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Simple Summary: Cancer cells display among its hallmark genomic instability. This is a progressive
tendency in accumulate genome alteration which contributes to the damage of genes regulating cell
division and tumor suppression. Genomic instability favors the appearance of survival-promoting
mutations, increasing the likelihood that those mutations will propagate into daughter cells and have
a significant impact on cancer progression. Among the many factor influencing this phenomenon,
mitochondrial physiology is emerging. Mitochondria are bound to genomic instability by responding
to DNA alteration to trigger cell death programs and as a source for DNA damage. Mitochondrial
alterations prototypical of cancer can desensitize the mitochondrial route of cell death, facilitating
the survival of cell acquiring new mutations, or can stimulate mitochondrial mediated DNA damage,
boosting the mutation rate and genomic instability itself.

Abstract: Mitochondria are well known to participate in multiple aspects of tumor formation and
progression. They indeed can alter the susceptibility of cells to engage regulated cell death, regulate
pro-survival signal transduction pathways and confer metabolic plasticity that adapts to specific
tumor cell demands. Interestingly, a relatively poorly explored aspect of mitochondria in neoplastic
disease is their contribution to the characteristic genomic instability that underlies the evolution of
the disease. In this review, we summarize the known mechanisms by which mitochondrial alterations
in cancer tolerate and support the accumulation of DNA mutations which leads to genomic instability.
We describe recent studies elucidating mitochondrial responses to DNA damage as well as the direct
contribution of mitochondria to favor the accumulation of DNA alterations.

Keywords: mitochondria; genomic instability; tumor progression; mitophagy; p53; ROS; cal-
cium; apoptosis

1. Introduction

Mitochondria are highly dynamic organelles that are quintessential for eukaryotic
cells since they mediate fundamental activities indispensable to cells’ health. As the center
of oxidative metabolism, mitochondria are the powerhouse of the cells, they participate
in calcium (Ca2+) homeostasis, they are the principal source of reactive oxygen species
(ROS) production and are involved in regulated cell deaths (RCD) [1,2]. Additionally,
mitochondrial functions are fine-tuned by a delicate balance between mitochondrial dy-
namics (fusion and fission), biogenesis and autophagy. Moreover, mitochondria are a core
component of the signal transduction cascade, since they act as a signaling platform that
receives cellular signals and propagates targeted responses.

Reflecting the key role of mitochondria in all these balanced and perfectly organized
activities, mitochondrial perturbations, modifications of their key components or defects in
this complex machinery are correlated to several diseases [3–5]. Cardiovascular diseases,
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neurological disorders and metabolic abnormalities are just a few examples of the multitude
of pathologies in which mitochondria are involved. Last but not least, mitochondrial
alterations are closely related to cancer [6,7].

Mitochondria harbor their own circular and double-stranded DNA genome (mtDNA),
independently from the nuclear one (nDNA), which encodes 37 genes: 22 tRNAs, 2 rRNAs
and 13 proteins necessary for electron transport chain (ETC) and oxidative phosphorylation
(OXPHOS). Mutations in mtDNA have been found in a spectrum of human cancers, such as
hepatocellular carcinoma, breast and gastric cancers and colorectal tumors, correlated with
defects in mitochondrial respiration, high lactate levels and increased tumorigenesis [8–11].

Structurally, mitochondria are double-membrane bound, organized as an outer mem-
brane (OMM) permeable to ions and metabolites up to 5000 Da, an intermembrane space
(IMS) and a highly selective inner membrane (IMM), characterized by invaginations called
cristae, which enclose the mitochondrial matrix and where mitochondrial ETC complexes
(as well as other proteins) are hosted and protected from random diffusion [12]. The inner
boundary membrane is enriched with structural proteins and components of the import
machinery of mitochondria.

Functionally, mitochondria continuously undergo fission, regulated mainly by
dynamin-related protein 1 (DRP1), or fusion, mediated by mitofusins 1 and 2 (MFN1
and MFN2) and optic atrophy 1 protein (OPA1), in a balanced manner to regulate their
overall morphology and to adapt to their energetic needs [13]. Interestingly, OMM pro-
teins have vital roles in monitoring mitochondrial quality and are targets of a specialized
autophagic pathway (mitophagy) that ensures the selective removal of dysfunctional or
damaged mitochondria [14,15]. Since mitochondrial biology and metabolic plasticity have
a central role in maintaining cellular homeostasis and physiological demands, it is not
surprising that cancer cells modify these mitochondrial dynamics to support the high
bioenergetic demand and to improve their proliferation and survival.

As already mentioned, mitochondria occupy a central position in the control of RCD,
where mitochondrial outer membrane permeabilization (MOMP), driven by the activation
of proapoptotic effectors of the B cell lymphoma 2 (BCL2) family of proteins (notably BAX
and BAK) initiates a cascade that leads to the opening of pores on the OMM and release
of the pro-apoptotic factor’s cytochrome c, endonuclease G (Endo G), apoptosis inducing
factor (AIF), Smac/DIABLO. These proteins, once in the cytoplasm, can induce apoptosome
formation, caspase and nucleases activation leading to RCD execution [16–18]. Apoptosis is
not the only mechanism for RCD; other types are emerging such as necroptosis, pyroptosis
and ferroptosis, which include pro-inflammatory signaling induction [19–21].

Mitochondria are structurally and functionally connected to the endoplasmic reticu-
lum (ER, the major cellular store for Ca2+) through the mitochondria associated membranes
(MAMs), specialized regions that provide a molecular platform that decode different cel-
lular functions between the two organelles [22]. MAMs play a pivotal role in different
signaling pathways, including lipids transfer, autophagy, Ca2+ homeostasis, apoptosis and
inflammatory responses [23–25]. Alterations in the composition of MAMs lead to several
pathological conditions, including cancer [26–28].

Furthermore, mitochondria are the primary source of reactive oxygen species (ROS)
through respiratory complexes (mainly complex I and III), but also via NADPH-oxidase,
monoaminoxidase, aconitase and others [29,30]. In normal cells, ROS participate in stress
signaling; however, in cancer cells mitochondrial ROS induce nDNA and mtDNA dam-
age and activate cancer-promoting transcription factors, thereby promoting neoplastic
transformation [31,32].

The interconnections between these mitochondrial functions and diseases, including
cancer, have been widely described and studied; however, little is known about mitochon-
drial dysfunctions and genomic instability. This area of study is still in its early stages, with
several studies starting to explore and pinpoint the importance of these interconnections
in cancer.
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The purpose of this review is to critically discuss how genomic instability and mi-
tochondrial homeostasis are closely related to each other and how this interaction is
important for cancer progression, focusing on the possibility of harnessing such defects for
therapeutic purposes.

2. Mitochondrial Response to nDNA Damage

Cells are continuously subjected to a large variety of DNA lesions, which can be
generated endogenously (e.g., by oxidative stress) or exogenously (such as ultraviolet light,
ionizing irradiation or DNA damaging drugs). Furthermore, different types of reactive
species such as ROS, reactive nitrogen species, alkylating agents and lipid peroxidation
produced by metabolic reactions can be harmful for DNA. There are a great variety of DNA
damage, ranging from single or two-bases alternations to double or single strand DNA
breaks and cross-links between bases in the same or opposite strands or between DNA and
protein molecules.

Depending on the type of DNA damage, cells can activate several strategies of con-
tingency. DNA damage leads to cellular responses like cell-cycle arrest, DNA repair,
senescence, or apoptosis, which are referred to as DNA damage response (DDR). DDR in-
cludes a sophisticated network of signaling pathways that cells could engage in depending
on the context in which the damage occurs. The proficient execution of DDR prevents the
transmission of harmful mutation and genomic instability to the progeny of the affected
cells. Apoptosis is an ultimate cellular decision which consists in the physical loss of the
damaged cells that would increase the risk of genomic instability and cancer.

As previously described, mitochondria play a key role in apoptosis execution. Indeed,
intrinsic stimuli such as metabolic, replicative, and genotoxic stress result in the induction
of the mitochondrial apoptotic pathway.

The most famous responder to DNA damage is p53, whose role in the cell fate can be
either pro-death or pro-survival, depending on the level of DNA damage, duration of the
DDR and cell type. In general, high levels of DNA damage that results in persistent p53
activation trigger RCD, while low levels activate p53 only transiently, promoting repair
and survival mechanisms (Figure 1). DNA damages activate ATM/ATR and CHK1/CHK2
kinases that phosphorylate p53 at the N-terminus, followed by its subsequent stabilization
and activation. Among its numerous activities, p53 can move to mitochondria which
directly promotes MOMP, inducing both mitophagy and apoptosis, under a variety of
RCD-inducing conditions [33]. Notably, many oncogenic mutations affect p53 as well as its
mitochondrial partners, causing the failure of apoptosis engagement and promoting tumor
formation [34–36].

p53 can also suppress the activity of mitophagy executors PINK1 (PTEN-induced
kinase 1) and Parkin. In particular, nuclear p53 suppresses the expression of PINK1 [37]
while cytoplasmic p53 interacts with Parkin, interfering with its translocation to mito-
chondria [38], then favoring the accumulation of dysfunctional mitochondria prone to
engage MOMP.
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Figure 1. Mitochondrial response to DNA damage. DNA damage can induce RCD by eliciting Ca2+ transfer from ER
to mitochondria which cause mPTP opening and inducing p53 activation. This favors expression of mitochondrial pro-
apoptotic factors as well as MOMP engagement. Further DNA damage response can exert both positive and negative
regulation of mitophagy which antagonizes MOMP.

Mitophagy can also be positively modulated by DDR pathways (Figure 1). The Fanconi
anemia complementation group C (FANCC) protein interacts with mitophagy mediator
PARKIN, promoting mitochondrial clearance [39]. Further, mitochondrial dysfunction
due to impaired mitophagy has been reported in cells lacking ATM. Multiple mechanisms
could be accounted for this phenotype. ATM deletion causes extensive activation of PARP1
which leads to depletion of the NAD+ pool and inhibition of several sirtuins. These
are NAD+-sensitive promoters of autophagy that act via multiple pathways (for a more
comprehensive review see [40]). Furthermore, ATM can sustain mitophagy via the NEMO-
JNK pathways [41]. Considering the discrepant observations reported for the master
responders of DDR, p53 and ATM, the net effect of DNA damage on mitophagy and its
impact in genetic instability and tumor formation is still an open question.

A relatively novel player in DDR and tumor formation is Ca2+ signaling. Indeed,
cancer-driving oncogene and tumor suppressor mutations exert their pro-tumorigenic
functions by altering normal Ca2+ homeostasis [42]. Thus, the malignant remodeling
of Ca2+ dynamics helps to sustain cancer hallmarks [43]. Indeed, many studies have
contributed to defining the role of cytoplasmic Ca2+ levels in different phases of tumor
progression [44]. Some plasma membrane Ca2+ transporters that promote Ca2+ entry from
the extracellular milieu, such as Orai3 channels [45,46], are currently considered pivotal
factors in cancer development. The bigger players in organelle Ca2+ communication are
the endoplasmic reticulum (ER) and mitochondria. Both of them are strictly associated
with each other and form membrane tethers important for Ca2+ transfer and the exchange
of other ions and phospholipids.

The most accepted physiological role of mitochondrial Ca2+ uptake is the control of
metabolic activity of the mitochondria. Indeed, different members of the TCA cycle are
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activated by Ca2+ via different mechanisms. Those enzymes (α—ketoglutarate dehydro-
genase, isocitrate dehydrogenase and pyruvate dehydrogenase phosphatase) represent
rate-limiting steps thus controlling the feeding of electrons into the respiratory chain and
the generation of the proton gradient across the inner membrane, in turn necessary for
Ca2+ uptake and ATP production [47].

It has also been demonstrated that Ca2+ transfer from mitochondria to ER is causally
linked to RCD. Specific circumstances (e.g., hyperstimulation of ionotropic glutamate
receptors, high ROS, or ER stress) lead to Ca2+ cycling across the mitochondrial membranes,
collapse of the proton gradient and bioenergetic catastrophe, thus leading to RCD by
necrosis. Undoubtedly, Ca2+ binds to subunit beta of mitochondrial F1/FO ATP synthase,
favoring its transition to a death channel called mitochondrial permeability transition pore
(mPTP) [48,49]. mPTP opening cause the collapse of mitochondrial homeostasis inducing
the impairment of intracellular activities, culminating in necrotic phenotype. In addition,
mitochondrial Ca2+ sensitize cells to apoptotic engagement, mPTP allows the release in
the cytosol of intermembrane-residing apoptotic factors triggering caspase-dependent
and a caspase-independent apoptosis. The ER-resident Ca2+ channel inositol phosphate
receptor (Ip3R) has been demonstrated in different cell types to mediate this Ca2+-regulated
RCD, especially its isoform 3 (Ip3R3). The ER-mitochondria interface, i.e., MAMs, is the
residency of Ip3R3 and of several cancer related factor, such as the tumor suppressors
PML [50] and PTEN [51] and the proto-oncogene AKT. These can localize to MAMs where
exert their pro- or antiapoptotic activities by altering Ip3 dependent Ca2+-transfer and
RCD. AKT phosphorylate Ip3R3 and the MCU complex component, MICU1, impairing
their activities [52,53]. PML and PTEN counteract the Ip3R3 phosphorylation by favoring
its interaction with the phosphatase PP2A. Moreover, PTEN can stabilize Ip3R3 competing
for its binding with the F-box protein FBXL2, a receptor for Ip3R3 ubiquitination [54].
In addition, p53 can localize at ER where it interacts with SERCA (Sarco-Endoplasmic
Reticulum Calcium ATPase)-2, the pump that maintains elevated the Ca2+ concentration
within ER lumen. The interaction with wild type, but not cancer-related mutant, p53 favors
SERCA-2 activity and maintains an effective Ca2+ dependent RCD [55,56]. In contrast,
Bcl-2 overexpression has been demonstrated to favor Ca2+ leak from ER, dampening
the execution of apoptosis [57]. Again, it has been proposed that H-RAS impairs tumor
transformation by Caveolin-1-dependent modulation of Ca2+ within ER [58] (Figure 2).

Recently it has been demonstrated that BRCA1-associated protein 1 (BAP1) binds and
stabilizes Ip3R3, modulating Ca2+ release from the ER to mitochondria, promoting RCD.
Most importantly, ultraviolet radiation induced ER Ca2+ release, which was significantly
impaired in BAP1+/− cells. As a result, BAP1+/− displayed increased DNA damage and
survival which was reversed by Ip3R3 overexpression [59]. While the exact mechanism
by which DDR activates Ca2+ transfer is still to be elucidated, these results indicate that
mitochondrial Ca2+ uptake is an active mechanism in the control of DDR induced RCD
and that its deactivation is instrumental to tumor formation.
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Figure 2. Role of oncogene and tumor suppressor genes in Ca2+ dependent RCD. (A) In normal cells, stressing stimuli (e.g.,
UV irradiation) induces the transfer of Ca2+ from ER to mitochondria, causing the transition of F1/FO ATP synthase to
mPTP, hence the engagement of RCD. (B) Elevation of Bcl-2 or H-RAS expression causes the reduction of Ca2+ content into
ER lumen, causing an impaired Ca2+ transfer to mitochondria which fail to properly engage mPTP and RCD. (C) AKT
activation causes the phosphorylation of Ip3R3 and the MCU member MICU1, making both channels less permeable to
Ca2+. Similarly, FBXL impairs Ip3R3 stability, and favoring its degradation. Both mechanisms result in a lower Ca2+ transfer,
while leaving ER Ca2+ content unchanged. (D) The oncosuppressor genes PTEN and PML counteract the effect of AKT and
FBXL, by dephosphorylating and stabilizing Ip3R3. This potentiates the Ca2+ accumulation to mitochondria, empowering
mPTP opening. (E) p53 directly interacts with SERCA, favoring its Ca2+ pumping activity within ER lumen. This results in
favored Ca2+ transfer, mPTP opening and RCD.

3. Mitochondria as Cause of Genomic Instability

Mitochondria represent one of the most important sources for ROS generation. High
levels of ROS lead to mTORC1 inactivation which promotes mitophagy, reducing the
number of mitochondria and through a feedback mechanism, prevents ROS increment [60].

Mitochondrial ROS has a multifaceted and pleomorphic role in DDR because beyond
causing damage, they also activate a stress response (Figure 3). Mitochondria-produced
ROS can initiate a transduction signaling that leads to transcriptional changes in the nu-
cleus through a retrograde mechanism. Retrograde signaling can induce stress-defense
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responses including removal of initial dangerous signaling molecules, like ROS. Inter-
estingly, autophagy could be activated by ROS and prevent oxidative stress [61,62]. In
general, these “good side” of ROS, especially the mitochondrial one, can be considered as a
protective mechanism that help cells from subsequent larger stresses [63].

Figure 3. Mitochondrial response to DNA damage. Mitochondria directly induces DNA damage via
ROS production, the activation of DNase during sublethal MOMP or activation of CFM mediated
by UPRmt.

ROS can induce DNA damage through oxidizing nucleoside bases, which can lead
to G-T or G-A transversions. Oxidized bases are typically recognized and repaired by the
Base Excision Repair (BER) pathway, but when they occur simultaneously on opposing
strands, attempted BER can lead to the generation of DSBs [64]. ROS oxidize nucleotides
affect polymerase activity, interfering with the replication fork [65,66]. ROS can also
affect replication fork progression through the dissociation of peroxiredoxin2 oligomers
(PRDX2). PRDX2 forms a replisome associated ROS sensor that binds to TIMELESS, a fork
accelerator. Elevated ROS has led to dissociation of PRDX2 and TIMELESS, thus slowing
replication fork speed [67]. Fork breakdown ultimately can lead to DSBs with concomitant
genomic instability.

ROS-induced DNA damages have been largely associated to neoplastic disease. Can-
cer cells have increased ROS production because of regulation of the ROS scavenging
system [68] as well as alterations in key signaling pathways related to cellular metabolism.
In addition, ROS production has been demonstrated to be instrumental to cancer devel-
opment and progression in multiple settings [69,70]. Overexpression of the prototypical
oncogene c-Myc was demonstrated to induce metabolic remodeling, ROS production and
DNA lesions in normal human fibroblasts. Most interestingly the exposure to the antioxi-
dant n-acetyl cysteine (NAC) was able to limit the accumulation of DNA damage, demon-
strating the ROS connection between oncogene activation and genomic alterations [71].
Accordingly, RAS overexpression induces ROS production and DNA damage in human
normal fibroblasts, and this phenomenon is inhibited by the administration of the inhibitor
of mitochondrial respiratory complex I, metformin [72].

Hürthle cell carcinoma (HCC) is a form of thyroid cancer with a marked increase in
mitochondria. HCC exhibits both a failure to concentrate radioactive iodine and avidity for
fluorodeoxyglucose, an imaging signature suggestive of metabolic reprogramming. HCC is
also characterized by large whole-chromosome instability, resulting in a near-homozygous
genome (NHG). An NHG is the result of a near-haplodization process, a phenomenon by
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which a cell population loses one copy of nearly all chromosomes with the consequent
loss of heterozygosity for a significant number of genes. Two recent independent studies
analyzed the mutational profile of HCC and observed that mtDNA complex I mutations
are enriched in HCC compared with a pan-cancer analysis [73,74] and that these mutations
are early clonal events maintained during tumor evolution. Comparably, the NHG state
was also among the most frequently observed by phylogenetic analysis, suggesting that
it also arises early. Interestingly, alterations in the balanced expression of subunits of the
respiratory complex I (a concerted activity between nuclear and mitochondrial genomes)
are a driving cause of increased ROS production. Thyroid carcinoma cell lines with marked
NHG displayed higher ROS production an increase in chromosome segregation errors
compared with cell lines with normal ploidy. Furthermore, the exposure to NAC signif-
icantly diminished the proportion of mitotic errors [75]. This observation indicates that
NHG might promote genomic instability by favoring the selection of mtDNA complex I
mutation. To date, we have no information about why NHG is associated with accumu-
lation of mtDNA mutation. One possibility is that complex I mutations are the earliest
event and NHG arises by the increase in ROS production and mitotic errors. Still, many
neoplastic lesions with mutations in respiratory complex I mitochondrial genes do not
display a near-haploid genome. Another possibility is that the remodeling of cellular
metabolism induced by complex I alterations provides an unknown selective advantage
for cells approaching the NHG. For example, a defect in respiratory chain also causes
alterations in the one-carbon metabolism pathway. This pathway connects mitochondria
activity to nucleotide synthesis and DNA repair mechanisms and a defect in respiratory
complex I could result in impaired cell proliferation restored by some outputs of the one-
carbon metabolism. It could be speculated that NHG could survive complex I alterations
because of the smaller amount of total DNA that could limit the dependency on one-carbon
metabolism. Further experiments are nonetheless needed to clarify if NHG could unmask
a real selective advantage for the metabolic consequences of complex I mutation.

Mitochondrial ROS also have a significant impact on tumor development because of
autophagy deregulation. Deregulation of autophagy has been demonstrated in multiple
neoplastic diseases because of the mutation or adaptive response and offers different forms
of selective advantage (for a more extensive discussion of autophagy in cancer please refers
to [76]). Genetic inhibition of autophagy via beclin1 deletion favors ROS production and
chromosomal instability in response to metabolic stress in a NAC-dependent fashion [77].

A similar mechanism has been proposed in the mutational evolution characteristics of
the transition between pre-leukemic conditions to acute myeloid leukemia (AML). Hema-
tological conditions that significantly increase the risk of secondary AML (sAML) are gen-
erally referred to as pre-leukemia. These include overt alterations of normal hematopoiesis
(e.g., myelodysplastic syndromes, MDS) but also the clonal expansion of HSC (hematopoi-
etic stem cell), which does not significantly affect blood composition. An early mutational
event induces aberrant self-renewal of an HSC which makes clones. Through this event (or
thanks to an additional one) the hematopoiesis from the expanded clone would result in
the aberrant accumulation of myeloid progenitor cells which have limited differentiation
capacity [78]. Mutations that characterize pre-leukemia are also typical of sAML and are
mostly affect genes related to different levels in the management of genetic information
(transcription factors, splicing factors, or epigenetic remodelers). It has thus been proposed
that their mutation alters large informational programs involved in the control of HSC
self-renewal and differentiation [79]. The expanded clone can eventually acquire a “driver”
mutation that induces the neoplastic phenotype, characterized by altered blood count, high
frequency of blasts, and more. [80,81].

The mechanism by which pre-leukemic cells acquire a second mutation is still under
investigation, though an autophagy-ROS axis was recently proposed. Significantly, Park
and co-workers reported that oncogenic mutants of the splicing factor U2AF35 promote
the use of a distal poly(A) site in the mRNA of Atg7, a fundamental component of the au-
tophagic machinery. Cells expressing oncogenic mutation cause the inefficient translation



Cancers 2021, 13, 1914 9 of 16

of ATG7, impairing the autophagic process. This induces the accumulation of dysfunctional
mitochondria, elevated ROS production and spontaneous mutation frequency. Further,
exposure to ascorbate (a molecule with antioxidant properties among many other) sig-
nificantly suppressed the ability of mutant U2AF35 to promote transformation [82]. The
fact that elevated ROS production has been reported for AML as well in pre-leukemic
conditions [83] supports the hypothesis that mitochondrial ROS might be involved in AML
evolution also in response to mutations different from the one already described.

Mitochondrial stress was proposed as source of genomic instability independently on
ROS production (Figure 3). As previously described, in specific conditions, the mitochon-
drial outer membrane can undergo MOMP, releasing in the cytoplasm proteins that activate
the apoptotic machinery. Still, at low doses, some apoptotic stimuli can induce sub/lethal
MOMP. This occurs when apoptotic stimuli can trigger MOMP in a limited fraction of the
mitochondrial network (indicatively, below 10% of total mitochondria). Sublethal MOMP
was demonstrated to occur in transformed cells exposed to the Bcl-2 inhibitor ABT-737
or mild expressions of recombinant tBID. In these conditions, while unable to trigger the
apoptotic process, the released proapoptotic factors were still able to induce apoptosome
formation and caspase-activated DNase. The latter can cause nuclear DNA damage and
genomic instability. Most importantly, immortalized (but not transformed) mouse embry-
onic fibroblasts surviving the ‘failed apoptosis’ were prone to undergoe transformation
and demonstrated a higher tumorigenic potential in xenograft assays [84].

A similar mechanism has been proposed as result of autophagic inhibition. Indeed,
it was recently demonstrated that after IR-induced DNA damage, autophagy removes
damaged mitochondria, hindering the release of the Endo G. In contrast, in autophagy-
deficient cells, the release of Endo G, sustains the accumulation of DNA damage and
increases genomic instability in cells escaping apoptosis [85]. Whether this mechanism is
concurrent or alternative to ROS-induced DNA damage remains to be clarified.

Common fragile sites (CFSs) are large chromosomal regions that exhibit breakage on
metaphase chromosomes upon replication stress. They become preferentially unstable at
the early stage of cancer development and are hotspots for chromosomal rearrangements
in cancers. They are often associated with deletions of tumor suppressor genes and
amplification of oncogenes [86,87], and are highly prone to the occurrence of copy number
variation [88]. The transcription of genes at CFSs (especially of large one) can interfere
with DNA replication, modifying the dynamics or promoting the formations of secondary
structures which ultimately lead to fork stalling and incomplete replication [87]. Gene
transcription at CFS is also used as readout of CFS instability.

Among DNA replication and repair proteins, members of the FANC pathway (en-
coded by the FANC genes) function as master regulators of CFS maintenance. Inhibition
of mitochondrial respiration by sodium azide or low oxygen exposure, represses CFS
expression in basal conditions or after induction by genetic inactivation of FANCD2. On
the contrary, causing mitochondrial stress and exacerbating respiration by exposure to the
mitochondrial uncoupler CCCP increases spontaneous CFS expression. CCCP impairs
homeostatic mechanisms of mitochondrial transport and induces mitochondrial unfolded
protein response (UPRmt). Genetic inactivation of the UPRmt mediators ATF-4 and UBL5
impairs the CFS expression induced by FANCD2 silencing. This evidence indicates that
UPRmt participates to CFS expression and that FACND2 opposes this mechanism. As
high CFS translation increases the risk of CFS breakage, this mechanism indicates that
UPRmt connect mitochondrial stress to genomic instability induced by replication stress at
preferential sites [89]. In agreement, elevated UPRmt response was recently associated with
higher tumor aggressiveness and poor patient survival [19].

Ultimately, mitochondrial control of genomic stability might pass through regulation
of the epigenome. The epigenetic code is the result of histone modifications and DNA
methylation which have a significant impact on gene expression as well as proper organiza-
tion and management of chromosomes. A number of studies have reported that neoplastic
lesions are, non-surprisingly, characterized by large variations of the epigenomic signature.



Cancers 2021, 13, 1914 10 of 16

While the impact of epigenetic alterations in tumorigenesis via altered gene expression is
an easy mechanism to propose and demonstrate, its connection with genomic instability is
a bit more complex and multiple mechanisms could be involved. Indeed, both histone mod-
ification and DNA methylation can affect (i) chromosome condensation and centrosomes
alignment (therefore proper segregation in mitosis), (ii) stability of the DNA structure,
therefore sensitivity to conditions which predispose to breakage, (iii) the mechanisms of
DNA repairs, by regulating the activity and recruitment of DNA repairs systems on the
lesion or by regulating the expression of DNA repair genes and (iv) controlling telomers
length and stability.

Histone deacetylase inhibitors or knockdown/knockout of epigenome modifiers can
induce aneuploidy, chromosomal translocations, and copy number alterations in mouse
tumor models and human cancer cell lines [90–92]. Further DNA hypomethylation and
genomic alterations are associated in human cancer [93–97] and global demethylation in
the repetitive regions of the genome, were reported to occur early during tumorigenesis,
predisposing cells to genomic instability [98].

Interestingly, mitochondria have been largely related to the control of the epigenome.
In particular, mitochondria can (i) provide citrate and/or Acetyl-CoA for the activity
of histone acetylase; (ii) regulate cytoplasmic α-ketoglutarate therefore the activity of
histone and DNA demethylase sensitive to this metabolite, especially Jumonji C domain-
containing (JMJD) and Ten-eleven Translocation (TET); (iii) finally, S-adenosyl methionine
is the source of methyl groups used by histone and DNA methyltransferases (HMTs and
DNMTs), respectively.

In several cancers, mitochondrial alterations have been linked to alteration to the
epigenetic landscape [99]. While these alterations could be attributed to all the mechanisms
listed above, most evidence indicates that the metabolic rewiring occurring in neoplasms
induces the accumulation of fumarate and succinate or of the onco-metabolite 2-oxy-
glutharate that inhibits the function of histone and DNA demethylase [100,101].

Because of all these observations, the speculation it could appear as a simple Aris-
totelian logic that mitochondrial alterations could induce in genomic instability by the
generation of a peculiar epigenetic landscape. Still, direct evidence of this mechanism (or
its eventual targetability) is lacking.

4. Conclusions

In this review, we discussed the major connections between mitochondrial activity
and nuclear DNA stability. These can be summarized as follows: (1) DDR can signal to
mitochondria, mainly to promote the execution of RCD and (2) mitochondrial stress can
directly or indirectly induce nuclear DNA alterations. In addition, we enlightened how
multiple mitochondrial alterations observed in neoplastic cells outline in the alterations
of these mechanisms. In particular, cancer cells select impaired mitochondrial engage-
ment of RCD in response to DNA damage and exacerbate mitochondrial phenotypes that
can potentiate DNA damages (Figure 4). These concepts have a profound meaning for
the mechanism of tumor initiation. Indeed, mitochondria not only can become permis-
sive to the propagation of DNA lesions to the progenies but also can support a positive
feedback that maximizes the occurrence of large genomic alterations and, ultimately, the
establishment of the genomic instability which characterizes most malignant lesions.

The contribution of mitochondria to nuclear DNA stability might have significant
clinical implications. Knowing what mitochondrial alterations are linked to genome in-
stability might help to provide better diagnoses of neoplastic disease. In the first place,
it could help in predicting the rate of acquisition of new mutations, that in many human
malignancies correlates with disease aggressiveness. In the second place, it might inform
on the decision of a therapeutic regimen. Indeed, the use of DNA damaging agents is
still routinely used worldwide for treatment of most cancers; the preliminary evaluation
of mitochondrial status in the lesion could discourage the use of these agents in favor
of more modern approaches. Finally, novel therapeutic strategies that revert mitochon-
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drial alterations linked to genome instability could be designed to support conventional
chemotherapy or radiation therapy. Indeed, emerging studies suggest that some drugs
that target mitochondrial pathways could improve radiosensitivity [102]. For instance, it
has been demonstrated that metformin reduced lung cancer cell growth and sensitized
them to radiation by modulating the ATM-AMPK signaling [103]. Moreover, it has also
been reported that metformin sensitized p53-deficient colorectal cancer cells to radiation
by repressing the expression of DNA repair systems and accumulating cells in G2/M
phase [104]. In addition, dichloroacetate, a pyruvate dehydrogenase kinase (PDK) inhibitor,
was able to alter glioblastoma cell metabolism, activating oxidative phosphorylation and
reversing the radiotherapy-induced glycolytic shift [105]. Furthermore, it has been showed
that pyrazinib (a pyrazine phenol small molecule drug with anti-angiogenic and anti-
metabolic activity) stimulated radiosensitivity in a model of radioresistant esophageal
adenocarcinoma by modulating mitochondrial bioenergetics [106].

Figure 4. Model for mitochondrial contribution to genomic instability in cancer.

In conclusion, while this field of study still requires extensive study for complete
molecular characterization, understanding the impact of altered mitochondrial biology
in cancer genomic instability has the potential to make a significant clinical impact and
amelioration of current anti-neoplastic therapies.
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