Explicit Resolutions of Double Point Singularities of Surfaces

Alberto Calabri* Rita Ferraro ${ }^{\dagger}$

Abstract

Locally analytically, any isolated double point occurs as a double cover of a smooth surface. It can be desingularized explicitly via the canonical resolution, as it is very well-known. In this paper we explicitly compute the fundamental cycle of both the canonical and minimal resolution of a double point singularity and we classify those for which the fundamental cycle differs from the fiber cycle. Moreover we compute the conditions that a double point singularity imposes to pluricanonical systems.

Mathematics Subject Classification (2000): 14J17, 32S25.
Keywords: double points, surface singularities, canonical resolution, fundamental cycle, adjunction conditions.

1 Introduction

In this article, we give a detailed analysis of isolated surface singularities of multiplicity two, i.e., double points. Our goal is to be as explicit as possible.

A neighbourhood of an isolated double point p on a complex (normal) surface is analytically isomorphic to a double cover $\pi_{0}: X_{0} \rightarrow Y_{0}$ branched along a reduced curve B_{0} with an isolated singularity at a point q_{1}, where Y_{0} is a smooth surface. If x, y are local coordinates of Y_{0} near q_{1}, then we may assume that X_{0} is defined locally by an equation $z^{2}=f(x, y)$, where B_{0} is $f=0$ and f is a square-free polynomial in x, y.

It is very well-known that one may desingularize $p=\pi_{0}^{-1}\left(q_{1}\right) \in X$ following the canonical resolution, which consists in desingularizing the branch curve and normalizing. This fact was implicitly used by the so-called Italian school (as one finds out for example by reading Castelnuovo and Enriques' papers on double covers of the projective plane), but it has been first written in 1946 by Franchetta [13], who computed the properties of the exceptional curves of the canonical resolution and the fiber cycle, that is the maximal effective divisor contained in the scheme-theoretic fiber over p.

[^0]Later, in 1978, Dixon 10] proved again Franchetta's results in a more modern language and he found sufficient conditions for the fundamental cycle of a double point singularity to be equal to the fiber cycle.

At the same time, Horikawa 16] and Laufer 19] explained the canonical resolution process too (see also (4). In particular Laufer proved that the minimal resolution of a double point singularity is obtained from the canonical one by contracting simultaneously finitely many disjoint (-1)-curves and he described the relation between the topological types of the canonical resolution and of the minimal one, by using essentially the properties of the fundamental cycle.

We recall that the fundamental cycle of a resolution may well be computed inductively from the knowledge of the intersection matrix of the exceptional curves. However no explicit formula was known in the general case. In Theorem 11.2 , we will give and prove such a formula, that turns out to be very simple, for the canonical resolution and then in (11.9) for the minimal one.

Moreover, this formula allows us also to classify those double points for which the fiber cycle strictly contains the fundamental cycle.

Finally in the last section we compute what are the conditions that a double point singularity imposes to canonical and pluricanonical systems of a surface. For this purpose, it is convenient to consider projective surfaces: we will assume that X_{0} is a double plane, i.e., $Y_{0}=\mathbb{P}^{2}$.

Although the general techniques used in this paper are very well-understood, we found no reference about our results. Thus we hope that this paper may serve as a natural complement to Dixon's and Laufer's papers and as an adequate reference for algebraic geometers that may use these results.

Moreover our approach is slightly different from the previous ones because we use, as discrete invariant of a plane curve singularity, the Enriques digraph, namely the directed graph involving the proximity relations among the infinitely near points to q_{1}, and we believe that this approach may be of independent interest as well (cf. Enriques diagrams in 15], [7] and 22).

Thus we show also some examples of double point singularities which may help to understand the features of the combinatorial machinery we introduced. Please do not hesitate to contact the authors if you want to see the implementation of this approach on a computer.

The interested reader may also consult [3] for the analysis of an embedded resolution of $\left\{z^{2}=f(x, y)\right\} \subset \mathbb{C}^{3}$.
Acknowledgements. We warmly thank prof. Ciro Ciliberto for addressing us to this subject and prof. Rick Miranda for several useful discussions and for joining us in preparing a preliminary version of this paper. We are grateful to prof. J. Lipman for some relevant bibliographical reference and to the referee for many suggestions that really improved the exposition of this paper.

2 Notation

To help the reader with the notation, which will soon become very heavy, we list here the main symbols used in this paper, together with the meaning and the reference formula or page where they are defined.

Symbol	Meaning	Ref.
X_{0}	normal complex surface	p. 1
p	isolated double point singularity of X_{0}	p.
Y_{0}	smooth surface	p.
$\pi_{0}: X_{0} \rightarrow Y_{0}$	double cover	p.
B_{0}	branch curve of π_{0}	p.
	$=\pi_{0}(p)$, isolated singular point of B_{0}	p. 5
$\sigma_{i}: Y_{i} \rightarrow Y_{i-1}$	blowing-up at a point $q_{i} \in Y_{i-1}$	p. 6
	center of the blowing-up σ_{i}	p. 6
$(\cdot)_{i},(\cdot)$	intersection pairing in Y_{i} (resp. in Y_{n})	p. 6
$\sigma_{i j}: Y_{j} \rightarrow Y_{i}$	$=\sigma_{j} \circ \sigma_{j-1} \circ \cdots \circ \sigma_{i+1}$	5.1)
σ	$=\sigma_{0 n}$, sequence of blowing-ups	p. 6
E_{i}	(proper transform of) the exceptional curve $\sigma_{i}^{-1}\left(q_{i}\right)$	p. 6
E_{i}^{*}	total transform of E_{i} in $Y=Y_{n}$ via $\sigma=\sigma_{0 n} \ldots \ldots$	p. 6
$N=\left(n_{i j}\right)$	$n \times n$ matrix, $E_{i}=\sum_{j=1}^{n} n_{i j} E_{j}^{*}$	(5.3)
$M=\left(m_{i j}\right)$	$n \times n$ matrix, $E_{j}^{*}=\sum_{k=1}^{n} m_{j k} E_{k}$	5.3)
$q_{j} \rightarrow q_{i}$	q_{j} is proximate to $q_{i} \ldots$	p. 6
$q_{j}>^{s} q_{i}$	q_{j} is infinitely near of order s to q_{i}	p. 7
$Q=\left(q_{i j}\right)$	$n \times n$ matrix, $q_{i j}=1$ if and only if $q_{j} \rightarrow q_{i} \ldots \ldots$	p. 6
$\underset{\sim}{S}=\left(s_{i j}\right)$	$n \times n$ matrix of intersection numbers $s_{i j}=\left(E_{i} \cdot E_{j}\right)$	p. 7
\tilde{B}_{i}	proper transform of B_{0} in Y_{i}	p. 7
$\tilde{\alpha}_{i}$	multiplicity of \tilde{B}_{i-1} at q_{i}	(6.1)
$\tilde{\beta}_{i}$	$=\sum_{j=1}^{n} \tilde{\alpha}_{i} m_{j i}$	(6.2)
$\tilde{\Gamma}_{i}$	$=\tilde{B}_{n \mid E_{\tilde{i}}}$, divisor on E_{i}	p. 8
$\tilde{\gamma}_{i}$	$=\operatorname{deg}\left(\tilde{\Gamma}_{i}\right)=\tilde{B}_{n} \cdot E_{i}$.	
$\pi_{i}: X_{i} \rightarrow Y_{i}$	normal double cover induced by π_{0} and $\sigma_{0 i}$	p. 10
B_{i}	branch curve of π_{i}	. 10
μ_{i}	multiplicity of B_{i-1} at q_{i}	. 10
ε_{i}	$=\mu_{i} \bmod 2 \in\{0,1\}$, branchedness of E_{i}	(7.2)
α_{i}	$=\mu_{i}-\varepsilon_{i}$, even integer number	(8.1)
β_{i}	$=\sum_{j=1}^{n} \alpha_{i} m_{j i}$, even integer number	(8.1)
$\tau: X \rightarrow X_{0}$	canonical resolution of $p \in X_{0}$	p. 11
$\bar{\tau}: \bar{X} \rightarrow X_{0}$	minimal resolution of $p \in X_{0}$	p. 15
Y	$=Y_{n}$, smooth surface	p. 11
$\pi: X \rightarrow Y$	smooth double cover induced by the canonical resol.	p. 11
B	$=B_{n}$, smooth branch curve of π	p. 11
Γ_{i}	$=B_{\mid E_{i}}$, divisor on E_{i}	(8.4)
γ_{i}	$=\operatorname{deg}\left(\Gamma_{i}\right)=B \cdot E_{i}$	p. 11
F_{i}	$=\pi^{*}\left(E_{i}\right)$, exceptional curves of τ	p. 13
D	$=\sum_{i=1}^{n}\left(\alpha_{i} / 2-1\right) E_{i}^{*}$	p. 14
D^{*}	$=\pi^{*} D=\tau^{*} K_{X_{0}}-K_{X}$, adjunction condition div.	9.6)
F	fiber cycle of the canonical resolution	p. 14
\bar{F}_{i}	exceptional curves of $\bar{\tau}$	p. 16
\bar{F}	fiber cycle of the minimal resolution	10.6
Z	fundamental cycle of the canonical resolution	(11.1)
\bar{Z}	fundamental cycle of the minimal resolution	(11.9)

Symbol	Meaning	Ref.
defective	q_{i} such that there exists $q_{j}>^{1} q_{i}$ with $\alpha_{j}>\alpha_{i} \ldots \ldots \ldots$	p. 27
Def	index set of defective points $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	$28 \ldots \ldots \ldots$

3 Double covers of surfaces

Throughout this paper a double cover of a smooth irreducible complex surface Y is a finite, surjective, proper holomorphic map $\pi: X \rightarrow Y$ of degree 2 branched along a reduced curve, where X is a (normal) irreducible complex surface. In the algebraic setting π is a finite morphism of degree 2. For more details on covers and double covers the reader may consult [4].

Let p be an isolated double point singularity of a surface. Since any isolated double point occurs, locally analytically, as a double cover of a smooth surface, let us consider as our initial data a double cover $\pi_{0}: X_{0} \rightarrow Y_{0}$ branched along the reduced curve B_{0} defined in local coordinates by $f=0$, where f is a square-free polynomial. If x, y are local analytic coordinates at a point $q \in Y_{0}$, then X_{0} is defined by an equation $z^{2}=f(x, y)$ and X_{0} is normal.

If $q \notin B_{0}$, then $f(q) \neq 0$ and there are two pre-images of q in X_{0}; at each of these points X_{0} is smooth and $\pi_{0}: X_{0} \rightarrow Y_{0}$ is unramified. If $q \in B_{0}$, then there is a single point of X_{0} lying above $q ; X_{0}$ is smooth at this point if and only if B_{0} is smooth at q. The geometry of a smooth double cover is well-known:

Lemma 3.1 Let Y be a smooth surface. Let $\pi: X \rightarrow Y$ be a double cover, branched along the smooth and reduced curve B in Y.

1. If C is an irreducible component of B, then $\pi_{\mid D}: D=\pi^{-1}(C) \rightarrow C$ is an isomorphism, $\pi^{*}(C)=2 D$ and $D^{2}=C^{2} / 2$.
2. If C is an irreducible curve in Y which meets B transversally in $2 k$ points, where $k \geq 1$, then $D=\pi^{-1}(C)$ is a smooth irreducible curve on X and $\pi_{\mid D}: D \rightarrow C$ is a double cover branched along the $2 k$ points of intersection of C with B. Moreover $\pi^{*}(C)=D$ and $D^{2}=2 C^{2}$.

Let E be a smooth rational curve in Y which is not part of the branch locus B. Let $\Gamma=B_{\mid E}$ be the divisor of intersection of B with E.
3. If Γ is an even divisor, say $\Gamma=2 Q$ (in particular if $\Gamma=Q=0$), then $\pi^{-1}(E)=D_{1}+D_{2}$, where $\pi_{\mid D_{i}}: D_{i} \rightarrow E$ is an isomorphism and $D_{i}^{2}=$ $E^{2}-\operatorname{deg}(Q)$ for $i=1,2$, and $D_{1} \cdot D_{2}=\operatorname{deg}(Q)$.
4. If Γ is not even, then $D=\pi^{-1}(E)$ is an irreducible curve, $\pi_{\mid D}: D \rightarrow E$ is a double cover and $D^{2}=2 E^{2} . D$ is singular at those points $q \in E$ where $\Gamma(q) \geq 2$; locally near $p=\pi^{-1}(q)$ the curve D has the analytic equation $z^{2}=x^{n}$, where $n=\Gamma(q)$.

Proof. One can check locally the properties of π. If C is not contained in B, then $\pi_{\mid \pi^{-1}(C)}: \pi^{-1}(C) \rightarrow C$ is a double cover branched along $B_{\mid C}$ and it is surely reducible if $B_{\mid C}=2 Q$ for some divisor $Q \neq 0$ on C. Since π has degree 2, we see that intersections double after applying π^{*}, i.e., for any divisors C_{1} and C_{2} in Y, $\left(\pi^{*} C_{1} \cdot \pi^{*} C_{2}\right)_{X}=2\left(C_{1} \cdot C_{2}\right)_{Y}$, where $(\cdot)_{X}$ (resp. $\left.(\cdot)_{Y}\right)$ is the intersection form
in X (resp. Y). So all the claims about D^{2} are trivial. Regarding again point 3, note that an unramified double cover of \mathbb{P}^{1} is reducible, by Hurwitz formula (or the simply-connectedness of \mathbb{P}^{1}).

In the assumption of Lemma 3.1, B is an even divisor and

$$
\begin{equation*}
\pi_{*} \mathcal{O}_{X} \cong \mathcal{O}_{Y} \oplus \mathcal{O}_{Y}(-B / 2) \tag{3.2}
\end{equation*}
$$

while Riemann-Hurwitz Formula is:

$$
\begin{equation*}
K_{X}=\pi^{*}\left(K_{Y} \otimes \mathcal{O}_{Y}(B / 2)\right) \tag{3.3}
\end{equation*}
$$

(see 4. Lemmas 17.1 and 17.2]). If $\pi: X \rightarrow Y$ is a double cover with X normal but not smooth, one can still define the canonical divisor K_{X} and the same formula (3.3) holds. For a normal surface X the canonical divisor K_{X} is defined as the Weil divisor class $\operatorname{div}(s)$, where s is a rational canonical differential. Since Weil divisors on a normal scheme do not depend on closed subsets of codim ≥ 2, one can easily verify that (3.3) holds by considering the smooth double cover $\pi_{\mid X_{s m}}: X_{s m} \rightarrow Y \backslash \operatorname{Sing}(B)$, where $X_{s m}=X \backslash \pi^{-1}(\operatorname{Sing}(B))$.

4 Resolving a singular double cover

Suppose that the branch curve B_{0} of $\pi_{0}: X_{0} \rightarrow Y_{0}$ is not smooth at the point q_{1}, thus $p=\pi_{0}^{-1}\left(q_{1}\right)$ is a double point singularity of X_{0}.

Let us define $\mu_{1}=\operatorname{mult}_{q_{1}}(B)=2 k+\varepsilon_{1}$, with $\varepsilon_{1} \in\{0,1\}$. In order to get a resolution of the singularity $p \in X_{0}$, we begin with resolving the branch locus B_{0} of π_{0}. Let $\sigma: Y_{1} \rightarrow Y_{0}$ be the blowing-up at $q_{1} \in Y_{0}$, with exceptional curve E_{1}, and let \tilde{B}_{1} be the proper transform of B_{0} in Y_{1}.

Lemma 4.1 Let X_{1} be the double cover of Y_{1} branched along $\tilde{B}_{1}+\varepsilon_{1} E_{1}$. Then X_{1} is the normalization of the pullback $X_{0} \times_{Y_{0}} Y_{1}$, and as such is both a double cover of Y_{0} and dominates the singular surface X_{0}.

Proof. The pullback $X_{0} \times_{Y_{0}} Y_{1}$, is a double cover of Y_{1} (using the second projection) branched along the pullback of B_{0}, which is $\pi^{*}\left(B_{0}\right)=\mu_{1} E_{1}+\tilde{B}_{1}$ (in fact it is defined by $z^{2}=f(x, y)$ also). However in the local coordinates (u, v) of Y_{1}, where $x=u$ and $y=u v$, we have that $f(x, y)=f(u, u v)=u^{\mu_{1}} g(u, v)$ where $g(u, v)$ is a function whose series expansion is not divisible by u, and defines the proper transform \tilde{B}_{1} of B_{0}. Then the pullback is defined by $z^{2}=u^{\mu_{1}} g(u, v)$, and is not normal if $\mu_{1} \geq 2$; if $\mu_{1}=2 k+\varepsilon_{1}$ with $\varepsilon \in\{0,1\}$, then $w=z / u^{k}$ satisfies the monic equation $w^{2}=u^{\varepsilon_{1}} g(u, v)$. The normalization X_{1} of the pullback is defined by this monic equation, and is clearly a double cover of Y_{1} branched along $\tilde{B}_{1}+\varepsilon_{1} E_{1}$.

This normal surface X_{1} dominates X_{0}, via the first projection, and gives a partial resolution of the double point singularity. We have passed to the double cover $X_{1} \rightarrow Y_{1}$, and may iterate the procedure, continuing to blow up the branch curve at each of its singular points, then normalizing the double cover equation. It is already known that this process eventually terminates in a smooth double
cover $X_{n} \rightarrow Y_{n}$ that is called the canonical resolution of X_{0} (see Theorem 7.4). Lemma 4.1 says that the series of double covers are determined by the parities of the multiplicities of the singular points involved. If the multiplicity is even, then the exceptional curve is not part of the new branch locus, only the proper transform; if the multiplicity is odd, then the exceptional curve is part of the new branch locus. This is all well-known, see for example [\mathbb{Z}. We note that the multiplicity μ_{1} may be determined on Y_{1} by $\mu_{1}=\tilde{B}_{1} \cdot E$.

5 Blowing up a smooth surface

Let us consider a sequence of blowing-ups of a smooth surface Y_{0}, each one at a single point. We fix a particular order for the blowing-ups, and let Y_{i} be the surface obtained after the i-th blowing-up $\sigma_{i}: Y_{i} \rightarrow Y_{i-1}$ at a point $q_{i} \in Y_{i-1}$. Let $\sigma_{i j}$ be the composition of the blowing-up maps from Y_{j} to Y_{i} :

$$
\begin{equation*}
\sigma_{i j}=\sigma_{j} \circ \cdots \circ \sigma_{i+2} \circ \sigma_{i+1}: Y_{j} \rightarrow Y_{i} \tag{5.1}
\end{equation*}
$$

for $0 \leq i<j \leq n$, where n is the total number of blowing-ups. Set $\sigma=$ $\sigma_{0 n}: Y_{n} \rightarrow Y_{0}, Y=Y_{n}$ and $(\cdot)_{i}$, resp. (•), the intersection form in Y_{i}, resp. in Y_{n}. The exceptional curve $E_{i}=\sigma_{i}^{-1}\left(q_{i}\right)$ in Y_{i} satisfies $\left(E_{i} \cdot E_{i}\right)_{i}=-1$ and $\left(E_{i} \cdot \sigma_{i}^{*}(C)\right)_{i}=0$ for any divisor C of Y_{i-1}. We will abuse notation and refer to the proper transform of E_{i} on $Y_{j \geq i}$ also as E_{i}, so E_{1}, \ldots, E_{n} are the exceptional curves for σ. Let $E_{i}^{*}=\sigma_{i n}^{*}\left(E_{i}\right)$ be the total transform of E_{i} in Y_{n} via $\sigma_{i n}$.

It is well-known that the relative $\operatorname{Picard} \operatorname{group} \operatorname{Pic}\left(Y_{n}\right) / \sigma^{*} \operatorname{Pic}(Y)$ is freely generated by the classes $\left\{E_{i}\right\}_{1 \leq i \leq n}$, as well as by $\left\{E_{j}^{*}\right\}_{1 \leq j \leq n}$, and the latter ones are an orthonormal basis in the sense that:

$$
\begin{equation*}
\left(E_{i}^{*} \cdot E_{j}^{*}\right)=-\delta_{i j}, \tag{5.2}
\end{equation*}
$$

where δ is the Kronecker delta. Therefore we may write:

$$
\begin{equation*}
E_{i}=\sum_{j=1}^{n} n_{i j} E_{j}^{*}, \quad E_{j}^{*}=\sum_{k=1}^{n} m_{j k} E_{k} \tag{5.3}
\end{equation*}
$$

where the matrix $M=\left(m_{j k}\right)$ is the inverse of $N=\left(n_{i j}\right)$. Let $Q=\left(q_{i j}\right)$ be the strictly upper triangular matrix defined by $q_{i j}=1$ if q_{j} lies on E_{i} and $q_{i j}=0$ otherwise. Following the classical terminology, we say that the point q_{j} is proximate to q_{i}, and we write $q_{j} \rightarrow q_{i}$, if and only if $q_{i j}=1$.

Lemma 5.4 Let I be the identity matrix. Then $M=I+Q+\cdots+Q^{n-1}$ and

$$
\begin{equation*}
N=I-Q \tag{5.5}
\end{equation*}
$$

Proof. The first formula follows from (5.5), because $Q^{m}=0$ for $m \geq n$. We prove (5.5) by induction on n. For $n=1$, it is clear. If (5.5) holds for $n-1$, then the proper transform of E_{i} in Y_{n-1} is $\sigma_{i, n-1}^{*}\left(E_{i}\right)-\sum_{j=i+1}^{n-1} q_{i j} \sigma_{j, n-1}^{*}\left(E_{j}\right)$, so the proper transform of E_{i} in Y_{n} is $\sigma_{n}^{*}\left(E_{i}\right)-q_{i n} E_{n}=\sigma_{i n}^{*}\left(E_{i}\right)-\sum_{j=i+1}^{n-1} q_{i j} \sigma_{j n}^{*}\left(E_{j}\right)-$ $q_{i n} E_{n}^{*}$ and we conclude comparing with the first formula in (5.3).

More explicitly, M can be computed inductively from Q as follows. Suppose that the first $n-1$ columns of M are known. If $q_{i n}$ is the unique non-zero entry of the last column of Q, then the last column of M is equal to the i-th column of M (apart $m_{n n}=1$), otherwise there is also $q_{j n}=1$ and the last column of M is the sum of the i-th and the j-th column of M (except $m_{n n}=1$). Let us consider the matrix Q as the adjacency matrix of a directed graph G, that we call the Enriques digraph of σ : the vertices of G are the points q_{i}, for $i=1, \ldots, n$, and there is an arrow from q_{j} to q_{i} if and only if $q_{i j}=1$ (i.e. q_{j} is proximate to q_{i}).

Remark 5.6 The properties of Q imply that an Enriques digraph is characterized by the following four properties (see [5, §5], [15, pp. 213-214]):
i) there is no directed cycle;
ii) every vertex has out-degree at most 2;
iii) if $q_{i} \rightarrow q_{j}$ and $q_{i} \rightarrow q_{k}$, with $j \neq k$, then either $q_{j} \rightarrow q_{k}$ or $q_{k} \rightarrow q_{j}$;
iv) there is at most one q_{i} with $q_{i} \rightarrow q_{j}$ and $q_{i} \rightarrow q_{k}$, if $j \neq k$.

Note that the in-degree of q_{i} (the number of arrows ending in q_{i}) is $-E_{i}^{2}-1$.
Since we need only to resolve an isolated singularity at q_{1}, we assume to blow up only points lying on the total exceptional divisor, i.e., we assume that $q_{i} \in \sigma_{1, i-1}^{-1}\left(q_{1}\right)$, for every $i>1$. This means that only the first column Q_{1} of Q is everywhere zero, so the Enriques digraph is connected. Recall that a point q_{j} is called infinitely near to q_{i}, and we write $q_{j}>q_{i}$, if $q_{j} \in \sigma_{i, j-1}^{-1}\left(q_{i}\right)$. Thus each q_{i} is infinitely near to q_{1}. Let us define the infinitesimal order inductively. If $q_{j}>q_{i}$ and there is no q_{k} such that $q_{j}>q_{k}>q_{i}$, then q_{j} is infinitely near of order one to q_{i} and we write $q_{j}>^{1} q_{i}$. If $q_{j}>^{1} q_{k}>q_{i}$, then by induction $q_{k}>^{m} q_{i}$ for some m and we set $q_{j}>^{m+1} q_{i}$.

Usually, the main combinatorial tool used for blowing-ups is the dual graph of the exceptional curves and their self-intersection numbers, that are the entries of the intersection matrix $S=\left(s_{i j}\right)$, where $s_{i j}=\left(E_{i} \cdot E_{j}\right)$.

Lemma 5.7 The configuration of the exceptional curves E_{i} of σ may be given by only one of the following matrices: M, N, Q, or S. Indeed anyone of them determines canonically all the others.

Proof. Recall that $N=M^{-1}=I-Q$. Formulas (5.3) and (5.2) imply that:

$$
s_{i j}=\left(\sum_{k=1}^{n} n_{i k} E_{k}^{*} \cdot \sum_{h=1}^{n} n_{j h} E_{h}^{*}\right)=\sum_{k=1}^{n} \sum_{h=1}^{n} n_{i k} n_{j k}\left(E_{k}^{*} \cdot E_{h}^{*}\right)=-\sum_{k=1}^{n} n_{i k} n_{j k},
$$

so $S=-N N^{T}=N(-I) N^{T}$, that is the decomposition of S in an unipotent upper triangular, a diagonal and an unipotent lower triangular matrix. Such a decomposition is known to be unique by linear algebra.

6 The proper transform of the singular curve

We now consider a reduced curve B_{0} on Y_{0} with a singular point at the point $q_{1} \in Y_{0}$ which is being blown up. Let us denote with \tilde{B}_{i} the proper transform of
B_{0} in Y_{i} via the sequence of blowing-ups $\sigma_{0 i}$, for every $i=1, \ldots, n$. Recall that the following formula holds in Pic Y_{n} :

$$
\begin{equation*}
\sigma^{*}\left(B_{0}\right)=\tilde{B}_{n}+\sum_{i=1}^{n} \tilde{\alpha}_{i} E_{i}^{*}, \quad \text { where } \tilde{\alpha}_{i}=\operatorname{mult}_{q_{i}}\left(\tilde{B}_{i-1}\right) \tag{6.1}
\end{equation*}
$$

Abusing language a little, usually $\tilde{\alpha}_{i}$ is called the multiplicity of B_{0} at q_{i}. Note that $\tilde{\alpha}_{i}$ may be determined also in Y_{i} by $\tilde{\alpha}_{i}=\left(\tilde{B}_{i} \cdot E_{i}\right)_{i}$.

On the other hand, in $\operatorname{Pic} Y_{n}$ we may write also:

$$
\begin{equation*}
\sigma^{*}\left(B_{0}\right)=\tilde{B}_{n}+\sum_{i=1}^{n} \tilde{\beta}_{i} E_{i} \tag{6.2}
\end{equation*}
$$

for some non-negative integers $\tilde{\beta}_{i}$. Putting the second formula of (5.3) in (6.1) we find that the $\tilde{\beta}_{i}$'s can be computed from the $\tilde{\alpha}_{i}$'s as follows:

$$
\begin{equation*}
\tilde{\beta}_{i}=\sum_{j=1}^{n} \tilde{\alpha}_{j} m_{j i}, \quad \text { or shortly } \quad \tilde{\beta}=\tilde{\alpha} M \tag{6.3}
\end{equation*}
$$

where $\tilde{\alpha}$ and $\tilde{\beta}$ are row vectors with the obvious entries.
The quantities $\tilde{\alpha}$ and $\tilde{\beta}$ may also be determined on Y_{n} knowing how \tilde{B}_{n} intersects the exceptional curves E_{i}. Indeed, intersecting (6.2) with E_{i} gives $0=\tilde{B}_{n} \cdot E_{i}+\sum_{j=1}^{n} \tilde{\beta}_{j} E_{i} \cdot E_{j}$ that is, setting $\tilde{\gamma}_{j}=\left(\tilde{B}_{n} \cdot E_{j}\right)$ and $\tilde{\gamma}$ the corresponding row vector:

$$
\begin{equation*}
\tilde{\gamma}=-\tilde{\beta} S=\tilde{\beta} N N^{T}=\tilde{\alpha} N^{T}, \quad \text { so } \quad \tilde{\alpha}=\tilde{\gamma} M^{T} \tag{6.4}
\end{equation*}
$$

Note that \tilde{B}_{n} satisfies $\left(\tilde{B}_{n} \cdot E_{i}\right) \geq 0$ for every i, which is equivalent by (6.1), (5.3), (5.5) and (5.2) to the so-called proximity inequality at q_{i} :

$$
\begin{equation*}
\tilde{\alpha}_{i} \geq \sum_{j=1}^{n} q_{i j} \tilde{\alpha}_{j}=\sum_{j: q_{j} \rightarrow q_{i}} \tilde{\alpha}_{j} \tag{6.5}
\end{equation*}
$$

Suppose that B_{0} has only an isolated singularity in q_{1} and that $\sigma: Y_{n} \rightarrow Y_{0}$ resolves the singularities of B_{0}, i.e., the proper transform \tilde{B}_{n} is smooth. Then the topological type of the singularity of B_{0} at q_{1} is completely determined by the matrix M, which carries the configuration of the exceptional curves E_{i} for σ, and the intersection divisor $\tilde{\Gamma}_{i}=\tilde{B}_{n \mid E_{i}}$, which says how \tilde{B}_{n} meets E_{i}, for every $i=1, \ldots, n$. Each $\tilde{\Gamma}_{i}$ is a non-negative divisor on E_{i} and if q is a point of intersection of two exceptional curves E_{i} and E_{j}, then:

$$
\begin{equation*}
\tilde{\Gamma}_{i}(q)=0 \Longleftrightarrow \tilde{\Gamma}_{j}(q)=0 \tag{6.6}
\end{equation*}
$$

Moreover if these numbers are non-zero, then at least one number is equal to one. Condition (6.6) says that either \tilde{B}_{n} passes through q or not, while the latter statement that \bar{B}_{n} cannot be tangent in q to both exceptional curves simultaneously. These divisors $\tilde{\Gamma}_{i}$ express the combinatorial information of the singularity of the
branch curve completely. Given the configuration of the exceptional curves, they can be arbitrary, subject to the above condition.

We remark that the knowledge of M and of the degrees $\tilde{\gamma}_{i}=\operatorname{deg}\left(\tilde{\Gamma}_{i}\right)$ is equivalent to the knowledge of Q and the multiplicities $\tilde{\alpha}_{i}$ of B_{0} at q_{i}, by (6.4).

Therefore we will define the weighted Enriques digraph of $q_{1} \in B_{0}$ by attaching to each vertex q_{i} of the Enriques digraph the weight $\tilde{\alpha}_{i}=\operatorname{mult}_{q_{i}}\left(\tilde{B}_{i-1}\right)$.

Example 6.7 Let $B_{0} \subset Y_{0}$ be defined locally near the origin $q_{1}=(0,0)$ by:

$$
x\left(y^{2}-x\right)\left(y^{2}+x\right)\left(y^{2}-x^{3}\right)\left(y^{2}+x^{3}\right)=0
$$

Clearly B_{0} has multiplicity $\tilde{\alpha}_{1}=7$ at q_{1}. Blow up $q_{1}: \tilde{B}_{1} \subset Y_{1}$ has two singular points q_{2} and q_{3} on E_{1} of multiplicity $\tilde{\alpha}_{2}=3$ and $\tilde{\alpha}_{3}=2\left(q_{2}\right.$ and q_{3} are infinitely near points of order one to q_{1}). Then blow up q_{2} and $q_{3} . \tilde{B}_{2} \subset Y_{2}$ meets transversally E_{2} and it is smooth at those points, but $\tilde{B}_{3} \subset Y_{3}$ has in $q_{4}=E_{1} \cap E_{3}$ a point of multiplicity $\tilde{\alpha}_{4}=2$, so q_{4} is proximate to both q_{3} and q_{1}, but q_{4} is infinitely near of order 2 to q_{1}. Classically, q_{4} is called a satellite point to q_{1}. Finally $\tilde{B}_{4} \subset Y_{4}$ is smooth.

The configuration of the exceptional curves is determined by anyone of the following matrices:

$$
Q=\left(\begin{array}{llll}
0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right) \quad M=\left(\begin{array}{llll}
1 & 1 & 1 & 2 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right) \quad S=\left(\begin{array}{cccc}
-4 & 1 & 0 & 1 \\
1 & -1 & 0 & 0 \\
0 & 0 & -2 & 1 \\
1 & 0 & 1 & -1
\end{array}\right)
$$

and the combinatorial data of \tilde{B}_{4} by anyone of the following vectors:

$$
\tilde{\alpha}=(7,3,2,2), \quad \tilde{\beta}=(7,10,9,18), \quad \tilde{\gamma}=(0,3,0,2)
$$

that we encode in the following weighted Enriques digraph:

7 Resolving the branch locus of a double cover

We return to consider a normal double cover $\pi_{0}: X_{0} \rightarrow Y_{0}$ branched along the singular reduced curve B_{0}. We desingularize B_{0} by successive blowing-ups as in the previous sections. We have seen that σ induces a normal double cover $\pi_{n}: X_{n} \rightarrow Y_{n}$, which is the normalization of the pullback $X_{0} \times_{Y_{0}} Y_{n}$. As in Lemma 4.1, π_{n} is branched along a reduced curve B_{n}, obtained from $\sigma^{*}\left(B_{0}\right)$ by removing the multiple components an even number of times. Hence B_{n} is made of the proper transform \tilde{B}_{n} of B_{0} and possibly of some exceptional curves E_{i}. We set ε_{i} equal to one or zero, depending on whether E_{i} is part of the branch
locus of Y_{n} or not (and we say that E_{i} is branched, resp. unbranched). Setting ε the corresponding row vector, by (6.2) and (6.3) we have that:

$$
\begin{equation*}
\varepsilon=\tilde{\beta} \bmod 2 \quad \text { and } \quad \varepsilon=\tilde{\alpha} M \bmod 2 \tag{7.1}
\end{equation*}
$$

Note that the branchedness of E_{i} is determined at the moment E_{i} is created on Y_{i} by blowing up the point $q_{i} \in Y_{i-1}$. Indeed, Lemma 4.1 says that $\varepsilon_{i}=1$ (resp. $\varepsilon_{i}=0$) if the multiplicity μ_{i} at q_{i} of the branch locus B_{i-1} of π_{i-1} : $X_{i-1} \rightarrow Y_{i-1}$ is odd (resp. even). Shortly:

$$
\begin{equation*}
\varepsilon=\mu \bmod 2 \tag{7.2}
\end{equation*}
$$

Assuming inductively to know ε_{j} for $j<i$, the multiplicity of B_{i-1} at q_{i} is

$$
\begin{equation*}
\mu_{i}=\tilde{\alpha}_{i}+\sum_{j=1}^{i-1} \varepsilon_{i} q_{j i}=\tilde{\alpha}_{i}+\sum_{j: q_{i} \rightarrow q_{j}} \varepsilon_{j}, \quad \text { or shortly } \quad \mu=\tilde{\alpha}+\varepsilon Q \tag{7.3}
\end{equation*}
$$

If we have blown up to make the proper transform \tilde{B}_{n} smooth, we still may not have the total branch locus B_{n} smooth. Singularities of the total branch locus now come from two sources: intersections of \tilde{B}_{n} with branched E_{i} 's, and intersections between two different branched E_{i} 's. We first take up the former case. Suppose that \tilde{B}_{n} meets the exceptional configuration $\bigcup_{i} E_{i}$ at a point q_{n+1}. We blow up q_{n+1} to create a new surface Y_{n+1}, a new proper transform \tilde{B}_{n+1}, and a new exceptional curve E_{n+1}. Since \tilde{B}_{n} is smooth at q_{n+1}, we have $\left(\tilde{B}_{n+1} \cdot E_{n+1}\right)_{n+1}=1$. We now have new intersection divisors $\tilde{\Gamma}_{i}^{\prime}$ for each $i=1, \ldots, n+1$. These are related to the previous intersection divisors $\tilde{\Gamma}_{i}$'s for $i=1, \ldots, n+1$ as follows:

$$
\tilde{\Gamma}_{i}^{\prime}= \begin{cases}\tilde{\Gamma}_{i} & \text { if } q_{n+1} \notin E_{i} \\ \tilde{\Gamma}_{i}-q_{n+1} & \text { if } q_{n+1} \in E_{i}\end{cases}
$$

for every $i=1, \ldots, n$ and $\tilde{\Gamma}_{n+1}^{\prime}=q$, where q is the point of intersection of \tilde{B}_{n+1} with E_{n+1}. We may now iterate this construction, and arrive at the situation (increasing the number of blowing-ups n) that the proper transform \tilde{B}_{n} does not meet any branched exceptional curves, i.e., the new exceptional divisors $\tilde{\Gamma}_{i}^{\prime}$ are zero for each i such that $\varepsilon_{i}=1$. Finally if any two exceptional curves now meet, we simply blow up the point of intersection once, and obtain an unbranched exceptional curve which now separates the two branched exceptional curves.

At this point we have a nonsingular total branch locus, hence a smooth double cover. We note that we still have the matrices M, N, Q, S for the current configuration of exceptional curves and the numbers $\tilde{\alpha}_{i}, \tilde{\beta}_{i}, \tilde{\gamma}_{i}$ and ε_{i}, defined for each i, as before. All the above process gives a proof of the following theorem (cf. [4, III.§6], 19, Theorem 3.1]):

Theorem 7.4 (The canonical resolution) Let $\pi_{0}: X_{0} \rightarrow Y_{0}$ be a double cover with X_{0} normal and Y_{0} smooth. Then there exists a birational morphism
$\sigma: Y \rightarrow Y_{0}$ such that the normalization X of the pullback $X_{0} \times_{Y_{0}} Y$ is smooth. Moreover $\pi: X \rightarrow Y$ is a double cover and the diagram

commutes. So $\tau: X \rightarrow X_{0}$ is a resolution of singularities of X_{0}.
We say that $\tau: X \rightarrow X_{0}$ (toghether with the double cover map $\pi: X \rightarrow Y$) is the canonical resolution of the double cover $\pi_{0}: X_{0} \rightarrow Y_{0}$, because X and Y are unique, up to isomorphism, assuming that the centers of the blowing-ups $\sigma_{i}: Y_{i} \rightarrow Y_{i-1}$, which factorizes σ, are always singular points of the branch curve of $X_{i-1} \rightarrow Y_{i-1}$. We will see in section 10 that the canonical resolution might not be minimal. However, we may think the canonical resolution as the "minimal" resolution in the category of double covers over smooth surfaces.

8 The branch curve of the canonical resolution

As in the previous section, let $\tau: X \rightarrow X_{0}$ be the canonical resolution of X_{0} and $\pi: X \rightarrow Y$ be the smooth double cover. Let us write B for the branch curve of $\pi: X \rightarrow Y$ and suppose that $\sigma: Y \rightarrow Y_{0}$ factorizes in n blowing-ups $\sigma_{i}: Y_{i} \rightarrow Y_{i-1}$, with $Y_{n}=Y$, so the exceptional curves for σ are E_{1}, \ldots, E_{n} and all the formulas in the previous sections hold for $B_{n}=B$ and $\tilde{B}_{n}=\tilde{B}$. The branch curve B can be written in $\operatorname{Pic} Y$ as:

$$
\begin{equation*}
B=\tilde{B}+\sum_{i=1}^{n} \varepsilon_{i} E_{i}=\sigma^{*}\left(B_{0}\right)-\sum_{i=1}^{n} \beta_{i} E_{i}=\sigma^{*}\left(B_{0}\right)-\sum_{i=1}^{n} \alpha_{i} E_{i}^{*} \tag{8.1}
\end{equation*}
$$

for some non negative integers β_{i} and α_{i}. Comparing (8.1) with (6.2), (6.1) and (5.3) we see that:

$$
\begin{equation*}
\beta=\tilde{\beta}-\varepsilon \quad \text { and } \quad \alpha=\tilde{\alpha}+\varepsilon N=\tilde{\alpha}+\varepsilon(Q-I) \tag{8.2}
\end{equation*}
$$

Moreover, from formulas (8.2), (6.3) and (7.3) we find that:

$$
\begin{equation*}
\alpha=\mu-\varepsilon \quad \text { and } \quad \alpha=\beta N . \tag{8.3}
\end{equation*}
$$

By (8.2) and (7.1), (8.3) and (7.2) it follows that the β_{i} 's and the α_{i} 's are all even. From (7.3) and (8.2) it is clear that $\alpha=\mu=\tilde{\alpha}$ if and only if $\varepsilon=0$, that happens if $\tilde{\alpha}_{i}$ is even for every $i=1, \ldots, n$, i.e. if B_{0} has even multiplicity at each singular point, including the infinitely near ones.

In order to measure how the branch curve B of the canonical resolution meets the exceptional curves, let us introduce the following intersection divisors:

$$
\begin{equation*}
\Gamma_{i}=B_{\mid E_{i}}=\tilde{B}_{\mid E_{i}}+\sum_{j: \varepsilon_{j}=1} E_{j \mid E_{i}} \tag{8.4}
\end{equation*}
$$

and set $\gamma_{i}=\operatorname{deg}\left(\Gamma_{i}\right)$. By definition $\Gamma_{i}=0$ if E_{i} is branched. However, Γ_{i} could be zero even if $\varepsilon_{i}=0$. We claim that the Γ_{i} 's have the following properties:

1. Γ_{i} is a non-negative divisor and γ_{i} is even;
2. if $q=E_{i} \cap E_{j}$ and $\varepsilon_{i}=\varepsilon_{j}=0$, then $\Gamma_{i}(q)=0$ if and only if $\Gamma_{j}(q)=0$. If these numbers are non-zero, then at least one of them is equal to 1 .
3. if $q=E_{i} \cap E_{j}, \varepsilon_{i}=1$ and $\varepsilon_{j}=0$, then $\Gamma_{j}(q)=1$.

It suffices to show that γ_{i} is even, since all the other properties of Γ_{i} are induced by those of $\tilde{\Gamma}_{i}$, which we have already seen in section 6 . If E_{i} is branched, then $\gamma_{i}=0$ and the thesis is trivial. Otherwise, if E_{i} is unbranched, then:

$$
\gamma_{i}=\tilde{\gamma}_{i}+\sum_{j \neq i} \varepsilon_{j}\left(E_{i} \cdot E_{j}\right) \equiv \tilde{\gamma}_{i}+\sum_{j=1}^{n} \tilde{\beta}_{j} s_{i j} \bmod 2
$$

hence $\gamma \equiv \tilde{\gamma}+\tilde{\beta} S \bmod 2$ and the claim follows from $\tilde{\gamma}=-\tilde{\beta} S($ see (6.4) $)$.
In order to encode the combinatorial data of the double point singularity $p=\pi_{0}^{-1}\left(q_{1}\right) \in X_{0}$, we define the weighted Enriques digraph of p by attaching to each vertex q_{i} of the Enriques digraph of $q_{1} \in B_{0}$ the weight $\mu_{i}=\operatorname{mult}_{q_{i}}\left(B_{i-1}\right)$.

In the next example we will illustrate in detail how the canonical resolution process goes on.

Example 8.5 Let B_{0} be a curve defined locally near the origin $q_{1}=(0,0)$ by:

$$
y\left(y^{2}-x^{3}\right)=0
$$

Clearly, we need just two blowing-ups to smooth the proper transform \tilde{B}_{2} of B_{0}. However, we have to blow up 5 more times in order to get a smooth double cover. In fact E_{1}, E_{2} are branched and \tilde{B}_{2} passes through $q_{3}=E_{1} \cap E_{2}$ and meets E_{2} also in another point q_{4}. Thus $B_{2}=\tilde{B}_{2}+E_{1}+E_{2}$ has multiplicity $\mu_{3}=3$ at q_{3}, hence $\varepsilon_{3}=1$ and \tilde{B}_{3} meets E_{3} in a point q_{5}. Now B_{3} has only nodes in $q_{4}, q_{5}, q_{6}=E_{1} \cap E_{3}$ and $q_{7}=E_{2} \cap E_{3}$, therefore E_{4}, \ldots, E_{7} are unbranched and B_{7} is smooth. Our combinatorial data are:

$$
M=\left(\begin{array}{lllllll}
1 & 1 & 2 & 1 & 2 & 3 & 3 \\
0 & 1 & 1 & 1 & 1 & 1 & 2 \\
0 & 0 & 1 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right), \begin{aligned}
& \tilde{\alpha}=(3,2,1,0,0,1,1) \\
& \tilde{\gamma}=(0,0,0,1,1,0,0), \\
& \mu=(3,3,3,2,2,2,2), \\
& \varepsilon=(1,1,1,0,0,0,0), \\
& \alpha=(2,2,2,2,2,2,2), \\
& \gamma=(0,0,0,2,2,2,2),
\end{aligned}
$$

that we encode in the Enriques digraph, weighted with the μ_{i} 's (see the righthand side graph of Figure 11). For the readers' convenience, we inserted in Figure 1 (on the left-hand side) also the Enriques digraph weighted with the $\tilde{\alpha}_{i}$'s and labelled with the q_{i} 's.

Figure 11 may help to understand formula (7.3), namely how to compute inductively the μ_{i} 's (thus the ε_{i} 's) from the $\tilde{\alpha}_{i}$'s. Start from q_{1} : the weight of q_{1} is 3 , thus $\mu_{1}=3, \varepsilon_{1}=1$ and add 1 to all the weights attached to vertices with arrows ending in q_{1} (namely q_{2}, q_{3} and q_{6}). Now consider q_{2} : the actual weight of q_{2} is 3 , hence $\mu_{2}=3, \varepsilon_{2}=1$ and add 1 to the weights of q_{3}, q_{4} and q_{7}, which are the vertices with arrows ending in q_{2}. Then go on inductively, for all the q_{i} 's. Clearly, no change of weights is made at step i if $\varepsilon_{i}=0$.

Figure 1: The Enriques digraph weighted resp. with the $\tilde{\alpha}_{i}$'s and the μ_{i} 's

9 The description of the canonical resolution

The description of the canonical resolution of the singularity on X_{0} is now a combinatorial problem, using the information of the configuration of the exceptional curves E_{i} (described by the matrix M or the Enriques digraph) and the divisors $\tilde{\Gamma}_{i}$ (subject to the conditions stated in section (6).

We then can compute the quantities $\tilde{\gamma}, \tilde{\alpha}, \mu, \varepsilon$, and determine (from ε) which of the E_{i} 's are branched curves, and finally determine the divisors Γ_{i}.

We now apply Lemma 3.1 for each exceptional curve. If $\pi: X \rightarrow Y$ is the double cover map, let us define $F_{i}=\pi^{-1}\left(E_{i}\right)$ for each i, thus F_{1}, \ldots, F_{n} are all the exceptional curves for the canonical resolution $\tau: X \rightarrow X_{0}$.

Remark 9.1 A curve F_{i} is reducible if and only if $\varepsilon_{i}=0$ and $\Gamma_{i}=B_{\mid E_{i}}$ is an even divisor. In that case, F_{i} splits in two smooth rational curves F_{i}^{\prime} and $F_{i}^{\prime \prime}$, with $F_{i}^{\prime} \cdot F_{i}^{\prime \prime}=\gamma_{i} / 2$ and $F_{i}^{\prime 2}=F_{i}^{\prime \prime 2}=E_{i}^{2}-\gamma_{i} / 2$.

If $\varepsilon_{i}=0$, then $\pi^{*}\left(E_{i}\right)=F_{i}$, otherwise, if $\varepsilon_{i}=1$, then $\pi^{*}\left(E_{i}\right)=2 F_{i}$, i.e.

$$
\begin{equation*}
\pi^{*}\left(E_{i}\right)=\left(1+\varepsilon_{i}\right) F_{i} \tag{9.2}
\end{equation*}
$$

Moreover since intersections double after applying π^{*} we have that:

$$
\begin{equation*}
F_{i}^{2}=\frac{2}{\left(1+\varepsilon_{i}\right)^{2}} E_{i}^{2} \quad \text { and } \quad\left(F_{i} \cdot F_{j}\right)=\left(2-\varepsilon_{i}-\varepsilon_{j}\right)\left(E_{i} \cdot E_{j}\right) \tag{9.3}
\end{equation*}
$$

We claim that the arithmetic genus of F_{i} is, for each i :

$$
\begin{equation*}
p_{a}\left(F_{i}\right)=\frac{\gamma_{i}}{2}+\varepsilon_{i}-1 \tag{9.4}
\end{equation*}
$$

If $\varepsilon_{i}=1$, then F_{i} is a smooth rational curve, $\Gamma_{i}=0$ and the claim is trivial. If F_{i} splits, (9.4) follows from Remark 9.1. Otherwise, F_{i} is a double cover of E_{i} branched along Γ_{i} and (9.4) is just Hurwitz formula.

Moreover F_{i} is singular at a point P if and only if $\Gamma_{i}(\pi(P))>1$, thus in particular F_{i} is smooth at the intersection points with F_{j}, for each $j \neq i$.

Now we want to find an explicit formula for the canonical divisor K_{X}. By Riemann-Hurwitz formula (3.3) we know that $K_{X}=\pi^{*}\left(K_{Y}+B / 2\right)$, where $K_{Y}=\sigma^{*}\left(K_{Y_{0}}\right)+\sum_{i} E_{i}^{*}$. Therefore by (8.1):

$$
\begin{equation*}
K_{Y}+\frac{B}{2}=\sigma^{*}\left(K_{Y_{0}}+\frac{B_{0}}{2}\right)-\sum_{i=1}^{n}\left(\frac{\alpha_{i}}{2}-1\right) E_{i}^{*} \tag{9.5}
\end{equation*}
$$

We define $D=\sum_{i=1}^{n}\left(\alpha_{i} / 2-1\right) E_{i}^{*}$, so:

$$
\begin{equation*}
K_{X}=(\sigma \circ \pi)^{*}\left(K_{Y_{0}}+B_{0} / 2\right)-\pi^{*} D=\tau^{*} K_{X_{0}}-D^{*} \tag{9.6}
\end{equation*}
$$

where $D^{*}=\pi^{*} D$ is called the adjunction condition divisor (cf. section 14). We remark that $D^{*} \geq 0$, because $\alpha_{i} \geq 2$ for each i (since in the canonical resolution process we blow up only singular points of the branch curve).

Let us show now the explicit formula for the fiber cycle F of the canonical resolution, already written without proof by Franchetta and Dixon. The fiber cycle of τ is the maximal effective divisor F contained in the scheme theoretic fiber of τ, i.e., the subscheme of X defined by the inverse image ideal sheaf $\tau^{-1} m_{p, X_{0}}$ of the maximal ideal $m_{p, X_{0}}$ of p in X_{0}. Therefore:

$$
F=\operatorname{gcd}\left\{\operatorname{div}(g) \mid \text { for all } g \in \tau^{-1} m_{p, X_{0}}\right\}
$$

For example, the fiber cycle of the sequence $\sigma: Y \rightarrow Y_{0}$ of blowing-ups is E_{1}^{*}.
Theorem 9.7 (Franchetta) The fiber cycle of the canonical resolution is:

$$
\begin{equation*}
F=\pi^{*}\left(E_{1}^{*}\right)=\sum_{i=1}^{n} m_{1 i}\left(1+\varepsilon_{i}\right) F_{i} \tag{9.8}
\end{equation*}
$$

Proof. The second equality in (9.8) follows from (9.2) and from the definition of M (see (5.3)), so it suffices to show the first equality. Recall that locally x, y are the coordinates of Y_{0} near $q_{1}=(0,0), X_{0}$ is defined by $z^{2}=f(x, y)$ and π_{0} is the projection $(x, y, z) \mapsto(x, y)$. Hence x, y and z are generators of the ideal sheaf $\tau^{-1} m_{p, X_{0}}$ as $\mathcal{O}_{X_{0}, p}$-module. Therefore F is the greatest effective divisor contained in the pullback divisors $\tau^{*} \operatorname{div} x, \tau^{*} \operatorname{div} y$ and $\tau^{*} \operatorname{div} z$. From the commutativity of the diagram (7.5) we see that $\tau^{*} \operatorname{div} x=$ $\left(\pi_{0} \circ \tau\right)^{*} \operatorname{div} x=(\sigma \circ \pi)^{*} \operatorname{div} x$ and $\tau^{*} \operatorname{div} y=(\sigma \circ \pi)^{*} \operatorname{div} y$, thus the gcd of the divisors $\tau^{*} \operatorname{div} x$ and $\tau^{*} \operatorname{div} y$ is the pullback $\pi^{*}\left(E_{1}^{*}\right)$ of the fiber cycle E_{1}^{*} of σ. Moreover $\tau^{*} \operatorname{div} z^{2}=\left(\pi_{0} \circ \tau\right)^{*} \operatorname{div} f=(\sigma \circ \pi)^{*} \operatorname{div} f$, thus the divisor $2 \tau^{*} \operatorname{div} z=\tau^{*} \operatorname{div} z^{2}$ is equal to the pullback $\pi^{*}\left(\sigma^{*} B_{0}\right)$ of the total transform $\sigma^{*} B_{0}$ which contains E_{1}^{*} with multiplicity $\tilde{\alpha}_{1} \geq 2$. So $\tau^{*} \operatorname{div} z \supseteq \pi^{*}\left(E_{1}^{*}\right)$, hence $F=\pi^{*}\left(E_{1}^{*}\right)$.

The self-intersection of the fiber cycle is:

$$
\begin{equation*}
F^{2}=\pi^{*}\left(E_{1}^{*}\right) \cdot \pi^{*}\left(E_{1}^{*}\right)=2 E_{1}^{* 2}=-2=-\operatorname{mult}_{p}\left(X_{0}\right) \tag{9.9}
\end{equation*}
$$

By (9.8) and (9.2), the fiber cycle F has the following properties:

$$
\begin{equation*}
F \cdot F_{1}=\left(2-\varepsilon_{1}\right) E_{1}^{*} \cdot E_{1}=-2+\varepsilon_{1}, \quad F \cdot F_{i}=\left(2-\varepsilon_{i}\right) E_{1}^{*} \cdot E_{i}=0 \tag{9.10}
\end{equation*}
$$

for every $i>1$. Thus the normal sheaf $\mathcal{O}_{F_{i}}\left(F_{i}\right)$ of F_{i}, for $i>1$ (that can be useful if $p_{a}\left(F_{i}\right)>0$), is given by how F_{i} meets the other components of F :

$$
\begin{equation*}
m_{1 i}\left(1+\varepsilon_{i}\right) F_{i \mid F_{i}}=-{F^{\hat{\imath}}{ }_{\mid F_{i}}, ~}_{\text {an }} \tag{9.11}
\end{equation*}
$$

where $F^{\hat{\imath}}=F-m_{1 i}\left(1+\varepsilon_{i}\right) F_{i}$. Finally, by (9.6), (9.8) and (9.9), the arithmetic genus of the fiber cycle is:

$$
\begin{equation*}
p_{a}(F)=\left(F \cdot K_{X}+F^{2}\right) / 2+1=E_{1}^{*} \cdot\left(K_{Y}+B / 2\right)=\alpha_{1} / 2-1 \tag{9.12}
\end{equation*}
$$

10 The minimal resolution

It may happen that the canonical resolution $\tau: X \rightarrow X_{0}$ of $p \in X_{0}$ is not minimal. However the following theorem (cf. 19, Th. 5.4]) shows that the canonical resolution is not too far to be minimal.

Theorem 10.1 Let $\tau: X \rightarrow X_{0}$ be the canonical resolution and $\bar{\tau}: \bar{X} \rightarrow$ X_{0} the minimal one. Then $\tau=\tau^{\prime} \circ \bar{\tau}$, where $\tau^{\prime}: X \rightarrow \bar{X}$ is the blowingup at finitely many distinct points. Moreover none of these points is singular for the exceptional curves of $\bar{\tau}$ and neither lies on the intersection (necessarily transverse) of more than three of them.

The following lemma characterizes the (-1)-curves in $\tau^{-1}(p)$ and allows us to give an elementary proof of Theorem 10.1, easier than Laufer's original one.

Lemma 10.2 An exceptional curve F_{j} for τ is a (-1)-curve if and only if $F_{j}=$ $\pi^{-1}\left(E_{j}\right)$, where E_{j} is branched and $E_{j}^{2}=-2$. Moreover the (-1)-curves in $\tau^{-1}(p)$ are disjoint.

Proof. Let E_{j} be unbranched. By Lemma 3.1, if $\Gamma_{j}=B_{\mid E_{j}}$ is not even, then F_{j} cannot be a (-1)-curve, because $F_{j}^{2}=2 E_{j}^{2}$ would be even. If Γ_{j} is even, then $\pi^{-1}\left(E_{j}\right)=F_{j}^{\prime}+F_{j}^{\prime \prime}$ and $F_{j}^{\prime}=F_{j}^{\prime \prime}=E_{j}^{2}-\operatorname{deg}\left(\Gamma_{j} / 2\right)$, thus F_{j}^{\prime} (and $F_{j}^{\prime \prime}$) could be a (-1)-curve only if $E_{j}^{2}=-1$ and $\Gamma_{j}=0$, that means that q_{j} was unnecessarily blown up. Hence we are left only with the possibility that E_{j} is branched and $E_{j}^{2}=2 F_{j}^{2}=-2$. Since no branched exceptional curves meet in Y, neither do two (-1)-curves in X.

Remark 10.3 If $F_{j}=\pi^{-1}\left(E_{j}\right)$ is a (-1)-curve in X, then μ_{j} is odd and there is exactly one q_{i} such that $q_{i}>^{1} q_{j}$ and $\mu_{i}=\mu_{j}+1$. Usually one says that B_{j-1} has two infinitely near points of the same, odd, multiplicity μ_{j} at q_{j}.

Proof. Clearly μ_{j} is odd (and >2), because $\varepsilon_{j}=1$. Since E_{j} is a (-2)-curve, we blew up only one point q_{i} on E_{j} : this means that all the intersections of \tilde{B}_{j} with E_{j} are supported on q_{i}, i.e. $\tilde{\alpha}_{i}=\tilde{\alpha}_{j}$, and the thesis follows from (7.3).

Let us denote by $\bar{\tau}: \bar{X} \rightarrow X_{0}$ the minimal resolution of $p \in X_{0}$.
Proof of Theorem 10.1. Let $\tau^{\prime}: X \rightarrow \tilde{X}$ be the contraction of all the (-1)curves in $\tau^{-1}(p)$. We claim that \tilde{X} is isomorphic to \bar{X} and $\tau=\tau^{\prime} \circ \bar{\tau}$, namely
there is no (-1)-curve in $\tau^{\prime}\left(\tau^{-1}(p)\right)$. The only way for a (-1)-curve to be created after blowing down a (-1)-curve $F_{j}=\pi^{-1}\left(E_{j}\right)$ is for a smooth rational curve F_{k} of self-intersection -2 to meet the given (-1)-curve F_{j}. Since no two branched curve meet on Y and E_{j} is branched by Lemma 10.2, then F_{k} must lie over an unbranched curve E_{k} which meets E_{j} at one point. Therefore $\pi^{*}\left(E_{k}\right)$ cannot split (its divisor Γ_{k} is not even) so that $F_{k}=\pi^{*}\left(E_{k}\right)$ and $F_{k}^{2}=2 E_{k}^{2}$. So E_{k} is a (-1)-curve on Y and, since F_{k} is smooth and rational, the divisor Γ_{k} must consist of two simple points (one of which is the intersection point with E_{j}). In this case we see that E_{k} and E_{j} should be blown down on Y, so that both of these curves were unnecessarily blown up. This proves our claim. Let $F_{j}=\pi^{-1}\left(E_{j}\right)$ be a (-1)-curve of X. Let E_{k} be an exceptional curve that meets E_{j}. Since E_{j} is branched, E_{k} is unbranched and their intersection is transversal, as any intersection of the E_{i} 's. Hence F_{j} contracts to a smooth point of F_{k} (cf. Lemma 3.1). Finally, $E_{j}^{2}=-2$ implies that E_{j} meets at most three exceptional curves of σ, namely one curve that corresponds to a blown up point on E_{j} and the exceptional curves on which q_{j} lies, that are at most two.

The previous analysis offers also an alternative route to obtaining the minimal resolution of $p \in X_{0}$: we may first contract the branched (-2 -curves among the E_{i} 's and then take the double cover, namely the diagram

commutes, where σ^{\prime} is the contraction of the branched (-2)-curves in $\sigma^{-1}\left(q_{1}\right) \subset$ Y and X is the fiber product $\bar{X} \times_{\bar{Y}} Y$.

Note that contracting a (-2)-curve on a smooth surface produces a singularity, namely an ordinary double point (of type A_{1}, see p. 24). Since the (-2)curves are branched for $\pi: X \rightarrow Y$, the singular points of \bar{Y} must be considered as branched points for $\bar{\pi}: \bar{X} \rightarrow \bar{Y}$.

Let us denote by \bar{F}_{i} (resp. \bar{E}_{i}) the image of F_{i} in \bar{X} (resp. of E_{i} in \bar{Y}). For simplicity, suppose that we blow down only a (-1)-curve F_{k} (the general case can be computed inductively). If E_{k} meets two unbranched divisors E_{i} and E_{j} in X, then \bar{E}_{i} and \bar{E}_{j} meets in a branched point, hence:

$$
\bar{F}_{i} \cdot \bar{F}_{j}= \begin{cases}1 & \text { if } E_{i} \cdot E_{k}=E_{j} \cdot E_{k}=1 \tag{10.4}\\ F_{i} \cdot F_{j} & \text { if } E_{i} \cdot E_{k}=0 \text { or } E_{j} \cdot E_{k}=0\end{cases}
$$

Moreover the self-intersection numbers change as follows:

$$
\bar{F}_{i}^{2}= \begin{cases}F_{i}^{2}+1 & \text { if } E_{i} \cdot E_{k}=1 \tag{10.5}\\ F_{i}^{2} & \text { otherwise }\end{cases}
$$

while the arithmetic genera stay unchanged. Formula (9.8) and the fact that $\tau^{\prime-1}\left(\bar{\tau}^{-1}\left(m_{p, X_{0}}\right)\right)=\tau^{-1}\left(m_{p, X_{0}}\right)$ imply that the fiber cycle of the minimal resolution $\bar{\tau}: \bar{X} \rightarrow X$ is:

$$
\begin{equation*}
\bar{F}=\sum m_{1 i}\left(1+\varepsilon_{i}\right) \bar{F}_{i} . \tag{10.6}
\end{equation*}
$$

11 The fundamental cycle

The fundamental cycle of the (canonical) resolution is the unique smallest positive cycle:

$$
\begin{equation*}
Z=\sum_{i=1}^{n} z_{i} F_{i} \tag{11.1}
\end{equation*}
$$

with $z_{i}>0$ such that $Z \cdot F_{k} \leq 0$ for every $k=1, \ldots, n$. If F_{i} splits in F_{i}^{\prime} and $F_{i}^{\prime \prime}$ as in Remark 9.1, a priori we should consider in (11.1) two distinct coefficients z_{i}^{\prime} and $z_{i}^{\prime \prime}$. But if z_{i}^{\prime} were different from $z_{i}^{\prime \prime}$ in (11.1), then we could exchange them and take the g.c.d. of the cycles, so $z_{i}=\min \left\{z_{i}^{\prime}, z_{i}^{\prime \prime}\right\}$ would fulfill the properties of the fundamental cycle. Therefore we may and will assume $z_{i}^{\prime}=z_{i}^{\prime \prime}=z_{i}$.

In general the fundamental cycle of any resolution can be computed inductively as follows. Let F_{1}, \ldots, F_{n} be the exceptional curves.
(1) $\operatorname{Set} Z=\sum_{i=1}^{n} F_{i}$.
(2) Check if $Z \cdot F_{j} \leq 0$ for every j.
(3) If (2) is false, there exists j such that $Z \cdot F_{j}>0$. Replace Z with $Z+F_{j}$ and go back to (2).
(4) Otherwise, if (2) is true, Z is the fundamental cycle.

In 17 Laufer used essentially the properties of the fundamental cycle in order to describe precisely the relation between the topological types of the canonical and the minimal resolution. However Laufer showed only an implicit formula for Z (see Lemma 5.5 in 17). In the next theorem we give an explicit formula for Z, that turns out to be very simple and that may help to understand better the algorithms described by Laufer in 17, Theorems 5.7 and 5.10]. It is natural to compare the fiber cycle with the fundamental one. The definitions implies that $F \geq Z$. It is known that the equality holds for every resolution for special types of singularities, for example rational [2] and minimally elliptic 18, Theorem 3.13] ones. Regarding double points, Dixon showed that $Z=F$ for every resolution if $\mu_{1}=\operatorname{mult}_{q_{1}}\left(B_{0}\right)$ is even 10. Theorem 1], and that $Z=F$ for the minimal resolution if B_{0} is analytically irreducible at q_{1} 10, Theorem 2]. In section 12 we will classify all the double point singularities for which $F>Z$.

Theorem 11.2 The fundamental cycle Z of the canonical resolution $\tau: X \rightarrow$ X_{0} of $p \in X_{0}$ differs from the fiber cycle $F=\pi^{*}\left(E_{1}^{*}\right)$ if and only if there exists $j>1$ such that $\varepsilon_{j}=0, q_{j}$ is infinitely near of order one to q_{1} and:

$$
\begin{equation*}
m_{1 i}+m_{j i} \text { is even for every } i \text { such that } \varepsilon_{i}=0 \tag{11.3}
\end{equation*}
$$

In that case the fundamental cycle is:

$$
\begin{equation*}
Z=\frac{1}{2} \pi^{*}\left(E_{1}^{*}+E_{j}^{*}\right)=\sum_{i=1}^{n} \frac{1}{2}\left(1+\varepsilon_{i}\right)\left(m_{1 i}+m_{j i}\right) F_{i} \tag{11.4}
\end{equation*}
$$

We remark that condition (11.3) implies that $\varepsilon_{1}=1$, because $m_{11}=1$ and $m_{j 1}=0$, thus the multiplicity $\tilde{\alpha}_{1}=\mu_{1}$ of B_{0} at q_{1} is odd. Furthermore j is
uniquely determined. Indeed, if $q_{i}>^{1} q_{1}($ and $i \neq j)$, then $m_{1 i}=1$ and $m_{j i}=0$, so (11.3) would imply that $\varepsilon_{i}=1$.

Proof. By (9.10), $Z \leq F$. If $Z \neq F$, we may write:

$$
\begin{equation*}
F=Z+P \tag{11.5}
\end{equation*}
$$

where $P=\sum_{i} t_{i} F_{i}$ is a positive (non-zero) divisor. It follows from (9.9) that:

$$
-2=F^{2}=Z^{2}+P^{2}+2 Z \cdot P
$$

Since $Z>0$ and $P>0$, then $Z^{2}<0$ and $P^{2}<0$. Moreover $Z \cdot P \leq 0$ because Z is the fundamental cycle, so the only possibility is:

$$
Z^{2}=P^{2}=-1, \quad Z \cdot P=0
$$

Hence $F \cdot P=-1$ and by formulas (9.10), one finds that: $-1=F \cdot P=F \cdot t_{1} F_{1}=$ $-\left(2-\varepsilon_{1}\right) t_{1}$, which forces $t_{1}=\varepsilon_{1}=1$, so E_{1} must be branched and F_{1} is forced to belong to P with multiplicity one. Since $Z \cdot F_{k} \leq 0$ for each $k, Z^{2}=-1$ implies that there exists an unique j such that:

$$
Z \cdot F_{j}=-1, \quad Z \cdot F_{k}=0 \quad \text { for every } k \neq j
$$

and $z_{j}=1$. Therefore $t_{j}=-Z \cdot P=0$, i.e., F_{j} is not a component of P, and the coefficient of F_{j} in F is $\left(1+\varepsilon_{j}\right) m_{1 j}=z_{j}+t_{j}=1$, so

$$
\varepsilon_{j}=0 \quad \text { and } \quad m_{1 j}=1
$$

in particular $j \neq 1$. It follows from (11.5) that: $P \cdot F_{1}=-1, \quad P \cdot F_{j}=1$, $P \cdot F_{k}=0$ for $k \neq 1, j$. The previous three equations are equivalent to:

$$
\sum_{i=1}^{n}\left(2-\varepsilon_{i}\right) t_{i} s_{i k}= \begin{cases}-2 & \text { if } k=1 \\ 1 & \text { if } k=j \\ 0 & \text { if } k \neq 1, j\end{cases}
$$

Recalling that:

$$
\sum_{i=1}^{n} 2 m_{1 i} s_{i k}=2\left(E_{1}^{*} \cdot E_{k}\right)= \begin{cases}-2 & \text { if } k=1 \\ 0 & \text { if } k \neq 1\end{cases}
$$

and setting m_{1} and t row vectors with the obvious entries, one finds that:

$$
\left((2-\varepsilon) t-2 m_{1}\right) S=e_{k}
$$

where e_{k} is the row vector with the k-th entry equal to 1 and 0 everywhere else. Multiplying both sides with S^{-1}, the vector $\left((2-\varepsilon) t-2 m_{1}\right)$ is the k-th row of the matrix S^{-1}. In particular: $2 t_{j}-2 m_{1 j}=0-2=-2$ is the (j, j)-entry in $S^{-1}=-M^{t} M$. Therefore:

$$
-2=-\sum_{1 \leq i \leq j} m_{i j}^{2}=-m_{1 j}^{2}-m_{j j}^{2}-\sum_{1<i<j} m_{i j}^{2}=-2-\sum_{1<i<j} m_{i j}^{2}
$$

that is possible if and only if $m_{i j}=0$ for every $1<i<j$. This means that q_{j} is proximate to q_{1}, but $q_{j} \ngtr q_{i}$ for $i \neq 1$, i.e. $q_{j}>^{1} q_{1}$. Furthermore, the (k, j)-entry in S^{-1} is:

$$
\left(2-\varepsilon_{k}\right) t_{k}-2 m_{1 k}=-\sum_{1 \leq i \leq j} m_{i k} m_{i j}=-m_{1 k}-m_{j k}
$$

that we may rewrite as follows: $t_{k}=\frac{1}{2}\left(1+\varepsilon_{k}\right)\left(m_{1 k}-m_{j k}\right)$. Since the coefficient of F_{k} in F is $\left(1+\varepsilon_{k}\right) m_{1 k}=t_{k}+z_{k}$, then

$$
\begin{equation*}
z_{k}=\frac{1}{2}\left(1+\varepsilon_{k}\right)\left(m_{1 k}+m_{j k}\right) \tag{11.6}
\end{equation*}
$$

must be an integer, that proves (11.3) and (11.4).
Vice versa, if there exists j as in the statement, we may order the blowing-ups σ_{i} in such a way that $j=2$. It suffices to show that $Z^{\prime}=\pi^{*}\left(E_{1}^{*}+E_{2}^{*}\right) / 2$ has the property that $Z^{\prime} \cdot F_{k} \leq 0$ for every $k=1, \ldots, n$. Indeed $Z^{\prime}<F$, so the first part of the proof implies that Z^{\prime} has to be the fundamental cycle. If $k>2$, then: $Z^{\prime} \cdot F_{k}=\left(1-\varepsilon_{k} / 2\right)\left(E_{1}^{*} \cdot E_{k}+E_{2}^{*} \cdot E_{k}\right)=0$. Moreover $Z^{\prime} \cdot F_{2}=E_{2}^{* 2}=-1$ and $Z^{\prime} \cdot F_{1}=E_{1}^{*} \cdot E_{1} / 2+E_{2}^{*} \cdot E_{1} / 2=0$.

If $F>Z$, the arithmetic genus of Z is, by $Z^{2}=-1$, (11.4) and (9.5):

$$
\begin{align*}
p_{a}(Z) & =\frac{E_{1}^{*}+E_{j}^{*}}{2} \cdot\left(\sigma^{*}\left(K_{Y_{0}}+\frac{B_{0}}{2}\right)-\sum_{k=1}^{n}\left(\frac{\alpha_{k}}{2}-1\right) E_{k}^{*}\right)+\frac{1}{2}= \\
& =\frac{\alpha_{1}+\alpha_{j}-2}{4}=\frac{\tilde{\alpha}_{1}+\tilde{\alpha}_{j}-2}{4} \tag{11.7}
\end{align*}
$$

where the last equality follows from $\alpha_{1}=\tilde{\alpha}_{1}-1$ and $\alpha_{j}=\tilde{\alpha}_{j}+1$.
Now we compute the fundamental cycle of the minimal resolution.
Lemma 11.8 Let $\bar{\tau}: \bar{X} \rightarrow X_{0}$ be the minimal resolution of $p \in X_{0}$. Then the fundamental cycle \bar{Z} of $\bar{\tau}$ is:

$$
\begin{equation*}
\bar{Z}=\sum_{i} z_{i} \bar{F}_{i} \tag{11.9}
\end{equation*}
$$

where \bar{F}_{i} are the exceptional curves of $\bar{\tau}$ and $Z=\sum_{i} z_{i} F_{i}$ is the fundamental cycle of the canonical resolution.

Proof. Without any loss of generality, we may assume to blow down only a (-1)-curve $F_{k}=\pi^{-1}\left(E_{k}\right)$, where $E_{k}^{2}=-2$ and $\varepsilon_{k}=1$. Recall that E_{k} meets at least one and at most three unbranched divisors. First, we shall prove that:

$$
\begin{equation*}
\sum_{i \neq k} z_{i} \bar{F}_{i} \cdot \bar{F}_{j} \leq 0 \tag{11.10}
\end{equation*}
$$

for every $j \neq k$. For this purpose, we claim that:

$$
\begin{equation*}
z_{k}=\sum_{i: E_{i} \cdot E_{k}=1} z_{i} \tag{11.11}
\end{equation*}
$$

Suppose that E_{k} meets three unbranched divisors, i.e., $q_{k}=E_{k_{1}} \cap E_{k_{2}}$ and we blew up a point $q_{k_{3}}$ lying on E_{k}, with $\varepsilon_{k_{i}}=0$ for $i=1,2,3$. Then $m_{1 k}=m_{1 k_{3}}=$ $m_{1 k_{1}}+m_{1 k_{2}}$, so:

$$
2 m_{1 k}=\left(1+\varepsilon_{k}\right) m_{1 k}=\sum_{i=1}^{3}\left(1+\varepsilon_{k_{i}}\right) m_{1 k_{i}}=m_{1 k_{1}}+m_{1 k_{2}}+m_{1 k_{3}}
$$

which proves (11.11) if $Z=F$, by (9.8). Similarly, $2 m_{2 k}=m_{2 k_{1}}+m_{2 k_{2}}+$ $m_{2 k_{3}}$ and (11.11) holds even if $Z<F$, by (11.6). If E_{k} meets only one or two unbranched divisors, there are four possible configurations and the proof of (11.11) is analogous.

Clearly (11.10) holds if $E_{j} \cdot E_{k}=0$. Otherwise if $E_{j} \cdot E_{k}=1$, by (10.4), (10.5) and the fact that if $E_{j} \cdot E_{k}=E_{i} \cdot E_{k}=1$ then $F_{i} \cdot F_{j}=0$, formula (11.11) implies that:

$$
\begin{aligned}
\sum_{i \neq k} z_{i} \bar{F}_{i} \cdot \bar{F}_{j} & =\sum_{i: E_{i} \cdot E_{k}=1} z_{i} \bar{F}_{i} \cdot \bar{F}_{j}+\sum_{i: E_{i} \cdot E_{k}=0} z_{i} F_{i} \cdot F_{j}= \\
& =\sum_{i: E_{i} \cdot E_{k}=1} z_{i}+\sum_{i \neq k} z_{i} F_{i} \cdot F_{j}=z_{k}+\sum_{i \neq k} z_{i} F_{i} \cdot F_{j}=Z \cdot F_{j} \leq 0
\end{aligned}
$$

which proves (11.10). Let $\bar{Z}=\sum_{i \neq k} s_{i} \bar{F}_{i}$ be the fundamental cycle of $\bar{\tau}$. If we show that for every j :

$$
\begin{equation*}
\left(\sum_{i \neq k} s_{i} F_{i}+\sum_{i: E_{i} \cdot E_{k}=1} s_{i} F_{k}\right) \cdot F_{j} \leq 0 \tag{11.12}
\end{equation*}
$$

then $s_{i}=z_{i}$, for $i \neq k$, and (11.9) holds. Indeed if $E_{j} \cdot E_{k}=0$ then (11.12) is trivial. If $E_{j} \cdot E_{k}=1$, then the left hand side of (11.12) becomes:

$$
\sum_{i: E_{i} \cdot E_{k}=0} s_{i} F_{i} \cdot F_{j}+\sum_{i: E_{i} \cdot E_{k}=1} s_{i} F_{i} \cdot F_{j}+\sum_{i: E_{i} \cdot E_{k}=1} s_{i} F_{k} \cdot F_{j}=\sum_{i \neq k} s_{i} \bar{F}_{i} \cdot \bar{F}_{j}=\bar{F} \cdot \bar{F}_{j} \leq 0
$$

Finally, for $j=k$, the left hand side of (11.12) is:

$$
\sum_{i \neq k} s_{i} F_{i} \cdot F_{k}+\sum_{i: E_{i} \cdot E_{k}=1} s_{i} F_{k}^{2}=\sum_{i: E_{i} \cdot E_{k}=1} s_{i} F_{i} \cdot F_{k}-\sum_{i: E_{i} \cdot E_{k}=1} s_{i}=0
$$

Corollary 11.13 Let F, Z (resp. \bar{F}, \bar{Z}) be the fiber and the fundamental cycle of the canonical (resp. minimal) resolution. Then $F>Z$ and $\bar{F}=\bar{Z}$ if and only if q_{2} is the unique proximate point to q_{1} and $\tilde{\alpha}_{1}=\tilde{\alpha}_{2}$ is odd. Furthermore, this happens if and only if $\bar{F}^{2}=\bar{Z}^{2}=-1$.

Proof. Suppose that $F>Z$ and $\bar{F}=\bar{Z}$. This means that F_{1} is a (-1)-curve that we blow down, hence $E_{1}^{2}=-2$ and there is only one proximate point to q_{1}, that is q_{2}, so $\tilde{\alpha}_{1}=\tilde{\alpha}_{2}$. Moreover $\tilde{\alpha}_{1}$ is odd by Theorem 11.2. Conversely, if E_{1} is branched and $E_{1}^{2}=-2$, then F_{1} is a (-1)-curve that we blow down. Hence
$m_{2 i}=m_{1 i}$ for every $i>2$, therefore the coefficient of F_{i} in F is the same as the coefficient of F_{i} in Z, for every $i>2$. The last assertion follows from the fact that if the fundamental cycle of a resolution of p has self-intersection -2 , then on any resolution the fundamental cycle is equal to the fiber cycle (cf. 19, Lemma 5.2] or [10, p. 110]).

12 The description of the Enriques digraph

We want to describe the weighted Enriques digraph of those double point singularity for which the fundamental cycle of the canonical resolution is strictly contained in the fiber cycle. Recall that the weight of the vertex q_{i} is μ_{i}, i.e. the multiplicity at q_{i} of the branch curve B_{i-1} of $\pi_{i-1}: X_{i-1} \rightarrow Y_{i-1}$. Before going on, we need some remark about proximate points.

Let us call proximity subgraph of q_{1} the subgraph of the Enriques digraph consisting only of the proximate points to q_{1} (and the arrows among them).

We may order the σ_{i} 's (the blowing-ups) in such a way that $q_{2}, \ldots, q_{n^{\prime}}$ are all the proximate points to q_{1} and for every $j=1, \ldots, h$:

$$
\begin{equation*}
q_{i_{j}}>^{1} q_{i_{j}-1}>^{1} \cdots>^{1} q_{i_{j-1}+2}>^{1} q_{i_{j-1}+1}>^{1} q_{1} \tag{12.1}
\end{equation*}
$$

where $n^{\prime}=i_{h}>i_{h-1}>\cdots>i_{2}>i_{1}>i_{0}=1$. Thus the proximity digraph of q_{1} has the shape of Figure 2, which looks like a flower with h petals. We say that the j-th petal has length $i_{j}-i_{j-1}$.

Clearly the proximity subgraph of any point has a similar shape.

Figure 2: The proximity subgraph of q_{1}
Let us say that a vertex of the Enriques digraph is very odd if its weight is odd, its proximity subgraph has exactly one petal of odd length and all the other petals of even length. Now we are ready to prove the following:

Theorem 12.2 The fundamental cycle is strictly contained in the fiber cycle of the canonical resolution of $p \in X_{0}$ if and only if the weighted Enriques digraph of $q_{1}=\pi(p)$ has the following properties:

1. q_{1} is a very odd vertex (in particular its weight μ_{1} is odd);
2. a proximate point q_{i} to q_{1}, belonging to a petal of even (resp. odd) length of the proximity subgraph of q_{1}, is a very odd vertex if and only if q_{i} is infinitely near of odd (resp. even) order to q_{1};
3. inductively, 1 and 2 hold replacing q_{1} with any very odd vertex.

Proof. Suppose that the fundamental cycle Z is strictly contained in the fiber cycle F. By Theorem 11.2, μ_{1} is odd and there exists j such that $\varepsilon_{j}=0, q_{j}>^{1} q_{1}$ and condition (11.3) holds. Moreover we may and will assume that $j=2$, so $\varepsilon_{2}=0$ and μ_{2} is even.

Consider the proximity subgraph of q_{1} as above (cf. formula (12.1) and Figure 2). We claim that i_{j} is even for every $j=1, \ldots, h$, thus q_{1} is a very odd vertex.

Suppose that $i_{1}>2$, namely in the canonical resolution process we blow up $q_{3}=E_{2} \cap E_{1}$. Then $m_{13}=2$ and $m_{23}=1$, so condition (11.3) implies that $\varepsilon_{3}=1$ and μ_{3} is odd. Since $\varepsilon_{1}=\varepsilon_{3}=1$, the intersection $q_{4}=E_{3} \cap E_{1}$ is a singular point of the branch curve B_{3} of $\pi_{3}: X_{3} \rightarrow Y_{3}$, so we must blow up also q_{4}. Similarly, if we blow up $q_{5}=E_{4} \cap E_{1}$, then $m_{15}+m_{25}=5$, thus condition (11.3) forces $\varepsilon_{5}=1$ and we must blow up also $q_{6}=E_{5} \cap E_{1}$. Repeating this argument, it follows that the first petal has odd length and i_{1} is even.

Look at the second petal. Now $q_{i_{1}+1}>^{1} q_{1}$, so $m_{1, i_{1}+1}=1$ and $m_{2, i_{1}+1}=0$. Hence (11.3) implies that $\varepsilon_{i_{1}+1}=1$ and $\mu_{i_{1}+1}$ is odd. Therefore we must blow up $q_{i_{1}+2}=E_{i_{1}+1} \cap E_{1}$. If $i_{2}>i_{1}+2$, it means that we blow up also $q_{i_{1}+3}=$ $E_{i_{1}+2} \cap E_{1}$, then $m_{1, i_{1}+3}+m_{2, i_{1}+3}=3$, so (11.3) forces that $\varepsilon_{i_{1}+3}=1$ and we must blow up $q_{i_{1}+4}=E_{i_{1}+3} \cap E_{1}$ too. Proceeding in this way, this shows that the second petal has even length and i_{2} is even. The same argument works for the j-th petal, with $j>2$, just by replacing i_{1} with i_{j-1}. This proves our claim that q_{1} is a very odd vertex.

Now we want to show that $\varepsilon_{i} \equiv i(\bmod 2)$ for every $i=1, \ldots, i_{h}$, and $q_{2 l-1}$ is a very odd vertex for every $l=2, \ldots, i_{h} / 2$.

We already know that $\varepsilon_{2}=0$ and $\varepsilon_{2 i-1}=1$ for every $i=1, \ldots, i_{h} / 2$. Suppose by contradiction that $\varepsilon_{4}=1$ (and $i_{h}>2$). Since $\varepsilon_{3}=1$, we must blow up also $q_{k}=E_{4} \cap E_{3}$ and $m_{1 k}+m_{2 k}$ is odd, so condition (11.3) implies that $\varepsilon_{k}=1$. Hence we must blow up $q_{k+1}=E_{k} \cap E_{4}$ too, and $m_{1, k+1}+m_{2, k+1}$ is again odd, thus $\varepsilon_{k+1}=1$ by (11.3). Going on in this way, we produce each time another branched exceptional curve, so we should never stop blowing up, contradicting Theorem 7.4. This shows that $\varepsilon_{4}=0$ and μ_{4} is even. The proof that $\varepsilon_{2 l}=0$ for every $l=3, \ldots, i_{h} / 2$ is similar.

Consider the proximity subgraph of $q_{2 l-1}$, for $l=2, \ldots, i_{h} / 2$. Repeating exactly the same arguments as for q_{1} and q_{2}, one finds out that $q_{2 l}$ (which is proximate to $q_{2 l-1}$) belongs to a petal of odd length, while all other petals of the proximity subgraph of $q_{2 l-1}$ have even length, thus $q_{2 l-1}$ is a very odd vertex.

It remains to prove that the proximity subgraph of a non-very-odd vertex can be arbitrary. For every $l=1, \ldots, i_{h} / 2$, we proved that $\varepsilon_{2 l}=0$, so $q_{2 l}$ cannot be very odd. Moreover $m_{1,2 l}+m_{2,2 l}$ is even. If q_{k} is proximate to $q_{2 l}$ (and
$k \neq 2 l+1$), then $m_{1 k}+m_{2 k}$ is a multiple of $m_{1,2 l}+m_{2,2 l}$, hence it is even and (11.3) imposes no condition on q_{k}. This means that the proximity subgraph of a non-very-odd vertex, as $q_{2 l}$, can be arbitrary and concludes the proof that the Enriques digraph has properties 1,2 and 3 .

Conversely, suppose that the three properties hold. One may easily check that the $m_{i j}$'s satisfy condition (11.3), where the wanted q_{j} is the infinitely near point of order one to q_{1} belonging to the petal of odd length, therefore one concludes by Theorem 11.2 .

Note that, with the notation of the proof, $\tilde{\alpha}_{1}$ and $\tilde{\alpha}_{2}$ are odd, while $\tilde{\alpha}_{i}$ is even for every $i=3, \ldots, i_{h}$, by (7.3). Moreover $\varepsilon_{1}=1$ forces $\tilde{B} \cdot E_{1}=0$, or equivalently $\tilde{\alpha}_{1}=\sum_{j=1}^{n} \tilde{\alpha}_{j} q_{1 j}=\sum_{j=2}^{i_{h}} \tilde{\alpha}_{j}$. By induction on the number i_{h} of proximate points to q_{1}, it is easy to check that $\tilde{\alpha}_{1}=\tilde{\alpha}_{2}+\sum_{j=3}^{i_{h}} \tilde{\alpha}_{j} \equiv \tilde{\alpha}_{2}(\bmod 4)$, thus $\tilde{\alpha}_{1}+\tilde{\alpha}_{2} \equiv 2(\bmod 4)($ cf. the genus formula (11.7)).

13 Some examples

Example 13.1 Let B_{0} be defined by: $y\left(y-x^{2}\right)\left(y+x^{2}\right)=0$. One usually says that B_{0} has two infinitely near triple points at q_{1}. Our combinatorial data are:

$$
\text { (3)_(4) or equivalently } \quad M=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), \quad \begin{aligned}
& \mu=(3,4) \\
& \varepsilon=(1,0)
\end{aligned}
$$

The exceptional curves for $\tau: X \rightarrow X_{0}$ are a smooth rational curve F_{1} with $F_{1}^{2}=-1$ and a smooth elliptic curve F_{2} with $F_{2}^{2}=-2$ that meet in a point P. By Theorems 9.7 and 11.2 , the fiber cycle of the canonical resolution is $F=2 F_{1}+F_{2}$, while the fundamental cycle is $Z=F_{1}+F_{2}<F$, as one may also check directly. Moreover $F_{2 \mid F_{2}}=-2 P$ by (9.11).

The minimal resolution $\bar{\tau}: \bar{X} \rightarrow X_{0}$ is obtained by contracting the (-1)curve F_{1}. Therefore \bar{F}_{2} is the only exceptional curve for $\bar{\tau}$ and \bar{F}_{2} is a smooth elliptic curve with $\bar{F}_{2}^{2}=-1$. Clearly the fiber cycle and the fundamental cycle of the minimal resolution $\bar{\tau}$ are $\bar{Z}=\bar{F}=\bar{F}_{2}$.

The previous example can be generalized as follows.
Example 13.2 Let B_{0} be a curve with $2 k$ infinitely near points $q_{1}, \ldots, q_{2 k}$ of the same odd multiplicity $\tilde{\alpha}_{1}=\cdots=\tilde{\alpha}_{2 k}=2 g+1$, for some $g \geq 1$. More precisely, $q_{i}>^{1} q_{i-1}$ for $1<i \leq 2 k$ and the weighted Enriques digraph is:

The exceptional curves for $\tau: X \rightarrow X_{0}$ are the following: (-1)-curves $F_{2 i-1}$, for every $i=1, \ldots, k$; smooth rational curves $F_{2 i}$ with self-intersection -4 , for $i=1, \ldots, k-1$, and a smooth curve $F_{2 k}$ of genus g with $F_{2 k}^{2}=-2$. By Theorems 9.7 and 11.2 , the fiber cycle and the fundamental cycle of the canonical resolution are respectively:

$$
F=\sum_{i=1}^{k}\left(2 F_{2 i-1}+F_{2 i}\right), \quad Z=F_{1}+F_{2}+\sum_{i=2}^{k}\left(2 F_{2 i-1}+F_{2 i}\right)
$$

Blow down the $F_{2 i-1}$'s, for $i=1, \ldots, k$, thus the exceptional curves for the minimal resolution $\bar{\tau}: \bar{X} \rightarrow X_{0}$ are the $\bar{F}_{2 i}$'s, for $i=1, \ldots, k$, which are smooth rational curves with self-intersection -2 , except $\bar{F}_{2 k}$ which is smooth of genus g with $\bar{F}_{2 k}^{2}=-1$. The fundamental cycle equals the fiber cycle of the minimal resolution $\bar{Z}=\bar{F}=\sum_{i=1}^{k} \bar{F}_{2 i}$.

Example 13.3 (cf. [19, p. 322]) Let B_{0} be defined by: $y\left(x^{4}+y^{6}\right)=0$. In this case our combinatorial data are:

$$
M=\left(\begin{array}{cccc}
1 & 1 & 1 & 2 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right), \quad \begin{aligned}
& \left.\quad \begin{array}{l}
\\
\varepsilon=(5,2,3,4)
\end{array}, \quad .1,0,1,0\right)
\end{aligned}
$$

The fiber cycle of the canonical resolution is $F=2 F_{1}+F_{2}+2 F_{3}+2 F_{4}$, while the fundamental cycle is $Z=F_{1}+F_{2}+F_{3}+F_{4}<F$, as it should be by Theorem 12.2 , because q_{1} is a very odd vertex, its proximity digraph has just two petals (one of length 1 and the other of length 2) and q_{3} is also very odd. The minimal resolution is obtained by blowing down F_{3}, therefore:

$$
\bar{F}=2 \bar{F}_{1}+\bar{F}_{2}+2 \bar{F}_{4}>\bar{F}_{1}+\bar{F}_{2}+\bar{F}_{4}=\bar{Z}
$$

Rational double points (see [2], 11] and (4). It is very well-known that the rational double points are given by the following equations:

$$
\begin{aligned}
A_{n}: & z^{2}=x^{2}+y^{n+1}, \\
D_{n}: & z^{2}=y\left(x^{2}+y^{n-2}\right), \\
E_{6}: & z^{2}=x^{3}+y^{4}, \\
E_{7}: & z^{2}=x\left(x^{2}+y^{3}\right), \\
E_{8}: & z^{2}=x^{3}+y^{5}
\end{aligned}
$$

and the minimal resolution consists in smooth rational curves of self-intersection -2 whose dual graph is the corresponding Dynkin diagram.

Note that, for a rational double point, the fundamental cycle Z of the canonical resolution equals the fiber cycle F. Indeed if $Z<F$, then formula (11.7) says that $p_{a}(Z)=\left(\tilde{\alpha}_{1}+\tilde{\alpha}_{2}-2\right) / 4$, where $\tilde{\alpha}_{1}$ is odd and $\tilde{\alpha}_{1} \geq 2$, so $p_{a}(Z)>0$, contradicting Artin's criterion (which says that $p_{a}(Z)=0$ if and only if the singularity is rational, cf. [2, Theorem 3]).

Moreover, starting from the well-known formula for the arithmetic genus of a sum of two curves, that is $p_{a}(C+D)=p_{a}(C)+p_{a}(D)+(C \cdot D)-1$, and using (9.3) and (9.4) we find out that (cf. (9.12)):

$$
p_{a}(Z)=p_{a}(F)=\frac{1}{2} \sum_{i=1}^{n} m_{1 i}\left(\gamma_{i}-\left(\varepsilon_{i}-2\right) E_{i}^{2}-4\right) .
$$

Hence we can see directly that $p_{a}(Z)=0$ if and only if every branched exceptional divisor has self-intersection -4 , every unbranched exceptional divisor has selfintersection -1 and $\gamma_{i}=2$, or self-intersection -2 and $\gamma_{i}=0$. Thus every F_{i} (if
F_{i} splits, every irreducible component of F_{i}) is rational with self-intersection -2 and the canonical resolution is minimal.

14 Adjunction conditions

We want to study the conditions that a double point singularity $p \in X_{0}$ imposes to canonical and pluricanonical systems of a surface. Recall that locally p is $\pi_{0}^{-1}\left(q_{1}\right)$, where $\pi_{0}: X_{0} \rightarrow Y_{0}$ is a double cover, Y_{0} is a smooth surface, X_{0} is normal and q_{1} is an isolated singular point of the branch curve B_{0} of π_{0}. Then we consider the canonical resolution $\pi: X \rightarrow Y$, that is a double cover branched along the smooth curve B.

In (9.6) we defined the adjunction condition divisor D^{*} as the pullback of

$$
\begin{equation*}
D=\sum_{i}\left(\alpha_{i} / 2-1\right) E_{i}^{*}=\sigma^{*}\left(K_{Y_{0}}+B_{0} / 2\right)-\left(K_{Y}+B / 2\right) \tag{14.1}
\end{equation*}
$$

So it suffices to understand what are the conditions that D imposes to the adjoint linear system $\left|K_{Y}+B / 2\right|$. It is well known that $D=0$, or equivalently $D^{*}=0$, if and only if $p \in X_{0}$ is a rational double point (cf. previous section).

By applying σ_{*} to the exact sequence $0 \rightarrow \mathcal{O}_{Y}(-D) \rightarrow \mathcal{O}_{Y} \rightarrow \mathcal{O}_{D} \rightarrow 0$, one sees that $\mathcal{I}_{\Gamma}:=\sigma_{*} \mathcal{O}_{Y}(-D)$ is the ideal sheaf of a zero-dimensional scheme Γ supported at $q_{1} \in Y_{0}$. Let us call \mathcal{I}_{Γ} the adjoint ideal of the singularity.

For our convenience, let us assume that X_{0} is a double plane, i.e., $Y_{0}=\mathbb{P}^{2}$. Indeed the double point singularity is locally given as a double cover of an open disc, thus we may always find an irreducible plane curve B_{0} of arbitrarily high (and even) degree whose germ at q_{1} is analitically isomorphic to the germ of the branch curve of the double cover at q_{1}.

By (3.2), (3.3) and the projection formula we have that $\pi_{*} K_{X} \cong K_{Y} \oplus\left(K_{Y}+\right.$ $B / 2)$, so $p_{g}(X)=h^{0}\left(X, K_{X}\right)=h^{0}\left(Y, K_{Y}+B / 2\right)$ and $q(X)=h^{1}\left(X, K_{X}\right)=$ $h^{1}\left(Y, K_{Y}+B / 2\right)$. Riemann-Roch Theorem for $K_{Y}+B / 2$ on Y and for $K_{\mathbb{P}^{2}}+B_{0} / 2$ on \mathbb{P}^{2} implies that:

$$
\begin{aligned}
& h^{0}\left(K_{X}\right)-h^{1}\left(K_{X}\right)=B \cdot\left(K_{Y}+B / 2\right) / 4+1 \\
& h^{0}\left(K_{X_{0}}\right)=h^{0}\left(K_{\mathbb{P}^{2}}+B_{0} / 2\right)=B_{0} \cdot\left(K_{\mathbb{P}^{2}}+B_{0} / 2\right) / 4+1
\end{aligned}
$$

It follows from (9.5) that

$$
\begin{equation*}
h^{0}\left(K_{X_{0}}\right)-h^{0}\left(K_{X}\right)+h^{1}\left(K_{X}\right)=\sum_{i=1}^{n} \frac{\alpha_{i}\left(\alpha_{i}-2\right)}{8}=: c \tag{14.2}
\end{equation*}
$$

where c is defined by (14.2). Let us recall a well-known theorem of De Franchis:
Theorem 14.3 (De Franchis) Let $\pi_{0}: X_{0} \rightarrow \mathbb{P}^{2}$ be a double plane and π : $X \rightarrow Y$ its canonical resolution. Then $q(X)>0$ if and only if there is a plane curve $B^{\prime}\left(\right.$ possibly $\left.B^{\prime}=0\right)$ such that:

$$
\begin{equation*}
B_{0}+2 B^{\prime}=C_{1}+C_{2}+\cdots+C_{m} \tag{14.4}
\end{equation*}
$$

where C_{1}, \ldots, C_{m} are curves belonging to one and the same pencil and $m=$ $2 q(X)+2$ (resp. possibly $m=2 q(X)+1$ if the pencil contains a double curve).

Proof. See [9] (or [8] for a modern proof).

Corollary 14.5 With the above notation, the number $h^{0}\left(K_{X_{0}}\right)-h^{0}\left(K_{X}\right)$ of conditions that the singularity $p \in X_{0}$ imposes to the canonical system is:

$$
\begin{equation*}
c=\sum_{i=1}^{n} \frac{\alpha_{i}\left(\alpha_{i}-2\right)}{8}=\sum_{i=1}^{n} \frac{\alpha_{i} / 2\left(\alpha_{i} / 2-1\right)}{2} \tag{14.6}
\end{equation*}
$$

Proof. Since we assumed B_{0} to be irreducible, then $q(X)=h^{1}\left(K_{X}\right)=0$ by De Franchis' Theorem and (14.6) follows from (14.2).

We remark that De Franchis' Theorem allows us to compute the adjunction conditions even if B_{0} were a given reducible curve and its degree were not assumed to be arbitrarily high.

We want to determine which singularity the general element C in $\left|\mathcal{I}_{\Gamma}(h)\right|=$ $\left|\sigma_{*} \mathcal{O}_{Y}\left(K_{Y}+B / 2\right)\right|=\left|\sigma_{*}\left(\sigma^{*}\left(\mathcal{O}_{\mathbb{P}^{2}}(h L)\right) \otimes \mathcal{O}_{Y}(-D)\right)\right|$ has at q_{1}, where L is a general line in \mathbb{P}^{2} and $h=\operatorname{deg}\left(B_{0}\right) / 2-3$. According to formulas (14.1) and (14.6), one might expect that C has exactly multiplicity $\alpha_{i} / 2-1$ at q_{i}, for every $i=1, \ldots, n$. The next example shows that this is not always the case.

Suppose that $q_{1} \in B_{0}$ is the same singularity of Example 13.1. Since $\alpha=$ $\mu-\varepsilon$, we have $\alpha_{1}=2$ and $\alpha_{2}=4$, thus one expects the general element C in $\left|\mathcal{I}_{\Gamma}(h)\right|$ to pass simply through q_{2} and not to pass through q_{1}. But this is not possible, because q_{2} is infinitely near to q_{1}.

Actually, we see that $\left(K_{Y}+B / 2\right) \cdot E_{1}<0$ and E_{1} is a fixed component of $\left|K_{Y}+B / 2\right|=\left|\sigma^{*}(h L)-E_{2}\right|$. Moreover

$$
\begin{equation*}
K_{Y}+B / 2-E_{1}=\sigma^{*}(h L)-1 \cdot E_{1}^{*}-0 \cdot E_{2}^{*} \tag{14.7}
\end{equation*}
$$

meets non negatively E_{1} and E_{2}, so $\left|K_{Y}+B / 2-E_{1}\right|$ has no fixed components by the next Lemma 14.8. Formula (14.7) means that C passes simply through q_{1} and does not pass through q_{2} (which is 1 adjunction condition as well).

Lemma 14.8 Let \mathcal{L} be a linear system on Y which we write as:

$$
\mathcal{L}=\left|\sigma^{*}(h L)-\sum_{i=1}^{n} m_{i} E_{i}^{*}\right|
$$

where L is a general line in \mathbb{P}^{2}, m_{i} are non-negative integers and h is arbitrarily high. Suppose that $\operatorname{deg} \mathcal{L}_{\mid E_{i}} \geq 0$, for every $i=1, \ldots, n$. Then \mathcal{L} has no fixed component. In particular the general member of $\sigma_{*} \mathcal{L}$ is a plane curve with multiplicity exactly m_{i} at q_{i}, for $i=1, \ldots, n$.

Proof. Since $h \gg 0$, we may assume that the only possible fixed components of \mathcal{L} are among the E_{i} 's. For every $i=1, \ldots, n$, consider the exact sequence $0 \rightarrow$ $\mathcal{L}\left(-E_{i}\right) \rightarrow \mathcal{L} \rightarrow \mathcal{L}_{\mid E_{i}} \rightarrow 0$. We need to show that $h^{0}\left(\mathcal{L}\left(-E_{i}\right)\right)<h^{0}(\mathcal{L})$. This will follow from $H^{1}\left(\mathcal{L}\left(-E_{i}\right)\right)=0$, because $H^{0}\left(\mathcal{L}_{\mid E_{i}}\right) \neq 0$ by assumption. We claim that $R^{1} \sigma_{*} \mathcal{L}\left(-E_{i}\right)=0$. This will imply that $H^{1}\left(\mathcal{L}\left(-E_{i}\right)\right)=H^{1}\left(\sigma_{*} \mathcal{L}\left(-E_{i}\right)\right)=0$,
where the last equality follows from Serre's Theorem, because $h \gg 0$, and we will be done. Indeed $H^{1}\left(\mathcal{L}\left(-E_{i}\right)_{\mid E_{1}^{*}}\right)=0$, since E_{1}^{*} is 1-connected, $p_{a}\left(E_{1}^{*}\right)=0$ and $\operatorname{deg} \mathcal{L}\left(-E_{i}\right)_{\mid E_{1}^{*}} \geq m_{1} \geq 0$.

The above discussion suggested us to introduce the following notion: we say that a point q_{i} is defective if there exists a point q_{j} such that $\alpha_{j}>\alpha_{i}$ and q_{j} is infinitely near of order one to q_{i}. Hence, if q_{i} is defective, then $B \cdot E_{i}<0$, while we know that $\tilde{B} \cdot E_{i} \geq 0$ for every $i=0, \ldots, n$, because \tilde{B} is the proper transform of a plane curve. In Example 13.1 (recalled before the previous lemma), q_{1} is defective, because $q_{2}>^{1} q_{1}$ and $4=\alpha_{2}>\alpha_{1}=2$.

Lemma 14.9 A point q_{i} is defective if and only if $D \cdot E_{i}>0$. More precisely, a point q_{i} is defective if and only if $\varepsilon_{i}=1$ and there exists a (necessarily unique) point $q_{j}>^{1} q_{i}$ with $\tilde{\alpha}_{j}=\tilde{\alpha}_{i}$ and $\varepsilon_{j}=0$. Furthermore, either:
(i) $\alpha_{i}=\tilde{\alpha}_{i}-1$, or
(ii) $\alpha_{i}=\tilde{\alpha}_{i}$ and both q_{i}, q_{j} are proximate to a point q_{k} with $\varepsilon_{k}=1$.

Finally a point q_{i} is defective if and only if F_{i} is a (-1)-curve.
Proof. The last statement follows easily from the other ones and Remark 10.3. By definition, if q_{i} is defective, then $D \cdot E_{i} \geq-\left(B \cdot E_{i}\right) / 2>0$. Conversely, $D \cdot E_{i} \leq 0$ is equivalent to $\left(B+2 K_{Y}\right) \cdot E_{i} \geq 0$, that holds, if q_{i} is not defective, by Lemma 4.3 in [6]. This proves the first statement.

Note that if there is a point $q_{j}>^{1} q_{i}$ with $\tilde{\alpha}_{j}=\tilde{\alpha}_{i}$, then q_{j} is the unique proximate point to q_{i}.

Suppose that $q_{i}>^{1} q_{k}$ and q_{k} is the only point which q_{i} is proximate to. Then $\alpha_{i}=\tilde{\alpha}_{i}+\varepsilon_{k}-\varepsilon_{i}$ by (7.3). Let q_{j} be an infinitely near point of order one to q_{i}. If q_{j} is proximate only to q_{i}, then $\alpha_{j}=\tilde{\alpha}_{j}+\varepsilon_{i}-\varepsilon_{j}$, thus $\alpha_{j} \geq \alpha_{i}+2$ if and only if

$$
\left(\tilde{\alpha}_{i}-\tilde{\alpha}_{j}\right)+\varepsilon_{k}+\varepsilon_{j}+2 \leq 2 \varepsilon_{i}
$$

which (recalling that $\tilde{\alpha}_{i} \geq \tilde{\alpha}_{j}$ because $\tilde{B} \cdot E_{i} \geq 0$) holds only if $\tilde{\alpha}_{i}-\tilde{\alpha}_{j}=\varepsilon_{k}=$ $\varepsilon_{j}=0$ and $\varepsilon_{i}=1$, that is case (i).

If q_{j} is proximate also to q_{k}, then $\alpha_{i}=\tilde{\alpha}_{j}+\varepsilon_{i}+\varepsilon_{k}-\varepsilon_{j}$, hence $\alpha_{j} \geq \alpha_{i}+2$ if and only if $\left(\tilde{\alpha}_{i}-\tilde{\alpha}_{j}\right)+\varepsilon_{j}+2 \leq 2 \varepsilon_{i}$, that is either case (i) or (ii) depending on the value of ε_{k}.

This concludes the proof in case q_{i} is proximate to only one point. One may proceed similarly for the other configurations of $q_{j}>^{1} q_{i}$, namely if q_{i} is not infinitely near to any point or if q_{i} is proximate to more than one point.

Both of the cases (i) and (ii) of Lemma 14.9 may occur, as the point q_{1} in Example 13.1 and the point q_{3} in Example 13.3 respectively show.

We remark that if q_{i} is defective and q_{j} is as above, namely $q_{j}>^{1} q_{i}$ and $\alpha_{j}>\alpha_{i}$, then q_{j} cannot be defective. However there may exist a defective point q_{l} with $q_{l}>^{1} q_{j}$ and $\alpha_{l}=\alpha_{i}$, as $q_{3}, q_{5}, \ldots, q_{2 k-1}$ in Example 13.2.

We say that a point q_{i} is 1-defective, and we write $\operatorname{def}\left(q_{i}\right)=1$, if q_{i} is defective and there is no defective point $q_{j}>q_{i}$ with $\alpha_{j}=\alpha_{i}$. Inductively, we say that q_{i}
is k-defective, and we write $\operatorname{def}\left(q_{i}\right)=k$, if there exists a $(k-1)$-defective point $q_{j}>^{2} q_{i}$ with $\alpha_{j}=\alpha_{i}$.

In Example 13.2, the point q_{1} is k-defective. We set $\operatorname{def}\left(q_{i}\right)=0$ if q_{i} is not defective and $\operatorname{Def}=\left\{i \mid \operatorname{def}\left(q_{i}\right)>0\right\}$. Thus $i \in \operatorname{Def}$ if and only if q_{i} is defective.

Now we are ready to show what exactly happens to an element in $\left|\mathcal{I}_{\Gamma}(h)\right|$ at a defective point. To simplify the notation, by ordering conveniently the blowing-ups, we may and will assume that if q_{j}, q_{k} are defective, with $\alpha_{j}=\alpha_{k}$ and $q_{k}>^{2} q_{j}$, then $k=j+2$ and $q_{j+2}>^{1} q_{j+1}>^{1} q_{j}$.

Theorem 14.10 The fixed part of $\left|K_{Y}+B / 2\right|$ is exactly:

$$
\begin{equation*}
\bar{E}=\sum_{j \in \operatorname{Def}} \sum_{r=0}^{\operatorname{def}\left(q_{j}\right)-1} E_{j+r} \tag{14.11}
\end{equation*}
$$

Proof. By Lemma 14.9, the non-defective points do not mind, so we may focus only on what happens at a defective point. Any k-defective point looks like the point q_{1} of Example 13.2 , thus we will assume that q_{1} is k-defective and we will follow the notation of that example. Recall that, for every $i=1, \ldots, k$, the point $q_{2 i-1}$ is $(k-i+1)$-defective, $\alpha_{2 i} / 2-1=g$ and $\alpha_{2 i-1} / 2-1=g-1$.

We claim that the fixed part of $\left|K_{Y}+B / 2\right|$ is exactly:

$$
\begin{equation*}
\bar{E}=\sum_{l=0}^{k-1} \sum_{i=1}^{k-l} E_{2 i+l-1}=\sum_{j \in \operatorname{Def}} \sum_{r=0}^{\operatorname{def}\left(q_{j}\right)-1} E_{j+r} \tag{14.12}
\end{equation*}
$$

and formula (14.11) clearly follows. Note that (14.12) means that the general element of $\left|\mathcal{I}_{\Gamma}(h)\right|$ has multiplicity g at q_{1}, \ldots, q_{k} and $g-1$ at $q_{k+1}, \ldots, q_{2 k}$, giving $k g^{2}$ adjunction conditions as expected.

Now we prove our claim. By Lemma 14.9, the exceptional curve $E_{2 i-1}$ is a fixed component of $\left|K_{Y}+B / 2\right|$, for $i=1, \ldots, k$. Then

$$
D+\sum_{i=1}^{k} E_{2 i-1}=\sum_{j=1}^{k}\left(g E_{2 j-1}^{*}+(g-1) E_{2 j}^{*}\right)
$$

meets positively $E_{2 j}$ for $j=1, \ldots, k-1$, which therefore are fixed components of $\left|K_{Y}+B / 2\right|$ too. Now

$$
D+\sum_{i=1}^{k} E_{2 i-1}+\sum_{j=1}^{k-1} E_{2 j}=g E_{1}^{*}+\sum_{l=1}^{k-1}\left(g E_{2 l}^{*}+(g-1) E_{2 l+1}^{*}\right)+(g-1) E_{2 k}^{*}
$$

meets again positively $E_{2 i-1}$, for $i=2, \ldots, k$ (but not E_{1} and $E_{2 k}$).
Going on in this way, by induction on k, it follows that $\left|K_{Y}+B / 2\right|$ contains (14.12). On the other hand, $D+\bar{E}=\sum_{i=1}^{k}\left(g E_{i}^{*}+(g-1) E_{k+i}^{*}\right)$ does not meet positively anyone of the E_{i} 's, thus the fixed part of $\left|K_{Y}+B / 2\right|$ is exactly \bar{E}, by Lemma 14.8, and our claim is proved.

We remark that the previous theorem gives an alternative proof of Corollary 14.5. independent from De Franchis' Theorem.

Finally we want to compute the number of conditions that the singularity $p \in X_{0}$ imposes to pluricanonical systems. The plurigenera of X are:

$$
P_{m}(X)=h^{0}\left(X, m K_{X}\right)=h^{0}\left(Y, m K_{Y}+m B / 2\right)+h^{0}\left(Y, m K_{Y}+(m-1) B / 2\right)
$$

Riemann-Roch Theorem and (9.5) imply that:

$$
h^{0}\left(m K_{X_{0}}\right)-h^{0}\left(m K_{X}\right)+h^{1}\left(m K_{X}\right)=\sum_{i=1}^{n} \frac{2\left(m^{2}-m\right)\left(\alpha_{i}-2\right)^{2}+\alpha_{i}^{2}-2 \alpha_{i}}{8}
$$

Theorem 14.13 The number of conditions $h^{0}\left(m K_{X_{0}}\right)-h^{0}\left(m K_{X}\right)$ that the singularity $p \in X_{0}$ imposes to the m-canonical system are:

$$
\begin{equation*}
\sum_{i=1}^{n} \frac{2\left(m^{2}-m\right)\left(\alpha_{i}-2\right)^{2}+\alpha_{i}^{2}-2 \alpha_{i}}{8}-\frac{d m(m-1)}{2} \tag{14.14}
\end{equation*}
$$

where $d:=\sharp$ Def is the number of defective points.
Proof. We shall show that $h^{1}\left(m K_{X}\right)=d m(m-1) / 2$. Since we are dealing with local questions, we may assume that the (-1)-curves of X are contained in $\tau^{-1}(p)$. Recall that these (-1)-curves are disjoint and there are exactly d of them. Let $\tau^{\prime}: X \rightarrow \bar{X}$ be their contraction (see section 10), then \bar{X} is a minimal surface of general type and we may assume that $h^{0}\left(K_{\bar{X}}\right) \gg 0$ (because h is arbitrarily high). With no loss of generality, we may also assume that τ^{\prime} is the blowing-down of just a (-1)-curve F_{i}. Thus it suffices to show that, under these assumptions, $h^{1}\left(m K_{X}\right)=m(m-1) / 2$. By Serre duality, $h^{1}\left(m K_{X}\right)=$ $h^{1}\left(-(m-1) K_{X}\right)$. Let C be a curve in $\left|(m-1) K_{X}\right|$. Clearly $C=\tau^{*}\left(C_{0}\right)+$ $(m-1) F_{i}$, where $C_{0} \in\left|(m-1) K_{\bar{X}}\right|$. It is well-known that C_{0} and $\tau^{* *}\left(C_{0}\right)$ are 1 -connected (see [1] Proposition 6.1] and 14, §1]), therefore $h^{0}\left(\mathcal{O}_{\tau^{\prime *}\left(C_{0}\right)}\right)=1$. Since $q(X)=h^{1}\left(\mathcal{O}_{X}\right)=0$, the exact sequence of sheaves $0 \rightarrow \mathcal{O}_{X}(-C) \rightarrow$ $\mathcal{O}_{X} \rightarrow \mathcal{O}_{C} \rightarrow 0$ implies that $h^{1}\left(\mathcal{O}_{X}(-C)\right)=h^{0}\left(\mathcal{O}_{(m-1) F_{i}}\right)$. Finally one easily checks that $h^{0}\left(\mathcal{O}_{(m-1) F_{i}}\right)=m(m-1) / 2$.

We remark that, if h is not assumed to be arbitrarily high, \bar{X} may not be of general type and one should compute, or estimate, $h^{1}\left(m K_{X}\right)$.

As we did for $\left|K_{Y}+B / 2\right|$, we want to determine the fixed components of $\left|m K_{Y}+m B / 2\right|$ and $\left|m K_{Y}+(m-1) B / 2\right|$. After having ordered the blowing-ups as explained just before Theorem 14.10, we are ready to prove the following:

Theorem 14.15 The fixed part of $\left|m K_{Y}+\bar{m} B / 2\right|$, for $\bar{m}=m$ or $\bar{m}=m-1$, is exactly:

$$
\begin{equation*}
\left[\frac{\bar{m}}{2}\right] \sum_{j \in \operatorname{Def}} E_{j}+(\bar{m} \bmod 2) \bar{E} \tag{14.16}
\end{equation*}
$$

where \bar{E} is (14.1]), $[\bar{m} / 2]$ is the largest integer smaller than or equal to $\bar{m} / 2$ and $\bar{m} \bmod 2=\bar{m}-2[\bar{m} / 2] \in\{0,1\}$.

Proof. As in the proof of Theorem 14.10, it suffices to understand what happens at a defective point, thus we assume that q_{1} is a k-defective point as in Example 13.2. Let us set

$$
\tilde{E}=\sum_{i=1}^{k} E_{2 i-1}=\sum_{j \in \mathrm{Def}} E_{j} .
$$

Suppose that $\bar{m}=m$. If m is even, then

$$
m D=\sum_{i=1}^{k}\left(m(g-1) E_{2 i-1}^{*}+m g E_{2 i}^{*}\right)
$$

hence $m D$ meets positively $E_{2 i-1}$ for every $i=1, \ldots, k$. Moreover $(m D+j \tilde{E})$. $E_{2 i-1}>0$ for every $i=1, \ldots, k$ and $j=1, \ldots, m / 2-1$. This means that $m \tilde{E} / 2$ is a fixed component of $\left|m K_{Y}+m B / 2\right|$. Then

$$
m D+\frac{m}{2} \tilde{E}=\sum_{i=1}^{2 k}\left(m g-\frac{m}{2}\right) E_{i}
$$

does not meet positively anyone of the E_{i} 's, therefore the fixed part of $\mid m K_{Y}+$ $m B / 2$ is exactly $m \tilde{E} / 2$, by Lemma 14.8 .

If m is odd, following the same argument, one easily shows that the fixed part of $\left|m K_{Y}+m B / 2\right|$ is $(m-1) \tilde{E} / 2+\bar{E}$.

One proceeds similarly in the case that $\bar{m}=m-1$. Indeed, one can prove that the fixed part of $\left|m K_{Y}+(m-1) B / 2\right|$ is $(m-1) \tilde{E} / 2$ (resp. $\left.m \tilde{E} / 2+\bar{E}\right)$ if m is odd (resp. if m is even).

Note that Theorem 14.13 can be proved also as corollary of Theorem 14.15 .

References

[1] M. Artin, Some numerical criteria for contractability of curves on algebraic surfaces, Amer. J. Math. 84 (1962), 485-496.
[2] M. Artin, On isolated rational singularities of surfaces, Amer. J. Math. $\mathbf{8 8}$ (1966), 129-136.
[3] C. Ban, L.J. McEwan and A. Nemethi, The Embedded Resolution of $f(x, y)+z^{2}:\left(\mathbb{C}^{3}, 0\right) \rightarrow(\mathbb{C}, 0)$, preprint, math.AG n. 9911187.
[4] W. Barth, C. Peters and A. Van de Ven, Compact Complex Surfaces, Ergebnisse der Mathematik, 3. Folge, Band 4, Springer, Berlin, 1984.
[5] A. Calabri, Sulla razionalità dei piani doppi e tripli ciclici, Tesi di dottorato (X ciclo), Università di Roma "La Sapienza", 1999.
[6] A. Calabri, On rational and ruled double planes, to appear on Annali di Matematica Pura ed Applicata.
[7] E. Casas-Alvero, Singularities of plane curves, London Math. Soc. Lecture Note Series 276, Cambridge University Press, 2000.
[8] F. Catanese and C. Ciliberto, On the irregularity of cyclic covers of algebraic surfaces, in Geometry of Complex Projective Varieties, Seminars and Conferences 9, Mediterranean Press, 1993, 89-115.
[9] M. De Franchis, I piani doppi dotati di due o più differenziali totali di prima specie, Rend. Accad. Lincei 13 (1904), 688-695.
[10] D. Dixon, The fundamental divisor of normal double points of surfaces, Pacific J. Math. 8 (1979), 105-115.
[11] A.H. Durfee, Fifteen characterizations of rational double points and simple critical points, Enseign. Math., ser. 2, 25 (1979), 131-163.
[12] R. Ferraro, Curve di genere massimo in \mathbb{P}^{5}, and Explicit Resolutions of Double Point Singularities of Surfaces, Tesi di dottorato (IX ciclo), Università di Roma "Tor Vergata", 1998.
[13] A. Franchetta, Sui punti doppi isolati delle superficie algebriche. Nota I, and Nota II, Atti. Accad. Naz. Lincei, Rend. Cl. Sci. Fis. Mat. Natur., ser. VIII, 1 (1946), 49-57 and 162-168.
[14] A. Franchetta, Sulle curve riducibili appartenenti ad una superficie algebrica, Rend. Mat. Appl., Univ. Roma, ser. 5, 8 (1949), 378-398.
[15] S. Kleiman and R. Piene, Enumerating singular curves on surfaces, in Algebraic Geometry: Hirzebruch 70 (Warsaw, 1998), Contemporary Mathematics 241, American Mathematical Society, Providence, RI, 1999, 209-238.
[16] E. Horikawa, On deformations of quintic surfaces, Invent. Math. 31 (1975), 43-85.
[17] H. Laufer, Normal two-dimensional singularities, Annals of Mathematical Studies 71, Princeton University Press, Princeton, 1971.
[18] H. Laufer, On minimally elliptic singularities, Amer J. Math. 99 (1977), 1257-1295.
[19] H. Laufer, On normal two-dimensional double point singularities, Israel J. Math. 31 (1978), 315-334.
[20] U. Persson, Double covers and surfaces of general type, in Algebraic Geometry. Proceedings, Tromsø, Norway, 1977, ed. L.D. Olson, Lecture Notes in Mathematics 687, Springer, Berlin, 1978, 168-195.
[21] M. Reid, Chapters on Algebraic Surfaces, in Complex Algebraic Geometry. Lectures of a summer program, Park City, UT, 1993, ed. Kollár J., IAS/Pak City Mathematics Series 3, American Mathematical Society, Providence, RI, 1997, 5-159.
[22] J. Roè, Varieties of clusters and Enriques diagrams, preprint, math.AG n. 0108023.

[^0]: * Dipartimento di Matematica, Università di Roma "Tor Vergata", via della Ricerca Scientifica, 00133 Roma. E-mail: calabri@mat.uniroma2.it. Partially supported by E.C. project EAGER, contract n. HPRN-CT-2000-00099.
 \dagger Dipartimento di Matematica, Università di Roma Tre, Largo S. Leonardo Murialdo 1, 00146 Roma. E-mail: ferraro@mat.uniroma3.it.

