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Abstract

In this paper we consider the development of numerical schemes for mean-field equa-
tions describing the collective behavior of a large group of interacting agents. The schemes
are based on a generalization of the classical Chang-Cooper approach and are capable
to preserve the main structural properties of the systems, namely nonnegativity of the
solution, physical conservation laws, entropy dissipation and stationary solutions. In par-
ticular, the methods here derived are second order accurate in transient regimes whereas
they can reach arbitrary accuracy asymptotically for large times. Several examples are
reported to show the generality of the approach.

1 Introduction

The description of social dynamics characterized by emerging collective behaviors has
gained increasing popularity in the recent years [1, 5, 10, 13, 14, 20]. Typical examples are
groups of animals/humans with a tendency to flock or herd but also interacting agents in
a financial market, potential voters during political elections and connected members of
a social network.

In the mathematical description classical particles are replaced by more complex struc-
tures (agents, active particles,...) which take into account additional aspects related to
the various specific fields of application, like behavioral characteristics, visual perception,
experience/knowledge and so on. Various microscopic models have been introduced in dif-
ferent communities with the aim to reproduce qualitatively the dynamics and to capture
some essential stylized facts (clusters, power laws, consensus, flocking, ...).

In spite of many differences between classical particle dynamics and systems of inter-
acting agents (equation are not a consequence of fundamental physical laws derived from
first principles) one can apply similar methodological approaches. In particular, to analyze
the formation of stylized facts and reduce the computational complexity of the agents’
dynamics, it is of utmost importance to derive the corresponding mesoscopic/kinetic de-
scription [1, 2, 7, 9, 10, 15, 20, 21].
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These kinetic equations are derived in the limit of a large number of interacting agents
and describe the evolution of a non negative distribution function f(x,w, t), t ≥ 0, x ∈
Rdx , w ∈ Rdw , dx, dw ≥ 1, which satisfies a mean-field type equation of the general form

∂tf + L[f ] = ∇w ·
[
B[f ]f +∇w(Df)

]
, (1.1)

where L[·](x,w, t) is an operator describing the agents’ dynamics with respect to the x-
variable, B[·](x,w, t) is an alignment operator in the w-variable and D = D(x,w) ≥ 0 is
a diffusion function.

The most celebrated example is given by the mean-field Cucker-Smale model [9, 10,
13, 20] which, in absence of diffusion, corresponds to the choices

L[f ] = w · ∇xf, B[f ] =

∫
Rdv×Rdx

H(x, y)(w − v)f(y, v, t) dy dv, (1.2)

where

H(x, y) =
1

(1 + (x− y)2)γ
, γ ≥ 0. (1.3)

The model describes the alignment process in a multidimensional group of agents (birds,
insects, . . . ), when all agents are aligned with equal speed a flocking state is reached.
For the above choice of H it has been proved that if γ ≤ 1/2, independently on their
initial state, all agents tend to move exponentially fast with the same velocity, while their
relative distances tend to remain constant. The addition of a diffusion term weighted by
D ∈ R+ has been studied in [3, 4] among others.

Another example is the non homogeneous mean-field Cordier-Pareschi-Toscani model
[12, 21] which describes the evolution of the distribution f(x,w, t) of wealth w ∈ R+ in a
set of agents with a given propensity to invest x ∈ [0, 1]. In our notations it corresponds
to

L[f ] = φ(x,w)∂xf, B[f ] =

∫
R+

(w − v)f(y, v, t) dv, D =
σ2

2
w2. (1.4)

The equilibrium solutions in the homogeneous case, f = f(w, t) independent of x, present
the formation of power-laws and read

f∞(w) =
(µ− 1)µ

Γ(µ)w1+µ
exp

(
−µ− 1

w

)
, (1.5)

with µ = 1 + 2/σ2 > 1 the Pareto exponent and
∫
R+ f∞(w)w dw = 1.

Finally, a third example is represented by the mean-field Albi-Pareschi-Zanella model
[1, 2] describing the opinion dynamics of a group of interacting agents over a social net-
work. The evolution of the distribution f(x,w, t) of agents with a given opinion w ∈ [−1, 1]
and a certain amount of discrete connections x ∈ {0, 1, . . . , cmax}, is characterized by

L[f ] =− 2Vr(f ;w)

γ + β
[(x+ 1 + β)f(x+ 1, w, t)− (x+ β)f(x,w, t)]

− 2Va(f ;w)

γ + α
[(x− 1 + α)f(x− 1, w, t)− (x+ α)f(x,w, t)] ,

B[f ] =

cmax∑
y=0

∫
[−1,1]

P (w, v;x, y)(w − v)f(v, y, t) dv,

(1.6)

where P (·, ·; ·, ·) ∈ [0, 1] is a compromise function, γ = γ(t) is the mean density of con-
nectivity γ(t) =

∑cmax

x=0 x
∫

[−1,1]
f(x,w, t) dw, α, β > 0 are attraction coefficients, and

Vr(f ;w) ≥ 0, Va(f ;w) ≥ 0 are characteristic rates of the connections removal and adding
processes, respectively.
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Different equilibrium solutions in the case f = f(w, t) independent of x, are possible
depending on the choices of P and D. For example, if P ≡ 1 and D = σ2(1− w2)2/2 the
steady state reads

f∞(w) = C0(1 + w)−2+m̄/σ2

(1− w)−2−m̄/σ2

exp
{
− (1− m̄w)

σ2(1− w2)

}
, (1.7)

where m̄ =
∫

[−1,1]
wf∞(w) dw and C0 is such that

∫
[−1,1]

f∞(w) dw = 1.

The development of numerical methods for the above class of equations is challenging
due to the intrinsic structural properties of the solution [6, 7, 8, 11, 16, 19, 22]. Non
negativity of the distribution function, conservation of invariant quantities (like moments
in w of the distribution function), entropy dissipation and homogeneous steady states are
essential in order to compute qualitatively correct solutions of the mean-field equation.

In this paper we focus on the construction of numerical methods which preserves such
structural properties and in particular, which are able to capture the correct steady state
of the mean-field problem with arbitrary order of accuracy. The schemes are based on a
suitable generalization of the Chang-Cooper approach to nonlinear problems of Fokker-
Planck type and are derived in the next Section. Their properties are then discussed in
Section 3. Finally numerical results are presented in Section 4.

2 Derivation of the schemes

Since most of the structural properties are related to the right hand side in (1.1) in the
following we will focus on the homogeneous case f = f(w, t). Connections with the full
problem are then recovered using splitting methods or other partitioned time discretization
schemes, like additive Runge-Kutta methods [18].

Under this assumption, we can rewrite the mean-field equation (1.1) as

∂tf(w, t) = ∇w · [(B[f ](w, t) +∇wD(w))f(w, t) +D(w)∇wf(w, t)]. (2.1)

We define the d−dimensional flux function

F [f ](w, t) = (B[f ](w, t) +∇wD(w))f(w, t) +D(w)∇wf(w, t), (2.2)

so that the equation may be written in conservative form as

∂tf(w, t) = ∇w · F(w, t). (2.3)

2.1 One-dimensional case

Let us consider for notation simplicity the one-dimensional case

∂tf(w, t) = ∂wF [f ](w, t), (2.4)

where
F [f ](w, t) = (B[f ](w, t) +D′(w))f(w, t) +D(w)∂wf(w, t) (2.5)

and we used the notation D′(w) = ∂wD(w) and assume D(w) strictly positive in the
internal points of the computational domain. We introduce an uniform spatial grid wi,
i = 0, . . . , N such that wi+1 − wi = ∆w. We denote as usual wi±1/2 = wi ± ∆/2 and
consider the conservative discretization of equation (2.4)

d

dt
fi(t) =

Fi+1/2[f ](t)−Fi−1/2[f ](t)

∆w
, (2.6)
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where for each t ≥ 0, fi(t) is an approximation of f(wi, t) and Fi±1/2[f ](t) is the flux
function characterizing the discretization.

Let us set C[f ](w, t) = B[f ](w, t)+D′(w) and adopt the notations Bi+1/2 = B[f ](wi+1/2, t),
Di+1/2 = D(wi+1/2), D′i+1/2 = D′(wi+1/2). We will consider a general flux function which

is combination of the grid points i+ 1 and i as in [11, 22]

Fi+1/2[f ] = C̃i+1/2f̃i+1/2 +Di+1/2
fi+1 − fi

∆w
, (2.7)

where
f̃i+1/2 = (1− δi+1/2)fi+1 + δi+1/2fi. (2.8)

Here, we aim at deriving suitable expressions for δi+1/2 and C̃i+1/2 in such a way that
the method yields nonnegative solutions, without restrictions on ∆w, and preserves the
steady state of the system with arbitrary accuracy.

For example, the standard approach based on central difference is obtained taking
δi+1/2 = 1/2 and C̃i+1/2 = Bi+1/2, ∀ i. It is well-known, however, that such a discretization
method is subject to restrictive conditions over the mesh size ∆w in order to keep non
negativity of the solution.

Here, we aim at deriving suitable expressions for δi+1/2 and C̃i+1/2 in such a way that
the method yields nonnegative solutions without restriction on ∆w and preserves the
steady state of the system with arbitrary order of accuracy.

First, observe that at the steady state the numerical flux equal should vanish. From
(2.7) we get

fi+1

fi
=

−δi+1/2C̃i+1/2 +
Di+1/2

∆w

(1− δi+1/2)C̃i+1/2 +
Di+1/2

∆w

. (2.9)

Similarly, if we consider the analytical flux at the steady state, we have

D(w)∂wf(w, t) = −(B[f ] +D′(w))f(w, t), (2.10)

which is in general not solvable, except in some special cases due to the nonlinearity on the
right hand side. We may overcome this difficulty in the quasi steady-state approximation
integrating equation (2.10) on the cell [wi, wi+1]∫ wi+1

wi

1

f(w, t)
∂wf(w, t)dw = −

∫ wi+1

wi

1

D(w)
(B[f ](w, t) +D′(w))dw, (2.11)

which gives
fi+1

fi
= exp

{
−
∫ wi+1

wi

1

D(w)
(B[f ](w, t) +D′(w))dw

}
, (2.12)

for all i = 1, . . . , N − 1.
Now, by equating the ratio fi+1/fi of the numerical and the exact flux and setting

C̃i+1/2 =
Di+1/2

∆w

∫ wi+1

wi

B[f ](w, t) +D′(w)

D(w)
dw (2.13)

we recover

δi+1/2 =
1

λi+1/2
+

1

1− exp(λi+1/2)
, (2.14)

where

λi+1/2 =

∫ wi+1

wi

B[f ](w, t) +D′(w)

D(w)
dw. (2.15)
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Remark 1. A second order method is obtained by discretizing (2.15) through the midpoint
rule ∫ wi+1

wi

B[f ](w, t) +D′(w)

D(w)
dw ≈

∆w(Bi+1/2 +D′i+1/2)

Di+1/2
, (2.16)

therefore

λmid
i+1/2 =

∆w(Bi+1/2 +D′i+1/2)

Di+1/2
(2.17)

and

δmid
i+1/2 =

Di+1/2

∆w(Bi+1/2 +D′i+1/2)
+ +

1

1− exp(λmid
i+1/2)

. (2.18)

Higher order accuracy of the steady state solution may be obtained by higher order ap-
proximations of the integral (2.13).

2.2 The multi-dimensional case

In order to extend the previous approach to multi-dimensional situations we consider here
the case of two dimensional problems. We introduce a mesh consisting of the cells Cij =
[wi−1/2, wi+1/2] × [vj−1/2, vj+1/2] assumed to be of uniform size ∆w∆v, where as usual
∆w := wi+1/2−wi−1/2 and ∆v := vj+1/2− vj−1/2 for all i = 0, . . . , N1 and j = 0, . . . , N2.
Integration of the general mean-field equation in dimension d ≥ 1 introduced in (2.3)
yields

d

dt
fi,j =

Fi+1/2,j [f ]−Fi−1/2,j [f ]

∆w
+
Fi,j+1/2[f ]−Fi,j−1/2[f ]

∆v
, (2.19)

being Fi±1/2,j [f ], Fi,j±1/2[f ] flux functions characterizing the numerical discretization.
The quasi-stationary approximations over the cell [wi, wi+1]× [vi, vi+1] of the two dimen-
sional problem read∫ wi+1

wi

1

f(w, vj , t)
∂wf(w, vj , t)dw = −

∫ wi+1

wi

B[f ](w, vj , t) + ∂wD(w, vj)

D(w, vj)
dw,∫ vj+1

vj

1

f(wi, v, t)
∂vf(wi, v, t)dv = −

∫ vj+1

vj

B[f ](wi, v, t) + ∂vD(wi, v)

D(wi, v)
dv.

(2.20)

Therefore setting

C̃i+1/2,j =
Di+1/2,j

∆w

∫ wi+1

wi

B[f ](w, vj , t) + ∂wD(w, vj)

D(w, vj)
dw

C̃i,j+1/2 =
Di,j+1/2

∆v

∫ vj+1

vj

B[f ](wi, v, t) + ∂vD(wi, v)

D(wi, v)
dv

(2.21)

and by considering an analogous flux components by components as in the one-dimensional
case

Fi+1/2,j [f ] = C̃i+1/2,j f̃i+1/2,j +Di+1/2,j
fi+1,j − fi,j

∆w

f̃i+1/2,j = (1− δi+1/2,j)fi+1,j + δi+1/2,jfi,j

Fi,j+1/2[f ] = C̃i,j+1/2f̃i,j+1/2 +Di,j+1/2
fi,j+1 − fi,j

∆v

f̃i,j+1/2 = (1− δi,j+1/2)fi,j+1 + δi,j+1/2fi,j ,

(2.22)
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we define δi+1/2,j and δi,j+1/2 in such a way that we preserve the steady state solution
for each dimension, i.e.

δi+1/2,j =
1

λi+1/2,j
+

1

1− exp(λi+1/2,j)
,

δi,j+1/2 =
1

λi,j+1/2
+

1

1− exp(λi,j+1/2)

λi+1/2,j =
∆wC̃i+1/2,j

Di+1/2,j
, λi,j+1/2 =

∆vC̃i,j+1/2

Di,j+1/2
.

(2.23)

The cases of higher dimension d ≥ 3 may be derived in a similar way.

3 Main properties

In order to study the structural properties of the numerical scheme, like non negativity
and entropy property, we restrict to the one-dimensional case.

3.1 Nonnegativity

We introduce a time discretization tn = n∆t with ∆t > 0 and n = 0, . . . , T and consider
the simple forward Euler method

fn+1
i = fni + ∆t

Fni+1/2 −F
n
i−1/2

∆w
, (3.1)

with no flux boundary conditions FnN+1/2 = Fn−1/2 = 0.

Lemma 1. Let us consider the scheme (3.1) with no flux boundary conditions. We have
for all n ∈ N

N∑
i=0

fn+1
i =

N∑
i=0

fni . (3.2)

Proof. From equation (3.1) we have

N∑
i=0

fn+1
i =

N∑
i=0

fni +
∆t

∆w

N∑
i=0

(Fni+1/2 −F
n
i−1/2). (3.3)

Now since
N∑
i=0

(Fni+1/2 −F
n
i−1/2) = FnN+1/2 −F

n
−1/2, (3.4)

by imposing no flux boundary conditions we conclude.

Note that mass conservation holds true also in the backward Euler case by imposing
Fn+1
N+1/2 = Fn+1

−1/2 = 0.

Concerning non negativity we can prove [22]

Proposition 1. Under the time step restriction

∆t ≤ ∆w2

2(M∆w +D)
, M = max

0≤i≤N
|C̃ni+1/2|, D = max

0≤i≤N
Di+1/2, (3.5)

the explicit scheme (3.1) preserves nonnegativity, i.e fn+1
i ≥ 0 if fni ≥ 0, i = 0, . . . , N .
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Proof. The scheme reads

fn+1
i = fni +

∆t

∆w

[(
(1− δni+1/2)C̃ni+1/2 +

Di+1/2

∆w

)
fni+1

+

(
C̃ni+1/2δ

n
i+1/2 − C̃

n
i−1/2(1− δni−1/2)− 1

∆w
(Di+1/2 +Di−1/2)

)
fni

−
(
C̃ni−1/2δ

n
i−1/2 −

Di−1/2

∆w

)
fni−1

]
.

(3.6)

From (3.6) the coefficients of fni+1 and fni−1 should satisfy

(1− δi+1/2)C̃ni+1/2 +
Di+1/2

∆w
≥ 0, −δi−1/2C̃ni−1/2 +

Di−1/2

∆w
≥ 0, (3.7)

that is equivalent to show that

λi+1/2

(
1− 1

1− expλi+1/2

)
≥ 0,

λi−1/2

expλi−1/2 − 1
≥ 0, (3.8)

which holds true thanks to the properties of the exponential function. In order to ensure
the non negativity of the scheme the time step should satisfy the restriction ∆t ≤ ∆w/ν,
with

ν = max
0≤i≤N

{
C̃ni+1/2δ

n
i+1/2 − C̃

n
i−1/2(1− δni−1/2)−

Di+1/2 +Di−1/2

∆w

}
. (3.9)

Being M defined in (3.5), and 0 ≤ δi±1/2 ≤ 1, we obtain the prescribed bound.

Remark 2. Higher order SSP methods [17] are obtained by considering a convex combi-
nation of forward Euler methods. Therefore, the non negativity result can be extended to
general SSP methods.

In practical applications, it is desirable to avoid the parabolic restriction ∆t = O((∆w)2)
of explicit schemes. Unfortunately fully implicit methods originate a nonlinear system of
equations. However, we can prove that nonnegativity of the solution holds true also for
the semi-implicit case

fn+1
i = fni + ∆t

F̂n+1
i+1/2 − F̂

n+1
i−1/2

∆w
, (3.10)

where

F̂n+1
i+1/2 = C̃ni+1/2

[
(1− δni+1/2)fn+1

i+1 + δi+1/2f
n+1
i

]
+Di+1/2

fn+1
i+1 − f

n+1
i

∆w
. (3.11)

We have [22]

Proposition 2. Under the time step restriction

∆t <
∆w

2M
, M = max

0≤i≤N
|B̃ni+1/2| (3.12)

the semi-implicit scheme (3.10) preserves nonnegativity, i.e fn+1
i ≥ 0 if fni ≥ 0, i =

0, . . . , N .

Proof. Setting αni+1/2 =
λni+1/2

exp(λni+1/2)− 1
and

Rni = 1 +
∆t

∆w2

[
Di+1/2α

n
i+1/2 +Di−1/2α

n
i−1/2 exp(λni−1/2)

]
Qni =

∆t

∆w2
Di+1/2α

n
i+1/2 exp(λni+1/2)

Pni =
∆t

∆w2
Di−1/2α

n
i−1/2,

(3.13)
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equation (3.10) corresponds to

Rni f
n+1
i −Qni fn+1

i+1 − P
n
i f

n+1
i−1 = fni . (3.14)

If we introduce the matrix

(A[fn])ij =


Rni , j = i

−Qni , j = i+ 1, 1 ≤ i ≤ N
−Pni , j = i− 1, 0 ≤ i ≤ N − 1,

(3.15)

with Rni > 0, Qni > 0, Pni > 0 defined in (3.13) the semi-implicit scheme may be expressed
in matrix form as follows

A[fn]fn+1 = fn, (3.16)

with fn = (fn0 , . . . , f
n
N ). Now the matrix A is strictly diagonally dominant if and only if

|Rni | > |Qni |+ |Pni |, i = 0, 1 . . . , N, (3.17)

condition which holds true if

1 >
∆t

∆w2

[
Di+1/2α

n
i+1/2

(
exp(λni+1/2)− 1

)
−Di−1/2α

n
i−1/2

(
exp(λni−1/2)− 1

)]
=

∆t

∆w2

[
Di+1/2λ

n
i+1/2 −Di−1/2λ

n
i−1/2

]
=

∆t

∆w

[
B̃ni+1/2 − B̃

n
i−1/2

]
.

(3.18)

3.2 Entropy property

In order to discuss the entropy property we consider the prototype equation [15, 22]

∂tf(w, t) = ∂w [(w − u)f(w, t) + ∂w(D(w)f(w, t))] , w ∈ I = [−1, 1], (3.19)

with −1 < u < 1 a given constant and boundary conditions

∂w(D(w)f(w, t)) + (w − u)f(w, t) = 0, w = ±1. (3.20)

If the stationary state f∞ exists equation (3.19) may be written in the form

∂tf(w, t) = ∂w

[
D(w)f∞(w)∂w

(
f(w, t)

f∞(w)

)]
. (3.21)

We define the relative entropy for all positive functions f(w, t), g(w, t) as follows

H(f, g) =

∫
I

f(w, t) log

(
f(w, t)

g(w, t)

)
, (3.22)

we have [15]
d

dt
H(f, f∞) = −ID(f, f∞), (3.23)

where the dissipation functional ID(·, ·) is defined as

ID(f, f∞) =

∫
I
D(w)f(w, t)

(
∂w log

(
f(w, t)

f∞(w)

))2

dw,

=

∫
I
D(w)f∞(w, t)∂w log

(
f(w, t)

f∞(w)

)
∂w

(
f

f∞

)
dw.

(3.24)
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Lemma 2. In the case B[f ](w, t) = B(w) the numerical flux function (2.7)-(2.8) with
B̃i+1/2 and δi+1/2 given by (2.13)-(2.14) can be written in the form (3.21) and reads

Fi+1/2 =
Di+1/2

∆w
f̂∞i+1/2

(
fi+1

f∞i+1

− fi
f∞i

)
, (3.25)

with

f̂∞i+1/2 =
f∞i+1f

∞
i

f∞i+1 − f∞i
log

(
f∞i+1

f∞i

)
. (3.26)

Proof. In the hypothesis B[f ](w, t) = B(w) the definition of λi+1/2 does not depends on
time, i.e. λi+1/2 = λ∞i+1/2 and if a steady state exists we may write

log f∞i − log f∞i+1 = λi+1/2. (3.27)

Furthermore, the flux function Fi+1/2 assumes the following form

Fi+1/2 =
Di+1/2

∆w

[
λi+1/2f̃i+1/2 + (fi+1 − fi)

]
=
Di+1/2

∆w

[
λi+1/2(fi+1 + δi+1/2(fi − fi+1)) + (fi+1 − fi)

]
,

(3.28)

where

δi+1/2 =
1

log f∞i − log f∞i+1

+
f∞i+1

f∞i+1 − f∞i
. (3.29)

Hence we have

Fni+1/2 =
Di+1/2

∆w
log

(
f∞i
f∞i+1

)[
fi+1 +

(
fi − fi+1

log f∞i − log f∞i+1

+
f∞i+1(fi − fi+1)

f∞i+1 − f∞i

)
+

fi+1 − fi
log f∞i − log f∞i+1

]
,

=
Di+1/2

∆w
log

(
f∞i
f∞i+1

)(
f∞i+1fi − f∞i fi+1

f∞i+1 − f∞i

) (3.30)

which gives (3.25).

Theorem 1. Let us consider B[f ](w, t) = w − u as in equation (3.19). The numerical
flux (2.7)-(2.8) with B̃i+1/2 and δi+1/2 given by (2.13)-(2.14) satisfies the discrete entropy
dissipation

d

dt
H∆(f, f∞) = −I∆(f, f∞), (3.31)

where

H∆w(f, f∞) = ∆w

N∑
i=0

fi log

(
fi
f∞i

)
(3.32)

and I∆ is the positive discrete dissipation function

I∆(f, f∞) =

N∑
i=0

[
log

(
fi+1

f∞i+1

)
− log

(
fi
f∞i

)]
·
(
fi+1

f∞i+1

− fi
f∞i

)
f̂∞i+1/2Di+1/2 ≥ 0. (3.33)

Proof. From the definition of relative entropy we have

d

dt
H(f, f∞) = ∆w

N∑
i=0

dfi
dt

(
log

(
fi
f∞i

)
+ 1

)

= ∆w

N∑
i=0

(
log

(
fi
f∞i

)
+ 1

)
(Fi+1/2 −Fi−1/2),

(3.34)
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Figure 1: Test 1. (a) Time evolution of the density f(w, t) for problem (3.19) with initial
datum (4.2) over the time interval [0, 5] for σ2/2 = 0.1, ∆w = 0.05. (b) Evolution of the
relative L1 error with respect to the stationary solution (1.7) for various quadrature methods.

and after summation by parts we get

d

dt
H(f, f∞) = −∆w

N∑
i=0

[
log

(
fi+1

f∞i+1

)
− log

(
fi
f∞i

)]
Fi+1/2. (3.35)

Thanks to the identity of Lemma 2 we may conclude since the function (x − y) log(x/y)
is non-negative for all x, y ≥ 0.

4 Numerics

In this section we present several numerical tests for the proposed structure–preserving
schemes. In particular, we show that the schemes accurately describe the steady state
solution of mean-field equations.

Test 1: accuracy and steady states

Let us consider the evolution of a distribution described by the equation (3.19) with

u =

∫
I

vf(v, t)dv, D(w) =
σ2

2
(1− w2)2. (4.1)

We consider as initial distribution

f(w, 0) = β [exp{−c(w + 1/2)}+ exp{−c(w − 1/2)}] , c = 30, (4.2)

and β > 0 a normalization constant. The stationary solution in this case can be explicitly
computed and is given by (1.7).

We compute the relative L1 error of the solution with respect to the stationary state
using N = 41 points. In Figure 4 we show the evolution of the mean–field equation and the
relative L1-error in approximating the steady state solution. We used open Newton-Cotes
formulas of various orders and Gaussian quadrature to evaluate (2.15). It is possible to
observe how the different integration methods capture the steady state with different ac-
curacy. In particular using Gaussian quadrature we essentially reached machine precision.

In Table 4 we estimate the overall order of convergence of the scheme for various
integration methods. Here we used N = 41, 81, 161 grid points. The time integration
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2nd 4th 6th Gauss

T = 1
1.8676 1.9972 1.9958 1.9958
1.9840 1.9991 1.9987 1.9987

T = 5
1.9348 3.2518 2.3578 2.3344
2.0043 2.6218 2.0948 2.0930

T = 10
1.9289 3.9178 6.4645 7.3482
2.0034 3.9185 6.3630 7.9217

T = 15
1.9289 3.9178 6.4701 7.3512
2.0034 3.9786 6.6021 7.9954

Table 1: Test 1. Estimation of the order of convergence toward the reference stationary state
for each integration method at different times.

has been performed with an explicit RK4 method and the time step is chosen in such
a way that the CFL condition for the positivity of the scheme is satisfied, therefore
∆t = O((∆w)2). As expected the methods are second order accurate in transient regimes
and, as they approach the steady state, they reach the order of the quadrature method.
Clearly, the order of Gaussian quadrature is bounded by the maximum observable order
which is 8 due to the choice of the time discretization method.

Test 2: flocking dynamics

We consider a mean-field Cucker-Smale flocking model as introduced in (1.2). The space
variable is discretized using a third order WENO scheme, and the transport and interac-
tion process are combined using a second order Strang splitting scheme. For the mean-field
term, we considered a semi–implicit scheme with Gaussian quadrature of the weights. This
choice guarantees spectral accuracy for the description of the steady state solution of the
equation.

In Figure 4 we report the evolution of the solution f(x,w, t) in the phase space (x,w) ∈
[−3, 3]× [−5, 5] with ∆x = 6 · 10−2 and ∆w = 5 · 10−2. The time step has been chosen in
order to satisfy the CFL condition ∆t/∆x = 0.25/max(w).

We considered γ = 0.1 < 1/2 in the Cucker–Smale interaction function (1.3) and
a constant diffusion D(x,w) = 0.1. The initial datum is here given by a multivariate
population which shares the same average space location x = 0 and is strongly clustered
around opposite velocities v = ±1.5. As expected, the whole system converge to the
same velocity, i.e. the distribution tends to concentrate in the velocity space and to be
distributed uniformly along the spatial dimension.

Test 3: opinion on networks

Finally, we consider the model of opinion on networks (1.6). We focus on the case of a
connection dependent bounded confidence model, where the agents interact only within
a certain range of confidence. Hence, we define the compromise function [2]

P (w, v;x, y) = χ{|w−v|≤∆(x)}(v), (4.3)

where ∆(x) = d0
x

cmax
and D(w, x) = (1 − w2)2. This choice reflects a behavior where

agents with higher number of connections are prone to larger level of confidence. We report
in Figure 4 the evolution of the solution (where in order to better show its evolution
we plotted log(f(w, x, t) + ε), with ε = 0.001). We can observe how the introduction
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Figure 2: Test 2. Mean–field Cucker–Smale model for (x,w) ∈ [−3, 3] × [−5, 5] with ∆x =
6 · 10−2 and ∆w = 5 · 10−2, ∆t/∆x = 0.25/max(w). We considered γ = 0.1 in (1.3) and a
constant diffusion function D = 0.1.

of the function ∆(c) creates a heterogeneous emergence of clusters with respect to the
connectivity level: for higher level of connectivity consensus is reached, since the bounded
confidence level is larger, instead for lower levels of connectivity multiple clusters appears.
In the limiting case c = 0 the opinions are not influenced by the consensus dynamics.
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(a) t = 0 (b) t = 10

(c) t = 50 (d) t=100

Figure 3: Test 3. Evolution of the solution of the mean–field model (1.6) with uniform initial
opinion and power law type connection distribution. The interaction are described by (4.3)
with d0 = 1.01, in the time interval [0, 100]. The other parameters are σ2 = 10−3, cmax = 250,
Vr = Va = 1, γ(0) = 30, α = 10−1, β = 0.
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