for all d ∈ Derq,q(X ).
The smallest function gf satisfying (3.3) - in the µ-almost everywhere sense - will be called
the p-weak upper gradient of f .

□

We conclude this section with some brief comments about the equivalence between the
notions of Sobolev Spaces presented here and in Chapter 2.
As we anticipated in the introductory remarks to Section 3.1, in [AGS4] the authors -
using technical tools from the theories of optimal transportation and of gradient flows -
established that the notion of Newton-Sobolev spaces via weak upper gradients proposed
in [HKST] is analogous to the test-plan approach which had already been carried on in the
previous papers [AGS2] and [AGS3], with the corresponding gradients being essentially the
same objects (in the sense that they coincide µ-almost everywhere). Later, [Di1, Section
7.2] combined the equivalences shown in [AGS4] to prove that the use of derivations leads
to a further equivalent definition. Namely, we have the following:
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3.2.9 Theorem [Di1, Theorem 7.2.5]. If (X , d, µ) is a complete and separable metric
measure space endowed with a locally finite measure µ, then

N1,p(X ) = W 1,p
π (X ) = W 1,p

d (X ).

In particular, the respective notions of weak gradients coincide.

□
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4 Functions of Bounded Variation

Functions of bounded variation constitute the central object of our dissertation.
In accordance to Chapters 2 and 3, here we survey the theory of BV functions in the metric
setting making use of the tools already encountered: upper gradients (via the well known
relaxation procedure), test plans and derivations. Again, the discussion will culminate in
the equivalence of the definitions arising from the three approaches, established in Theorem
4.3.5 below.
BV functions will appear again in Chapter 6, where the definition will be given in the con-
text of RCD(K,∞) spaces via suitable vector fields arising from the differential structure
discussed by N. Gigli in [Gi2].
The precise references will be given inside each section of the chapter.

4.1 BV functions in the “relaxed” sense

In this section, we introduce a definition of functions of bounded variation via upper gra-
dients. This characterization first appeared in [Mi], where the author used a relaxation
procedure over sequences of locally Lipschitz functions on a metric measure space support-
ing a (1, 1)-Poincaré inequality and proved that classical results like the Coarea Formula
and the Isoperimetric Inequality have an analogous counterpart in the metric setting.
Here we shall follow [Sh3], where the relaxation procedure is performed over sequences of
N1,1(X ) functions instead of Lipschitz functions; of course, thanks to Theorem 2.4.3, this
approach is equivalent by density - assuming the space is doubling and that a Poincaré
inequality holds - to that of [Mi].

Let (X , d, µ) be a metric measure space such that µ is a non-negative Radon measure
supported in X , with the property that 0 < µ(B) < ∞ for every ball B in X .

4.1.1 Definition. A function u ∈ L1(X ) will be said of bounded variation in X , u ∈
BV (X ) if its total variation in X ,

∥Du∥ (X ) := inf
{

lim inf
k→∞

ˆ
X
guk

dµ; (uk)k∈N ⊂ N1,1(X ), uk → u in L1(X )
}
, (4.1)

is finite. The same characterization applies to any open subset of the ambient metric
space; that is, if Ω ⊂ X is open, then u ∈ L1(Ω) is in BV (Ω) if

∥Du∥ (Ω) := inf
{

lim inf
k→∞

ˆ
Ω
guk

dµ; (uk)k∈N ⊂ N1,1(Ω), uk → u in L1(Ω)
}
< ∞. (4.2)

Sometimes, the total variation may be also referred to as BV-energy.
In line with the classical, Euclidean theory, the space BV (X ) will be endowed with the
norm
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∥u∥BV (X ) := ∥u∥L1(X ,µ) + ∥Du∥ (X ),

with the obvious modifications when we consider a domain instead of the whole of X .

We wish to prove that the total variation defines a measure; in order to do so, we start by
proving that it is an outer measure (Lemma 4.1.2 below) and then make use of the well
known Theorem by E. De Giorgi and G. Letta ([DL, Theorem 5.1]) within the proof of
Theorem 4.1.4.

4.1.2 Lemma. The total variation satisfies the following properties:

i) ∥Du∥ (∅) = 0;

ii) ∥Du∥ (U) ≤ ∥Du∥ (V ) for any open sets U, V in X with U ⊆ V ;

iii) ∥Du∥ (⋃i Vi) = ∑
i ∥Du∥ (Vi) whenever {Vi}i is a pairwise disjoint family of

open subsets of X .

Proof. Since i) and ii) are direct consequences of the definition, we limit ourselves
to the discussion of iii). Recall that any Newton-Sobolev function u ∈ N1,1 (⋃i Vi) has
restrictions ui := u|Vi in N1,1 (Vi), and

ˆ⋃
i

Vi

gudµ =
∑

i

ˆ
Vi

guidµ

for every index i, so it follows that

∥Du∥
(⋃

i

Vi

)
≥
∑

i

∥Du∥ (Vi) .

The above inequality relies on the fact that, as ui gets closer to u in L1 (⋃i Vi), then ui

gets closer to u in L1 (Vi). Let us prove the opposite inequality.
For every ε > 0, we can take ui ∈ N1,1 (Vi) such that, for every i, one has

ˆ
Vi

|u− ui| dµ < 2−i−2ε and
ˆ

Vi

guidµ ≤ ∥Du∥ (Vi) + 2−i−2ε.

Setting

uε :=
∑

i

ui·1Vi

we obtain a function in N1,1 (⋃i Vi), because there are no rectifiable curves in ⋃i Vi with
endpoints in two different Vi’s (the partition being pairwise disjoint). Thus

ˆ⋃
i

Vi

|u− uε| dµ ≤
∑

i

ˆ
Vi

|u− ui| dµ ≤ ε

2

and
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ˆ⋃
i

Vi

guεdµ ≤
∑

i

ˆ
Vi

guidµ ≤ ε

2 +
∑

i

∥Du∥ (Vi) .

The first inequality implies that uε → u in L1 (⋃i Vi) as ε → 0; then,

∥Du∥
(⋃

i

Vi

)
≤ lim inf

ε→0

(
ε

2 +
∑

i

∥Du∥ (Vi)
)

=
∑

i

∥Du∥ (Vi)

as claimed.

□

4.1.3 Definition. Given A ⊂ X , we define

∥Du∥∗ (A) := inf {∥Du∥ (B); B ⊂ X open, B ⊂ A} .

By ii) in Lemma 4.1.2, when A ⊂ X is open we have ∥Du∥∗ (A) = ∥Du∥ (A). This
observation, along with Lemma 4.1.5 below, allows us to drop the ∗ in the notation even
when A is any Borel set.

4.1.4 Theorem. If u ∈ BV (X ), then ∥Du∥ is a Radon measure on X .

Proof. Let us start by recalling the aforementioned result by De Giorgi and Letta:

4.1.5 Lemma [DL, Theorem 5.1]. If ν is a non-negative function on the class of all
open subsets of X such that

i) ν(∅) = 0;

ii) if U1 and U2 are open sets such that U1 ⊆ U2, then ν (U1) ≤ ν (U2);

iii) ν (U1 ∪ U2) ≤ ν (U1) + ν (U2) for every U1, U2 ⊂ X open;

iv) ν (U1 ∪ U2) = ν (U1) + ν (U2) for every disjoint open sets U1, U2 ⊂ X ;

v) given U ⊂ X open,
ν(U) = sup

V ⋐U
V open

ν(V ),

then the Carathéodory extension - see for example [EG, Theorem 1.9] - of ν to all Borel
subsets of X gives a Borel regular outer measure on X .
Note that by A ⋐ B we shall always intend A ⊂ B and dist (A,Bc) > 0 .

To prove the statement of the Theorem, we shall verify that ν satisfies the five conditions
of Lemma 4.1.5. By Lemma 4.1.2 we already know that i), ii) and iv) hold, so we prove
iii) and v); we start with v) and then use the arguments in its proof to show the validity
of iii).
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Condition v) will be proven for bounded open sets; the proof of the general case may be
found in [Mi, Theorem 3.4].
By the monotonicity property ii), we only need to show that

∥Du∥ (Ω) ≤ sup
V ⋐Ω

V open

∥Du∥ (V )

for any open set Ω ⊂ X . Take δ > 0 and set

Ωδ := {x ∈ Ω, d (x,Ωc) > δ} .

Given 0 < δ1 < δ2 < diam(Ω)/2, let V = Ωδ1 and W = Ω\Ω̄δ2 . Note that V and W
are open subsets of Ω, and V ⋐ Ω; moreover, Ω = V ∪ W and ∂V ∩ ∂W = ∅. Then, we
consider a Lipschitz function η on Ω such that 0 ≤ η ≤ 1 on Ω, η = 1 on V \W = Ω̄δ2 ,
η = 0 on W\V = Ω\Ωδ1 , and whose Lipschitz constant is such that

Lip(η) ≤ 2
δ2 − δ1

·1V ∩W .

Now consider two functions v ∈ N1,1(V ) and w ∈ N1,1(W ) and set f = ηv + (1 − η)w; by
[BB, Lemma 2.18] we deduce that f ∈ N1,1(Ω) and

ˆ
Ω
gf dµ ≤

ˆ
V
gvdµ+

ˆ
W
gwdµ+ 2

δ2 − δ1

ˆ
V ∩W

|v − w|dµ. (4.3)

Moreover, for any h ∈ L1(Ω), using the identity h = ηh+ (1 − η)h we find
ˆ

Ω
|f − h|dµ ≤

ˆ
V

|v − h|dµ+
ˆ

W
|w − h|dµ. (4.4)

Take a sequence (vk)k∈N ⊂ N1,1(V ) such that vk → u in L1(V ) and
´

V gvk
dµ → ∥Du∥ (V )

as k → ∞; take a sequence (wk)k∈N ⊂ N1,1(W ) with the same behaviour as (vk)k∈N in
W . Now, merge the two sequences into a new sequence (uk)k∈N with the same procedure
as in the above definition of f . Using (4.4) with h = u we get

ˆ
Ω

|u− uk| dµ ≤
ˆ

V
|vk − u| dµ+

ˆ
W

|wk − u| dµ −→ 0

as k → ∞. Now, (4.3) implies

∥Du∥ (Ω) ≤ lim inf
k→∞

ˆ
Ω
guk

dµ ≤ ∥Du∥ (V ) + ∥Du∥ (W ).

Since V ⋐ Ω, we find that ∥Du∥ (Ω) satisfies also the following inequality,

∥Du∥ (Ω) ≤ sup
V ⋐Ω

V open

∥Du∥ (V ) + ∥Du∥ (W ) .
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By the above, it suffices to show that

lim
δ→0+

∥Du∥
(
Ω\Ω̄δ

)
= 0. (4.5)

First of all, we observe that the limit in (4.5) exists as, of course, ∥Du∥
(
Ω\Ω̄δ

)
acts as

a decreasing function of δ. Now we fix a decreasing sequence of positive real numbers
(δk)k∈N such that δk → 0 and for k ≥ 2 we set Vk := Ωδ2k−3\Ω̄δ2k

. Doing so, we obtain
two families, namely {V2k}k∈N and {V2k+1}k∈N, of pairwise disjoint open subsets of X ;
invoking Lemma 4.1.2, we know that

∥Du∥
( ∞⋃

k=1
V2k

)
=

∞∑
k=1

∥Du∥ (V2k) ≤ ∥Du∥ (Ω) < ∞

and

∥Du∥
( ∞⋃

k=1
V2k+1

)
=

∞∑
k=1

∥Du∥ (V2k+1) ≤ ∥Du∥ (Ω) < ∞.

Then, for ε > 0 we may find an integer kε ≥ 2 for which

∞∑
k=kε

[∥Du∥ (V2k) + ∥Du∥ (V2k+1)] < ε.

Now we repeat the above argument (which may be referred to as a “stitching argument”,
since the idea is to “stitch” Sobolev functions on an open set to Sobolev functions on
another open set in order to obtain Sobolev functions on the union of such sets) for every
k, taking a Lipschitz function ηk (a “stitching function”) on ⋃k+1

j=kε
Vj such that 0 ≤ ηk ≤ 1,

ηk = 1 on Vk\Vk−1, ηk = 0 on ⋃k−1
j=kε

Vj\Vk and with upper gradient gηk
≤ Ck·1Vk∩Vk−1 .

For each k we may find vk,j ∈ N1,1 (Vk) such that

ˆ
Vk

|vk,j − u| dµ ≤ 2−(j+k)

3 (1 + Ck)

and
ˆ

Vk

gvk,j
dµ ≤ ∥Du∥ (Vk) + 2−(j+k).

We proceed inductively, stitching the functions together. First of all, fix i ∈ N; starting
with k = kε, one stitches fk,i to fk+1,i using as stitch function ηk+1 = ηkε+1 in order to
obtain wi,k ∈ N1,1 (Vkε ∪ Vkε+1). Then,

ˆ
Vkε ∪Vkε+1

|wi,k − u| dµ ≤ 2−(i+kε)

1 + Ckε+1

and

ˆ
Vkε ∪Vkε+1

gwi,k
dµ ≤

kε+1∑
j=kε

∥Du∥ (Vj) + 21−(i+kε).
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Now, suppose that for some k ∈ N with k ≥ kε + 1 we have constructed a Sobolev map
wi,k ∈ N1,1

(⋃k
j=kε

Vj

)
such that

ˆ⋃k

j=kε
Vj

|wi,k − u| dµ ≤
k∑

j=kε

2−(i+j)

1 + Cj

and

ˆ⋃k

j=kε
Vj

gwi,k
dµ ≤

k∑
j=kε

[
∥Du∥ (Vj) + 21−(i+j)

]
.

Now we stitch fk+1,i to wi,k via ηk+1; we obtain wi,k+1 which satisfies analogous inequalities
as above. Since wi,k+1 = wi,k−1 on Vk−1 when k ≥ kε +2, letting k → ∞ we obtain a limit
function wi = limk→∞wi,k ∈ N1,1 (⋃∞

k=kε
Vk

)
such that

ˆ⋃∞
j=kε

Vj

|wi − u| dµ ≤
∞∑

j=kε

2−(i+j)

1 + Cj
(4.6)

and

ˆ⋃∞
j=kε

Vj

gwidµ ≤
∞∑

j=kε

∥Du∥ (Vj) + 22−i < ε+ 22−i. (4.7)

From inequality (4.6) we get that wi → u in L1
(⋃∞

j=kε
Vj

)
as i → ∞, while using (3.7)

we deduce

∥Du∥

⎛⎝ ∞⋃
j=kε

Vj

⎞⎠ = ∥Du∥
(
Ω\Ω̄δkε

)
≤ lim inf

i→∞

ˆ⋃∞
j=kε

Vj

gwidµ ≤ ε.

In other words, we have proven our claim:

lim
δ→0+

∥Du∥
(
Ω\Ω̄δ

)
= 0,

which completes the proof of v).
Let us now concentrate on iii). By v), for every ε > 0 there exist relatively compact open
subsets Ω′

1 ⋐ Ω1 and Ω′
2 ⋐ Ω2 such that ∥Du∥ (Ω1 ∪ Ω2) ≤ ∥Du∥ (Ω′

1 ∪ Ω′
2) + ε. Using

again a stitching argument, consider a Lipschitz function η on X such that 0 ≤ η ≤ 1 on
X , η = 1 on Ω′

1, η = 0 on Ωc
1 and

gη ≤ 1
CΩ1,Ω′

1

·1Ω1\Ω′
1
.

If we take u1 ∈ N1,1 (Ω1) and u2 ∈ N1,1 (Ω2), we obtain the stitched function w =
ηu1 + (1 − η)u2 ∈ N1,1 (Ω′

1 ∪ Ω′
2); note that, in general, w /∈ N1,1 (Ω1 ∪ Ω2) and w is not

defined in Ω1\ (Ω′
1 ∪ Ω2) because 1 − η does not vanish there and u2 is not defined there.

Thus
ˆ

Ω′
1∪Ω′

2

gwdµ ≤
ˆ

Ω1

gu1dµ+
ˆ

Ω2

gu2dµ+ 1
CΩ1,Ω′

1

ˆ
Ω1∩Ω2

|u1 − u2| dµ, (4.8)
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CΩ1,Ω′
1
> 0 depending on ε, and

ˆ
Ω′

1∪Ω′
2

|w − u| dµ ≤
ˆ

Ω1

|u1 − u| dµ+
ˆ

Ω2

|u2 − u| dµ. (4.9)

Choosing (u1,k)k∈N and (u2,k)k∈N as the optimal approximating sequences for u on Ω1
and Ω2 respectively, (4.8) tells us that the resulting sequence (wk)k∈N approximates u in
Ω′

1 ∪ Ω′
2. Therefore,

∥Du∥ (Ω1 ∪ Ω2) ≤ ε+ ∥Du∥
(
Ω′

1 ∪ Ω′
2
)

≤ ε+ lim inf
k→∞

ˆ
Ω1∪Ω2

gwk
dµ ≤ ∥Du∥ (Ω1) + ∥Du∥ (Ω2) + ε.

Letting ε → 0, iii) follows immediately.

□

4.1.6 Definition. Given a measurable set E ⊂ X , we define its perimeter in X as the
total variation of its characteristic function in X , P (E,X ) := ∥D1E∥ (X ). According to
this, E will be said of finite perimeter in X whenever 1E ∈ BV (X ).
More generally, for any F ⊂ X we set P (E,F ) := ∥D1E∥ (F ). Following a well established
tradition, sets of finite perimeter shall be also said Caccioppoli sets.
Of course, by Lemma 4.1.2 and Theorem 4.1.4, the perimeter defines a measure which we
shall obviously call the perimeter measure.
We will always prefer the notations ∥D1E∥ and ∥D1E∥ (F ) to denote the perimeter mea-
sure and the perimeter of E in F respectively.

Below, we give the statement of Coarea Formula, a classical result which illustrates the
deep connection between functions of bounded variation and sets of finite perimeter.

4.1.7 Theorem [Mi, Proposition 4.2]. If Ω ⊂ X is an open set, for any u ∈ L1
loc(Ω) it

holds
ˆ
R

∥D1Et∥ (A)dt = ∥Du∥ (A), (4.10)

for every A ⊂ Ω open, where Et := {x ∈ Ω, u(x) > t}, t ∈ R, denotes the super-level sets
of u. In particular, if u ∈ BV (X ), then for almost every t ∈ R the sets Et have finite
perimeter and (4.10) holds for every measurable set A ⊂ X .

□

4.1.8 Remark. For u ∈ BV (X ), we have the following generalization of Coarea Formula:
given any measurable function v : X → R and any measurable set A ⊂ X ,

ˆ
R

(ˆ
A
v(x)d ∥D1Et∥ (x)

)
dt =

ˆ
A
v(x)d ∥Du∥ (x).
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We continue this survey discussing some other notable properties of BV functions; for the
remaining part of this section, (X , d, µ) will be assumed to be a doubling metric measure
space supporting a (1, 1)-Poincaré inequality.

4.1.9 Remark. A weaker version of Poincaré inequality holds for BV functions. Namely,
if B ∈ B(X ) is any ball in X , with the same notation as in Definition 2.4.1 one has

ˆ
B

|u− uB| dµ ≤ CPdiam(B) ∥Du∥ (λB),

for every u ∈ BV (X ). In particular, if the homogeneous dimension s - arising from
Propositions 1.2.3 and 2.4.5 - of X is greater than 1, one finds

( 
B

|u− uB|
s

s−1 dµ
) s−1

s

≤ cdiam(B)∥Du∥ (λB)
µ(B) ,

where c > 0 is a constant depending on s and CD. See [Mi], [Am2] and the references
therein for more comments and details.

4.1.10 Theorem [Mi, Theorem 4.5]. If E ⊂ X is a set of finite perimeter and
B = Bρ(x) ∈ B(X ), then there exists a constant CI > 0 such that the following relative
isoperimetric inequality holds:

min {µ (E ∩Bρ(x)) , µ (Ec ∩Bρ(x))} ≤ CI

(
ρs

µ (Bρ(x))

) 1
s−1

(∥D1E∥ (B2λρ(x)))
s

s−1 ,

where s > 1 is as in Remark 4.1.9 and λ ≥ 1 is one of the parameters in the Poincaré
inequality. CI will be called isoperimetric constant.

□

A remarkable property of the perimeter measure, which we shall use extensively later, is its
absolute continuity with respect to the spherical Hausdorff measure Sh, built by applying
the Carathéodory construction - see for example [Fe, Section 2.10] - to the function h :
B(X ) → R defined by

h (Bρ(x)) := µ (Bρ(x))
ρ

.

Observe that Sh is doubling since µ is doubling as well.
Before stating the result, we recall the notion of “essential boundary” of a set, which in
turn arises from the concept of “density”:

4.1.11 Definition. Given a subset E ⊂ X , we define its lower density and upper density
at x ∈ X as
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Θ∗,µ(E, x) := lim inf
ρ→0+

µ (E ∩Bρ(x))
µ (Bρ(x)) and Θ∗

µ(E, x) := lim sup
ρ→0+

µ (E ∩Bρ(x))
µ (Bρ(x))

respectively.
When the two densities coincide, the common value will be denoted by Θµ(E, x).
The essential or measure-theoretic boundary of E is the set of points where both E and
its complement have positive upper density:

∂∗E :=
{
x ∈ X ; Θ∗

µ(E, x) > 0, Θ∗
µ (Ec, x) > 0

}
.

Equivalently, the essential boundary can be characterized as the complementary set of
those points where the density of E is either 0 or 1, namely ∂∗E = X \

(
E(0) ∪ E(1)

)
.

4.1.12 Theorem [Am2, Theorem 5.4] The perimeter measure ∥D1E∥ associated with
a set of finite perimeter E ⊂ X is concentrated on the set

Σγ :=
{
x ∈ X ; lim sup

ρ→0+
min

{
µ (E ∩Bρ(x))
µ (Bρ(x)) ,

µ (Ec ∩Bρ(x))
µ (Bρ(x))

}
≥ γ

}
⊂ ∂∗E,

where γ = γ (CD, λ, CI) > 0. Moreover, Sh (∂∗E\Σγ) = 0, Sh (∂∗E) < ∞ and there exist
α = α (CD, λ, CI) > 0 and a Borel function θE : X → [α,∞[ such that

∥D1E∥ (B) =
ˆ

∂∗E∩B
θE(x)dSh(x)

for every Borel set B ⊂ X . Finally, the perimeter measure is asymptotically doubling; in
other words, for ∥D1E∥-almost every x ∈ X we have

lim sup
ρ→0+

∥D1E∥ (B2ρ(x))
∥D1E∥ (Bρ(x)) < ∞.

□

Actually, in the above result the function θE can be taken to be bounded by the doubling
constant, θE ≤ CD; see [AMP, Proposition 4.5 and Theorem 4.6] for a detailed discussion.

4.1.13 Definition. Following [AMP], the metric measure space (X , d, µ) will be called
local if, given two Caccioppoli sets E and Ω with E ⊂ Ω, one has θE = θΩ Sh-almost
everywhere on ∂∗Ω ∩ ∂∗E.
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4.2 “Weak” BV functions - a description via Test-Plans

In the concluding remarks of [AGS4], the authors suggested that, as a limiting case for
q = ∞, functions of bounded variations could be described in terms of ∞-test plans.
The approach was then reprised and developed in [AD], where the equivalence with the
relaxation procedure was also shown.
The present section is taken from [AD]. The notation will be the same as in Section 3.1.

4.2.1 Definition. A measure π ∈ P (C([0, 1],X ) will be called an ∞-test plan whenever
the following two properties hold:

i) π is concentrated on AC∞([0, 1],X ) and Lip(γ) ∈ L∞ ((C([0, 1],X ),π);

ii) there exists a non-negative constant c = c(π) such that (et)# π ≤ cµ for every
t ∈ [0, 1].

A Borel set Γ ⊂ C([0, 1],X ) is said 1-negligible if π(Γ) = 0 for every ∞-test plan π;
accordingly, a property of (absolutely) continuous curves which fails outside a 1-negligible
set, will be said to hold 1-almost everywhere.

Let us denote by M±(X ) the spaces of signed Radon measure on X . With the definition
of ∞-test plans, we can characterize BV functions as follows:

4.2.2 Definition. A function f ∈ L1(X , µ) will be said of bounded total variation,
f ∈ BVπ(X ), if:

i) for 1-almost every curve γ ∈ C([0, 1],X ) one has f ◦ γ ∈ BV (]0, 1[) and

|f (γ1) − f (γ0)| ≤ ∥D (f ◦ γ)∥ (]0, 1[),

where |D(f ◦ γ)| ∈ M−(]0, 1[) is the total variation measure associated with
f ◦ γ : [0, 1] → R;

ii) there exists m ∈ M+(X ) such that for every Borel set B ⊂ X
ˆ
γ# ∥D (f ◦ γ)∥ (B)dπ(γ) ≤ c(π) ∥Lip(γ)∥L∞(π) m(B).

The least measure m satisfing the above inequality in ii) will be called the total variation
measure associated to f ; it will be denoted by ∥Df∥π.
In an equivalent way, ∥Df∥π can be seen as the supremum of the family of measures

1
c(π) ∥Lip(γ)∥L∞(π)

ˆ
γ# ∥D (f ◦ γ)∥ dπ(γ)

as π runs over ∞-test plans.
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4.3 BV functions via Derivations and an Equivalence Theorem

The notion of “derivation” has already been introduced in Section 3.2 to characterize
Sobolev spaces W 1,p

d (X , µ); following again [Di1], the same tool is used to give an alterna-
tive notion of functions of bounded variation via an integration by parts formula.

4.3.1 Definition. Given f ∈ L1(X , µ), we say that f ∈ BVd(X ) if there exists a linear
and continuous operator Lf : Derb(X ) → M(X ) such that

ˆ
X

dLf (d) = −
ˆ

X
fdiv(d)dµ (4.11)

and Lf (hd) = hLf (d) for every d ∈ Derb(X ) and h ∈ Lipb(X , d).

It is readily checked that the definition is well posed:

4.3.2 Remark. Take f ∈ BVd(X ), d ∈ Derb(X ) and suppose Lf , L̃f are two linear
continuous map as in the above definition. If h ∈ Lipb(X , d), by Lemma 2.2.4 one has
hd ∈ Derb(X ) and then, using linearity and (4.11),

ˆ
X
hdLf (d) =

ˆ
X

dLf (hd) = −
ˆ

X
fdiv(hd)dµ.

Since the same holds by definition with L̃f in place of Lf , the arbitrariness of h ∈
Lipb(X , d) gives Lf (d = L̃f (d); this common value will be denoted by Df(d).

We shall now see that the above quantity Df(d) induces a measure |Df |d, namely the
total variation of f , which has the usual representation formula in terms of suprema of
divergences of derivations.

4.3.3 Theorem & Definition [Di1, Theorem 7.3.3]. If f ∈ BVd(X ), then there exists
a finite measure ν ∈ M+(X ) such that for every Borel set B ⊂ X one has

ˆ
B

dDf(d) ≤
ˆ

B
|d|∗dν

for every d ∈ Derb(X ), where |d|∗ denotes the upper semicontinuous envelope of |d|.
The least measure which fulfills the above inequality will be called the total variation of
f , and we shall denote it by ∥Df∥d.
Moreover,

∥Df∥d (X ) = sup {|Df(d)|(X ); d ∈ Derb(X ), |d| ≤ 1} .

□
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4.3.4 Theorem [Di1, Theorem 7.3.4]. If f ∈ BVd(X ), then we have the classical
representation formula for ∥Df∥d; namely, for every open set Ω ⊂ X ,

∥Df∥d (Ω) = sup
{ˆ

Ω
fdiv(d)dµ; d ∈ Derb(X ), |b| ≤ 1, supp(d) ⋐ Ω

}
.

□

As in Chapter 3, we conclude this brief survey on BV functions in the metric setting with
some comments on the equivalence of the definitions we presented so far. In particular,
we state the following Theorem, which combines the results contained in [AD] and [Di1]
to show that the relaxation procedure, the “weak” characterization via test plans and
derivations actually yield to the same notion of the space of functions of bounded variation:

4.3.5 Theorem [Di1, Theorem 7.3.7]. If (X , d, µ) is a complete and separable metric
measure space endowed with a locally finite measure µ and f ∈ L1(X , µ), then

BV (X ) = BVπ(X ) = BVd(X ).

In particular, the respective notions of total variation coincide.

□
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5 The Differential Structure

Throughout this chapter, we shall follow closely the work of N. Gigli [Gi2] and occasionally
the previous paper [Gi1], which contains an anticipation of the theory we are going to
illustrate.
Starting from the concept of L∞(µ)-module already introduced by N. Weaver in [We], in
[Gi2] the author generalizes the discussion in order to define Lp(µ)-normed modules with
a well posed notion of (local) dimension. Then, focusing on the L2 theory, this tool will
serve to construct the “cotangent module” - a metric counterpart to the cotangent bundle
in the smooth setting - L2 (T ∗X ) of a metric measure space (X , d, µ) by means of minimal
weak upper gradients of Sobolev-Dirichlet functions in D1,2

π (X ) (which, as pointed out in
Remark 3.1.4, constitute a sort of “cotangent” object, being expressed in duality with the
speed of curves), and thus to give a definition of the “differential” of a Sobolev function.
By duality with the cotangent module, the tangent module L2(TX ) is given as a space
of “vector fields”. This machinery leads eventually to a well posed notion of the diver-
gence and of the gradient and, assuming the space to be “infinitesimally Hilbertian” (or,
equivalently, “infinitesimally strictly convex”), will allow to characterize the Laplacian as
a linear operator expressed as the divergence of the gradient.
In the following, we have preferred to generalize the approach of [Gi2] to the Lp theory,
with an arbitrary exponent p ∈ [1,∞]; in regards to this - somehow delicate - choice, we
refer the reader to the important Remark 5.5.22 at the end of the chapter.

5.1 Lp-normed modules

Consider a σ-finite measure space (X ,A, µ) where X is a set, A a σ-algebra and µ a
non-negative, locally finite Radon measure on it, with the property that there exists a
countable family (Ei)i∈N ⊂ A which covers X , such that µ (Ei) < +∞ for every i ∈ N.
Any two sets A,B ∈ A shall be declared equivalent whenever µ ((A\B) ∪ (B\A)) = 0;
B(X ) will denote the set of all equivalence classes.
Observe that by σ-finiteness, any collection C ⊂ B(X ) which is stable under countable
union admits a unique maximal set with respect to the inclusion relation.

5.1.1 Definition. Let (M , ∥·∥M ) be a Banach space endowed with a bilinear map
L∞(X , µ)×M ∋ (f, v) ↦→ f·v ∈ M such that:

(f·g)·v = f·(g·v),
1·v = v, (5.1)

∥f·v∥M ≤ ∥f∥L∞(µ) ∥v∥M ,

where v ∈ M , f, g ∈ L∞(µ) and 1 ∈ L∞(µ) denotes the function which is identically equal
to 1; under these conditions, (M , ∥·∥M ) will be said an L∞(µ)-premodule.
An L∞(µ)-premodule becomes an L∞(µ)-module if the following additional properties
hold (with 1E denoting the characteristic function of any set E):
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• Locality: for every v ∈ M and An ∈ B(X ), n ∈ N, then 1An·v = 0 for each n
implies 1∪An·v = 0;

• Gluing: for every sequence (vn) ⊂ M and sequence (An) ⊂ B(X ) such that

1Ai∩Aj ·vi = 1Ai∩Aj ·vj ∀ i, j ∈ N and lim sup
n→∞


n∑

i=1
1Ai·vi


M

< ∞

there exists v ∈ M such that

1Ai·v = 1Ai·vi ∀ i ∈ N and ∥v∥M ≤ lim inf
n→∞


n∑

i=1
1Ai·vi


M

.

A map between two L∞(µ)-modules M1 and M2, T : M1 → M2, will be said a module
morphism if it is a bounded linear map from M1 to M2 - viewed as Banach spaces -
and, moreover, if it satisfies the “locality condition” T (f·v) = f·T (v) for every v ∈ M1,
f ∈ L∞(µ).
By Hom (M1,M2) we shall denote the set of all module morphisms mapping M1 to M2.
In particular, any two morphisms T ∈ Hom (M1,M2) and S ∈ Hom (M2,M1) will be
called module isomorphisms whenever T ◦ S = IdM2 and S ◦ T = IdM1 . If isomorphisms
exist, the involved modules will be said isomorphic.
An isomorphism is an isometry provided it is norm-preserving.

5.1.2 Example. The Lp(µ) spaces of p-summable functions, and the space of Lp(vol)
vector fields on a smooth Riemannian manifold are among the basic examples of L∞

modules.

5.1.3 Definition (the set {v = 0}). By the locality property of L∞(µ)-modules, we can
define the set {v = 0} ∈ B(X ) for a generic element v of an L∞(µ)-module M . We claim
that v = 0 µ-almost everywhere on A ∈ B(X ) provided 1A · v = 0; in this case, we shall
say that v is concentrated on Ac.
Of course, given an arbitrary L∞(µ)-premodule, if v = 0 µ-almost everywhere on
{Ai}n

i=1 ⊂ B(X ), then it is zero on their union as well. Indeed, being

1∪N
n=1An

= f
N∑

n=1
1An

for some f ∈ L∞(µ) and for any fixed N ∈ N, one has

1∪N
n=1An

· v


M
=

(
f

N∑
n=1

1An

)
v


M

≤ ∥f∥L∞(µ)


N∑

n=1
1An · v


M

≤ ∥f∥L∞(µ)

N∑
n=1

∥1An · v∥M ,

which is zero by hypothesis. By locality, this property can be extended to countable unions
and then the respective condition in Definition 5.1.1 can be reformulated as follows: if v = 0
µ-almost everywhere on An for every n ∈ N, then v = 0 µ-almost everywhere on ⋃n∈NAn.
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Thus, the maximality with respect to inclusion ensures the existence of a maximal set in
B(X ) where v = 0: this set will be denoted by {v = 0} and its complement by {v ̸= 0}.

5.1.4 Definition. Given an L∞(µ)-module M , a closed subspace N ⊂ M which is
stable with respect to multiplication by L∞(µ) functions is surely an L∞(µ)-premodule
with the locality property; if it is also closed with respect to the gluing operation, then it
becomes also an L∞(µ)-module and we shall call it a submodule of M .
Basic examples of submodules are the kernel of a module morphism, and the module M |E
obtained via elements which are zero µ-almost everywhere outside of E ∈ B(X ).

5.1.5 Definition. With the notion of submodule N ⊂ M of an L∞(µ)-module, it comes
natural to define the quotient space M /N in the usual way.
It is easy to see that M /N is an L∞(µ)-premodule itself with the locality property.

5.1.6 Proposition. If M and N are two L∞(µ)-modules, then Hom(M ,N ) inherits a
canonical structure of L∞(µ)-module.

Proof. Viewing M and N as Banach spaces, Hom(M ,N ) is a Banach space as well if
we endow it with the operator norm

∥T∥ := sup
v∈M ,∥v∥M ≤1

∥T (v)∥N .

Keeping in mind that L∞(µ) is a commutative ring, then for T ∈ Hom(M ,N ) and
f ∈ L∞(µ) the operator fT : M → N defined by (fT )(v) := f(T (v)) for every v ∈ M
gives a module morphism and thus Hom(M ,N ) is an L∞(µ)-premodule.
We need to prove the locality and gluing properties. Take T ∈ Hom(M ,N ) and a
sequence (An)n∈N ⊂ B(X ) such that 1An·T = 0 for all n ∈ N. Thus, for a given
v ∈ M one has (1An·T ) (v) = 0 = 1An· (T (v)); the locality property in N implies
that 1∪nAn·T (v) = 0 and hence the arbitrariness of v gives 1∪nAn·T = 0. This proves
locality.
To conclude, consider two sequences, (Tn)n∈N ⊂ Hom(M ,N ) and (An)n∈N ⊂ B(X )
respectively, such that 1Ai∩Aj ·Ti = 1Ai∩Aj ·Tj for every i, j ∈ N and

n∑
i=1

1Ai·Ti(v)


Hom(M ,N )
≤ C

for all n ∈ N and for some C > 0. Now let v ∈ M ; using the gluing property in N for
the sequences (Tn(v))n∈N and (An)n∈N, since

n∑
i=1

1Ai·Ti(v)


N

≤


n∑
i=1

1Ai·Ti


Hom(M ,N )

∥v∥M ≤ C ∥v∥M

for every n ∈ N, then there exists w ∈ N with ∥w∥N ≤ C ∥v∥M and 1Ai·w = 1Ai·Ti(v)
for every i ∈ N. We then define T (v) := 1∪nAn·w; notice that ∥T (v)∥N ≤ ∥w∥N ≤
C ∥v∥M and that by the locality of N , T (v) is well defined, which means it does not
depend on w. Thus, the map v ↦→ T (v) is a module morphism with norm bounded by C
and such that 1An·T = 1An·Tn for every n ∈ N.
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□

The above Proposition, along with the fact that L1(µ) is naturally an L∞(µ)-module,
motivates the definition of “dual” of a module:

5.1.7 Definition. The dual module of an L∞(µ)-module M is the set

M ∗ :=Hom
(
M , L1(µ)

)
.

The following important Remark shows that the dual of L∞(µ), viewed as an L∞(µ)-
module, is exactly L1(µ), in contrast with the usual Banach space characterization; indeed
L∞(µ), as a Banach space, is in general non-separable and infinite-dimensional, while as
an L∞(µ)-module it has dimension one because every function can be written as a multiple
- always in the sense of modules - of the constant function 1.

5.1.8 Remark. Let p ∈ [1,∞]. Then, the dual module of Lp(µ) can be identified
with the space Lq(µ), 1

p + 1
q = 1. In other words, for every g ∈ Lq(µ) the map T :

Lp(µ) → L1(µ) given by T (f) = fg is a module morphism and, vice-versa, for every
T ∈ Hom

(
Lp(µ), L1(µ)

)
we can find g ∈ Lq(µ) such that T (f) = fg for every f ∈ Lp(µ).

To see this, let us first assume that p < ∞ and T ∈ Hom
(
Lp(µ), L1(µ)

)
. Thus,

Lp(µ) ∋ f ↦→
ˆ

X
T (f)dµ ∈ R

is linear and the classical Lp-Lq duality yields the existence of one - and only one - g ∈ Lq(µ)
such that

ˆ
X
T (f)dµ =

ˆ
X
fg dµ.

So, we claim that T (f) = g µ-almost everywhere: as both the functions are in L1(µ), it is
enough to show that the above equality holds on every set A ∈ B(X ). In fact:

ˆ
A
T (f)dµ =

ˆ
X
1A·T (f)dµ =

ˆ
X
T (1A·f) dµ =

ˆ
X
1A·fgdµ =

ˆ
A
fg dµ.

Now assume p = ∞. Set g := T (1) ∈ L1(µ); then it suffices to observe that T (f) =
T (f·1) = fT (1) for every f ∈ L∞(µ).

We refer to [Gi2, Example 1.2.8] for an explanation of the fact that Hom (Lp(µ), L∞(µ)) =
{0}.

It is interesting to characterize the duality of L∞(µ)-module from the point of view of
Banach spaces.

5.1.9 Remark. Consider an L∞(µ)-module M as a Banach space and denote by M ′ its
dual Banach space; by integration, we are given a map IntM ∗ : M ∗ → M ′ defined by, for
a given T ∈ M ∗and for every v ∈ M ,

69



IntM ∗(T )(v) :=
ˆ

X
T (v)dµ.

Of course, IntM ∗(T ) satisfies ∥IntM ∗(T )∥M ′ ≤ ∥T∥M ∗ ; it is also norm-preserving: indeed,
given T ∈ M ∗ and v ∈ M such that ∥v∥M ≤ 1, let f := sgn (T (v)) ∈ L∞(µ), ṽ := fv.
Thus, from ∥f∥L∞(µ) ≤ 1 we get ∥ṽ∥M ≤ ∥v∥M ≤ 1 and then

∥T (v)∥L1(µ) =
ˆ

X
|T (v)| dµ =

ˆ
X
fT (v)dµ

=
ˆ

X
T (ṽ) dµ = IntM ∗ (T ) (ṽ) ≤ ∥IntM ∗(T )∥M ′ .

At this point, the claim follows from the definition of ∥T∥M ∗ . Hence M ∗ ↪→ M ′, the
embedding being actually an isometry.
Notice that, in general, such embedding is not surjective.

5.1.10 Definition. When the map IntM ∗ is surjective, we shall say that the module M
has full-dual.

5.1.11 Definition. An Lp(µ)-normed premodule, p ∈ [1,∞], is an L∞(µ)-premodule M
with a non-negative map |·| : M → Lp(µ) such that

∥|v|∥Lp(µ) = ∥v∥M ,

|fv| = |f | |v| ,

µ-almost everywhere for every v ∈ M and f ∈ L∞(µ).
The map |·| will be said pointwise Lp(µ)-norm. When such an M is also an L∞(µ)-
module, we shall call it an Lp(µ)-normed module.
The pointwise norm is continuous from M to Lp(µ):

∥|v| − |w|∥Lp(µ) ≤ ∥|v − w|∥Lp(µ) = ∥v − w∥M

for every v, w ∈ M .

With the following Proposition we summarize the fundamental properties of Lp(µ)-normed
modules:

5.1.12 Proposition [Gi2, Proposition 1.2.12]. Let M be an Lp(µ)-normed premodule
with p ∈ [1,∞]. Then,

i) For v ∈ M and E ∈ B(X ), v = 0 µ-a.e. on E if and only if |v| = 0 µ-a.e. on
E.

ii) M has the locality property; moreover, the pointwise Lp(µ)-norm is unique
and fulfills the (pointwise) triangle inequality:

|v + w| ≤ |v| + |w| µ-a.e. ∀ v, w ∈ M .
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iii) If there exist v ∈ M and E ∈ B(X ) such that 0 ̸= χEv ̸= v, then M is not an
Lq(µ)-normed premodule for q ̸= p.

iv) If p < ∞, then the gluing property holds and M becomes an Lp(µ)-normed
module.

v) If M1 and M2 are respectively an Lp1(µ) and an Lp2(µ)-normed modules
with p1, p2 ∈ [1,∞], p1 ≥ p2, and T : M1 → M2 is a linear map, then
T ∈ Hom (M1,M2) if and only if there exists g ∈ Lq(µ) with 1

p2
− 1

p1
= 1

q such
that

|T (v)| ≤ g |v| µ-a.e., ∀ v ∈ M1.

In this case, the operator norm ∥T∥ is given by the least of ∥g∥Lq(µ) among all
the g’s as above.

□

5.1.13 Definition & Remark. We say that an element v of any Lp(µ)-normed module
M is bounded whenever its pointwise norm is an L∞(µ) function.
Observe that a separable Lp(µ)-normed module admits a countable dense subset of
bounded elements. Let us show this statement.
When p = ∞ there is nothing to prove; for p < ∞, notice that for every v ∈ M , the
sequence n ↦→ Tn(v) := 1{|v|<n}·v, n ∈ N, converges to v and then if D ⊂ M is a
countable and dense set, {Tn(v); v ∈ D, n ∈ N} is countable and dense as well. So the
claim follows.
When p < ∞ the following additional property holds:

∀ v ∈ M and (Ai)i∈N ∈ B(X ) disjoint, lim
n→∞

1∪n
i=1Aiv − 1∪∞

i=1Aiv
 = 0.

In fact,

1∪∞
i=1Aiv − 1∪n

i=1Aiv
p

M
=
1∪∞

i=1Aiv
p

M
=
ˆ

∪∞
i=1Ai

|v|p dµ,

and by Dominated Convergence the last term goes to zero when n → ∞.

5.1.14 Proposition. If M is an Lp(µ)-normed module, p < ∞, then it has full-dual.

Proof. Take h ∈ M ′ and for v ∈ M consider the map A ∋ Ā ↦→ h (1A·v), A ∈ B(X )
being the equivalence class of Ā. This map is real-valued and additive; moreover, the
previous remark yields that is is σ-additive as well. So, h (1A·v) defines a measure,
absolutely continuous with respect to µ by construction, and then by the Radon-Nikodym
Theorem there exists a unique L(v) ∈ L1(µ) such that

h (1A·v) =
ˆ

A
L(v)dµ

for every A ∈ B(X ). The map M ∋ v ↦→ L(v) ∈ L1(µ) is linear by construction; moreover,
L (1A·v) = 1A·L(v) for every v ∈ M and A ∈ B(X ) and
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ˆ
X
L(v)dµ = h(v) ≤ ∥h∥M ′ ∥v∥M

for every v ∈ M .
Now, given v ∈ M we set f := sgn (L(v)) ∈ L∞(µ) , ṽ := fv; notice that ∥ṽ∥M ≤
∥f∥L∞(µ) ∥v∥M ≤ ∥v∥M and that by the definition of f and by (#above), |L(v)| = L (ṽ),
so

∥L(v)∥L1(µ) =
ˆ

X
|L(v)| dµ =

ˆ
X

|L (ṽ)| dµ ≤ ∥h∥M ′ ∥ṽ∥M ≤ ∥h∥M ′ ∥v∥M ,

which implies the continuity of M ∋ v ↦→ L(v) ∈ L1(µ).
To conclude, using the approximation of L∞(µ) functions via simple functions and the
estimates above, we see that L(fv) = fL(v) for every v ∈ M and f ∈ L∞(µ).

□

Let us now see how the pointwise norm behaves when passing to the dual and to the
quotient modules of a given Lp(µ)-normed module:

5.1.15 Proposition. Let M be an Lp(µ)-normed module with p ∈ [1,∞]. The following
hold true:

i) If q ∈ [1,∞] is such that 1
p + 1

q = 1, then M ∗ is an Lq(µ)-normed module with
pointwise norm given by

|L|∗ := ess-sup
v∈M , |v|≤1 µ-a.e.

|L(v)| .

ii) Given a submodule N ⊂ M , the quotient M /N turns out to be an Lp(µ)-
normed module with pointwise norm given by

|[v]| := ess-inf
w∈N

|v + w| .

Proof. We limit ourselves to the proof of i) only; the second part is of no direct interest
in our work and it may be found in [Gi2, Proposition 1.2.14].
Using point v) of Proposition 5.1.12 with p2 = 1, one has ∥L∥ = ∥|L|∗∥Lq(µ) so with the
above definition of pointwise norm it follows |fL|∗ = |f | |L|∗ µ-almost everywhere for all
f ∈ L∞(µ) and L ∈ M ∗.

□

We now discuss briefly the reflexivity of modules; in what follows, M ∗∗ shall denote the
bi-dual module of any module M .
Let M be an L∞(µ)-module; there is a canonical map JM : M → M ∗∗ such that to
every v ∈ M it is associated the morphism JM (v) : M ∗ → L1(µ) given by
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JM (v)(L) := L(v), ∀L ∈ M ∗.

5.1.16 Remark. Since
ˆ

X
|JM (v)(L)| dµ =

ˆ
X

|L(v)| dµ ≤ ∥L∥M ∗ ∥v∥M

and JM (v)(fL) = fL(v), one has JM (v) ∈ M ∗∗ for every v ∈ M such that
∥JM (v)∥M ∗∗ ≤ ∥v∥M .
In general, one cannot assert that JM is an isometry, this being true for modules with
full-dual only:

5.1.17 Proposition. Suppose M is a module with full-dual; then, JM is an isometry.

Proof. Take v ∈ M ; by the Hahn-Banach Extension Theorem, there exists a functional
h ∈ M ′ with ∥h∥M ′ = 1 and h(v) = ∥v∥M . By hypothesis, there exists L ∈ M ∗ such that
h(w) =

´
X L(w)dµ for all w ∈ M ; thus, ∥L∥M ∗ = ∥h∥M ′ = 1 and

∥v∥M = h(v) =
ˆ

X
L(v)dµ =

ˆ
X

JM (v)(L)dµ ≤ ∥JM (v)∥M ∗∗ ∥L∥M ∗ = ∥JM (v)∥M ∗∗ .

□

5.1.18 Corollary. If M is an Lp(µ)-module, p < ∞, and v ∈ M , then there exists
L ∈ M ∗ such that

|L|q∗ = |v|p = L(v)

µ-almost everywhere with 1
q + 1

p = 1. When p = 1, the first equality should be read as
|L|∗ = 1{v ̸=0}.

Proof. Consider the construction of L ∈ M ∗as in the proof of Proposition 5.1.17 and
define L̃ := ∥v∥p−1

M L. Then,

∥v∥p
M =

ˆ
X
L̃(v)dµ ≤

ˆ
X

⏐⏐⏐L̃⏐⏐⏐
∗

|v| dµ ≤ ∥|v|∥Lp(µ) ∥|L|∗∥Lq(µ) = ∥v∥M

L̃
M ∗

= ∥v∥p
M .

At this point, when p > 1 it suffices to apply Hölder’s Inequality to conclude; if p = 1
instead, replacing L̃ with 1{v ̸=0}·L̃ gives the assertion.

□
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If M is an Lp(µ)-module with p < ∞, then there exists L ∈ M ∗ such that |L|q∗ = |v|p =
L(v) µ-almost everywhere, where q as usual denotes the conjugate exponent of p. In
general, when p ∈ [1,∞] the following duality property holds:

|v| = ess-sup
L∈M ∗, |L|∗≤1 µ-a.e.

|L(v)| .

5.1.19 Definition. An L∞(µ)-module with full-dual will be said reflexive when the map
JM : M → M ∗∗ is surjective.

The reflexivity of a module does not imply, in general, its reflexivity as a Banach space;
the converse instead always holds true:

5.1.20 Proposition. Suppose M is a module with full-dual which is reflexive as a Banach
space; then, it is reflexive also as a module.

Proof. The hypotheses imply that the map IntM ∗ : M ∗ → M ′ is an isomorphism of
Banach spaces, thus its “transpose” map Intt

M ∗ is an isomorphism from the the bi-dual
M ′′ of M to the Banach dual (M ∗)′ of M ∗; in particular, it is then surjective.
Denoting by IM : M → M ′′ the canonical isometry between M and its Banach bi-dual,
one obtains the following commutative diagram:

M
JM →→

IM

↓↓

M ∗∗

IntM∗∗
↓↓

M ′′ Intt
M∗→→ (M ∗)′

(5.2)

Since IntM ∗∗ is injective and, moreover, IM and Intt
M ∗ are surjective, we obtain that

JM is itself surjective.

□

5.1.21 Corollary. Any Lp(µ)-normed module, p ∈]1,∞[, is reflexive if and only it is
reflexive as a Banach space

Proof. The necessary part is given directly from the Proposition 5.1.20 and by the fact
that M has full-dual, being an Lp(µ)-normed module, see Proposition 5.1.14.
For the converse implication, consider the diagram in (5.2); we already know that both
M and M ∗ have full dual, and this yields that IntM ∗∗ is surjective and that Intt

M ∗ is
injective. Hence, if JM is surjective, so must be IM . The assertion follows.

□

All the above justifies the introduction of “Hilbert modules”, which we survey en passant
for the sake of completeness:

5.1.22 Definition. An L∞(µ)-module M will be called a Hilbert module whenever -
viewed as a Banach space - it is indeed a Hilbert space.
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It is possible to show that, as one may expect, Hilbert modules are always L2(µ)-normed:

5.1.23 Proposition [Gi2, Proposition 1.2.21]. Suppose H is an L∞(µ)-premodule
satisfying the locality property and such that, viewed as a Banach space, it is also an
Hilbert space. Then, H is L2(µ)-normed.
Moreover, for the pointwise norm it holds

|v + w|2 + |v − w|2 = 2 |v|2 + 2 |w|2

µ-a.e. for every v, w ∈ H .
As a consequence, all Hilbert modules are reflexive.

□

5.1.24 Definition & Remark. Given a Hilbert module H , we define the pointwise
inner product H ×H → L1(µ),

(v, w) ↦→ ⟨v, w⟩ := 1
2
(
|v + w|2 − |v|2 − |w|2

)
.

A polarization argument applied to the above map entails the following:

⟨f1v1 + f2v2, w⟩ = f1 ⟨v1, w⟩ + f2 ⟨v2, w⟩ ,
|⟨v, w⟩| ≤ |v| |w| ,
⟨v, w⟩ = ⟨w, v⟩,
⟨v, v⟩ = |v|2 ,

µ-a.e. for every f1, f2 ∈ L1(µ) and every v1, v2, v, w ∈ H ; see [G] for more remarks.

If we now fix v ∈ H and define a map Lv : H → L1(µ) by setting Lv(w) := ⟨v, w⟩ for
every w ∈ H , then it is clear from the above formulae that Lv is a module morphism,
i.e. Lv ∈ H ∗ and, moreover, |Lv|∗ = |v| µ-almost everywhere; in other words, we have a
Riesz-type property:

5.1.25 Theorem (Riesz Theorem for Hilbert modules). If H is a Hilbert module,
then the map Lv is a morphism of modules, bijective and an isometry. In particular, for
every l ∈ H ′ there exists a unique v ∈ H such that l = IntH ∗Lv.

Proof. The map v ↦→ Lv is linear and norm-preserving - even in the pointwise sense - as
the previous discussion shows. Of course, it is also a module morphism since

Lfv(w) = ⟨fv, w⟩ = f⟨v, w⟩ = (fLv) (w)

µ-almost everywhere for every v, w ∈ H and f ∈ L∞(µ).
Now let L ∈ H ∗ and consider the linear functional IntH ∗L ∈ H ′; an application of the
classical Riesz Theorem for Hilbert spaces yields the existence of an element v ∈ H such
that
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ˆ
X
L(w)dµ = IntH ∗L(w) = ⟨v, w⟩H

for every w ∈ H . By a polarization argument applied to the first condition in the
definition of pointwise norm for Lp(µ)-normed modules, one has

ˆ
X

⟨v, w⟩dµ = ⟨v, w⟩H

for every v, w ∈ H and then

ˆ
A
L(w)dµ =

ˆ
X
1A·L(w)dµ =

ˆ
X
L (1A·w) dµ

= ⟨v,1A·w⟩H =
ˆ

X
⟨v,1A·w⟩ dµ =

ˆ
A

⟨v, w⟩dµ

holds for every set A ∈ B(X ). Thus, L(w) = ⟨v, w⟩ µ-almost everywhere, forcing L = Lv.
Uniqueness follows as well via the same argument.

□

5.1.26 Remark. The requirement of Lp(µ)-integrability on the elements of Lp(µ)-normed
modules may be too restrictive in application where one may need to handle objects with a
different order of integrability, or just elements of a bigger space endowed with a pointwise
norm.
Any discussion on this topic would go far beyond the scopes of our work, thus we ad-
dress the reader to Section 1.3 of [Gi2], where the issue is treated via the introduction of
L0(µ)-modules (the notation being reminiscent of the fact that these objects arise from
measurable functions).

5.2 Local dimension

In this brief section we discuss the notion of local dimension for L∞(µ)-modules; we
shall see that the definition of dimension is well-posed and that the underlying metric
space admits a “dimensional decomposition” via sets for which a given module has finite
dimension, a fact which is in turn linked to the reflexivity of Lp(µ)-normed modules.

5.2.1 Definition. Given an L∞(µ)-module M and A ∈ B(X ) with µ(A) > 0, we shall
say that a finite family v1, ..., vn ∈ M is independent on A if the identity

n∑
i=1

fivi = 0

holds µ-almost everywhere on A only when fi = 0 µ-almost everywhere on A for every
i = 1, ..., n.
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5.2.2 Definition. Let M be an L∞(µ)-module, V ⊂ M any subset and A ∈ B(X ).
We denote by SpanA(V ) the span of V on A, namely the subset of M consisting of
vectors v concentrated on A with the following property: there is a disjoint sequence
(An)n∈N ⊂ B(X ) such that ⋃n∈NAn = A and, for every n elements v1,n, ..., vmn,n ∈ M
and every functions f1,n, ..., fmn,n ∈ L∞(µ), one has

1An·v =
mn∑
i=1

fi,nvi,n.

Thus SpanV (A) is the space spanned by V on A, or simply the space spanned by V when
A = X ; its closure SpanV (A) is the space generated by V (on A).
M is finitely generated if there is a finite family v1, ..., vn spanning M on the whole metric
space X ; locally finitely generated if there exists a partition (Ei)i∈N of X such that the
localization M |Ei is finitely generated for every i ∈ N.

5.2.3 Remark. The above definitions are invariant under inclusion and under countable
unions. Moreover, they are also invariant under isomorphism: if v1, ..., vn ∈ M1 are
independent on A and T : M1 → M2 is a module isomorphism, then T (v1) , ..., T (vn) are
independent on A as well, and the same holds for local generators as well.

5.2.4 Definition. A finite family {vi}n
i=1 is a basis on A ∈ B(X ) if it is independent on

A and SpanA {vi}n
i=1 = M |A.

If M has a basis of cardinality n on A, we shall say that M has dimension n on A, or
that its local dimension on A is n. Otherwise - that is, when M has not dimension n for
each n ∈ N - it has infinite dimension.

The former is actually a good definition of dimension:

5.2.5 Proposition. Suppose that M is an L∞(µ)-module and A ∈ B(X ). If {vi}n
i=1

generates M on A and {wj}m
j=1 is independent on A, then n ≥ m. In particular if both

the vi’s and the wj ’s are bases of M on A, then n = m.

Proof. By hypothesis, {vi}n
i=1 generate M on A; then, there exist sets Ai ∈ B(X ),

i ∈ N, such that A = ⋃
i∈NAi and functions fi,j ∈ L∞(µ) such that

1Ai·w1 =
n∑

j=1
fi,jvj . (5.3)

Take i ∈ N such that µ (Ai) > 0; since {wj}m
j=1 is independent on A, then w1 ̸= 0 µ-almost

everywhere on A (the opposite yielding to a contradiction). By the above identity, for some
j ∈ {1, ..., n} and some Ãi ⊂ Ai with µ (Ai) > 0 one has fi,j ̸= 0 µ-almost everywhere on
Ãi.
Up to permutations of the vi’s, we can assume j to be 1. Hence for some B1 ⊂ Ãi with
positive measure and for some c > 0 we find |fi,j | ≥ c µ-almost everywhere on B1, and
then g1 := 1B1· 1

fi,1
∈ L∞(µ).

Now, (5.3) implies

1B1·v1 = (1B1·g1)w1 −
n∑

j=2
(1B1·g1fi,j) vj .
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This identity, along with the hypothesis on {vi}n
i=1, means that {w1, v2, ..., vn} also gen-

erates M on B1.
We can now proceed by induction; let then k < n and assume we already proved the
existence of Bk ∈ B(X ) such that {w1, ..., wk, vk+1, ..., vn} generates M on Bk. Thus, by
the above argument we find B′

k ⊂ Bk with µ (B′
k) > 0 and f1, ..., fn ∈ L∞(µ) satisfying

1B′
k
·wk+1 =

k∑
j=1

fjwj +
n∑

j=k+1
fjvj .

Observe that fj cannot be zero µ-almost everywhere on B′
k for every j = k + 1, ..., n; in

fact, if this were the case we would obtain

1B′
k
·wk+1 =

k∑
j=1

fjwj

µ-almost everywhere on B′
k, contradicting the hypothesis that the wi’s are independent

on A ⊃ B′
k. In particular, one has k < n and there exist Bk+1 ⊂ B′

k with µ (Bk+1) > 0,
c > 0 such that for some j ∈ {k + 1, ..., n} one has |fj | ≥ c µ-almost everywhere on Bk+1.
Relabeling the indices if necessary, we assume j = k+ 1 and arguing as above we find out
that {w1, ..., wk+1, vk+2, ..., vn} generates M on Bk+1.
Iterating this procedure up to k = m, the proof follows.

□

Every L∞(µ)-module M admits a “dimensional decomposition”, namely a partition of the
underlying metric space into sets where the module has given dimension:

5.2.6 Proposition [Gi2, Proposition 1.4.5]. If M is an L∞(µ)-module, then there
exists a unique partition {Ei}i∈N∪{∞} of X such that:

i) For every i ∈ N such that µ (Ei) > 0, M has dimension i on Ei.

ii) For every E ⊂ E∞ with µ (E) > 0, M has infinite dimension.

□

5.2.7 Remark & Definition. The notion of basis obviously allows us to write locally
any element of a given module via coordinates: consider a local basis {vi}n

i=1 of M on A,
v ∈ M and Ai, Ãi ∈ B(X ), i ∈ N, such that

A =
⋃
i∈N

Ai =
⋃
i∈N

Ãi.

Consider also fi,j , f̃i,j ∈ L∞(µ) such that for every i ∈ N one has

1Ai·v =
n∑

j=1
fi,jvj and 1Ãi

·v =
n∑

j=1
f̃i,jvj .
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Then, fi,j = f̃i′,j µ-almost everywhere on Ai ∩ Ãi′ for every i, i′ ∈ N; this comes easily
from the fact that

n∑
j=1

(
fi,j − f̃i′,j

)
vj = 0

µ-almost everywhere on Ai ∩ Ãi′ and from the definition of local independence.
In other words, the functions fj : X → R, defined for j = 1, ..., n by fj := fi,j µ-almost
everywhere on Ai for every i ∈ N, and set equal to zero outside of A, are well defined since
they depend only on the local basis {vi}n

i=1 and on the vector v. Thus, we shall call the
fj ’s the coordinates of v on A with respect to the local basis {vi}n

i=1.

5.2.8 Proposition [Gi2, Proposition 1.4.6]. Let M be an Lp(µ)-normed module, p ∈
[1,∞], v1, ..., vn ∈ M and A ∈ B(X ). Then, SpanA {vi}n

i=1 is closed and, in particular, it is
a submodule which coincides with the intersection of all the submodules of M containing
χAv1, ..., χAvn.

□

Local dimension is preserved under duality:

5.2.9 Theorem. If M is an Lp(µ)-normed module with p < ∞, A ∈ B(X ) and the local
dimension of M on A is n ∈ N, then the local dimension of the dual module M ∗ is also n.
In particular, any locally finitely generated Lp(µ)-normed module with p < ∞ is reflexive.

Proof. Take a local basis {vi}n
i=1 of M on A and set Mi :=

SpanA {v1, ..., vi−1, vi+1, ..., vn} for i = 1, ..., n. By Proposition 5.2.8, the Mi’s are
submodules of M and then by Proposition 5.1.15 the quotient M /Mi, i = 1, ..., n, is an
Lp(µ)-normed module as well; thus, denoting by πi : M → M /Mi the natural projection,
the fact that {vi}n

i=1 is a local basis on A gives πi (vi) ̸= 0 µ-almost everywhere on A.
Now, Corollary 5.1.18 applied to M /Mi and to πi (vi) gives the existence of L̃i ∈ (M /Mi)∗

such that L̃i (πi (vi)) ̸= 0 µ-almost everywhere on A. Define Li ∈ M ∗ as Li := L̃i ◦ πi so
that Li (vj) = 0 µ-almost everywhere on A for i ̸= j and Li (vi) ̸= 0 µ-almost everywhere
on A.

Claim: {Li}n
i=1 is a basis of M ∗ on A.

Take L ∈ M ∗ and set fi := L (vi) ∈ L1(µ). Thus if we write a generic v ∈ M concentrated
on A using its coordinates with respect to the local basis {vi}n

i=1, one has

1A·L = 1A·
n∑

i=1
fiLi,

the identity being understood in (M ∗)0 - see [Gi2, section 1.3] for the definition of the
L0(µ)-modules M 0. In other words,

SpanA {Li}n
i=1 = M ∗|A.
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To prove linear independence, assume ∑i fiLi = 0 µ-almost everywhere on A for some fi ∈
L∞(µ) and compute this against vj in order to obtain fjLj (vj) = 0 µ-almost everywhere
on A; but since Lj (vj) ̸= 0, a fortiori fj = 0 µ-almost everywhere on A. The claim is
proven.

The second assertion is a direct consequence of the previous arguments and of the fact
that JM : M → M ∗∗ is an isomorphism of M with its image.

□

The next result gives an interesting criterion to characterize the elements in the dual
module via their action on a generating subspace of a given Lp(µ)-normed module:

5.2.10 Proposition. Let M be an Lp(µ)-normed module with p < ∞. Consider a
linear subspace V ⊂ M which generates M and a linear map L : V → L1(µ) such that
|L(v)| ≤ l|v| µ-almost everywhere for every v ∈ V and for some l ∈ Lq(µ), 1

p + 1
q = 1.

Then, L can be uniquely extended to a module morphism L̃ : M → L1(µ) - that is, to an
element of M ∗ - such that

⏐⏐⏐L̃⏐⏐⏐ ≤ l µ-almost everywhere.

Proof. Denote by Ṽ ⊂ M the set of elements of the form

v :=
n∑

i=1
1Ai·vi,

for some n ∈ N, Ai ∈ B(X ) and vi ∈ V for i = 1, ..., n; of course, Ṽ is a vector space.
Consider the map L̃ : Ṽ → L1(µ) given by

L̃

(
n∑

i=1
1Ai·vi

)
:=

n∑
i=1

1Ai·L (vi) .

The bound on |L(v)| grants that the definition of L̃ is well posed; in other words, the
right hand side above depends only on v and not on the particular way we represent the
element. Hence, L̃ is linear.
In the definition of v, we may assume the Ai’s to be disjoint; thus

L̃(v)


L1(µ)
=

n∑
i=1

ˆ
Ai

|L (vi)| dµ ≤
n∑

i=1

ˆ
Ai

l |vi| dµ =
ˆ

X
l|v|dµ ≤ ∥l∥Lq(µ) ∥v∥M .

This implies the continuity of L̃, which is then extendable to a continuous linear map -
still denoted by L̃ - from the closure of Ṽ to L1(µ). Taking into account the definition
of SpanX (V ) and Remark 5.1.13, one finds that the closure of Ṽ contains SpanX (V ) and
then also its closure, which is the whole of X .
The bound

⏐⏐⏐L̃(v)
⏐⏐⏐ ≤ l|v| µ-almost everywhere for every v ∈ M is a direct consequence of

the construction; invoking v) of Proposition 5.1.12 we obtain that L̃ is a module morphism,
which in turn gives its uniqueness.

□
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We conclude the section with two further interesting results about generating subsets of
Lp(µ)-normed modules.

5.2.11 Proposition [Gi2, Proposition 1.4.9]. Suppose M is an Lp(µ)-normed module
with p ∈]1,∞[ and V ⊂ M a linear subspace generating M . Then, for every L ∈ M ∗ one
has

1
q

|L|q∗ = ess-sup
v∈V

(
L(v) − 1

p
|v|p

)
µ− almost everywhere.

□

5.2.12 Proposition [Gi2, Proposition 1.4.10]. Let M be an Lp(µ)-normed module
with p < ∞ and choose a generating set V ⊂ M . If V , endowed with the induced topology,
is separable, then M is separable as well.

□

5.3 Pullback

One of the main tools in the costruction of a differential structure in differential geometry
is that of pullback bundle, which has an analogous counterpart in the non-smooth setting
of Lp(µ)-normed modules. We shall focus on the case p < ∞.
The construction of the “pullback module” φ∗M of an Lp(µ)-normed module M we
shall give below, taken from [Gi2, Section 1.6], is actually of no direct interest for our
discussion, but we chose to survey this topic since it is useful in comparison with the
“cotangent module” Lp (T ∗X ) which will be the central object of Section 5.4, and whose
characterization will be strongly reminiscent of that of φ∗M .

5.3.1 Definition & Remarks. Suppose (X1,A1, µ1) and (X2,A2, µ2) are two σ-finite
measure spaces. A map of bounded compression φ : X2 → X1 is a measurable map - more
precisely, the equivalence class with respect to µ2-almost everywhere equality - such that
φ∗µ2 ≤ Cµ1 for some C ≥ 0.
Given two σ-finite measured spaces as above, φ of bounded compression and an L1 (µ1)-
normed module M with p ∈ [1,∞[, we define the pre-pullback as the set

Ppb :=
{

{(vi, Ai)}i∈N ; (Ai)i∈N is a disjoint partition of X 2,

vi ∈ M ∀ i ∈ N, and


∑
i∈N

χAi |vi| ◦ φ


Lp(µ2)

< ∞
}
.
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On Ppb we introduce an equivalence relation by declaring {(vi, Ai)}i∈N ∼ {(wj , Bj)}j∈N
whenever |vi − wj | ◦ φ = 0 µ2-almost everywhere on {Ai ∩Bj} for every i, j ∈ N.

Denoting the equivalence classes by [(vi, Ai)i], we define the sum and the multiplication
by scalars on Ppb/∼ as follows:

[(vi, Ai)i] +
[
(wj , Bj)j

]
:=
[
(vi + wj , Ai ∩Bj)i,j

]
,

λ [(vi, Ai)i] := [(λvi, Ai)i] , λ ∈ R.

Of course, the two operations are well defined and give Ppb/∼ the structure of a vector
space.
Let Sf(µ) ⊂ L∞(µ) denote the set of simple functions already introduced in Definition
1.1.1, namely those which attain only a finite number of values; that is, functions of the
form

g =
∑

j

aj1Bj ,

(Bj)j∈N being a finite partition of X2. We define the multiplication by g ∈ Sf (µ2) ⊂
L∞ (µ2) in the following way:

g [(vi, Ai)i] :=
[
(ajvi, Ai ∩Bj)i,j

]
∈ Ppb/∼ .

The resulting operation is a bilinear map from Sf (µ2) ×Ppb/∼ into Ppb/∼. Finally, let
us consider the map |·| : Ppb/∼→ Lp (µ2) given by

|[(vi, Ai)i]| :=
∑
i∈N

1Ai |vi| ◦ φ.

It is easy to check that |·| satisfies the following conditions:

|[(vi + wj , Ai ∩Bj)i,j ]| ≤ |[(vi, Ai)i]| + |[(wj , Bj)j ]| ,
|λ [(vi, Ai)i]| = |λ| |[(vi, Ai)i]| , (5.4)
|g [(vi, Ai)i]| = |g| |[(vi, Ai)i]| ,

which hold true µ2-almost everywhere for every [(vi, Ai)i] , [(wj , Bj)j ] ∈ Ppb/∼, λ ∈ R
and g ∈ Sf (µ2). In this way, we are entitled to define a norm on Ppb/∼ by setting

∥[(vi, Ai)i]∥ := ∥|[(vi, Ai)i]|∥Lp(µ2) =


∑
i∈N

1Ai |vi| ◦ φ


Lp(µ2)

. (5.5)

5.3.2 Definition. The completion of Ppb/∼ with respect to the above norm ∥·∥, namely
φ∗M := {Ppb/∼}∥·∥, will be called the pullback module.

5.3.3 Proposition. For p < ∞, φ∗M has a canonical structure of Lp (µ2)-normed
module.
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Proof. From the third condition in (5.4) and from the definition of the norm (5.5), one
has

∥g [(vi, Ai)i]∥ ≤ ∥g∥L∞(µ2) ∥[(vi, Ai)i]∥

for every g ∈ Sf (µ2) and [(vi, Ai)i] ∈ Ppb/ ∼. By the density of simple functions in
L∞, the multiplication can be uniquely extended to a bilinear, continuous map from
L∞ (µ2) × φ∗M to φ∗M , giving rise to an L∞ (µ2)-premodule structure. Now, the first
condition in (4.3) ensures that for a Cauchy sequence

([
(vn,i, An,i)i

])
n∈N ⊂ Ppb/∼ the

sequence
(⏐⏐[(vn,i, An,i)i

]⏐⏐)
n∈N is Lp (µ2)-Cauchy. Passing to the limit as n → ∞ we are

given a map |·| : φ∗M → Lp (µ2) which, in comparison with (5.4.) and (5.5) defines in
turn a pointwise norm.
At this point, by iv) of Proposition 5.1.12 we obtain our claim.

□

5.3.4 Definition. The pullback map φ∗ : M → φ∗M is given by φ∗v := [(v,X2)]; here,
(v,X2) ∈ Ppb has to be intended as (vi, Ai)i∈N with v0 = v, A0 = X2 and vi = 0, Ai = ∅
for all i > 0.

5.3.5 Remark. φ∗M is generated - in the sense of modules - by the vector space
{φ∗v; v ∈ M }; this is a direct consequence of the definition itself.
Moreover,

φ∗ (fv) = f ◦ φ·φ∗v,

|φ∗v| = |v| ◦ φ

µ2-almost everywhere for every v ∈ M and f ∈ L∞ (µ1). The first comes on the one hand
from the definition of pullback map, and on the other hand from the equivalence relation
on Ppb if f = 1A, A ∈ B (X1); then, by linearity it holds for every simple function and an
approximation argument yields also the general case. The second condition is just given
by the definition of pointwise norm on φ∗M .

5.4 The Cotangent Module

From now on, (X , d, µ) will denote a separable, complete metric space (X , d) equipped
with a non-negative Radon measure µ.

The following construction is technically similar to the one of the pullback module, the
main and important difference being the lack of any module as a starting point.

5.4.1 Definition. We shall call pre-cotangent module the set
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Pcm :=

⎧⎨⎩{(fi, Ai)}i∈N ; (Ai)i∈N ⊂ B(X ), fi ∈ D1,p
π (X ) ∀ i ∈ N,

∑
i∈N

ˆ
Ai

|Dfi|p dµ < ∞

⎫⎬⎭ ,
where the Ai’s form a disjoint partition of X and D1,p

π (X ), 1 ≤ p < ∞, denotes the
Sobolev-Dirichlet class of order p as in Definition 3.1.3.
By Theorem 3.2.9, D1,p

π (X ) may be replaced with no ambiguity by D1,p(X ), the two
classes being equivalent; however, since the aim is to construct a metric counterpart to
a cotangent bundle, in accordance with Remark 3.1.4 we prefer to adapt our notation in
order to be coherent with the notion given in [Gi1] and [Gi2].

We introduce an equivalence relation ∼ on Pcm by stating {(fi, Ai)}i∈N ∼ {(gj , Bj)}j∈N
whenever |D (fi − gj)| = 0 µ-almost everywhere on Ai ∩Bj for all i, j ∈ N.
Pcm/∼ turns into a vector space if we define the sum and the multiplication by scalars
as

[(fi, Ai)i] +
[
(gj , Bj)j

]
=
[
(fi + gj , Ai ∩Bj)i,j

]
,

λ [(fi, Ai)i] = [(λfi, Ai)i] .

We can also define a multiplication by simple functions: if h = ∑
j 1Bj ·aj ∈ Sf(µ) with

Bj partition of X and [(fi, Ai)i] ∈ Pcm/∼, then we set

h [(fi, Ai)i] :=
[
(ajfi, Ai ∩Bj)i,j

]
.

This operation gives a bilinear map Sf(µ) × Pcm/∼→ Pcm/∼ such that 1 [(fi, Ai)i] =
[(fi, Ai)i].

5.4.2 Definition. Consider the map |·|∗ : Pcm/∼→ Lp(µ) given by

|[(fi, Ai)i]|∗ := |Dfi|

µ-almost everywhere on Ai for all i ∈ N; this map, namely the pointwise norm on Pcm/∼,
is well defined thanks to the above definition of the equivalence relation on Pcm.
Since D1,p

π (X ) is a vector space, one has the following inequalities for |·|∗:

⏐⏐[ (fi + gj , Ai ∩Bj)i,j

]⏐⏐
∗ ≤ |[(fi, Ai)i]|∗ +

⏐⏐[ (gj , Bj)j

]⏐⏐
∗,

|λ [(fi, Ai)i]|∗ = |λ| |[(fi, Ai)i]| , (5.6)
|h [(fi, Ai)i]|∗ = |h| |[(fi, Ai)i]|∗ ,

valid µ-almost everywhere for every [(fi, Ai)i] ,
[
(gj , Bj)j

]
∈ Pcm/∼, h ∈ Sf(µ) and λ ∈ R.

5.4.3 Definition. The above arguments, in particular (5.6), allow us to define a norm
∥·∥Lp(T ∗X ) : Pcm/∼→ [0,∞[ on Pcm/∼ by setting

∥[(fi, Ai)i]∥
p
Lp(T ∗X ) :=

ˆ
X

|[(fi, Ai)i]|
p dµ =

∑
i∈N

ˆ
Ai

|Dfi|p dµ.
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The completion of Pcm/∼ with respect to the norm ∥·∥Lp(T ∗X ) will be called cotangent
module and denoted by Lp (T ∗X ). Consequently, its elements will be called cotangent
vector fields or, more traditionally, 1-forms.
Lp (T ∗X ) is a Banach space and, moreover, it has a structure of Lp(µ)-normed module: if
we concentrate on the third condition in (5.6), then we see that the bilinear map (· , ·) :
Sf(µ) × Pcm/∼→ Pcm/∼, (h, [(fi, Ai)i]) ↦→ h [(fi, Ai)i], can be uniquely extended to a
bilinear map (g, ω) ↦→ gω from L∞(µ)×Lp (T ∗X ) to Lp (T ∗X ) such that |hω|∗ = |h| |ω|∗ µ-
almost everywhere for all h ∈ L∞(µ) and ω ∈ Lp (T ∗X ); this gives Lp (T ∗X ) the structure
of an Lp(µ)-normed premodule and thus, by iv) of Proposition 5.1.12, it is actually an
Lp(µ)-normed module.

5.4.4 Remark. The choice of denoting the cotangent module by Lp (T ∗X ) is just formal:
we are not given, in fact, any definition of a cotangent bundle to the metric space X . The
notation is motivated by the fact that, if X is a smooth manifold, the above construction
gives a structure which we may canonically identify with the Lp sections of the cotangent
bundle; see [Gi2, Section 2.2] for more comments.

5.4.5 Definition. Given a function f ∈ D1,p
π (X ) we define its differential df ∈ Lp (T ∗X )

as

df := [(f,X )] ∈ Pcm/∼⊂ Lp (T ∗X ) .

Here, as in Definition 5.3.4, (f,X ) stands for (fi, Ai)i∈N with f0 = f , A0 = X and fi = 0,
Ai = ∅ for every i > 0.
By construction, the differential is linear; moreover, by the definition of the pointwisenorm
on the cotangent module, one has

|df |∗ = |Df |∗ (5.7)

µ-almost everywhere for every f ∈ D1,p
π (X ).

As the next result shows, the differential is a local operator:

5.4.6 Theorem. For every f, g ∈ D1,p
π (X ), one has df = dg µ-almost everywhere on the

set {f = g}.

Proof. By the linearity of the differential, the assertion can be equivalently stated as
d (f − g) = 0 µ-almost everywhere on {f − g = 0}; this, by i) of Proposition 5.1.12, is the
same as claiming |d (f − g)|∗ = 0 µ-almost everywhere on {f − g = 0}. Thus, (5.7) and
the locality of the minimal weak upper gradient with f − g instead of f and 0 in place of
g allow us to conclude.

□

Another interesting byproduct of the construction is that the cotangent module is gener-
ated by differentials:
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5.4.7 Proposition. Lp (T ∗X ) is generated - in the sense of modules, see Definition 5.2.2
- by the space Df :=

{
df ; f ∈ W 1,p

π (X )
}

.

In particular, if W 1,p
π (X ) is separable, then Lp (T ∗X ) is separable as well.

Proof. Let us first prove that Lp (T ∗X ) is generated by
{

df ; f ∈ D1,p
π (X )

}
. Indeed,

by definition, the differential of a Sobolev function, we have df = [(f,X )] and, by the
operations defined on Pcm/∼,

n∑
i=1

1Ai·dfi = [(fi, Ai)i]

for any finite partition (Ai)n
i=1 of X and fi ∈ D1,p

π (X ). Now recall the definition of norm
on Pcm/∼. We can pass to the limit, thus extending the previous property to generic
elements [(fi, Ai)i] ∈ Pcm/∼ ; the claim then holds by the density of Pcm/∼ in Lp (T ∗X ).
If we take f ∈ D1,p

π (X ) and consider the truncations fn := min {max {f,−n} , n},
n ∈ N, an application of the chain rule for Sobolev functions yields |D (f − fn)| = 0
µ-almost everywhere on the set {|f | ≤ n}, which implies dfn → df in Lp (T ∗X ) as
n → ∞. Thus, by approximation one has that the cotangent module is generated by{

df ; f ∈ L∞ ∩D1,p
π (X , µ)

}
.

Next, assume f ∈ L∞∩D1,p
π (X , µ). Take x ∈ X and find a corresponding radius ρ = ρx > 0

for which µ (B2ρ(x)) < ∞. Setting

ηx(y) := max
{

1 − d (y,Bρ(x))
ρ

, 0
}
,

we have that ηx is a bounded, Lipschitz function in W 1,p
π (X ) and by the weak Leibniz rule

for weak upper gradients, see Remark 3.1.5, one has ηxf ∈ W 1,p
π (X ); moreover, f = ηxf

µ-almost everywhere on Bρ(x) and by Theorem 5.4.6 this means

1Bρ(x)·df = 1Bρ(x)·d (ηxf) . (5.8)

The Lindelöf property of X already mentioned in Remark 1.1.12 ensures the existence of
a countable set {xn}n∈N ⊂ X such that

⋃
n∈N

Bρn (xn) = X ,

ρn = ρn (xn), and then, applying (5.8) we find that for all n ∈ N the 1-form

ωn :=
n∑

i=1
1Bρn (xn)·df

belongs to the submodule generated by Df. Since |df − ωn|∗ ≤ |df |∗ ∈ Lp(X , µ) and
|df − ωn|∗ → 0 µ-almost everywhere as n → ∞, by dominated convergence one has
ωn → df in Lp (T ∗X ) as n → ∞: in other words, df is in the submodule generated by
Df, which turns to be the whole of Lp (T ∗X ).
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The second assertion of the Proposition comes from the fact that ∥df∥Lp(T ∗X ) ≤
∥f∥

W 1,p
π (X ) implies the separability of Df ⊂ Lp (T ∗X ). At this point, it suffices to ap-

ply Proposition 5.2.12 to conclude the proof.

□

Taking into account [Gi2, Theorem 2.2.6], the identity (5.8) above and the locality of the
differential already proven in Theorem 5.4.6, one recovers the Leibniz and Chain rules for
the differential:

5.4.8 Proposition [Gi2, Corollary 2.2.8]. For every f, g ∈ D1,p
π (X ), N ⊂ R Borel

L 1-negligible set and φ : R → R Lipschitz, the following hold µ-almost everywhere:

d (fg) = gdf + fdg,
df = 0 on f−1(N ),

d (φ ◦ f) = φ′ ◦ f df.

□

The differential is a closed operator:

5.4.9 Theorem. Consider a sequence (fn)n∈N ⊂ D1,p
π (X ) converging µ-almost everywhere

to f ∈ L0(µ) and such that (dfn)n∈N converges to ω ∈ Lp (T ∗X ) in the Lp (T ∗X ) norm.
Then, f ∈ D1,p

π (X ) and df = ω.
In particular, if (fn)n∈N ⊂ W 1,p

π (X ) satisfies fn ⇀ f and dfn ⇀ ω for some f ∈ Lp(µ)
and ω ∈ Lp (T ∗X ) in the weak topologies of Lp(µ) and Lp (T ∗X ) respectively, then f ∈
W 1,p

π (X ) and df = ω.

Proof. The hypotheses yield |dfn| → |ω| in Lp(µ); then, by (5.7) and by the lower semi-
continuity of minimal weak upper gradients - see (2.1.3) in [Gi2] - one has f ∈ W 1,p

π (X ).
Since

∥dfn − dfm∥p
Lp(T ∗X ) =

ˆ
X

|D (fn − fm)|p dµ,

again by the aforementioned property applied to the sequence (fn − fm)n∈N with m ∈ N
fixed gives

∥df − dfm∥Lp(T ∗X ) ≤ lim inf
n→∞

∥dfm − dfn∥Lp(T ∗X ) .

Now, take the limit supremum as m → ∞ and use the Cauchy behaviour of (dfn)n∈N in
Lp (T ∗X ); hence, dfn → df in Lp (T ∗X ) forcing df = ω.
For the second claim, just apply Mazur’s Lemma. The Theorem is proven.

□
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5.4.10 Remark. In [Gi2, Proposition 2.2.10], the author showed that, in the case p = 2,
the reflexivity ofW 1,2

π (X ) is equivalent to the weak compactness of the differential. In other
words, W 1,2

π (X ) is reflexive if and only if, for every bounded sequence (fn)n∈N ⊂ W 1,2
π (X )

there exist a subsequence (fnk
)k∈N and f ∈ W 1,2

π (X ) and such that fnk
⇀ f and dfnk

⇀ df
in the weak topologies of L2(µ) and L2 (T ∗X ) respectively.
Reflexivity of W 1,p

π (X ) for general p has been established in [Ke] using slightly different
techniques; see the suggested reference for a detailed discussion.

5.5 The Tangent Module. Gradients, Divergence and Laplacian

In this section, p, q ∈ [1,∞] will always denote two conjugate exponents, 1
p + 1

q = 1. By
duality with the cotangent module, we introduce the tangent module as follows.

5.5.1 Definition. The tangent module Lq(TX ) is the dual module of Lp (T ∗X ). The
elements of Lq (TX ) will be called vector fields.

5.5.2 Remark. By i) of Proposition 5.1.15, Lq(TX ) is an Lq(µ)-normed module. Fol-
lowing the well established tradition of the smooth setting, we shall keep the notation |·|
for the pointwise norm in the tangent module as well; accordingly, the duality between
ω ∈ Lp (T ∗X ) and X ∈ Lq (TX ) will be denoted by ω(X) ∈ L1(µ).

Equivalently, Lq(TX ) can be characterized in terms of “derivations”; following [Gi2], we
shall see that the two approaches coincide.
The definition we are going to give below is slightly different from S. Di Marino’s given in
Definition 3.2.1 and, in general, it turns out to be a particular case of the tool described
by N. Weaver in [We]; see Remark 5.5.22 for more comments.

5.5.3 Definition. A linear map L : D1,p
π (X ) → L1(µ) such that

|L(f)| ≤ l |Df | (5.9)

µ-almost everywhere for every f ∈ W 1,p
π (X ) and for some l ∈ Lq(µ), will be called a

derivation.

Of course, the Chain and Leibniz rules hold for derivations, since

|L (f − g)| ≤ l |D (f − g)| = 0

µ-almost everywhere on {f = g}, whence

L(f) = L(g) µ-almost everywhere on {f = g} . (5.10)
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Moreover, we clearly have

∥L(f)∥L1(µ) ≤ ∥l∥Lq(µ) ∥|Df |∥Lp(µ)

for every f ∈ D1,p
π (X ), so that the locality property (5.10) and [Gi2, Theorem 2.2.6]

applied to the module M = L1(µ) yield the desired calculus rules (Leibniz, chain).

The following result shows that vector fields and derivations actually describe the same
concept from different points of view:

5.5.4 Theorem. For every vector field X ∈ Lq(TX ), the composition X ◦ d : D1,p
π (X ) →

L1(µ) is a derivation.
Conversely, given a derivation L there exists a unique vector field X ∈ Lq(TX ) such that
the following diagram

D1,p
π (X ) d →→

L ↘↘

Lp (T ∗X )

X
↓↓

L1(µ)

is commutative.

Proof. X ◦ d is a linear map satisfying

|(X ◦ d) (f)| = |df(X)| ≤ |X||df |∗ = |X||Df |

µ-almost everywhere for all f ∈ D1,p
π (X ). As |X| ∈ Lq(µ), we get that X ◦ d fulfills (5.9)

and then it is a derivation.
Now let L be a derivation. Consider the linear map L̃ :

{
df ; f ∈ D1,p

π (X )
}

→ L1(X , µ)
given by df ↦→ L̃ (df) := L(f) and notice that (5.9), together with the identity |df |∗ =
|Df |, ensures that L̃ depends only on the differential and not on the function itself.
Moreover, ⏐⏐⏐L̃ (df)

⏐⏐⏐ ≤ l |df |∗ ,

and then by invoking Propositions 5.2.10 and 5.4.7 we conclude.

□

5.5.5 Definition. Given f ∈ D1,p
π (X ), we say that X ∈ Lq(TX ) is a gradient of f

provided

df(X) = |X|q = |df |p∗

µ-almost everywhere. Corollary 5.1.18 grants that the set of the gradients of f , Grad(f),
is not empty for every f ∈ D1,p

π (X ); in general, however, uniqueness fails.

5.5.6 Remark. Since for every X ∈ Lq(TX ) and every f ∈ D1,p
π (X ) it holds
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df(X) ≤ |df |∗ |X| ≤ 1
p

|df |p∗ + 1
q

|X|q,

then a necessary and sufficient condition for X ∈ Grad(f) is that
ˆ

X
df(X)dµ ≥

ˆ
X

(1
p

|df |p∗ + 1
q

|X|q
)

dµ.

Similarly to the cotangent module, which is generated by differentials, the tangent module
is generated by gradients:

5.5.7 Proposition. The set

V :=
{
X =

n∑
i=1

1Ai·Xi; n ∈ N, (Ai) ⊂ B(X ), Xi ∈ Grad (fi) with fi ∈ D1,p
π (X )

}

is weakly∗-dense in Lq(TX ).
In particular, if Lq(TX ) is reflexive, then is generated - in the sense of modules - by

⋃
f∈D1,p

π (X )

Grad(f).

Proof. We start by observing that, since the A′
is need not be disjoint, then V is a vector

space.
Denote by W the subset of Lp (T ∗X ) given by

W :=
{
ω =

n∑
i=1

1Ai·dfi; n ∈ N, (Ai) ⊂ B(X ) disjoint and fi ∈ D1,p
π (X )

}
.

Since Lp (T ∗X ) is generated by
{

df ; f ∈ D1,p
π (X )

}
, see Proposition 5.4.7, by Remark

5.1.13 W is strongly dense in Lp (T ∗X ).
Now given a form ω ∈ W we consider X ∈ V . By the definition of gradient,

ˆ
X
ω(X)dµ = ∥ω∥p

Lp(T ∗X ) .

Hence, the strong density of W in Lp (T ∗X ) gives that, if ω ∈ Lp (T ∗X ) is such that the
above integral is zero for all X ∈ V , then ω = 0; in other words, V is weakly∗-dense in
Lq (TX ).
Let us turn to the second claim. The reflexivity of Lp(TX ) implies that its weak∗-topology
coincides with the weak one, and then the proof follows by Mazur’s Lemma.

□
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The following Proposition summarizes the basic calculus rules for gradients:.

5.5.8 Proposition [Gi2, Proposition 2.3.6]. For f, g ∈ D1,p
π (X ) and X ∈ Grad(f) one

has

1{f=g}·X = 1{f=g}·Y

µ-almost everywhere for some Y ∈ Grad(g). Moreover, if N ⊂ R is a Borel L 1-negligible
set and φ : R → R is a Lipschitz function,

X = 0, µ− almost everywhere on f−1(N ),
φ′ ◦ fX ∈ Grad (φ ◦ f) .

□

We now survey en passant the duality properties between differentials and gradients; we
follow [Gi1, Section 3.1], as an additional reference.

5.5.9 Remark. By the properties of Sobolev-Dirichlet classes discussed in Remark 3.1.5,
given f, g ∈ D1,p

π (X ) one has that the map R ∋ ε ↦→ |D(g + εf)| is convex µ-almost
everywhere: in other words, for every ε1, ε2 ∈ R and λ ∈ [0, 1] the inequality

|D (g + (((1 − λ) ε1 + λε2) f)| ≤ (1 − λ) |D (g + ε1f)| + λ |D (g + ε2f)|

holds µ-almost everywhere. Thus, for ε1 ≤ ε2 with ε1, ε2 ̸= 0 one has

|D (g + ε1f)|p − |Dg|p

pε1|Dg|p−2 ≤ |D (g + ε2f)|p − |Dg|p

pε2|Dg|p−2 (5.11)

and then, in particular,

ess-sup
ε<0

|D (g + εf)|p − |Dg|p

pε|Dg|p−2 ≤ ess-inf
ε>0

|D (g + εf)|p − |Dg|p

pε|Dg|p−2 , (5.12)

both inequalities being intended µ-almost everywhere. Observe that ess-sup and ess-inf in
the above may be replaced by limε↑0 and limε↓0 respectively.

5.5.10 Proposition [Gi2, Proposition 2.3.7]. If f, g ∈ D1,p
π (X ), then for every X ∈

Grad(g) one has

df(X) ≤ ess-inf
ε>0

|D (g + εf)|p − |Dg|p

pε|Dg|p−2 (5.13)
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µ-almost everywhere. Moreover, there exists an element in Grad(g), say Xf,+ for which
equality holds.
Similarly, for every X ∈ Grad(g) one has

df(X) ≥ ess-sup
ε<0

|D (g + εf)|p − |Dg|p

pε|Dg|p−2 (5.14)

µ-almost everywhere and, as above, there exists Xf,− ∈ Grad(g) such that equality holds.

□

5.5.11 Proposition. The following statements are equivalent:

i) for every g ∈ D1,p
π (X ), Grad(g) has only one element;

ii) for every f, g ∈ D1,p
π (X ), (5.10) is an equality.

Proof. “i) ⇒ ii)” is a direct consequence of Proposition 5.5.10 above: indeed, the two
vector fields Xf,+, Xf,− ∈ Grad(g) for which (5.13) and (5.14) become equalities, must
coincide.
For the converse implication, fix g ∈ D1,p

π (X ) and take X1, X2 ∈ Grad(g); notice that
the hypothesis and Proposition 5.5.10 imply that for all f ∈ D1,p

π (X ) it holds df (X1) =
df (X2) µ-almost everywhere, so for ω ∈ Lp (T ∗X ) of the form

ω =
n∑

i=1
1Ai·dfi

for some fi ∈ D1,p
π (X ) and (Ai) ⊂ B(X ), i ∈ N, one also has ω (X1) = ω (X2) µ-almost

everywhere.
Since the ω’s as above form a dense subset of Lp (T ∗X ), we conclude that X1 = X2.

□

5.5.12 Definition. (X , d, µ) will be called infinitesimally strictly convex whenever the
two equivalent conditions in Proposition 5.5.11 are fulfilled.
When infinitesimal strict convexity holds, the only element in Grad(g), g ∈ D1,p

π (X ), will
be denoted with the usual notation ∇g.

With all the above tools at our disposal, we are entitled to define the notion of divergence:

5.5.13 Definition. We introduce the set

D (div) :=
{
X ∈ Lq(TX ); ∃ f ∈ Lq(µ) :

ˆ
X
fgdµ = −

ˆ
X

dg(X)dµ ∀ g ∈ W 1,p
π (X )

}
.
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Clearly, D(div) ⊂ Lq(TX ); the function f , which is unique by the density of W 1,q
π (X ) in

Lq(µ), will be called the divergence of the vector field X, f := div(X).

5.5.14 Remark. The linearity of the differential implies that D (div) is a vector space and
hence that the divergence is a linear operator. Moreover, the Leibniz rule for differentials
immediately yields the same property for the divergence as well: given X ∈ D (div) and
f ∈ L∞ ∩D1,p

π (X , µ) with |df |∗ ∈ L∞(µ), one has

fX ∈ D(div),
div(fX) = df(X) + fdiv(X).

In fact, these hypotheses give df(X) + fdiv(X) ∈ Lp(µ) and for all g ∈ W 1,q
π (X ) one has

fg ∈ W 1,p
π (X ), whence

−
ˆ

X
gfdiv(X)dµ =

ˆ
X

d(fg)(X)dµ =
ˆ

X
(gdf(X) + dg(fX)) dµ,

so the claims hold.

5.5.15 Remark. Combining [Gi2, Proposition 2.3.13] and the results contained in [Ke],
we have that if D(div) is dense in Lq(TX ) with respect to the strong topology, then
W 1,p

π (X ) is reflexive.

At this point, we wish to discuss an interesting byproduct of the infinitesimal strict con-
vexity of X : namely, the possibility of characterizing the Laplacian as the “divergence of
the gradient”, just as in the smooth setting.
In order to do so, we step back for a moment to a few more basic definitions.

5.1.16 Definition. Let p ∈ [1,∞[. We define the Cheeger-Dirichlet Energy Ep :
L2(X , µ) → [0,∞] as the functional given by

Ep(f) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
p

ˆ
X

|Df |pdµ, f ∈ D1,p
π ∩ L2(X , µ)

+∞, otherwise.

By the properties of the minimal weak upper gradient, Ep is convex and lower semi-
continuous; moreover, its domain is dense in L2(X , µ).

5.1.17 Definition. Let p = 2. The subdifferential ∂−E2(f) ⊂ L2(X , µ) of E2 at f ∈
L2(X , µ) is defined as the empty set whenever E2(f) = +∞ and, otherwise, as the possibly
empty subset of L2(X , µ) given by

∂−E2(f) :=
{
v ∈ L2(X , µ); E2(f) +

ˆ
X
vgdµ ≤ E2(f + g), ∀ g ∈ L2(X , µ)

}
.
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The subdifferential is always closed and convex, and the class{
f ∈ L2(X , µ); ∂−E2(f) ̸= ∅

}
is dense in L2(X , µ).

Thus, we define the domain of the Laplacian as

D(∆) :=
{
f ∈ L2(X , µ); ∂−E2(f) ̸= ∅

}
⊂ L2(X , µ),

and for f ∈ D(∆) we define its Laplacian ∆f ∈ L2(X , µ) as ∆f := −v, v being the element
of minimal norm in ∂−E2(f).

5.5.18 Proposition. For f ∈ W 1,2
π (X ), assume there exists a vector field X ∈ Grad(f) ∩

D(div). Then, div(X) ∈ ∂−E2(f) and in particular f ∈ D(∆).
Vice-versa, if the space is infinitesimally strictly convex and f ∈ D(∆), then ∇f ∈ D(div)
and div(∇f) = ∆f .

Proof. Take f and X as in the statement. Given an arbitrary g ∈ W 1,2
π (X ), the convexity

of the 2-energy yields

E2(f + g) − E2(f) ≥ lim
ε→0+

ˆ
X

|D(f + εg)|2 − |Df |2

2ε dµ ≥
ˆ

X
dg(X)dµ = −

ˆ
X
gdiv(X)dµ,

where we used (5.14) for p = 2. Thus, the first claim follows.
Let us now observe that, by the definition of Laplacian, for every g ∈ W 1,2

π (X ) it holds

E2 (f + εg) − E2(f) ≥ −
ˆ

X
εg∆fdµ

for all ε ∈ R. If we divide by ε and then let ε → 0±, by Proposition 5.5.11 we find

lim
ε→0

E2(f + εg) − E2(f)
ε

= −
ˆ

X
g∆fdµ.

On the other hand, Proposition 5.5.10 grants that the above limit equals
ˆ

X
dg(∇f)dµ,

which is enough to conclude.

□

The following definition, along with the notion of infinitesimally strictly convex space, will
be of crucial importance in the development of our discussion:

5.5.19 Definition. (X , d, µ) will be called infinitesimally Hilbertian whenever W 1,2
π (X )

is a Hilbert space. This is equivalent to ask that the semi-norm ∥·∥
D1,2

π (X ) satisfies the
parallelogram rule, and that the 2-energy E2 is a Dirichlet form.
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Observe that, by definition, infinitesimal Hilbertianity is necessary to ensure that ∆ is a
linear operator.

At first glance, the above property is of global nature but, actually, it forces a pointwise
Hilbertianity of the space, whence the term “infinitesimal”:

5.5.20 Proposition [Gi2, Proposition 2.3.17]. The following claims are equivalent:

i) (X , d, µ) is infinitesimally Hilbertian;

ii) (X , d, µ) is infinitesimally strictly convex and

df(∇g) = dg(∇f) (5.15)

µ-almost everywhere for all f, g ∈ D1,2
π (X );

iii) L2 (T ∗X ) and L2(TX ) are Hilbert modules;

iv) (X , d, µ) is infinitesimally strictly convex and

∇(f + g) = ∇f + ∇g (5.16)

µ-almost everywhere for all f, g ∈ D1,2
π (X ).

v) (X , d, µ) is infinitesimally strictly convex and

∇(fg) = f∇g + g∇f (5.17)

µ-almost everywhere for all f, g ∈ D1,2
π (X ).

□

5.5.21 Remark. We already pointed out that, under the hypothesis of infinitesimal
Hilbertianity, the 2-energy E2 : L2(µ) → [0,∞] is a Dirichlet form; moreover, by Propo-
sition 5.5.20, E2 admits a carré du champ given by ⟨∇f,∇g⟩ where ⟨·, ·⟩ denotes the
pointwise inner product on L2(TX ).
In particular, the Laplacian and its domain D(∆) ⊂ W 1,2

π (X ) can be equivalently charac-
terized in the usual way, namely

f ∈ D(∆), h = ∆f ⇐⇒
ˆ

X
ghdµ = −

ˆ
X

⟨∇g,∇f⟩dµ ∀ g ∈ W 1,2
π (X ),

hence D(∆) is a vector space and ∆ : D(∆) → L2(µ) is a linear operator.
Infinitesimal Hilbertianity also implies the following Leibniz rule for the Laplacian:

{
f, g ∈ D(∆) ∩ L∞(µ),
|df |∗ , |dg|∗ ∈ L∞(µ)

=⇒
{
fg ∈ D(∆) and
∆(fg) = f∆g + g∆f + 2⟨∇f,∇g⟩,

see the remarks after [Gi2, Proposition 2.3.17] for a more detailed discussion.

We conclude this chapter with some comments about the machinery we have illustrated
so far.
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5.5.22 Remark. i) As already pointed out in the introductory comments to the present
chapter, we preferred to extend the approach of [Gi2] to an arbitrary exponent p for the
sake of generality. However, we are faced with the recurring issue of the dependence of weak
gradients on p: more precisely, in quite general settings where no structural assumption is
given, we would have one cotangent module for each possible value of p. In other words, in
such cases Lp (T ∗X ), as we described it in Section 5.4, would not be well defined. Anyways,
if we assume (X , d, µ) to be an RCD(K,∞) space (see for instance [GH]), or a doubling
metric measure space supporting a (1, p)-Poincaré inequality (by the already mentioned
results in [Ch]), all the above is not an issue anymore and thus there is always one, and
only one, cotangent module, regardless of p. In particular, the fundamental Proposition
5.5.20 - which we reported as it is in [Gi2] - holds as well for any p ̸= 2, with the obvious
exception of point iii).

ii) Right before Definition 5.5.3, we made clear that the notion of “derivation” taken
from [Gi2] differs from the corresponding ones given in Definition 3.2.1 after [Di1], and
in [We] respectively. The main difference is that, both in [Di1] and [We], derivations act
on Lipschitz functions, while in our case they act on Sobolev ones. Again, if we assume
that (X , d, µ) is a doubling metric measure space supporting a (1, p)-Poincaré inequality,
then - still by [Ch] - lip(f) = |Df | µ-almost everywhere for every f ∈ Lip(X ); in other
words, the difference between the two approaches becomes negligible, being just a matter
of integrability requirements. In more general situations, the derivations as in Definition
5.5.3 are always derivations in both the sense of [Di1] and [We] as well, but the converse
is not clear because with our choices the definition makes sense within the context of a
metric measure space, while in [We] - and then, also in [Di1] - the assignment of a measure
is not actually needed.

In view of the notion of BV functions we shall give in Chapter 6, we anticipate here that
the above technicalities will not be an issue, since under our future assumptions - namely
an RCD(K,∞) space, or a doubling metric measure space supporting a (1, p)-Poincaré
inequality - Theorem 4.3.5 will be still valid, including also our definition of the BV
space.
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6 Functions of Bounded Variation BVF(X )

Throughout this chapter, we shall assume that (X , d, µ) is a complete and separable metric
measure space equipped with a non-negative Radon measure µ. In accordance with the
clarifications made in Remark 5.5.22, we start with some preliminaries about RCD(K,∞)
spaces.

6.1 Preliminaries

Basically speaking, RCD(K,∞) spaces are metric measure spaces whose Ricci curvature
is bounded from below by some number K ∈ R and whose dimension is bounded from
above by +∞. These objects first appeared in [AGS2] and were later axiomatized in
[AGMR] after the seminal works of J. Lott and C. Villani ([LV2]), and of K. T. Sturm
([St1], [St2]), where the authors attack the issue of describing spaces with controlled
sectional curvature and dimension - namely the CD(K,N) spaces - by means of the theory
of Optimal Transportation.
In the works of L. Ambrosio et al. ([AGMR], [AGS2], [AGS3], [AGS4]), the characteriza-
tion of RCD(K,∞) spaces is strongly reminiscent of the optimal transportation approach,
but it is combined heavily with the tools from the theory of Gradient Flows to prove
eventually that both the descriptions yield equivalent notions.
Below, we shall give an informal and brief overview on the subject of RCD(K,∞) spaces.
In the manner of [Gi2], the “heat flow” - namely, the gradient flow of the Cheeger-Dirichlet
2-energy E2 - will be the key tool of our discussion; also, a crucial role will be played by
“test objects”, which will allow us to rephrase the definition of BV functions in the present
setting.
Due to the patchy nature of this overview, besides the aforementioned papers we refer the
reader to the monographs [Vi] and [AGS1], which provide deep and extensive surveys on
the theories of optimal transportation and gradient flows, respectively.

6.1.1 Definition. The relative entropy is defined as the functional Eµ : P(X ) → R ∪
{+∞} given by

Eµ (m) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

ˆ
X
ρlog(ρ)dµ if m = ρµ and (ρlog(ρ)) ∈ L1(X , µ)

+∞, otherwise.

6.1.2 Definition. (X , d, µ) will be called an RCD(K,∞) space, K ∈ R, if it is infinitesi-
mally Hilbertian and, for every m1,m2 ∈ P2(X ) with finite relative entropy, there exists
a W2-geodesic m̃t with e0 (m̃) = m1 and e1 (m̃) = m2 and such that, for every t ∈ [0, 1],

Eµ (m̃t) ≤ (1 − t)Eµ (m1) + tEµ (m2) − K

2 t(1 − t)W 2
2 (m1,m2) ,
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where (P2(X ),W2) denotes the L2 Wasserstein Space, namely the space of probability
measures on X with finite Wasserstein distance W2,

W 2
2 (m1,m2) := inf

ˆ
X ×X

d2(x, y)dγ(x, y),

the infimum being taken among all γ ∈ P (X × X ) such that π1
#(γ) = m1 and π2

#(γ) =
m2. Here, πi, i = 1, 2, denotes the canonical projection over the i-th component.

6.1.3 Remark. If (X , d, µ) is an RCD(K,∞) space, then every ball Bρ(x) ∈ B(X )
satisfies the volume bound

µ (Bρ(x)) ≤ c · ecρ2

for some constant c > 0, see [St1]. This bound entails that if m ∈ P2(X ) with m = ρµ,
then it is always true that (ρlog(ρ))− ∈ L1(µ), which makes the relative entropy a lower
semicontinuous functional.

6.1.4 Definition. The heat flow ht is the gradient flow of the Cheeger-Dirichlet 2-energy
E2.

6.1.5 Remark. As observed in [Gi2], the theory of gradient flows ensures the existence
and uniqueness of the heat flow as a 1-parameter semigroup (ht)t≥0, ht : L2(µ) → L2(µ),
such that for every f ∈ L2(µ) the curve t ↦→ ht(f) is continuous on [0,∞[, absolutely
continuous on ]0,∞[ and moreover fulfills the differential equation

d
dtht(f) = ∆f

for almost every t > 0, which means ht(f) ∈ D(∆) for every f ∈ L2(µ) and for every
t > 0.
The infinitesimal Hilbertianity of RCD(K,∞) spaces grants that, in our setting, (ht)t≥0
defines a semigroup of linear and self-adjoint operators.
Also, from the analysis carried on in [AGS3], we have that for every p ∈ [1,∞] it holds

∥htf∥Lp(X ,µ) ≤ ∥f∥Lp(X ,µ) (6.1)

for every t ≥ 0 and for every f ∈ L2 ∩ Lp(X , µ). Then, by a density argument we
can uniquely extend the heat flow to a family of linear and continuous operators ht :
Lp(X , µ) → Lp(X , µ) of norm bounded by 1 for every p ∈ [1,∞], as the contraction results
proven in [AGS2] and [AGMR] showed.
A non trivial consequence of the Ricci curvature bound, again proven in [AGS2], is the
following regularity result:

f ∈ W 1,2
π (X ), |df |∗ ∈ L∞(X , µ) =⇒

f has a Lipschitz representative f̃
with Lip

(
f̃
)

≤ ∥|df |∗∥L∞(X ,µ) .
(6.2)
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In regard to our discussion, the most important property of the heat flow is the Bakry-
Émery contraction estimate:

|∇htf |2 ≤ e−2Ktht

(
|∇f |2

)
(6.3)

µ-almost everywhere for every t ≥ 0 and for every f ∈ W 1,2
π (X ) - see for example [AGS2]

and [GKO] for a throughout treatment of this property.
A “self-improvement” of (6.3) was later given by G. Savaré in [Sa] - which generalizes the
seminal work by D. Bakry [Ba] -, namely

|∇htf | ≤ e−Ktht (|∇f |) (6.4)

µ-almost everywhere for every t ≥ 0 and for every f ∈ W 1,2
π (X ).

Next, we introduce the anticipated “test objects”.

6.1.6 Definition. The class of test functions TestF(X ) ⊂ W 1,2
π (X ) is defined as

TestF(X ) :=
{
f ∈ D(∆) ∩ L∞(X , µ); |∇f | ∈ L∞(X , µ), ∆f ∈ W 1,2(X )

}
.

From (6.2) one infers that any f ∈ TestF(X ) has a Lipschitz representative f̃ : X → R
such that Lip

(
f̃
)

≤ ∥|∇f |∥L∞(X ,µ). Moreover, (6.3) implies that if f ∈ L2 ∩ L∞(X , µ),
then htf ∈ TestF(X ) for every t > 0; as a notable byproduct of the latter, TestF(X ) is
dense in W 1,2

π (X ).

6.1.7 Definition. By finite linear combinations of test functions and of their gradients,
we obtain the class of test vector fields TestV(X ) ⊂ L2(TX ) as

TestV(X ) :=
{
X =

n∑
i=1

fi∇gi; n ∈ N, fi, gi ∈ TestF(X ) ∀ i = 1, ..., n
}
.

By the arguments in [Gi2, Section 3.2], TestV(X ) is dense in L2(TX ), while the properties
of TestF(X ) yield the inclusions TestV(X ) ⊂ L1 ∩ L∞(TX ) and TestV(X ) ⊂ D(div).

6.2 The space BVF(X )

Thanks to the discussion carried forth in Chapter 5, we saw that we are given a notion of
vector fields in the abstract metric setting. This argument suggests us the possibility of
rephrasing the definition of BV in terms of suprema over the divergence of suitable vector
fields, in accordance with the classical characterization of the Euclidean calculus.
For convenience, we shall suppose (X , d, µ) to be an RCD(K,∞) space; the motivation for
this choice will be clear as our analysis goes on.

In order to avoid integrability issues, we slightly modify the definition of test vector fields
as follows:
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6.2.1 Definition. The class of ∞-test vector fields is defined as

TestV∞(X ) :=
{
X =

n∑
i=1

fi∇gi; fi, gi ∈ TestF(X ) ∀ i = 1, ..., n, ∆gi ∈ L∞(µ)
}
.

According to the remarks in [Gi2, Section 3.2] the class TestV∞(X ) is weakly-* dense in
L∞(TX ).

6.2.2 Definition.A function u ∈ L1(X , µ) will be said of bounded variation in X , and we
shall write u ∈ BVF(X ), if its total variation in X , namely

∥Du∥ (X ) := sup
{ˆ

X
udiv(X)dµ; X ∈ TestV∞(X ), |X| ≤ 1

}
,

is finite. The notation is reminiscent of the fact that this definition is tailored on vector
fields, whence our choice of the label F.
As one may expect, the perimeter of any measurable set E ⊂ X will be defined in the
usual way, namely as the total variation of the characteristic function 1E on X :

∥D1E∥ (X ) = sup
{ˆ

X
div(X)dµ; X ∈ TestV∞(X ), |X| ≤ 1

}
.

6.2.3 Remark. i) The RCD(K,∞) structure actually allows us to define functions of
bounded variation also via a relaxation procedure over sequences of TestF(X ) functions.
Namely, u ∈ BV (X ) whenever

∥Du∥ (X ) := inf
{

lim inf
j→+∞

ˆ
X

|∇fj | dµ; (fj)j∈N ⊂ TestF(X ), fj → u in L1
loc(X , µ)

}
< ∞.

(6.5)
Indeed, let us consider

∥Du∥ (X ) = inf
{

lim inf
j→+∞

ˆ
X

|∇fj | dµ; (fj)j∈N ⊂ Lipb(X ), fj → u in L1
loc(X , µ)

}
. (6.6)

and let us label the quantities in (6.5) and (6.6) by T-Varu(X ) and Varu(X ) respectively.
The remarks right after Definition 6.1.6 imply that the class of test functions is contained
in Lipb(X ) and then we obviously have Varu(X ) ≤ T-Varu(X ); we need to prove the
opposite inequality.
Choose (fj)j∈N as in the definition of Varu(X ); then htfj ∈ TestF(X ) for all j ∈ N.
Now fix a positive decreasing sequence (tj)j∈N such that tj → 0 and define gj := htjfj ,
which again defines a test function for every index j. Moreover, it is clear that gj → u in
L1

loc(X , µ), a convergence which is guaranteed by the properties of the heat flow.
Now,
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T-Varu(X ) ≤ lim inf
j→+∞

ˆ
X

|∇gj | dµ

= lim inf
j→+∞

ˆ
X

⏐⏐⏐∇htjfj

⏐⏐⏐ dµ
≤ lim inf

j→+∞

(
e−Ktj

ˆ
X

|∇fj | dµ
)
,

where we explicitly used the self-improvement of the Bakry-Émery contraction estimate.
Thus, upon passing to the infimum we obtain T-Varu(X ) ≤ Varu(X ), which shows the
two notions to be equivalent.
Of course, in accordance with Theorem 4.3.5 the formula (6.5) defines an equivalent char-
acterization of the total variation given in [Di1].

ii) By Remark 5.5.22, the equivalence shown in i) extends to BVF(X ) if one additionally
assume the space to be equipped with a doubling measure and to support a Poincaré
inequality, because in such case the notions of derivation given in [Gi2] and [Di1] coincide.
However, it is not clear to us if, without assuming also the doubling property and a
Poincaré inequality, the RCD(K,∞) hypothesis alone is enough to ensure an equivalence
between the two definitions of derivation. It is known anyways ([LV2], [St1], [St2]) that
conditions like CD(K,N) or CD(K,∞) imply Poincaré inequalities, at least of local nature;
a sharp global Poincaré inequality was derived in [LV1] for CD(K,N) spaces.

iii) Of course, one may attempt to define BV functions on a domain Ω ⊂ X . In line with
Theorem 4.3.4, one modify the class of TestV∞(X ) vector fields and consider

LipVb,c(Ω) :=
{
X =

n∑
i=1

fi∇gi; fi ∈ Lipb(Ω), supp(f) ⋐ Ω, gi ∈ TestF(X ),∆gi ∈ L∞(µ)
}

in order to state that u ∈ L1(Ω, µ) is in BVF(Ω) whenever

∥Du∥ (Ω) := sup
{ˆ

Ω
udiv(X)dµ; X ∈ TestVb,c(Ω), |X| ≤ 1

}
< ∞.

With this characterization, we would easily have the Coarea Formula, whose proof would
just be the same as in [EG, Theorem 5.9]. However, we are faced again with the same
issues as in ii), so it is not enough clear to us which would be the most appropriate choice
of vector fields to work with.
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7 Traces and Gauss-Green Formulæ

In this concluding chapter, we consider the issue of traces of BV functions in metric
measure spaces, with the aim of finding the appropriate classes of domains where Gauss-
Green type formulæ hold.

7.1 Integration by parts on Regular Domains

We shall begin with the characterization of “regular domains”, a class of open sets which
improves the notion of “regular ball” given in [MMS] and allows for an extended Gauss-
Green formula which in turn refines the analogue established therein.

Let us start with some preliminary considerations.
We shall assume (X , d, µ) to be a complete metric measure space with the property of
being geodesic. In other words, for every x, y ∈ X , one has

d(x, y) = inf {ℓ(γ); γ : [0, 1] → X , γ0 = x, γ1 = y} .

If this assumption is satisfied, it is possible to prove that the distance function

dx0(x) = d(x, x0), ∀x0 ∈ X

is a Lipschitz function with upper gradient given by

|∇dx0 | (x) = 1

µ-almost everywhere in X .

7.1.1 Definition. Given a sequence of finite Radon measures (µj)j∈N on X , we shall say
that (µj)j∈N is weakly convergent in the sense of measures to a Radon measure µ if

lim
j→+∞

ˆ
X
fdµj =

ˆ
X
fdµ, ∀f ∈ Cb(X ).

7.1.2 Remark. The above notion of convergence is the natural generalization of the
weakly-* convergence in the duality of C(K) with its dual M(K) for any compact set
K ⊂ X .
The duality of C(K) with M(K) allows us to deduce that for a Radon measure µ ∈ M(X ),
its total variation in X is given by

|µ|(X ) = sup
{ˆ

X
f(x)µ(dx); f ∈ Cb(X ), |f(x)| ≤ 1, ∀x ∈ X

}
.

Since bounded Lipschitz functions, Lipb(X ), constitute a subalgebra of Cb(X ) and its
restriction to K for any compact set K ⊂ X is a subalgebra of C(K) containing a non–zero
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constant function and which separates points, it turns out that the restiction of Lipb(X )
to K is dense in C(K) and then we also obtain that

|µ|(X ) = sup
{ˆ

X
f(x)µ(dx); f ∈ Lipb(X ), |f(x)| ≤ 1, ∀x ∈ X

}
.

Of course, this argument can be also extended to Radon measures on open domains Ω ⊂ X
to deduce that for any µ ∈ M(Ω)

|µ|(Ω) = sup
{ˆ

Ω
f(x)dµ(x); f ∈ Lipb,c(Ω), |f(x)| ≤ 1, ∀x ∈ X

}
,

where

Lipb,c(Ω) := {f ∈ Lipb(X ); dist (supp(f),Ωc) > 0} .

With these premises at our disposal, we proceed by giving a definition of regularity on
domains that will allow us to define some integration by parts formula. To begin, we recall
the notion of inner Minkowski content of a set; if we set

Ωt := {x ∈ Ω; dist (x,Ωc) ≥ t} ,

t > 0, then we define

Mi(∂Ω) := lim sup
t→0

µ (Ω \ Ωt)
t

.

7.1.3 Definition. An open set Ω ⊂ X is said to be a regular domain if it has finite
perimeter in X , namely 1Ω ∈ BV (X ) and if

∥D1Ω∥ (X ) = Mi(Ω).

A first easy consequence of the regularity of the domain Ω is that, since by the lower
semicontinuity of the perimeter

∥D1Ω∥ (X ) ≤ lim inf
t→0

µ (Ω \ Ωt)
t

,

one then has that there exists

lim
t→0

µ (Ω \ Ωt)
t

= ∥D1Ω∥ (X ).

Examples of regular domains are given by balls; it is known that for any x0 ∈ X and for
almost every ρ > 0, Ω = Bρ(x0) is a regular domain.
We have the following result:

7.1.4 Proposition. Let Ω ⊂ X be a regular domain. Then, ∥D1Ωt∥ ⇀ ∥D1Ω∥ (in the
sense of measures).
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Proof. We have to prove that, for any f ∈ Cb(X ),

lim
t→0

ˆ
X
f(x)d ∥D1Ωt∥ (x) =

ˆ
X
f(x)d ∥D1Ω∥ (x).

Thanks to [Bo, Theorem 8.2.9], it is sufficient to prove that for any Borel set E such that
∥D1Ω∥ (∂E) = 0, one has

lim
t→0

∥D1Ωt∥ (E) = ∥D1Ω∥ (E).

We denote by A the interior of E, namely A = E̊ = E\∂E, and by C its closure, C =
E = E ∪ ∂E. We obviously have that A ⊂ E ⊂ C and µ(C \A) = 0.
We claim that

lim
t→0

µ ((Ω\Ωt) ∩A)
t

= ∥D1Ω∥ (A);

indeed, by Coarea Formula and by the fact that the function g(x) = dist (x,Ωc) is Lipschitz
with |∇g(x)| = 1, since Ωt = {g > t} we obtain

µ ((Ω \ Ωt) ∩ E)
t

= 1
t

ˆ
(Ω\Ωt)∩A

dµ(x)

= 1
t

ˆ
(Ω\Ωt)∩A

|∇g(x)|dµ(x)

= 1
t

ˆ
R

D1{g>s}

 ((Ω\Ωt) ∩A) ds

= 1
t

ˆ t

0
∥D1Ωs∥ (A)ds

=
ˆ 1

0
∥D1Ωst∥ (A)ds.

Hence, by Fatou Lemma and by the lower semicontinuity of the perimeter measure, using
the fact that Ωst converges to Ω in measure we get

lim inf
t→0

µ ((Ω\Ωt) ∩A)
t

≥ ∥D1Ω∥ (A).

The same argument can be done to prove that

lim inf
t→0

µ
(
(Ω\Ωt) ∩ E

c
)

t
≥ ∥D1Ω∥

(
E

c
)

= ∥D1Ω∥ (Ec) .

Hence, by writing

µ ((Ω\Ωt) ∩A)
t

= µ (Ω\Ωt)
t

− µ ((Ω\Ωt) ∩Ac)
t

≤ µ (Ω\Ωt)
t

− µ ((Ω\Ωt) ∩ Ec)
t

,

we get that

lim sup
t→0

µ ((Ω\Ωt) ∩A)
t

≤ ∥D1Ω∥ (X ) − ∥D1Ω∥ (Ec) = ∥D1Ω∥ (A),
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which means there exists

lim
t→0

µ ((Ω\Ωt) ∩A)
t

= ∥D1Ω∥ (A)

for any A ⊂ X with ∥D1Ω∥ (∂A) = 0.
In conclusion, since for any s ∈ [0, 1]

∥D1Ω∥ (A) ≤ lim inf
t→0

∥D1Ωst∥ (A),

we find

∥D1Ω∥ (A) ≤ lim inf
t→0

ˆ 1

0
∥D1Ωst∥ (A)ds = lim inf

t→0

µ ((Ω\Ωt) ∩A)
t

= ∥D1Ω∥ (A).

This implies that for any s ∈ [0, 1] there exists

lim
t→0

∥D1Ωst∥ (A) = ∥D1Ω∥ (A),

whence the existence of

lim
t→0

∥D1Ωt∥ (A) = ∥D1Ω∥ (A).

□

7.1.5 Remark. We notice that from Proposition 7.1.4, if we define

φε(x) :=

⎧⎪⎪⎨⎪⎪⎩
0, x ∈ Ωc

dist(x,Ωc)
ε , x ∈ Ω\Ωε

1, x ∈ Ωε,

(7.1)

since
ˆ

A
|∇φε| (x)dµ(x) = µ ((Ω\Ωε) ∩A)

ε
,

then also the measures µε := |∇φε|µ are weakly convergent - always in the sense of
measures - to ∥D1Ω∥.
The φε’s define a sequence (φε)ε>0 ⊂ Lipc(Ω), which will be also called the defining
sequence of a regular domain Ω.

In the manner of [MMS], we wish to prove an integration by parts (or better, a Gauss-
Green) formula on regular domains, making use of “divergence measure” vector fields; in
order to do so, let us start with the following definition:

7.1.6 Definition. We denote by DM∞(X ) the set of divergence measure vector fields,
namely the class of vector fields F ∈ L∞ (TX ) such that div(F ) is a measure in the
distributional sense, that is, there exists a measure µF ∈ M(X ) such that
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ˆ
X

dφ(F )dµ = −
ˆ

X
φdµF , ∀φ ∈ Lipb(X ).

7.1.7 Theorem. Let F ∈ DM∞(X ) and let Ω ⊂ X be a regular domain; then, there
exists a function - which we shall call the inner normal trace of F on ∂Ω - denoted by
(F · ν)−

∂Ω ∈ L1 (∂Ω, ∥D1Ω∥) such that the following extended Gauss-Green formula holds:
ˆ

Ω
f(x)dµF (x) +

ˆ
Ω

df(F )(x)dµ(x) =
ˆ

X
f(x)(F · ν)−

∂Ω(x)d ∥D1Ω∥ (x), (7.2)

for every f ∈ Lipb(X ).

Proof. We shall consider the defining sequence (φε)ε>0 as in (7.1). Then

ˆ
X
f(x)dφε(F )(x)dµ(x) =

ˆ
X

d (fφε) (F )(x)dµ(x) −
ˆ

X
φε(x)df(F )(x)dµ(x)

= −
ˆ

X
φε(x)f(x)dµF (x) −

ˆ
X
φε(x)df(F )(x)dµ(x).

By the fact that φε converges to 1Ω everywhere, by the Dominated Convergence Theorem
we obtain that there exists

lim
ε→0

ˆ
X
f(x)dφε(F )(x)dµ(x) = −

ˆ
Ω
f(x)dµF (x) −

ˆ
Ω

df(F )(x)dµ(x).

We have then defined, for any f ∈ Lipb(X ), the distribution

TF (f) = lim
ε→0

T ε
F (f),

where

T ε
F (f) =

ˆ
X
f(x)dφε(F )(x)dµ(x).

Since we have the estimate

|T ε
F (f)| ≤ ∥f∥L∞(µ)∥F∥L∞(T X )

ˆ
X

|∇φε| dµ,

we deduce

|TF (f)| ≤ ∥f∥∞∥F∥L∞(T X ) ∥D1Ω∥ (X ).

From the above we infer the existence of σν
F ∈ M(X ) such that

TF (f) =
ˆ

X
f(x)dσν

F (x).

We claim that σν
F is concentrated on ∂Ω and that σF ≪ ∥D1Ω∥. The first assertion follows

since if K ⊂ X is a compact set such that K ∩ ∂Ω = ∅, then as r = dist(K, ∂Ω) > 0, there
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exists an open set A such that K ⊂ A, dist(A, ∂Ω) > 0 and P (Ω, ∂A) = 0. Indeed we can
consider

K ⊂
⋃

x∈K

Bρ(x)(x),

where 0 < ρ(x) < r/2 is such that ∥D1Ω∥
(
∂Bρ(x)(x)

)
= 0 for all x ∈ K. By compactness,

there exists a finite number of balls Bi := Bρ((xi) (xi), i = 1, ...,m, such that

K ⊂ A :=
m⋃

i=1
Bi.

We then have that if ε < r/2,
ˆ

A
|∇φε|dµ = 0.

Thus, for any f ∈ Lipb,c(A),
ˆ

A
fdσν

F =
ˆ

X
fdσF = lim

ε→0

ˆ
X
fdφε(F )dµ = 0.

In conclusion, we get |σν
F | (A) = 0, whence

|σν
F (K)| = 0

for every compact set K such that K ∩ ∂Ω = ∅.
Let us now turn to absolute continuity. If K is a Borel set with ∥D1Ω∥ (K) = 0, we have
that for any η > 0 there exists an open set Aη with ∥D1Ω∥ (Aη) < η and ∥D1Ω∥ (∂Aη) = 0.
Then, for any f ∈ Lipb,c (Aη),

⏐⏐⏐⏐⏐
ˆ

Aη

fdσν
F

⏐⏐⏐⏐⏐ ≤ lim
ε→0

∥f∥L∞(µ)∥F∥L∞(T X )

ˆ
Aη

|∇φε| dµ

= ∥f∥L∞(µ)∥F∥L∞(T X ) ∥D1Ω∥ (Aη) < η∥f∥L∞(µ)∥F∥L∞(T X ).

Hence
⏐⏐⏐σν

f

⏐⏐⏐ (K) = 0 for any compact set K such that ∥D1Ω∥ (K) = 0; the fact that the
measures are Radon implies the absolute continuity σν

F ≪ ∥D1Ω∥. Thus, by the Radon-
Nikodym Theorem there exists a function (F · ν)−

∂Ω ∈ L1(∂Ω, ∥D1Ω∥) such that
ˆ

X
f(x)(F · ν)−

∂Ω(x)d ∥D1Ω∥ (x) = −
ˆ

Ω
df(F )(x)dµ(x) −

ˆ
Ω
f(x)dµF (x).

□

The following Proposition is useful to extend the results contained in [MMS] to the case
f ∈ W 1,2

π (X ):

7.1.8 Proposition. Let F ∈ DM∞(X ) and letB ⊂ X be a Borel set such that Cap2(B) =
0; then |µF | (B) = 0.
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Proof. We follow the same approach of the proof given in [MMS, Lemma 3.6] for the
measure-valued Laplacian. Since µF is a signed measure, we can consider its positive and
negative parts, namely µF = µ+

F −µ−
F ; we can also decompose X into two parts X = P ∪N

in such a way that

µ+
F (E) ≥ 0, ∀E ⊂ P,

and

µ−
F (E) ≥ 0, ∀E ⊂ N.

Without loss of generality, we may assume B to be a compact set, because both µ+
F and

µ−
F are inner measures (as Radon measures) and B is a Borel set.

Let us show that if B ⊂ P is such that Cap2(B) = 0, then µ+
F (B) = 0; We can take a

sequence (ψn)n∈N ∈ Lipb(Ω) such that

supp (ψn) ⊂
⋃

x∈B

B 1
n

(x),

0 ≤ ψn ≤ 1, ψn = 1 on B and

∥ψn∥
W 1,2

π (X ) ≤ 1
2n
.

With this choice, ψn → 0 on X \B and⏐⏐⏐⏐ˆ
X
ψn(x)dµF (x)

⏐⏐⏐⏐ =
⏐⏐⏐⏐ˆ

X
dψn(F )dµ

⏐⏐⏐⏐ ≤ ∥F∥L∞(T X ) ∥ψn∥
W 1,2

π (X ) µ(Ω)
1
2 .

Thus, by the Dominated Convergence Theorem

0 = lim
n→+∞

ˆ
X
ψn(x)dµF (x) = µF (B) = µ+

F (B).

A similar argument shows that if B ⊂ N is such that Cap2(B) = 0, then µ−
F (B) = 0.

For the general case, if B ⊂ X is such that Cap2(B) = 0, by decomposing B as B =
(B ∩ P ) ∪ (B ∩N), the monotonicity of capacity yields Cap2(B ∩ P ) = Cap2(B ∩N) = 0
and then

|µF | (B) = µ+
F (B ∩ P ) + µ−

F (B ∩N) = 0.

□

The validity of Theorem 7.1.7 can be extended to any function f ∈ N1,2(X ) in the case
X is a doubling metric measure space supporting a Poincaré inequality; indeed, in this
case Theorem 2.4.3 holds and it becomes possible to approximate any f ∈ N1,2(X ) by
Lipschitz functions fj converging to f everywhere except for a set of zero 2–capacity. We
repeat here this approximation argument in the Sobolev space W 1,2

π (X ).

7.1.9 Proposition. Let f ∈ W 1,2
π (X ); if (fj)j∈N ⊂ TestF(X ) is a sequence such that

fj → f in W 1,2
π (X ), then there exists a Borel set B ⊂ X with Cap2(B) = 0 such that, up

to subsequences, fj → f̃ everywhere on X \B, f̃ being a W 1,2
π (X ) representative of f .
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Proof. The proof is essentially a repetition of the one contained in [Sh2, Theorem 3.7];
since the sequence (fj)j∈N is converging in W 1,2

π (X ), it is a Cauchy sequence. Passing to
a subsequence if necessary, we may assume that for any k ∈ N,

∥fk − fk+1∥
W 1,2

π (X ) ≤ 2−3k/2, ∥|∇ (fk − fk+1)|∥L2(X ,µ) ≤ 2−k.

Let us define the set

Ek :=
{

|fk − fk+1| ≥ 2−k
}
.

By the definition of capacity, we then have

Cap2 (Ek) ≤ 22k ∥fk − fk+1∥2
W 1,2

π (X ) ≤ 2−k.

So if we define

Bj :=
∞⋃

k=j

Ek,

the properties of capacity give us

Cap2 (Bj) ≤
∞∑

j=k

Cap2 (Ek) ≤ 2−j+1.

Let us now set

B :=
⋂
j∈N

Bj .

By monotonicity, we find Cap2(B) = 0. If x ∈ X \B, then there exists j ∈ N such that
x ∈ X \Bj and so, for every k ≥ j, x ∈ X \ Ek and then

|fk(x) − fk+1(x)| ≤ 2−k+1 ≤ 2−j+1.

As a consequence, if h, k ≥ j, we have that

|fh(x) − fk(x)| ≤ 2−j+1,

which in turn entails

lim
j→+∞

fj(x) = f̃(x)

for every x ∈ X \B.

□

7.1.10 Remark. Observe that a particular subclass of elements in DM∞(X ) is given by
TestV(X ). Let us discuss the particular case F = f∇g; in this case clearly F ∈ L∞(TX )
and regarding the divergence measure we find that it is absolutely continuous with respect
to µ with
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dµF (x) = (df(∇g) + f∆g)dµ(x) = div(F )dµ(x).

Hence, we have the following integration by parts formula
ˆ

Ω
φ(x)divF (x)dµ(x) = −

ˆ
X
φ(x)(F · ν)−

∂Ωd ∥D1Ω∥ (x) −
ˆ

Ω
dφ(F )(x)dµ(x)

for any φ ∈ Lipb(X ).
We want to discuss now how to generalize this formula to functions f ∈ W 1,2

π (X ); in order
to do so, we consider again the following subclass of TestV(X ),

TestV∞(X ) :=
{
X =

n∑
i=1

fi∇gi; fi, gi ∈ TestF(X ) ∀ i = 1, ..., n, ∆gi ∈ L∞(µ)
}
,

already introduced in Definition 6.2.1. For the reader’s convenience, we explicitly observe
once again that, when (X , d, µ) is an RCD(K,∞) space, the above class is weakly-* dense
in L∞(TX ) by the remarks in [Gi2, Section 3.2].
Using the same notation as in [Di1], we have the following:

7.1.11 Lemma. Let Ω be a set with finite perimeter and such that µ(Ω) < +∞, let
F ∈ TestV∞(X ); then, if B is any Borel set with Cap2(B) = 0, |LΩ (dF )| (B) = 0.

Proof. We can use the fact that any F ∈ TestV∞(X ) defines a derivation dF ∈
Derb(X ),

dF (φ) := dφ(F ),

where φ is any function in Lip0(X ). Then, we may consider a sequence (ψn)n∈N ⊂ Lipb(X )
as in the proof of Proposition 7.1.8 to obtain

ˆ
X
ψn(x)dLΩ (dF ) (x) =

ˆ
X

dLΩ (ψndF ) (x)

= −
ˆ

Ω
dψn(F )(x)dµ(x) −

ˆ
Ω
ψn(x)divF (x)dµ(x),

which in turn gives⏐⏐⏐⏐ˆ
X
ψn(x)dLΩ (dF ) (x)

⏐⏐⏐⏐ ≤ ∥ψn∥
W 1,2

π (X )

(
∥F∥L∞(T X ) + ∥div(F )∥L∞(X ,µ)

)
µ(Ω)

1
2 .

From this we infer

|LΩ (dF )| (B) = 0

whenever Cap2(B) = 0.

□
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Putting together the previous results, we have thus proven the following:

7.1.12 Proposition. Let Ω be a regular domain with µ(Ω) < +∞; then for any F ∈
TestV∞(X ) it holds

ˆ
Ω
φ(x)divF (x)dµ(x) =

ˆ
X
φ(x)dLΩ (dF ) (x) −

ˆ
Ω

dφ(F )(x)dµ(x), ∀φ ∈ W 1,2
π (X ).

□

7.2 Rough Trace

In this section, we shall assume (X , d, µ) to be a doubling metric measure space supporting
a Poincaré inequality. After V. Maz’ya ([Ma]), we re-adapt the notion of “rough trace”
of a BV function to the present setting and eventually prove that this tool allows for a
Gauss-Green type formula involving indeed the rough trace of such a function. Then, we
compare our analysis with the discussion done in [LS], where traces of BV functions are
studied by means of the Lebesgue-point characterization, and we determine the conditions
under which the two notions coincide.

7.2.1 Definition. Let Ω ⊂ X be a bounded open set, and denote by ∂∗Ω its essential
boundary. Given u ∈ BV (Ω), we define its rough trace as the quantity

u∗(x) := sup {t ∈ R; ∥D1Et∥ (X ) < ∞, x ∈ ∂∗Et} ,

where Et as usual denotes the super-level sets of u for t ∈ R. Of course, when u has a
limit value at x ∈ ∂∗Ω, then

u∗(x) = lim
y→x

u(y).

Below, Sh denotes as usual the spherical Hausdorff measure generated from the function
h(x), see the comments right before Definition 4.1.1.

7.2.2 Lemma. If ∥D1Ω∥ (X ) < ∞ and u ∈ BV (Ω), then u∗ is Sh-measurable on ∂∗Ω
and

Sh ({x ∈ ∂∗Ω; u∗(x) ≥ t}) = Sh (∂∗Ω ∩ ∂∗Et) (7.3)

for almost every t ∈ R.

Proof. Instead of the above condition (7.3), we shall prove that, for almost every t ∈ R
except a countable and dense subset, it holds

Sh ({x ∈ ∂∗Ω; u∗(x) ≥ t} ∆∂∗Et) = 0,
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where A∆B := (A\B) ∩ (B\A) for any two sets A and B.
For brevity, let us set At := {x ∈ ∂∗Ω; u∗(x) ≥ t}, Bt := ∂∗Et and Ft := At\Bt. By
definition of rough trace, one always has the inclusion Bt ⊂ At, so we need to prove
Sh (Ft) = 0.
By Coarea, the sets Bt are measurable, while the Ft’s are disjoint. Observe that for every
t0 < t1 one has Bt0 ⊃ Bt1 and Bt0 ∪ Ft0 ⊃ Bt1 ∪ Ft1 , so Bt0 ⊃ Ft1 . Thus we have⎛⎝⋂

t<t1

Bt

⎞⎠ \Bt1 ⊃ Ft1 ,

with the sets
(⋂

t<t1 Bt
)

\Bt1 being measurable and disjoint; therefore, they have zero Sh

measure for almost every t1 ∈ R. As a consequence, the sets Ft, being subsets of Sh-
negligible sets, are measurable and Sh-negligible as well. We can then conclude that the
Bt’s are measurable sets, and the proof follows.

□

The following Lemma combines Lemma 4 and Corollary 2 in [Ma, Section 9.5].

7.2.3 Lemma. For any u ∈ BV (Ω) and for Sh-almost every x ∈ ∂∗Ω, one has

−u∗(x) = (−u)∗ (x).

Consequently, (u∗)+ =
(
u+)∗, (u∗)− = (u−)∗ and then u∗ =

(
u+)∗ − (u−)∗.

□

7.2.4 Theorem. Let ∥D1Ω∥ (X ) < ∞ and assume Sh (∂Ω\∂∗Ω) = 0. In order for any
u ∈ BV (Ω) to satisfy

inf
c∈R

ˆ
∂Ω

|u∗(x) − c| dSh(x) ≤ k ∥Du∥ (Ω)

with k > 0 independent of u, it is necessary and sufficient that

min
{

∥D1E∥ (Ωc) ,
D1Ω\E

 (Ωc)
}

≤ k ∥D1E∥ (Ω)

holds for any E ⊂ Ω.

Proof. We start with necessity. Let E ⊂ Ω be such that ∥D1E∥ (Ω) < ∞, and apply
Lemma 1 in [Ma, Section 9.5] to find that ∥D1E∥ (X ) < ∞. Then,

inf
c∈R

ˆ
∂∗Ω

|1∗
E(x) − c| dSh(x) = min

c∈R

{
|1 − c|Sh (∂∗E ∩ ∂∗Ω) + |c|Sh (∂∗Ω\∂∗E)

}
= min

{
Sh (∂∗E ∩ ∂∗Ω) ,Sh (∂∗Ω\∂∗E)

}
= min

{
∥D1E∥ (Ωc) ,

D1Ω\E

 (Ωc)
}
.
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Since by hypothesis

inf
c∈R

ˆ
∂Ω

|1∗
E(x) − c| dSh(x) ≤ k ∥Du∥ (Ω),

we obtain the required inequality.
We then pass to sufficiency. Let u ∈ BV (Ω); then for every t, Sh (∂Ω ∩ ∂∗Et) is a non-
increasing function of t. In fact, if x ∈ ∂∗Ω ∩ ∂∗Et and τ < t, then Ω ⊃ Eτ ⊃ Et and the
same holds as well for the essential boundaries); moreover,

Θx (Et) ≤ Θx (Eτ ) ≤ Θx (Ω) .

This means - by the hypothesis and by the definition of essential boundary - that Θx (Eτ )
̸= 0, 1 and then x ∈ ∂∗Ω ∩ ∂∗Eτ .
In a similar manner we can show that Sh (∂Ω\∂∗Et) is a non-decreasing function of t.
By the Coarea Formula,

k ∥Du∥ (Ω) = k

ˆ
R

∥D1Et∥ (Ω)dt ≥
ˆ
R

min
{

Sh (∂Ω ∩ ∂∗Et) ,Sh (∂Ω\∂∗Et)
}

dt.

If we now set t0 := sup
{
t; ∥D1Et∥ (X ) < ∞, Sh (∂Ω ∩ ∂∗Et) ≥ Sh (∂Ω\∂∗Et)

}
we get

k ∥Du∥ (Ω) ≥
ˆ +∞

t0

Sh (∂Ω ∩ ∂∗Et) dt+
ˆ t0

−∞
Sh (∂Ω\∂∗Et) dt

=
ˆ +∞

t0

Sh ({x; u∗(x) ≥ t} ∩ ∂Ω) dt+
ˆ t0

−∞
Sh ({x; u∗(x) ≤ t} ∩ ∂Ω) dt

=
ˆ

∂Ω
[u∗(x) − t0]+ dSh(x) +

ˆ
∂Ω

[u∗(x) − t0]− dSh(x)

=
ˆ

∂Ω
|u∗(x) − t0| dSh(x).

In other words,

k ∥Du∥ (Ω) ≥ inf
c∈R

ˆ
∂Ω

|u∗(x) − c| dSh(x).

□

7.2.5 Definition. Let A ⊂ Ω̄. We shall denote by ζ
(α)
A the infimum of those k > 0

such that [∥D1E∥ (Ωc)]α ≤ k ∥D1E∥ (Ω) for all sets E ⊂ Ω which satisfy µ (E ∩A) +
Sh (A ∩ ∂∗E) = 0.

7.2.6 Theorem. Let ∥D1Ω∥ (X ) < ∞ and assume Sh (∂Ω\∂∗Ω) = 0. Then, if A ⊂ Ω,
for every u ∈ BV (Ω) such that u|A∩Ω = 0 and u∗|A∩∂∗Ω = 0, it holds

ˆ
∂Ω

|u∗(x)| dSh(x) ≤ ζ
(1)
A ∥Du∥ (Ω)

and the constant ζ(1)
A is exact.
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Proof. We know that

ˆ
∂Ω

|u∗(x)| dSh(x) =
ˆ +∞

0

[
Sh ({x; u∗(x) ≥ t} ∩ ∂Ω) + Sh ({x; −u∗(x) ≥ t} ∂Ω)

]
dt.

Notice that the integral of the first summand is equal to
ˆ +∞

0
Sh (∂∗Et ∩ ∂∗Ω) dt =

ˆ ∞

0
∥D1Et∥ (Ωc) dt.

By our hypotheses, we get µ (A ∩ Et) + Sh (A ∩ ∂∗Et) = 0 for almost every t; so, by the
definition of ζ(1)

A ,
ˆ +∞

0
Sh ({x; u∗(x) ≥ t}) dt ≤

ˆ +∞

0
∥D1Et∥ (Ωc) dt ≤ ζ

(1)
A

ˆ +∞

0
∥D1Et∥ (Ω)dt,

and similarly we find

ˆ +∞

0
Sh ({x; −u∗(x) ≥ t}) dt ≤

ˆ 0

−∞

D1Ω\Et

 (Ωc) dt ≤ ζ
(1)
A

ˆ 0

−∞
∥D1Et∥ (Ω)dt.

To deduce that ζ(1)
A is sharp, it suffices to substitute u with 1E , taking E as in the above

definition.

□

7.2.7 Definition. We set

ζα(S) := sup
{ [∥D1E∥ (Ωc)]α

∥D1E∥ (Ω) ; E ⊂ Ω, ∥D1E∥ (Ω) > 0, ∥D1E∥ (Ωc) ≤ S

}
.

With this definition, the following result is straightforward:

7.2.8 Corollary [Ma, Section 9.5.3]. Let ∥D1Ω∥ (X ) < ∞ and assume Sh (∂Ω\∂∗Ω) =
0. Then, for every u ∈ BV (Ω) such that Sh ({x; u∗(x) ̸= 0}) ≤ S, it holds

ˆ
∂Ω

|u∗(x)| dSh(x) ≤ ζ1(S) ∥Du∥ (Ω).

Moreover, the constant ζ1(S) is exact.

□
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7.2.9 Theorem [Ma, Theorem 9.5.4] Let ∥D1Ω∥ (X ) < ∞ and assume Sh (∂Ω\∂∗Ω) =
0. Then, every u ∈ BV (Ω) satisfies

∥u∗∥L1(∂Ω) ≤ k ∥u∥BV (Ω)

with a constant k > 0 independent of u, if and only if there exists δ > 0 such that for
every measurable set E ⊂ Ω with diameter at most equal to δ it holds

∥D1E∥ (Ωc) ≤ k′ ∥D1E∥ (Ω)

with a constant k′ > 0 independent of E.

□

7.2.10 Definition. Suppose that ∥D1Ω∥ (X ) < ∞ and that Sh (∂Ω\∂∗Ω) = 0. For c ∈ R,
we set

uc(x) :=

⎧⎪⎪⎨⎪⎪⎩
u(x), x ∈ Ω

c, x ∈ Ωc.

7.2.11 Lemma. ∥Duc∥ (X ) = ∥Du∥ (Ω) + ∥u∗ − c∥L1(∂Ω).

Proof. We have

∥Duc∥ (X ) =
ˆ +∞

0

D1{x; |uc−c|>t}

 (X )dt

=
ˆ +∞

0

[D1{x; |u−c|>t}

 (Ω) +
D1{x; |u−c|>t}

 (Ωc)
]

dt.

Of course the total variation of u in Ω is given by

∥Du∥ (Ω) =
ˆ +∞

0

D1{x; |u−c|>t}

 (Ω)dt,

so by the hypothesis Sh (∂Ω\∂∗Ω) = 0 we deduce

ˆ +∞

0

D1{x; |u−c|>t}

 (Ωc) dt =

=
ˆ +∞

0
Sh ({x; (u− c)∗ > t}) dt+

ˆ 0

−∞
Sh ({x; (u− c)∗ < t}) dt

=
ˆ

∂Ω
|(u(x) − c)∗| dSh(x) =

ˆ
∂Ω

|u∗(x) − c| dSh(x)

= ∥u∗ − c∥L1(∂Ω) .

The proof is complete.

□
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Summarizing the previous results, we see that ∥D1Ω∥ (X ) < ∞ and Sh (∂Ω\∂∗Ω) = 0 are
the necessary conditions under which the rough trace u∗(x) of u ∈ BV (Ω) is in L1 (∂Ω).
This conclusion allows us to proceed towards a Gauss-Green formula for functions of
bounded variation.
Namely, we have the following result:

7.2.12 Theorem. Let Ω ⊂ X be a bounded open set such that ∥D1Ω∥ (X ) < ∞ and
Sh (∂Ω\∂∗Ω) = 0. Then, for every u ∈ BV ∩ L∞(Ω) and every F ∈ TestV(X ) one has

ˆ
Ω

du(F ) +
ˆ

Ω
udiv(F )dµ = −

ˆ
X

Θ (u∗(x)) d1Ω(F )dµ(x),

where

Θ (u∗(x)) :=
ˆ u∗(x)

0
1EtfEt,Ωdt

with fEt,Ω given by (7.4) below.

Proof. Observe that, in order to drop the assumption that u is also in L∞(µ), one may
have to suppose for instance u ≥ 0, in order to avoid summability issues when working
with positive and negative parts of u.
We already know that an integration by parts formula holds for the whole of X , namely

ˆ
X

du(F ) = −
ˆ

X
udiv(F )dµ.

Moreover, clearly,
ˆ

Ω
du(F ) =

ˆ
X

du(F ) −
ˆ

X \Ω
du(F ) = −

ˆ
X
udiv(F )dµ−

ˆ
X \Ω

du(F ).

Now, suppose u ≡ 1E with E as above. The previous equalities become

ˆ
Ω

d1E(F ) = −
ˆ

X
1Ediv(f)dµ−

ˆ
X \Ω

d1E(F ) = −
ˆ

X
1Ediv(F )dµ−

ˆ
∂Ω∩∂∗E

d1E(F ).

We used the fact that - by Theorem 4.1.12 - the perimeter measure is concentrated on the
essential boundary of E, so

∥D1E∥ (Ω) = − ∥D1E∥ (∂Ω) = − ∥D1E∥ (∂Ω ∩ ∂∗E) .

Using Coarea Formula we now obtain

ˆ
Ω

du(F ) =
ˆ +∞

0
dt
ˆ

Ω
d1Et(F )

= −
ˆ +∞

0
dt
(ˆ

X
1Etdiv(F )dµ+

ˆ
∂Ω∩∂∗Et

d1Et(F )
)

= −
ˆ +∞

0
dt
(ˆ

X
1Etdiv(F )dµ+

ˆ
∂∗Ω∩∂∗Et

d1Et(F )
)
.
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The pairing d1E(F ) actually defines a measure which is absolutely continuous with respect
to the perimeter measure: setting

νF
E : A ↦→

ˆ
A

d1E(F ) = νF
E (A),

one has
⏐⏐⏐νF

E

⏐⏐⏐ (A) ≤ ∥F∥L∞(T X ) ∥D1E∥ (A) and then again by Theorem 4.1.12

νF
E (A) =

ˆ
A
σF

E(x)d ∥D1E∥ (x) =
ˆ

A∩∂∗E
σF

Eθ
F
EdSh(x).

So, d1E(F ) = σF
Eθ

F
ESh⌊∂∗E and similarly d1Ω(F ) = σF

Ωθ
F
ΩSh⌊ ∂∗Ω. Let us set

fE,Ω := σF
Eθ

F
E

σF
Ωθ

F
Ω

= λF
E

λF
Ω
. (7.4)

Summing up, we find´
∂∗Ω d1E(F )

=
ˆ

∂∗Ω∩∂∗E
λF

EdSh(x) =
ˆ

∂∗Ω∩∂∗E
λF

ΩdSh(x) =
ˆ

∂∗E
fE,ΩdSh(x).

Applying the same argument to our case,

ˆ
Ω

du(F ) = −
ˆ +∞

0
dt
(ˆ

X
1Etdiv(F )dµ+

ˆ
∂∗Et

fEt,Ωd1Ω(F )
)

= −
ˆ +∞

0
dt
(ˆ

Ω
1Etdiv(F )dµ+

ˆ
{u∗≥t}

fEt,Ωd1Ω(F )
)

= −
ˆ

Ω
udiv(F )dµ−

ˆ
∂Ω

Θ (u∗(x)) d1Ω(F ),

where

Θ (u∗(x)) =
ˆ u∗(x)

0
1EtfEt,Ωdt.

□

7.2.13 Definition & Remark. i) According to Definition 4.1.13, we shall say that
(X , d, µ) is strongly local if, besides the condition θE = θΩ Sh-almost everywhere on
∂∗Ω ∩ ∂∗E, one also has σF

E = σF
Ω Sh-almost everywhere on ∂∗Ω ∩ ∂∗E.

Observe that if (X , d, µ) is strongly local, then the function fE,Ω in (7.4) is identically 1.
ii) If we change the statement of Theorem 7.2.12 assuming that Ω is a regular domain
with Sh (∂Ω\∂∗Ω) = 0, then for every u ∈ BV ∩ L∞(Ω) there exists an operator Tr :
BV ∩ L∞(Ω) → L1 (∂Ω, ∥D1Ω∥) such that for every F ∈ TestV(X ) one has

ˆ
Ω

du(F ) +
ˆ

Ω
udiv(F )dµ = −

ˆ
∂Ω
u∗(x) (F · ν)−

∂Ω d ∥D1Ω∥ (x) :=
⟨
Tr(u), (F · ν)−

∂Ω

⟩
.
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Indeed, in this case we can use the defining sequence (φε)ε>0 ⊂ Lipc(Ω) of the regular
domain Ω and we are entitled to repeat the proof of Theorem 7.1.7.

We now pass to the comparison between the rough trace and the trace defined in terms
of Lebesgue points. In order to do so, we step back for a moment to a few more basic
definitions and then recall quickly the salient results of [LS].

7.2.14 Definition. For any measurable function u : X → R, we define its lower and
upper approximate limits as

u∧(x) := sup
{
t ∈ R; lim

ρ→0+

µ (Bρ(x) ∩ Ec
t )

µ (Bρ(x)) = 0
}

and

u∨(x) := inf
{
t ∈ R; lim

ρ→0+

µ (Bρ(x) ∩ Et)
µ (Bρ(x)) = 0

}
,

where Et as usual denotes the super-level sets of u. The arithmetic average of the approx-
imate limits will by denoted by ũ.

7.2.15 Definition. Let Ω ⊂ X be an open set and let u be a µ-measurable function on
Ω. Then, we shall say that a function Tu : ∂Ω → R is a trace of u if for Sh-almost every
x ∈ ∂Ω one has

lim
ρ→0+

 
Ω∩Bρ(x)

|u− Tu(x)| dµ = 0.

Recall that the zero extension of µ from Ω to Ω, µ̄, is given by µ̄(A) := µ(A∩ Ω) whenever
A ⊂ Ω.

7.2.16 Proposition [LS, Proposition 3.3]. Let Ω ⊂ X be a bounded open set support-
ing a (1, 1)-Poincaré inequality and assume that µ is doubling on Ω. Let Ω be equipped
with the extended measure µ̄. If u ∈ BV (Ω), then its zero-extension uΩ := ū to Ω is such
that ∥ū∥BV (Ω) = ∥u∥BV (Ω), whence ∥Dū∥ (∂Ω) = 0.

□

7.2.17 Remark. The condition ∥Dū∥ (Ω) = 0 entails the equality

ū∧(x) = ū∨(x)

for Sh-almost every x ∈ ∂Ω.

7.2.18 Definition [LS, (3.2)]. We say that an open set Ω satisfies a measure-density
condition if there exists a constant C > 0 such that
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µ (Bρ(x) ∩ Ω) ≥ Cµ (Bρ(x)) (7.5)

for Sh-almost every x ∈ ∂Ω and for every ρ ∈]0,diam(Ω)[.

7.2.19 Theorem [LS, Theorem 3.4]. Let Ω and µ be as in Proposition 7.2.16. Then,
denoting by Sh the zero-extension to Ω of Sh, there exists a linear trace operator T on
BV (Ω) such that, given u ∈ BV (Ω), for Sh-almost every x ∈ ∂Ω one has

lim
ρ→0+

 
Ω∩Bρ(x)

|u− Tu(x)|
s

s−1 dµ = 0.

Moreover, if Ω satisfies also (7.5), the above holds for Sh-almost every x ∈ ∂Ω.

□

7.2.20 Remark. Putting together Proposition 7.2.16, Remark 7.2.17 and Theorem 7.2.19,
one obtains that Tu(x) = ū∧(x) = ū∨(x) for Sh-almost every x ∈ ∂Ω. This is a direct
consequence of the fact that the BV -energy associated to ū does not charge the boundary
of Ω, ∥Dū∥ (∂Ω) = 0.

To conclude, we give an extension result in comparison with Lemma 7.2.11 and then show
that u∗(x) = Tu(x) for Sh-almost every x ∈ ∂Ω.

7.2.21 Proposition. Suppose Ω ⊂ X is an open set such that Sh(∂Ω) < ∞ and
Sh (∂Ω\∂∗Ω) = 0; let E ⊂ Ω be a set of finite perimeter in Ω. Then, 1̄E ∈ BV (X ).
Under the same hypotheses, for any u ∈ BV ∩ L∞(Ω) one has ū ∈ BV (X ).

Proof. As in the proof of Proposition 7.2.12, we remark that in order to drop the
assumption that u is also in L∞(µ), one may have to suppose for instance u ≥ 0, in order
to avoid summability issues when working with positive and negative parts of u.
We can write

∥D1E∥ (X ) = ∥D1E∥ (Ω) + ∥D1E∥ (X \Ω)
= ∥D1E∥ (Ω) + ∥D1E∥ (∂Ω)
= ∥D1E∥ (Ω) + ∥D1E∥ (∂∗Ω) ≤ ∥D1E∥ (Ω) + Sh (∂∗Ω ∩ ∂∗E) ,

which is finite by our assumptions. Then the assertion follows for 1E ∈ BV (Ω).
Let us now take u ∈ BV (Ω); we shall make use of the above argument and of the Coarea
Formula. For simplicity, assume u ≥ 0. Then

∥Dū∥ (X ) =
ˆ +∞

0

D1̄Ēt

dt ≤
ˆ ∞

0

[
∥D1Et∥ (Ω) + Sh (∂∗Ω ∩ ∂∗Et)

]
dt,

by the previous inequality. We already know that
´ +∞

0 ∥D1Et∥ dt is finite since u ∈
BV (Ω); let us then estimate

´ +∞
0 Sh (∂∗Ω ∩ ∂∗Et) dt. Using Cavalieri’s Principle,
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ˆ +∞

0
Sh (∂∗Ω ∩ ∂∗Et) dt =

ˆ +∞

0
dt
ˆ

∂∗Ω
1∂∗EtdSh(x) =

ˆ
∂∗Ω

dSh(x)
ˆ +∞

0
1∂∗Etdt.

Now observe that since we are integrating over ∂∗Ω ∩ ∂∗Et, then t ∈ [0, ū∨(x)]. Indeed,
if t > ū∨(x), then we would have Θ∗

µ̄ (Et, x) = 0 and thus Θ∗
µ (Et, x) = 0 - see Definition

4.1.11 for the notion of density of a set at a point - implying E(0)
t ∋ x /∈ ∂∗Et, which is a

contradiction. If 0 < t < ū∨(x), then the upper density associated with µ̄, Θ∗
µ̄ (Et, x) , is

positive and then also Θ∗
µ (Et, x) > 0.

Moreover, if x ∈ ∂∗Ω then we find

0 < lim sup
ρ→0

µ (Bρ(x) ∩ Et)
µ (Bρ(x)) = lim sup

ρ→0

µ (Bρ(x) ∩ Et)
µ (Bρ(x) ∩ Ω)

µ (Bρ(x) ∩ Ω)
µ (Bρ(x))

≤ lim sup
ρ→0

µ (Bρ(x) ∩ Et)
µ (Bρ(x) ∩ Ω) < 1.

This means x ∈ ∂∗Et. In other words, for x ∈ ∂∗Ω we have shown the following:

i) if x ∈ ∂∗Et then 0 ≤ t ≤ ū∨(x);

ii) if 0 < t < ū∨(x) then x ∈ ∂∗Et.

Thus,

ˆ
∂∗Ω

dSh(x)
ˆ +∞

0
1∂∗Etdt =

ˆ
∂∗Ω

dSh(x)
ˆ ū∨(x)

0
1∂∗Etdt

=
ˆ

∂∗Ω
ū∨(x)dSh(x)

=
ˆ

∂∗Ω
u∗(x)dSh(x) =

ˆ
∂∗Ω

Tu(x)dSh(x).

Summarizing, we have found

∥Dū∥ (X ) ≤ ∥Du∥ (Ω) + c

ˆ
∂∗Ω

Tu(x)dSh(x).

The Proposition is proven.

□

7.2.22 Proposition. Let Ω ⊂ X be an open set. Then, for every x ∈ ∂∗Ω and u ∈ BV (Ω),
assuming ū∧(x), ū∨(x) ∈ R one has ū∧(x) ≤ u∗(x) ≤ ū∨(x).

Proof. Assume u ≥ 0 for simplicity. By definition, ū := u|X is the zero-extension of u
to the whole of X . Recall that, by definition, u∗(x) is the supremum of those t for which
x ∈ ∂∗Et. We first assume t < ū∧(x). This gives, by the definition of approximate limits
and of extended measure,
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1 = Θ∗,µ̄ (Et, x)

= lim inf
ρ→0

µ (Bρ(x) ∩ Et ∩ Ω)
µ (Bρ(x) ∩ Ω)

= lim inf
ρ→0

µ (Bρ(x) ∩ Et)
µ (Bρ(x) ∩ Ω) = lim inf

ρ→0

µ (Bρ(x) ∩ Et)
µ (Bρ(x))

µ (Bρ(x))
µ (Bρ(x) ∩ Ω)

> lim inf
ρ→0

µ (Bρ(x) ∩ Et)
µ (Bρ(x)) = Θ∗,µ (Et, x) ,

hence x /∈ E
(1)
t . Let us then show that x /∈ E

(0)
t . Since by hypothesis x ∈ ∂∗Ω, there exists

a constant c > 0 such that c ≤ Θ∗,µ (Ω, x) ≤ 1 − c. Then, arguing in the same manner as
above we find

lim inf
ρ→0

µ (Bρ(x) ∩ Et)
µ (Bρ(x)) ≥ c,

forcing x /∈ E
(0)
t . In other words, x ∈ ∂∗Et and t ≤ u∗(x).

Now, assume t > ū∨(x). Using the previous arguments,

0 = Θ∗
µ̄ (Et, x)

= lim sup
ρ→0

µ (Bρ(x) ∩ Et ∩ Ω)
µ (Bρ(x) ∩ Ω)

> lim sup
ρ→0

µ (Bρ(x) ∩ Et)
µ (Bρ(x)) = Θ∗

µ (Et, x) ,

but this would force Θ∗
µ (Et, x) = 0. Hence, x ∈ E

(0)
t implying x /∈ ∂∗Et. This means

t ≥ u∗(x), and then u∗(x) ≤ ū∨(x).

□

7.2.23 Remark. Observe that, when t > ū∨(x) we may actually take x to be an arbitrary
point of X .
If we combine Proposition 7.2.22 with Theorem 7.2.19 and Remark 7.2.20, we obtain
u∗(x) = Tu(x) Sh-almost everywhere on ∂Ω; an important consequence of this equality is
that u∗(x) defines a fortiori a linear operator.
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