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1 Introduction

Neutrino oscillation was first proposed by Bruno Pontecovero in 1957 [1] and was invoked
for the solution of atmospheric neutrino anomaly and solar neutrino puzzle. It was ex-
perimentally confirmed by the Super-Kamioka Neutrino Detection Experiment (Super-K,
SK) [2] in 1998 and the Sudbury Neutrino Observatory (SNO) [3] in 2002; for further details
see ref. [4]. Most neutrino oscillation experiments can be well explained in the Standard
Model (SM) with three massive neutrinos. In the standard three-flavor neutrino oscillation
framework, the three known neutrino flavor eigenstates (νe, νµ, and ντ ) can be written
as quantum superpositions of three mass eigenstates (ν1, ν2, and ν3), and the neutrino
oscillation probabilities are expressed in terms of six oscillation parameters: three mixing
angles (θ12, θ13, and θ23), two mass-squared differences (∆m2

21 and ∆m2
31), and one Dirac

CP phase (δCP). The Majorana CP phases play no role in neutrino oscillations if neutrinos
are Majorana particles. Among these six observable oscillation parameters, ∆m2

21, |∆m2
31|,

θ12, and θ13 have been well determined to the few-percent level. However, the neutrino
mass ordering (whether ∆m2

31 is positive or negative), the octant of θ23 (whether θ23 is
larger or smaller than 45◦) and the Dirac CP phase are still open questions. At present,
the normal mass ordering (NMO) and the second octant of θ23 are both favored by less
than 3σ confidence level (CL) [4–6], and δCP is in the range of [-3.41, -0.03] for the NMO
and [-2.54, -0.32] for the inverted mass ordering (IMO) at the 3σ CL [7], respectively.
The main physics goals of next-generation neutrino oscillation experiments, such as the
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Deep Underground Neutrino Experiment (DUNE) [8, 9], Hyper-Kamiokande [10] and the
Jiangmen Underground Neutrino Observatory (JUNO) [11, 12], are to determine the mass
ordering with a 3 − 5σ CL and to observe CP violation with a 3σ CL for ∼ 75% of δCP
values, etc. To reach these goals, the ability to achieve high-precision measurement of the
oscillation spectrum is required for these experiments. In the meantime, these high-precision
experiments will also reach sufficient sensitivity to probe new physics beyond the standard
three-neutrino paradigm.

The presence of new physics in the neutrino sector would yield corrections to the
standard three-flavor neutrino oscillation probabilities, thus leading to modifications to
the spectrum measured in high-precision neutrino oscillation experiments. Among various
possible new physics scenarios, a number of them lead to exponential damping in the
neutrino oscillation probabilities [13, 14], which could yield a different number of neutrinos
observed than expected [14–19] or a shift in the best fit values for neutrino oscillation
parameters [13–17, 20–25]. These damping signatures can be treated as secondary effects
relative to the standard three-neutrino oscillations in the neutrino flavor transitions. In this
work, we present a systematic study of the possible damping effects at the JUNO detector.
JUNO is a medium-baseline reactor neutrino experiment with a 20kton liquid scintillator
(LS) detector located in a laboratory at 700m underground in Jiangmen, China. The main
physics goals of JUNO are to determine the mass ordering and perform high-precision
measurements of the neutrino oscillation parameters sin2 θ12, ∆m2

21 and |∆m2
ee| [11, 12].

Also, JUNO is expected to be sensitive to the tiny damping signatures due to its effective
energy resolution of 3% at 1MeV and the capability of measuring multiple oscillation
cycles [25].

This paper is organized as follows. In section 2, we discuss the damping signatures
arising from different new physics models. In section 3, we discuss the damping signatures
at medium-baseline reactor neutrino experiments. In section 4, we describe the statistical
analysis method for JUNO used in this work. In section 5, we present the results of
constraining and disentangling damping signatures at JUNO. We conclude in section 6.

2 Damping signatures from new physics models

Damping signatures can be induced by a class of new physics models. Here, we focus on the
exponential damping framework [13, 14], i.e., they can be written in the form of multiplying
each term of the neutrino oscillation probabilities with exponential factors, which can arise
from an approximation of the first- or second-order perturbations to the standard neutrino
oscillation probabilities from new physics scenarios [25–27]. In this framework, the general
expression for the probability of νa oscillating into νb in vacuum is given by

P (νa → νb) =
3∑

i,j=1
UajU

∗
bjU
∗
aiUbi exp

(
−i

∆m2
ijL

2E

)
Dij(αij), (2.1)

where U is the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing matrix [3, 4], ∆m2
ij =

m2
i −m2

j , with mi being the eigenstate mass of νi; L is the baseline length, E is the neutrino
energy; Dij is an exponential damping factor and the specific form can be found in table 1,
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Type Damping effect Reference Damping factor Dij Units of α
(1) QD I [20, 23, 28–33] exp(−αL/E2) MeV2 ·m−1

(2) QD II [20, 23, 28–40] exp(−αL) m−1

(3) QD III [13, 20, 23, 28–33, 35–39] exp(−αLE2) MeV−2 ·m−1

(4) Absorption [13, 20, 23, 28–32, 40] exp(−αLE) MeV−1 ·m−1

(5) ν3 decay [15–17, 19, 41–43]
{

exp
(
−αLE

)
, exp

(
−α L

2E

)}
MeV ·m−1

(6) WPD I [13, 23, 24, 44–49] exp
(
−α (∆m2

ij)2L2

E4

)
MeV2

(7) WPD II [13, 25, 37, 50] exp
(
−α (∆m2

ij)2L2

E2

)
dimensionless

(8) WPD III [21, 22, 25, 51, 52] exp(−R− iX) dimensionless

Table 1. List of new physics models with different exponential damping factors. The definitions of
the parameters in the type (8) model are given in eq. (2.2).

and the αij are damping coefficients. Hereinafter, except for the ν3 decay case, we assume
universal couplings, i.e., αij ≡ α, to describe the magnitudes of different damping effects.

The damping signatures from various new physics models are summarized in table 1.
These models include quantum decoherence (QD), neutrino absorption, ν3 decay, and wave
packet decoherence (WPD). The new physics models of types (1) – (5) in table 1 are
expressed as power-law dependencies of the exponential form, i.e., exp(−αLEn) with n = 0,
±1, and ±2 [20, 23, 28–33, 35, 37, 39, 40]. Specifically, the type (1) model (n = −2)
is demonstrated in ref. [20] that it has the same functional form as the effects induced
by stochastic density fluctuations. Thus, it is used to probe QD effects that might be
induced by matter density fluctuations. The corresponding constraints of this model can
be interpreted as limits on possible matter density fluctuations in the Sun [20]. The most
significant feature of the type (2) model (n = 0) is independent of neutrino energy. Many
researchers have focused on this model since it is the simplest case of QD effects that might
be induced by quantum gravity [20, 23, 28–40]. The type (3) model (n = 2) is used to probe
QD effects that might be induced by the space-time “foam” configurations of quantum
gravity or D-brane of the form α ∝ E2/MPlanck [20, 35, 53, 54], where MPlanck is the Planck
mass scale. The type (4) model (n = 1), which is called neutrino absorption in ref. [13], is
used to describe the absorption effect when neutrinos propagate through matter. In this
type of model, α ≡ ρσ(E0)/E0, where ρ is the matter density and σ(E0) is the effective
cross section for neutrinos with an energy of E0. Currently, neither atmospheric, solar
neutrino oscillation experiments nor the long-baseline reactor neutrino experiment Kamioka
Liquid Scintillator Anti-Neutrino Detector (KamLAND) shows evidence in favor of the new
physics effects described by the previous four models (n = 0, 1 and ±2) [20, 35], which also
indicates that their damping parameter α can be strongly constrained. Furthermore, there
are no significant changes in the best-fit neutrino oscillation parameters in these new physics
scenarios [30, 31, 33, 40]. The fact that neutrinos are massive implies they could decay.
The n = −1 case was used in refs. [13, 16, 18, 38, 55–62] to describe invisible neutrino
decay scenarios, which lead to the violation of three-flavor neutrino unitarity. However,
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ref. [18] has shown that astrophysical neutrinos are potentially the most powerful source for
constraining the decay parameters of ν1 and ν2, which could lead to the lower bounds on
τ/m ∼ 10−4 (106) s/eV from the solar (supernova) neutrinos. Nevertheless, the constraints
on ν3 decay is much weaker than those on ν1 and ν2 from the current data [16, 18, 19].
Here, in the type (5) model, we only consider the ν3 decay scenario [15–17, 19, 41–43]. The
oscillation probability of P (ν̄e → ν̄e) comprises two exponential forms derived from the case
of n = −1, with α being the neutrino eigenstate mass divided by the corresponding lifetime,
i.e., α ≡ m3/τ3.

Although the plane-wave approximation theory successfully interprets a wide range of
neutrino experiments, it is not self-consistent and leads to many paradoxes [46, 51, 52, 63].
Therefore, the models of types (6) – (8) are proposed to form a consistent description of
neutrino oscillations, which use the wave packet treatment of neutrino oscillation instead of
the plane wave approximation for neutrino propagation [21, 22, 25, 46, 51, 52]. However, this
description also induce some WPD effects, which have not been found in current experimental
data [22, 24, 49]. Furthermore, the WPD effects and ν3 decay can shift the best-fit neutrino
oscillation parameters if these effects are strong enough [13, 16, 17, 22, 24, 49]. Specifically,
the type (6) model is used to describe the decoherence effect caused by wave packet
separation [13, 23, 24, 44–49]. This effect is related to the characteristics of the neutrino
source and detector. In the type (6) model, α ≡ 1/(4

√
2σx)2, where σx is the spatial

width of the neutrino wave packet. The type (7) model is used in ref. [50] to show that
in the two-neutrino oscillation case, a Gaussian-averaged neutrino oscillation model with
exp[−2σ2(∆m2)2] and a neutrino decoherence model with exp(−d2L) are equivalent if
d =

√
2∆m2
√
L

σ is fulfilled, where σ is the standard deviation of L/E and d is the decoherence
parameter. The model with exp[−2σ2(∆m2)2] is obtained by Gaussian average over the
L/E dependence for the oscillation probability under the plane-wave approximation due
to uncertainties in the energy and oscillation length [37, 50]. Since under the condition of
(2σ2E4/L2) = 1/(4

√
2σx)2, the type (6) and type (7) models are equivalent, we refer to the

type (7) model as WPD II.
The type (8) model systematically studies the quantum decoherence effects caused by

wave packet separation, dispersion and delocalization. We rewrite the unified decoherence
effect in exponential form to discuss its impact on the neutrino oscillation probability. This
exponential damping factor is given by [21, 22, 25, 51, 52]

exp(−R− iX) = exp
{
−
[1

4 ln(1 + y2
ij) + λij + ηij

]
− i

[1
2 tan−1(yij)− λijyij

]}

=
(

1
1 + y2

ij

) 1
4

exp(−λij) exp
(
− i

2 tan−1(yij)
)

exp(iλijyij) exp(−ηij),
(2.2)

where λij = x2
ij

1+y2
ij
, xij =

√
2∆m2

ijL

4E σrel, yij = ∆m2
ijL

E σ2
rel, ηij = 1

2

(
∆m2

ij
4σrelE2

)2
, and σrel =

(2σxE)−1. In this model, we define α ≡ σrel, where σrel represents the intrinsic relative
dispersion of neutrino momentum. The exp(−λij) therm corresponds to the conventional
quantum decoherence effect caused by the gradual separation of different mass states
traveling at different spatial propagation speeds, which causes them to stop interfering
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with each other, leading to damped oscillations. The terms containing yij describe the
dispersion effect, which includes two effects on the oscillations: wave packet spreading
compensates for wave packet separation, and dispersion reduces the overlap fraction of the
wave packets [21, 25]. The exp(−ηij) term corresponds to the quantum decoherence effect
from delocalization, which is related to the neutrino production and detection processes
and is independent of the baseline L. We find that exp(−ηij) is very close to 1 at JUNO
if σrel & O(10−15). In ref. [22], the Daya Bay (DYB) collaboration published their first
experimental limits, which are 10−14 < σrel < 0.23 and 2.38× 10−17 < σrel < 0.23 at a 95%
CL when the dimensions of the reactor cores and detectors are and are not considered as
constraints, respectively. Therefore, we neglect the exp(−ηij) term in eq. (2.2) in this work
in the following text.1

In addition, some works have discussed exponential damping models such as
exp

(
−α L2

(2E)2

)
and exp

(
−α (∆m2

ij)2L

E2

)
. The former was adopted in ref. [13] to approx-

imately describe the mixing of three active neutrinos and a very light sterile neutrino in
short-baseline reactor neutrino experiments. Here, α represents the magnitude of mixing
between the three active neutrinos and the light sterile neutrino. Note that this approximate
relationship does not hold for medium- or long-baseline neutrino experiments with an eV-
scale sterile neutrino or for mixing scenarios involving three active neutrinos and multiple
sterile neutrinos. The latter damping model was proposed to explain the decoherence effect
caused by quantum gravity in the Super-Kamiokande experiment [64], and the coupling α
can be related to MPlanck. For a single-baseline experiment or an experiment with multiple
identical baselines, the phenomenology of the former model above is the same as that of the
type (1) model, and the phenomenology of the latter model above is the same as that of
the type (7) model. Therefore, we will not discuss these two models in depth in this paper.

3 Damping signatures at medium-baseline reactor neutrino experiments

In this section, we first discuss the damping effects on the survival probability of ν̄e in
medium-baseline reactor neutrino experiments. After that, we classify the damping effects
in accordance with their different damping behaviors.

3.1 Damped neutrino oscillation probabilities

From the general expression in eq. (2.1), we can obtain four cases for the damped survival
probability of reactor neutrinos (ν̄e) in vacuum, as follows:

(I) The overall ν̄e survival probability is damped out. This case includes the QD I, QD
II, QD III, and absorption damping effects.

P (ν̄e → ν̄e) = D{1− c4
13 sin2(2θ12) sin2(∆21)− c2

12 sin2(2θ13) sin2(∆31)
− s2

12 sin2(2θ13) sin2(∆32)},
(3.1)

1If we consider the decoherence effect caused by delocalization, the lower limit on σrel at JUNO can
reach 3.0 × 10−17 at 95% CL. Although this expected lower limit is slightly better than the DYB limit of
σrel > 2.38 × 10−17, the improvement from JUNO is not large due to the smaller IBD events compared with
DYB and the baseline independence of delocalization [22].
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where the expression in curly brackets represents the ν̄e survival probability in vacuum
without damping effects (i.e., the standard ν̄e survival probability), D = Dij because
there are no relevant ∆m2

ij terms in these damping factors, cij = cos θij, sij = sin θij,
and the oscillation phase ∆ij is defined as

∆ij =
∆m2

ijL

4E ' 1.267
∆m2

ij[eV2]L[km]
E[GeV] = 1.267

∆m2
ij[eV2]L[m]
E[MeV] . (3.2)

(II) Some oscillating and nonoscillating terms of the ν̄e survival probability are damped
out. This case includes the ν3 decay damping effect.

P (ν̄e → ν̄e) = c4
13[1− sin2(2θ12) sin2(∆21)]

+ 1
2 sin2(2θ13) exp

(
−αL2E

)
[c2

12 cos(2∆31) + s2
12 cos(2∆32)]

+ exp
(
−αL
E

)
s4

13.

(3.3)

(III) Only the oscillating terms of the ν̄e survival probability are damped out, but there
are no dispersion terms. This case includes the WPD I and WPD II damping effects.

P (ν̄e → ν̄e) = 1− 1
2[c4

13 sin2(2θ12) + sin2(2θ13)] + 1
2c

4
13 sin2(2θ12)D21 cos(2∆21)

+ 1
2 sin2(2θ13)[D31c

2
12 cos(2∆31) +D32s

2
12 cos(2∆32)].

(3.4)

(IV) Not only are the oscillating terms of the ν̄e survival probability damped out, but there
are also dispersion terms. This case includes the WPD III damping effect.

P (ν̄e → ν̄e) = 1− 1
2c

4
13 sin2(2θ12)

[
1−

( 1
1 + y2

21

) 1
4

exp(−λ21) cos(φ21)
]

− 1
2 sin2(2θ13)c2

12

[
1−

( 1
1 + y2

31

) 1
4

exp(−λ31) cos(φ31)
]

− 1
2 sin2(2θ13)s2

12

[
1−

( 1
1 + y2

32

) 1
4

exp(−λ32) cos(φ32)
]
,

(3.5)

where φij = ∆m2
ijL

2E + 1
2 arctan(yij)− λijyij and is the sum of the plane wave phase and

the phase shift introduced by wave packet dispersion.

In general, the ν̄e survival probability at JUNO is also affected by the Mikheyev-
Smirnov-Wolfenstein (MSW) matter effect as the neutrinos travel through matter [65, 66].
We can treat this damping effect as a minor perturbation of the neutrino oscillations in
matter [13]. For the standard three-neutrino oscillation scenarios, the corrections to the
neutrino parameters due to matter effects do not exceed 1.1% [11, 67, 68]. In this work, we
also ignore matter effects because they only slightly shift the central values of the neutrino
oscillation parameters and do not affect the measurement precision.
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3.2 Classification of damping effects

In figure 1, we plot the ν̄e survival probability P (ν̄e → ν̄e) with different damping parameter
values for each new physics model. The neutrino oscillation parameters are taken from
ref. [4] and summarized in table 2. We assume the NMO in this analysis. We find that the
results are quite similar for the IMO. We choose a few values for the damping parameters
for illustration. In particular, α = 0 indicates no damping effect, i.e., neutrino oscillation of
the standard type. The farther the spectrum is from the no-damping curve, the stronger
the intensity of the damping effect. The distortion of the standard ν̄e survival probability
spectrum caused by damping is a combined phenomenon of an amplitude decrease and
a phase shift, which can be regarded as a unique signature, as shown in figure 1. We
find that the amplitude decrease behaviors of both the fast oscillation cycles (driven by
∆m2

31 and ∆m2
32) and the slow oscillation cycles (driven by ∆m2

21) are more significant
than their phase shift behaviors in all damping effect scenarios. Therefore, damping effects
mainly smear the fine structure of the standard ν̄e survival probability spectrum through
amplitude-decreasing effects. Furthermore, the fine structure of the fast oscillation cycles
is smeared more strongly than that of the slow oscillation cycles with increasing α, which
indicates that more spectral shape information is lost in the former than in the latter.

Based on the different smearing behaviors, we can divide the damping effects in table 1
into three categories. The first category is referred to as the QD-like effects, which include
the QD I, QD II, QD III, and absorption damping effects. Although the details of the
smearing behavior of each model are different, the fine structure is more completely preserved
under increasing α for models in this category than for models in the other two categories.
As α→∞, the ν̄e survival probabilities of the models in this category approach zero, which
means that the neutrinos do not propagate. The second category includes the ν3 decay
effect. In this category, the fine structure of the fast oscillation cycles will be smeared more
strongly as α increases until all details of the fast oscillation structure are lost. However,
the damping effects of this category will not affect the fine structure of the slow oscillation
cycles. Consequently, only the slow oscillation cycles will remain as α → ∞. The third
category is referred to as WPD-like effects, which include the WPD I, WPD II, and WPD
III damping effects. As α increases, the fine structures of both the fast and slow oscillation
cycles will be strongly smeared under WPD-like effects, but the former will be smeared out
before the latter. The ν̄e survival probabilities of these models approach a nonzero constant
value as α→∞, i.e., 1− 1

2 [c4
13 sin2(2θ12) + sin2(2θ13)]. Notably, the number of neutrinos

will be lost in the damping models of the first and second categories, whereas they will keep
the same in the third category.

4 Analysis method for JUNO

The damping effects on the reactor neutrino oscillations can be probed at JUNO by
measuring the distortion of the neutrino inverse beta decay (IBD) event spectrum. The
observed ν̄e distribution in terms of the reconstructed energy (Erec) can be expressed as
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Figure 1. The ν̄e survival probability P (ν̄e → ν̄e) with different damping parameter values for
each new physics model.
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p sin2 θ12 sin2 θ13 ∆m2
21(eV2) ∆m2

32(NMO, eV2) ∆m2
32(IMO, eV2)

pinput 0.307 2.18× 10−2 7.53× 10−5 2.453× 10−3 −2.546× 10−3

δp 0.013 0.07× 10−2 0.18× 10−5 0.034× 10−3 0.037× 10−3

Table 2. The neutrino oscillation parameters used in this work [4]. The input values pinput and
the corresponding 1σ uncertainty values δp are taken from ref. [4]. For the case in which ∆m2

32 is
negative, the corresponding δp is the average value.

follows [69]:

dN

dErec
= NpT

4πL2

∫
mn−mp+me

dE
Wth∑
u fu$u

∑
u

fuSu(E)P (ν̄e→ ν̄e)σIBD(E)G(Evis−Erec, δEvis),

(4.1)
where Np is the total number of free target protons in the LS detector, T is the total
exposure time, and Wth is the thermal power of the reactor. fu, $u, and Su are the fission
fraction, the mean energy released per fission, and the ν̄e energy spectrum per fission,
respectively, for the isotope u, where u = {235U, 238U, 239Pu, 241Pu}. The values of fu
and $u are taken from ref. [70]. S235U, S239Pu, and S241Pu are derived from ref. [71], and
S238U is derived from ref. [72]. σIBD(E) is the cross section for IBD in a detector, taken
from refs. [73, 74]; Evis is the visible energy (Evis ∼ Ee + me ∼ (E − 0.8) MeV), and
G(Evis − Erec, δEvis) is a normalized Gaussian function representing a detector response
function with an energy resolution of δEvis. This function is expressed as follows:

G(Evis − Erec, δEvis) ≈
1√

2πδEvis
exp

{
−(Evis − Erec)2

2(δEvis)2

}
, (4.2)

where δEvis is taken from ref. [11]. The detector energy resolution can be described by a
three-parameter function, i.e.,

δEvis
Evis

=

√√√√( p0√
Evis/MeV

)2

+ p2
1 +

(
p2

Evis/MeV

)2
, (4.3)

where the parameters p0, p1 and p2 represent the contributions to the energy resolution from
the photon statistics, detector-related residual energy nonuniformity, and photomultiplier
tube (PMT)-related effects, respectively.

The effective energy resolution of 3% at 1MeV of the JUNO detector, as discussed in
refs. [12, 75], is considered, and we set p0 = 2.61%, p1 = 0.82%, and p2 = 1.23%. We also
take the IBD detection efficiency of the detector to be 73% [11, 75]. The JUNO detector
is located at equal distances of ∼ 53 km from the Yangjiang and Taishan thermal power
reactor complexes [11, 12, 75]. The thermal powers of these two reactor complexes are
17.4 GWth and 9.2 GWth, respectively [75]. We consider the exposure of the JUNO detector
to be (26.6× 20× 6× 300) GWth · kton · years · days and assume the NMO scenario unless
explicitly stated otherwise.
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For the analysis, we adopt the least square method from refs. [11, 16, 18, 69, 76, 77]
and define a χ2 function with proper nuisance parameters and penalty terms to quantify
the sensitivity of α, as follows:

χ2 =
Nbin∑
i

[Mi − Ti (1 + εR + εd +
∑
r ωrεr + εs)−

∑
bBb,i(1 + εb)]2

Ti + (σshapeTi)2 +
∑
b(Bb,iσ

shape
b )2

+ ε2R
σ2
R

+ ε2d
σ2
d

+
∑
r

ε2r
σ2
r

+ ε2s
σ2
s

+
∑
b

ε2b
σ2
b

+
∑
k

(
pinputk − pfitk

δpk

)2

,

(4.4)

where Nbin is the number of energy bins, Mi is the number of measured total events (the
summation of signal and background) in the i-th bin, Ti is the predicted number of IBD
events, Bb is the b-th kind of estimated background (the main background spectra for the
JUNO detector are taken from ref. [11]), and the quantities σ and ε with different indices
represent systematic uncertainties and the corresponding pull parameters, respectively. The
considered systematic uncertainties include the correlated reactor uncertainty (σR=2%),
the detector-related uncertainty (σd=1%), the uncorrelated reactor uncertainty (σr=0.8%),
the uncorrelated spectrum shape uncertainty (σs=1%), the correlated spectrum shape
uncertainty (σshape=1%), the shape uncertainties of the backgrounds (σshapeb ), and the
relative rate uncertainties of the backgrounds (σb). Specifically, the σshapeb values for
accidental coincidences, fast neutrons, 9Li/8He, 13C(α, n)16O and geoneutrinos at JUNO
are negligible (i.e., 0%), 20%, 10%, 50%, and 5%, respectively; the corresponding σb values
are 1%, 100%, 20%, 50%, and 30%, respectively. Additionally, ωr is a fraction representing
the r-th reactor’s contribution to the corresponding pull parameter εr. Finally, pk and δpk
denote the k-th neutrino oscillation parameter (sin2 θ12, sin2 θ13, ∆m2

21, or ∆m2
32) and the

corresponding uncertainty, respectively, at a 1σ CL; these values are given in table 2.

5 Results

In this section, we present the results of probing the damping signatures of different new
physics models at JUNO. We firstly study the constraints on the damping parameters
for the eight new physics models at JUNO. Then, we show that JUNO can also help to
disentangle the damping model from each other.

5.1 Constraints on the damping parameters at JUNO

To obtain the constraints on the damping parameters at JUNO, we scan the damping
parameter of each damping model by marginalizing over other parameters, and fit the
simulated no-damping JUNO data to obtain the exclusion sensitivities of the damping
parameters. We list the constraints on the damping parameter of each damping model
from this work in table 3. The current bounds on the damping parameters in the literature
are also listed for comparison. The damping factors of the first seven damping models in
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Damping type

Parameter [units]

Phenomenological limits (experiment: original results, CL [Ref])

{Experimental limits (experiment: original results, CL [Ref])}

Exclusion sensitivities

for JUNO (CL)

QD I

α [×10−6 MeV2

m ]

< 1.62× 105 (MINOS+T2K+reactor: α < 3.2× 10−23 GeV3, 90% [33])

< 0.41 (solar+KL: α < 0.81× 10−28 GeV3, 95% [20])

< 3.72 (90%)

< 4.42 (95%)

QD II

α [×10−6

m ]

< 3.45 (KL: 6.8× 10−22 GeV, 95% [40])

< 0.33 (MINOS+T2K+reactor: α < 6.5× 10−23 GeV, 90% [33])

< 0.18 (SK: α < 3.5× 10−23 GeV, 90% [35])

< 3.40× 10−3 (solar+KL: α < 0.67× 10−24 GeV, 95% [20])

< 0.80 (90%)

< 0.95 (95%)

QD III

α [× 10−8

MeV2·m ]

< 2.38× 10−3(solar+KL: α < 0.47× 10−20 GeV−1, 95% [20])

< 1.42× 10−5 (MINOS+T2K+reactor: α < 2.8× 10−23 GeV−1, 90% [33])

< 4.56× 10−10 (SK: α < 0.9× 10−27 GeV−1, 90% [35])

< 1.22 (90%)

< 1.46 (95%)

Absorption

α [× 10−7

MeV·m ]

< 7.60 (KL: α < 1.5× 10−19, 95% [40])

< 0.10 (SK: α < 2.0× 10−21, 90% [35])

< 2.94× 10−3 (solar+KL: α < 0.58× 10−22, 95% [20])

< 1.04 (90%)

< 1.23 (95%)

ν3 decay

α ≡ m3
τ3

[×10−4 MeV
m ]

< 256.59 (OPERA: τ3
m3

> 1.3× 10−13 s
eV , 90% [43])

< 22.24 (NOνA+T2K: τ3
m3

> 1.5× 10−12 s
eV , 90% [17])

< 0.36 (SK+K2K+MINOS: τ3
m3

> 9.3× 10−11 s
eV , 99% [41])

{< 15.88 (MINOS: τ3
m3

> 2.1× 10−12 s
eV , 90% [15])}

< 0.44 (90%)

< 0.53 (95%)

< 0.75 (99%)

WPD I

α ≡ (4
√

2σx)−2

[×10−3MeV2]

< 116.96 (RENO+DYB: σx > 1.02× 10−4 nm, 90% [24])

< 27.59 (RENO+DYB+KL: σx > 2.1× 10−4 nm, 90% [49])

< 0.18 (90%)

< 0.22 (95%)

WPD II

α [×10−4]
< 0.14 (95%)

WPD III

α ≡ σrel [×10−2]
{< 23 (DYB: σrel < 0.23, 95% [22])} < 1.04 (95%)

σx ≡ (2αE)−1

[×10−3 nm]
{> 10−1 (DYB: σx > 10−4 nm, 95% [22])} > 2.32 (95%)

Table 3. The limits on the damping parameters for each damping model at JUNO. The experimental
and phenomenological limits in the literature are also shown for comparison.

table 3 can be unified into a general form [13, 14],

Dij = exp
(
−α
|∆m2

ij|ξLβ

Eγ

)
, (5.1)

where the parameters ξ, β, and γ are the power numbers in the damping factor of interest.
The strength of neutrino oscillation experiments to probe the damping effects is strongly
dependent on the specific values of ξ, β, and γ [13, 14].

Compared to current experimental limits, we find that JUNO will improve the limits on
τ3/m3 in the ν3 decay model by a factor of ∼ 36. The limits on σrel (or σx) in the WPD III
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Figure 2. The ratio of the ν̄e survival probabilities between the WPD II and WPD III scenarios as
a function of the neutrino energy. Here the oscillation parameters are taken from table 2 and the
damping parameter σrel is set to 2.08× 10−2, which corresponds to a 5σ CL limit obtained from
this work.

model can be also improved by a factor of ∼ 22 (23). After taking into account the previous
limits from phenomenological analysis, we find that JUNO will also impose stronger limits
on the damping parameters in WPD I and WPD III. However, the improvement of the
bounds on the damping parameters in the QD I, QD II, QD III, ν3 decay and neutrino
absorption scenarios from JUNO is not significant compared to other phenomenological
analysis. This is mainly due to the fact that JUNO has a smaller value of |∆m2

ij|ξLβ/Eγ .
From table 3, we see that a global joint analysis can be more restrictive in terms of these
limits, which provides a promising future direction for JUNO to study these damping effects.

In the WPD II model, we also replace α with (
√

2σrel/4)2 to study the effect of limit
on σrel in the absence of the quantum decoherence caused by the dispersion effect. We
find that the upper limits on σrel for the WPD II and WPD III are about the same, which
means that the quantum decoherence caused by the dispersion effect is negligible on the
limits on the damping parameters at JUNO. This can be understood from figure 2, which
shows that the ν̄e survival probabilities described by eq. (3.4) and eq. (3.5) are very close
at JUNO, and the modification to the ν̄e survival probability due to the dispersion effect is
less than 0.5%.

5.2 Disentangling damping signatures at JUNO

To compare these eight damping effects, we follow the analysis method described in ref. [13].
For a fixed set of oscillation parameters and α values in the simulated damping model,
we marginalize over the oscillation parameters, α values and all pull parameters in the
fitted model. Then, we define a threshold αth as the sensitivity limit for the simulated α,
i.e., the simulated α must be above this threshold for the simulated damping model to be
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JUNO

95%

(3σ)

Simulated damping model

Fitted model
QD I
α

10−6 MeV2
m

&

QD II
α

10−6
m

&

QD III
α

10−8
MeV2•m

&

Absorption
α

10−7
MeV•m

&

ν3 decay
α

10−4 MeV
m

&

WPD I
α

10−3MeV2 &

WPD II
α

10−4 &

WPD III
α

10−2 &

No damping
4.62

(7.2)

0.99

(1.54)

1.51

(2.35)

1.28

(1.99)

0.55

(0.93)

0.22

(0.44)

0.14

(0.24)

1.05

(1.39)

QD I —
1.05

(1.62)

1.51

(2.35)

1.28

(1.99)

0.55

(0.93)

0.22

(0.44)

0.14

(0.24)

1.05

(1.39)

QD II
4.82

(7.5)
—

1.75

(2.71)

1.84

(2.84)

0.55

(0.93)

0.22

(0.44)

0.14

(0.24)

1.05

(1.39)

QD III
4.62

(7.2)

1.16

(1.8)
—

4.54

(7.16)

0.55

(0.93)

0.22

(0.44)

0.14

(0.24)

1.05

(1.39)

Absorption
4.62

(7.2)

1.43

(2.24)

5.26

(8.21)
—

0.55

(0.93)

0.22

(0.44)

0.14

(0.24)

1.05

(1.39)

ν3 decay
4.62

(7.2)

0.99

(1.54)

1.51

(2.35)

1.28

(1.99)
—

4.03

(7.17)

10.48

(16.64)

8.88

(11.04)

WPD I
4.62

(7.2)

0.99

(1.54)

1.51

(2.35)

1.28

(1.99)

4.4

(-)
—

3.2

(39.2)

4.72

(15.68)

WPD II
4.62

(7.2)

0.99

(1.54)

1.51

(2.35)

1.28

(1.99)
—

10

(17.2)
—

21.76

(25.04)

WPD III
4.62

(7.2)

0.99

(1.54)

1.51

(2.35)

1.28

(1.99)
—

9.12

(15.68)

66.8

(88.4)
—

Table 4. The sensitivity limits on α for which a certain simulated damping model (in columns)
could be distinguished from a certain fitted model (in rows) at JUNO.

distinguishable from the fitted model at JUNO. The corresponding sensitivity limits at a
95% (3σ) CL obtained through this work are shown in table 4, where we specifically include
the no-damping model among the fitted models. For instance, the QD I model could be
distinguished from the no-damping model at the 95% CL if α & 4.62× 10−6 MeV2/m.

In the rows representing ν3 decay versus WPD-like models, there are no corresponding
αth values at the 3σ CL since the χ2 are below 6.4 for all α values in the simulated ν3 decay
model. This can be attributed to the distortion of the standard ν̄e survival probability
spectrum caused by the ν3 decay, which can be easily compensated for by shifting the
neutrino oscillation parameters and α in the fitted WPD-like models. In the columns
representing WPD-like models, the values with other WPD-like or ν3 decay scenarios
are several orders of magnitude greater than the values with QD-like models. Thus, if a
WPD-like model exists in nature, it will be much more difficult to distinguish it from other
WPD-like scenarios or from a ν3 decay scenario as compared to a QD-like model.
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6 Conclusions

In this paper, we systematically study the phenomenology of damping signatures at JUNO,
a medium-baseline reactor neutrino oscillation experiment. As the benchmark models in
this work, we analyze several new physics scenarios, including quantum decoherence, ν3
decay, neutrino absorption, and wave packet decoherence. Based on a six-year exposure
and five main background sources for the JUNO detector, we demonstrate how to test and
disentangle the fine-scale spectral structure caused by the damping effects. The exclusion
sensitivities on the damping parameters at JUNO for each benchmark model are listed in
table 3. Compared to current experimental limits, JUNO will significantly improve the limits
on τ3/m3 in the ν3 decay model, the width of the neutrino wave packet σx, and the intrinsic
relative dispersion of neutrino momentum σrel by a factor of ∼ 36, 23 and 22, respectively.
Furthermore, we find that the quantum decoherence caused by the dispersion effect is
negligible at JUNO. Finally, we find that compared to the QD-like models, the WPD-like
and ν3 decay models are much more difficult to distinguish from each other at JUNO.
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