
UNIVERSITÀ DEGLI STUDI DI FERRARA

FACOLTÀ DI INGEGNERIA

DOTTORATO DI RICERCA IN SCIENZE DELL’INGEGNERIA
Ciclo XXXII

COORDINATORE Prof. Stefano Trillo

SETTORE SCIENTIFICO DISCIPLINARE ING-INF/05

Scalable Probabilistic Inductive Logic
Programming for Big Data

Dottorando

Dott. Arnaud Nguembang Fadja

Tutore

Prof. Fabrizio Riguzzi

Correlatore

Prof.ssa Evelina Lamma

Anni 2016/2019

Abstract

The size of the data available on the Internet and in various fields is
constantly increasing. This lead to the phenomenon called big data. Since these
data come from different sources and are heterogeneous, they are intrinsically
characterized by incompleteness and/or uncertainty. In order to manage such
data, systems have to be not only able to represent uncertainty but also
scalable enough to deal with ever-increasing data. Systems based on logic
provide powerful tools for representing, reasoning and learning from data
characterized by uncertainty.

The Distributions Semantics (DS) is a well known formalism for representing
data characterized by uncertainty. It provides a powerful tool for combining
logic and probability. Programs following this formalism are called Probabilistic
Logic Programs (PLPs). Many languages follow the DS, such as Logic Program
with Annotated Disjunctions (LPADs) and ProbLog. Moreover, state of the
art systems for learning either the parameters, EMBLEM and LFI-ProbLog, or
the structure, SLIPCOVER and ProbFOIL+, have been implemented. These
systems provide good performance in terms of accuracy but still suffer from
scalability problems. In this thesis, we address these problems by proposing
two languages under the DS in which reasoning and learning are cheaper.

We first present a language, Liftable Probabilistic Logic Programs (LPLPs),
in which inference is performed at a lifted level, i.e groups of individuals are
considered as a whole instead of one by one. Then we propose the algorithm,
LIFTCOVER for LIFTed slipCOVER, that learns the structure of LPLPs from
data. Two versions of LIFTCOVER are proposed: the first, LIFTCOVER-
EM, uses the Expectation Maximization (EM) algorithm as a sub-routine for
parameter learning and the second, LIFTCOVER-LBFGS, uses an optimization
method called Limited memory BFGS.

In the second part we present an extension of the language of LPLPs,
called Hierarchical Probabilistic Logic Programs (HPLPs), in which clauses
and predicates are hierarchically organized. A program in this language can be
converted to a set of Arithmetic Circuits (ACs) or deep neural networks and
inference is done by evaluating the ACs. We describe how to perform inference
and learning in HPLPs. To learn the parameters of HPLPs from data, we
propose the algorithm, Parameter learning for HIerarchical probabilistic Logic
programs (PHIL). Two variants of PHIL, Deep PHIL (DPHIL) and EM PHIL
(EMPHIL), and their regularized versions are presented. We also propose an
algorithm, SLEAHP for Structure LEArning of Hierarchical Probabilistic logic
programming, for learning both the structure and the parameters of HPLPs
from data.

All these algorithms were tested on real world problems and their perfor-
mances, in terms of time, were better than the state of the art while obtaining
solutions of comparable quality.

Sommario

La dimensione dei dati disponibili su Internet e in vari campi è in costante
aumento. Questo porta al fenomeno cosiddetto big data. Poiché questi dati
provengono da fonti diverse e sono eterogenei, sono intrinsecamente caratter-
izzati da incompletezza e/o incertezza. Per gestire tali dati, i sistemi devono
essere non solo in grado di rappresentare l’incertezza, ma anche abbastanza
scalabili per gestire dati in costante aumento. I sistemi basati sulla logica
forniscono potenti strumenti per rappresentare, ragionare e apprendere dai dati
caratterizzati da incertezza. La Semantica distribuzionale (SD) è un formal-
ismo ben noto per rappresentare dati caratterizzati da incertezza. Fornisce un
potente strumento per combinare logica e probabilità. Programmi che seguono
questo formalismo sono chiamati Programmi Logici Probabilistici (PLP). Molti
linguaggi seguono la SD, come i Programmi Logici con Disgiunzioni Annotate
(PLDA) e ProbLog. Inoltre, sono stati implementati sistemi all’avanguardia
per l’apprendimento dei parametri, EMBLEM e LFI-ProbLog, e della struttura,
SLIPCOVER e ProbFOIL+ di programmi in tali linguaggi. Questi sistemi
offrono buone prestazioni in termini di accuratezza ma soffrono ancora di prob-
lemi di scalabilità. In questa tesi, affrontiamo questi problemi proponendo due
linguaggi sotto la SD in cui il ragionamento e l’apprendimento sono veloci.

Innanzitutto proponiamo un linguaggio, chiamato Liftable Probabilistic
Logic Programs (LPLP), in cui l’inferenza è eseguita ad alto livello, cioè
gruppi di individui sono considerati complessivamente anziché uno per uno. Poi
proponiamo l’algoritmo, LIFTCOVER per LIFTed slipCOVER, che apprende la
struttura di LPLP dai dati. Due versioni di LIFTCOVER sono state proposte: il
primo, LIFTCOVER-EM, utilizza l’algoritmo Expectation Maximization (EM)
come sub-routine per l’apprendimento dei parametri e il secondo, LIFTCOVER-
LBFGS, utilizza un metodo di ottimizzazione chiamato BFGS a memoria
limitata.

Nella seconda parte presentiamo un’estensione del linguaggio LPLP, chiam-
ato Hierarchical Probabilistic Logic Programs (HPLP), in cui le clausole e i
predicati sono organizzati gerarchicamente. Un programma in questa linguaggio
può essere convertito in una serie di Circuiti Aritmetici (CA) o reti neurali
profonde e l’inferenza viene fatta valutando gli CA. La tesi descrive come
eseguire l’inferenza e l’apprendimento negli HPLP. Per apprendere i parametri
degli HPLP dai dati, abbiamo proposto l’algoritmo, Parameter learning for
HIerarchical probabilistic Logic programs (PHIL). Due varianti di PHIL, Deep
PHIL (DPHIL) ed EM PHIL (EMPHIL) e le loro versioni regolarizzate sono
state presentate. Inoltre, abbiamo proposto l’algoritmo SLEAHP, per Structure
LEArning of Hierarchical Probabilistic logic programming, per apprendere sia
la struttura che i parametri di HPLP dai dati.

Tutti questi algoritmi sono stati sperimentati su problemi del mondo reale
e le loro prestazioni, in termini di tempo, sono migliori dello stato dell’arte
ottenendo soluzioni di qualità paragonabile.

Acknowledgements

First of all, i would like to sincerely thank my supervisors Prof. Evelina Lamma
and Prof. Fabrizio Riguzzi for their advice and their personal attention for me
during this work. Their support and guidance have been of considerable help
in carrying out this research.

I thank my lab mates for the discussions and the hours spent working
together and for all the fun during coffee breaks.

I thank my family for their ever-increase attention. They helped me believe
in me since my childhood. I particularly thank my father, Fadja Armand, and
my mother, Mbiatat Fride, who raised me and made me become an adult.
Many thanks to my brothers Fabo Fadja Achille Fredy, Gnose Fadja Aristide,
Fadja Fadja Armand and my sisters Nzouakeu Fadja Armelle and Heumi Fadja
Arlette for their unconditional support.

A special thank to Prudencia and Kesiah for the support and encourage-
ments. They gave me strength and helped me overcome difficult moments
during my PhD years.

To my family

Contents

I Introduction 1

1 Motivation 3

2 Thesis Aims 7

3 Structure of the thesis 9
3.1 How to Read This Thesis . 10

4 Publications 13

II Logic and Probability 17

5 Logic 19
5.1 Introduction . 19
5.2 Propositional Logic . 20

5.2.1 Syntax . 20
5.2.2 Semantic . 22

5.3 First Order Logic . 22
5.3.1 Syntax . 23
5.3.2 Semantics . 26

5.4 Logic Programming . 28

6 Probability Theory 33
6.1 Event Spaces . 33
6.2 Probability Distributions . 34
6.3 Conditional Probability . 36
6.4 Random Variables and Distributions 37

i

6.5 Expectation of a Random Variable 39

III Probabilistic Logic Programming 43

7 Languages under the Distribution Semantics 47

7.1 Distribution Semantics . 48

7.2 Logic Programs with Annotated Disjunctions 49

7.2.1 Sampling interpretation of the semantics 51

7.2.2 Programs with function symbols 52

7.2.3 Hybrid programs . 52

7.3 ProbLog . 53

7.4 Inference in Probabilistic Logic Programming 55

8 Probabilistic Logic Programming in action 61

8.1 Tile map generation . 61

8.2 Markov Logic Networks . 63

8.3 Truel . 67

8.4 Coupon Collector Problem . 71

8.5 One-Dimensional Random Walk 74

8.6 Latent Dirichlet Allocation . 75

8.7 The Indian GPA Problem . 78

IV Probabilistic Inductive Logic Programming 81

9 Inductive Logic Programming 83

9.1 Definition . 83

9.2 Learning from entailment . 84

9.3 Learning from interpretations 85

9.4 Learning from proofs . 86

9.5 Search Space . 87

9.5.1 Refinements Operator 89

9.5.2 Language bias . 90

9.5.3 ILP algorithm . 92

ii

10 Learning Probabilistic Logic Programming 95
10.1 PILP Settings . 96
10.2 Parameter learning . 97

10.2.1 Expectation Maximization 97
10.2.2 Gradient Descent . 98
10.2.3 Limited Memory BFGS: LBFGS 100
10.2.4 EMBLEM . 101
10.2.5 Learn From Interpretation ProbLog: LFI-ProbLog 103

10.3 Structure learning . 105
10.3.1 SLIPCOVER . 106
10.3.2 ProbFOIL+ . 107

V Lifted Probabilistic Logic Programming 111

11 Liftable Probabilistic Logic Programming 113
11.1 Motivation . 113
11.2 Liftable PLP . 115
11.3 Inference in Liftable PLP . 116
11.4 Parameter Learning . 119

11.4.1 EM Algorithm . 120
11.4.2 Gradient-Based Optimization 123

11.5 Structure Learning . 124
11.5.1 Language bias . 126
11.5.2 Bottom Clauses Generation 127
11.5.3 Clause refinement . 127

11.6 Related Work . 129
11.7 Experiments . 133

VI Hierarchical Probabilistic Logic Programming 143

12 Hierarchical Probabilistic Logic Programming 145
12.1 Motivation . 145
12.2 Hierarchical PLP . 146
12.3 Inference . 150

iii

12.4 Building the Arithmetic Circuit 155

12.5 Related Work . 156

13 Parameter learning for Hierarchical Probabilistic Logic Pro-
gramming 159

13.1 Introduction . 159

13.2 Gradient Descent and Back-propagation
DPHIL . 160

13.2.1 Gradient Calculation . 161

13.2.2 Parameters Update . 166

13.2.3 DPHIL regularization: DPHIL1 and DPHIL2 168

13.3 Expectation Maximization: EMPHIL 170

13.3.1 Message Exchanges . 171

13.3.2 EMPHIL regularization: EMPHIL1,
EMPHIL2 and EMPHIL3 179

13.4 Related Work . 180

13.5 Experiments . 181

13.5.1 Datasets . 181

13.5.2 Methodology . 182

14 Structure learning of Hierarchical Probabilistic Logic Program-
ming 187

14.1 Overview . 187

14.2 Description of the algorithm . 188

14.2.1 Tree Generation . 189

14.2.2 HPLP Generation . 191

14.3 Related work . 193

14.4 Experiments . 196

VII Summary and Future Work 199

15 Conclusion 201

16 Future work 205

iv

Bibliography 207

Appendix 225

A Proofs of theorems 225

v

vi

List of Figures

1.1 Big data. 4

3.1 Dependency graph of the main chapters. For instance, to under-
stand Chapter 13 you have to read chapters 10 and 12 first. . . 11

5.1 SLD tree for the query path(a, c) from the program of Example 5. 30

8.1 A random tile map. 63

8.2 Probability tree of the truel with opponents a and b. 69

8.3 Distribution of the number of boxes. 73

8.4 Expected number of boxes as a function the number of coupons. 73

8.5 Smoothed LDA. 75

8.6 Values for word in position 1 of document 1. 77

8.7 Values for couples (word,topic) in position 1 of document 1. . . 78

8.8 Prior distribution of topics for word in position 1 of document 1. 78

8.9 Posterior distribution of topics for word in position 1 of document
1. 79

8.10 Density of the probability of topic 1 before and after observing
that words 1 and 2 of document 1 are equal. 79

11.1 Bayesian Network representing the dependency between the
query q and the random variables associated with groundings of
the clauses with the body true. 117

11.2 Histograms of average AUC-ROC. 136

11.3 Histograms of average AUC-PR. 138

11.4 Histograms of average time in seconds. The scale of the Y axis
is logarithmic. 139

vii

12.1 Probabilistic program tree. 149
12.2 Probabilistic program tree for Example 22. 150
12.3 Arithmetic circuit/neural net. 152
12.4 Ground probabilistic program tree for Example 23. 154
12.5 Arithmetic circuit/neural net for Example 23. 155

13.1 Converted arithmetic circuit of Figure 12.5. 161
13.2 Factor graph. 171
13.3 Examples of factor graph . 173

14.1 Tree created from the bottom clause of Example 24. 192

viii

List of Tables

5.1 Truth table . 22

6.1 Random variable (tossing a coin twice) 38
6.2 Probability distribution (tossing a coin twice). 39

11.1 Characteristics of the datasets for the experiments: number of
predicates (P), of tuples (T) (i.e., ground atoms), of positive
(PEx) and negative (NEx) examples for target predicate(s), of
folds (F). The number of tuples includes the target positive
examples. 133

11.2 Parameters controlling structure search for LIFTCOVER and
SLIPCOVER. 135

11.3 Average AUC-ROC. 137
11.4 Average AUC-PR. 137
11.5 Average time in seconds. 140

13.1 CPTs of factors . 173
13.2 Hyper-parameters . 182
13.3 Average area under ROC curve. 183
13.4 Average area under PR curve. 184
13.5 Average time . 184

14.1 Average area under ROC curve. 197
14.2 Average area under the PR curve. 197
14.3 Average time. 198

ix

x

List of Algorithms

1 ILP algorithm. 92
2 Find clause . 93
3 EMBLEM algorithm. 102
4 Function SLIPCOVER . 108
5 Function ProbFOIL+ . 109
6 Function EM . 122
7 Function Expectation . 122
8 Function Maximization . 123
9 Function LIFTCOVER . 125
10 Function InitialBeam . 126
11 Function Saturation . 128
12 Function ClauseRefinements 129
13 Function DPHIL. 163
14 Function Forward . 164
15 Procedure BackwardGD 167
16 Procedure UpdateWeightsAdam 168
17 Procedure Backward in EMPHIL 178
18 Function EMPHIL. 185
19 Function Structure learning 189
20 generate tree . 190
21 insert a literal into a Tree 191
22 Function GenerateHPLP 194

xi

xii

Part I

Introduction

1

Chapter 1

Motivation

Because of the increase of the number of connected devices and the huge
amounts of data flowing among them, it is important nowadays to investigate
how to implement systems in order to manage large quantities of data. The
Gartner institute claimed that, by 2020, almost 30 billions devices will be
inter-connected through the Internet of Thing (IoT). These devices should be
able to exponentially generate large amounts of structured data (database,
on-line transactions, log files) and unstructured data (images, videos, social
network data, GPS data, sensors data). The larger will these data be, the more
efficient should be the systems for analyzing, reasoning and learning from them.
The phenomenon of ever-increasing data is known in the literature as big data,
see Figure 1.1.

When dealing with big data, various challenges have to be considered. We
have to:

1. define techniques for collecting large amounts of data.

2. improve techniques for storing these data.

3. define robust, scalable and high-performance systems for representing,
analyzing and extracting knowledge from ever-increasing amounts of data.
These systems should also be able to manage uncertainty, typical of many
real world domains.

To represent data and relationhips among them, First-Order Logic (FOL) and
Logic programming (LP) are some of the most used formalism. They define

3

Figure 1.1: Big data.

4

not only tools for representing individuals from several domains of interest,
but also for modeling relation among them. Recently, declarative approaches,
based on logic, have been combined with probability theory, to represent and
reason in domains characterized by uncertainty. This combination, called
Probabilistic Logic Programming, allows the representation of data in uncertain
domains by integrating logic and probability. This combination is particularly
useful because elements are (almost) never absolutely true or false, but are
affected by uncertainty. One of the most powerful semantics for PLP was
proposed by Taisuke Sato in 1995 [121]: the distribution semantics (DS).
Since then, many languages under the DS have been proposed such as PRISM
[122], Independent Choice Logic (ICL) [132], Logic Programs with Annotated
Disjunctions (LPADs) [142], ProbLog [60], just to name a few. Each of these
languages allows not only to represent data as a set of facts and rules, the
structure of the program, but also to assign probabilities, the parameters of the
program, to these facts and rules in order to represent uncertainty. Reasoning
means computing the probability of certain facts, called queries, given a PLP
and a background knowledge, typically a set of true facts in the domains.
Learning means inducing the parameters and the structure of PLPs from data.
Different learning tasks can be considered:

1. Inductive Logic Programming (ILP)
This problem deals with domains without uncertainty. Given a dataset
(set of facts), ILP induces a logic program consistent with the data.

2. Parameters learning
In this problem we are given the structure of a logic program and the
data. The task is to induce the parameters from data.

3. Probabilistic Inductive Logic Programming (PILP)
PILP combines the previous tasks and tries to learn both the structure
and the parameters of PLPs from data.

Many state-of-the-at systems have been implemented for solving the previous
tasks. For ILP, sytems such as FOIL [104], Aleph [129] and Progol [79] have
been implemented. State-of-art parameter learning systems such as PRISM
[124], EMBLEM [10], LFI-ProbLog [36] have also been proposed. In PILP,

5

systems such as SLIPCOVER [11], ProbFOIL [31] and ProbFOIL+ [105] have
been proposed for learning both the structure and parameters from data.

These systems have been successfully applied in many real domains such as
link discovery in social networks [29], natural language processing [150, 115, 87],
bioinformatics [78, 29, 123], entity resolution [110], just to name a few. They
perform well on these domains in terms of solution quality but all suffer from
one problem: scalability. The time taken by learning in almost all of these
systems becomes prohibitive as the size of the data increases.

Many attempts to overcome the scalability problem have been investigated
and approaches based on distributed algorithms, such as Map-Reduce [112, 15],
have been implemented and applied to many real domains. However, these
systems still suffer from the exponential growth of data and it is necessary to
investigate new languages based on FOL in which reasoning and learning are
less expensive. Systems based on these languages should be combined with
systems based on distributed algorithms to achieve scalability, fundamental for
big data.

6

Chapter 2

Thesis Aims

Because of the ever-increasing amount of data available on the web and the
limits of systems based on distributed algorithms, as described in the previous
chapter, one of the most important challenge to face in Statistical Relational
Learning (SRL) is to define languages for managing large amounts of data.
These languages should be expressive enough to represent many domains, even
those affected by uncertainty, and should be computationally less expensive in
terms of reasoning and learning.

This thesis aims at defining new languages following the DS formalism
that overcome the problem described previously. We first present a set of
applications and examples, see Chapter 8, formalized by FOL in PLP which
illustrate its expressiveness and maturity. Then, we present our threefold
contribution to SRL.

First, we propose two restrictions of the language of LPADs called Liftable
Probabilistic Logic Program (LPLP), and Hierarchical Probabilistic Logic
Program (HPLP). These languages allow a hierarchy among clauses. While
LPLPs allow only one layer of clauses, HPLPs extend LPLPs by allowing many
layers of clauses. Inference in these languages is less expensive than for general
PLPs. Therefore learning both the parameters and the structure of LPLPs
and HPLPs becomes computationally less expensive and consequently more
scalable.

Second, different parameter learning algorithms are proposed for each
language. For LPLPs, two algorithms based on Expectation Maximization (EM)
and on Gradient method (Limited-memory BFGS (LBFGS) [92]) have been

7

implemented. For HPLPs, we propose an algorithm, called Parameter learning
for HIerarchical probabilistic Logic programs (PHIL)1, that estimates the
parameters of HPLPs from data. Two versions of PHIL and their regularizations
are implemented: the first is based on EM algorithm called Expectation
Maximization PHIL (EMPHIL) and the second is based on Gradient descent
and particular on the ADAM optimizer called Deep PHIL (DPHIL). We
performed experiments on real world data comparing PHIL with state of the
art parameter learning algorithms such as EMBLEM and LFI-ProbLog. PHIL
shows comparable and often better performance in less time.

Third, we propose two algorithms, LIFTCOVER2 and SLEAPH, for learn-
ing both the structure and the parameters of LPLPs and HPLPs from data
respectively. Different versions of these algorithms based on EM and GD were
also implemented. Experiments comparing LIFTCOVER and SLEAPH with
the state of the art structure learning algorithms SLIPCOVER and ProbFOIL+
also show comparable and often better performance in less time.

1The code are available at https://github.com/ArnaudFadja/phil.
2The code of the systems and the datasets are available at https://bitbucket.org/

machinelearningunife/liftcover.

8

https://github.com/ArnaudFadja/phil
https://bitbucket.org/machinelearningunife/liftcover
https://bitbucket.org/machinelearningunife/liftcover

Chapter 3

Structure of the thesis

This thesis is divided into 7 parts: Introduction, Logic and Probability, Proba-
bilistic Logic Programming (PLP), Probabilistic Inductive Logic Programming
(PILP), Lifted Probabilistic Logic Programming, Hierarchical Probabilistic
Logic Programming, Summary and Future Work.

In the introduction, Part I, the motivation and the goals of the thesis are
presented in chapters 1 and 2 respectively. Then, the structure of the thesis
and the publications related to the themes treated in the thesis are respectively
presented in chapters 3 and 4.

In the second part, Part II, the foundations of logic, i.e propositional logic,
first order logic and logic programming, are presented in Chapter 5. Chapter 6
illustrates some basic concepts of probability necessary for understanding the
algorithms presented in the following parts.

Part III describes how to integrate logic programming and probability theory
in order to model domains characterized by uncertainty. Different languages
under the distribution semantics including LPADs and ProbLog are described
in Chapter 7. How to perform inference in such languages is presented in the
same chapter. In Chapter 8, Probabilistic Logic programs in Action, we present
a set of examples in various domains in which PLPs can be applied.

Part 10 presents algorithms for learning general PLPs. Chapter 9 discusses
ILP including how to structure the search and different approaches for inducing
a logic program form data. Chapter 10 describes how to induce both the
structure and the parameters of PLPs from data. State of the art parameter
(EMBLEM and LFI-ProbLog) and structure (SLIPCOVER and ProbFOIL+)

9

learning are also presented.
In Part V, we propose a restriction of the language of LPADs called liftable

PLP (LPLP). Chapter 11 describes how to perform inference and presents
an algorithm, LIFTCOVER, similar to SLIPCOVER, for learning both the
parameters and the structure of LPLPs. Two implementations of LIFTCOVER
based on Expectation Maximization (IFTCOVER-EM) and on gradient method
(LIFTCOVER-LBFGS) are presented.

Another important contribution of this thesis is presented in Part VI. In
this part we propose an extension of LPLP, called Hierarchical PLP (HPLP),
which is still a restriction of LPADs, and for which inference and learning are
less expensive than for general LPADs. In Chapter 12 we present in detail a
description of Hierarchical PLPs, how to perform inference in such programs
and how to convert them into arithmetic circuits or deep neural networks.
Chapter 13 presents the parameter learning algorithm PHIL (DPHIL and
EMPHIL) and their regularization versions. The structure learning algorithm,
SLEAHP, is presented in Chapter 14.

Part VII summarizes the work conducted in this thesis in Chapter 15 and
presents directions for future work in Chapter 16.

3.1 How to Read This Thesis

The thesis is written such that it can be read by both experts and non-experts
in logic programming. Figure 3.1 shows the dependencies among the main
chapters. In gray we highlight the chapters useful for understanding the basic
concepts of logic programming and probability theory as well as PLP languages
and state of the art parameter and structure learning systems. Our contribution
including PLP in action, LIFTCOVER, PHIL and SLEAHP are in blue.

10

5 6

7

89

10

12

1311

14

Background

Our contribution

Figure 3.1: Dependency graph of the main chapters. For instance, to understand
Chapter 13 you have to read chapters 10 and 12 first.

11

12

Chapter 4

Publications

The work described in this thesis was published in:

• International Journals

1. Arnaud Nguembang Fadja and Fabrizio Riguzzi. Lifted discrimi-
native learning of probabilistic logic programs. Machine Learning,
108(7):1111–1135, c© Springer, 2019.

2. Arnaud Nguembang Fadja, Fabrizio Riguzzi and Evelina Lamma.
Learning Hierarchical Probabilistic Logic Programs. International
Joint Conference on Learning and Reasoning (submitted).

• Book Chapters

1. Arnaud Nguembang Fadja and Fabrizio Riguzzi. Probabilistic logic
programming in action. In Andreas Holzinger, Randy Goebel, Mas-
simo Ferri, and Vasile Palade, editors, Towards Integrative Machine
Learning and Knowledge Extraction: BIRS Workshop, Banff, AB,
Canada, July 24-26, 2015, Revised Selected Papers, volume 10344 of
Lecture Notes in Computer Science, pages 89–116. Springer, Heidel-
berg, Germany, c© Springer, 2017. The final publication is available
at Springer via http://dx.doi.org/10.1007/978-3-319-69775-8_5.

• International Conferences

1. Arnaud Nguembang Fadja, Fabrizio Riguzzi, and Evelina Lamma.
Expectation maximization in deep probabilistic logic programming.

13

In Chiara Ghidini, Bernardo Magnini, and Andrea Passerini, editors,
Proceedings of the 17th Conference of the Italian Association for
Artificial Intelligence (AI*IA2018), Trento, Italy, 20-23 November,
2018, volume 11298 of Lecture Notes in Computer Science, pages
293–306, Heidelberg, Germany, 2018. c© Springer, Springer.

2. Arnaud Nguembang Fadja and Fabrizio Riguzzi. Lifted discrimina-
tive learning of probabilistic logic programs. In Nicolas Lachiche and
Christel Vrain, editors, 27th International Conference on Inductive
Logic Programming, ILP 2017, 2017.

• International Workshops

1. Arnaud Nguembang Fadja, Evelina Lamma, and Fabrizio Riguzzi.
Vision inspection with neural networks. In Marco Maratea and
Mauro Vallati, editors, R.i.C.e.R.c.A: RCRA Incontri E Confronti,
Proceedings of the RiCeRcA Workshop co-located with the 17th
International Conference of the Italian Association for Artificial
Intelligence (Ai*iA 2018), volume 2272 of CEUR Workshop Proceed-
ings, pages 1–10, Aachen, Germany, 2018. c© by the authors, Sun
SITE Central Europe.

2. Arnaud Nguembang Fadja, Fabrizio Riguzzi, and Evelina Lamma.
Deep learning for probabilistic logic programming. In Marco Rospocher,
Luciano Serafini, and Sara Tonelli, editors, AI*IA 2018 Doctoral
Consortium, Proceedings of the AI*IA Doctoral Consortium (DC),
volume 2249 of CEUR Workshop Proceedings, pages 43–47, Aachen,
Germany, 2018. c© by the authors, Sun SITE Central Europe.

3. Arnaud Nguembang Fadja, Fabrizio Riguzzi, and Evelina Lamma.
Learning the parameters of deep probabilistic logic programs. In
Elena Bellodi and Tom Schrijvers, editors, Probabilistic Logic Pro-
gramming (PLP 2018), volume 2219 of CEURWorkshop Proceedings,
pages 9–14, Aachen, Germany, 2018. c© by the authors, Sun SITE
Central Europe.

4. Arnaud Nguembang Fadja, Evelina Lamma, and Fabrizio Riguzzi.
Deep probabilistic logic programming. In Christian Theil Have

14

and Riccardo Zese, editors, Proceedings of the 4th International
Workshop on Probabilistic logic programming, (PLP 2017), volume
1916 of CEUR Workshop Proceedings, pages 3–14, Aachen, Germany,
2017. Sun SITE Central Europe.

15

16

Part II

Logic and Probability

17

Chapter 5

Logic

Logic can be defined as the study of different forms of reasoning with the main
objective of recognizing and identifying the correct forms of reasoning and
distinguishing them from incorrect ones. It is often called formal or symbolic
logic because the forms of logic are expressed by means of symbols. The aim
of this chapter is to discuss and present the different forms of logic used in
machine learning and statistical relational learning. After presenting a brief
introduction in Section 5.1, Propositional logic, First Order Logic and Logic
Programming are described in Sections 5.2, 5.3 and 5.4 respectively.

5.1 Introduction

Logic and Propositional Logic date back to Aristode whose purpose was to
model reasoning. Modeling reasoning is useful in many fields of research such
as planning, automated reasoning, machine learning and artificial intelligence
in general. Propositional logic aims at defining a syntax for representing
propositions, for defining their semantic and truth. Since Propositional logic is
not enough expressive to represent relational domains, other logic formalisms
have been proposed: First Order Logic, FOL, and Logic Programming, LP.
Both formalisms allow predicate and function symbols that are often useful for
representing complex relations among entities. FOL and LP share the same
syntax but differ in the way they define their semantics. The following sections
describe each approach in turns.

19

5.2 Propositional Logic

Propositional logic defines a way for representing sentences called propositions.
It does not investigate the meaning of the individual propositions, but only
the schemes in which the propositions can be composed, specially by operators
called logical connectives. The purpose is to assign a truth to statements (or
logical expressions) obtained by composing simple propositions. In order to
define such a language, we need to formally define an alphabet, which consists
of symbolic elements used for representing propositions (and statements), a
syntax, which defines how to obtain the statements by combining elements
in the alphabet and the logical connectives. Finally, we need a semantic for
defining the truth of each statement. Let us present these components for
propositional logic. They will also be presented in the case of FOL and LP.

Alphabet

The alphabet is a set of symbols and constructs necessary for building sentences
in a language. Statements in propositional logic are built by combining a set
of:

• Constants (truth values): {True, False} also indicated {T, F} or {0,1} or
{>,⊥}

• Propositional symbols {a,b, . . ., z}

• Logical connectives: ¬ (not), ∧ (and), ∨ (or), → or ⊃ (implication) , ↔
or ≡ (equivalence)

• Auxiliary symbols: "(" (left parenthesis), ")" (right parenthesis)

5.2.1 Syntax

The syntax defines how to combine alphabet’s constructs for representing
propositions. A proposition can be simple or compound. A simple (or atomic)
proposition is a statement which:

• can be {True, False},

• can be formalized by a propositional symbol.

20

Example 1. Simple propositions

1. Each triangle can be inscribed in a circle

2. Rome is in France

Note in the example that, we are not interesting in the meaning of each
proposition. We only need to give their truth. The first proposition is true and
the second is false.

Atomic propositions can be compounded by means of logical connectives. If
a an b are atomic propositions, then ¬(a), (a∧ b), (a∨ b), (a→ b), (a↔ b) are
compound propositions. Formally, let L be the set of constants and propositional
symbols: the set, P , of propositions (or formulas) can be inductively defined as
follows:

• ∀a ∈ L, (a) ∈ P

• ∀p ∈ P , ¬(p) ∈ P

• ∀p, q ∈ P , (p ∨ q), (p ∧ q), (p → q) ≡ (¬p ∨ q), (p ↔ q) ≡ ((p ∧ q)∨
(¬p ∧ ¬q)) ∈ P

The proposition (p ∨ q) is called disjunction and a and b are disjuncts. (p ∧
q) is called conjunction and a, b conjuncts. The proposition (p → q) is
called implication: p is called the antecedent and q the consequent. Note
that precedence among logical connectives allows to reduce the number of
parentheses necessary to correctly interpret a proposition. From the highest to
the lowest precedence we have:
¬,
∧,
∨,
→,↔.

Example 2. Examples of propositions:
p q p ∧ q
p ∧ (q ∨ z) ¬p ∨ (q ∧ ¬z)

21

5.2.2 Semantic

The semantics is the set of rules that allow you to associate a truth value (true
or false) with each proposition, starting from the value of its propositional
symbols. The semantics of the connectives is illustrated by Table 5.1, called
truth table.

Table 5.1: Truth table

a b a ∧ b a ∨ b ¬a a→ b a↔ b
T T T T F T T
T F F T F F F
F T F T T T F
F F F F T T T

An interpretation of a proposition is a function (called boolean function)
that assigns one of the two truth values (T or F) to each atomic proposition
and which assigns a truth value to the compound proposition based on the
truth table. An assignment that makes a proposition true is called a satisfying
assignment. An interpretation is then a boolean function b : P → {T, F}. If p
is composed of n atomic propositions, its truth table will have 2n entries each
corresponding to an interpretation.

Example 3. The expression E = p ∧ (p ∨ q), for the assignment p = T and
q = F is evaluated to T. So this assignment is a satisfying assignment for E. E
can be evaluated for other three assignments and thus build its entire boolean
function.

If an interpretation (or an assignment) , b(.), makes a proposition p true
(b(p)=T), b satisfies p. A proposition p is said to be satisfiable if there exists
at least one interpretation (assignment), b(·), which satisfies it.

5.3 First Order Logic

Propositional logic allows to represent statements and their truth. It is not
expressive enough to represent various types of statements that are used in
computer science and especially in machine learning. First Order Logic (FOL),
also called predicate logic, extends the expressiveness of propositional logic by

22

allowing formulas which contains quantifiers and variables. This extension
allows FOL to represent different types of relationship among objects in many
domains of interest. FOL has a syntax, which defines how to form formulas,
and a semantics which gives an interpretation to these formulas.

5.3.1 Syntax

FOL’s alphabet (Σ), an extension of proposition logic alphabet, defines the
following set of symbols:

• Constants, individual entities of the domain.

– e.g. a, b, maria, 3, jeff.

• Logical Variables, alphanumeric strings (here starting with an uppercase
letter adopting the logic programming convention) which refer to objects
in the domain.

– X,Y,Z

• function symbols (or functors), denoted by alphanumeric strings (here
starting with a lower-case character). It univocally identifies an object of
the domain through a relationship between other n (called arity) objects
of the domain. We will use the notation f/n to denote a function symbol
f with arity n.

– e.g. f(a, b), mother(maria), s(X)

• Predicate symbols, alphanumeric strings (here starting with a lowercase
character) which is a generic relation (which may be true or false) among
n objects of the domain of discourse. Even in this case we will use p/n
to indicate a predicate p with arity n.

– e.g. mother(maria,jeff), brother(jeff,paul), p(X)

• Logical connectives, used for constructing formulas

– e.g. ¬, ∧, ∨, → or ⊃, ↔ or ≡

• Quantifiers, for expressing generality

23

– e.g. ∀ universal quantifier (“for all”), ∃ existential quantifier (“there
exists”)

• Auxiliary symbols, for defining precedences among connectives

– e.g. "(", ")"

From this alphabet, we can define the following expressions:

• A term is either a constant, a variable or, if f is a function symbol with
arity n and t1, . . . , tn are terms, then f(t1, . . . , tn) is a term.

– e.g. maria, f(X),

• An atom (or an atomic formula) is obtained by applying a predicate
symbol p to n terms t1, . . . , tn: p(t1, . . . , tn)

– e.g. mother(maria,jeff)

• A literal is either an atom a (positive literal) or its negation ¬a (negative
literal)

– e.g. mother(maria,jeff), ¬mother(maria,jeff)

Definition 1. FOL well-formed formula (wff)
Formulas in FOL are recursively defined as follows:

1. atomic formulas or atoms are formulas;

2. true and false are formulas;

3. if F and G are formulas, then so are (¬F), (F ∧G), (F ∨G), (F → G),
(F ↔ G);

4. if F is a formula and X is a variable, then so are (∃XF) and (∀XF)

In order to correctly interpret a formula, the following precedence is adopted
from the highest to the lowest
¬,∃, ∀
∧,
∨,

24

→,←,↔.

The scope of a quantifier is the wff which immediately follows. In the case
of ambiguity the auxiliary symbols, "(" and ")", are used. For example, in the
following formula

F1 = ∀X(p(X, Y) ∧ q(X)) ∨ q(X)

the scope of ∀ is p(X, Y) ∧ q(X)

A variable is free if and only if it does not appear in the scope of any
quantifier. Otherwise it is bound. In the formula

F2 = ∀X(p(X, Y) ∧ q(X))

Y is free and X is bound.

A formula is open if and only if it has free variables. Otherwise it is closed.
For example, the formula ∀X∀Y p(X, Y) is closed.

A clause, C, in FOL is a disjunction where all the variables are universally
quantified:

∀Xh1 ∨ . . . ∨ hn ∨ ¬b1 ∨ . . . ∨ ¬bm

where X is the set of variables appearing in C. The universal quantifier, ∀, is
often implicit and can be omitted. C can equally be seen as a set of literals

{h1, . . . , hn,¬b1, . . . ,¬bm}

where the disjunction among the literals is implicit. A clause can also be
written as

∀Xh1 ∨ . . . ∨ hn ← b1 ∧ . . . ∧ bm

The form of a clause to be used in the following will be clear from the context.
h1∨ . . .∨hn is the head of the clause (written head(C)) and b1∧ . . .∧bm its body,
written body(C). The clause states that: "if the conjunction of all the bjs is true
then so is the disjunction of all his". If the body is empty, the clause is called
fact. The clause with exactly one head (or one positive literal) is called a definite
clause. An expression is a literal, a term or a clause. An expression is ground if
it does not contain variables. Unification is a formal procedure used to establish
when two expressions can coincide by making appropriate substitutions. An

25

application of a substitution θ = {V1/t1, . . . , Vn/tn} to an expression E, written
Eθ, produces a new expression obtained by simultaneously replacing each
variable Vi of E with the corresponding term ti. Eθ is called an instance of E.
A substitution grounds E if all variables in E are replaced by a term. A theory
T is a set of clauses. A definite theory is a finite set of definite clauses.

The Herbrand universe of a theory T , HU(T) , is the set of all ground terms
constructed by using the function symbols and constants in T . The Herbrand
base of a theory T , denoted HB(T), is the set of all ground atoms obtained
from predicates appearing in T and terms of its Herbrand universe.

Example 4. Given the following theory T
parent(jeff, paul)

parent(paul, ann)

grandparent(X, Y)←− parent(X,Z), parent(Z, Y)

its Herbrand universe is
HU(T) = jeff, paul, ann

and the corresponding Herbrand base is
HB(T) = {parent(jeff, jeff), parent(paul, paul), parent(ann, ann),

parent(jeff, paul), parent(jeff, ann), parent(paul, jeff), . . . ,

grandparent(jeff, jeff), grandparent(paul, paul), . . .}

5.3.2 Semantics

In the previous section, we defined the FOL’S alphabet and presented a syntax
for building well formed formulas. This section describes how to associate a
meaning to formulas in FOL by means of interpretations, which is a process
that associates an object to each term and a truth-valued to each formula.

An Herbrand interpretation (or interpretation for simplicity) of a theory
T is a set of ground atoms subset of the Herbrand base of the theory HB(T).
If a ground atom is in the interpretation, it is said to be true (with respect
to the interpretation) otherwise it is false. A Herbrand interpretation is also
called a two-valued interpretation because it assigns truth values (true or false)
to formulas. Formulas which are not true are false. An interpretation is a
(Herbrand) model of a closed formula Φ if Φ is evaluated to true with respect
to I. Formally, if I is an interpretation and Φ is a formula, Φ is true in I (or is

26

satisfied in I), written I � Φ if:

1. if Φ is a ground atom a, a ∈ I

2. if Φ is a ground negated-atom ¬a, a 6∈ I

3. if Φ is a conjunction Φ1 ∧ Φ2, I � Φ1 and I � Φ2

4. if Φ is a disjunction Φ1 ∨ Φ2, I � Φ1 or I � Φ2

5. if Φ = ∀XΦ1 for all substitution θ that assign a value to all variables of
X, I � Φ1θ

6. if Φ = ∃XΦ1 there exists a substitution θ that assigns a value to all
variables of X such that I � Φ1θ

Let S be a set of closed formulas: an interpretation I satisfies (or is a model
of) S if I is a model for every formula in S.

A closed formula Φ is a logical entailment or a logical consequence of the
set of closed formula S, written S � Φ, if every model of S is also a model of Φ.
Let C be a clause of the form

h1; . . . ;hn ← b1, . . . , bm

where the semicolon ";" is equivalent to disjunction and the comma "," to
conjunction. C is satisfied (or true) in an interpretation I iff for any substitution
θ grounding C, if I � body(C)θ then I � head(C)θ (or head(C)θ ∩ I 6= ∅).
Otherwise it is false. Particularly, if C is a define clause, C has one atom h in
its head, C is satisfied (or true) in an interpretation I iff for any substitution θ
grounding C, if I � body(C)θ → h ∈ I.

A theory P (set of clauses) is true in an interpretation I iff all its clauses
are true in I and we write

I � P

When P is true in an interpretation I, I is said to be a model for P . To show
that an interpretation is not a model for P , it is sufficient to show that one
clause in P is false in I. In this work and in StarAI in general, given a theory
P and a query Q (set of atoms), we will be interested in deciding if Q is a

27

logical consequence of P i.e P � Q. This means that every model of P must
be a model for Q.

Herbrand interpretations and models provide a complete way for defining
semantics of a set of clauses in the sense that a set of clauses is unsatisfiable if
and only if it does not have a Herbrand model, see [45].

5.4 Logic Programming

Logic Programming (LP) is based on FOL with a different semantic. It
was proposed in the early 1970s by Kowalski who elaborated its theoretical
foundations, [69]. The idea was to make the computer representing knowledge
and performing reasoning. Reasoning means inferring true assertions from
known assertions.

For definite clauses, of the form {h1,¬b1, . . . ,¬bm}, Herbrand models have
an important property: if a program P is a set of definite clauses, the intersection
of a set of Herbrand models of P is still a Herbrand model of P . This model is
called the minimal Herbrand model of P , written lhm(P). The lhm(P) of P
always exists and is the set of atoms which are logical consequence of P . So
P |= a iff a ∈ lhm(P). The following example

human(X)← female(X)

female(mary)

has the lhm(P) = {female(mary), human(mary)}.
The procedure that proves if a formula Φ is a logical consequence of a

program P is called resolution. If the program is a define logic program, i.e a
set of definite clauses, the resolution is called linear resolution with selection
function for definite logic programs (SLD-resolution). Before defining how does
a SLD-resolution works, let us define some useful concepts.

Let θ = {V1/t1, . . . , Vn/tn} be a substitution and a, b two atoms: a and b
can be unified if there exist a substitution θ such that aθ = bθ. θ is the most
general general unifier (mgu) if it is the minimal substitution such that aθ = bθ

i.e there is no substitution δ such that θ = δσ, where σ is a substitution. Given
a definite logic program P and a query (or goal)

G0 = q1, . . . , qm

28

the fundamental reasoning method at the basis of SLD-resolution can be
summarized to the following inference rule:

← q1, . . . qi−1, qi, qi+1, . . . , qm h← b1, . . . , bn

← (q1, . . . qi−1, b1, . . . , bn, qi+1, . . . , qm)θ

where

• q1, . . . , qm are atoms;

• h← b1, . . . , bn is a (possibly renamed) definite clause in P (n > 0)

• θ = mgu(qi, h)

Let Q = ¬G0 be a query. This inference rule states that in order to resolve a
goal G0, the SLD-resolution initially selects a subgoal, qi, and replaces G0 with
the body of a clause in P whose head unified (mgu) with qi. This creates a
new goal

G1 = (qi−1, b1, . . . , bn, qi+1, . . . , qm)θ

then the procedure iteratively repeats creating a sequence of goals

G0 ∼ G1 ∼ . . . ∼ Gk

to be resolved. The resolution stops for two reasons: 1) the current goal is
empty (Gi = �) and there is a refutation of G0 i.e G0 fails and so Q succeeds
2) the head of every clause in P cannot be unified with the current selected
subgoal, the query Q fails.

Note that, at each iteration of resolution, two strategies have to be con-
sidered: the subgoal’s selection strategy and clause selection strategy. SLD-
resolution is sound, i.e if a goal G succeeds in a program P then G is a logical
consequence of P . SLD-resolution is also complete, i.e if a goal G can be
resolved by a program P , then there is a refutation of P t {¬G}. soundness
and completeness are two fundamental properties of SLD-resolution and are
strongly depend on the resolution strategies. For example Prolog, a logic
programming language, adopts the following strategies during resolution:

• Subgoals in the current goal are selected from left to right

29

• Clauses whose head unifies with the selected subgoal are chosen top-down

These strategies could make Prolog incomplete. Let us consider the following
examples:

Example 5 (Paths in a graph- Prolog). The following program computes paths
in a graph:

path(X,X).

path(X, Y)← edge(X,Z), path(Z, Y).

edge(a, b).

edge(b, c).

edge(a, c).

path(X, Y) is true if there is a path from X to Y in the graph where the edges
are represented by facts for the predicate edge/2.

The first clause states that there is a path from a node to itself. The second
states that there is a path from a node X to a node Y if there exists a node Z
such that there is an edge from X to Z and there is a path from Z to Y .

Figure 5.1 shows the SLD tree for the query path(a, c). The labels of the
edges indicate the most general unifiers used. The query has two successful
derivations, corresponding to the paths from the root to the ← leaves.

← path(a, c)

← edge(a, Z0),
path(Z0, c)

path(b, c)

← edge(b, Z1),
path(Z1, c)

← path(c, c)

← ← edge(c, Z2),
path(Z2, c)

fail

Z1/c

Z0/b

← path(c, c)

← ← edge(c, Z3),
path(Z3, c)

fail

Z0/c

Figure 5.1: SLD tree for the query path(a, c) from the program of Example 5.

Example 6. Consider the following example:

30

sibling(X, Y)← sibling(Y,X).

sibling(b, a).

Suppose we want to resolve the goal G0 = sibling(a,X): the head of two
clauses in the program unify with G0. Prolog chooses the first clause and
according to the inference rule the new goal G1 = sibling(Y, a) is generated.
To resolve G1 the first clause is again chosen and then the subgoal G2 =

sibling(a,X) = G0 is generated coming back to the first goal. The resolution
proceeds and runs into an infinite loop. This example shows the incompleteness
of Prolog. Note that to avoid going into an infinite loop, it is sufficient to
change, textually, the order of the first and the second clause.

31

32

Chapter 6

Probability Theory

First order logic is very effective for modeling entities and relation in domains
in which answers of queries are certain. However, there are domains affected
by uncertainty in which answering a query with certainty becomes impossible.
Therefore, it is appropriate to extend FOLs in order to model uncertainty.
Modeling and representing uncertainty can be done with probability theory.
This concept, used since the 17th century, has become over time the basis of
various scientific disciplines such as artificial intelligence and specially machine
learning. Before presenting, in the following part of this work, how to combine
FOLs with probability, let us give a brief background of the concepts underlining
probability theory.

6.1 Event Spaces

In probability theory we consider a phenomenon observable exclusively from
the point of view of the possibility or not of its occurrence, regardless of its
nature. If the experiment under examination is deterministic, the result of the
observation can be predicted exactly. If the experiment is random, for example
throwing a die, the result of the observation is not known a priori and it is
possible to define a set Ω, called sample space or universe, that contains all
the possible outcomes ({1, 2, 3, 4, 5, 6} when throwing a die). Each element
ω ∈ Ω is a sample point. An event, E, is a set of sample points subset of Ω,
e.g E = {2, 4, 6}. An elementary event {ω} is an event that contains only one
sample point. The certain event contains all the sample points and is equivalent

33

to Ω. An impossible event ∅ does not contains sample points.

6.2 Probability Distributions

There are three mains definition of probability: the classical, the empirical and
the axiomatic definition.

Definition 2. Classical definition of probability
The probability P (E) of a random event E is the ratio between the number

of favorable cases, nE, and the number of possible cases, n, where all elementary
events are considered to be equally likely.

P (E) =
nE
n

Example 7. Throwing a die
Ω = {1, 2, 3, 4, 5, 6}. Let E = {1, 2} then P (E) = 2

6
= 1

3

This classical definition allows to effectively compute the probability of
events in many situations. It is an operational definition in the sense that
the definition also provides a method for computing the probability. However,
it presents different drawbacks:

1. It can be applied only to experiments in which elementary events are
equally likely.

2. It hypotheses a finite set of possible outcomes.

3. The definition is circular because the notion of probability (equally likely
of elementary events) is used to define the probability itself.

In order to overcome these downsides, Richard von Mises [146] proposed an
empirical definition of probability: the probability of an event is the limit to
which the relative frequency of the event tends as the number of experiments
increases. Suppose an experiment can be run an infinite number of times and
let an event E occurs nE times out of n experiments then

P (E) = lim
n→∞

nE
n

34

Even if this definition tends to overcome some limitations of the classical
definition of probability, for example no hypothesis on the probability of
elementary events, it still suffers from some limitations:

• Not all experiments are repeatable.

• It is not always possible to imagine infinitely repeatable experiments.

One can subjectively define a probability as the assessment that the individual
can coherently formulate, based on his knowledge, the degree of verifiability
of an event. e.g: let E="it will rain tonight. One can state that P (E) = 0.6

which represents his own degree of belief based on evidence such as "the sky is
cloudy". This leads to the following definition proposed by Andrey Nikolaevich
Kolmogorov [68], called axiomatic/ Kolmogorov definition of probability which
holds for any interpretation of probability.

Definition 3. Kolmogorov definition of probability
Consider a random experiment and E ⊆ Ω an event. The probability of E,

P (E), is defined as a function that associates to E a non-negative real number
such that the sum of the probabilities of all elementary events is equal to 1.
This number meets the following three conditions:

1. Probability is a non-negative number: P (E) > 0.

2. The probability of the certain event is unitary: P (Ω) = 1.

3. Given two events E1 and E2 defined as mutually exclusive (E1 ∩E2 = ∅),
then P (E1 ∪ E2) = P (E1) + P (E2).

From this definition we can derive the following assertions:

1. P (∅) = 0 and P (E) 6 1.

2. If Ec = Ω \ E then P (Ec) = 1− P (E).

3. If E1, E2 ⊆ Ω are two events, then
P (E1 ∪ E2) = P (E1) + P (E2)− P (E1 ∩ E2).

4. If E1, E2 ⊆ Ω are two events, then
P (E1) = P (E1 ∩ E2) + P (E1 ∩ Ec

2).

5. If E,E1, . . . En ⊆ Ω are n+1 events where Ei are mutually exclusive
(∩ni Ei = ∅), then P (E) = P (E ∩ E1) . . . P (E ∩ En).

35

6.3 Conditional Probability

Definition 4. Conditional probability

Let E1, E2 be two events: we define the conditional probability of E1 given
E2, written P (E1|E2), the probability that the event E1 occurs when we know
that E2 occurred, as:

P (E2|E1) =
P (E2 ∩ E1)

P (E1)
P (E1) > 0 (6.1)

Consider the following example:

Example 8. Consider a distribution over a population of students taking a
certain course. The space of outcomes, Ω, is the set of all students. Let us
consider the events SGA ="students with grade A" and SHI ="students with
high intelligence". Consider the probability of these events: P (SGA), P (SHI)

and their intersection P (SHI ∩ SGA) (the set of intelligent students who got
grade A). If we observe that a student has grade A, what is the probability that
the student is intelligent? the answer is given by the conditional probability

P (SHI |SGA) =
P (SHI ∩ SGA)

P (SGA)

which is the probability that the student is intelligent conditioned by the fact
that he/she got grade A.

From Equation 6.1, we can derive the equation, called the chain rule

P (E1 ∩ E2) = P (E1) · P (E2|E1) (6.2)

which can be generalized as

P (E1 ∩ · · · ∩ En) = P (E1) · P (E2|E1) . . . P (En|E1 ∩ . . . ∩ En−1)

=
n∏
i=1

P (Ei|Ei1 . . . E1) (6.3)

Equation 6.3 states that the probability of the intersection of several events
can be expressed in terms of the probability of the first, the probability of the

36

second given the first and so on. Before applying the equation, we have to
define an order among events. Note that the equation holds for any order.

Another direct consequence of equation 6.2 is the Bayes theorem

P (E1|E2) =
P (E2|E1) · P (E1)

P (E2)
(6.4)

Example 9. From Example 8 let us define the event Intelligent="students
who are intelligent" which gives the probability that a student is intelligent.
Suppose we have these probability P (Intelligent) = 0.3 and P (SGA = 0.2). We
believe, based on some past statistics, that P (SGA|Intelligent) = 0.6. If we
observe that a new student has grade A, we want to compute the probability
that he/she is intelligent. From equation 6.4 we have

P (Intelligent|SGA) =
P (SGA|Intelligent) · P (Intelligent)

P (SGA)
= 0.6 · 0.3

0.2
= 0.9

which obviously states that if a student has a grade A, he/she is likely to be
intelligent. Note that P (SGA = 0.2). This means that obtaining grade A is rare.
So only students who are intelligent tend to have grade A. However, if P (SGA)

were higher, say P (SGA = 0.7), maybe because tests are often easier, we would
have

P (Intelligent|SGA) = 0.6 · 0.3

0.7
= 0.26

which states that obtaining grade A does not effectively means that the student
is intelligent.

6.4 Random Variables and Distributions

In several experiments, it is useful to associate a value to each sample point in
the sample space in order to avoid creating many variables for each event. In
Example 8, we created the event SGA which denotes the set of students whose
Grade is A. Suppose there are different levels of grade, let us say {A,B,C}: in
order to represent an event whose outcomes are the set of student who obtained
a certain grade, we can create one variable for each event, for example SGA,
SGB and SGC which denote students whose grade are A, B, C respectively.
This procedure could be annoying and cumbersome if there are several different

37

grades. To overcome this issue, we can create a variable, SG, whose values are
the different grades, {A,B,C}. We write SG = x where x ∈ {A,B,C}. The
variable SG is called random variable since the experiment is random and its
values are not known deterministically. So the random variables SG associates
a value to each sample point. Now let us give a formal definition of random
variable.

Definition 5. Random variable
A random variable X is a function which associates a value val ∈ D to each
element in Ω.

fX : Ω→ D

Example 10. Consider an experiment where a fair coin is tossed twice. The
sample space is Ω = {HH,HT, TH, TT}. If the variable X denotes the number
of heads, X is a random variable whose values are {0, 1, 2} as shown in Table
6.1. X = 1 is a shorthand for the event {ω ∈ Ω : fX(ω) = 1} = {HT, TH}
which are events with exactly one head landed.

Table 6.1: Random variable (tossing a coin twice)

HH HT TH TT
X 2 1 1 0

Random variable whose values belong to a finite or countable set (e.g N)
is said to be a discrete random variable. The ones whose values belong to
uncountable (e.g R) are continuous. In this thesis, we will use uppercase letters
(e.g X, Y, Z) to denote random variables and lowercase letters to denote their
values. So x refers to a generic value of X. Set of variables are represented in
boldface type, e.g X, Y, Z.

The probability distribution is a mathematical function which describes
the possible values, x, of a discrete random variable, X, and their associated
probabilities, P (X = x). It has the following properties:

1. P (X = x) ≥ 0.

2.
∑

x P (X = x) = 1.

38

where the sum in 2 is taken over all possible values of x. P (x) is sometimes
used as a shorthand for P (X = x).

Example 11. Let us compute the probability distribution corresponding to the
random variable X of Example 10. Considering that the coin is fair we have
P (ω) = 1

4
, ω ∈ {HH,HT, TH, TT}. If X denotes the number of landed heads,

P (X = 0) = P (TT) = 1
4

P (X = 1) = P (HT ∪ TH) = P (HT) + P (TH) = 1
4

+ 1
4

= 1
2

P (X = 2) = P (HH) = 1
4

The probability distribution function is shown in Table 6.2. Note that∑
x∈{0,1,2}

P (X = x) = 1

Table 6.2: Probability distribution (tossing a coin twice).

x 0 1 2
P(X=x) 1

4
1
2

1
4

If X is a continuous random variable, its probability distribution function
(pdf) is defined as

P (X 6 a) =

∫ a

−∞
p(x)dx

where p(x) is the probability density function such that∫ +∞

−∞
p(x)dx =

∫
V alues(X)

p(x)dx = 1

V alues(X) is the set of values of X.

6.5 Expectation of a Random Variable

Let X be a discrete random variable having a finite set of values, x1, . . . , xn ∈ R,
and P a distribution over X such that P (xi) = pi with

∑n
i pi = 1. The

39

expectation of X is defined as

E[X] =
n∑
i

xi · pi

If X is a continuous random variable with probability density function p(x),
the expectation is defined as

E[X] =

∫ +∞

−∞
x · p(x)dx

Since all probabilities sum up to 1 (
∑n

i pi = 1 or
∫ +∞
−∞ p(x)dx = 1), the

expectation of X is the weighted average of xi, with pi’s being the weights.

Example 12. When throwing a fair coin twice, see Example 10, if X denotes
the number of heads, the expected value of X is given by:
E[X] = 0 · P (X = 0) + 1 · P (X = 1) + 2 · P (X = 2) = 0 · 1

4
+ 1 · 1

2
+ 2 · 1

4
= 1

which is the average of V alues(X) = {0, 1, 2}
When throwing a fair die, see Example 7, if X denotes the outcomes

∈ {1, 2, 3, 4, 5, 6}, the expectation of X is given by

E[X] = 1 · P (X = 1) + 2 · P (X = 2) + 3 · P (X = 3) + 4 · P (X = 4)

+ 5 · P (X = 5) + 6 · P (X = 6)

= 1 · 1

6
+ 2 · 1

6
+ 3 · 1

6
+ 4 · 1

6
+ 5 · 1

6
+ 6 · 1

6

= 3.5

which is also the average value of V alues(X) = {1, 2, 3, 4, 5, 6}

These examples show that, when running a random experiment, if the
sample points are equally likely, the weighted average becomes the simple
average. Now suppose in the second experiment that the outcomes of the die
are not equally likely, say P (X = 6) = 0.5 and P (X = x) = 0.1 for x < 6. We
have

E[X] = 1 · 0.1 + 2 · 0.1 + 3 · 0.1 + 4 · 0.1 + 5 · 0.1 + 6 · 0.5

= 4.5

40

Let X and Y be two random variables. Among the properties of the
expectation, some of the most important are:

1. Monotonicity: if X < Y , then E[X] < E[Y];
where X < Y means fX(ω) < fY (ω) ∀ω ∈ Ω

2. Linearity:

• E[X + Y] = E[X] + E[Y]. Which is true even if X and Y are not
independent;

• E[a ·X + b] = a · E[X] + b where a and b are constants;

3. Non-multiplicativity: E[X · Y] = E[X] · E[Y] only if X and Y are
independent;

Given some evidence e, the conditional expectation of a random variable X
given e is given by the following equation:

E[X|e] =
∑
x

x · P (x|e) (6.5)

where x are the possible values of X.

41

42

Part III

Probabilistic Logic Programming

43

Probabilistic Programming (PP) has recently emerged as an effective ap-
proach for building complex probabilistic models. Until recently, PP was mostly
focused on functional programming while Probabilistic Logic Programming
(PLP) now forms a significant subfield. In this part of the thesis, we aim at
presenting a quick overview of the features of current languages and systems
for PLP. We first describe PLP and the underlining languages in Chapter 7
and present some applications in real domains in Chapter 8.

45

46

Chapter 7

Languages under the Distribution
Semantics

Probabilistic Logic Programming (PLP) [28] models domains characterized
by complex and uncertain relationships among entities by combining logic
programming, Chapter 5, with probability theory, Chapter 6. The field started
in the early nineties with the seminal work of Dantsin [21], Poole [99] and
Sato [121] and is now well established, with a dedicated annual workshop
since 2014. PLP has been applied successfully to many problems such as
concept relatedness in biological networks [29], Mendel’s genetic inheritance
[123], natural language processing [125], link prediction in social networks [75],
entity resolution [110] and model checking [40]. Various approaches have been
proposed for representing probabilistic information in Logic Programming. The
distribution semantics [121] is one of the most used and it underlies many
languages.

We start this chapter by presenting the distribution semantics in Section
7.1. Then Sections 7.2 and 7.3 present two common Languages under the
distribution semantic, Logic Programs with Annotated Disjunctions (LPADs)
and ProbLog respectively. For LPADs, we present a semantics for programs
without function symbols and then discuss the extensions of this semantics
for programs including function symbols, that may have infinite computation
branches. Programs including continuous random variables, a recent proposal
that brought PLP closer to functional PP approaches are also presented.
Section 7.4 discusses approaches for inference starting from exact inference

47

by knowledge compilation and going to techniques for dealing with infinite
computation branches and continuous random variables. We also illustrate
approximate inference approaches based on Monte Carlo methods that can
overcome some of the limit of exact inference both in terms of computation
time and allowed language features, permitting inference on a less restricted
class of programs.

7.1 Distribution Semantics

Combining Logic Programming and probability is an interesting challenge in
the field of Statistical Relational Learning. This combination allows not only
to represent a wide range of real domains characterized by uncertainty but also
to easily perform reasoning and learning in these domains. Two approaches for
combining logic and probabilities emerged: those based on Distribution Seman-
tics (DS) and those based on Knowledge Base Model Construction (KBMC).
In KBMC, a probabilistic logic program is converted into graphical models
such as Bayesian or Markov Network and inference/learning are performed on
them. These languages include Bayesian Logic Programs [55], Probabilistic
Knowledge Bases [86], Prolog Factor Language [37], and many others.

The Distribution Semantics, the one used in this work defines a probability
distribution over normal logic programs, called worlds or instances. The
distribution is extended to a join distribution over worlds and queries and
the probability of a query is computed by summing out the worlds, i.e by
marginalization. DS was introduced in 1995 by Taisuke Sato [121] in which
a semantic combining definite logic programs and probabilistic facts were
presented. For a deep understanding of DS see [121].

Many languages under the DS have been presented among which: Inde-
pendent Choice Logic [98], PRISM [123], Logic Programs with Annotated
Disjunctions (LPADs) [143] and ProbLog [29], to name a few. While these
languages differ syntactically, they have the same expressive power, as there
are linear transformations among them [142]. In the following sections we
respectively present LPADs, for its generality, and ProbLog, for its simplicity.

48

7.2 Logic Programs with Annotated Disjunctions

All the languages following the distribution semantics allow the specification of
alternatives either on facts and/or on clauses. We present here the syntax of
LPADs [143] which allows alternatives on clauses.

An LPAD is a finite set of annotated disjunctive clauses of the form

hi1 : Πi1; . . . ;hini : Πini :- bi1, . . . , bimi .

where bi1, . . . , bimi are literals, hi1, . . . hini are atoms and Πi1, . . . ,Πini are real
numbers in the interval [0, 1] such that

∑ni
k=1 Πik ≤ 1. This clause can be

interpreted as “if bi1, . . . , bimi is true, then hi1 is true with probability Πi1 or
. . . or hini is true with probability Πini .” bi1, . . . , bimi is the body of the clause
and we indicate it with body(C) if the clause is C. If ni = 1 and Πi1 = 1 the
clause is non-disjunctive and so not probabilistic. If

∑ni
k=1 Πik < 1, there is

an implicit annotated atom null : (1−
∑ni

k=1 Πik) that does not appear in the
body of any clauses of the program.

Given an LPAD P , the grounding ground(P) is obtained by replacing
variables with all possible logic terms. If P does not contain function symbols,
the set of possible terms is equal to the set of all constants appearing in P and
is finite so ground(P) is finite as well.

ground(P) is still an LPAD from which, by selecting a head atom for each
ground clause, we can obtain a normal logic program, called “world”. In the
distribution semantics, the choices of head atoms for different clauses are
independent, so we can assign a probability to a world by multiplying the
probabilities of all the head atoms chosen to form the world. In this way we get
a probability distribution over worlds from which we can define a probability
distribution over the truth values of a ground atom: the probability of an atom
q being true is the sum of the probabilities of the worlds where q is true in the
well-founded model [140] of the world.

The well-founded model [140] in general is three valued, so a query that is
not true in the model is either undefined or false. However, we consider atoms
as Boolean random variables so we do not want to deal with the undefined
truth value. How to manage uncertainty by combining nonmonotonic reasoning
and probability theory is still an open problem, see [18] for a discussion of the

49

issues. So we require each world to have a two-valued well-founded model and
therefore q can only be true or false in a world.

Formally, each grounding of a clause Ciθj corresponds to a random variable
Xij with as many values as the number of head atoms of Ci. The random
variables Xij are independent of each other.

An atomic choice [97] is a triple (Ci, θj, k) where Ci ∈ P , θj is a substitution
that grounds Ci and k ∈ {1, . . . , ni} identifies one of the head atoms. In
practice Ciθj corresponds to an assignment Xij = k. A set of atomic choices
κ is consistent if only one head is selected for the same ground clause. A
consistent set κ of atomic choices is called a composite choice. We can assign a
probability to κ as the random variables are independent:

P (κ) =
∏

(Ci,θj ,k)∈κ

Πik

A selection σ is a composite choice that, for each clause Ciθj in ground(P), con-
tains an atomic choice (Ci, θj, k). A selection σ identifies a normal logic program
lσ defined as lσ = {(hik ← body(Ci))θj|(Ci, θj, k) ∈ σ}. lσ is called an instance,
possible world or simply world of P . Since selections are composite choices, we
can assign a probability to instances: P (lσ) = P (σ) =

∏
(Ci,θj ,k)∈σ Πik.

We write lσ |= q to mean that the query q (a ground atom) is true in the
well-founded model of the program lσ. The probability of a query q given a
world lσ can be now defined as P (q|lσ) = 1 if lσ |= q and 0 otherwise. Let
P (LP) be the distribution over worlds. The probability of a query q is given
by

P (q) =
∑
lσ∈LP

P (q, lσ) =
∑
lσ∈LP

P (q|lσ)P (lσ) =
∑

lσ∈LP :lσ |=q

P (lσ) (7.1)

Example 13 (From [11]). The following LPAD P encodes geological knowledge
on the Stromboli Italian island:

C1 = eruption : 0.6 ; earthquake : 0.3 :− sudden_energy_release,
fault_rupture(X).

C2 = sudden_energy_release : 0.7.

C3 = fault_rupture(southwest_northeast).
C4 = fault_rupture(east_west).

50

The Stromboli island is located at the intersection of two geological faults, one
in the southwest-northeast direction, the other in the east-west direction, and
contains a active volcano. This program models the possibility that an eruption
or an earthquake occurs at Stromboli. If there is a sudden energy release under
the island and there is a fault rupture, then there can be an eruption of the
volcano on the island with probability 0.6 or an earthquake in the area with
probability 0.3 or no event with probability 0.1. The energy release occurs with
probability 0.7 while we are sure that ruptures occur in both faults.

Clause C1 has two groundings, C1θ1 with θ1 = {X/southwest_northeast}
and C1θ2 with θ2 = {X/east_west}, so there are two random variables X11

and X12. Clause C2 has only one grounding C2∅ instead, so there is one random
variable X21. X11 and X12 can take three values since C1 has three head atoms;
similarly X21 can take two values since C2 has two head atoms. P has 18
instances, the query eruption is true in 5 of them and its probability is

P (eruption) = 0.6·0.6·0.7+0.6·0.3·0.7+0.6·0.1·0.7+0.3·0.6·0.7+0.1·0.6·0.7 =

0.588.

To compute the conditional probability P (q|e) of a query q given evidence
e, you can use the definition of conditional probability, P (q|e) = P (q, e)/P (e),
and compute first the probability of q, e (the sum of probabilities of worlds
where both q and e are true) and the probability of e and then divide the two.

7.2.1 Sampling interpretation of the semantics

The semantics previously described can also be given a sampling interpretation:
the probability of a query q is the fraction of worlds, sampled from the distribu-
tion over worlds, where q is true. To sample from the distribution over worlds,
you simply randomly select a head atom for each ground clause according to
the probabilistic annotations. Note that you do not even need to sample a
complete world: if the samples you have taken ensure the truth value of q is
determined, you don’t need to sample more clauses, as they don’t influence
q. If q is true in nTrue worlds out of n sampled, then its probability can be
approximated by

P (q) = p̂ =
nTrue
n

51

7.2.2 Programs with function symbols

If the program P contains function symbols, a more complex definition of the
semantics is necessary. In fact ground(P) is infinite and a world would be
obtained by making an infinite number of choices so its probability would be 0,
as it is a product of infinite numbers all bounded away from 1 from below. In
this case we have to work with sets of worlds and use Kolmogorov’s definition
of probability space. It turns out that the probability of the query is the sum
of a convergent series [111].

7.2.3 Hybrid programs

Up to now we have considered only discrete random variables and discrete
probability distributions. How can we consider continuous random variables
and probability density functions, for example real variables following a Gaus-
sian distribution? cplint [2] and Distributional Clauses (DC) [91] allow the
description of continuous random variables in so called hybrid programs.

cplint allows the specification of density functions over arguments of atoms
in the head of rules. For example, in

g(X,Y): gaussian(Y,0,1):- object(X).

X takes terms while Y takes real numbers as values. The clause states that, for
each X such that object(X) is true, the values of Y such that g(X,Y) is true,
follow a Gaussian distribution with mean 0 and variance 1. You can think
of an atom such as g(a,Y) as an encoding of a continuous random variable
associated to term g(a). In DC you can express the same density as

g(X)~gaussian(0,1):= object(X).

where := indicates implication and continuous random variables are represented
as terms that denote a value from a continuous domain. It is possible to translate
DC into programs for cplint and in fact cplint allows also the DC syntax,
automatically translating DC into its own syntax.

A semantics for hybrid programs was given independently in [42, 91] and
[50]. In [91] the semantics of Hybrid Probabilistic Logic Programs is defined by
means of a stochastic generalization STp of the Tp operator that applies the
sampling interpretation of the distribution semantics to continuous variables:
STp is applied to interpretations that contain ground atoms (as in standard

52

logic programming) and terms of the form t = v where t is a term indicating a
continuous random variable and v is a real number. If the body of a clause is
true in an interpretation I, STp(I) will contain a sample from the head.

The authors of [50] define a probability space for N continuous random
variables by considering the Borel σ-algebra over RN and fixing a Lebesgue
measure on this set as the probability measure. The probability space is lifted
to cover the entire program using the least model semantics of constraint logic
programs.

If an atom encodes a continuous random variable (such as g(X,Y) above),
asking for the probability that a ground instantiation, such as g(a,0.3), is true
is not meaningful, as the probability that a continuous random variables takes a
specific value is always 0. In this case you want to compute the probability that
the random variable falls in an interval or you want to know its density, possibly
after having observed some evidence. If the evidence is on an atom defining
another continuous random variable, the definition of conditional probability
cannot be applied, as the probability of the evidence would be 0 and so the
fraction would be undefined. This problem is tackled in [91] by providing a
definition using limits.

7.3 ProbLog

In ProbLog [60], a program is a set of normal rules and probabilistic facts. Each
probabilistic fact, fi, is annotated with a probability πi and is of the following
form

πi :: fi

where πi ∈ [0, 1] and fi is an atom. This probabilistic fact states that each
ground instantiation fiθ of fi is true with probability πi and false with proba-
bility 1− πi. In order to obtain a world, some instantiations of probabilistic
facts are selected. An atomic choice is a triple (f, θ, k) where k ∈ {0, 1}. If
k = 1, the fact is selected. Otherwise (k = 0) the fact is not selected. A set κ
of atomic choices is consistent if only one alternative is selected for a ground
probabilistic fact, i.e. does not contain two atomic choices (f, θ, k) and (f, θ, j)

with k 6= j. A composite choice is a consistent set of atomic choices. As in
LPADs, the probability of composite choice κ is equal to the probability of the

53

conjunction of many random variables and is given by the product

P (κ) =
∏

(fi,θ,1)∈κ

πi
∏

(fi,θ,0)∈κ

1− πi.

since the selection of an atomic choice does not depend on the selection of the
others.

A selection σ contains one atomic choice for every grounding of every
probabilistic fact. It is a total composite choice. A world or instance is a
logic program containing the facts identified by a selection σ plus the normal
rules. The world w is formed by including the atom corresponding to each
atomic choice (f, θ, 1) of σ. The probability of a world w is P (w) = P (σ). For
programs without function symbols, the set of groundings of each probabilistic
fact is finite, and so is the set of worlds. P(w) is a probability distribution over
worlds, i.e.,

∑
w P (w) = 1

The probability of a query q is computed by marginalization as done for
LPADs in Section 7.2.

P (q) =
∑
w

P (q, w) =
∑
w

P (q|w)P (w) =
∑
w�q

P (w). (7.2)

This semantics can also be given a sampling interpretation as described in
Section 7.2.1.

Translating LPAD to ProbLog

There is a linear translation among languages under the distribution semantic.
In order to illustrate a translation and also the computation time necessary for
translating, let us present how to convert a program from LPAD to ProbLog
as described by De Raedt et al., in [26]. Consider an LPAD clause Ci having a
set of variables X with the following form

H1 : p1;H2 : p2 . . . Hn : pn : −B.

Ci can be converted into the following set of rules and probabilistic facts

54

H1 : −B, fi,1(X).

H2 : −B, not(fi,1(X)), fi,2(X).
...
H2 : −B, not(fi,1(X)), . . . , not(fi,n−1(X)).

π1 : −fi,1(X).
...
πn−1 : −fi,n−1(X).

where π1 = p1, π2 = p2

1−π1
, π3 = p3

(1−π1)·(1−π2)
, . . ., πi = pi∏i−1

j (1−πj)
.

This conversion illustrates the linear translation among languages under
the distribution semantics.

7.4 Inference in Probabilistic Logic Programming

Computing all the worlds is impractical because their number is exponential
in the number of ground probabilistic clauses when there are no function
symbols and impossible otherwise, because with function symbols the number
of worlds is uncontably infinite. Alternative approaches for inference have been
considered that can be grouped in exact and approximate ones [2].

For exact inference from discrete program without function symbols a
successful approach finds explanations for the query q [29], where an explanation
is a set of composite choices that are sufficient for entailing the query. Once all
explanations for the query are found, they are encoded as a Boolean formula
in DNF and the problem is reduced to that of computing the probability that
the formula is true given the probabilities of being true of all the (mutually
independent) random variables. This problem is called disjoint-sum as it can
be solved by finding a DNF where all the disjuncts are mutually exclusive. Its
complexity is #P [138] so the problem is highly difficult and intractable in
general. In practice, problems of significant size can be tackled using knowledge
compilation [23], i.e. converting the DNF into a language from which the
computation of the probability is polynomial [29, 116], such as Binary Decision
Diagrams.

Formally, a composite choice κ is an explanation for a query q if q is entailed
by every instance consistent with κ, where an instance lσ is consistent with κ iff

55

κ ⊆ σ. Let λκ be the set of worlds consistent with κ. In particular, algorithms
find a covering set of explanations for the query, where a set of composite
choices K is covering with respect to q if every program lσ in which q is entailed
is in λK , where λK =

∑
κ∈K λκ. The problem of computing the probability of

a query q can thus be reduced to computing the probability of the Boolean
function

fq(X) =
∨

κ∈E(q)

∧
(Ci,θj ,k)∈κ

Xij = k (7.3)

where E(q) is a covering set of explanations for q.

Example 14 (Example 13 cont.). The query eruption has the covering set of
explanations E(eruption) = {κ1, κ2} where:

κ1 = {(C1, {X/southwest_northeast}, 1), (C2, {}, 1)}
κ2 = {(C1, {X/east_west}, 1), (C2, {}, 1)}

Each atomic choice (Ci, θj, k) is represented by the propositional equation Xij =

k:
(C1, {X/southwest_northeast}, 1) → X11 = 1

(C1, {X/east_west}, 1) → X12 = 1

(C2, {}, 1) → X21 = 1

The resulting Boolean function feruption(X) returns 1 if the values of the variables
correspond to an explanation for the goal. Equations for a single explanation
are conjoined and the conjunctions for the different explanations are disjoined.
The set of explanations E(eruption) can thus be encoded with the function:

feruption(X) = (X11 = 1 ∧X21 = 1) ∨ (X12 = 1 ∧X21 = 1) (7.4)

Examples of systems that perform inference using this approach are ProbLog
[61] and PITA [116, 117].

When a discrete program contains function symbols, the number of expla-
nations may be infinite and the probability of the query may be the sum of
a convergent series. In this case the inference algorithm has to recognize the
presence of an infinite number of explanations and identify the terms of the
series.

56

In [40] the authors present the algorithm PIP (for Probabilistic Inference
Plus), that is able to perform inference even when explanations are not necessar-
ily mutually exclusive and the number of explanations is infinite. They require
the programs to be temporally well-formed, i.e., that one of the arguments of
predicates can be interpreted as a time that grows from head to body. In this
case the explanations for an atom can be represented succinctly by Definite
Clause Grammars (DCGs). Such DCGs are called explanation generators and
are used to build Factored Explanation Diagrams (FED) that have a structure
that closely follows that of Binary Decision Diagrams. FEDs can be used to
obtain a system of polynomial equations that is monotonic and thus convergent
as in [126, 120]. So, even when the system is non linear, a least solution
can be computed to within an arbitrary approximation bound by an iterative
procedure.

For approximate inference one of the most used approach consists in Monte
Carlo sampling, following the sampling interpretation of the semantics given in
Section 7.2.1. Monte Carlo approach has been implemented in ProbLog [61]
and MCINTYRE [109] and found to give good performance in terms of quality
of the solutions and of running time. Monte Carlo sampling is attractive for the
simplicity of its implementation and because you can improve the estimate as
more time is available. Moreover, Monte Carlo can be used also for programs
with function symbols, in which goals may have infinite explanations and exact
inference may loop. In fact, taking a sample of a query corresponds naturally to
an explanation and the probability of a derivation is the same as the probability
of the corresponding explanation. The risk is that of incurring in an infinite
explanation. But infinite explanations have probability 0 so the probability
that the computation goes down such a path and does not terminate is 0 as
well.

Monte Carlo inference provides also smart algorithms for computing condi-
tional probabilities: rejection sampling or Metropolis-Hastings Markov Chain
Monte Carlo (MCMC). In rejection sampling [147], you first query the evidence
and, if the query is successful, query the goal in the same sample, otherwise
the sample is discarded. In Metropolis-Hastings MCMC [82], a Markov chain
is built by taking an initial sample and by generating successor samples. The
initial sample is built by randomly sampling choices so that the evidence is

57

true. A successor sample is obtained by deleting a fixed number of sampled
probabilistic choices. Then the evidence is queried again by sampling starting
with the undeleted choices. If the query succeeds, the goal is then also queried
by sampling. The goal sample is accepted with a probability of min{1, N0

N1
}

where N0 is the number of choices sampled in the previous sample and N1 is
the number of choices sampled in the current sample. The number of successes
of the query is increased by 1 if the query succeeded in the last accepted sample.
The final probability is given by the number of successes over the total number
of samples.

When you have evidence on ground atoms that have continuous values as
arguments, you can still use Monte Carlo sampling. You cannot use rejection
sampling or Metropolis-Hastings, as the probability of the evidence is 0, but
you can use likelihood weighting [91] to obtain weighted samples of continuous
arguments of a goal. For each sample to be taken, likelihood weighting samples
the query and then assigns a weight to the sample on the basis of evidence.
The weight is computed by deriving the evidence backward in the same sample
of the query starting with a weight of one: each time a choice should be taken
or a continuous variable sampled, if the choice/variable has already been taken,
the current weight is multiplied by probability of the choice/by the density
value of the continuous value.

If likelihood weighting is used to find the posterior density of a continuous
random variable, we obtain a set of weighted samples for the variables whose
weight that can be interpreted as a relative frequency. The set of samples
without the weight, instead, can be interpreted as the prior density of the
variable. These two set of samples can be used to plot the density before and
after observing the evidence.

You can sample arguments of queries also for discrete goals: in this case
you get a discrete distribution over the values of one or more arguments of a
goal. If the query predicate is determinate in each world, i.e., given values for
input arguments there is a single value for output arguments that make the
query true, for each sample you get a single value. Moreover, if clauses sharing
an atom in the head are mutually exclusive, i.e., in each world the body of at
most one clause is true, then the query defines a probability distribution over
output arguments. In this way we can simulate those languages such as PRISM

58

and Stochastic Logic Programs [80] that define probability distributions over
arguments rather than probability distributions over truth values of ground
atoms.

59

60

Chapter 8

Probabilistic Logic Programming
in action

We have presented in the previous chapter how to combine logic and proba-
bilities and stated that this combination can model various useful domains
especially those characterized by uncertainty. In order to illustrate this com-
bination, we present in this chapter several examples and domains modeled
by PLP. The chapter is organized as follows: In the first two examples, tile
map generation and Markov Logic Networks encoding presented in sections 8.1
and 8.4 respectively, all the variables are discrete and no infinite computation
path exists. The next three problems have infinite computation paths: the
truel game, the coupon collector problem and the one-dimensional random
walk described in sections from 8.3 to 8.5 respectively. The last two examples,
latent Dirichlet allocation and the Indian GPA problem presented respectively
in sections 8.6 and 8.7 include continuous variables. These examples show the
maturity of PLP.

8.1 Tile map generation

PP and PLP can be used to generate random complex structures. For example,
we can write programs for randomly generating maps of video games. We are
given a fixed set of tiles that we want to combine to obtain a 2D map that is
random but satisfies some soft constraints on the placement of tiles.

Suppose we want to draw a 10x10 map with a tendency to have a lake in

61

the center. The tiles are randomly placed such that, in the central area, water
is more probable. The problem can be modeled with the following program 1,
where map(H,W,M) instantiates M to a map of height H and width W:

map(H,W,M):-
tiles(Tiles),
length(Rows,H),
M=..[map,Tiles|Rows],
foldl(select(H,W),Rows,1,_).

select(H,W,Row,N0,N):-
length(RowL,W),
N is N0+1,
Row=..[row|RowL],
foldl(pick_row(H,W,N0),RowL,1,_).

pick_row(H,W,N,T,M0,M):-
M is M0+1,
pick_tile(N,M0,H,W,T).

where foldl/4 is a SWI-Prolog [151] library predicate that implements the
foldl meta primitive from functional programming. pick_tile(Y,X,H,W,T)
returns in T a tile for position (X,Y) of a map of size W*H. The center tile is
water:

pick_tile(HC,WC,H,W,water):-
HC is H//2,
WC is W//2,!.

In the central area water is more probable:

pick_tile(Y,X,H,W,T):
discrete(T,[grass:0.05,water:0.9,tree:0.025,rock:0.025]):-
central_area(Y,X,H,W),!

central_area(Y,X,H,W) is true if (X,Y) is adjacent to the center of the W*H
map (definition omitted for brevity). In the other places, tiles are chosen at
random with distribution [grass:0.5,water:0.3,tree:0.1,rock:0.1]:

pick_tile(_,_,_,_,T):discrete(T,[grass:0.5,water:0.3,tree:0.1,rock:0.1]).

We can generate a map by taking a sample of the query map(10,10,M) and
collecting the value of M. For example, the map of Figure 8.1 can be obtained2.

1http://cplint.lamping.unife.it/example/inference/tile_map.swinb
2Tiles from https://github.com/silveira/openpixels

62

http://cplint.lamping.unife.it/example/inference/tile_map.swinb
https://github.com/silveira/openpixels

Figure 8.1: A random tile map.

8.2 Markov Logic Networks

Markov Networks (MN) and Markov Logic Networks (MLN) [107] can be
encoded with PLP. The encoding is based on the observation that a MN factor
can be represented with a Bayesian Network (BN) with an extra node that is
always observed. Since PLP programs under the distribution semantics can
encode BN [143], we can encode MLN. For example, the MLN clause

1.5 Intelligent(x)⇒ GoodMarks(x)

where 1.5 is the weight of the clause.

for a single constant anna originates an edges between the Boolean nodes for
Intelligent(anna) and GoodMarks(anna). This means that the two variables
cannot be d-separated in any way. This dependence can be modeled with BN
by adding and extra Boolean node, Clause(anna), that is a child of Intelligent
(anna) and GoodMarks(anna) and is observed. In this way, Intelligent(anna)

and GoodMarks(anna) are not d-separated in the BN no matter what other

63

nodes the BN contains.

In general, for a domain with Herbrand base X and an MLN ground clause
C mentioning atom variables X ′, the equivalent BN should contain a Boolean
node C with X ′ as parents. All the query of the form P (a|b) should then
be posed to the BN as P (a|b, C = true). The problem is now how to assign
values to the conditional probability (CPT) of C given X ′ so that the joint
distribution of X in the BN is the same as that of the MLN.

An MLN formulae of the form α C contributes to the probabilities of the
worlds with a factor eα for the worlds where the clauses is true and 1 for the
worlds where the clause is false. If we use c to indicate C = true, the joint
probability of a state of the world x can then be computed as

P (x|c) =
P (x, c)

P (c)
∝ P (x, c)

i.e P (x|c) is proportional to P (x, c), because the denominator does not depend
on x and is thus a normalizing constant.

P (x, c) can be written as

P (x, c) = P (c|x)P (x) = P (c|x′)P (x)

where x′ is the state of the parents of C, so

P (x|c) ∝ P (c|x′)P (x)

To model the MLN formula we just have to ensure that P (c|x′) is proportional
to eα when x′ makes C true and to 1 when x′ makes C false. We cannot use
eα directly in the CPT for C because it can be larger than 1 but we can use
the values eα/(1 + eα) and 1/(1 + eα) that are proportional to eα and 1 and
are surely less than 1.

For an MLN containing the example formula above, the probability of a world
would be represented by P (i, g|c) where i and g are values for Intelligent(anna)

and GoodMarks(anna) and c is Clause(anna) = true. The CPT will have
the values e1.5/(1 + e1.5) for Clause(anna) being true given that the parents’
values make the clause true and 1/(1 + e1.5) for Clause(anna) being true given
that the parents’ values make the clause false.

64

In order to model MLN formulas with LPADs, we can add an extra atom
clausei(X) for each formula Fi = αi Ci where X is the vector of variables
appearing in Ci. Then, when we query for the probability of query q given
evidence e, we have to ask for the probability of q given e ∧ ce where ce is the
conjunction of all the groundings of clausei(X) for all values of i. Then, clause
Ci should be transformed into a Disjunctive Normal Form (DNF) formula
Ci1∨ . . .∨Cini where the disjuncts are mutually exclusive and the LPAD should
contain the clauses

clausei(X) : eα/(1 + eα)← Cij

for all j. Similalry, ¬Ci should be transformed into a disjoint sumDi1∨. . .∨Dimi

and the LPAD should contain the clauses

clausei(X) : 1/(1 + eα)← Dil

for all l.

Alternatively, if α is negative, eα will be smaller than 1 and we can use the
two probability values eα and 1 with the clauses

clausei(X) : eα ← Cij

. . .

clausei(X)← Dil

This solution has the advantage that some clauses are certain, reducing the
number of random variables. If α is positive in formula α C, we can consider
−α ¬C.

MLN formulas can also be added to a regular probabilistic logic program.
In this case their effect is equivalent to a soft form of evidence, where certain
worlds are weighted more than others. This is the same as soft evidence in
Figaro [95]. MLN hard constraints, i.e., formulas with an infinite weight, can
instead be used to rule out completely certain worlds, those violating the
constraint. For example, given hard constraint C equivalent to the disjunction
Ci1 ∨ . . . ∨ Cini , the LPAD should contain the clauses

clausei(X)← Cij

65

for all j, and the evidence should contain clausei(x) for all groundings x of
X. In this way, the worlds that violate C are ruled out. Let see an example3

where we translate the MLN

1.5 Intelligent(x) => GoodMarks(x)
1.1 Friends(x, y) => (Intelligent(x) <=> Intelligent(y))

The first MLN formula is translated into

clause1(X): 0.8175744762:- \+intelligent(X).
clause1(X): 0.1824255238:- intelligent(X), \+good_marks(X).
clause1(X): 0.8175744762:- intelligent(X), good_marks(X).

where 0.8175744762 = e1.5/(1 + e1.5) and 0.1824255238 = 1/(1 + e1.5).
The MLN formula

1.1 Friends(x, y) => (Intelligent(x) <=> Intelligent(y))

is translated into the clauses

clause2(X,Y): 0.7502601056:-
\+friends(X,Y).

clause2(X,Y): 0.7502601056:-
friends(X,Y), intelligent(X),intelligent(Y).

clause2(X,Y): 0.7502601056:-
friends(X,Y), \+intelligent(X),\+intelligent(Y).

clause2(X,Y): 0.2497398944:-
friends(X,Y), intelligent(X),\+intelligent(Y).

clause2(X,Y): 0.2497398944:-
friends(X,Y), \+intelligent(X),intelligent(Y).

where 0.7502601056 = e1.1/(1 + e1.1) and 0.2497398944 = 1/(1 + e1.1). A
priori we have a uniform distribution over student intelligence, good marks and
friendship:

intelligent(_):0.5.
good_marks(_):0.5.
friends(_,_):0.5.

and there are two students:

student(anna).
student(bob).

3http://cplint.lamping.unife.it/example/inference/mln.swinb

66

http://cplint.lamping.unife.it/example/inference/mln.swinb

The evidence must include the truth of all groundings of the clausei predicates:

evidence_mln:- clause1(anna),clause1(bob),clause2(anna,anna),
clause2(anna,bob),clause2(bob,anna),clause2(bob,bob).

We want to query the probability that Anna gets good marks given that she is
fried with Bob and Bob is intelligent, so we define

ev_intelligent_bob_friends_anna_bob:-
intelligent(bob),friends(anna,bob),evidence_mln.

and query for P (good_marks(anna)|ev_intelligent_bob_friends_anna_bob)
obtaining 0.7330 which is higher than the prior probability 0.6069 of Anna get-
ting good marks, obtained with the query P (good_marks(anna)|evidence_mln).

8.3 Truel

A truel [59] is a duel among three opponents. There are three truelists, a, b
and c, that take turns in shooting with a gun. The firing order is a, b and c.
Each truelist can shoot at another truelist or at the sky (deliberate miss). The
truelist have these probabilities of hitting the target (if they are not aiming at
the sky): 1/3, 2/3 and 1 for a, b and c respectively. The aim for each truelist
is to kill all the other truelists. The question is: what should a do to maximize
his probability of winning? Aim at b, c or the sky?

Let us see first the strategy for the other truelists and situations. When
only two players are left, the best strategy is to shoot at the other player.

When all three players remain, the best strategy for b is to shoot at c, since
if c shoots at him he his dead and if c shoots at a, b remains with c which is
the best shooter. Similarly, when all three players remain, the best strategy for
c is to shoot at b, since in this way he remains with a, the worst shooter.

For a it is more complex. Let us first compute the probability of a to win a
duel with a single opponent. When a and c remain, a wins if it shoots c, with
probability 1/3. If he misses c, c will surely kill him. When a and b remain,
the probability p of a to win can be computed with

p = P (a hits b) + P (a misses b)P (b misses a)p

p = 1/3 + 2/3× 1/3× p

p = 3/7

67

The probability can be also computed by building the probability tree of Figure
8.2. The probability that a survives is thus

p = 1/3 + 2/3 · 1/3 · 1/3 + 2/3 · 1/3 · 2/3 · 1/3 · 1/3 + . . . =

= 1/3 + 2/33 + 22/35 + . . . =
1

3
+
∞∑
i=0

2

33

(
2

9

)i
=

1

3
+

2
33

1− 2
9

=

=
1

3
+

2
33

7
9

=
1

3
+

2
3

7
=

1

3
+

2

21
=

9

21
=

3

7

When all three players remain, if a shoots at b, b is dead with probability 1/3
but then c will kill a. If b is not dead (probability 2/3), b shoots at c and
kills him with probability 2/3. In this case, a is left in a duel with b, with
probability of surviving of 3/7. If b doesn’t kill c (probability 1/3), c will kill b
surely and a is left in a duel with c, with a probability of surviving of 1/3. So
overall, if a shoots at b, his probability of winning is

2/3 · 2/3 · 3/7 + 2/3 · 1/3 · 1/3 = 4/21 + 2/27 =
36 + 15

189
=

50

189
= 0.2645

When all three players remain, if a shoots at c, c is dead with probability 1/3.
b then shoots at a and a survives with probability 1/3 and a is then in a duel
with b and surviving with probability 3/7. If c survives (probability 2/3), b
shoots at c and kills him with probability 2/3, so a remains in a duel with b
and wins with probability 3/7. If c survives again, he kills b surely and a is left
in a duel with c, with probability 1/3 of winning. So overall, if a shoots at c,
his probability of winning is

1/3·1/3·3/7+2/3·2/3·3/7+2/3·1/3·1/3 = 1/21+4/21+2/27 = 59/189 = 0.3122

When all three players remain, if a shoots at the sky, b shoots at c and kills
him with probability 2/3, with a remaining in a duel with b. If b doesn’t kill c,
c will surely kill b and a remains in a duel with c. So overall, if a shoots at the
sky, his probability of winning is

2/3 · 3/7 + 1/3 · 1/3 = 2/7 + 1/9 = 25/63 = 0.3968

68

a shoots b

b killed

1/
3

b survives,
b shoots a

a killed

2/
3

a survives,
a shoots b

b killed

1/
3

b survives,
b shoots a

a killed

2/
3

a survives,
a shoots b

b killed

1/
3

...

2/3

1/3

2/3

1/3

2/3

Figure 8.2: Probability tree of the truel with opponents a and b.

This problem can be modeled with an LPAD4. However, as can be seen
from Figure 8.2, the number of explanations may be infinite so we have to use
an appropriate exact inference algorithm or Monte Carlo inference. We discuss
below a program that uses MCINTYRE.

survives_action(A,L0,T,S) is true if A survives truel performing action
S with L0 still alive in turn T:

survives_action(A,L0,T,S):-
shoot(A,S,L0,T,L1),
remaining(L1,A,Rest),
survives_round(Rest,L1,A,T).

shoot(H,S,L0,T,L) is true when H shoots at S in round T with L0 and L the
list of truelists still alive before and after the shot:

shoot(H,S,L0,T,L):-
(S=sky -> L=L0
; (hit(T,H) -> delete(L0,S,L)

; L=L0
)

).

4http://cplint.lamping.unife.it/example/inference/truel.pl

69

http://cplint.lamping.unife.it/example/inference/truel.pl

The probabilities of each truelist to hit the chosen target are

hit(_,a):1/3.
hit(_,b):2/3.
hit(_,c):1.

survives(L,A,T) is true if individual A survives the truel with truelists L at
round T:

survives([A],A,_):-!.

survives(L,A,T):-
survives_round(L,L,A,T).

survives_round(Rest,L0,A,T) is true if individual A survives the truel at
round T with Rest still to shoot and L0 still alive:

survives_round([],L,A,T):-
survives(L,A,s(T)).

survives_round([H|_Rest],L0,A,T):-
base_best_strategy(H,L0,S),
shoot(H,S,L0,T,L1),
remaining(L1,H,Rest1),
member(A,L1),
survives_round(Rest1,L1,A,T).

These strategies are easy to find:

base_best_strategy(b,[b,c],c).
base_best_strategy(c,[b,c],b).
base_best_strategy(a,[a,c],c).
base_best_strategy(c,[a,c],a).
base_best_strategy(a,[a,b],b).
base_best_strategy(b,[a,b],a).
base_best_strategy(b,[a,b,c],c).
base_best_strategy(c,[a,b,c],b).

Auxiliary predicate remaining/3 is defined as

remaining([A|Rest],A,Rest):-!.

remaining([_|Rest0],A,Rest):-
remaining(Rest0,A,Rest).

70

We can decide the best strategy for a by asking the queries

survives_action(a,[a,b,c],0,b)
survives_action(a,[a,b,c],0,c)
survives_action(a,[a,b,c],0,sky)

If we take 1000 samples, possible answers are 0.256, 0.316 and 0.389, showing
that a should aim at the sky.

8.4 Coupon Collector Problem

The coupon collector problem is described in [51] as

Suppose each box of cereal contains one of N different coupons
and once a consumer has collected a coupon of each type, he can
trade them for a prize. The aim of the problem is determining the
average number of cereal boxes the consumer should buy to collect
all coupon types, assuming that each coupon type occurs with the
same probability in the cereal boxes.

If there are N different coupons, how many boxes, T , do I have to buy to get
the prize? This problem can be modeled by a program5 defining predicate
coupons/2 such that coupons(N,T) is true if we need T boxes to get N coupons.
We represent the coupons with a term for functor cp/N with the number of
coupons as arity. The ith argument of the term is 1 if the ith coupon has been
collected and is a variable otherwise. The term thus represents an array:

coupons(N,T):-
length(CP,N),
CPTerm=..[cp|CP],
new_coupon(N,CPTerm,0,N,T).

If 0 coupons remain to be collected, the collection ends:

new_coupon(0,_CP,T,_N,T).

If N0 coupons remain to be collected, collect one and recurse:

new_coupon(N0,CP,T0,N,T):-
N0>0,
collect(CP,N,T0,T1),
N1 is N0-1,
new_coupon(N1,CP,T1,N,T).

5http://cplint.lamping.unife.it/example/inference/coupon.swinb

71

http://cplint.lamping.unife.it/example/inference/coupon.swinb

collect/4 collects one new coupon and updates the number of boxes bought:

collect(CP,N,T0,T):-
pick_a_box(T0,N,I),
T1 is T0+1,
arg(I,CP,CPI),
(var(CPI)-> CPI=1, T=T1
; collect(CP,N,T1,T)
).

pick_a_box/3 randomly picks a box, an element from the list [1 . . . N]:

pick_a_box(_,N,I):uniform(I,L):- numlist(1, N, L).

If there are 5 different coupons, we may ask:

• how many boxes do I have to buy to get the prize?

• what is the distribution of the number of boxes I have to buy to get the
prize?

• what is the expected number of boxes I have to buy to get the prize?

To answer the first query, we can take a single sample for the query coupons(5,T):
in the sample, the query will succeed as coupons/2 is a determinate predicate
and the result will instantiate T to a specific value. For example, we may get
T=15. Note that the maximum number of boxes to buy is unbounded but the
case where we have to buy an infinite number of boxes has probability 0, so
sampling will surely finish.

To compute the distribution on the number of boxes, we can take a number
of samples, say 1000, and plot the number of times a value is obtained as a
function of the value. We can do so by dividing the domain of the number of
boxes in intervals and counting the number of sampled values that fall in each
interval. By doing so we may get the graph in Figure 8.3.

To compute the expected number of boxes, we can take a number of samples,
say 100, of coupons(5,T). Each sample will instantiate T. By summing all these
values and dividing the 100, the number of samples, we can get an estimate of
the expectation. For example, we may get a value of 11.47.

We can also plot the dependency of the expected number of boxes from the
number of coupons, obtaining Figure 8.4. As observed in [51] , the number

72

Figure 8.3: Distribution of the number of boxes.

of boxes grows as O(N logN) where N is the number of coupons. The graph
shows the accordance of the two curves.

������������������������ ����������

Figure 8.4: Expected number of boxes as a function the number of coupons.

The coupon collector problem is similar to the sticker collector problem,
where you have an album with a space for every different sticker, you can buy
stickers in packs and your objective is to complete the album. A program
for the coupon collector problem can be applied to solve the sticker collector
problem: if you have N different stickers and packs contain P stickers, we can
solve the coupon collector problem for N coupons and get the number of boxes
B. Then the number of packs you have to buy to complete the collection is
dB/P e. So we can write:

stickers(N,P,T):- coupons(N,T0), T is ceiling(T0/P).

73

If there are 50 different stickers and packs contain 4 stickers, by sampling the
query stickers(50,4,T) we can get T=47, i.e., we have to buy 47 packs to
complete the entire album.

8.5 One-Dimensional Random Walk

We consider the version of the problem described in [51]: a particle starts at
position x = 10 and moves with equal probability one unit to the left or one
unit to the right in each turn. The random walk stops if the particle reaches
position x = 0.

The walk terminates with probability one [47] but requires, on average, an
infinite time, i.e., the expected number of turns is infinite [51].

We can compute the number of turns with the following program6. The
walk starts at time 0 and x = 10:

walk(T):- walk(10,0,T).

If x is 0, the walk ends otherwise the particle makes a move:

walk(0,T,T).

walk(X,T0,T):-
X>0,
move(T0,Move),
T1 is T0+1,
X1 is X+Move,
walk(X1,T1,T).

The move is either one step to the left or to the right with equal probability.

move(T,1):0.5; move(T,-1):0.5.

By sampling the query walk(T) we obtain a success as walk/1 is determinate.
The value for T represents the number of turns. For example, we may get
T = 3692.

6http://cplint.lamping.unife.it/example/inference/random_walk.swinb

74

http://cplint.lamping.unife.it/example/inference/random_walk.swinb

8.6 Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA) [13] is natural language model which assign
topics from a finite set to words in documents. The model describes a generative
process where documents are represented as random mixtures over latent topics
and each topic defines a distribution over words. LDA assumes the following
generative process for a corpus D consisting of M documents each of length Ni:

1. Choose θi ∼ Dir(α), where i ∈ {1, . . . ,M} and Dir(α) is the Dirichlet
distribution with parameter α

2. Choose ϕk ∼ Dir(β), where k ∈ {1, . . . , K}

3. For each of the word positions i, j, where j ∈ {1, . . . , Ni}, and i ∈
{1, . . . ,M}

(a) Choose a topic zi,j ∼ Categorical(θi).

(b) Choose a word wi,j ∼ Categorical(ϕzi,j).

This is a smoothed LDA model to be precise. The subscript is often dropped,
as in the plate diagrams 8.5. The aim is to compute the word probabilities of

α θ z w

β φ

MN

K

Figure 8.5: Smoothed LDA.

each topic, the topic of each word, and the particular topic mixture of each
document. This can be done with Bayesian inference: the documents in the
dataset represent the observations (evidence) and we want to compute the
posterior distribution of the above quantities.

75

This problem can modeled by the MCINTYRE program7 below, where
predicate

word(Doc,Position,Word)

indicates that document Doc in position Position (from 1 to the number of
words of the document) has word Word and predicate

topic(Doc,Position,Topic)

indicates that document Doc associates topic Topic to the word in position
Position. We also assume that the distributions for both θm and ϕk are
symmetric Dirichlet distributions with scalar concentration parameter η set
using a fact for the predicate eta/1, i.e., α = β = [η, . . . , η]. The program is
then:

theta(_,Theta):dirichlet(Theta,Alpha):-
alpha(Alpha).

topic(DocumentID,_,Topic):discrete(Topic,Dist):-
theta(DocumentID,Theta),
topic_list(Topics),
maplist(pair,Topics,Theta,Dist).

word(DocumentID,WordID,Word):discrete(Word,Dist):-
topic(DocumentID,WordID,Topic),
beta(Topic,Beta),
word_list(Words),
maplist(pair,Words,Beta,Dist).

beta(_,Beta):dirichlet(Beta,Parameters):-
n_words(N),
eta(Eta),
findall(Eta,between(1,N,_),Parameters).

alpha(Alpha):-
eta(Eta),
n_topics(N),
findall(Eta,between(1,N,_),Alpha).

eta(2).

pair(V,P,V:P).

7http://cplint.lamping.unife.it/example/inference/lda.swinb

76

http://cplint.lamping.unife.it/example/inference/lda.swinb

where maplist/4 is a library of SWI-Prolog encoding the maplist primitive of
functional programming. Suppose we have two topics, indicated with integers
1 and 2, and 10 words, indicated with integers 1, . . . , 10:

topic_list(L):-
n_topics(N),
numlist(1,N,L).

word_list(L):-
n_words(N),
numlist(1,N,L).

n_topics(2).

n_words(10).

We can, for example, use the model generatively and sample values for word in
position 1 of document 1. The histogram of the frequency of word values when
taking 100 samples is shown in Figure 8.6.

Figure 8.6: Values for word in position 1 of document 1.

We can also sample values for couples (word, topic) in position 1 of document
1. The histogram of the frequency of the couples when taking 100 samples is
shown in Figure 8.7.

We can use the model to classify the words into topics. Here we use condi-
tional inference with Metropolis-Hastings that is implemented in MCINTYRE.
A priori both topics are about equally probable for word 1 of document , so if we
take 100 samples of topic(1,1,T) we get the histogram in Figure 8.8. If we ob-

77

Figure 8.7: Values for couples (word,topic) in position 1 of document 1.

Figure 8.8: Prior distribution of topics for word in position 1 of document 1.

serve that words 1 and 2 of document 1 are equal (word(1,1,1),word(1,2,1)
as evidence) and take again 100 samples, one of the topics gets more probable,
as the histogram of Figure 8.9 shows. You can also see this if you look at the
density of the probability of topic 1 before and after observing that words 1
and 2 of document 1 are equal: the observation makes the distribution less
uniform, see Figure 8.10

8.7 The Indian GPA Problem

In the Indian GPA problem proposed by Stuart Russel [94, 91] the question
is: if you observe that a student GPA is exactly 4.0, what is the probability
that the student is from India, given that the American GPA score is from 0.0
to 4.0 and the Indian GPA score is from 0.0 to 10.0? Stuart Russel observed
than most probabilistic programming system are not able to deal with this
query because it requires combining continuous and discrete distributions. This

78

Figure 8.9: Posterior distribution of topics for word in position 1 of document
1.

��� ����

Figure 8.10: Density of the probability of topic 1 before and after observing
that words 1 and 2 of document 1 are equal.

problem can be modeled by building a mixture of a continuous and a discrete
distribution for each nation to account for grade inflation (extreme values have
a non-zero probability). Then the probability of the student’s GPA is a mixture
of the nation mixtures. From statistics, given this model and the fact that
the student’s GPA is exactly 4.0, the probability that the student is American
must be 1.0.

This problem can be modeled with Anglican, DC and MCINTYRE. In
MCINTYRE we can model it with the program below8. The probability
distribution of GPA scores for American students is continuous with probability
0.95 and discrete with probability 0.05:

is_density_A:0.95;is_discrete_A:0.05.

The GPA of an American student follows a beta distribution if the distribution
is continuous:

8http://cplint.lamping.unife.it/example/inference/indian_gpa.pl

79

http://cplint.lamping.unife.it/example/inference/indian_gpa.pl

agpa(A): beta(A,8,2) :- is_density_A.

The GPA of an American student is 4.0 with probability 0.85 and 0.0 with
probability 0.15 if the distribution is discrete:

american_gpa(G) : finite(G,[4.0:0.85,0.0:0.15]) :- is_discrete_A.

or is obtained by rescaling the value of returned by agpa/1 to the (0.0,4.0)
interval:

american_gpa(A):- agpa(A0), A is A0*4.0.

The probability distribution of GPA scores for Indian students is continuous
with probability 0.99 and discrete with probability 0.01.

is_density_I : 0.99; is_discrete_I:0.01.

The GPA of an Indian student follows a beta distribution if the distribution is
continuous:

igpa(I): beta(I,5,5) :- is_density_I.

The GPA of an Indian student is 10.0 with probability 0.9 and 0.0 with
probability 0.1 if the distribution is discrete:

indian_gpa(I): finite(I,[0.0:0.1,10.0:0.9]):- is_discrete_I.

or is obtained by rescaling the value returned by igpa/1 to the (0.0,10.0)
interval:

indian_gpa(I) :- igpa(I0), I is I0*10.0.

The nation is America with probability 0.25 and India with probability 0.75.

nation(N) : finite(N,[a:0.25,i:0.75]).

The GPA of the student is computed depending on the nation:

student_gpa(G) :- nation(a),american_gpa(G).
student_gpa(G) :- nation(i),indian_gpa(G).

If we query the probability that the nation is America given that the student
got 4.0 in his GPA we obtain 1.0, while the prior probability that the nation is
America is 0.25.

80

Part IV

Probabilistic Inductive Logic
Programming

81

Chapter 9

Inductive Logic Programming

Logic is a powerful tool for representing and modeling real world domains
especially those in which entities are connected by a network of relationships.
With respect to other approaches of machine learning, logic has some advantages:
it provides a uniform and expressive method for representing examples, theories
and background knowledge. Logic in general and First Order Logic in particular,
is a very well developed mathematical field. In this chapter we describe how to
learn general logic programs from data. We present different approaches for
representing examples and theories and for inducing theories from examples.
The chapter is organized as follows: after a formal definition of Inductive Logic
Programming in Section 9.1, Sections from 9.2 to 9.4 present different ILP
settings which are respectively learning from entailment, from interpretations
and from proofs. Section 9.5 finally describes how to structure and perform
the search in the space of theories.

9.1 Definition

Inductive Logic Programming (ILP) [81, 3] is a field of Machine Learning that
uses logic programming as a language for representing examples and models.
It provides learning algorithms for inducing a general theory from examples.
The ILP problem can be formally defined as follows:
Given

• a space of possible theories T

83

• a set E+ of positive examples

• a set E− of negative examples

• a background knowledge B such that
B 3 e+ for at least one e+ ∈ E+

Find a theory T ∈ T such that

1. T is complete with respect to E+

all the positive examples are covered by T

2. T is consistent with respect to E−

no negative example is covered by T

The background knowledge is knowledge a priori in the domain of interest and
consists of a set clauses whose truth is known. E = E+ ∪ E− is the training
set and T, the hypothesis (theory) space, defines the search space. The
description of this hypothesis space is called language bias.

From the general definition of ILP described previously, different learning
settings can be considered based on the methods to represent the input (i.e
the examples and the background knowledge), the output (the induced theory)
and to define the covering relation. Three main learning settings in the
literature are presented in the following sections: learning from entailment,
from interpretations and from proofs respectively.

9.2 Learning from entailment

Learning from entailment is one of the most popular learning settings in ILP.
It has been implemented in many ILP systems such as FOIL [104], Progol [79]
and Aleph [129].

Definition 6. Learning from entailment
In the learning from entailment, examples are definite clauses (generally ground
facts), theories are normal logic programs and the coverage relation is entailment.
A theory T covers an example e ∈ E iff

B, T |= e

84

Example 15. Learning the predicate father(X,Y)
Given:

• a space of logic programs including clauses of the form

father(X, Y) : −α

where α is a conjunction of literals from the set

{parent(X, Y), parent(Y,X),male(X),

male(Y), female(X), female(Y)}

• the background knowledge

B ={parent(john,mary),male(john),

parent(david, steve),male(david),

parent(kathy, ellen), female(kathy)}

• and the set of positive and negative examples

E+ = {father(john,mary), father(david, steve)}

E− = {father(kathy, ellen), father(john, steve)}

Find a theory which describes the predicate father consistent with respect to E+

and E−. A possible solution could be

father(X, Y) : −parent(X, Y),male(X).

9.3 Learning from interpretations

Definition 7. Learning from interpretations
When learning from interpretations [27], theories are set of disjunctive clauses,
examples are Herbrand interpretations and the coverage relation is truth in an

85

interpretation. An interpretation I is covered by a theory T iff

I, B |= T

In the same way a clause C covers an interpretation if I, B |= C i.e for all
grounding substitutions θ of C, I |= body(C)θ ⇒ head(C) ∩ I 6= ∅. In order
to have the truth of a clause C in an interpretation I, one can run the query
?− body(C), not(head(C)) against a logic program containing I: if the query
succeeds, C is false in I. Otherwise C is true in I . Note that in this setting
an example is an interpretation (set of facts) formed by computing the model
of the background and I.

Example 16. Consider the background

B = {father(henry, bill), father(alan, betsy), father(alan, benny),

father(brian, bonnie), father(bill, carl), father(benny, cecily),

father(carl, dennis),mother(ann, bill),mother(ann, betsy),

mother(ann, bonnie),mother(alice, benny),mother(betsy, carl),

mother(bonnie, cecily),mother(cecily, dennis), founder(henry).

founder(alan).founder(an).founder(brian).founder(alice).}

and the interpretation I = {carrier(alan), carrier(ann), carrier(betsy)}
This interpretation is covered by the clause
carrier(X) : −mother(M,X), carrier(M), father(F,X), carrier(F).

There is a main difference between learning from entailment and from
interpretation: while examples in learning from interpretations contain much
information (interpretations are large set of facts), examples in the learning
from entailment typically consist of a single fact.

9.4 Learning from proofs

With respect to the amount of information each example carries, learning
from entailment represents an example as a simple fact and learning from
interpretations represents an example as a set of severals ground facts. Since

86

these approaches occupy extreme positions w.r.t. the amount of information,
it is important to explore another (possibly) middle position. Learning from
proofs [54] investigates this intermediate position.

Definition 8. Learning from proofs
In this learning setting, examples are ground proof-trees, theories are set of
definite clauses and the background knowledge B is a set of ground facts. An
example e is covered by a theory T iff e is a proof tree for T ∪B.

Note that since example are expressed as ground proof-trees, various possible
forms of proof-trees can be used. In [54], trees are represented as and-tree in
which nodes contain ground atoms. It is worth nothing that proof-trees (as
interpretations) contain a lot of information. They typically contain instances
of clauses used in the proofs. It is hard to use learning from proofs because it
is not always easy to provide examples of this form.

Among these learning settings, learning from entailment and from inter-
pretations are the most popular and represent the approaches adopted in the
following part for developing ILP algorithms.

9.5 Search Space

We have seen in the previous sections various approaches for inducing a theory
from a set of examples and a background knowledge. In this section we are
going to describe the general ILP learning procedure and how to structure the
search.

The main goal of ILP is to search a theory in the space of theories that
satisfies desirable properties and which is consistent w.r.t the examples and
the background knowledge. Learning means finding a correct theory. Two
main procedures are often performed during theory searching: generalization
and specialization. During search, if the current theory together with the
background knowledge cannot entail all positive examples, we have to find a
more general theory such that as many as possible (or all) positive examples are
entailed. Conversely, if the current theory together with the background covers
negative examples, we have to find a more specific theory which is consistent
w.r.t the negative examples. Therefore learning means repeating these actions

87

until the final theory entails all positive examples and does not entail the
negative ones. This leads to the following definitions.

Definition 9. Generalization
Let T1, T2 ∈ T be two theories: T1 is a generalization of T2, denoted T1 � T2, iff
all examples cover by T2 are covered by T1. We note cov(T2) ⊆ cov(T1) where
cov(T) denotes the set of examples covered by T .

If T1 is a generalization of T2 then T2 is its specialization. These definitions
hold when theories are composed of single or sets of clauses. If a theory (clause)
covers an example, all of its generalizations will cover as well (covers is anti-
monotonic with respect to specialization). If a theory (clause) does not cover
an example, none of its specializations will.

Now let us describe how to organize the search in learning from entailment
setting.

Definition 10. When learning from entailment, a theory T ∈ T is more general
than H ∈ T, written T ≥ H, iff T logically entails H, i.e T |= H.

Instead of using the entailment relation, which is often computationally
expensive, θ-subsumption is generally used.

Definition 11. θ-subsumption
A clause C θ-subsumes D, written C ≥ D if there exists a substitution θ such
that Cθ ⊆ D, see [96].

From the definition, if C ≥ D then C |= D and so C is more general than
D. Note that if C |= D it does not follow that C θ-subsumes D. Let us see
some examples.

Example 17. Consider the following clauses

C1 = father(X, Y) : −parent(X, Y).

= {father(X, Y),¬parent(X, Y)}

C2 = father(X, Y) : −parent(X, Y),male(X).

= {father(X, Y),¬parent(X, Y),¬male(X)}

C3 = father(john, steve) : −parent(john, steve),male(john).

= {father(john, steve),¬parent(john, steve),¬male(john)}

88

We have that:

• C1 θ-subsumes C2 with θ = ∅

• C1 and C2 θ-subsumes C3 with θ = {X/john, Y/steve}

Example 18. Given the following clauses

C1 = even(X) : −even(half(X)).

C2 = even(X) : −even(half(half(X))).

We can obtain C2 by resolving C1 with itself so C1 |= C2. However, there is no
substitution θ such that C1θ ⊆ C2 so C1 � C2

9.5.1 Refinements Operator

We stated previously that learning in ILP is finding a theory that covers
all positive examples and contradicts no negative ones. In order to obtain
such theory, one could start from the most general (specific) theory and then
explore its specializations (generalizations). This is obtained using a refinement
operator.

Definition 12. Refinements Operator
The refinement operator consists of generating a set generalizations or special-
izations of a theory during the search.

In learning from entailment and from the definition of θ-subsumption, a
clause can be generalized by applying the following refinement operations:

1. removing a literal from the body.

2. turning constants into variables (either in the head or in the body).

3. adding a new atom to the head.

Example 19. In Example 17, C1 is a generalization of C2 and C3. In fact C1

is obtained from C2 by removing the literal male(X) and from C3 by removing
the literal male(johh) and turning the constants john and steve into variables
X and Y respectively.

89

In the same way, a clause can be specialized by applying the following
operations:

1. replacing variables with constants.

2. removing atom from the head.

3. adding literal to the body.

Example 20. C2 in Example 17 is a specialization of C1 and C3 a specialization
of C2. In fact C2 is obtained from C1 by adding the literal male(X) to its body
and C3 from C2 by replacing the variables X and Y by constants john and
steve.

In ILP, the learning algorithm consists of successively adding clauses to an
initial theory (often empty). These clauses can be found by performing a
search either top-down or bottom-up. Top-down search starts with a most
general clause and successively applies a set of specializations while bottom-up
approach starts with a most specific clause and proceeds by generalization. For
a detailed description of top-down search , see Section 9.5.3.

Since the search space is in general large, specific forms of clauses are
considered during the learning. The user has to define the form of the allowed
theories by means of a language called language bias.

9.5.2 Language bias

The language bias defines the clauses contained in the space of clauses during
the learning procedure. It imposes restrictions on the form of clauses to be
induced. In the literature, many language bias have been defined but all share
the same basic concept: a) the use of predicate, type and mode declarations
which respectively define the predicates to be used, the type of their arguments
and the input/output behavior of their arguments b) the notion of determination
which provides the form of the allowed clauses. Let us present the form of these
declarations used in the Aleph [129] and SLIPCOVER [11] systems.

The mode declarations define the mode of call for predicates that can
appear in any clause. Following Muggleton [79], a mode declaration is either a

90

head declaration

modeh(RecallNumber, PredicateMode).

or a body declaration

modeb(RecallNumber, PredicateMode).

The RecallNumber can be either a number which specifies the number of
answers to consider the predicate or ∗ which specifies that all answers are
considered. PredicateMode is a schema representing a template for literals
in the head or in the body of clauses in the theories and are of the form
p(ModeType,ModeType, ...) where each ModeType is either a simple or struc-
tured place-maker terms. Simple place-maker terms are of the form #Type,
+Type, −Type which respectively stand for ground terms, input variables and
output variables of type Type. Structured place-maker terms are of the form
f(. . .) where f is a function symbol whose arguments are either a simple or
structured place-maker.

Type specifications associate a Type to every argument of all predicates.
This is done by means of place-marker described in the previous paragraph.
Note that types are just names and no control is performed to verify if a
constant (ground terms) corresponds to a particular Type.

Determinations define predicates for constructing the clauses in the theory.
It is of the form

determination(HeadName/Arity, BodyName/Arity).

where HeadName/Arity is the name (together with the arity) of a predicate
which can appear in the head of a clause and BodyName/Arity represents
the predicate which can appear in the body of such clause. Since a definite
clauses has one predicate in the head and many literals in the body, many
determinations with the same HeadName and different BodyName can occur.

With this language bias, we ensure the following properties for an hypothe-
sized clause of the form h : −b1, b2, . . . , bm:

• any input variable in a literal bi appears as an output variable in a literal

91

bj (with j < i)

• any output variable in h appears as an output variable in some bi,

• any argument of predicates required to be ground are ground.

Now let us present the general learning algorithms used in ILP together
with the top-down algorithm for searching the clauses.

9.5.3 ILP algorithm

The general top-down ILP algorithm is shown in Algorithm 1. The algorithm

Algorithm 1 ILP algorithm.
1: function LearnTheory(E,B)
2: P := ∅
3: repeat/* covering loop */
4: C :=FindClauseTopDown(E,B)
5: P := P ∪ C
6: Remove from E the positive examples covered by P
7: until Stop condition
8: return P
9: end function

takes as input a set of positive and negative examples E = E+ ∪ E−, a
background knowledge B and returns a program (set of normal clauses) that
entails as many positive examples as possible and as few negative ones as
possible. The function starts with an empty program, line 2, and finds a clause
C that covers some positive examples in E and covers few negative ones, line
4. C is found by performing a top-down search, see Algorithm 2. Then C is
added to the current program and all the positive examples covered by the
current program are removed in E, lines 5-6. This procedure is repeated until
a certain condition (E+ = ∅) is satisfied, line 7. Finally, the learned program
is returned, line 8.

To find the clause C, Algorithm 2 takes as input the current set of examples
E and the background knowledge B and a beam which initially contains the
most general clause, line 2. Then it removes the first clause in the beam
and computes its refinements, lines 5-6, as described in Section 9.5.1. The
refined clauses are scored using a heuristic function and the clause with the
best score is selected as the currently best clause, lines 7-8. The refined clauses
are added back to the beam and the beam is ordered according to the score.

92

The last clauses that exceed the size d of the beam are removed, lines 9-11.
The algorithm repeats until a stop condition is satisfied (for example E+ = ∅),
line 12. Finally, the best clause in the beam is returned, line 13.

Examples of ILP systems based on this algorithm are FOIL [104] and Alpeh
[129] Progol [79].

Algorithm 2 Find clause
1: function FindClauseTopDown(E,B)
2: Beam := {p(X)← true}
3: BestClause := null
4: repeat/* specialization loop */
5: Remove the first clause C of Beam
6: compute ρ(C)
7: score all the refinements
8: update BestClause
9: add all the refinements to the beam
10: order the beam according to the score
11: remove the last clauses that exceed the dimension d
12: until Stop condition
13: return BestClause
14: end function

93

94

Chapter 10

Learning Probabilistic Logic
Programming

In Chapter 7, we saw that PLPs are useful for representing various domains
especially those characterized by uncertainty. We have presented various
languages that integrate logic with probability and described how to perform
inference in such languages. In the previous chapter, we presented Inductive
Logic Programs and described many setting for inducing logic programs from
data. Since PLP is an interesting representation formalism in machine learning
and given the different learning settings for ILP, an interesting problem to
investigate is how to induce a probabilistic program from data. This learning
task is often called Probabilistic Inductive logic Program (PILP). Two main
learning problems have been investigated in PILP: given a PLP with unknown
parameters, learning the parameters from data. Structure learning algorithms
instead aim at inducing a PLP (and their parameters) from data. This chapter
presents PILP and describes different state-of-art parameter and structure
learning algorithms. After a brief description of PILP in Section 10.1, Section
10.2 presents two parameter learning algorithms called EMBLEM [10] and
LFI-ProbLog [36]. While EMBLEM learns the parameters of LPADs (described
in Section 7.2) from data, LFI-ProbLog estimates those of Problog program
(see Section 7.3) from data. Section 10.3 presents a structure learning algorithm
called SLIPCOVER [11] which learns both the structure and the parameters of
general LPADs from data.

95

10.1 PILP Settings

In order to deal with PILP we have to:

1. Define a method for integrating probability and clauses. This has been
presented in Part III. Many languages allowing such integration have also
been presented.

2. Define a new covers relation in ILP called probabilistic covers relation
which can be defined as follows:

Definition 13. Given an example e, a theory T and a background knowledge
B, a probabilistic covers relation, written cov(e, T ∪ B) = P (e|T,B), returns
a value between 0 and 1 which represents the probability that the example is
covered (the likelihood of the example).

Given a set of positive and negative examples E = E+ ∪ E−, the purpose of
PILP is to find a PLP T ∗ that maximizes the likelihood, P (E|T ∗, B), of the
data. Assuming that all examples are independently and identically distributed
(i.i.d), the likelihood of the data becomes

P (E|T ∗, B) =
∏
e∈E+

P (e|T ∗, B) ·
∏
¬e∈E−

P (¬e|T ∗, B) (10.1)

Note that a PLP is composed of two components: the set of clauses which
denotes the structure of the program and the probabilities associated with each
clause which represent its parameters. Therefore, two common algorithms have
been investigating in PILP. Suppose the structure of a PLP is known, maybe
given by an expert in the domain of interest, parameter learning algorithms
estimate the optimal values of the probabilities that best describe data. If
both the parameters and structure are unknown, structure learning algorithms
induce the structure and the values of the probabilities that best describe the
data. In the following sections, we present a brief description of each algorithm
and discuss state-of-art algorithms.

96

10.2 Parameter learning

The parameter problem can be defined as follows:
Given

1. a set of examples E,

2. a background knowledge B,

3. a Probabilistic model M = (S,Λ) where S is the structure and Λ the
parameters,

4. a probabilistic coverage P (e|M,B) which computes the probability of an
observing example e ∈ E given the model and the background,

5. a scoring function, score(E,M), that uses the probabilistic coverage
P (e|M,B).

Find the optimal parameters Λ∗ that maximize the scoring function, i.e

Λ∗ = argmaxΛscore(E, (S,Λ)) (10.2)

Generally, the (conditional) likelihood of the data given the model is consid-
ered as scoring function, see Equation 10.1. In traditional PILP, instead of
maximizing the conditional likelihood, its logarithm is maximized. This is done
because products of many numbers all smaller than one become very small
quickly and thus pose numerical issues. Therefore, the conditional log likelihood
(CLL) function is used as the scoring function. In order to find the values of the
parameters that maximized the CLL, two main algorithms are often performed:
the Expectation Maximization and Gradient Descent algorithms.

10.2.1 Expectation Maximization

Expectation-Maximization (EM), see [32], is an iterative approach for computing
an estimation of parameter values that maximize the (conditional) log likelihood.
The EM approach is useful in domains in which data are not completely
observed, also known as incomplete data problems. If the data are fully
observed, optimizing the CLL reduces to frequency counting. Otherwise, a

97

numerical optimization algorithm has to be applied. The EM algorithm starts
by randomly initializing the parameters and then iteratively performs two steps:

• Expectation Step
Given the current parameters of the program and the partially observed
data, the E-step computes an estimation of the conditional distribution
of the unobserved data. These unobserved data are also called hidden
(or latent) variables.

• Maximization step
The M-step then computes the parameters of the program that maximize
the CLL function under the assumption that the missing data are known
(computed in the E-step).

These steps are repeated until convergence or until a stopping condition is
satisfied. Note that each EM iteration increases the CLL function. Moreover,
if there are multiple maxima, EM does not guarantee convergence to the global
one.

EM is applied in many parameter learning systems such as EMBLEM and
LFI-ProbLog described in sections 10.2.4 and 10.2.5 respectively. Other systems
such as PRISM [124] and RIB [114] also implement an EM approach.

10.2.2 Gradient Descent

Gradient-based methods are iterative approaches for searching the parameters
of PLPs for which the CLL is optimal. While gradient descent aims at finding
a (local) minimum of the function, gradient ascent finds the (local) maximum.
These algorithms are based on iterative optimization. They compute the
gradient of the CLL function w.r.t to the current parameters and iteratively
modify the parameters to follow the direction of the gradient, gradient ascent,
or to follow the opposite direction of the gradient, gradient descent. Gradient
descent has been implemented in systems such as LeProbLog [41] that uses a
dynamic programming algorithm for computing the gradient exploiting Binary
decisions diagrams.

Gradient descent is widely used in another field of artificial intelligence
called deep learning [70] and neural networks [44]. This approach of AI, which

98

is mostly applied in domains such as computer vision and natural language
processing, uses a technique called back-propagation [118] for computing the
gradient of a function in deep models organized into layers. Given an objective
function f (also called loss function) and the parameters Π, the optimization
algorithms compute the derivative of the objective function with respect to
each parameter π, d(π) = df

dπ
. According to a (minimization) maximization

problem, the parameters are updated in the (opposite) same direction of the
gradient. Standard gradient descent updates the parameters in the following
manner:

π = π − α · d(π) (10.3)

where α, the learning rate, defines the speed of descent.
Different extensions of the standard gradient descent have been implemented.

Some of them are described below:

• Momentum method. In the Momentum method [102], gradient descent
is accelerated by taking into consideration the exponentially weighted
average of the gradients. Since the gradients towards uncommon directions
are eliminated, the algorithm converges in a faster way towards the
minimum. The parameters are updated as follows:

A = β · A+ (1− β) · d(π)

π = π − α · A (10.4)

where A is the acceleration (initially 0) and d(π) the velocity of descent.
β (generally ≈ 0.9) is an hyper-parameter called momentum.

• RMSprop. Proposed by Geoffrey Hinton, RMSprop [136] applies an
exponentially weighted average method to the second moment of the
gradients (d(π)2). The parameters are updated as follows:

S = β · S + (1− β) · d(π)2

π = π − α · d(π)√
S + ε

(10.5)

where ε ≈ 10−8 avoids dividing by zero.

99

• Adam Optimization. Adam Optimization [62] is a combination of the
previous methods along with a bias correction. If t is the current iteration
of the algorithm, the parameters are updated as follows:

A = β1 · A+ (1− β1) · d(π) Â =
A

1− βt1
S = β2 · S + (1− β2) · d(π)2 Ŝ =

S

1− βt2

π = π − α · Â√
Ŝ + ε

(10.6)

where A and S are respectively the estimations of the first and the second
moments of the parameter and Â and Ŝ their respective bias corrections.

Adam optimization will be used in this work in Section 13.2 for learning the
parameters of a restriction of general LPADs called Hierarchical PLP, see
Chapter 12.

10.2.3 Limited Memory BFGS: LBFGS

Another optimization method, called Limited-memory BFGS (LBFGS) [92], is
based on the Broyden–Fletcher–Goldfarb–Shanno (BFGS) method that
is often used for parameter learning. The BFGS algorithm tries to approximate
quasi-Newton optimization by avoiding the computational effort necessary for
computing the inverse of the Hessian matrix. Let f(Π) be the objective function
to minimize and J(Π) its second-order approximation near Π0 using the Taylor
series. The Newton parameter update rule is given by

Π∗ = Π0 −H−1OΠJ(Π0) (10.7)

where H is the Hessian of J w.r.t Π0 and OΠJ(Π0) the gradient at Π0. If J(Π)

is not quadratic and the Hessian matrix is positive definite, the update rule
has to be iterated in order to gradually move towards the global minimum.
However, this method suffers from the computational burden necessary for
computing the inverse of the Hessian matrix at each iteration. BFGS proposes
a method for approximating this computation. The approach adopted by BFGS
(and by almost all quasi-Newton methods) is to approximate the inverse at

100

each iteration t with a matrix Mt that is iteratively refined by low rank updates
to become a better approximation of H−1. Once the approximation is done,
the direction of the descent ρt = Mt · gt is computed and the parameters are
updated as follows

Πt+1 = Πt + ε∗ · ρt

where gt is the gradient of the parameters at iteration t and ε∗ the length
of the step. Note that, to perform well, BFGS algorithm has to store the
approximation of the Hessian matrix at each iteration. This requires O(n2)

memory space where n is the number of parameters. For modern models with
many parameters implementing BFGS is often impractical.

Limited Memory BFGS, written LBFGS, tries to avoid storing Mt at
each iteration. The approximation of Mt is computed by using the same
approach as BFGS but LBFGS assumes that at each iteration t M (t−1) is the
identity matrix. For a more details on the LBFGS algorithm, see [92].

LBFGS optimization will be applied in Section 11.4.2 for learning the
parameters of Liftable PLP, see Section 11.2.

10.2.4 EMBLEM

EMBLEM (for Expectation Maximization over Binary Decision Diagrams for
Probabilistic Logic Programs) [10], is a parameter learning algorithm that
learns the parameters of general LPADs from data.

In EMBLEM, examples E are ground facts called target (or output) predi-
cates and the background knowledge B are other facts, called input predicates
. The model is an LPAD program T , which is a set of annotated disjunctive
clauses Ci with unknown probabilities Π =< πi1 . . . πini > in the heads. The
learning consists of finding the parameters Π∗ that maximize the conditional
probability of the examples given the program and the input predicates.

Π∗ = argmaxΠP (E|T,B) =
∏
e∈E

P (e|T,B)

EMBLEM uses knowledge compilation as described in Section 7.4. The
explanations of each example is compiled into a Binary Decision Diagram
(BDD). Parameter learning uses the EM algorithm described in Section 10.2.1.

101

The expectations are computed by performing two passes over the BDDs.

Algorithm 3 EMBLEM algorithm.
1: function EMBLEM(LPAD,MaxIter, ε, δ)
2: Build the BDDs for the examples (facts for target predicates)
3: LL:=-inf
4: N=0
5: repeat
6: LL0 = LL
7: LL =Expectation(BDDs)
8: Maximization()
9: N = N + 1
10: until LL− LL0 < ε||LL− LL0 < −LL · δ||N > MaxIter
11: Update parameters of LPAD
12: return LL,LPAD
13: end function

EMBLEM, Algorithm 3, starts by building a BDD for each example, line
2. Then, an EM cycle is repeatedly performed until the difference between
the current and the previous CLL drops below a threshold ε or the difference
is below a fraction δ or a maximum number of iteration MaxIter is reached,
line 10. In the E-step, the expectations of the hidden variables are computed
directly over the BDDs. The E-step also computes the likelihood used in the
stopping condition. Then the expectations computed in the E-step are used in
the M-step to update the current parameters by relative frequency. How to
compute the expectations is described in the following.

Let us define cikx the number of times the boolean variable Xijk takes
value x ∈ {0, 1}. We want to compute E[cikx]. For each example e, the
conditional expectations E[Xijk = x|e] for clause Cis, k = 1, . . . , ni − 1, j ∈
g(i) = {j|θj is a substitution grounding Ci} and x ∈ {0, 1} are computed. As
defined in Equation 6.5, E[Xijk = x|e] is computed as follows:

E[Xijk = x|e] = P (Xijk = x|e) · 1 + P (Xijk = 1− x|e) · 0

= P (Xijk = x|e)

The expectation E[cikx = x|e] for all j ∈ g(i) is defined as follows:

E[cikx = x|e] =
∑
j∈g(i)

E[Xikx = x|e]

=
∑
j∈g(i)

P (Xijk = x|e) (10.8)

102

Considering all the examples, we have

E[cikx] =
∑
e∈E

E[cikx = x|e] (10.9)

Since P (Xijk = x|e) =
P (Xijk=x,e)

P (e)
, P (Xijk = x|e) can be computed by comput-

ing P (Xijk = x, e) and p(e) which are done by performing two passes over the
BDD associated with the example e.

Once the expectations E[cik0] and E[cik1] are computed in the E-step, the
M-step updates each parameter πi by applying the following formula

πi =
E[cik1]

E[cik0] + E[cik1]

EMBLEM is strongly related to EMPHIL, see Section13.3, which is an
EM algorithm for learning the parameters of Hierarchical PLPs described in
Chapter 12.

10.2.5 Learn From Interpretation ProbLog: LFI-ProbLog

LFI-ProbLog [36] is a parameter learning system that learns the parameters of
ProbLog2 programs, an extension of the ProbLog language described in Section
7.3, from interpretations. In addition to probabilistic facts allowed in ProbLog,
ProbLog2 introduces the following probabilistic clauses:

• Intensional probabilistic facts. The following intensional probabilistic
fact

π :: f(X1, . . . , Xn) : −Body

represents a set of probabilistic facts with a single statement. Body

is a conjunction of calls to non-probabilistic facts. When performing
inference and learning, each intentional probabilistic fact is replaced by
the corresponding set of ground probabilistic facts.

• Annotated disjunction clauses. ProbLog2 allows annotated disjunc-
tion clauses like LPAD clauses. Each annotated disjunction is written in
the form

πi1 :: hi1; . . . πini :: hini : −bi1, . . . bimi

103

which corresponds to the following LPAD clause

hi1 : πi1; . . . hini : πini : −bi1, . . . bimi

Note that during inference and learning, each annotated disjuction clause
is converted to probabilistic facts as described in Section 7.3.

The parameter learning is formally defined as follows:
Given

• a set of examples E = {I1, . . . , IT} which are partial interpretations,

• a ProbLog2 program P with unknown parameters Π,

Find the values of the parameters, Π∗, that maximize the likelihood of the
examples, .i.e

Π∗ = argmaxΠP (E) = argmaxΠ

T∏
t=1

P (I)

Each partial interpretation I = IT ∪ IF specifies the truth value of ground
atoms in the interpretation. Atoms ∈ IT are true and those in ∈ IF are false. If
each interpretation contains all the atoms, parameter learning can be done by
relative frequency. Otherwise algorithms based on EM or on gradient descent
can be applied.

LFI-ProbLog learns the parameters of ProbLog2 programs applying EM.
The algorithm initially generates the ground probabilistic facts corresponding
to intensional probabilistic facts and converts annotated disjunction clauses to
probabilistic facts. Then an EM cycle is repeated until convergence.

Let Xij be a Boolean random variable associated with each ground proba-
bilistic facts fiθj, where j ∈ g(i) and g(i) is the set of grounding substitutions
of fi. We define, as in EMBLEM, the latent random variable cix denoting
the number of times the boolean variable Xij takes value x ∈ {0, 1} for all
interpretations. The E-step computes the expected values of cix as follows:

E[cix] =
T∑
t

E[cix|It]

where the expectation E[cix|It] is computed by taking into account all the

104

substitutions
E[cix|It] =

∑
j∈g(i)

P (Xij = x|It)

To compute P (Xij = x|It), LFI-ProbLog builds a d-DNNF (Deterministic
Decomposable Negation Normal Form) circuit associated with It and visits the
circuit twice: once bottom up to compute P (It) and once top down to compute
P (Xij = x, It). Then P (Xij = x|It) is computed by formula P (Xij=x,It)

P (It)
.

After calculating the expectations, each parameter πi is updated in the
M-step as follows:

πi =
E[ci1]

E[ci0] + E[ci1]

10.3 Structure learning

In the previous section, the structure of PLPs was considered as known and the
problem was to learn the parameters from data. However, in many domains
of interest, it is often difficult, even for experts in the domains, to provide
the structure of the program. In such domains, both the structure and the
parameters have to be induced from data. This task in PILP is called structure
learning and can be formally defined as follows:
Given

• a set of positives and negatives examples E = E+ ∪ E−

• a language LM of possible models, M = (S,Λ), defined by a language bias
as described in Section 9.5.2. S is the structure and Λ the parameters,

• a background knowledge B,

• a probabilistic coverage P (e|M,B) which computes the probability of an
observing example e ∈ E given the model and the background,

• a scoring function, score(E,M), that uses the probabilistic coverage
P (e|M,B).

Find the best model M∗ = (S∗,Λ∗) with the optimal parameters Λ∗ that
maximizes the scoring function, i.e

Λ∗ = argmaxΛscore(E, (S,Λ))

105

Similarly to learning in ILP, see Section 9.5, learning in PILP is essentially a
search in the space of models. Besides searching for the structure, PILP has to
search the associated parameters. Given a language bias, see Section 9.5.2, a
clause can be searched using a bottom-up or a top-down algorithms. Many state
of the art algorithms for learning PLPs such as SLIPCOVER [11], ProbFOIL
[31] and ProbFOIL+ [105] have been implemented. In the following section,
we first present SLIPCOVER which it is strongly related to the algorithms
proposed in this thesis and then ProbFOIL+.

10.3.1 SLIPCOVER

SLIPCOVER [11] (for Structure LearnIng of Probabilistic logic programs
by searChing OVER the clause space) is a PILP system that learns both
the structure and the parameters of LPADs from data. In order to learn,
SLIPCOVER takes as input

• a set of examples called target (output) predicates,

• a background knowledge B, consists of input predicates organized as a
set of interpretations called mega-examples,

• a probabilistic logical model M ,

• a language bias to guide the construction of the refinements of the models,

and Find an LPAD P ∗ with parameters Π∗ which maximize the conditional
probability of the atoms for the output predicates given the atoms of the input
predicates.

Language bias

SLIPCOVER extends the language bias defined in Section 9.5.2 by allowing
place-maker of the form #−Type which are treated as #Type when variabilizing
a clause and as −Type when saturating the body of a clause. In addition,
SLIPCOVER allows head declarations of the form

modeh(r, [s1, . . . , sn], [a1, . . . , an], [P1/Ar1, . . . , Pk/Ark]).

which are used for creating clauses with more than two head atoms.

106

Description of the algorithm

In order to learn, SLIPCOVER, see Algorithm 4, performs a beam search in
the space of clauses for identifying the promising ones and a greedy search in
the space of theories.

For finding the promising clauses, SLIPCOVER initially creates a beam of
bottom clauses for each output predicate as described in Progol [79], line 2.
Then each beam is considered in turn. For each bottom clause in the current
beam, all the refinements are found by using the language bias. Each refined
clause is scored with the conditional likelihood (CLL) obtained by applying
EMBLEM on the single clause. Clauses whose heads are target predicates are
inserted in a set of target clauses (TC). Otherwise there are inserted in a set of
background clauses, BC. TC and BC are ordered by CLL. This is repeated
until the beam becomes empty. The whole process is repeated at most NI steps,
lines 5-27.

After identifying the promising clauses in TC and BC, the algorithm
proceeds by iteratively moving in turn clauses from TC to a new theory Th
(initially empty) until TC is empty. When a clause is added in Th, EMBLEM
is performed on the current Th and its CLL is computed. If the CLL is larger
than the previous one, the clause is kept in the theory. Otherwise it is discarded,
lines 28-35.

Finally all the clauses in BC are added into Th and EMBLEM is run on
the new theory. Clauses never used in any example derivation are removed and
the theory is returned, lines 36-38.

10.3.2 ProbFOIL+

ProbFOIL+ [105] learn rules from probabilistic examples. The learning is
defined as follows.

Definition 14. Given

1. a set of training examples E = {(e1, p1), . . . , (eT , pT)} where each ei is a
ground fact for a target predicate

2. a background theory B containing information about the examples in the
form of a ProbLog program

107

Algorithm 4 Function SLIPCOVER
1: function SLIPCOVER(NInt ,NS ,NA,NI ,NV ,NB ,NTC ,NBC , D,NEM , ε, δ)
2: IB =InitialBeams(NInt ,NS ,NA) . Clause search
3: TC ← []
4: BC ← []
5: for all (PredSpec,Beam) ∈ IB do
6: Steps← 1
7: NewBeam← []
8: repeat
9: while Beam is not empty do
10: remove the first triple (Cl ,Literals,LL) from Beam . Remove the first clause
11: Refs ←ClauseRefinements((Cl ,Literals),NV) . Find all refinements Refs of

(Cl ,Literals) with at most NV variables
12: for all (Cl ′,Literals′) ∈ Refs do
13: (LL′′, {Cl ′′})←EMBLEM({Cl ′}, D,NEM , ε, δ)
14: NewBeam←Insert((Cl ′′,Literals′,LL′′), NewBeam,NB)
15: if Cl ′′ is range-restricted then
16: if Cl ′′ has a target predicate in the head then
17: TC ←Insert((Cl ′′,LL′′),TC ,NTC)
18: else
19: BC ←Insert((Cl ′′,LL′′),BC ,NBC)
20: end if
21: end if
22: end for
23: end while
24: Beam← NewBeam
25: Steps← Steps+ 1
26: until Steps > NI
27: end for
28: Th← ∅, ThLL← −∞ . Theory search
29: repeat
30: remove the first couple (Cl ,LL) from TC
31: (LL′, Th′)←EMBLEM(Th ∪ {Cl}, D,NEM , ε, δ)
32: if LL′ > ThLL then
33: Th← Th′, ThLL← LL′

34: end if
35: until TC is empty
36: Th← Th

⋃
(Cl,LL)∈BC {Cl}

37: (LL, Th)←EMBLEM(Th,D,NEM , ε, δ)
38: return Th
39: end function

3. a space of possible clauses L

find a hypothesis H ⊆ so that the absolute error AE =
∑T

i=1 |P (ei) − pi| is
minimized, i.e.,

argminH∈L

T∑
i=1

|P (ei)− pi|

ProbFOIL+ generalizes the mFOIL system [34], itself a generalization of
FOIL [103]. It performs a hill climbing search in the space of programs. It
is consists of a covering loop in which one rule is added to the final program
at each iteration. The covering loop ends when a condition based on a global
scoring function (generally the accuracy over the dataset) is satisfied. The

108

rule added at each iteration is obtained by a nested loop which iteratively
adds literals to the body of the rule and performs a beam search in the space
of clauses (as in mFOIL) guided by a local scoring function, generally an
m-estimate [77] of the precision. Algorithm 5 shows the overall approach1.

Algorithm 5 Function ProbFOIL+
1: function ProbFOIL+(target)
2: H ← ∅
3: while true do
4: clause← LearnRule(H, target)
5: if GScore(H) < GScore(H ∪ {clause}) ∧ Significant(H, clause) then
6: H ← H ∪ {clause}
7: else
8: return H
9: end if
10: end while
11: end function
12: function LearnRule(H, target)
13: candidates← {x :: target← true}
14: best← (x :: target← true)
15: while candidates 6= ∅ do
16: next_cand← ∅
17: for all x :: target← body ∈ candidates do
18: for all (target← bod, refinement) ∈ ρ(target← body) do
19: if not Reject(H, best, (x :: target← body, refinement)) then
20: next_cand← next_cand ∪ {(x :: target← body, refinement)}
21: if LScore(H, (x :: target← body, refinement)) > LScore(H, best) then
22: best← (x :: target← body, refinement)
23: end if
24: end if
25: end for
26: end for
27: candidates← next_cand
28: end while
29: return best
30: end function

1The description of ProbFOIL+ is based on [105] and the code at https://bitbucket.
org/antondries/prob2foil

109

https://bitbucket.org/antondries/prob2foil
https://bitbucket.org/antondries/prob2foil

110

Part V

Lifted Probabilistic Logic
Programming

111

Chapter 11

Liftable Probabilistic Logic
Programming

PLP provides a powerful tool for reasoning with uncertain relational models.
However, learning probabilistic logic programs is expensive due to the high cost
of inference. Among the proposals to overcome this problem, one of the most
promising is lifted inference. In this chapter we consider PLP models that are
amenable to lifted inference and present an algorithm for performing parameter
and structure learning of these models from positive and negative examples. We
discuss parameter learning with Expectation Maximization (EM) and Limited-
memory Broyden–Fletcher–Goldfarb–Shanno (LBFGS) and structure learning
with LIFTCOVER [88], an algorithm similar to SLIPCOVER [11]. The results
of the comparison of LIFTCOVER with SLIPCOVER on 12 datasets show that
it can achieve solutions of similar or better quality in a fraction of the time.

The chapter is organized as follows: After a brief motivation in Section
11.1, Sections 11.2 and 11.3 describe the liftable PLP language and how to
perform inference in liftable PLP respectively. Sections 11.4 and 11.5 illustrate
parameter and structure learning respectively. Section 11.6 discusses related
work and Section 11.7 presents the experiments.

11.1 Motivation

The problem of learning probabilistic logic program has received considerable
attention. However, PLP usually require expensive learning procedures due

113

to the high cost of inference. SLIPCOVER [11] for example performs struc-
ture learning of probabilistic logic programs using knowledge compilation for
parameter learning: the expectations needed for the EM parameter learning
algorithm are computed using the Binary Decision Diagrams (BDDs) that are
built for inference. Compiling explanations for queries into BDDs has a #P
cost in the number of random variables. Lifted inference [100] was proposed
for improving the performance of reasoning in probabilistic relational models
by reasoning on whole populations of individuals instead of considering each
individual separately. For example, consider the following Logic Program with
Annotated Disjunctions (adapted from [28]):

popular(X) : p :− friends(X, Y), famous(Y)

which states that a person is popular with probability p ∈ [0, 1] if he/she has
a famous friend. To compute the probability that john is popular, let n be
the number of john’s famous friends. john is not popular if the rule does
not fire for any his famous friends therefore P (¬popular(john)) = (1 − p)n.
So P (popular(john)) = 1− (1− p)n. To compute this probability, we do not
need to know information about john’s individual famous friends, we just need
to know their number. Computing this value has a cost logarithmic in n, as
computing an is Θ(log n) with the “square and multiply” algorithm [39], rather
than #P in n.

Various algorithms have been proposed for performing lifted inference for
PLP [139, 7], see [113] for a survey and comparison of the approaches.

In this chapter, we consider a simple PLP language (called liftable PLP) in
which programs contain clauses with a single annotated atom in the head and
the predicate of this atom is the same for all clauses. In this case, all the above
approaches for lifted inference coincide and reduce to a computation similar to
the one of the example above.

For this language, we discuss how to perform discriminative parameter
learning by using EM or optimizing the likelihood with Limited-memory BFGS
(LBFGS) [92]. A previous approach for performing lifted learning [141] targeted
generative learning for Markov Logic Networks, so it cannot be applied directly
to PLP.

114

We also present LIFTCOVER for “LIFTed slipCOVER”, an algorithm for
performing discriminative structure learning of liftable PLP programs obtained
from SLIPCOVER [11] by simplifying the search for structure and replacing
parameter learning with one of the specialized approaches. We thus obtain
LIFTCOVER-EM and LIFTCOVER-LBFGS that perform EM and LBFGS
respectively.

Liftable PLP can also be seen as a language where the contributions of
different groundings of a clause and of different clauses are combined using a
noisy-OR combining rule and is therefore very much related to languages such
as First-Order Probabilistic Logic [67], Bayesian Logic Programs [56] and the
First-Order Conditional Influence Language [84]. Liftable PLP can be seen as
a special case of each of these languages in which simpler inference and learning
algorithms can be used. The experimental results show that the algorithm still
yield good quality results notwithstanding the language restrictions.

11.2 Liftable PLP

In order to speed up the inference, we restrict the language of LPADs by
allowing only clauses of the form

Ci = hi : Πi :− bi1, . . . , biui

in the program where all the clauses share the same predicate for the single
atom in the head. Let us call this predicate target/a with a the arity. The
literals in the body have predicates other than target/a and are defined by
facts and rules that are certain, i.e., they have a single atom in the head with
probability 1. The predicate target/a is called target and the others input
predicates. Suppose there are n probabilistic clauses of the form above in the
program; we call this language liftable PLP. Now let us explain, in the next
section, how to perform inference programs belonging to such language.

115

11.3 Inference in Liftable PLP

The problem of performing inference, as described in Section 7.4, is to compute
the probability of a ground instantiation q of target/a. This can be done at
the lifted level. In liftable PLP, we should first find the number of ground
instantiations of clauses for target/a such that the body is true and the head
is equal to q. Suppose there are mi such instantiations {θi1, . . . , θimi}, for rule
Ci for i = 1, . . . , n. Each instantiation θij corresponds to a random variable
Xij taking values 1 with probability Πi and 0 with probability 1 − Πi. The
query q is true if at least one of the random variables for a rule takes value 1:
q = true ⇔

∨n
i=1

∨mi
j=1(Xij = 1). In other words q is false only if no random

variable takes value 1. All the random variables are mutually independent so
the probability that none takes value 1 is

∏n
i=1

∏mi
j=1(1−Πi) =

∏n
i=1(1−Πi)

mi

and the probability of q being true is P (q) = 1−
∏n

i=1(1− Πi)
mi . So once the

number of clause instantiations with the body true is known, the probability
of the query can be computed in logarithmic time. Note that finding an
assignment of a set of logical variables that makes a conjunction true is an
NP-complete problem [58], therefore computing the probability of the query
may be prohibitive.

When using knowledge compilation, to the cost of finding the assignment,
we must sum the cost of performing the compilation, that is #P in the number
of satisfying logical variables assignments (clause instantiations with the body
true). Therefore inference in liftable PLP is significantly cheaper than in the
general case. Moreover, in machine learning the conjunctions are usually short
and the knowledge compilation cost dominates.

The general language of PLP is necessary when the user wants to induce
a knowledge base or an ontology regarding the domain. In that case, the
possibility of having more than one head, possibly involving more than one
predicate, and the possibility of learning probabilistic rules for subgoals is
useful because the resulting program can thus represent and organize general
knowledge about the domain. Moreover, the resulting program can then be used
for answering different types of queries instead of being restricted to answering
queries about a single predicate. This is similar to the problem of learning
multiple predicates in Inductive Logic Programming. While this problem has

116

received considerable attention, most work concentrated on learning a single
predicate, for example systems such as FOIL [103], Progol [79] and Aleph [129]
learn a single predicate at a time. Furthermore, most benchmark datasets
are focused on predicting the truth value of atoms for a single predicate. For
example, all the datasets we consider in the experimental evaluation, Section
11.7, include positive and negative example for a single predicate. Therefore
we concentrate here on predicting a single predicate.

We believe that the problem of inducing general knowledge bases will become
very important in the near future because of the growth of the Semantic Web:
more and more data is being published on the web but ontologies are often
shallow. If we want to be able to provide answers for complex queries given
the available data, we need deep and complex knowledge bases and learning
them appears to be a promising direction.

We can picture the dependence of the random variable q associated with
the query from the random variables of clause groundings with the body true
as in Figure 11.1. Here the Conditional Probability Table (CPT) of q is that of
an or: P (q) = 1 if at least one of its parents is equal to 1 and 0 otherwise. The
variables from clause groundings are

{X11, . . . , X1m1 , X21, . . . , X2m2 , . . . , Xn1, . . . , Xnmn}.

These are parentless variables, with Xij having the CPT P (Xij = 1) = Πi and
P (Xij = 0) = 1− Πi.

X11
. . . Xnmn

q

Figure 11.1: Bayesian Network representing the dependency between the query
q and the random variables associated with groundings of the clauses with the
body true.

This is an example of a noisy-OR model [38, 93]: an event is associated
to a number of conditions each of which alone can cause the event to happen.

117

The conditions/causes are noisy, i.e., they have a probability of being active
and they are mutually unconditionally independent. A liftable PLP program
encodes a noisy-OR model where the event is the query q being true and causes
are the ground instantiations of the clauses that have the body true: each can
cause the query to be true with the probability given by the clause annotation.

Example 21. Let us consider the UWCSE domain [64] where the objective is
to predict the “advised_by” relation between students and professors. In this
case a program for advised_by/2 may be

advised_by(A,B) : 0.3 :−
student(A), professor(B), project(C,A), project(C,B).

advised_by(A,B) : 0.6 :−
student(A), professor(B), ta(C,A), taught_by(C,B).

student(harry). professor(ben).

project(pr1, harry). project(pr1, ben).

project(pr2, harry). project(pr2, ben).

project(pr3, harry). project(pr3, ben).

project(pr4, harry). project(pr4, ben).

taught_by(c1, ben). ta(c1, harry).

taught_by(c2, ben). ta(c2, harry).

where project(C,A) means that C is a project with participant A, ta(C,A)

means that A is a teaching assistant for course C and taught_by(C,B) means
that course C is taught by B. The probability that a student is advised by a
professor depends on the number of joint projects and the number of courses
the professor teaches where the student is a TA, the higher these numbers the
higher the probability.

Suppose we want to compute the probability of q = advised_by(harry, ben)

where harry is a student, ben is a professor, they have 4 joint projects and ben
teaches 2 courses where harry is a TA as stated by the facts in the program.
Then the first clause has 4 groundings with head q where the body is true, the
second clause has 2 groundings with head q where the body is true and

P (advised_by(harry, ben)) = 1− (1− 0.3)4(1− 0.6)2 = 0.9615.

118

11.4 Parameter Learning

Learning problems can be divided into discriminative and generative [66]. Given
the input data x, while generative learning learns the joint distribution P (x),
discriminative learning instead identifies one of the data variables y which we
want to predict and learns the conditional distribution P (y|x). If y is Boolean,
as in our case, it is natural to identify values y = 1 as positive examples and
values y = 0 as negative examples. In generative learning identifying positive
and negative examples is less obvious. We consider discriminative learning
because we want to predict only atoms for the target predicate, while the atoms
for the input predicates are assumed as given.

The problem of discriminative learning of the parameters of a liftable PLP
T = {C1, . . . , Cn} can be expressed as follows: given a liftable PLP T , a set

E+ = {e1, . . . , eQ}

of positive examples (ground atoms for the target predicate) and a set

E− = {eQ+1, . . . , eR}

of negative examples (ground atoms for the target predicate) and background
knowledge B, find the parameters of T such that the likelihood

L =

Q∏
q=1

P (eq)
R∏

r=Q+1

P (¬er)

is maximized. The likelihood is given by the product of the probability of each
example.

The background knowledge B is a normal logic program defining the input
predicates with certainty. In the simplest case it is a set of ground facts, i.e.
an interpretation I, describing the domain by means of the observed facts
for the input predicates. It is also called a mega-example because we can
consider the case where we have a set of interpretations I = {I1, . . . , IU} each
describing a different sub-domain from the universe considered. In that case,
each mega-example Iu will be associated with its set of positive and negative
examples E+

u and E−u that are to be evaluated against Iu. These examples can

119

be opportunely encoded in Iu so that the training data is represented fully by
I, for example by encoding positive examples as facts for the target predicate
and negative examples as facts of the form neg(er) with er ∈ E−u . This is a
common situation in StarAI. The likelihood can be unfolded to

L =

Q∏
q=1

(
1−

n∏
l=1

(1− Πl)
mlq

)
R∏

r=Q+1

n∏
l=1

(1− Πl)
mlr (11.1)

where mlq (mir) is the number of instantiations of Cl whose head is eq (er) and
whose body is true. We can aggregate the negative examples

L =
n∏
l=1

(1− Πl)
ml−

Q∏
q=1

(
1−

n∏
l=1

(1− Πl)
mlq

)
(11.2)

where ml− =
∑R

r=Q+1mlr.

L can be maximized using an Expectation Maximization (EM) algorithm
[32] since the Xij variables are hidden. To perform EM, we need to compute
the conditional probabilities P (Xij = 1|e) and P (Xij = 1|¬e) where e is an
example (a ground atom) and Xij are its parents.

Alternatively, we can use gradient descent to optimize L. In this case, we
need to compute the gradient of the likelihood with respect to the parameters.
In the following subsections we consider each method in turn.

11.4.1 EM Algorithm

The EM algorithm [32] as described in Section 10.2.1 finds the maximum
likelihood estimates of parameters in models with hidden variables by alternating
between an expectation (E) step and a maximization (M) step. The algorithm
starts with random values for the parameters. Then, in the E step, it computes
the distribution of values of the hidden variables given the observed ones and
the current value of the parameters. In the M step it computes the value of
the parameters that maximize the log-likelihood (LL). Then the parameters
are updated and the algorithm goes back to the E step, stopping when the
log-likelihood does not improve anymore.

To perform EM, we need to compute the distribution of the hidden variables

120

given the observed ones, in our case P (Xij = 1|e) and P (Xij = 1|¬e). e is a
single example that is a ground atom for the target predicate. The Xij variables
are relative to the ground instantiations of the probabilistic clauses whose body
is true when the head is unified with e. Different examples do not share clause
groundings, as the constants in them are different. Therefore the Xij variables
are not shared among examples.

Let us now compute P (Xij = 1, e):

P (Xij = 1, e) = P (e|Xij = 1)P (Xij = 1) = P (Xij = 1) = Πi

since P (e|Xij = 1) = 1, so

P (Xij = 1|e) =
P (Xij = 1, e)

P (e)
=

Πi

1−
∏n

i=1(1− Πi)mi
(11.3)

P (Xij = 0|e) = 1− Πi

1−
∏n

i=1(1− Πi)mi
(11.4)

P (Xij = 1|¬e) is given by

P (Xij = 1,¬e) = P (¬e|Xij = 1)P (Xij = 1) = 0

since P (¬e|Xij = 1) = 0, so

P (Xij = 1|¬e) = 0 (11.5)

P (Xij = 0|¬e) = 1. (11.6)

This leads to the EM algorithm of Algorithm 6, with the Expectation and
Maximization functions shown in Algorithms 7 and 8. Function EM stops
when the difference between the current value of the LL and the previous one
is below a given threshold or when such a difference relative to the absolute
value of the current one is below a given threshold.

Function Expectation updates, for each clause Ci, two counters, ci1 and
ci2, one for each value of the random variables Xij associated with clause Ci.
These counters accumulate the values of the conditional probability of the
values of the hidden variables. The counters are updated taking into account
first the negative examples and then the positive ones. Negative examples can

121

Algorithm 6 Function EM
1: function EM(restarts,max_iter, ε, δ)
2: BestLL← −inf
3: BestPar ← []
4: for j ← 1, restarts do
5: for i← 1, n do . n: number of rules
6: Πi ← random
7: end for
8: LL = −inf
9: iter ← 0
10: repeat
11: iter ← iter + 1
12: LL0 = LL
13: LL = Expectation
14: Maximization
15: until LL− LL0 < ε ∨ LL− LL0 < −LL · δ ∨ iter > max_iter
16: if LL > BestLL then
17: BestLL← LL
18: BestPar ← [Π1, . . . ,Πn]
19: end if
20: end for
21: return BestLL,BestPar
22: end function

be considered in bulk because their contribution is the same for all groundings
of all examples, while positive examples must be considered one by one, for
each one updating the counters of all the clauses.

Algorithm 7 Function Expectation
1: function Expectation
2: LL←

∑
i∈Rulesmi− log(1−Πi)

3: . mi−: total number of groundings of rule i with the body true in a negative example
4: for i← 1, n do
5: ci1 ← 0
6: ci2 ← mi−
7: end for
8: for r ← 1, P do . P : number of positive examples
9: probex← 1−

∏
i∈Rules(1−Πi)

mir

10: . mir: number of groundings of rule i with the body true in example r
11: LL← LL+ log probex
12: for i← 1, n do
13: condp← Πi

probex

14: ci1 ← ci1 +mircondp
15: ci2 ← ci2 +mir(1− condp)
16: end for
17: end for
18: return LL
19: end function

Function Maximization then simply computes the new values of the param-
eters by dividing ci1 by the sum of ci1 and ci2.

122

Algorithm 8 Function Maximization
1: procedure Maximization
2: for i← 1, n do
3: Πi = ci1

ci1+ci2
4: end for
5: end procedure

11.4.2 Gradient-Based Optimization

Gradient-based methods include gradient descent and its derivatives, such as
second-order methods like Limited-memory BFGS (LBFGS) [92], an optimiza-
tion algorithm in the family of quasi-Newton methods that approximates the
Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm using a limited amount
of computer memory, see Section 10.2.3.

To perform gradient-based optimization we need to compute the partial
derivatives of the likelihood with respect to the parameters. Let us recall the
likelihood

L =
n∏
l=1

(1− Πl)
ml−

Q∏
q=1

(
1−

n∏
l=1

(1− Πl)
mlq

)
(11.7)

where ml− =
∑R

r=Q+1mlr. Its partial derivative with respect to Πi is

∂L

∂Πi
=

∂
∏n

l=1(1−Πl)
ml−

∂Πi

Q∏
q=1

(
1−

n∏
l=1

(1−Πl)
mlq

)

+

n∏
l=1

(1−Πl)
ml−

∂
∏Q

q=1 (1−
∏n

l=1(1−Πl)
mlq)

∂Πi

= −mi−(1−Πi)
mi−−1

n∏
l=1,l 6=i

(1−Πl)
ml−

Q∏
q=1

(
1−

n∏
l=1

(1−Πl)
mlq

)

+

n∏
l=1

(1−Πl)
ml−

Q∑
q=1

miq(1−Πi)
miq−1

n∏
l=1,l 6=i

(1−Πl)
mlq

·
Q∏

q′=1,q′ 6=q

(
1−

n∏
l=1

(1−Πl)
mlq′

)
(11.8)

123

for the differentiation product rule, and

∂L

∂Πi
= −mi−(1−Πi)

mi−−1
n∏

l=1,l 6=i

(1−Πl)
ml−

(1−Πi)
mi−

(1−Πi)mi−

Q∏
q=1

(
1−

n∏
l=1

(1−Πl)
mlq

)
+

n∏
l=1

(1−Πl)
ml−

Q∑
q=1

miq

∏n
l=1(1−Πl)

mlq

1−Πi

Q∏
q′=1,q′ 6=q

(
1−

n∏
l=1

(1−Πl)
mlq′

)
·

1−
∏n

l=1(1−Πl)
mlq

1−
∏n

l=1(1−Πl)mlq
(11.9)

by dividing and multiplying for (1−Πi)
mi− , (1−Πi) and 1−

∏n
l=1(1−Πl)

mlq

various factors. Then

∂L

∂Πi
= −mi−(1−Πi)

mi−−1L

(1−Πi)mi−
+

Q∑
q=1

miq

∏n
l=1(1−Πl)

mlqL

(1−Πi)(1−
∏n

l=1(1−Πl)mlq)

= − mi−L

1−Πi
+

Q∑
q=1

miq

∏n
l=1(1−Πl)

mlqL

(1−Πi)(1−
∏n

l=1(1−Πl)mlq)

=
L

1−Πi

(
Q∑

q=1

miq

∏n
l=1(1−Πl)

mlq

1−
∏n

l=1(1−Πl)mlq
−mi−

)

=
L

1−Πi

(
Q∑

q=1

miq
1− P (eq)

P (eq)
−mi−

)

=
L

1−Πi

(
Q∑

q=1

miq

(
1

P (eq)
− 1

)
−mi−

)
(11.10)

by simple algebra.
The equation ∂L

∂Πi
= 0 does not admit a closed form solution, not even when

there is a single clause, so we must use optimization to find the maximum of L.

11.5 Structure Learning

The discriminative structure learning problem can be expressed as follows:
given a set E+ = {e1, . . . , eQ} of positive examples, a set E− = {eQ+1, . . . , eR}
of negative examples and a background knowledge B, find a liftable PLP T

such that the likelihood is maximized. The background knowledge B may be a
normal logic program defining all the predicates (the input predicates) except

124

the target predicate.

We solve this problem by first identifying good clauses guided by the log
likelihood (LL) of the data. Clauses are found by a top-down beam search.
The refinement operator adds a literal to the body of the current clause, the
literal is taken from a bottom clause built as in Progol [79]. The set of clauses
found in this phase is then considered as a single theory and parameter learning
is performed on it. Then the clauses with a parameter below a user define
threshold WMin are discarded and the theory is returned. The resulting
algorithm, LIFTCOVER, is very similar to SLIPCOVER [11]. The difference
between the two is that LIFTCOVER uses lifted parameter learning instead of
the EM algorithm over BDDs of [10]. Moreover they use a different approach
for performing the selection of the rules to be included in the final model: while
SLIPCOVER does a hill-climbing search in which it adds one clause at a time
to the theory, learns the parameters and keeps the clause if the LL is smaller
than before, LIFTCOVER learns the parameters for the whole set of clauses
found during the search in the space of clauses. This is allowed by the fact
that parameter learning in LIFTCOVER is much faster so it can be applied
to large theories. Then rules with a small parameter can be discarded as they
provide small contributions to the predictions. In practice structure search is
thus performed in LIFTCOVER by parameter learning, as is done for example
in [90, 148].

Algorithm 9 Function LIFTCOVER
1: function LIFTCOVER(NB ,NI ,NInt ,NS ,NA,NV)
2: Beam =InitialBeam(NInt ,NS ,NA) . Bottom clauses building
3: CC ← ∅
4: Steps← 1
5: NewBeam← []
6: repeat
7: Remove the first couple ((Cl, Literals), LL) from Beam . Remove the first clause
8: Refs ←ClauseRefinements((Cl, Literals,NV)) . Find all refinements Refs of (Cl, Literals)
9: for all (Cl′, Literals′) ∈ Refs do
10: (LL′′, {Cl′′})←LearnWeights(I, {Cl′})
11: NewBeam←Insert((Cl′′, Literals′), LL′′, NewBeam,NB) . The refinement is inserted in

the beam in order of likelihood, possibly removing the last clause if the size of the beam NB is exceeded
12: CC ← CC ∪ {Cl′}
13: end for
14: Beam← NewBeam
15: Steps← Steps+ 1
16: until Steps > NI or Beam is empty
17: (LL, Th)←LearnWeights(CC)
18: Remove from Th the clauses with a weight smaller than WMin
19: return Th
20: end function

125

Algorithm 9 shows the main LIFTCOVER function. Line 2 calls Initial-

Beam (see Algorithm 10) that builds an initial beam Beam consisting of
bottom clauses.

Algorithm 10 Function InitialBeam
1: function InitialBeam(NInt ,NS ,NA)
2: Beam← []
3: for all modeh declarations modeh(r, s) do
4: for i = 1→ NInt do
5: Select randomly a mega-example I
6: for j = 1→ NA do
7: Select randomly an atom h from I matching schema(s)
8: Bottom clause BC ←Saturation(h, r,NS), let BC be Head :− Body
9: Beam← [((h : 0.5 :− true,Body),−∞)|Beam]
10: end for
11: end for
12: end for
13: return Beam
14: end function

11.5.1 Language bias

The set of literals allowed in the bottom clause is defined by the language bias
that is expressed by means of mode declarations. They are atoms of the form
modeh(r, s) (head declarations) or modeb(r, s) (body declaration), where s, the
schema, is a ground literal and r is an integer called the recall. A schema
is a template for literals in the head or body of a clause and can contain
special placemarker terms of the form #type, +type and -type, which stand,
respectively, for ground terms, input variables and output variables of a type.
An input variable in a body literal of a clause must be either an input variable
in the head or an output variable in a preceding body literal in the clause. If M
is a set of mode declarations, L(M) is the language of M , i.e. the set of clauses
{C = h :− b1, . . . , bm} such that the head atom h (resp. body literals bi) is
obtained from some head (resp. body) declaration in M by replacing all #type
placemarkers with ground terms and all +type (resp. -type) placemarkers with
input (resp. output) variables. We extend this type of mode declarations with
placemarker terms of the form -#type, which are treated as # when defining
L(M) but differ in the creation of the bottom clauses, see below.

126

11.5.2 Bottom Clauses Generation

The bottom clause is the clause with the longest true body in L(M). The
bottom clause is built with a method called saturation: an example e is
randomly selected and the set of atoms Body that are true regarding the
example e is built incrementally. by considering the constants in e and querying
the background for true atoms regarding these constants. A list of constants
is kept and it is enlarged with those in -type placemarkers in the answers to
the queries. The recall indicates how many answers to the queries must be
considered. Besides an integer, it may be the symbol *, indicating all answers.

The procedure is iterated a user-defined number of times. Then a bottom
clause is obtained from the clause e← Body by replacing ground terms with
variables respecting the mode declarations. Placemarkers -#type are treated
as #type when variabilizing because they are not replaced by variables but as
-type place-markers when building the Body because terms in those positions
are added to the current list of constants.

Function Saturation, shown in Algorithm 11, builds a bottom clause for
an example Head, where NS is a user-defined number of saturation steps to
be performed.

11.5.3 Clause refinement

In SLIPCOVER, a beam is a set of tuples ((Cl, Literals), LL) with Cl a
clause, Literals the set of literals admissible in the body of Cl and LL the
log-likelihood of Cl. Function InitialBeam, shown in Algorithm 10, returns
an initial beam containing tuples ((h : 0.5 :− true, Literals),−∞) for each
bottom clause h : 0.5 :− Literals. The likelihood is initialized to −∞.

Then LIFTCOVER runs a beam search in the space of clauses for the
target predicate. In each beam search iteration, the first clause of the beam is
removed and all its refinements are computed. Each refinement Cl′ is scored by
performing parameter learning with T = {Cl′} and using the resulting LL as
the heuristic. The scored refinements are inserted back into the beam in order
of heuristic. If the beam exceeds a maximum user-defined size, the bottom
elements are removed. Moreover, the refinements are added to a set of clauses
CC .

127

Algorithm 11 Function Saturation
1: function Saturation(Head, r,NS)
2: InTerms ← ∅,
3: BC = ∅ . BC: bottom clause
4: for all arguments t of Head do
5: if t corresponds to a +type then
6: add t to InTerms
7: end if
8: end for
9: Let BC’s head be Head
10: repeat
11: Steps← 1
12: for all modeb declarations modeb(r, s) do
13: for all possible subs. σ of variables corresponding to +type in schema(s) by terms from

InTerms do
14: for j = 1→ r do
15: if goal b = schema(s) succeeds with answer substitution σ′ then
16: for all v/t ∈ σ and σ′ do
17: if v corresponds to a −type or −#type then
18: add t to the set InTerms if not already present
19: end if
20: end for
21: Add b to BC’s body
22: end if
23: end for
24: end for
25: end for
26: Steps← Steps+ 1
27: until Steps > NS
28: Replace constants with variables in BC, using the same variable for equal terms
29: return BC
30: end function

For each clause Cl with Literals admissible in the body, Function ClauseRe-

finements, shown in Algorithm 12, computes refinements by adding a literal
from Literals to the body. Furthermore, the refinements must respect the
input-output modes of the bias declarations, must be connected (i.e., each body
literal must share a variable with the head or a previous body literal) and their
number of variables must not exceed a user-defined number NV . Refinements
are of the form (Cl′, L′) where Cl′ is the refined clause Cl′ and L′ is the new
set of literals allowed in the body of Cl′.

Beam search is iterated a user-defined number of times or until the beam
becomes empty. The output of this search phase is represented by the set
CC of clauses. Then parameter learning is applied to the whole set CC , i.e.,
T = CC . Finally clauses with a weight smaller than WMin are removed.

The separate search for clauses has similarity with the covering loop of
ILP systems such as Aleph [129] and Progol [79]. Differently from the ILP
case, however, the positive examples covered are not removed from the training
set because coverage is probabilistic, so an example that is assigned nonzero

128

probability by a clause may have its probability increased by further clauses.
The selection of clauses is performed by parameter learning: clauses with very
small weights are removed.

Algorithm 12 Function ClauseRefinements
1: function ClauseRefinements((Cl, Literals),NV)
2: Refs = ∅, Nvar = 0; . Nvar:number of different variables in a clause
3: for all b ∈ Literals do
4: Literals′ ← Literals \ {b}
5: Add b to Cl body obtaining Cl′
6: Nvar ← number of Cl′ variables
7: if Cl′ is connected ∧ Nvar < NV then
8: Refs ← Refs ∪ {(Cl′, Literals′)}
9: end if
10: end for
11: return Refs
12: end function

11.6 Related Work

We first consider the work related to liftable PLP from the field of lifted
inference and then that from the field of probabilistic rule learning.

Lifted inference for PLP under the distribution semantics is surveyed by
[113] that discuss three approaches.

LP2 [7] uses an algorithm that extends Generalized Counting First Order
Variable Elimination (GC-FOVE) [135] for taking into account clauses that
have variables in bodies not appearing in the head (existentially quantified
variables). Weighted First Order Model Counting (WFOMC) [139] uses a
Skolemization algorithm that eliminates existential quantifiers from a theory
without changing its weighted model count. Kisynski and Poole [63] proposed
an approach based on Aggregation Par-factors that can represent noisy-OR
models. The three approaches have been compared experimentally in [113] for
general PLP and WFOMC was found the fastest.

Relational Logistic Regression [52] is a generalization of logistic regression
that can also be applied to PLP.

LP2, Aggregation Parfactors and Relational Logistic Regression reduce to
the same algorithm for performing inference when the language is restricted to
liftable PLP. LP2 is based on GC-FOVE that in turn is an extension of Variable
Elimination (VE) [154, 155]. VE was designed from the start to be able to

129

exploit causal independence, the situation where multiple causes contribute
independently to a common effect. Noisy-OR is a prominent example of causal
independence. The capacity of VE to deal with noisy-OR is exploited in LP2

to aggregate the contributions of multiple ground clause to the probability of
the same atom in a lifted way., i.e., without generating the groundings.

We now discuss Aggregation Par-factors and Relational Logistic Regression.
We first introduce parametrized random variables (PRV) that are represented
by logical atoms. Each logical variable in a PRV is typed with a population.
A parfactor is a triple 〈C,V , F 〉 where C is a set of inequality constraints on
parameters (logical variables), V is a set of PRV and F is a factor that is a
function from the Cartesian product of ranges of PRVs in V to real values.

Aggregation parfactors [63] can represent different kind of causal indepen-
dence models, of which noisy-OR and noisy-MAX are special cases. Aggregation
par-factors are a generalization of parfactors that are defined over two of PRVs
one of which contains one more logical variable that the other. Therefore, the
contributions of the PRV with the extra logical variable have to be aggregated
and this is done by converting the aggregation par-factor into two regular
par-factors. We can correctly encode liftable PLP with aggregation parfactors
obtaining the same formula for calculating the probability of queries. Relational
Logistic Regression [52] generalizes logistic regression, where the probability
of a child Boolean random variable Q is modeled on the basis of the values of
parent random variables {X1, . . . , Xn} as

P (q|X1, . . . , Xn) = sigmoid(w0 +
∑
i

wiXi)

where q ≡ (Q = true) and sigmoid(x) = 1/(1 + e−x). For the case of Boolean
variables, we can assume that the values are encoded with 0 for false and 1 for
true.

To apply logistic regression to the relational case, the authors introduce
the notion of weighted parent formula (WPF) for a PRV Q(X), where X is a
set of logical variables: a WPF is a triple 〈L, F, wi〉 where L is a set of logical
variables for which L∩X = ∅, F is a Boolean formula of parent PRVs of Q(X)

such that each logical variable in F is either X or in L, and wi is a weight.

Suppose Ri(Xi) are the parents of PRV Q(X), where Xi is the set of logical

130

variables in Ri. A relational logistic regression (RLR) for Q with parents Ri(Xi)

is defined using a set of WPFs as:

P (Q(X)|Π) = sigmoid

 ∑
〈L,F,wi〉

wi
∑
L

FΠ,X→x

where Π represents the assigned values to parents of Q, x represents an assign-
ment of an individual to each logical variable in X, and FΠ,X→x is formula F
with each logical variable X in it being replaced according to x, and evaluated
in Π. So RLR performs an aggregation of the parents of a PRV. The authors
show that RLR can model noisy-OR therefore they can encode liftable PLP.

Lifted learning is still an open problem. An approach for performing lifted
generative learning was proposed in [141]: while the paper discusses both weight
and structure learning, it focuses on Markov Logic Networks and generative
learning, so it is not directly applicable to the setting considered in this chapter.

Liftable PLP is very much related to [67, 56, 84] where the contributions
of different rules and different rule groundings are combined with noisy-OR
combining rules. First-Order Probabilistic Logic (FOPL) [67] and Bayesian
Logic Programs (BLP) [56] consider ground atoms as random variables and
admit rules with a single atom in the head and only positive literals in the
body. The meaning of such rules is that, for each grounding, the head atom
random variable directly depends from the body atoms random variables. Thus
rules are simply templates that can be used to generate a Bayesian network
by a Knowledge-Based Model Construction (KBMC) approach [149]. Ground
rules determine the families of the network and the random variables may
have non-Boolean domains. The rules are also associated with parameters that
define the CPT of the head variable given the body variables. In the case where
an atom h appears in the head of more than one ground rule, the Bayesian
network contains an extra family where the child is the variable for atom h

and there is a parent h′ for each rule whose family and CPT is defined by the
rule. The extra family containing h and h′ encodes a combining rule, i.e., a
way of combining the contributions of the different rules for the same atom.
Both FOPL and BLP allow different combining rules, including a noisy-OR
combining rule where the CPT of the extra family encodes a disjunction, so

131

liftable PLP models can be encoded directly in both FOPL and BLP. Differently
from Liftable PLP, FOPL and BLP allow multiple layers of rules. Works [67]
and [56] also present learning algorithms: the first discusses an EM algorithm
for parameter learning and the latter EM and gradient descent parameter
learning algorithms together with a structure learning algorithm. The learning
problems are similar to the ones considered in this chapter. Additionally, [56]
consider the case where non-target atoms may be unobserved in the data. Both
articles derive formulas for updating the parameters but, given the generality of
the settings considered (non-Boolean domains, multiple layers of rules, different
combining rules, incompleteness of the data), the formulas involve quantities to
be computed by inference in the Bayesian network, while our formulas depend
on the parameters only.

Scooby, the structure learning algorithm of [56], is similar to LIFTCOVER
in the sense that it performs a greedy search in the space of programs evaluating
each hypothesis by performing parameter learning. Scooby performs a local
search by applying theory revisions to an initial hypothesis, while LIFTCOVER
performs a beam search in the space of clauses followed by search in the space
of theories by parameter learning.

The First-Order Conditional Influence Language (FOCIL) [84], like FOPL
and BLP, considers probabilistic rules compactly encoding probabilistic depen-
dencies. FOCIL is more similar to liftable PLP because it allows only one layer
of rules. FOCIL uses different combining rules with respect to liftable PLP: the
contributions of different groundings of the same rule with the same random
variable in the head are combined by taking the mean and the contributions of
different rules are combined either with a weighted mean or with a noisy-OR
combining rule. Liftable PLP instead uses noisy-OR for both types of contri-
butions. The authors in [84] also present parameter learning algorithms for
optimizing the mean squared errors or the log likelihood using gradient descent
or EM both for weighted mean and with noisy-OR. While the derivation of the
update formulas for the weights are similar, they differ because we don’t use
the mean combining function.

132

11.7 Experiments

LIFTCOVER1 has been implemented in SWI-Prolog [151] using a porting2 of
YAP-LBFGS3, a foreign language interface to libLBFGS4.

LIFTCOVER has been tested on the following 12 real world datasets: the
4 classic benchmarks UW-CSE [64], Mutagenesis [131], Carcinogenesis [130],
Mondial [127]; the 4 datasets Bupa, Nba, Pyrimidine, Triazine from https:

//relational.fit.cvut.cz/, and the 4 datasets Financial, Sisya, Sisyb and
Yeast from [133]5.

Statistics on all the domains are reported in Table 11.1. In all datasets
the mega-examples are defined only by facts, there are no background non-
probabilistic rules.

Dataset P T PEx NEx F
Financial 9 92658 34 223 10
Bupa 12 2781 145 200 5
Mondial 11 10985 572 616 5
Mutagen. 20 15249 125 126 10
Sisyb 9 354507 3705 9229 10
Sisya 9 358839 10723 6544 10
Pyrimidine 29 2037 20 20 4
Yeast 12 53988 1299 5456 10
Nba 4 1218 15 15 5
Triazine 62 10079 20 20 4
UW-CSE 15 2673 113 20680 5
Carcinogen. 36 24533 182 155 1

Table 11.1: Characteristics of the datasets for the experiments: number of
predicates (P), of tuples (T) (i.e., ground atoms), of positive (PEx) and negative
(NEx) examples for target predicate(s), of folds (F). The number of tuples
includes the target positive examples.

We would like to test the hypothesis that LIFTCOVER allows fast learning

1The code of the systems and the datasets are available at https://bitbucket.org/
machinelearningunife/liftcover.

2https://github.com/friguzzi/lbfgs
3Developed by Bernd Gutmann.
4http://www.chokkan.org/software/liblbfgs/
5https://dtai.cs.kuleuven.be/ACE/doc/

133

https://relational.fit.cvut.cz/
https://relational.fit.cvut.cz/
https://bitbucket.org/machinelearningunife/liftcover
https://bitbucket.org/machinelearningunife/liftcover
https://github.com/friguzzi/lbfgs
http://www.chokkan.org/software/liblbfgs/
https://dtai.cs.kuleuven.be/ACE/doc/

without a significant degradation of the quality of the solution with respect
to SLIPCOVER: In order to compare the two systems fairly, in all datasets
the language bias for SLIPCOVER allows only one atom in the head and only
input predicates in the body, so the space of allowed clauses is the same for
the two algorithms.

To evaluate the performance, we drew Precision-Recall curves and Receiver
Operating Characteristics curves, computing the Area Under the Curve (AUC-
PR and AUC-ROC respectively) with the methods reported in [24, 35]. AUC is
used to measure the quality of the learned models as classifiers for predicting the
truth values of atoms for target predicates, larger areas means better classifiers.

SLIPCOVER was compared with Aleph [129], SLIPCASE [9], SEM-CP-logic
[74] LSM [65], ALEPH++ExactL1 [48], LEMUR [33], BUSL [76], MLN-BC,
MLN-BT [57] RDN-B [83], SLS [46] and RRR [152, 153] in [11] and [33] on 8
datasets. In almost all datasets SLIPCOVER was among the top 4 systems
in terms of AUC-PR, thus showing that it belongs to the state of the art of
StarAI. Thus comparing LIFTCOVER with SLIPCOVER will also provide an
evaluation of its performance in the general context of StarAI.

LIFTCOVER-EM was run with the following parameters for EM: restarts =

1, max_iter = 10, ε = 10−4 and δ = 10−5. The default parameters have been
used for libLBFGS. The parameters controlling structure learning are: the
number NInt of mega-examples on which to build the bottom clauses, the
number NA of bottom clauses to be built for each mega-example, the number
NS of saturation steps (for building the bottom clauses), the maximum number
NI of clause search iterations, the size NB of the beam, the maximum number
NV of variables in a rule, the threshold for the rule parameter WMin under
which the rule is removed and the maximum numbers NIS of iterations of
structure search of SLIPCOVER. Table 11.2 shows the values we have used.
WMin was set to 0 in all dataset in order to perform the simplest pruning type,
that of rules that don’t influence at all the prediction. The other parameters for
UW-CSE, Mutagenesis, Carcinogenesis, Mondial have been set as in [33]. For
the other datasets they have been set by a random search with the objective of
keeping the computation time of both algorithms within a few hundred seconds

All experiments were performed on GNU/Linux machines with an Intel

134

Dataset NB NI NInt NS NA NV WMin NIS
Financial 100 20 1 1 1 4 0 50
Bupa 100 20 1 1 1 4 0 50
Mondial 1000 10 1 2 6 5 0 10000
Mutagen. 100 10 1 1 1 4 0 500
Sisb 100 20 1 1 1 50 0 40
Sisya 100 20 1 1 1 4 0 40
Pyrimidine 100 20 1 1 1 100 0 50
Yeast 100 20 1 1 1 4 0 50
Nba 100 20 1 1 1 100 0 50
Triazine 100 20 1 1 1 4 0 50
UW-CSE 20 60 1 1 1 4 0 500
Carcinogen. 100 60 1 2 1 3 0 50

Table 11.2: Parameters controlling structure search for LIFTCOVER and
SLIPCOVER.

Xeon Haswell E5-2630 v3 (2.40GHz) CPU with 8GB of memory allocated to
the job.

Figures 11.2, 11.3 and 11.4 show histograms of the average over the folds of
AUC-ROC, AUC-PR and the execution time respectively of LIFTCOVER-EM,
LIFTCOVER-LBFGS and SLIPCOVER. Tables 11.3, 11.4 and 11.5 show the
same data in a tabular way.

LIFTCOVER-EM beats SLIPCOVER 8 times and ties twice in terms of
AUC-ROC and beats SLIPCOVER 5 times and ties twice in terms of AUC-
PR, with two cases (Sisya and Sisyb) where it is nearly as good. In terms of
execution time, LIFTCOVER-EM is faster than SLIPCOVER in 9 cases and
in the other three cases is nearly as fast. In 7 cases the gap is of one or more
orders of magnitude (UW-CSE, Carcinognesis, Nba, Triazine, Sisya, Sisyb,
Yeast).

LIFTCOVER-LBFGS beats SLIPCOVER 4 times (in Sisya they are very
close) and ties twice in terms of AUC-ROC and beats SLIPCOVER 5 times
and ties once in terms of AUC-PR, with two cases where it is nearly as good.
In terms of execution time, LIFTCOVER-LBFGS beats SLIPCOVER 9 times,
with one case where SLIPCOVER is nearly as fast. In 5 cases the gap is
of one or more orders of magnitude (UW- CSE, Carcinogenesis, Nba, Sisya,

135

Figure 11.2: Histograms of average AUC-ROC.

136

AUC-ROC LIFTCOVER-EM LIFTCOVER-LBFGS SLIPCOVER
Financial 0.432 0.535 0.568
Bupa 1.000 1.000 1.000

Mondial 0.663 0.643 0.630
Mutagen. 0.931 0.649 0.826
Sisyb 0.500 0.500 0.500
Sisya 0.372 0.721 0.719

Pyrimidine 1.000 0.850 0.925
Yeast 0.786 0.721 0.733
Nba 0.531 0.650 0.575

Triazine 0.713 0.760 0.544
UW-CSE 0.977 0.762 0.935

Carcinogen. 0.766 0.472 0.695

Table 11.3: Average AUC-ROC.

AUC-PR LIFTCOVER-EM LIFTCOVER-LBFGS SLIPCOVER
Financial 0.126 0.187 0.173
Bupa 1.000 1.000 1.000

Mondial 0.763 0.723 0.776
Mutagen. 0.971 0.725 0.920
Sisyb 0.286 0.286 0.287
Sisya 0.706 0.706 0.708

Pyrimidine 1.000 0.819 0.956
Yeast 0.502 0.448 0.428
Nba 0.550 0.705 0.550

Triazine 0.734 0.760 0.560
UW-CSE 0.220 0.263 0.163

Carcinogen. 0.672 0.561 0.745

Table 11.4: Average AUC-PR.

137

Figure 11.3: Histograms of average AUC-PR.

138

Figure 11.4: Histograms of average time in seconds. The scale of the Y axis is
logarithmic.

139

Time LIFTCOVER-EM LIFTCOVER-LBFGS SLIPCOVER
Financial 0.235 0.246 0.178
Bupa 0.243 1.239 1.349

Mondial 5.911 3.984 6.490
Mutagen. 12.77 122.8 12.11
Sisyb 0.226 0.412 37.00
Sisya 0.932 2.252 45.75

Pyrimidine 54.99 126.1 54.62
Yeast 0.502 69.30 202.4
Nba 0.599 1.036 386.0

Triazine 56.69 109.1 728.2
UW-CSE 8.054 178.6 1069

Carcinogen. 7.850 76.49 25568

Table 11.5: Average time in seconds.

Sisyb). In Mutagenesis and Pyrimidine LIFTCOVER-LBFGS takes about ten
times and twice as much as SLIPCOVER respectively. The reason for these
differences may be due to the fact that these are small-medium datasets which
are relatively easy for the systems (and also for ILP systems in general [106]),
so SLIPCOVER is able to achieve good performance even with the allowed
small search space.

Overall we see that both lifted algorithms are usually faster, sometimes
by a large margin, with respect to SLIPCOVER, especially LIFTCOVER-
EM. Moreover, this system often finds better quality solutions, showing that
structure search by parameter learning is effective.

Between the two lifted algorithms, the EM version wins 6 times and ties
twice with respect to AUC-ROC and wins 5 times and ties 3 times with respect
to AUC-PR. In terms of execution times, the EM version wins on all dataset
except Mondial, with differences below one order of magnitude except UW-CSE
and Yeast. So LIFTCOVER-EM appears to be superior both in terms of
solution quality and of computation time. EM seems to be better at escaping
local maxima and cheaper than LBFGS, possibly also due to the fact that
LBFGS may require a careful tuning of parameters and that it is implemented
as a foreign language library.

Therefore, LIFTCOVER represents a valid alternative to SLIPCOVER

140

when learning the definition of a single predicate by using a single layer of rules
with a single head.

While the problem of inducing general probabilistic logic program will
come to fore soon, learning a restricted language may be a valid alternative
in many cases. For example, in [11] and [33] SLIPCOVER was applied to the
UW-CSE dataset with a language bias that allowed multiple heads and clauses
for non-target predicates. The values of AUCPR obtained there are 0.13 and
0.11 respectively, that are lower than the values obtained by LIFTCOVER
and SLIPCOVER shown in Table 11.4. Therefore restricting the language
bias in this case actually improved the performance, probably because it has a
regularizing effect.

Moreover, by looking at the characteristics of the datasets, there does not
seem to exist a clear relationship between the number of predicates/number
of tuples and the performance: complex datasets (large number of predicates)
may be hard for LIFTCOVER (Carcinogenesis) or easy (Triazine) and large
datasets (large number of tuples) may be hard for LIFTCOVER (Financial) or
easy (Yeast).

In the next part of the thesis, we are going to present a more expressive
language called hierarchical PLP, an extension of liftable PLP, that allows
structuring clauses and predicates into layer and in which inference and learning
still remaining cheaper than for general PLPs.

141

142

Part VI

Hierarchical Probabilistic Logic
Programming

143

Chapter 12

Hierarchical Probabilistic Logic
Programming

In this chapter we propose another restriction of the language of Logic Programs
with Annotated Disjunctions [144], called hierarchical PLP , in which clauses and
predicates are hierarchically organized. A hierarchical PLP can be converted
into deep neural networks or arithmetic circuits in which inference is cheaper
than for general PLP and therefore learning both the parameters and the
structure should also be cheaper. The chapter is organized as follows: after
a brief introduction in Section 12.1 and the description of hierarchical PLP
in Section 12.2, we discuss how to perform inference and how to build the
arithmetic circuit in Sections 12.3 and 12.4 respectively. Connections with
related works are drawn in 12.5.

12.1 Motivation

In chapter 11 we have presented a restriction of LPADs called liftable PLP
in which predicates in the head of clauses share the same atom. Inference in
such language can be performed at the lifted level ensuring fast parameter and
structure learning. In order to increase the expressiveness of liftable PLP, we
present in this chapter an extension of liftable PLP, called hierarchical PLP
in which clauses and predicates are hierarchically organized. The language
in this case is truth-functional and is equivalent to the product fuzzy logic.
Inference in hierarchical PLP is also cheaper as a simple dynamic programming

145

algorithm similar to PRISM [121] is sufficient and knowledge compilation as
performed for example by LFI-ProbLog [36] and cplint [108, 116, 117] is not
necessary.

Programs in this language can be translated into arithmetic circuits or deep
neural networks. From a network we can quickly recompute the probability
of the root node if the clause parameters change, as the structure remains the
same. Learning hierarchical PLP parameters can then be performed by applying
techniques of deep learning such as gradient descent and back-propagation, see
Section 13.2. An Expectation Maximization algorithm can also be applied, see
Section 13.3.

12.2 Hierarchical PLP

Hierarchical PLPs (HPLPs) are extensions of liftable PLPs, see Section 11, in
which clauses are organized in many layers rather than 1 as in liftable PLP.
Moreover, beside input and output predicates used in liftable PLP, HPLPs
introduce the notion of hidden predicates allowing an hierarchy among clauses
and predicates. Now let us describe in details an HPLP.

Suppose we want to compute the probability of atoms for a predicate r
using a probabilistic logic program under the distribution semantics [121]. In
particular, we want to compute the probability of a ground atom r(t), where t

is a vector of term. r(t) can be an example in a learning problem and r a target
predicate (also called output predicate). We want to compute the probability
of r(t), starting from a set of ground atoms (an interpretation) that represent
what is true about the example encoded by r(t). These ground atoms are built
over a set of predicates that we call input predicates, in the sense that their
definition is given as input and is certain.

We consider a specific form of LPADs defining r in terms of the input
predicates. The program contains a set of rules that define r using a number
of input and hidden predicates. Hidden predicates are disjoint from input and
target predicates. Each rule in the program has a single head atom annotated
with a probability. Moreover, the program is hierarchically defined so that it
can be divided into layers. Each layer contains a set of hidden predicates that
are defined in terms of predicates of the layer immediately below or in terms of

146

input predicates. The partition of predicates into layers induces a partition of
clauses into layers, with the clauses of layer i defining the predicates of layer i.
The clauses in layer 1 define r.

This is an extreme form of program stratification: it is stronger than
acyclicity [4] because it is not imposed on the atom dependency graph but on
the predicate dependency graph, and is also stronger than stratification [14]
that, while applied to the predicate dependency graph, allows clauses with
positive literals in the body built on predicates in the same layer. As such, it
also prevents inductive definitions and recursion in general, thus making the
language not Turing-complete.

A generic clauses C is of the form

C = p(X) : π :− φ(X,Y), b1(X,Y), . . . , bm(X,Y)

where φ(X,Y) is a conjunction of literals for the input predicates using variables
X,Y . bi(X,Y) for i = 1, . . . ,m is a literal built on a hidden predicate. Y is
a possibly empty vector of variables. They are existentially quantified with
scope the body. Only literals for input predicates can introduce new variables
into the clause and all literals for hidden predicates must use the whole set of
variables X,Y . Moreover, we require that the predicate of each bi(X,Y) does
not appear elsewhere in the body of C or in the body of any other clause. We
call hierarchical PLP the language that admits only programs of this form.

147

A generic program defining r is thus:

C1 = r(X) : π1 :− φ1, b11, . . . , b1m1

. . .

Cn = r(X) : πn :− φn, bn1, . . . , bnmn

C111 = r11(X) : π111 :− φ111, b1111, . . . , b111m111

. . .

C11n11 = r11(X) : π11n11 :− φ11n11 , b11n111, . . . , b11n11m11n11

. . .

Cn11 = rn1(X) : πn11 :− φn11, bn111, . . . , bn11mn11

. . .

Cn1nn1 = rn1(X) : πn1nn1 :− φn1nn1 , bn1nn11, . . . , bn1nn1mn1nn1

. . .

where we omitted the variables except for rule heads. Such a program can be
represented with the tree of Figure 12.1 that contains a node for each literal of
hidden predicates and each clause. The tree is divided into levels with levels
containing literal nodes alternating with levels with clause nodes.

Each clause node is indicated with Cp where p is a sequence of integers
encoding the path from the root to the node. For example C124 indicates the
clause obtained by going to the first child from the left of the root (C1), then
to the second child of C1 (b12) then to the fourth child of b12. Each literal node
is indicated similarly with bp where p is a sequence of integers encoding the
path from the root. Therefore, nodes have a subscript that is formed by as
many integers as the number of levels from the root. The predicate of literal
bp is rp which is different for every value of p.

The clauses in lower layers of the tree include a larger number of variables
with respect to upper layers: the head rpij(X,Y) of clause Cpijk contains more
variables than the head rp(X) of clause Cpi that calls it.

The constraints imposed on the program require different body literals to
have different predicate.

148

r

C1

b11

C111 . . . C11n11

. . . b1m1

C1m11 . . . C1m1n1m1

. . . Cn

bn1

Cn11 . . . Cn1nn1

. . . bnmn

Cnmn1 . . . Cnmnnnmn

. . .

Figure 12.1: Probabilistic program tree.

Example 22. Let us consider a modified version of the program of Example
21:

C1 = advised_by(A,B) : 0.3 :−
student(A), professor(B), project(C,A), project(C,B),

r11(A,B,C).

C2 = advised_by(A,B) : 0.6 :−
student(A), professor(B), ta(C,A), taught_by(C,B).

C111 = r11(A,B,C) : 0.2 :−
publication(D,A,C), publication(D,B,C).

where publication(A,B,C) means that A is a publication with author B pro-
duced in project C. advised_by/2 is the target predicate, student/1, professor/1,
project/2, ta/2, taught_by/2 and publication/3 are input predicates and r11/3

is a hidden predicate.
In this case, the probability of r = advised_by(harry, ben) depends not only

on the number of joint courses and projects but also on the number of joint
publications from projects. The clause for r11(A,B,C) computes an aggregation
over publications of a project and the clause level above aggregates over projects.
Such a program can be represented with the tree of Figure 12.2.

Writing programs in hierarchical PLP may be unintuitive for humans because
of the need of satisfying the constraints and because the hidden predicates
may not have a clear meaning. However, the idea is that the structure of the
program is learned by means of a specialized algorithm, with hidden predicates
generated by a form of predicate invention. The learning algorithm should
search only the space of programs satisfying the constraints, to ensure that the

149

advised_by(A,B)

C1

r11(A,B,C)

C111

C2

Figure 12.2: Probabilistic program tree for Example 22.

final program is a hierarchical PLP. In Chapter 14, we propose an algorithm
for learning the structure.

12.3 Inference

In order to perform inference with such a program, we can generate its grounding.
Each ground probabilistic clause is associated with a random variable whose
probability of being true is given by the parameter of the clause and that is
independent of all the other clause random variables.

Ground atoms are Boolean random variables as well whose probability of
being true can be computed by performing inference on the program. Given
a ground clause Cpi = ap : πpi :− bpi1, . . . , bpimp . where p is a path, we can
compute the probability that the body is true by multiplying the probability
of being true of each individual atom in positive literals and one minus the
probability of being true of each individual atom in negative literals. In fact,
different literals in the body depend on disjoint sets of clause random variables
because of the structure of the program, so the random variables of different
literals are independent as well. Therefore the probability of the body of Cpi

is P (bpi1, . . . , bpimp) =
∏mp

i=k P (bpik) and P (bpik) = 1− P (apik) if bpik = ¬apik.
Note that if a is a literal for an input predicate, then P (a) = 1 if a belongs to
the example interpretation and P (a) = 0 otherwise.

Now let us determine how to compute the probability of atoms for hidden
predicates. Given an atom ap of a literal bp, to compute P (ap) we need to
take into account the contribution of every ground clause for the predicate
of ap. Suppose these clauses are {Cp1, . . . , Cpop}. If we have a single clause

150

Cp1 = ap : πp1 :− bp11, . . . , bp1mp1 ., then P (ap) = πp1 · P (body(Cp1)). If we
have two clauses, then we can compute the contribution of each clause as above
and then combine them with the formula

P (api) = 1− (1− πp1 · P (body(Cp1)) · (1− πp2 · P (body(Cp2)))

because the contributions of the two clauses depend on a disjoint set of variables
and so they are independent. In fact, the probability of a disjunction of two
independent random variables is P (a ∨ b) = 1 − (1 − P (a)) · (1 − P (b)) =

P (a) + P (b)− P (a) · P (b). We can define the operator ⊕ that combines two
probabilities as follows p⊕q = 1−(1−p) ·(1−q). This operator is commutative
and associative and we can compute sequences of applications as⊕

i

pi = 1−
∏
i

(1− pi)

The operators × and ⊕ so defined are respectively the t-norm and t-conorm of
the product fuzzy logic [43]. They are called product t-norm and probabilistic
sum respectively. For programs of the type above, their interpretation according
to the distribution semantics is thus equivalent to that of a fuzzy logic. Therefore
the probability of a query can be computed in a truth-functional way, by
combining probability/fuzzy values in conjunctions and disjunctions using the
t-norm and t-conorm respectively, without considering how the values have
been generated: the probability of a conjunction or disjunction of literals
depends only on the probability of the two literals. This is in marked contrast
with general probabilistic logic programming where knowing the probability of
two literals is not enough to compute the probability of their conjunction or
disjunction, as they may depend on common random variables.

Therefore, if the probabilistic program of Figure 12.1 is ground, the proba-
bility of the example atom can be computed with the arithmetic circuit [22]
of Figure 12.3, where nodes are labeled with the operation they perform and
edges from ⊕ nodes are labeled with a probabilistic parameter that must be
multiplied by the child output before combining it with ⊕.

The arithmetic circuit can also be interpreted as a deep neural network
where nodes can have different activation functions: nodes labeled with ×

151

⊕

×

⊕

×

π111

. . . ×

π11n11

p11
. . . ⊕

×

π1m11

. . . ×

π1m1n1m1

p1m1

π1

q1
. . . ×

⊕

×

πn11

. . . ×

πn1nn1

pn1
. . . ⊕

×

πnmn1

. . . ×

πnmnnnmn

pnmn

πn

qn

p

. . .

Figure 12.3: Arithmetic circuit/neural net.

compute the product of their inputs, nodes labeled with ⊕ compute a weighted
probabilistic sum of this form:

π1 · q1 ⊕ . . .⊕ πn · qn

where qi is the output of the ith child and πi is the weight of the edge to the
ith child.

The output of nodes is also indicated in Figure 12.3, using letter p for ⊕
nodes and letter q for × nodes, subscripted with the path from the root to the
node. The network built in this way provides the value p of the probability
of the example. Moreover, if we update the parameters π of clauses, we can
quickly recompute p in time linear in the number of ground clauses.

When the program is not ground, we can build its grounding obtaining a
circuit/neural network of the type of Figure 12.3, where however some of the
parameters can be the same for different edges. So in this case the circuit will
exhibit parameter sharing.

152

Example 23. Consider the completed version of Example 22:

C1 = advised_by(A,B) : 0.3 :−
student(A), professor(B), project(C,A), project(C,B),

r11(A,B,C).

C2 = advised_by(A,B) : 0.6 :−
student(A), professor(B), ta(C,A), taughtby(C,B).

C111 = r11(A,B,C) : 0.2 :−
publication(P,A,C), publication(P,B,C).

student(harry). professor(ben).

project(pr1, harry). project(pr2, harry).

project(pr1, ben). project(pr2, ben).

taught_by(c1, ben). taught_by(c2, ben).

ta(c1, harry). ta(c2, harry).

publication(p1, harry, pr1). publication(p2, harry, pr1).

publication(p3, harry, pr2). publication(p4, harry, pr2).

publication(p1, ben, pr1). publication(p2, ben, pr1).

publication(p3, ben, pr2). publication(p4, ben, pr2).

where we suppose that harry and ben have two joint courses c1 and c2, two
joint projects pr1 and pr2, two joint publications p1 and p2 from project pr1 and
two joint publications p3 and p4 from project pr2. The resulting ground program
is

153

G1 = advisedby(harry, ben) : 0.3 :−
student(harry), professor(ben), project(pr1, harry),

project(pr1, ben), r11(harry, ben, pr1).

G2 = advisedby(harry, ben) : 0.3 :−
student(harry), professor(ben), project(pr2, harry),

project(pr2, ben), r11(harry, ben, pr2).

G3 = advisedby(harry, ben) : 0.6 :−
student(harry), professor(ben), ta(c1, harry), taughtby(c1, ben).

G4 = advisedby(harry, ben) : 0.6 :−
student(harry), professor(ben), ta(c2, harry), taughtby(c2, ben).

G111 = r11(harry, ben, pr1) : 0.2 :−
publication(p1, harry, pr1), publication(p1, ben, pr1).

G112 = r11(harry, ben, pr1) : 0.2 :−
publication(p2, harry, pr1), publication(p2, ben, pr1).

G211 = r11(harry, ben, pr2) : 0.2 :−
publication(p3, harry, pr2), publication(p3, ben, pr2).

G212 = r11(harry, ben, pr2) : 0.2 :−
publication(p4, harry, pr2), publication(p4, ben, pr2).

The program tree is shown in Figure 12.4. The corresponding arithmetic
circuit is shown in Figure 12.5 together with the values computed by the nodes.

adivsed_by(harry, ben)

G1

r11(harry, ben, pr1)

G111 G112

G2

r11(harry, ben, pr2)

G211 G212

G2 G3

Figure 12.4: Ground probabilistic program tree for Example 23.

154

⊕

×

⊕

1

0.2

1

0.2

0.36

0.3

0.36 ×

⊕

1

0.2

1

0.2

0.36

0.3

0.36
×

1

0.6

1
×

1

0.6

1

0.873

Figure 12.5: Arithmetic circuit/neural net for Example 23.

12.4 Building the Arithmetic Circuit

The network can be built by performing inference using tabling and answer
subsumption using PITA(IND,IND) [110]: a program transformation is applied
that adds an extra argument to each subgoal of the program and of the
query. The extra argument is used to store the probability of answers to the
subgoal: when a subgoal returns, the extra argument will be instantiated to
the probability of the ground atom that corresponds to the subgoal without
the extra argument. In programs of hierarchical PLP, when a subgoal returns
the original arguments are guaranteed to be instantiated.

The program transformation also adds suitable literals to the body of clauses
that combine the extra arguments of the subgoals: the probabilities of the
answers for the subgoals in the body should be multiplied together to give the
probability to be assigned to the extra argument of the head atom.

Since a subgoal may unify with the head of multiple groundings of multiple
clauses, we need to combine the contributions of these groundings. This is
achieved by means of tabling with answer subsumption. Tabling is a Logic
Programming technique that reduces computation time and ensures termination
for a large class of programs [134]. The idea of tabling is simple: keep a store
of the subgoals encountered in a derivation together with answers to these
subgoals. If one of the subgoals is encountered again, its answers are retrieved
from the store rather than recomputed. Besides saving time, tabling ensures
termination for programs without function symbols under the Well-Founded
Semantics [140].

Answer subsumption [134] is a tabling feature that, when a new answer

155

for a tabled subgoal is found, combines old answers with the new one. In
PITA(IND, IND) the combination operator is probabilistic sum. Computation
by PITA(IND, IND) is thus equivalent to the evaluation of the program
arithmetic circuit.

Parameter learning can be performed by EM or back-propagation, see
Chapter 13. In this case inference has to be performed repeatedly on the same
program with different values of the parameters. So we could use an algorithm
similar to PITA(IND,IND) to build a representation of the arithmetic circuit,
instead of just computing the probability. To do so it is enough to use the extra
argument for storing a term representing the circuit instead of the probability
and changing the implementation of the predicates for combining the values of
the extra arguments in the body and for combining the values from different
clause groundings.

The results of inference would thus be a term representing the arithmetic
circuit, that can be then used to perform regular inference several times with
different parameters values. Implementing EM would adapt the algorithm of
[10, 8] for hierarchical PLP.

12.5 Related Work

In [128] the authors discuss an approach for building deep neural networks using
a template expressed as a set of weighted rules. Similarly to our approach, the
resulting network has nodes representing ground atoms and nodes representing
ground rules and the values of ground rule nodes are aggregated to compute the
value of atom nodes. Differently from us, the contribution of different ground
rules are aggregated in two steps, first the contributions of different groundings
of the same rule sharing the same head and then the contributions of different
rules, resulting in an extra level of nodes between the ground rule nodes and
the atom nodes.

The proposal is parametric in the activation functions of ground rule nodes,
extra level nodes and atom nodes. In particular, the authors introduce two
families of activation functions that are inspired by Lukasiewicz fuzzy logic.
By properly restricting the form of weighted rules and by suitably choosing
the activation functions, we can build a neural network whose output is the

156

probability of the example according to the distribution semantics.
Our proposal aims at combining deep learning with probabilistic program-

ming as [137], where the authors propose the Turing-complete probabilistic
programming language Edward. Programs in Edward define computational
graphs and inference is performed by stochastic graph optimization using Ten-
sorFlow as the underlying engine. Hierarchical PLP is not Turing-complete
as Edward but ensures fast inference by circuit evaluation. Moreover, it is
based on logic so it handles well domains with multiple entities connected
by relationships. Similarly to Edward, hierarchical PLP can be compiled to
TensorFlow and investigating the advantages of this approach is an interesting
direction for future work.

Hierarchical PLP is also related to Probabilistic Soft Logic (PSL) [5] which
differs from Markov Logic because atom random variables are defined over the
[0, 1] unit interval and logic formulas are interpreted using Lukasiewicz fuzzy
logic. We differ from PSL because PSL defines a joint probability distribution
over fuzzy variables, while the random variables in hierarchical PLP are still
Boolean and the fuzzy values are the probabilities that are combined with the
product fuzzy logic. Moreover, the main inference problem in PSL is MAP, i.e.,
finding a most probable assignment, rather than MARG, i.e., computing the
probability of a query, as in hierarchical PLP.

Hierarchical PLP is similar to sum-product networks [101, 145]: the circuits
can be seen as sum-product networks where children of sum nodes are not
mutually exclusive but independent and each product node has a leaf child that
is associated to a hidden random variable. The aim however is different: while
sum-product networks represent a distribution over input data, the programs
in hierarchical PLP describe only a distribution over the truth values of the
query.

Inference in hierarchical PLP is in a way “lifted” [7, 113]: the probability of
the ground atoms can be computed knowing only the sizes of the populations
of individuals that can instantiate the existentially quantified variables.

157

158

Chapter 13

Parameter learning for
Hierarchical Probabilistic Logic
Programming

In this chapter, we present an algorithm, called Parameter learning for HI-
erarchical probabilistic Logic programs (PHIL), that learns hierarchical PLP
parameters from data. PHIL learns hierarchical PLP parameters by applying
gradient descent or Expectation Maximization. Experiments show that PHIL
beats state-of-the-art parameter learning algorithms either in terms of accura-
cies or in terms of time. The chapter is organized as follows: after presenting
the parameter learning problem in Section 13.1, two versions of PHIL, Deep
PHIL (DPHIL) and Expectation Maximization PHIL (EMPHIL) and their
regularized versions are presented in Sections 13.2 and 13.3 respectively. Ex-
periments comparing PHIL and other state-of-the-art parameter learning such
as EMBLEM, [10], and LFI-ProbLog, [36], are presented in Section 13.5.

13.1 Introduction

In Probabilistic logic programs, one of the most interesting task is to estimate
the parameters of a given program from data. As explained in Chapter 7.4,
inference and learning general PLP is often expensive due to the high cost of
inference. In order to speed up inference, we presented in Chapter 12 a new
PLP language called hierarchical PLP in which inference is cheaper than for

159

general PLP. The purpose of this part of the thesis is to propose algorithms for
learning the parameters of such program from data. The parameter learning
algorithm can be defined as follows:

Definition 15 (Parameter Learning Problem). Given an HPLP H with pa-
rameters Π = {π1 · · · πn}, an interpretation I defining input predicates and a
training set E = {e1, . . . , eM ,not eM+1, . . . ,not eN} where each ei is a ground
atom for the target predicate r, find the values of Π that maximize the log
likelihood (LL)

LL = arg max
Π

M∑
i=1

logP (ei) +
N∑

i=M+1

log(1− P (ei)) (13.1)

where P (ei) is the probability assigned to ei by H ∪ I.

Maximizing the LL can be equivalently seen as minimizing the sum of cross
entropy errors erri for all the examples

err =
N+M∑
i=1

−yi logP (ei)− (1− yi) log(1− P (ei)) (13.2)

where ei is an example with yi indicating its sign (yi = 1 if the example is
positive and yi = 0 otherwise) and pi indicating the probability that the atom
is true.

DPHIL and EMPHIL minimize the cross entropy error or equivalently
maximize the log-likelihood of the data. These algorithms (and their regularized
versions) are presented in Sections 13.2 and 13.3 respectively.

13.2 Gradient Descent and Back-propagation

DPHIL

Gradient descent is an algorithm that iteratively computes the gradients of an
error (or a loss) function with respect to a model’s parameters and updates the
parameters with a fraction of the gradients. To simplify the gradient calculation
in models organized hierarchically, a technique called back-propagation is often
used to easily apply the chain rule during gradient calculation. Since an HPLP

160

has random variables associated to hidden predicates organized hierarchically,
we apply the back-propagation algorithm to compute the gradients and Adam
optimizer to update the parameters at each iteration during parameter learning.
We called the algorithm Deep Parameter learning for HIerarchical probabilistic
Logic programming, DPHIL. The next section explains how DPHIL computes
the gradients.

13.2.1 Gradient Calculation

DPHIL computes the gradient of the error err (13.2) with respect to each
parameter by applying the back-propagation algorithm. We do this by building
an AC for each example e ∈ E and by running a dynamic programming
algorithm for computing the gradients. Note that the outputs of ACs of
positive examples are labeled 1 and the ones for negative examples are labeled
0. To simplify gradient computation, we transform the ACs (of the form in
Figure 12.3) as follows: weight, πi, labeling arcs from

⊕
to × nodes, are set

as children leaves of × nodes and shared weights are considered as individual
leaves with many × parents. Moreover, negative literals are represented by
nodes of the form not(a) with the single child a. The AC for Example 23
illustrates in Figure 12.5 is converted into the one shown in Figure 13.1.

r

⊕

× × × ×

⊕
0.3

⊕
0.6

× × × ×

0.2

Figure 13.1: Converted arithmetic circuit of Figure 12.5.
.

The standard gradient descent algorithm computes gradients at each iter-
ation using all the examples in the training set. If the training set is large,
the algorithm can converge very slowly. To avoid slow convergence, gradients

161

can be computed using a single example, randomly selected in the training set.
Even if in this case the algorithm can converge quickly, it is generally hard
to reach high training set accuracy. A compromise often used is mini batch
stochastic gradient descent (SGD): at each iteration a mini batch of examples is
randomly sampled to compute the gradient. This method usually provides fast
convergence and high accuracy. DPHIL, shown in Algorithm 13, implements
SGD.

After building the ACs and initializing the weights, the gradients and the
moments, lines 2–6, DPHIL performs two passes over each AC in the current
batch, lines 8–15. In the first, the circuit is evaluated so that each node is
assigned a real value representing its probability. This step is bottom-up or
forward (line 12) from the leaves to the root. The second step is backward
(line 13) or top-down, from the root to the leaves, and computes the derivatives
of the loss function with respect to each node. At the end of the backward
step, G contains the vector of the derivatives of the error with respect to each
parameter. Line 16 updates the weights.

The parameters are repeatedly updated until a maximum number of steps,
MaxIter , is reached, or until the difference between the LL of the current and
the previous iteration drops below a threshold, ε, or the difference is below
a fraction δ of the current LL. Finally, function UpdateTheory (line 18)
updates the parameters of the theory. We reparametrized the program using
weights between -∞ and + ∞ and expressing the parameters using the sigma
function πi = σ(Wi) = 1

1+e−Wi
(13.3). In this way we do not have to impose

the constraint that the parameters are in [0,1].

Function Forward in Algorithm 14 is a recursive function that takes as
input an AC node (root node) and evaluates each node from the leaves to the
root, assigning value v(n) to each node n. If node = not(n), p = Forward(n)

is computed and 1−p is assigned to v(node), lines 2–5. If node =
⊕

(n1, . . . nm),
function v(ni) = Forward(ni) is recursively called on each child node, and
the node value is given by v(node) = v(n1) ⊕ . . . ⊕ v(ni), lines 7–13. If
node = ×(πi, n1, . . . nm), function v(ni) = Forward(ni) is recursively called
on each child node, and the node value is given by v(n) = πi · v(n1) · . . . · v(nn),
lines 14–20.

Procedure Backward takes an evaluated AC node and computes the

162

Algorithm 13 Function DPHIL.
1: function DPHIL(Theory, ε, δ,MaxIter, β1, β2, η, ε̂, Strategy,Min,Max)
2: ACs← BuildACs(Theory) . Build the set of ACs
3: for i← 1→ |Theory| do . Initialize weights, gradient and moments
4: W [i]← random(Min,Max) . initially W [i] ∈ [Min,Max].
5: G[i]← 0.0, M0[i]← 0.0, M1[i]← 0.0
6: end for
7: Iter ← 1
8: repeat
9: LL← 0

10: Batch← NextBatch(ACs) . Select the batch according to the
strategy Strategy

11: for all circuit ∈ Batch do
12: P ← Forward(circuit)
13: Backward(G,− 1

P
, circuit)

14: LL← LL+ logP
15: end for
16: UpdateWeightsAdam(W,G,M0,M1, β1, β2, η, ε̂, Iter)
17: until LL− LL0 < ε ∨ LL− LL0 < −LL.δ ∨ Iter > MaxIter
18: FinalTheory ← UpdateTheory(Theory,W)
19: return FinalTheory
20: end function

derivative of the contribution of the AC to the cost function, err = −y log(p)−
(1−y) log(1−p) where p is the probability of the atom representing the example.

Let us consider the root node r of the AC for an example e. We want to
compute ∂err

∂v(n)
for each node n in the AC. By the chain rule,

∂err

∂v(n)
=

∂err

∂v(r)

∂v(r)

∂v(n)

Let us first compute ∂err
∂v(r)

where v(r) is the output of the AC

For a positive example, p = v(r), while for a negative example r = not(n),
p = 1− v(r). In this case, the error defined in equation 13.2 becomes err =

− log(v(r)). Therefore

∂err

∂v(r)
= − 1

v(r)
(13.4)

163

Algorithm 14 Function Forward

1: function Forward(node) . node is an AC
2: if node = not(n) then
3: v(node)← 1− Forward(n)
4: return v(node)
5: else
6: . Compute the output example by recursively call Forward on its

sub AC
7: if node =

⊕
(n1, . . . nm) then .

⊕
node

8: for all nj do
9: v(nj)← Forward(nj)

10: end for
11: v(node)← v(n1)⊕ . . .⊕ v(nm)
12: return v(node)
13: else . and Node
14: if node = ×(πi, n1, . . . nm) then
15: for all nj do
16: v(nj)← Forward(nj)
17: end for
18: v(node)← πi · v(n1) · . . . · v(nm)
19: return v(node)
20: end if
21: end if
22: end if
23: end function

Let us now compute the derivative, d(n), of v(r) with respect to each v(n)

d(n) =
∂v(r)

∂v(n)

d(n) can be computed by observing that d(r) = 1 and, by the chain rule of
calculus, for an arbitrary non root node n with pan indicating its parents

d(n) =
∑
pan

∂v(r)

∂v(pan)

∂v(pan)

∂v(n)
=
∑
pan

d(pan)
∂v(pan)

∂v(n)
. (13.5)

If parent pan is a × node with n′ indicating its children v(pan) =
∏

n′ v(n′) and

164

if node n is not a leaf (not a parameter node), then

∂v(pan)

∂v(n)
=
∏
n′ 6=n

v(n′) =
v(pan)

v(n)
(13.6)

if n = πi then

∂v(pan)

∂πi
=
∏
n′ 6=πi

v(n′) =
v(pan)

πi
(13.7)

The derivative of pan with respect to Wi corresponding to πi is:

∂v(pan)

∂Wi

=
∂v(pan)

∂σ(Wi)

∂σ(Wi)

∂Wi

=
∂v(pan)

∂σ(Wi)
σ(Wi)(1− σ(Wi))

=
∂v(pan)

∂πi
πi(1− πi) =

v(pan)

πi
πi(1− πi)

= v(pan)(1− σ(Wi)) (13.8)

If parent pan is a
⊕

node with n′ indicating its children

v(pan) =
⊕

n′ v(n′) = 1−
∏

n′(1− v(n′))

∂v(pan)

∂v(n)
=
∏
n′ 6=n

(1− v(n′)) =
1− v(pan)

1− v(n)
(13.9)

If the unique parent of n is a not(n) v(pan) = 1− v(n) and

∂v(pan)

∂v(n)
= −1 (13.10)

Because of the graph construction,
⊕

and × nodes can only have one × and⊕
parent respectively. Leaf nodes can have many × parent nodes. Therefore

Equation 13.5 can be written as

d(n) =

d(pan)v(pan)
v(n)

if n is a
⊕

node,

d(pan)1−v(pan)
1−v(n)

if n is a × node∑
pan

d(pan).v(pan).(1− πi) if n=σ(Wi)

−d(pan) pan = not(n)

(13.11)

165

Combining equation 13.4 and 13.11 we have:

∂err

∂v(n)
= −d(n)

1

v(r)
(13.12)

This leads to Procedure BackwardGD shown in Algorithm 15 which is
a simplified version for the case v(n) 6= 0 for all

⊕
nodes. To compute d(n),

BackwardGD proceeds by recursively propagating the derivative of the parent
node to the children. Initially, the derivative of the error with respect to the
root node, − 1

v(r)
, is computed. If the current node is not(n), with derivative

AccGrad, the derivative of its unique child, n, is −AccGrad, lines 2-3. If the
current node is a

⊕
node, with derivative AccGrad, the derivative of each

child, n, is computed as follows:

AccGrad′ = AccGrad · 1− v(node)

1− v(n)

and back-propagated, line 5-9. If the current node is a × node, the derivative
of a non leaf child node n is computed as follows:

AccGrad′1 = AccGrad · v(node)

v(n)

the one for a leaf child node n = πi is

AccGrad′2 = AccGrad · v(node) · (1− σ(Wi)

and back-propagated, lines 11-15. For leaf nodes, i.e πi nodes, the derivative is
accumulated, line 20.

13.2.2 Parameters Update

After the computation of the gradients, weights are updated towards the
direction of the optimal value of the error. Standard gradient descent adds a
fraction η, called learning rate, of the gradient to the current weights. η is a
value between 0 and 1 which is used to control the parameter update. Small
η can slow down the algorithm and find local minimum. High η avoids local
minima but can swing around global minima. A good compromise updates the

166

Algorithm 15 Procedure BackwardGD

1: procedure BackwardGD(G,AccGrad, node)
2: if node = not(n) then
3: Backward(G,−AccGrad, n)
4: else
5: if node =

⊕
(n1, . . . nm) then .

⊕
node

6: for all nj do
7: AccGrad′1 ← AccGrad · v(node)

v(ni)

8: Backward(G,AccGrad′, ni)
9: end for

10: else
11: if node = ×(πi · n1, . . . nm) then . × node
12: for all nj do . non leaf child
13: AccGrad′ ← AccGrad · 1−v(node)

1−v(nj)

14: Backward(G,AccGrad′1, nj)
15: end for
16: AccGrad′2 ← AccGrad · v(node).(1− σ(Wi)) . leaf child
17: Backward(G,AccGrad′2, πi)
18: else . leaf node
19: let node = πi
20: G[i]← G[i] + AccGrad
21: end if
22: end if
23: end if
24: end procedure

learning rate at each iteration by combining the advantages of both strategies.
We apply the update method Adam, adaptive moment estimation [62], that
uses the first order gradient to compute the exponential moving averages of the
gradient and the squared gradient. Hyper-parameters β1, β2 ∈ [0, 1) control
the exponential decay rates of these moving averages. These quantities are
estimations of the first moment (the mean M0) and the second moment (the
uncentered variance M1) of the gradient. The weigths are updated with a
fraction (the current learning rate) of the combination of these moments, see
Procedure UpdateWeightsAdam in Algorithm 16.

167

Algorithm 16 Procedure UpdateWeightsAdam

1: procedure UpdateWeightsAdam(W,G,M0,M1, β1, β2, η, ε̂, iter)

2: ηiter ← η

√
1−βiter2

1−βiter1

3: for i← 1→ |W | do
4: M0[i]← β1 ·M0[i] + (1− β1) ·G[i]
5: M1[i]← β2 ·M1[i] + (1− β2) ·G[i] ·G[i]

6: W [i]← W [i]− ηiter · M0[i]

(
√
M1[i])+ε̂

7: end for
8: end procedure

13.2.3 DPHIL regularization: DPHIL1 and DPHIL2

In deep learning and machine learning in general, a technique called regular-
ization is often used to avoid over-fitting. Regularization penalizes the loss
function by adding a regularization term for favoring smaller parameters. In
the literature, there exists two main regularization techniques called L1 and L2

regularization that differ from the way they penalize the loss function. While
L1 adds to the loss function the sum of the absolute values of the parameters,
L2 adds the sum of their squares. Given the loss function defined in Equation
13.2, the corresponding regularized loss functions are given by Equations 13.13
and 13.14.

err1 =
N+M∑
i=1

−yi logP (ei)− (1− yi) log(1− P (ei)) + γ
k∑
i=1

|πi| (13.13)

err2 =
N+M∑
i=1

−yi logP (ei)− (1− yi) log(1− P (ei)) +
γ

2

k∑
i=1

π2
i (13.14)

where the regularization hyper-parameter γ determines the strength of the
regularization. When γ is zero, the regularized term becomes zero and only
the initial loss function is considered. When γ is large, we penalize large values
of the parameters and they tend to become small. Note also that we add
the regularization term to the initial loss function because we are performing
minimization. The main difference between these techniques is that while L1

favor sparse parameters (many parameters at zero) L2 favor small values for

168

parameters but not necessarily at 0. Moreover in general, L1 (resp. L2) is
computationally inefficient (resp. efficient due to having analytical solutions).

Now let us compute the derivative of the regularized error with respect to
each node in the AC. The regularized term depends only on the leaves (the
parameters πi) of the AC. So the gradients of the parameters can be calculated
by adding the derivative of the regularized term with respect to πi to the one
obtained in equation 13.11. The regularized errors are given by:

Ereg =

γ
∑k

i=1 πi for L1

γ
2

∑k
i=1 π

2
i for L2

(13.15)

where πi = σ(Wi). Note that since 0 ≤ πi ≤ 1 we can consider πi rather than
|πi| in L1. So

∂Ereg
∂Wi

=

γ ∂σ(Wi)

∂Wi
= γ · σ(Wi) · (1− σ(Wi)) = γ · πi · (1− πi)

γ
2
∂σ(Wi)

2

∂Wi
= γ · σ(Wi) · σ(Wi) · (1− σ(Wi)) = γ · π2

i · (1− πi)
(13.16)

So equation 13.11 becomes

d(n) =

d(pan)v(pan)
v(n)

if n is a
⊕

node,

d(pan)1−v(pan)
1−v(n)

if n is a × node∑
pan

d(pan).v(pan).(1− πi) + ∂Ereg
∂Wi

if n=σ(Wi)

−d(pan) pan = not(n)

(13.17)

In order to implement the regularized version of DPHIL (DPHIL1 and DPHIL2),
the forward and the backward passes described in algorithms 14 and 15 remain
unchanged. The unique change occurs while updating the parameters in the
algorithm 16. UpdateWeightsAdam line 6 becomes

W [i]← W [i]− ηiter ∗
M0[i]

(
√
M1[i]) + ε̂

+
∂Ereg
∂Wi

(13.18)

169

13.3 Expectation Maximization: EMPHIL

We propose another algorithm, Expectation Maximization Parameter learning
for HIerarchical probabilistic Logic programs (EMPHIL) see [89], that learns
the parameters of HPLP by applying Expectation Maximization. The algorithm
maximizes the log-likelihood LL defined in Equation 13.1 by alternating between
an Expectation (E) and a Maximization (M) step. The E-step computes the
expected values of the incomplete data given the complete data and the current
parameters and the M-step determines the new values of the parameters
that maximize the likelihood. Each iteration is guaranteed to increase the
log-likelihood. Given an HPLP H = {Ci|i = 1, · · · , n} (each Ci annotated
with the parameter πi) and a training set of positive and negative examples
E = {e1, . . . , eM ,not eM+1, . . . ,not eN}, EMPHIL proceeds as follows:

For a single example e, the E-step computes E[ci0|e] and E[ci1|e] for all
rules Ci. cix is the number of times a variable Xij takes value x for x ∈
{0, 1} and for all j ∈ g(i) i.e E[cix|e] =

∑
j∈g(i) P (Xij = x|e) where g(i) =

{j|θj is a substitution grounding Ci}. These values are aggregated over all
examples obtaining

N0 = E[ci0] =
∑
e∈E

∑
j∈g(i)

P (Xij = 0|e) (13.19)

N1 = E[ci1] =
∑
e∈E

∑
j∈g(i)

P (Xij = 1|e) (13.20)

Then the M-step computes πi by maximum likelihood, i.e. πi = N1

N0+N1
. Note

that for a single substitution θj of clause Ci we have P (Xij = 0|e) + P (Xij =

1|e) = 1. So E[ci0] + E[ci1] =
∑

e∈E |g(i)|. So the M-step computes

πi =
N1∑

e∈E |g(i)|
(13.21)

Therefore to perform EMPHIL, we have to compute P (Xij = 1|e) for each
example e. We do it using two passes over the AC, one bottom-up and one
top-down. In order to illustrate the passes, we construct a graphical model (for

170

example a Bayesian Network) associated with the AC and then apply the belief
propagation (BP) algorithm [93].

A Bayesian Network (BN) can be obtained from the AC by replacing each
node with a random variable. The variables associated with an

⊕
node have

a conditional probabilistic table (CPT) that encodes an OR deterministic
function, while variables associated with an × node have a CPT encoding
an AND. Variables associated with a ¬ node have a CPT encoding the NOT
function. Leaf nodes associated with the same parameter are split into as many
nodes Xij as the groundings of the rule Ci, each associated with a CPT such
that P (Xij = 1) = πi. We convert the BN into a Factor Graph (FG) using the
standard translation because BP can be expressed in a simpler way for FGs.
The FG corresponding to the AC of Figure 13.1 is shown in Figure 13.2.

P

for

Q1 Q2 Q3 Q4

fand fand fand fand

P11 X12 X21 P22 X31 X41

for forf12 f21 f31 f41

Q111 Q112 Q221 Q222

fand fand fand fand

X1111 X1121 X2211 X2221

f1111 f1121 f2211 f2221

Figure 13.2: Factor graph.
.

13.3.1 Message Exchanges

After constructing the FG, P (Xij = 0|e) and P (Xij = 1|e) are computed by
exchanging messages among nodes and factors until convergence. In the case of

171

FG obtained from an AC, the graph is a tree and it is sufficient to propagate
the message first bottom-up and then top-down. The message from a variable
N to a factor f is defined as follows: see [93]

µN→f (n) =
∏

h∈nb(N)\f

µh→N(n) (13.22)

where nb(X) is the set of neighbors of X (the set of factors X appears in). The
message from a factor f to a variable N is:

µf→N(n) =
∑
qN

(f(n, s)
∏

Y ∈nb(f)\N

µY→f (y)) (13.23)

where nb(f) is the set of arguments of f and ¬N means all values for the
arguments of f with N fixed at n. After convergence, the belief of each variable
N is defined as follows:

b(n) =
∏

f∈nb(N)

µf→N(n) (13.24)

that is the product of all incoming messages to the variable. By normalizing
b(n) we obtain P (N = n|e). Evidence is taken into account by setting the cells
of the factors that are incompatible with evidence to 0. We want to develop an
algorithm for computing b(n) over the AC. So we want the AC nodes to send
messages. We call cN the normalized message, µf→N (N = 1), in the bottom-up
pass and tN the normalized message, µf→N (N = 1), in the top-down pass. Let
us now compute the messages in the forward pass. Different cases can occur:
the leaf, the inner and the root node.

For a leaf node X, we have the factor graph in Figure 13.3b. From Table
13.1d, the message from fx to X is given by:

µfx→X = [π(x), 1− π(x)] = [v(x), 1− v(x)] (13.25)

Note that the message is equal to the value of the node. Moreover, because of
the construction of HPLP, for any variable node N

µf→P (p) = µP→f (p) (13.26)

172

Figure 13.3: Examples of factor graph

1

cN ↑

↓ tP

↓ tN

P

f

N

(a) Factor graph of not node.

X

fx

(b) Factor graph for a leaf node.

. . .

cP ↑ ↓ tP

cN ↗

↙ tN

P

f

N S1 Sm

(c) Factor graph for inner or root node.

Table 13.1: CPTs of factors

(a) P is an or node

p n = 1 n = 0, S = 0 n = 1, ¬ (S = 0)
0 0 1 0
1 1 0 1

(b) P is an and node

p n = 0 n = 1, S = 1 n = 1, ¬ (S = 1)
0 1 0 1
1 0 1 0

(c) P is a not node

p n = 0 n = 1
0 0 1
1 1 0

(d) Leaf node fx = π(x)

x fx
0 1-π(x)
1 π(x)

173

where P is the parent of N .

Let us consider a node P with children N ,S1 . . . Sm as shown in Figure
13.3c. We define S = S1 . . . Sm and s = s1 . . . sm. We prove by induction that
cP = v(P). For leaf nodes it was proved above. Suppose that cC = v(C) for all
children N,S1, ...Sm:

If P is an × node, the CPT of P given its children is described in Table
13.1b and µC→f(c) = v(c) for all children C. According to equation 13.23 we
have:

µf→P (1) =
∑
qP

f(p, n, s)
∏

Y ∈nb(f)\P

µY→f (y)

=
∑
n,s

(f(p, n, s)
∏

Y ∈{N,S}

µY→f (y) (13.27)

= µN→f (1) ·
∏
Sk

µSk→f (1)

= v(N) ·
∏
sk

v(Sk) = v(P)

In the same way, from Equation 13.27 we have:

µf→P (0) =
∑
n,s

(f(p, n, s)
∏

Y ∈{N,S}

µY→f (y))

= µN→f (0) ·
∏
Sk

µSk→f (0)

= 1− (µN→f (1) ·
∏
Sk

µSk→f (1))

= 1− (v(N) ·
∏
sk

v(Sk)) = 1− v(P)

So cP = v(P)

If P is an
⊕

node, the CPT of P given its children is described in Table

174

13.1a. From Equation 13.27 we have:

µf→P (1) =
∑
n,s

f(p, n, s)
∏

Y ∈{N,S}

µY→f (y)

= 1− µN→·f(0) ·
∏
Sk

µSk→f (0) = 1− v(N) ·
∏
Sk

v(Sk)

= 1− (1− v(N)) ·
∏
Sk

(1− v(Sk)) = v(P)

In the same way we have:

µf→P (0) = µN→f (0).
∏
Sk

µSk→f (0) (13.28)

= v(N = 0) ·
∏
Sk

µSk→f (0)

= 1− [v(N = 1) ·
∏
Sk

µSk→f (1)] (13.29)

= 1− [1− (1− v(N) ·
∏
Sk

v(Sk)] = 1− v(P) (13.30)

If P is a ¬ node with the single child N , its CPT is shown in Table 13.1c and
we have:

µf→P (1) =
∑
n

f(p, n)
∏

Y ∈{N}

µY→f (y)

= µN→f (0) = 1− v(N)

and

µf→P (0) = µN→f (1) = v(N)

Overall, exchanging message in the forward pass means evaluating the value of
each node in the AC: Messages in the forward pass are computed by applying
Algorithm 14.

Now let us compute the messages in the backward pass. Considering the
factor graph in Figure 13.3c, we consider the message tP = µP→f (1) as known
and we want to compute the message tN = µf→N(1).

175

If P is an inner
⊕

node (with children N,S1, ...Sm), its CPT is shown in
table 13.1a. Let us compute the messages µf→N(1) and µf→N(0):

µf→N(1) =
∑
qN

(f(p, n, s)
∏

Y ∈nb(f)\N

µY→f (y))

= [
∑
p,s

(f(p, n, s)
∏
S

v(s)] · [µP→f (1)]

= µP→f (1) = tP (13.31)

In the same way

µf→N(0) =
∑
p,s

f(p, n, s)
∏
S

v(s)[µP→f (p)] (13.32)

= [1−
∏
S

(1− v(S))] · [µP→f (1)] +
∏
S

(1− v(S))[µP→f (0)]

= v(P)	 v(N) · tP + (1− v(P)	 v(N)) · (1− tP)} (13.33)

where the operator 	 is defined as follows:

v(p)	 v(n) = 1−
∏
s

(1− v(s)) = 1− 1− v(p)

1− v(n)
(13.34)

So we have

tN =
tP

tP + v(P)	 v(N) · tP + (1− v(P)	 v(n)) · (1− tP)
(13.35)

If P is a × node, its CPT is shown in Table 13.1b and we have:

µf→N(1) =
∑
qN

(f(p, n, s)
∏

Y ∈nb(f)\N

µY→f (y))

= µP→f (P = 1) ·
∏
S

µS→f (1) + µP→f (0) · (1−
∏
S

µS→f (1))

= tP ·
∏
S

v(S) + (1− tP) · (1−
∏
S

v(S))

= tP ·
v(P)

v(N)
+ (1− tP) · (1− v(P)

v(N)
)

176

In the same way,

µf→N(0) = µP→f (0) ·
∑
S

(f(p, n, s)
∏
S

µS→f (s)) = 1− tP

So we have

tN =
tP .

v(P)
v(N)

+ (1− tP) · (1− v(P)
v(N)

)

tP .
v(P)
v(N)

+ (1− tP).(1− v(P)
v(N)

) + (1− tP)
(13.36)

If P is a ¬ node, its CPT is shown in Table 13.1c and we have:

µf→N(1) =
∑
p

f(p, n)
∏

Y ∈{P}

µY→f (y) = µP→f (0) = 1− tP

Equivalently

µf→N(0) =
∑
p

f(p, n)
∏

Y ∈{P}

µY→f (y) = µP→f (1) = tP

And then

tN =
1− tP

1− tP + tP
= 1− tP (13.37)

To take into account evidence, we consider µP→f = [1, 0] as the initial messages
in the backward pass (where P is the root) and use Equation 13.35 for

⊕
node.

Overall, in the backward pass we have:

tN =

tP

tP+v(P)	v(N)·tP+(1−v(P)	v(N))·(1−tp)
if P is a ⊕ node

tP · v(P)
v(N)

+(1−tP)·(1− v(P)
v(N)

)

tP · v(P)
v(N)

+(1−tP)·(1− v(P)
v(N)

)+(1−tP)
if P is a × node

1− tP if P is a ¬ node

(13.38)

Since the belief propagation algorithm (for ACs) converges after two passes, we
can compute the unnormalized belief of each parameter during the backward
pass by multiplying tN by v(N) (that is all incoming messages). Algorithm 17
performs the backward pass of belief propagation algorithm and computes the
normalized belief of each parameter, i.e tN . It also computes the expectations

177

N0 and N1 for each parameter, lines 17–19.

Algorithm 17 Procedure Backward in EMPHIL

1: procedure BackwardEM(tp, node,N0, N1)
2: if node = not(n) then
3: Backward(1− tp, n, B,Count)
4: else
5: if node =

⊕
(n1, . . . nm) then .

⊕
node

6: for all child ni do
7: tni ←

tp
tp+v(node)	v(ni)·tp+(1−v(node)	v(ni))·(1−tp)

8: BackwardEM(tni , ni, B, Count)
9: end for

10: else
11: if node = ×(n1, . . . nm) then . × node
12: for all child ni do

13: tni ←
tp· v(node)

v(ni)
+(1−tp)·(1− v(node)

v(ni)
)

tp· v(node)
v(ni)

+(1−tp)·(1− v(node)
v(ni)

)+(1−tp)

14: BackwardEM(tni , ni, B, Count)
15: end for
16: else . leaf node πi
17: let E = πitp

(πitp+(1−πi)(1−tp)

18: N1[i]← N1[i] + E
19: N0[i]← N0[i] + 1− E
20: end if
21: end if
22: end if
23: end procedure

EMPHIL is then presented in Algorithm 18. After building the ACs (sharing
parameters) for positive and negative examples and initializing the parameters,
the expectations and the counters, lines 2–5, EMPHIL proceeds by alternating
between expectation step 8–13 and maximization step 13–24. The algorithm
stops when the difference between the current value of the LL and the previous
one is below a given threshold or when such a difference relative to the absolute
value of the current one is below a given threshold. The theory is then updated
and returned (lines 26–27).

178

13.3.2 EMPHIL regularization: EMPHIL1,

EMPHIL2 and EMPHIL3

In this section, we propose three regularized versions of EMPHIL. As described
in [71], EM can be regularized for two reasons: first, for highlighting the strong
relationship existing between the incomplete and the missing data, assuming
in the standard EM algorithm, and second for favoring smaller parameters.
We regularize EMPHIL mainly for the latter reason. As in gradient descent
regularization, we define the following regularized objective functions for L1

and L2 respectively in the M step.

J(θ) =

N1 log θ +N0 log(1− θ)− γθ for L1

N1 log θ +N0 log(1− θ)− γ
2
θ2 for L2

(13.39)

where θ = πi, N0 and N1 are the expectations computed in the E-step (see
Equations 13.19 and 13.20). The M-step aims at computing the value of θ
that maximizes J(θ). This is done by solving the equation ∂J(θ)

∂θ
= 0. The

following theorems give the optimal value of θ in each case (see appendix A for
the proofs).

Theorem 1. The L1 regularized objective function:

J1(θ) = N1 log θ +N0 log(1− θ)− γθ (13.40)

is maximum at

θ1 =
4N1

2(γ +N0 +N1 +
√

(N0 +N1)2 + γ2 + 2γ(N0 −N1))

Theorem 2. The L2 regularized objective function:

J2(θ) = N1 log θ +N0 log(1− θ)− γ

2
θ2 (13.41)

179

is maximum at

θ2 =

2
√

3N0+3N1+γ
γ

cos

arccos

√ γ
3N0+3N1+γ (9N0

2 −9N1+γ)
3N0+3N1+γ

3

− 2π
3

3

+
1

3

We consider another regularization method for EMPHIL (called EMPHIL3)
which is based on a Bayesian update of the parameters assuming a prior that
takes the form of a Dirichlet with parameters [a, b]. In M-step instead of
computing πi = N1

N0+N1
, EMPHIL3 computes

πi =
N1 + a

N0 +N1 + a+ b
(13.42)

as described in [12]. a and b are hyper-parameters. We choose a = 0 and b
as a fraction of the training set size, see Section 13.5, since we want small
parameters.

So algorithms EMPHIL (the standard EM), EMPHIL1, EMPHIL2 and
EMPHIL3 differ from the way they update the parameters in the M-step,
Algorithm 18 lines 15-22.

13.4 Related Work

PHIL is related to LFI-ProbLog, [36] which is an algorithm for learning proba-
bilistic Logic Programs parameters using Expectation Maximization, see Section
10.2.5. PHIL and LFI-ProbLog differ from the Probabilistic language they use.
In order to perform inference, while PHIL converts a program into a set of ACs
and evaluates the ACs bottom-up, LFI-ProbLog converts the program into a
weighted Boolean formula an performs Weighted Model Counting (WMC) [119].
PHIL performs parameter learning by applying gradient descent (DPHIL) or
EM (EMPHIL) on ACs and LFI-ProbLog performs parameter learning using
EM on top of the WMC.

PHIL is also related to EMBLEM (Expectation maximization over binary
decision diagrams for probabilistic logic programs) [10], an algorithm for learning
general PLP parameters applying EM over Binary decision diagram [1], see

180

Section 10.2.4. EMPHIL, LFI-ProbLog and EMBLEM are strongly related as
they all apply the EM algorithm.

13.5 Experiments

In this section, we present experiments comparing PHIL (DPHIL, EMPHIL
and their regularized versions) with EMBLEM [10] and LFI-ProbLog, [36].
PHIL1 has been implemented in SWI-Prolog [150] and C languages. It can
be installed using pack_install(phil) on SWI-Prolog. We perform experiments
2 on GNU/Linux machines with an Intel Xeon E5-2697 core 2 Duo (2,335
MHz) comparing our algorithms with the state-of-the-art parameter algorithms
LFI-ProbLog, [36], EMBLEM, [10]. While Section 13.5.1 describes the various
datasets used for performing the experiments, Section 13.5.2 presents the
methodology and the experiments.

13.5.1 Datasets

We experiment our algorithms on four well known datasets:
The Mutagenesis dataset, [131] contains information about a number of

aromatic/heteroaromatic nitro drugs, and their chemical structures in terms
of atoms, bonds and other molecular substructures. For example, the dataset
contains atoms of the form bond(compound, atom1, atom2, bondtype) which
states that a bond of type bondtype can be found in the compound between
the atoms atom1 and atom2. The goal is to predict the mutagenicity of
drugs which is important for understanding carcinogenesis. The subset of the
compounds having positive levels of log mutagenicity are labeled active (the
target predicate) and the remaining ones are inactive.

The Carcinogenesis dataset [130] is similar to the Mutagenesis dataset and
the objective is to predict the carcinogenicity of molecules.

The Mondial dataset [73] contains data from multiple geographical web
data sources. The goal is to predict the religion of a country as Christian
(target predicate christian_religion(A)).

1The code and the datasets are available at https://github.com/ArnaudFadja/phil.
2Experiments are available at https://bitbucket.org/ArnaudFadja/

hierarchicalplp_experiments/src/master/.

181

https://github.com/ArnaudFadja/phil
https://bitbucket.org/ArnaudFadja/hierarchicalplp_experiments/src/master/
https://bitbucket.org/ArnaudFadja/hierarchicalplp_experiments/src/master/

The UWCSE dataset [6] contains information about the Computer Science
department of the University of Washington. The goal is to predict the
target predicate advised_by(A,B) expressing that a student A is advised by a
professor B.

13.5.2 Methodology

We manually built the HPLPs for the datasets UWCSE and generated those for
Mutagenesis, Carcinogenesis and Mondial using algorithm SLEAHP described
in Chapter 14. We use the following hyper-parameters: As stop conditions,
we use ε = 10−4 , δ = 10−5 , MaxIter = 1000 for PHIL and EMBLEM and
MIN_IMPROV = 10−4 , MaxIter = 1000 for LFI-ProbLog. We use the Adam
hyper-parameters β1 = 0.9, β2 = 0.999, η = 0.9, ε̂ = 10−8 and we apply batch
gradient descent (all ACs are used for computing gradients at each iteration) on
every dataset except for UWCSE where we use stochastic gradient descent with
batch size BatchSize = 100. In the regularized version of PHIL, clauses with
parameters less than MinProb = 10−5 are removed. We experiment with three
versions of EMPHIL3 (EMPHIL31 , EMPHIL32 , EMPHIL33) which use a = 0

and differ from the fraction of the examples n they use at the M-step. They
use b =

n

10
, b =

n

5
, b =

n

4
respectively. The parameters in the gradient descent

method are initialized between [-0.5, 0.5] and the ones in the EM between [0,1].

In order to test the performance of the algorithms, we apply the cross-
validation method: each dataset is partitioned into NF folds of which one is
used for testing and the remaining for training in turn. The characteristics of
the datasets in terms of number of clauses NC, layers NL, folds NF and the
average number of Arithmetic circuits NAC for each fold of each dataset are
summarized in Table 13.2.

Table 13.2: Hyper-parameters

Mutagenesis Carcinogenesis Mondial UWCSE
NC 58 38 10 17
NL 9 7 6 8
NF 10 1 5 5
NAC 169.2 298 176 3353.6

182

We draw, for each test fold, the Receiver Operating Characteristics (ROC)
and the Precision-Recall (PR) curves and compute the area under each curve
(AUCROC and AUCPR) as described in [25]. The average values (over the
folds) of the areas for each algorithm are shown in Tables 13.3 and 13.4. Table
13.5 shows the average training time. Note that EMBLEM ran out the memory
on the Carcinogenesis and Mondial datasets and we could not compute the
areas and the training time. Moreover, to start learning, LFI-ProbLog needed
more memory than PHIL. From the experiment, PHIL beats EMBLEM and
LFI-ProbLog either in terms of area or in terms of time in all datasets. In
Table 13.5, we highlight in italic the times associated with the best accuracies
from Tables 13.3 and 13.4. It can be observed that these times are either the
best or in the same order of the best time, in bold. Among DPHIL (resp.
EMPHIL) and its regularized versions, DPHIL2 (resp. EMPHIL2) is often a
good compromise in terms of accuracy and time. Note also that regularization
is often not necessary in dataset with few clauses such as the Mondial dataset.
Between DPHIL and EMPHIL, DPHIL is often convenient in dataset with
many clauses and examples (e.g. Mutagenesis).

AUCROC Mutagenesis Carcinogenesis Mondial UWCSE
DPHIL 0.888943 0.602632 0.531157 0.941525
DPHIL1 0.841021 0.571053 0.534817 0.960876
DPHIL2 0.880465 0.618421 0.534563 0.949548
EMPHIL 0.885358 0.684211 0.534822 0.968560
EMPHIL1 0.884016 0.684211 0.536009 0.938121
EMPHIL2 0.885478 0.623684 0.534622 0.969046
EMPHIL31 0.833539 0.61973 0.536042 0.930243
EMPHIL32 0.821356 0.64078 0.537011 0.930243
EMPHIL33 0.820220 0.64078 0.534996 0.930243
EMBLEM 0.887695 - - 0.968354
ProbLog2 0.828655 0.594737 0.533905 0.968909

Table 13.3: Average area under ROC curve.

183

AUCPR Mutagenesis Carcinogenesis Mondial UWCSE
DPHIL 0.947100 0.595144 0.138932 0.227438
DPHIL1 0.886598 0.563875 0.142331 0.191302
DPHIL2 0.929244 0.580041 0.147390 0.219806
EMPHIL 0.944511 0.679966 0.142374 0.277760
EMPHIL1 0.944758 0.679712 0.142696 0.275985
EMPHIL2 0.944517 0.655781 0.142066 0.307713
EMPHIL31 0.880013 0.64909 0.142810 0.261578
EMPHIL32 0.868837 0.64163 0.143275 0.261578
EMPHIL33 0.867759 0.64163 0.142540 0.261578
EMBLEM 0.944394 - - 0.262565
ProbLog2 0.901450 0.568821 0.132498 0.306378

Table 13.4: Average area under PR curve.

Time Mutagenesis Carcinogenesis Mondial UWCSE
DPHIL 2.8573 178.268 265.416 0.0884
DPHIL1 5.2059 177.427 311.328 0.291
DPHIL2 5.445 88.51 301.1392 0.2214
EMPHIL 4.443 106.554 270.6688 0.289
EMPHIL1 4.894 181.089 317.4202 1.000
EMPHIL2 5.0046 146.844 245.383 0.8372
EMPHIL31 2.6478 85.3210 248.1978 0.157200
EMPHIL32 1.582 80.427 261.3612 0.1266
EMPHIL33 1.4937 94.6850 274.959800 0.119000
EMBLEM 125.621400 - - 0.9666
ProbLog2 722.0 38685.0 1607.6 161.4

Table 13.5: Average time

184

Algorithm 18 Function EMPHIL.
1: function EMPHIL(Theory, ε, δ,MaxIter, γ, a, b, Type)
2: Examples← BuildACs(Theory) . Build the set of ACs
3: for i← 1→ |Theory| do
4: Π[i]← random;B[i], Count[i]← 0 . Initialize the parameters
5: end for
6: LL← −inf ; Iter ← 0
7: repeat
8: LL0 ← LL,LL← 0 . Expectation step
9: for all node ∈ Examples do

10: P ← Forward(node)
11: BackwardEM(1, node,N0, N1)
12: LL← LL+ logP
13: end for . Maximization step
14: for i← 1→ |Theory| do
15: switch Type
16: case 0: Π[i]← B[i]

N0[i]+N1[i]

17: case 1: Π[i]← 4N1[i]

2(γ+N0[i]+N1[i]+
√

(N0[i]+N1[i])2+γ2+2γ(N0[i]−N1[i]))

18: case 2:

19: let V = 2
√

3N0+3N1+γ
γ

cos

arccos

√ γ
3N0+3N1+γ (9N0

2 −9N1+γ)
3N0+3N1+γ

3

− 2π
3

20: Π[i]← V

3
+ 1

3

21: case 3: Π[i]← N1+a
N0+N1+a+b

22: end switch
23: B[i], Count[i]← 0
24: end for
25: until LL− LL0 < ε ∨ LL− LL0 < −LL.δ ∨ Iter > MaxIter
26: FinalTheory ← UpdateTheory(Theory,Π)
27: return FinalTheory
28: end function

185

186

Chapter 14

Structure learning of Hierarchical
Probabilistic Logic Programming

In order to estimate the parameters of HPLPs in chapter 13, we considered their
structure as known, possibly manually constructed by an expert or generated
by a program, and presented algorithms for learning the parameters from data.
The aim of this chapter is to describe another algorithm for learning both the
structure and the parameters of HPLPs from data. The algorithm is called
Structure LEArning of Hierarchical Probabilistic logic programming (SLEAHP).
SLEAHP initially generates a large HPLP from bottom clauses obtained from a
language bias as described in [11] and subsequently applies a regularized version
of PHIL on the generated HPLP to cut clauses with small parameter values. We
performed experiments comparing different regularization versions of SLEAHP
with the state-of-the-art structure learning algorithms SLIPCOVER, [11] and
ProbFOIL+, [105]. The results show that SLEAHP achieves similar and often
better accuracies but in a shorter time. The chapter is organized as follows:
after presenting the structure learning problem in Section 14.1, Sections 14.2
and 14.3 describe the algorithm and present related works respectively. Finally
Section 14.4 presents some experiments.

14.1 Overview

In Probabilistic Inductive Logic Programming, one of the most challenging task
is to induce a Probabilistic Logic Program from data. The task is known in

187

literature as structure learning problem. Note that inducing the structure of
PLP is often necessary in domains in which even an expert could not construct
a good structure that generalizes well. Learning the structure means searching
in space of potential programs (in this case HPLPs) the one, and its parameters,
that best represents the data. The structure learning problem in HPLP can be
defined as follows:

Definition 16 (Structure Learning Problem). Given an interpretation I defin-
ing input predicates and a training set of positive and negative examples
E = {e1, . . . , eM ,not eM+1, . . . ,not eN} where each ei is a ground atom for
the target predicate r, find an HPLP H and its parameters Π that maximize
the log likelihood (LL)

LL = arg max
Π

M∑
i=1

logP (ei) +
N∑

i=M+1

log(1− P (ei)) (14.1)

where P (ei) is the probability assigned to ei by H ∪ I.

SLEAHP learns HPLPs by generating an initial set of bottom clauses, from
the language bias defined in Section 11.5.1, from which a large HPLP is derived.
SLEAHP then proceeds by applying a regularized parameter learning on the
initial HPLP. Regularization is used to bring as many parameters as possible
close to 0 so that their clauses can be removed, thus pruning the initial large
program and keeping only useful clauses.

14.2 Description of the algorithm

In order to learn an HPLP, SLEAHP (Algorithm 19) initially generates a set of
bottom clauses, line 2. Then an n-ary tree whose nodes are literals appearing
in the head or in the body of bottom clauses is constructed, line 3. An initial
HPLP is generated from the tree, line 4, and a regularized version of PHIL is
performed on the initial program. Finally clauses with very small probabilities
are removed, line 5.

Note that the language bias and the algorithms for selecting the head and
for saturating the body of bottom clauses are the same as those used in liftable

188

PLP, see sections 11.5.1 and 11.5.2. The unique difference is that the generated
bottom clauses are not labeled with initial probabilities and are of the form

BC = h :− b1, . . . , bm (14.2)

Considering that bottom clauses have been generated and are of the form
in Equation 14.2, the following sections describe how to create the tree from
these bottom clauses and how to generate the initial HPLP from the tree.

Algorithm 19 Function Structure learning
1: function SLEAHP(NInt,NS,NA,MaxProb,NumLayer,MaxIter, ε, δ,MinProb)
2: Clauses =genClauses(NInt,NS,NA) . Generate clauses
3: Tree=genTree(Clauses) . Build the tree
4: init_HPLP=genHPLP(Clauses,MaxProb,NumLayer) . Generate the initial HPLP
5: (LL, final_HPLP)←PHIL_Reg(init_HPLP,MaxIter, ε, δ) . Learns the parameters
6: return final_HPLP
7: end function

14.2.1 Tree Generation

Since an HPLP can be mapped to a tree as described in Section 12.2, we create
a tree whose nodes are literals appearing in the head or in the body of bottom
clauses generated, Equation 14.2, as described in the previous section. Every
node in the tree shares at least one variable with its parent. The tree is then
converted to a large HPLP, see Section 14.2.2.

To create the tree, Algorithm 20 starts by considering each bottom clause
in turn, line 3. Each bottom clause creates a small tree, lines 4 - 11. Consider
the following bottom clause

BC = r(Arg) :− b1(Arg1), . . . , bm(Argm)

where Arg and Argi are tuples of arguments and bi(Argi) are literals. Initially
r(Arg) is set as the root of the tree, lines 5. Literals in the body are considered
in turn from left to right. When a literal bi(Argi) is considered, the algorithm
tries to insert the literal in the tree, see Algorithm 21. If bi(Argi) cannot be
inserted, it is set as the right-most child of the root. The algorithm proceeds
until all the bi(Argi) are inserted into the tree, lines 6–10. Then the resulting
small tree is appended to a list of trees (initially empty), line 11, and the list is

189

merged obtaining a unique tree, line 13. The trees in L are merged by unifying
the arguments of their roots.

Algorithm 20 generate tree

1: function genTree(Bottoms)
2: L← []
3: for all Bottom ∈ Bottoms do
4: let Bottom = r(Arg) :− b1(Arg1), . . . , bm(Argm)
5: Tree← r(Arg) . r(Arg) is the root of the tree
6: for all bi(Argi) do
7: if not(insertTree(Tree, bi(Argi))) then
8: addChild(r(Arg), bi(Argi)))
9: end if

10: end for
11: Append Tree to L
12: end for
13: final_Tree← mergeTrees(L)
14: return final_Tree
15: end function

To insert the literal bi(Argi) into the tree, Algorithm 21 visits the tree
depth-first. When a node b(Arg) is visited, if Arg and Argi share at least one
variable, bi(Argi) is set as the right-most child of b(Arg) and the algorithm
stops and returns True. Otherwise InsertTree is recursively called on each
child of b(Arg), lines 6 - 12. The algorithm returns False if the literal cannot
be inserted after visiting all the nodes, line 3.

Example 24. Consider the following bottom clause from the UWCSE dataset:
advised_by(A,B) :−
student(A), professor(B), has_position(B,C),

publication(D,B), publication(D,E), in_phase(A,F),

taught_by(G,E,H), ta(I, J,H).

In order to build the tree, advised_by(A,B) is initially set as the root of the
tree. Then literals in the body are considered in turn. The literals student(A)

(resp. professor(B), hasposition(B,C) and publication(D,B)) are set as the
children of advised_by(A,B) because they share variable A (resp. B). Then
the literal publication(D,E) is set as a child of publication(D,B) because they
share variable D, in_phase(A,F) as a child of advised_by(A,B) (they share

190

Algorithm 21 insert a literal into a Tree

1: function insertTree(Tree,bi(Argi))
2: if Tree=NULL then . All nodes are visited
3: return False
4: else
5: let the root of Tree = b(Arg)
6: if shareArgument(Arg,Argi) then
7: addChild(Tree,bi(Argi))
8: return True
9: else

10: for all Child of Tree do
11: return insertTree(Child, bi(Argi))
12: end for
13: end if
14: end if
15: end function

variable A), taught_by(G,E,H) as a child of publication(D,E) (they share
variable E), taught_by(G,E,H) as a child of publication(D,E) (they share
variable E) and finally ta(I, J,H) as a child of taught_by(G,E,H) (they share
variable H). The corresponding tree is shown in Figure 14.1.

14.2.2 HPLP Generation

Once the tree is built, an initial HPLP is generated at random from the tree.
Before describing how the program is created, note that for simplicity, we
considered clauses with at most two literals in the body. This can be extended
to any number of literals. Algorithm 22 takes as input the tree, Tree, initial
probability, 0 ≤ MaxProb ≤ 1, a rate, 0 ≤ rate ≤ 1, and the maximum
number of layers NumLayer of HPLP we are about to generate. Let Xk,
Yl = Y1, · · · , Yl, Zt and Wm be tuples of variables.

In order to generate the initial HPLP, the tree is visited breadth-first,
starting from level 1. For each node ni at level Level (1 ≤ Level ≤ NumLayer),
ni is visited with probability Prob. Otherwise ni and the subtree rooted at
ni are not visited. Prob is initialized to MaxProb which is typically 1.0 by
default. The new value of Prob at each level is Prob ∗ rate where rate ∈ [0, 1]

is a constant value typically 0.95 by default. Thus the deeper the level, the

191

advised_by(A,B)

student(A) professor(B) has_posistion(B,C) publication(D,B) inphase(A,F)

publication(D,E)

taughtby(G,E,H)

ta(I,J,H)

Figure 14.1: Tree created from the bottom clause of Example 24.
.

lower the probability value. Supposing that ni is visited, two cases can occur:
ni is a leaf or an internal node.

If ni = bi(Yi) is a leaf node with parent Parenti, we consider two cases. If
Parenti = r(Xk) (the root of the tree), then the clause

C = r(Xk) : 0.5 :− bi(Yi).

is generated, lines 9-11. Otherwise

C = hiddenpath(Zti) : 0.5 :− bi(Yli).

is generated. hiddenpath(Zti) is the hidden predicate associate with Parenti
and path is the path from the root to Parenti, lines 13-16.

If ni = bi(Yi) is an internal node having parent Parenti, we consider two
cases. If Parenti is the root, the clause

C = r(Xk) : 0.5 :− bi(Yi), hidden_l(Zti).

192

is generated. hidden_l(Zti) is associated with bi(Yi) and Zti = Xk ∪Yi, lines
20-21. If Parenti is an internal node with the associated hidden predicate
hiddenpath(Zt) then the clause

C = hiddenpath(Zt) : 0.5 :− bi(Yi), hiddenpath_i(Wmi).

is generated where Wmi = Zt ∪Yi, lines 24-25.
The generated clause C is added to a list (initially empty), line 28, and

the algorithm proceeds for every node at each level until layer NumLayer is
reached or all nodes in the tree are visited, line 5. Then hidden predicates
appearing in the body of clauses without associated clauses (in the next layer)
are removed, line 34, and the program is reduced, line 35. To reduce the
program, clauses (without hidden predicates in the body) having the same
input predicate (with different arguments) in the body are reduced into one
clause (generally the first of them).

Example 25. The HPLP generated from the tree of Figure 14.1 is:

advised_by(A,B) : 0.5 :− student(A).

advised_by(A,B) : 0.5 :− professor(B).

advised_by(A,B) : 0.5 :− has_position(B,C).

advised_by(A,B) : 0.5 :− publication(D,B), hidden1(A,B,D).

advised_by(A,B) : 0.5 :− in_phase(A,E).

hidden1(A,B,D) : 0.5 :− publication(D,F), hidden11(A,B,D, F).

hidden11(A,B,D, F) : 0.5 :− taught_by(G,F,H), hidden111(A,B,D, F,G,H).

hidden111(A,B,D, F,G,H) : 0.5 :− ta(I, J,H).

which is a HPLP with 3 levels.

14.3 Related work

SLEAHP is related to SLIPCASE [9], SLIPCOVER [11] which are algorithms
for learning general PLP, and LIFTCOVER which is an algorithm described
in Chapter 11 for learning liftable PLP. In liftable PLP the head of all the
clauses in the program share the same predicate (the target predicate) and

193

Algorithm 22 Function GenerateHPLP

1: function GenerateHPLP(Tree,MaxProb, Rate,NumLayer)
2: HPLP ← []
3: Level← 1
4: Prob←MaxProb
5: while Level < NumLayer and all nodes in Tree are not visited do
6: for all node ni at level Level having parent Parenti do
7: if maybe(Prob) then
8: if ni is a leaf node then . ni is a leaf node
9: if Parenti is the root node then

10: let ni = bi(Yi) and Parenti = r(Xk) then
11: C = r(Xk) : 0.5 :− bi(Yi).
12: else
13: let Parenti = bpath(Xk)
14: hiddenpath(Zti) associate with bpath(Xk)
15: ni = b

i
(Yi) then

16: C = hiddenpath(Zti) : 0.5 :− b
i
(Yi).

17: end if
18: else . ni is an internal node
19: if Parenti is the root node then
20: let ni = bi(Yi) and Zti = Xk ∪Yi

21: C = r(Xk) : 0.5 :− bi(Yi), hidden_i(Zti).
22: else
23: let Parent = bpath(Xk)
24: ni = bi(Yi) and Wmi = Zt ∪Yi then
25:

C = hiddenpath(Zt) : 0.5 :− b
i
(Yi), hiddenpath_i(Wmi).

26: end if
27: end if
28: HPLP ← [C|HPLP]
29: end if
30: end for
31: Prob← Prob ∗Rate
32: level← level + 1
33: end while
34: HPLP ← removeHidden(HPLP)
35: initial_HPLP ← reduce(HPLP)
36: Return initial_HPLP
37: end function

194

their bodies contain only input predicates. Therefore, Liftable PLP can be
seen as a restriction of HPLP without hidden predicates and clauses. Both
LIFTCOVER and SLIPCOVER learn the program by performing a search
in the space of clauses and then refine the search by greedily adding refined
clauses into the theory, while SLIPCASE performs search by theory revision.
SLIPCASE and SLIPCOVER uses EMBLEM to compute the log-likehood of
the data and LIFTCOVER uses a Expectation Maximization and Gradient
descent-based method, see Sections 11.4.1 and 11.4.2.

SLEAHP is also related to ProbFOIL+ [105] which is a generalization of
mFOIL [34] that learns both the structure and the parameters of ProbLog
programs by performing a hill climbing search in the space of programs as
explained in Section 10.3.2.

Similar to LIFTCOVER, SLIPCOVER and ProbFOIL+, SLEAHP initially
performs a search in the space of clauses but differently from these systems,
it creates a tree of literals from which a large HPLP is generated. Then a
regularized version of PHIL is applied to the HPLP.

SLEAHP performs a form of predicate invention: the hidden predicates
represent new predicates that are not present in the data. Much work has been
devoted to predicate invention. In [20, 19] for example the authors propose
algorithms that are able to perform predicate invention. Both proposals rely on a
form of language bias based on metarules, i.e., rule skeletons where the predicate
of literals is a not specified. Learning is then performed by metainterpretation
and new predicates are introduced when applying the metarules. These works
focus on learning programs: the learned theory often involve recursion. Instead,
the language of HPLP is less expressive, as recursion is not allowed, and we are
focused on learning probabilistic classifiers, i.e., functions returning the class of
an individual given what is not about him.

Ground HPLPs can be also seen as neural network (NNs) where the nodes
in the arithmetic circuits are the neurons and the activation function of nodes
is the probabilistic sum. Parameter learning by DPHIL is in fact performed as
in NNs by backpropagation. Combining logical languages with NNs is an active
research field, see [30] for an excellent review. For example, Relational Neural
Networks (RelNNs) [53] generalize Relational Logistic Regression (RLR) by
stacking multiple RLR layers together. The authors provide strong motivations

195

for having multiple layers, highlighting in particular that they improve the
representation power by allowing aggregation at different levels and on different
object populations. HPLP benefit from the same advantage. Moreover, HPLP
keep a semantics as probabilistic logic programs: the output of the network is
a probability according to the distribution semantics.

14.4 Experiments

In this section, we present experiments 1 comparing SLEAHP with SLIPCOVER
and ProbFOIL+ [105]. We used the same language bias expressed in terms of
modes for SLEAHP, SLIPCOVER and ProbFOIL+. To generate the initial
HPLP in SLEAHP, we used MaxProb = 1.0, Rate = 0.95 and Maxlayer =

+∞ for every dataset except in UWCSE where we used Maxlayer = 3. After
generating the initial HPLP we use the same hyper-parameters presented in
Section 13.5.2 to perform parameter learning. We performed five experiments
(one for each regularization). SLEAHPG1 (resp. SLEAHPG2) uses DPHIL1 (resp.
DPHIL2) and SLEAHPE1 (resp.SLEAHPE2 and SLEAHPE3) uses EMPHIL1

(resp. EMPHIL2 and EMPHIL31). The average area under the ROC/PR curves
and the average time are shown in Tables 14.1, 14.2, 14.3 respectively. Note
that the training time and the average areas in SLIPCOVER have been taken
from [33] where experiments were performed on GNU/Linux machines with
an Intel Core 2 Duo E6550 (2,333 MHz). The training times for SLIPCOVER
were obtained by converting a time from cpu with 2,333 MHz to the one with
2,355 MHz. The results illustrated with - for ProbFOIL+ indicate that it was
not able to terminate in 24 hours, in Mondial on some folds and in UWCSE on
all folds.

In terms of accuracy, SLEAHP outperforms SLIPCOVER in two datasets,
Mutagenesis and UWCSE, and achieves similar quality solution in the other
datasets. Note that SLEAHPE1 and other EM regularizations do not perform
well, in terms of AUCROC and AUCPR, on the UWCSE dataset. This highlight
the more restricted expressiveness of HPLPs in general. Moreover, on the same
dataset SLEAHPG1 SLEAHPG2 outperform SLIPCOVER in terms of solution

1Experiments are available at https://bitbucket.org/ArnaudFadja/
hierarchicalplp_experiments/src/master/.

196

https://bitbucket.org/ArnaudFadja/hierarchicalplp_experiments/src/master/
https://bitbucket.org/ArnaudFadja/hierarchicalplp_experiments/src/master/

quality and time. This motivate the use of different types of algorithms and
regularizations.

In terms of computation time, SLEAHP outperforms SLIPCOVER in
almost all datasets excepts in UWCSE in which the computation time still
remains reasonable. In Table 14.3, we also highlight in italic, as done in Section
13.5.2, the times associated with the best accuracies from Tables 14.1 and
14.2. Between DPHIL and EMPHIL regularizations, as stated in Section 13.5.2,
DPHIL is often preferred in dataset with large examples (see UWCSE).

In terms of accuracy and time, SLEAHP outperforms ProbFOIL+ in all
datasets. To summarize, SLEAHP beats SLIPCOVER and ProbFOIL+ in
terms of computation time in almost all datasets and achieves similar accuracy.

Table 14.1: Average area under ROC curve.

AUCROC Mutagenesis Carcinogenesis Mondial UWCSE
SLEAHPG1 0.889676 0.493421 0.483865 0.93616
SLEAHPG2 0.845452 0.544737 0.472843 0.925436
SLEAHPE1 0.878727 0.660526 0.433016 0.907789
SLEAHPE2 0.904933 0.414135 0.483798 0.904347
SLEAHPE3 0.822833 0.618421 0.464058 0.925099
SLIPCOVER 0.851 0.676 0.600 0.919
ProbFOIL+ 0.881255 0.556578 - -

Table 14.2: Average area under the PR curve.

AUCPR Mutagenesis Carcinogenesis Mondial UWCSE
SLEAHPG1 0.929906 0.498091 0.701244 0.148115
SLEAHPG2 0.918519 0.502135 0.690782 0.13175
SLEAHPE1 0.948563 0.598095 0.632270 0.059562
SLEAHPE2 0.955678 0.540510 0.623542 0.069861
SLEAHPE3 0.9003 0.552477 0.623542 0.059655
SLIPCOVER 0.885 0.676 0.733792 0.113
ProbFOIL+ 0.937497 0.534393 - -

197

Table 14.3: Average time.

Time Mutagenesis Carcinogenesis Mondial UWCSE
SLEAHPG1 41.825 48.76 59.5054 219.641
SLEAHPG2 47.1344 10524.09 14.047 194.9706
SLEAHPE1 48.0152 303.057 60.8316 387.665
SLEAHPE2 45.9245 92.382 61.09959 312.2604
SLEAHPE3 13.1478 1399.009 14.6698 295.6734
SLIPCOVER 74610.70 17419.45 650.363 141.36
ProbFOIL+ 1726.6 15433 - -

198

Part VII

Summary and Future Work

199

Chapter 15

Conclusion

Recently, because of the huge amount of devices inter-connected on the web
and the large amount of data generated by these devices, it has become of
foremost important to build systems that are both able to model and represent
different real world domains and able to manage large quantities of data. With
the advent of big data, present and future systems, to perform adequately,
should be strongly scalable.

The Distribution Semantics is an expressive and mature formalism that
integrates logic and probability for modeling domains characterized by uncer-
tainty. This formalism is at the basis of many languages including LPADs
and ProbLog, which have been recently used for representing data in various
fields. Many systems have been proposed for reasoning and learning from data.
Notwithstanding the attempt to implement distributed algorithms to achieve
scalability, the problem of performance still remains a challenge when the size
of the data increases.

The aim of this thesis is to provide languages under the DS in which
reasoning and learning are less expensive. Systems adopting such languages
will be more scalable and will be able to manage ever-increasing data. The
contribution of this thesis is fourfold:

1. Probabilistic Logic Program in action
We proposed a set of examples in real world domains modeled by LPADs.
This set of examples shows the expressiveness and the maturity of LPADs
and motivated the choice of this formalism for representing data, reasoning
and learning from them.

201

2. Languages under the distribution semantics
We proposed and described two languages under the DS, which are
restrictions of LPADs called Liftable PLP (LPLP) and Hierarchical PLP
(HPLP). Reasoning (inference) in these languages is less expensive than
for general LPADs. Inference is performed in LPLPs at a lifted level, that
is by reasoning on whole populations of individuals instead of considering
each individual separately. In HPLPs, each program is converted into set
of Arithmetic Circuits (ACs) (deep neural networks) sharing parameters
and inference is done by evaluating the ACs.

3. Parameter learning
We proposed two algorithms for learning the parameters of LPLPs. The
first is based on the Expectation Maximization (EM) algorithm and the
second is based on quasi-Newton optimization called Limited-memory
BFGS (LBFGS).
We also presented a parameter learning algorithm for HPLP, called Pa-
rameter learning for HIerarchical probabilistic Logic programs PHIL, that
learns the parameters of HPLPs from data. We presented two versions
of PHIL: Deep PHIL (DPHIL) that learns the parameters by applying a
gradient descent method (in particular the ADAM optimizer) and Expec-
tation Maximization PHIL (EMPHIL) which applies the EM algorithm.
Different regularized versions of DPHIL (DPHIL1, DPHIL2) and EM-
PHIL (EMPHIL1, EMPHIL2, EMPHIL3) have also been proposed. These
regularizations favor small parameters during learning. We performed
experiments on different real world datasets comparing PHIL with state
of the art parameter learning algorithms EMBLEM and LFI-ProbLog.
PHIL achieves similar and often better accuracies in a shorter time.

4. Structure learning
For LPLPs, we presented the algorithm LIFTCOVER that is similar
to SLIPCOVER and that learns the structure of LPLPs using either
EM (LIFTCOVER-EM) or LBFGS (LIFTCOVER-LBFGS) for parame-
ter learning. LIFTCOVER, as SLIPCOVER, initially performs a beam
search in the space of clauses for finding the promising ones. Then,
while SLIPCOVER performs a hill climbing search in the space of the-

202

ories, LIFTCOVER performs parameter learning on the whole set of
promising clauses and reduces the theory by eliminating clauses whose
parameter values are small. This is done because inference and learn-
ing in LPLPs are less expensive. The results show that LIFTCOVER-
EM and LIFTCOVER-LBFGS are faster than SLIPCOVER and often
more accurate, with LIFTCOVER-EM performing slightly better than
LIFTCOVER-LBFGS. These results show that we can reduce the hy-
pothesis space of LPADs while still keeping a reasonable accuracy and
by considerably decreasing the inference and the learning time making
inference and learning in many domains of interest more scalable.
We also proposed in this thesis an algorithm called Structure LEArning of
Hierarchical Probabilistic logic programming (SLEAHP) that learns both
the structure and the parameters of HPLPs from data. SLEAHP initially
generates a large HPLP and then applies a regularized version of PHIL
for performing parameter learning. Clauses with small parameters are
removed from the final program. Experiments comparing SLEAHP with
SLIPCOVER and ProbFOIL+ in different real world datasets show that,
in terms of accuracies, SLEAHP achieves similar results as SLIPCOVER
and ProbFOIL+ but beats them in terms of time in almost all datasets.

203

204

Chapter 16

Future work

Algorithms based on the languages proposed in this work are, in terms of time,
better than the state of the art. Moreover, much work is still necessary for
improving their expressiveness and scalability.

• Expressiveness
Regarding the restriction imposed on the number of literals in the body of
clauses in SLEAHP, we plan to increase the expressiveness of HPLPLs by
increasing this number in order to explore a larger space of HPLPs. We
also plan to extend HPLPs to domains with continuous random variables
in order to apply PHIL and SLEAHP on data such as images.

• Parameter learning
To improve the learning time of PHIL, we plan to implement its distributed
versions based for example on Map-reduce strategy. In these versions, the
generation of the ACs together with the computation of the expectations
and the gradients could be parallelized. Systems implementing these
parallelized versions will be more scalable and will be able to manage
larger data.

• Structure learning
We plan to implement a hill-climbing algorithm for learning the structure
of HPLPs. After the generation of a large HPLP, as done in SLEAHP,
the algorithm will perform a search in a space of theories guided by the
likelihood of data.
We also plan to implement distributed versions of LIFTCOVER and

205

SLEAHP and compare them with other systems designed for scalability
such as [85, 49].

• Integration of HPLPs and deep learning
Other interesting direction to investigate is how to integrate symbolic
approaches of machine learning, such as HPLPs, with other approaches
based on neural networks, such as deep learning, in order to combine
their strengths and build better systems. Systems such as DeepLogic
[16] and DeepProbLog [72] have proposed algorithms for combining both
approaches but much work still remain useful to investigate.

206

Bibliography

[1] Sheldon B. Akers. Binary decision diagrams. 27(6):509–516, 1978.

[2] Marco Alberti, Elena Bellodi, Giuseppe Cota, Fabrizio Riguzzi, and
Riccardo Zese. cplint on SWISH: Probabilistic logical inference with a
web browser. 11(1):47–64, 2017.

[3] Dalal Alrajeh and Alessandra Russo. Logic-based learning: Theory
and application. In Machine Learning for Dynamic Software Analysis:
Potentials and Limits, pages 219–256. Springer, 2018.

[4] K. R. Apt and M. Bezem. Acyclic programs. 9(3/4):335–364, 1991.

[5] Stephen H. Bach, Matthias Broecheler, Bert Huang, and Lise Getoor.
Hinge-loss markov random fields and probabilistic soft logic. arXiv
preprint arXiv:1505.04406 [cs.LG], 2015.

[6] Niko Beerenwinkel, Jörg Rahnenführer, Martin Däumer, Daniel Hoff-
mann, Rolf Kaiser, Joachim Selbig, and Thomas Lengauer. Learning
multiple evolutionary pathways from cross-sectional data. Journal of
Computational Biology, 12:584–598, 2005.

[7] Elena Bellodi, Evelina Lamma, Fabrizio Riguzzi, Vítor Santos Costa,
and Riccardo Zese. Lifted variable elimination for probabilistic logic
programming. 14(4-5):681–695, 2014.

[8] Elena Bellodi and Fabrizio Riguzzi. Experimentation of an expectation
maximization algorithm for probabilistic logic programs. 8(1):3–18, 2012.

[9] Elena Bellodi and Fabrizio Riguzzi. Learning the structure of probabilistic
logic programs. In StephenH. Muggleton, Alireza Tamaddoni-Nezhad,

207

and FrancescaA. Lisi, editors, 22nd International Conference on Inductive
Logic Programming, volume 7207 of LNCS, pages 61–75. Springer Berlin
Heidelberg, 2012.

[10] Elena Bellodi and Fabrizio Riguzzi. Expectation maximization over binary
decision diagrams for probabilistic logic programs. 17(2):343–363, 2013.

[11] Elena Bellodi and Fabrizio Riguzzi. Structure learning of probabilistic
logic programs by searching the clause space. 15(2):169–212, 2015.

[12] C.M. Bishop. Pattern Recognition and Machine Learning. Information
Science and Statistics. 2016.

[13] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent Dirichlet
allocation. 3:993–1022, 2003.

[14] Ashok K. Chandra and David Harel. Horn clauses queries and general-
izations. 2(1):1–15, 1985.

[15] Cheng Chu, Sang Kyun Kim, Yi-An Lin, YuanYuan Yu, Gary Bradski,
Andrew Y Ng, and Kunle Olukotun. Map-reduce for machine learning
on multicore. pages 281–288, 2006.

[16] Nuri Cingillioglu and Alessandra Russo. Deeplogic: Towards end-to-end
differentiable logical reasoning. arXiv preprint arXiv:1805.07433, 2018.

[17] David A. Cox. Galois Theory. Pure and Applied Mathematics: A Wiley
Series of Texts, Monographs and Tracts. 2012.

[18] Fábio Gagliardi Cozman and Denis Deratani Mauá. The structure
and complexity of credal semantics. volume 1661 of CEUR Workshop
Proceedings, pages 3–14. CEUR-WS.org, 2016.

[19] Andrew Cropper, Rolf Morel, and Stephen H Muggleton. Learning
higher-order logic programs. arXiv preprint arXiv:1907.10953, 2019.

[20] Andrew Cropper and Stephen H. Muggleton. Learning efficient logic
programs. Machine Learning, 108(7):1063–1083, Jul 2019.

208

[21] Evgeny Dantsin. Probabilistic logic programs and their semantics. In
Russian Conference on Logic Programming, volume 592 of LNCS, pages
152–164. Springer, 1991.

[22] Adnan Darwiche. A differential approach to inference in bayesian networks.
50(3):280–305, 2003.

[23] Adnan Darwiche and Pierre Marquis. A knowledge compilation map.
17:229–264, 2002.

[24] J. Davis and M. Goadrich. The relationship between precision-recall and
ROC curves. pages 233–240. ACM, 2006.

[25] Jesse Davis and Mark Goadrich. The relationship between precision-recall
and roc curves. In Proceedings of the 23rd international conference on
Machine learning, pages 233–240. ACM, 2006.

[26] L. De Raedt, B. Demoen, D. Fierens, B. Gutmann, G. Janssens, A. Kim-
mig, N. Landwehr, T. Mantadelis, W. Meert, R. Rocha, V. Santos Costa,
I. Thon, and J. Vennekens. Towards digesting the alphabet-soup of
statistical relational learning. In NIPS 2008 Workshop on Probabilistic
Programming, 2008.

[27] Luc De Raedt and Saso Džeroski. First-Order jk-Clausal Theories are
PAC-Learnable. 70(1-2):375–392, 1994.

[28] Luc De Raedt and Angelika Kimmig. Probabilistic (logic) programming
concepts. 100(1):5–47, 2015.

[29] Luc De Raedt, Angelika Kimmig, and Hannu Toivonen. ProbLog: A
probabilistic Prolog and its application in link discovery. volume 7, pages
2462–2467, 2007.

[30] Luc De Raedt, Robin Manhaeve, Sebastijan Dumancic, Thomas De-
meester, and Angelika Kimmig. Neuro-symbolic= neural+ logical+
probabilistic. In NeSy’19@ IJCAI, the 14th International Workshop
on Neural-Symbolic Learning and Reasoning, pages 1–4, 2019.

209

[31] Luc De Raedt and Ingo Thon. Probabilistic rule learning. volume 6489,
pages 47–58, 2011.

[32] Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum
likelihood from incomplete data via the EM algorithm. 39(1):1–38, 1977.

[33] Nicola Di Mauro, Elena Bellodi, and Fabrizio Riguzzi. Bandit-based
Monte-Carlo structure learning of probabilistic logic programs. 100(1):127–
156, 2015.

[34] Saso Džeroski. Handling imperfect data in inductive logic programming.
pages 111–125, 1993.

[35] Tom Fawcett. An introduction to ROC analysis. 27:861–874, 2006.

[36] Daan Fierens, Guy Van den Broeck, Joris Renkens, Dimitar Sht. Shteri-
onov, Bernd Gutmann, Ingo Thon, Gerda Janssens, and Luc De Raedt.
Inference and learning in probabilistic logic programs using weighted
Boolean formulas. 15(3):358–401, 2015.

[37] Tiago Gomes and Vítor Santos Costa. Evaluating inference algorithms
for the Prolog factor language. volume 7842, pages 74–85, 2012.

[38] Irving John Good. A causal calculus (i). The British journal for the
philosophy of science, 11(44):305–318, 1961.

[39] Daniel M. Gordon. A survey of fast exponentiation methods. 27(1):129 –
146, 1998.

[40] Andrey Gorlin, C. R. Ramakrishnan, and Scott A. Smolka. Model
checking with probabilistic tabled logic programming. 12(4-5):681–700,
2012.

[41] B. Gutmann, A. Kimmig, K. Kersting, and L. De Raedt. Parameter
learning in probabilistic databases: A least squares approach. volume
5211, pages 473–488, 2008.

[42] Bernd Gutmann, Ingo Thon, Angelika Kimmig, Maurice Bruynooghe, and
Luc De Raedt. The magic of logical inference in probabilistic programming.
11(4-5):663–680, 2011.

210

[43] Petr Hájek. Metamathematics of fuzzy logic, volume 4. 1998.

[44] Simon Haykin. Neural networks: a comprehensive foundation. Prentice
Hall PTR, 1994.

[45] Jacques Herbrand. Recherches sur la théorie de la démonstration. PhD
thesis, Université de Paris, 1930.

[46] Holger H. Hoos and Thomas Stützle. Stochastic Local Search: Foundations
& Applications. Elsevier / Morgan Kaufmann, 2004.

[47] Joe Hurd. A formal approach to probabilistic termination. volume 2410,
pages 230–245, 2002.

[48] Tuyen N. Huynh and Raymond J. Mooney. Discriminative structure and
parameter learning for markov logic networks. In William W. Cohen,
Andrew McCallum, and Sam T. Roweis, editors, Proceedings of the 25th
international conference on Machine learning, pages 416–423. ACM, 2008.

[49] Tuyen N. Huynh and Raymond J. Mooney. Online structure learning for
markov logic networks. volume 6912, pages 81–96, 2011.

[50] Muhammad Asiful Islam, CR Ramakrishnan, and IV Ramakrishnan.
Inference in probabilistic logic programs with continuous random variables.
12:505–523, 2012.

[51] Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja, and
Federico Olmedo. Weakest precondition reasoning for expected run-times
of probabilistic programs. volume 9632, pages 364–389, 2016.

[52] Seyed Mehran Kazemi, David Buchman, Kristian Kersting, Sriraam
Natarajan, and David Poole. Relational logistic regression. AAAI Press,
2014.

[53] Seyed Mehran Kazemi and David Poole. Relnn: A deep neural model
for relational learning. In Thirty-Second AAAI Conference on Artificial
Intelligence, 2018.

211

[54] K. Kersting and L. De Raedt. Basic principles of learning Bayesian logic
programs. In Probabilistic Inductive Logic Programming, volume 4911 of
LNCS, pages 189–221. Springer, 2008.

[55] Kristian Kersting and Luc De Raedt. Towards combining inductive logic
programming with bayesian networks. pages 118–131, 2001.

[56] Kristian Kersting and Luc De Raedt. Basic principles of learning bayesian
logic programs. In Institute for Computer Science, University of Freiburg.
Citeseer, 2002.

[57] Tushar Khot, Sriraam Natarajan, Kristian Kersting, and Jude W. Shavlik.
Learning Markov Logic Networks via functional gradient boosting. In
Proceedings of the 11th IEEE International Conference on Data Mining,
pages 320–329. IEEE, 2011.

[58] Jörg-Uwe Kietz and Marcus Lübbe. An efficient subsumption algorithm
for inductive logic programming. pages 130–138. Morgan Kaufmann,
1994.

[59] D. Marc Kilgour and Steven J. Brams. The truel. Mathematics Magazine,
70(5):315–326, 1997.

[60] Angelika Kimmig. A Probabilistic Prolog and its Applications. PhD thesis,
Katholieke Universiteit Leuven, Belgium, 2010.

[61] Angelika Kimmig, Bart Demoen, Luc De Raedt, Vitor Santos Costa,
and Ricardo Rocha. On the implementation of the probabilistic logic
programming language ProbLog. 11(2-3):235–262, 2011.

[62] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980, 2014.

[63] Jacek Kisynski and David Poole. Lifted aggregation in directed first-order
probabilistic models. pages 1922–1929, 2009.

[64] Stanley Kok and Pedro Domingos. Learning the structure of Markov
Logic Networks. pages 441–448. ACM, 2005.

212

[65] Stanley Kok and Pedro Domingos. Learning Markov Logic Networks
using structural motifs. pages 551–558. Omnipress, 2010.

[66] Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Princi-
ples and Techniques. Adaptive computation and machine learning. MIT
Press, Cambridge, MA, 2009.

[67] Daphne Koller and Avi Pfeffer. Learning probabilities for noisy first-order
rules. In IJCAI, pages 1316–1323, 1997.

[68] A. N. Kolmogorov. Foundations of the Theory of Probability. Chelsea
Publishing Company, New York, 1950.

[69] Robert A. Kowalski. Predicate logic as programming language. In IFIP
Congress, pages 569–574, 1974.

[70] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature,
521(7553):436–444, 2015.

[71] Haifeng Li, Keshu Zhang, and Tao Jiang. The regularized em algorithm.
In AAAI, pages 807–812, 2005.

[72] Robin Manhaeve, Sebastijan Dumancic, Angelika Kimmig, Thomas De-
meester, and Luc De Raedt. Deepproblog: Neural probabilistic logic
programming. In Advances in Neural Information Processing Systems,
pages 3749–3759, 2018.

[73] Wolfgang May. Information extraction and integration: The mondial case
study. Technical report, Universitat Freiburg, Institut für Informatik,
1999.

[74] W. Meert, J. Struyf, and H. Blockeel. Learning ground CP-Logic theories
by leveraging Bayesian network learning techniques. 89(1):131–160, 2008.

[75] W. Meert, J. Struyf, and H. Blockeel. CP-Logic theory inference with
contextual variable elimination and comparison to BDD based inference
methods. volume 5989, pages 96–109, 2010.

213

[76] Lilyana Mihalkova and Raymond J. Mooney. Bottom-up learning of
Markov logic network structure. In Proceedings of the 24th International
Conference on Machine Learning, pages 625–632. ACM, 2007.

[77] Tom M. Mitchell. Machine learning. McGraw Hill series in computer
science. McGraw-Hill, 1997.

[78] Søren Mørk and Ian Holmes. Evaluating bacterial gene-finding hmm
structures as probabilistic logic programs. Bioinformatics, 28(5):636–642,
2012.

[79] Stephen Muggleton. Inverse entailment and Progol. 13:245–286, 1995.

[80] Stephen Muggleton. Learning stochastic logic programs. 4(B):141–153,
2000.

[81] Stephen Muggleton and Luc De Raedt. Inductive logic programming:
Theory and methods. 19:629–679, 1994.

[82] Arun Nampally and CR Ramakrishnan. Adaptive MCMC-based inference
in probabilistic logic programs. arXiv preprint arXiv:1403.6036, 2014.

[83] Sriraam Natarajan, Tushar Khot, Kristian Kersting, Bernd Gutmann, and
Jude Shavlik. Gradient-based boosting for statistical relational learning:
The relational dependency network case. Machine Learning, 86(1):25–56,
2012.

[84] Sriraam Natarajan, Prasad Tadepalli, Gautam Kunapuli, and Jude Shav-
lik. Learning parameters for relational probabilistic models with noisy-or
combining rule. In Machine Learning and Applications, 2009. ICMLA’09.
International Conference on, pages 141–146. IEEE, 2009.

[85] Aniruddh Nath and Pedro M. Domingos. Learning relational sum-product
networks. pages 2878–2886, 2015.

[86] Liem Ngo and Peter Haddawy. Answering queries from context-sensitive
probabilistic knowledge bases. 171(1):147–177, 1997.

214

[87] Arnaud Nguembang Fadja and Fabrizio Riguzzi. Probabilistic logic
programming in action. In Andreas Holzinger, Randy Goebel, Massimo
Ferri, and Vasile Palade, editors, Towards Integrative Machine Learning
and Knowledge Extraction, volume 10344. 2017.

[88] Arnaud Nguembang Fadja and Fabrizio Riguzzi. Lifted discriminative
learning of probabilistic logic programs. Machine Learning, 108(7):1111–
1135, 2019.

[89] Arnaud Nguembang Fadja, Fabrizio Riguzzi, and Evelina Lamma. Ex-
pectation maximization in deep probabilistic logic programming. In
International Conference of the Italian Association for Artificial Intelli-
gence, pages 293–306. Springer, 2018.

[90] Masaaki Nishino, Akihiro Yamamoto, and Masaaki Nagata. A sparse
parameter learning method for probabilistic logic programs. In Statistical
Relational Artificial Intelligence, Papers from the 2014 AAAI Workshop,
volume WS-14-13 of AAAI Workshops, 2014.

[91] Davide Nitti, Tinne De Laet, and Luc De Raedt. Probabilistic logic
programming for hybrid relational domains. 103(3):407–449, 2016.

[92] Jorge Nocedal. Updating Quasi-Newton matrices with limited storage.
35(151):773–782, 1980.

[93] Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. Morgan Kaufmann, 1988.

[94] Y. Perov, B. Paige, and F. Wood. The Indian GPA problem,
2017. https://bitbucket.org/probprog/anglican-examples/src/

master/worksheets/indian-gpa.clj, accessed June 1, 2018.

[95] Avi Pfeffer. Practical Probabilistic Programming. Manning Publications,
2016.

[96] Gordon D. Plotkin. A note on inductive generalization. In Machine
Intelligence, volume 5, pages 153–163. Edinburgh University Press, 1970.

215

https://bitbucket.org/probprog/anglican-examples/src/master/worksheets/indian-gpa.clj
https://bitbucket.org/probprog/anglican-examples/src/master/worksheets/indian-gpa.clj

[97] D. Poole. The Independent Choice Logic for modelling multiple agents
under uncertainty. 94:7–56, 1997.

[98] D. Poole. Abducing through negation as failure: Stable models within
the independent choice logic. 44(1-3):5–35, 2000.

[99] David Poole. Probabilistic Horn abduction and Bayesian networks.
64(1):81–129, 1993.

[100] David Poole. First-order probabilistic inference. In IJCAI, volume 3,
pages 985–991, 2003.

[101] Hoifung Poon and Pedro M. Domingos. Sum-product networks: A new
deep architecture. pages 337–346. AUAI Press, 2011.

[102] Ning Qian. On the momentum term in gradient descent learning algo-
rithms. Neural networks, 12(1):145–151, 1999.

[103] J. Ross Quinlan. Learning logical definitions from relations. 5:239–266,
1990.

[104] J. Ross Quinlan and R. Mike Cameron-Jones. Induction of logic programs:
Foil and related systems. New Generation Computing, 13(3-4):287–312,
1995.

[105] Luc De Raedt, Anton Dries, Ingo Thon, Guy Van den Broeck, and
Mathias Verbeke. Inducing probabilistic relational rules from probabilistic
examples. pages 1835–1843, 2015.

[106] Peter Reutemann, Bernhard Pfahringer, and Eibe Frank. A toolbox
for learning from relational data with propositional and multi-instance
learners. volume 3339, pages 1017–1023, 2004.

[107] Matthew Richardson and Pedro Domingos. Markov logic networks. 62(1-
2):107–136, 2006.

[108] Fabrizio Riguzzi. Extended semantics and inference for the independent
choice logic. Logic Journal of the IGPL, 17(6):589–629, 2009.

216

[109] Fabrizio Riguzzi. MCINTYRE: A Monte Carlo system for probabilistic
logic programming. 124(4):521–541, 2013.

[110] Fabrizio Riguzzi. Speeding up inference for probabilistic logic programs.
57(3):347–363, 2014.

[111] Fabrizio Riguzzi. The distribution semantics for normal programs with
function symbols. 77:1–19, 2016.

[112] Fabrizio Riguzzi, Elena Bellodi, Riccardo Zese, Giuseppe Cota, and
Evelina Lamma. Scaling structure learning of probabilistic logic programs
by mapreduce. In Proceedings of the Twenty-second European Conference
on Artificial Intelligence, pages 1602–1603. IOS Press, 2016.

[113] Fabrizio Riguzzi, Elena Bellodi, Riccardo Zese, Giuseppe Cota, and
Evelina Lamma. A survey of lifted inference approaches for probabilistic
logic programming under the distribution semantics. 80:313–333, 1 2017.

[114] Fabrizio Riguzzi and Nicola Di Mauro. Applying the information bottle-
neck to statistical relational learning. 86(1):89–114, 2012.

[115] Fabrizio Riguzzi, Evelina Lamma, Marco Alberti, Elena Bellodi, Riccardo
Zese, and Giuseppe Cota. Probabilistic logic programming for natural
language processing. In Federico Chesani, Paola Mello, and Michela Mi-
lano, editors, Workshop on Deep Understanding and Reasoning, URANIA
2016, volume 1802 of CEUR Workshop Proceedings, pages 30–37. Sun
SITE Central Europe, 2017.

[116] Fabrizio Riguzzi and Terrance Swift. The PITA system: Tabling and
answer subsumption for reasoning under uncertainty. 11(4–5):433–449,
2011.

[117] Fabrizio Riguzzi and Terrance Swift. Well-definedness and efficient infer-
ence for probabilistic logic programming under the distribution semantics.
13(2):279–302, 2013.

[118] Raul Rojas. The backpropagation algorithm. In Neural networks, pages
149–182. Springer, 1996.

217

[119] Tian Sang, Paul Beame, and Henry A. Kautz. Performing bayesian
inference by weighted model counting. In 20th National Conference on
Artificial Intelligence, pages 475–482, Palo Alto, California USA, 2005.

[120] T. Sato and P. Meyer. Infinite probability computation by cyclic expla-
nation graphs. 14:909–937, 11 2014.

[121] Taisuke Sato. A statistical learning method for logic programs with
distribution semantics. pages 715–729, 1995.

[122] Taisuke Sato. A glimpse of symbolic-statistical modeling by PRISM.
Journal of Intelligent Information Systems, 31(2):161–176, 2008.

[123] Taisuke Sato and Yoshitaka Kameya. PRISM: a language for symbolic-
statistical modeling. volume 97, pages 1330–1339, 1997.

[124] Taisuke Sato and Yoshitaka Kameya. Parameter learning of logic programs
for symbolic-statistical modeling. 15:391–454, 2001.

[125] Taisuke Sato and Keiichi Kubota. Viterbi training in PRISM. 15(02):147–
168, 2015.

[126] Taisuke Sato and Philipp Meyer. Tabling for infinite probability compu-
tation. volume 17 of LIPIcs, pages 348–358, 2012.

[127] Oliver Schulte and Hassan Khosravi. Learning graphical models for
relational data via lattice search. 88(3):331–368, 2012.

[128] Gustav Sourek, Vojtech Aschenbrenner, Filip Zelezný, and Ondrej
Kuzelka. Lifted relational neural networks. volume 1583 of CEUR
Workshop Proceedings. CEUR-WS.org, 2016.

[129] Ashwin Srinivasan. The aleph manual, 2007. http://www.cs.ox.ac.uk/
activities/machlearn/Aleph/aleph.html, accessed April 3, 2018.

[130] Ashwin Srinivasan, Ross D. King, Stephen Muggleton, and Michael J. E.
Sternberg. Carcinogenesis predictions using ILP. volume 1297, pages
273–287, 1997.

218

http://www.cs.ox.ac.uk/activities/machlearn/Aleph/aleph.html
http://www.cs.ox.ac.uk/activities/machlearn/Aleph/aleph.html

[131] Ashwin Srinivasan, Stephen Muggleton, Michael J. E. Sternberg, and
Ross D. King. Theories for mutagenicity: A study in first-order and
feature-based induction. 85(1-2):277–299, 1996.

[132] S.M. Srivastava. A Course on Borel Sets. Graduate Texts in Mathematics.
Springer, 2013.

[133] Jan Struyf, Jesse Davis, and David Page. An efficient approximation to
lookahead in relational learners. pages 775–782, 2006.

[134] Terrance Swift and David Scott Warren. XSB: Extending prolog with
tabled logic programming. 12(1-2):157–187, 2012.

[135] Nima Taghipour, Daan Fierens, Jesse Davis, and Hendrik Blockeel. Lifted
variable elimination: Decoupling the operators from the constraint lan-
guage. 47:393–439, 2013.

[136] Tijmen Tieleman and Geoffery Hinton. Rmsprop gra-
dient optimization. URL http://www. cs. toronto.
edu/tijmen/csc321/slides/lecture_slides_lec6. pdf, 2014.

[137] Dustin Tran, Matthew D. Hoffman, Rif A. Saurous, Eugene Brevdo,
Kevin Murphy, and David M. Blei. Deep probabilistic programming.
2017.

[138] Leslie G Valiant. The complexity of enumeration and reliability problems.
8(3):410–421, 1979.

[139] Guy Van den Broeck, Wannes Meert, and Adnan Darwiche. Skolemization
for weighted first-order model counting. pages 111–120. AAAI Press,
2014.

[140] A. Van Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics
for general logic programs. 38(3):620–650, 1991.

[141] Jan Van Haaren, Guy Van den Broeck, Wannes Meert, and Jesse Davis.
Lifted generative learning of markov logic networks. 103(1):27–55, 2016.

[142] J. Vennekens and S. Verbaeten. Logic programs with annotated disjunc-
tions. Technical Report CW386, KU Leuven, 2003.

219

[143] J. Vennekens, S. Verbaeten, and M. Bruynooghe. Logic programs with
annotated disjunctions. volume 3131, pages 195–209, Berlin, 2004.

[144] J. Vennekens, S. Verbaeten, and M. Bruynooghe. Logic Programs With
Annotated Disjunctions. volume 3132, pages 431–445, 2004.

[145] Antonio Vergari, Nicola Di Mauro, and Floriana Esposito. Visualizing and
understanding sum-product networks. Machine Learning, 108(4):551–573,
2019.

[146] Richard Von Mises. Probability, statistics, and truth. Courier Corporation,
1981.

[147] John Von Neumann. Various techniques used in connection with random
digits. Nattional Bureau of Standard (U.S.), Applied Mathematics Series,
12:36–38, 1951.

[148] William Yang Wang, Kathryn Mazaitis, and WilliamW. Cohen. Structure
learning via parameter learning. pages 1199–1208, 2014.

[149] Michael P Wellman, John S Breese, and Robert P Goldman. From
knowledge bases to decision models. 7(1):35–53, 1992.

[150] Jan Wielemaker, Tom Schrijvers, Markus Triska, and Torbjörn Lager.
Swi-prolog. Theory and Practice of Logic Programming, 12(1-2):67–96,
2012.

[151] Jan Wielemaker, Tom Schrijvers, Markus Triska, and Torbjörn Lager.
SWI-Prolog. 12(1-2):67–96, 2012.

[152] Filip Železný, Ashwin Srinivasan, and C. David Page. Lattice-search
runtime distributions may be heavy-tailed. In Proceedings of the 12th
International Conference on Inductive Logic Programming, 2002.

[153] Filip Železný, Ashwin Srinivasan, and C. David Page Jr. Randomised
restarted search in ILP. Machine Learning, 64(1-3):183–208, 2006.

[154] Nevin L Zhang and David Poole. A simple approach to bayesian network
computations. pages 171–178, 1994.

220

[155] Nevin Lianwen Zhang and David L. Poole. Exploiting causal independence
in Bayesian network inference. 5:301–328, 1996.

221

222

Appendix

223

Appendix A

Proofs of theorems

This appendix presents detail proofs of Theorems 1 and 2.

Theorem A.1. The L1 regularized objective function:

J1(θ) = N1 log θ +N0 log(1− θ)− γθ (A.1)

is maximum in

θ2 =
4N1

2(γ +N0 +N1 +
√

(N0 +N1)2 + γ2 + 2γ(N0 −N1))

Proof. Deriving J1 w.r.t. θ, we obtain

J1(θ) =
N1

θ
− N0

1− θ
− γ (A.2)

Solving J ′1 = 0 we have:

N1

θ
− N0

1− θ
− γ = 0

N1(1− θ)−N0θ − γθ(1− θ) = 0

N1 −N1θ −N0θ − γθ + γθ2 = 0

γθ2 − (N0 +N1 + γ)θ +N1 = 0

(A.3)

225

Equation A.3 is a second degree equation whose solutions are

θ =
−b±

√
b2 − 4ac

2a

with a = γ, b = −N0 −N1 − γ and c = N1 The determinant is

∆ = b2−4ac = (N0+N1)2+γ2+2(N0+N1)γ−4γN1 = (N0+N1)2+γ2−2γN1+2γN0

To see whether the determinant is positive we must solve the equation

γ2 + (−2N1 + 2N0)γ + (N0 +N1)2 = 0

which gives

γ =
2N1 − 2N0 ±

√
(2N1 − 2N0)2 − 4(N0 +N1)2

2
=

2N1 − 2N0 ±
√

4N2
1 + 4N2

0 − 8N0N1 − 4N2
0 − 4N2

1 − 8N0N1

2
=

6N1 + 2N0 ±
√
−16N0N1

2

Therefore there is no real value for γ for which ∆ is 0, so ∆ is always greater
or equal to 0 because for N0 = N1 we have ∆ = 4N2

0 + γ2 which is greater or
equal to 0. This means that J ′1 = 0 has two real solutions.

Observe that limθ→0+ J1(θ) = limθ→1− J1(θ) = −∞. Therefore J1 must
have at least a maximum in (0, 1). Since in such a maximum the first derivative
must be 0 and J ′1 has two zeros, then J1 has a single maximum in (0, 1).

226

Let us compute the two zeros of J ′1:

θ =
γ +N0 +N1 ±

√
(N0 +N1)2 + γ2 + 2γ(N0 −N1)

2γ

θ1 =
γ +N0 +N1 −

√
(N0 +N1)2 + γ2 + 2γ(N0 −N1)

2γ
=

(γ +N0 +N1)2 − (N0 +N1)2 − γ2 − 2γ(N0 −N1)

2γ(γ +N0 +N1 +
√

(N0 +N1)2 + γ2 + 2γ(N0 −N1))
=

2γ(N0 +N1)− 2γ(N0 −N1)

2γ(γ +N0 +N1 +
√

(N0 +N1)2 + γ2 + 2γ(N0 −N1))
=

4γN1

2γ(γ +N0 +N1 +
√

(N0 +N1)2 + γ2 + 2γ(N0 −N1))
=

4N1

2(γ +N0 +N1 +
√

(N0 +N1)2 + γ2 + 2γ(N0 −N1))

θ2 =
γ +N0 +N1 +

√
(N0 +N1)2 + γ2 + 2γ(N0 −N1)

2γ
=

γ +N0 +N1 +
√
N2

0 +N2
1 + 2N0N1 + γ2 + 2γN0 − 2γN1

2γ
=

γ +N0 +N1 +
√
N2

0 +N2
1 + 2N1(N0 − γ) + γ2 + 2γN0

2γ
=

γ +N0 +N1 +
√

(N1 − γ)2 +N2
0 + 2N0N1 + 2γN0

2γ

We can see that θ1 ≥ 0 and

θ1 ≤
4N1

2N0 + 2N1 + 2N0 + 2N1

=
N1

N0 +N1

≤ 1

So θ1 is the root of J ′1 that we are looking for.

Note that, as expected:

lim
γ→0

θ1 =
4N1

2N0 + 2N1 + 2N0 + 2N1

=
N1

N0 +N1

Theorem A.2. The L2 regularized objective function:

J2(θ) = N1 log θ +N0 log(1− θ)− γ

2
θ2 (A.4)

227

is maximum in

θ =

2
√

3N0+3N1+γ
γ

cos

arccos

√ γ
3N0+3N1+γ (9N0

2 −9N1+γ)
3N0+3N1+γ

3

− 2π
3

3

+
1

3

Proof. We want to find the value of θ that maximizes J2(θ) as a function of
N1, N0 and γ, with N1 ≥ 0, N0 ≥ 0 and γ ≥ 0.

The derivative of J2(θ) is

J ′2(θ) =
N1

θ
− N0

1− θ
− γθ (A.5)

Solving J ′2(θ) = 0 we have:

N1

θ
− N0

1− θ
− γθ = 0

N1(1− θ)−N0θ − γθ2(1− θ) = 0

N1 −N1θ −N0θ − γθ2 + γθ3 = 0

γθ3 − γθ2 − (N0 +N1)θ +N1 = 0

θ3 − θ2 − (N0 +N1)

γ
θ +

N1

γ
= 0 (A.6)

Equation A.6 is a third degree equation. Let us consider a = 1, b = −1, c =

−N0+N1

γ
, d = N1

γ
. We want to solve the equation

aθ3 + bθ2 + cθ + d = 0 (A.7)

The number of real and complex roots is determined by the discriminant of the
cubic equation [17]:

∆ = 18abcd− 4b3d+ b2c2 − 4ac3 − 27a2d2

228

In our case we have

∆ = −27N2
1

γ2
+

4N1

γ
− 18N1 (−N0 −N1)

γ2
+

(−N0 −N1)2

γ2
− 4 (−N0 −N1)3

γ3
=

4N3
0

γ3
+

12N2
0N1

γ3
+
N2

0

γ2
+

12N0N
2
1

γ3
+

20N0N1

γ2
+

4N3
1

γ3
− 8N2

1

γ2
+

4N1

γ

If ∆ > 0 the equation has three distinct real roots. If γ ≤ N0 +N1

∆ ≥ 4N3
0

(N0+N1)3 +
12N2

0N1

(N0+N1)3 +
N2

0

(N0+N1)2 +
12N0N2

1

(N0+N1)3 +
20N0N1

(N0+N1)2 +
4N3

1

(N0+N1)3 − 8N2
1

(N0+N1)2 + 4N1

(N0+N1)
=

1
(N0+N1)3 (4N3

0 + 12N2
0N1 +N2

0 (N0 +N1) + 12N0N
2
1 +

20N0N1(N0 +N1) + 4N3
1 − 8N2

1 (N0 +N1) + 4N1(N0 +N1)2) =
N0(5N0+32N1)

N2
0 +2N0N1+N2

1
≥

0

If γ ≥ N0 +N1

∆ = 1
γ3

(
4N1γ

2 + γ
(
−27N2

1 + 18N1 (N0 +N1) + (N0 +N1)2)+

4 (N0 +N1)3) ≥
1
γ3

(
4N1 (N0 +N1)2 + 4 (N0 +N1)3 +

(N0 +N1)
(
−27N2

1 + 18N1 (N0 +N1) + (N0 +N1)2)) =
1
γ3N0 (5N2

0 + 37N0N1 + 32N2
1) ≥

0

So equation A.6 has 3 real roots that can be computed as [17]:

θk = 2

√
−p

3
cos

(
1

3
arccos

(
3q

2p

√
−3

p

)
− 2πk

3

)
+

1

3
for k = 0, 1, 2

where

p =
3ac− b2

3a2
,

q =
2b3 − 9abc+ 27a2d

27a3
.

229

θ1 is

θ1 =

2
√

3N0+3N1+γ
γ

cos

arccos

√ γ
3N0+3N1+γ (9N0

2 −9N1+γ)
3N0+3N1+γ

3

− 2π
3

3

+
1

3
(A.8)

Since limθ→0+ J2(θ) = limθ→1− J2(θ) = −∞, then J2 must have at least a
maximum in (0, 1). In such a maximum the first derivative must be 0. J ′2 has
three zeros. Therefore there are only two possibilities: either J2 has a single
maximum in (0, 1) or it has two (with a minimum in between).

Note that

J2(θ) = N1 log θ +N0 log(1− θ)− γ

2
θ2

= γ

{
N1

γ
log θ +

N0

γ
log(1− θ)− θ2

2

}
= γ

{
A log θ +B log(1− θ)− θ2

2

}
.

Since we are interested only in maxima and minima, the γ factor can be
ignored. Now J ′2 = 0 if and only if P (θ) = θ3 − θ2 − (A+B)θ + A = 0. Since
P (0) = A > 0 and P (1) = −B < 0, then P is zero at least once in (0, 1). The
first derivative of P is

P ′(θ) = θ2 − 2θ − (a+ b).

P ′(θ) = 0 has two roots, one negative and the other larger than 1. So P ′ is
decreasing in (0, 1) and therefore P has a single zero. So J ′2 has a single zero
that is a maximum.

Let us now prove that it is θ1 of Equation A.8. We show that θ1 is in
[0, 1] for a specific value of γ. Since the fact that J ′2 has a single zero that
is a maximum doesn’t depend on the values of γ, this means that θ1 is the
maximum we are looking for.

230

Let us choose γ = N0 +N1:

θ1 =

2
√

3N0+3N1+N0+N1

N0+N1
cos

arccos

√

N0+N1)
3N0+3N1+N0+N1

(9N0
2 −9N1+N0+N1)

3N0+3N1+N0+N1

3

− 2π
3

3

+
1

3
=

2
√

4 cos

arccos

√

N0+N1)
4(N0+N1)(

11N0
2 −8N1)

4(N0+N1)

3

− 2π
3

3

+
1

3
=

4 cos

arccos

(
1
2(11N0

2 −8N1)
4(N0+N1)

)
3

− 2π
3

3

+
1

3
=

4 cos

arccos

(
(11N0

2 −8N1)
8(N0+N1)

)
3

− 2π
3

3

+
1

3
=

4 cos

(
arccos

(
(11N0−16N1)
16(N0+N1)

)
3

− 2π
3

)
3

+
1

3

θ1 is minimal when N1 is 0 and we get

θ1 ≥
4 cos

(
arccos (11

16)
3

− 2π
3

)
3

+
1

3
=

4 cos
(

arccos 0.812755561368661
3

− 2π
3

)
3

+
1

3
=

−4 · 0.25

3
+

1

3
=

−1

3
+

1

3
= 0

231

θ1 is maximal when N0 is 0 and we get

θ1 ≤
4 cos

(
arccos

(
(−16N1)

16N1

)
3

− 2π
3

)
3

+
1

3
=

4 cos
(

arccos(−1)
3

− 2π
3

)
3

+
1

3
=

4 cos
(
π
3
− 2π

3

)
3

+
1

3
=

4 cos−π
3

3
+

1

3
=

4

3 · 2
+

1

3
=

2

3
+

1

3
= 1

Note that, as expected, limγ→0 θ1 = N1

N0+N1
, i.e., with γ = 0 we get the

formula for the case of no regularization. In fact, consider the Maclaurin
expansion of arccos(z):

arccos(z) =
π

2
− z −

(
1

2

)
z3

3
−
(

1 · 3
2 · 4

)
z5

5
−
(

1 · 3 · 5
2 · 4 · 6

)
z7

7
− · · · = π

2
− z −O(z3)

so

lim
γ→0

arccos

√

γ
3N0+3N1+γ

(
9N0

2
− 9N1 + γ

)
3N0 + 3N1 + γ

 = (A.9)

lim
γ→0

arccos (z) = (A.10)

lim
γ→0

π

2
−
√

γ

(3N0 + 3N1 + γ)3

(
9N0

2
− 9N1 + γ

)
−O(γ

3
2) (A.11)

232

Then

lim
γ→0

cos

arccos

(√
γ

3N0+3N1+γ (9N0
2
−9N1+γ)

3N0+3N1+γ

)
3

− 2π

3

 = (A.12)

lim
γ→0

cos

(
arccos (z)

3
− 2π

3

)
= (A.13)

lim
γ→0

cos

(
π

6
− z

3
−O(γ

3
2)− 2π

3

)
= (A.14)

lim
γ→0

cos
(
−z

3
−O(γ

3
2)− π

2

)
= (A.15)

lim
γ→0

cos
(
−π

2

)
cos
(
−z

3
−O(γ

3
2)
)

+ sin(−π
2

) sin
(z

3
−O(γ

3
2))
)

= (A.16)

lim
γ→0
− sin

(z
3
−O(γ

3
2))
)

= (A.17)

(A.18)

Since the Maclaurin expansion of sin is

sin y = y − y3

3!
+
y5

5!
− y7

7!
+ · · ·

then

lim
γ→0
− sin

(z
3
−O(γ

3
2))
)

= (A.19)

lim
γ→0
−z

3
+O(γ

3
2) = (A.20)

lim
γ→0
−1

3

√
γ

(3N0 + 3N1 + γ)3

(
9N0

2
− 9N1 + γ

)
+O(γ

3
2) (A.21)

233

So

lim
γ→0

θ1 = lim
γ→0

2
√

3N0+3N1+γ
γ

(
−1

3

√
γ

(3N0+3N1+γ)3

(
9N0

2
− 9N1 + γ

)
+O(γ

3
2)
)

3
+

1

3
=

− lim
γ→0

2 1
3N0+3N1+γ

(
9N0

2
− 9N1 + γ

)
+ 2
√

3N0+3N1+γ
γ

O(γ
3
2)

9
+

1

3
=

−
2

9N0
2
−9N1

3N0+3N1

9
+

1

3
=

−2
N0

2
−N1

3N0 + 3N1

+
1

3
=

− N0 − 2N1

3N0 + 3N1

+
1

3
=

−N0 + 2N1 +N0 +N1

3N0 + 3N1

=
3N1

3N0 + 3N1

=
N1

N0 +N1

234

	I Introduction
	Motivation
	Thesis Aims
	Structure of the thesis
	How to Read This Thesis

	Publications

	II Logic and Probability
	Logic
	Introduction
	Propositional Logic
	Syntax
	Semantic

	First Order Logic
	Syntax
	Semantics

	Logic Programming

	Probability Theory
	Event Spaces
	Probability Distributions
	Conditional Probability
	Random Variables and Distributions
	Expectation of a Random Variable

	III Probabilistic Logic Programming
	Languages under the Distribution Semantics
	Distribution Semantics
	Logic Programs with Annotated Disjunctions
	Sampling interpretation of the semantics
	Programs with function symbols
	Hybrid programs

	ProbLog
	Inference in Probabilistic Logic Programming

	Probabilistic Logic Programming in action
	Tile map generation
	Markov Logic Networks
	Truel
	Coupon Collector Problem
	One-Dimensional Random Walk
	Latent Dirichlet Allocation
	The Indian GPA Problem

	IV Probabilistic Inductive Logic Programming
	Inductive Logic Programming
	Definition
	Learning from entailment
	Learning from interpretations
	Learning from proofs
	Search Space
	Refinements Operator
	Language bias
	ILP algorithm

	Learning Probabilistic Logic Programming
	PILP Settings
	Parameter learning
	Expectation Maximization
	Gradient Descent
	Limited Memory BFGS: LBFGS
	EMBLEM
	Learn From Interpretation ProbLog: LFI-ProbLog

	Structure learning
	SLIPCOVER
	ProbFOIL+

	V Lifted Probabilistic Logic Programming
	Liftable Probabilistic Logic Programming
	Motivation
	Liftable PLP
	Inference in Liftable PLP
	Parameter Learning
	EM Algorithm
	Gradient-Based Optimization

	Structure Learning
	Language bias
	Bottom Clauses Generation
	Clause refinement

	Related Work
	Experiments

	VI Hierarchical Probabilistic Logic Programming
	Hierarchical Probabilistic Logic Programming
	Motivation
	Hierarchical PLP
	Inference
	Building the Arithmetic Circuit
	Related Work

	Parameter learning for Hierarchical Probabilistic Logic Programming
	Introduction
	Gradient Descent and Back-propagation DPHIL
	Gradient Calculation
	Parameters Update
	DPHIL regularization: DPHIL1 and DPHIL2

	Expectation Maximization: EMPHIL
	Message Exchanges
	EMPHIL regularization: EMPHIL1, EMPHIL2 and EMPHIL3

	Related Work
	Experiments
	Datasets
	Methodology

	Structure learning of Hierarchical Probabilistic Logic Programming
	Overview
	Description of the algorithm
	Tree Generation
	HPLP Generation

	Related work
	Experiments

	VII Summary and Future Work
	Conclusion
	Future work
	Bibliography

	Appendix
	Proofs of theorems

