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Summary 

 

 The aim of this Ph.D. was to contribute to the discipline of ecosystems networks, in 

particular to loop analysis, by improving on the current algorithm implementations, with particular 

emphasis in developing an approach to couple systems quantitative information to the analytical 

processes of loop analysis, and through it allow the exploration the mechanism behind a systems 

responsiveness to perturbations, that is, the importance of both the variables, the structure of 

linkages between them and the intensity of those linkages. 

 

 

In this thesis, after a presentation of the loop analysis and its main drawback, the inherent 

lack of associated link intensity and the repercussions these have on the system’s responsiveness, 

three chapters follow. In Chapter 3, the LevinsAnalysis R package is presented. In this package 

the improved code and its applications explained and demonstrated through the application of the 

package functions to a case study, the Savannah Fires (Bodini & Clerici, 2016)  model. This case 

was specifically selected to demonstrate the potential of the package and its novel approach to 

identification of the importance of linkage strength and path analysis. In Chapter 4, I explore the 

Caspian Sea network prior to Mnemiopsis leidyi invasion, with the aim of investigating the 

mechanism behind the changes observed on multiple species and their importance compared with 

one another, the role that different species, the strength of interaction of the links and paths 

connecting them might have played in the system response to the different pressures it suffered. 

The result of this analysis, pointing to the importance of both kilkas and bony fish in the system’s 

response to perturbations such as overfishing. Phytoplankton also emerges as potentially playing 

an important role in the system, in particular a possible negative input on this variable seems to be 

of importance in describing the changes observed in the system. From this chapter also comes 

about how the strength of interplay between variables and from there the strength of pathways 

connecting the system play a central role in the Caspian Sea system and its response to press 

perturbations. In Chapter 5, a discussion is taken on the viability and potential use of loop analysis 

in the study of systems whose variables lay across the social and the ecological domains: species 

populations, predators and prey, but also governmental organizations, human dynamics and social 

mechanisms. 
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1. Introduction  

 

 

1.1.  Ecological Networks 

 

 Within any ecosystem, species and environment variables interact with each other in many 

and diverse ways. Predator-prey, parasite-host and competition are some of the examples of 

interactions between species that compose an interactive map that can be visualized as an 

ecological network. Through this network, species affect each other positively or negatively 

depending on the type of interactions between them. Species also affect each other indirectly 

through intermediate species. The net balance of the effect a species will have on each other thus 

depends on the strength of the interactions that connect them to each other but also on the 

distance between the species in the network.  

Building and analysing an ecosystem network of interactions is a paramount task. 

Considerable time and effort are needed to uncover all the variables and interactions at work in the 

system, and from these all which play an important role in the system dynamics which should 

therefore be included in the network as essential to explain the behaviour of the system as a whole  

(Vacher et al., 2016). Network representations focus on certain aspects of the ecosystems. 

Perhaps the most famous network descriptions of ecological communities are the food webs 

(Cohen, 1978; Hall & Raffaelli, 1991; Pimm, 1982; Polis, 1991; Winemiller, 1990). They are 

complex architectures depicting who eats whom in ecosystems. They can be visualized as 

networks whose nodes represent species/ groups of species and the links between them the flow 

of energy associated to their trophic interaction. Their intricacy reveals that interdependence for 

food supply may extend across several trophic levels, connecting species that are far apart along 

the chain from producers to consumers. Food webs have been employed to understand 

mechanisms of ecological stability (Allesina & Tang, 2012; de Ruiter et al., 1995; MacArthur, 1955; 

Neutel et al., 2002), assess the ecological importance of species (Allesina & Pascual, 2009; 

Jordán, 2009; Jordán et al., 2008; Lai et al., 2012; O’Gorman et al., 2010) and understand 

mechanisms of secondary extinction (Allesina & Bodini, 2004; Dunne, Williams, & Martinez, 2002; 

Eklöf & Ebenman, 2006; Jordán, Scheuring, & Vida, 2002). 

Networks as representations of ecosystems have been used to understand patterns of 

matter and energy circulations (Baird & Ulanowicz, 1989; Christian et al., 2009), ecosystem 

development and successional dynamics (Bodini et al., 2017; Scotti et al., 2009; R.E. Ulanowicz, 

1986; Robert E Ulanowicz, 1980), effects of stress on ecosystems and ecosystem health 

(Bondavalli et al., 2006; Mageau et al. 1995; R.E. Ulanowicz & Mann, 1981) and environmental 

sustainability (Bodini et al., 2012; Pizzol et al., 2013). 
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Loop analysis, e.g., takes the description of the qualitative1 state of relationships between 

variables in a system, that is, it considers the causal effect that a variable exerts on the rate of 

change of another. By its qualitative nature, loop analysis does not take into account the 

quantitative nature of the interactions between the individual variables. 

Qualitative loop analysis translates the adjacency matrix of the interactions in an ecological 

community (Community Matrix, Levins, 1968) in a signed digraph. So, it translates an algorithm 

that is essentially based on the theory of systems of ordinary differential equations in a graphical 

algorithm that makes the analysis more intuitive and user friendly. Through graph and its analysis, 

it is possible to study important features of the networks structure, such as connectance, i.e., the 

number of interactions between species, path length, trophic levels and number of species per 

level and clustering. From the study of the structure of networks and the patterns that arise from it, 

further information can be taken from a system. Take loop analysis, from the application of its 

algorithm it’s possible to study the mechanics of a systems evolution in response to alterations in 

the state of equilibrium of its component variables. That is, it allows the study of the system 

response to perturbations, both through how these perturbations affect each of the individual 

variables and the system as a whole, allowing then to understand the degree of importance that 

different variables, interactions and perturbations play in a system evolution. This knowledge can 

both be taken to study past events, to uncover the mechanics behind observed changes, or it can 

be applied as a predictive tool to understand the possible outcomes of present pressures in the 

systems. 

Ecological networks are powerful tools to visualize and investigate systems mechanics, 

permeability and response to alterations on their state of equilibrium. Furthermore, the application 

of predictive analysis over networks where not only ecological variables are considered but also 

socio-economic (e.g., governmental organizations) makes ecological networks and their analysis 

an even greater tool in the organization, study and management of ecosystems. 

 

 

1.2. State of the Art 

 

Loop analysis is a method of qualitative modeling anticipated by Sewall Wright (1965) and 

systematically developed by Richard Levins, initially to study ecological communities. Despite its 

potential, since it was conceived loop analysis was not given the importance it deserved to be used 

in ecological investigations, mainly because quantitative models were the preferred tools in a 

framework in which the “anxiety for quantification” created a strong prejudice according to which “to 

know something we must define it precisely and measure it precisely” (Levins, 1970). 

Several applications saw the light after the method was introduced: human physiology and 

disease (Levins, 1974); natural selection and fitness (Levins, 1975); phytoplankton-nutrient 

 

 
1 When we make a “qualitative vs quantitative” distinction, we should bear in mind that the “qualitative” is 

also a quantitative in a technical sense, considering that having a binary “yes” or “no” entry depends on 

sampling and measurement errors and thresholds. So, being qualitative is a methodology, not philosophy. 
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relationships (P. Lane & Levins, 1977); populations genetics (Desharnais & Costantino, 1985); 

agriculture (Boucher et al., 1982); species interactions (Henry, 1980; Levine, 1980; Roughgarden, 

1979; Vandermeer, 1981); acid deposition (Lane & Blouin, 1984, 1985); marine environment (Lane 

& Collins, 1985); in-lake enclosure experiments (Briand & Mccauley, 1978; Lane & Blouin, 1984). 

However, such applications appear as sporadic in the literature if confronted with other type of 

modelling, and a few groups used loop analysis systematically to clarify and understanding 

ecological dynamics. Attention to the method was promoted by researches that explored its 

theoretical foundations and tried to overcome its difficulties and limitations (Justus, 2006). The bulk 

of this work provided a reformulation of Levins' loop analysis for the qualitative modeling of 

complex dynamical systems (Dambacher et al., 2002; Dambacher et al., 2005; Dambacher et al., 

1999; Dambacher et al., 2003). Progressively it had become clear that complexity was the central 

issue in environmental management, ecosystem ecology, and sustainability and tools to deal with 

such complexity were called for. In this framework new opportunities opened up for loop analysis 

and applications were directed to understand environmental issues in a multidisciplinary context 

(Bodini et al., 2000), to clarify cause and effects in ecological communities (Levins & Puccia, 1988; 

Levins & Schultz, 1996) and to  tackle  management questions (Ramsay and Veltman 2005). 

Associated to the possibility to investigate complex systems that loop analysis offers the 

domain of its applications has become larger with the development of new research frameworks 

such as the Ecosystem Based Management (EBM) and the Socio-ecological systems (SES). 

These frameworks both emphasize the complex interactions that constitute the dynamics of the 

system of interest in which resources, actors, and governance systems interact to produce 

outcomes across these component parts. In particular these outcomes are the result of a series of 

feedback that buffer, amplify or even reverse the effects of actions imposed to the components so 

that often unintended effects emerge as outcomes of policies and management actions. Qualitative 

modeling approaches offer ways to assess these complex dynamics mediated by the feedbacks. 

Loop analysis in particular has revealed useful for examining and identifying potential outcomes 

from external perturbations and management interventions in data poor systems when very little is 

known about functional relationships and parameter values, which is the rule rather than the 

exception when variables across classical domains are included in the systems of interest 

(Babcock et al., 2016; Bell et al., 2015).  

While the use of qualitative models for the study of complex systems has proven insightful, 

it nonetheless is difficult to apply to large or highly connected systems. This has been due, in part, 

to difficulty in the hand calculation of symbolic algorithms, but also to the interpretation of 

ambiguous results that arise in large complex systems. Recent computer software advances in 

symbolic processors, however, have eliminated the tedium of hand calculations. The present work 

contributed in this direction through the development of an R (R Core Team, 2019b) based 

software which has been conceived to deal with the most critical aspects of the algorithm 

complexity, such as the anatomy of the model so that the intricacy of the pathways is disentangled 

to highlight specific pathways and their role in spreading the effects of external perturbations; 

variation of interaction strength and their effects on variable response to external perturbations. In 

so doing that the functions of the package presented in this work present a theoretical advance in 
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the treatment of model ambiguity, which is accompanied by a procedure which, based on a case 

study, illustrates how validation should be conducted exploiting data from real ecosystems.  

 

 

1.3. Thesis aim and overview   

 

This Ph.D. thesis aim was to contribute to the discipline of ecosystems networks, in 

particular loop analysis by improving on the current algorithm implementations, with particular 

emphasis in developing an approach to couple systems quantitative information to the analytical 

processes of loop analysis, and through it allow the exploration the mechanism behind a systems 

responsiveness to perturbations, that is, the importance of both the variables, the structure of 

linkages between them and the intensity the of those linkages. 

 

The aims of this thesis are: 

1) To improve on the loop analysis code made available by Bodini et. al., 2018, and 

develop an R package for a simple but comprehensive implementation of the 

qualitative modelling of loop analysis 

2) To develop, within the in-silica application, an approach to explore the quantitative 

nature of networks within the loop analysis, that is, a method to explore the importance 

of strength and path information within a systems response to perturbations. 

3) To uncover the mechanisms behind the changes observed in the Caspian Sea in the 

decades before M. leidyi invasion and the importance that the strength of different 

interactions and paths might have had in the systems response to the perturbations. 

4) To explore the viability and potential of use of loop analysis in the study of socio-

ecological system. 

 

In this thesis, after a presentation of the loop analysis and its main drawback, the inherent 

lack of associated link intensity and the repercussions these have in the systems responsiveness, 

three chapters follow, which will ultimately serve as the basis of 3 papers. In Paper 1 (Chapter 3), 

the LevinsAnalysis R package is presented. In this package the improved code and its applications 

explained and demonstrated through the application of the package functions to a case study, the 

Savannah Fires (Antonio Bodini & Clerici, 2016)  model. This case was specifically selected to 

demonstrate potential of the package and is novel approach to identification of the importance of 

linkage strength and path analysis. In Paper 2 (Chapter 4), I explore the Caspian Sea network 

prior to M. leidyi invasion, with the aim of investigating the mechanism behind the changes 

observed on multiple species and their importance compared with one another, the role that 

different species, the strength of interaction of the links and paths connecting them might have 

played in the system response to the different pressures it suffered. In Paper 3 (Chapter 5), an 

exploration is made on the viability and potential of the use of loop analysis in the study of systems 

where not only ecological variables are included in the network but also human entities, such as 

governmental organizations, when compared to other qualitative modelling methodologies. 
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2. Methodology 

 

2.1. Loop Analysis 

 

Loop Analysis is a qualitative modelling technique that uses signed digraphs to represent 

networks of interacting variables (Richard Levins, 1974; Puccia & Levins, 1985). It allows prediction 

of the direction of change in the level (e.g. biomass, number of individuals) of system variables 

(single-species or group of species) in response to a parameter alteration or press perturbations on 

a targeted variable.  

The loop analysis algorithm makes use of a specific kind of information, the qualitative 

state of relationship between two variables (their strength is not specified), that is, the typology of 

relationship between two variables (e.g., predator – prey) described through signed digraphs (or 

directed graphs), where a positive effect of species i  on species j is represented by an arrow-

headed link while a negative effect would be represented by a circle-headed link. The matrix 

counterpart of the signed digraph is the adjacency matrix, where the positive links are represented 

by a +1 and the negative links by -1, while non-existing links between variables are represented 

with a 0. Self-effects, e.g., as self-limiting growth rate are depicted in the adjacency matrix in the 

diagonal terms as -1, and in the signed digraph as circle-headed links connecting the variable to 

itself. Figure 2.1 the signed digraph, adjacency matrix is given for a simple system. 

 

 Figure 2.1: Signed digraph and corresponding adjacency matrix for a three trophic level linear 

chain. Values on adjacency matrix correspond to the qualitative effect of row variables in column variables 

 

Press perturbations (Bender, Case, & Gilpin, 1984), are external inputs that affect the rate 

of change of a target variable with effects that propagate to the other species in the community and 

that are modulated by the feedback structure that is created by the multiple interactions among the 

variables. Their response can be predicted by the loop analysis algorithm and summarized in a 

table of predictions that becomes a diagnostic tool for the causes of change, where a prediction on 

whether the equilibrium value of a system variable is expected to increase, decrease or remain the 
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c
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  
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   p ji
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comp( ) 
i,k



Fn

same following the perturbation (Richard Levins, 1974). For any variable variations can be 

calculated by the loop formula. 

 

 

 

 

 

Where [∂fi /∂c] expresses whether the rate of change of the target variables (𝑖) increases 

or decreases because of the changing parameter (𝑐); [𝑝𝑗𝑖
(𝑘)
],is the pathway to the response 

variable from the target variable, [𝐹𝑛−𝑘
(𝑐𝑜𝑚𝑝)

] is the complementary feedback and [𝐹𝑛] is the overall 

feedback.  Summation occurs along all paths from the target variable to the effect variable. 

 

Path [𝑝𝑗𝑖
(𝑘)

]. 

A path is a series of links connecting any two nodes in the system, without crossing any 

variable twice. Take the model from Figure 2.2. An example of a path would be that connecting the 

variables A and C, the three variable (k) path [A -> B -> C]. A positive input occurring on A (its rate 

of change increases,[
𝜕𝑓𝑖

𝜕𝑐
] > 0) would affect the state of equilibrium of C through this path, whose 

sign is given by the product of the signs of the links that form the path, in the case positive. 

 

Circuits and Feedbacks. 

A pathway that starts at one node and, by following the direction of links, returns to it 

without crossing any variable twice is called loop, or circuit. Any circuit produces a feedback that 

can be either positive or negative depending on the product of the signs of the links that form the 

loop. As there may be circuits of different length (with 1, 2, 3, ..., k variables involved), in a system 

there are as many levels of feedback as variables. Each level of feedback considers all the circuits 

(feedbacks) involving that particular number of variables. In the system of Figure 2.2 there are 3 

levels of feedback. The first level of feedback comprises the only one variable circuit that is present 

in the system: the self-damping on variable A. Two resource-consumer interactions [ A o-> B] and 

[B o-> C] produce two feedbacks of the second level, and the three variable feedback form the third 

level of feedback, which is created by two independent loops: the self-damping on variable A and 

the resource consumer interaction involving B and C. 

 

Overall Feedback (Fn). 

Overall feedback corresponds to the highest-level feedback of a system. It includes in it all 

the variables of the system, either combined in a single loop, or as part of disjoint loops including 

smaller subsets of variables, respecting that none is repeated twice. In the chain of three trophic 

levels depicted in Figure 2.2, the overall feedback corresponds to a third level of feedback (that is a 

feedback effect involving all the three variables). Because the three variables cannot be connected 

simultaneously in unique circuits, the overall feedback comprises the disjunct loops of A’s self-

damping and the resource consumer interaction between B and C that have a combined number of 
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variables equal to 3. Its sign is obtained by multiplying the signs of the links involved, and this sign 

is further multiplied by(−1𝑚+1), where m is the number of disjunct loops entering the feedback. As 

the links involved are two negative and one positive, and there are two disjunct loops, the overall 

feedback is negative. 

 

Complementary feedback (Fn-k). 

The complementary feedback is the feedback that groups all the variables in the 

complementary subsystem, which is what remains from the system when the (k) variables in a path 

are excluded. In Figure 2 for a positive input on A and effect on B, the complementary subsystem is 

formed by C only. So, the maximum feedback can be a one variable feedback. But because C has 

no self-effect link, there will be a null (0) complementary feedback. Some axioms exist as follows: 

path from a variable to itself is equal to 1, while if all the variables are in the path (i.e., input to A 

and effect on C) there is no complementary subsystem, but the complementary feedback is equal 

to -1. These are two algebraic conveniences that are formally explained in Levins (1975) and 

Puccia and Levins (1985). Summation in the loop formula considers the fact that two variables can 

be connected by more than one path. 

An identification of the elements and application of formula described above are provided 

in Figure 2.2. 

 

 Figure 2.2: Signed-digraph of a three trophic level linear chain. Paths, complementary subsystems, 

and feedbacks used to calculate expected changes in the equilibrium level of the variables, in response to a 

positive input on A. The first term of the numerator in the formula under the Prediction header is the sign of 

the input (+). 
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2.1.1. Interaction Strength 

 

From the analysis above to a simple three trophic level linear chain model it comes that 

there is a maximum of only one path connecting each variable, e.g. the only possible way to 

connect A to C would be [A -> B -> C]. When we consider a non-linear model, the number of paths 

between any variable can be different from 1. Take for example the model from figure 2.3. In this 

example between the variable A and variable D there are two possible paths, a longer path [A -> B 

-> C -o D] and a shorter path [A -> B -o D]. Both are negative and therefore the effect of A in D is 

negative. 

Since calculations of the effect that an input in a variable as on another is the product of 

the sum of the effect carried through all its paths, it comes that with many variables and 

interactions the number of pathways between variables often increases, which leads to several null 

predictions. (i.e., the number of positive paths equals the number of negative paths). 

 

 

 Figure 2.3: Signed digraph of a four trophic level non-linear chain model MM. 

 

 To solve such ambiguities a background quantitative simulation approach is adopted, 

which introduces a random assignment of the magnitude of each variable’s interaction. During 

simulations the value of each link intensity is taken from a random distribution (e.g., uniform 

distribution) in the interval ]0, 1]. After n simulations made over only those matrices that satisfied 

the conditions of stability an overall table of predictions is constructed by combining the z matrices 

that are stable (i.e. those with a determinant different than zero and admitting matrix inversion 

(Logofet, 1993)). For each of these matrices, unambiguous responses are generated in the table of 

predictions. The overall table of predictions is composed of symbols that depend on the 

percentages of signs from the various simulation runs. Therefore, if the same entry in the tables of 

predictions of all analysed matrices yields the same sign (+ or -) then the expected direction of 

change is unambiguous. However, there are cases where this is not true, and for which divergent 
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predictions are computed. The conversion of signs from the simulations to the overall table of 

predictions depends on the percentages of positive (+) and negative (-) signs. The rules for sign 

assignment from simulations to overall table of predictions is summarized in Table 2.1. 

  

[% of +] - [% of -] Corresponding sign in the table 

[-100, -50] - 

(-50, -20) ?-    (tendency to -) 

[-20, 20] 0* 

(20, 50) ?+   (tendency to +) 

[50, 100] + 

0 = 100% 0 

 

Table 2.1: Rules to convert differences between percentages of signs obtained with simulations ([% 

of +] - [% of -]) into predictions (i.e. signs in the overall table of predictions). Round brackets indicate that 

the extremes are excluded; 0* is not a real zero, meaning no changes in the biomass/abundance of variables, 

but represents neutral result due to relatively balanced amounts of negative and positive effects. When after 

the complete set of simulations there are entries for which the absence of any effect was always recorded then 

the symbol in the overall table of predictions is 0, indicating proper absence of effect (see the last row of the 

table: 0 = 100%). 

 

Due to the qualitative nature of loop analysis some information regarding the interaction 

between variables is lost. Namely the strength of their interactions. It comes then, that paths of the 

same length, regardless of the links that composed them, will always have the same strength and 

therefore the same importance in the sign determination. This leads to a detachment of the real-

world interactions that a model may try to reflect, and in turn, the predictions from simulations may 

not match with the effects/trends observed in the real system. In a real system, variables interact 

with different intensities with each other, and therefore, the intensity of the effect of a path between 

any two variables won’t be a simple expression of the length of the path connecting them but both 

and expression of the length of the path and the strength of the links composing that path. 

The importance and role that interaction strength between variables plays in the system 

response to perturbations is a problem that deserves attention. As presented in Paper 1, a formula 

was developed in order to allow for the exploration of this question. 

By making use of the quantitative approach to solve the ambiguities from the existence of 

multiple pathway with opposite sign, a proxy to the real interaction strengths between variables can 

be generated. That is, by constraining the possible values of the real interaction strengths between 

variables to the interval ]0, 1], and constraining the values of key entries in the adjacency matrix 

(instead of the randomly assigned values), one can, by proxy, simulate the real intensity of the 

interaction between any two variables. 

The development of a proxy to the intensity of interaction between variables enables us to 

open new study possibilities on the ecosystems networks mechanics. As shown in Paper 1, by 

comparing the effect on predictions due to changes in the link strength of specific variables, and 

comparing those results with the default predictions (those using a uniform distribution to randomly 
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assign strength values to links), and the trends for that ecosystem, it enables us to confirm or 

formulate hypothesis over the degree of interaction intensity that two variables might experience. 

As per Paper 2, by modulating the effect of all the pairs of interactions gradually and observing the 

level of change it causes too that when compared to the default prediction we can also have a 

glimpse into the level of importance that certain variables interactions might play in the systems 

response to perturbations. From here, and taken the opportunities provided by the code of the 

LevinsAnalysis package, we can now go further and explore the importance that paths may play. 

Prior to the possibility of modulating the interaction strength between variables, as noted above, 

paths strength was a result of their length. Now, with the opportunity to modulate the system to 

better reflect interactions intensity, there is the possibility to explore the true dimension of the paths 

strength and up to which point path length really is or not important for each individual system. 

Even though the task at end might seem easy, it is still in fact a formidable one. It would be 

ill to suppose that with such a tool all the networks would yield all the information they have easily. 

In fact, as shown in Paper 2, this is far from the truth. Although some information can be retrieved 

from simple tests, a full in-depth knowledge of the system is necessary together with a long and 

laborious combing through of the data that can be retrieved from the simulations before conclusive 

answers can be made. But with time and patience, many hypotheses that remained unanswered 

can now be tested. 

 

 

2.2.  R Environment 

 

In the age of informatics and in-silica experiments, the performance of statistical analysis 

too needs a place. The open source R environment (R Core Team, 2019b) is such a place.  

R is an open source language and environment (based on S language (Chambers, 1998)) 

for statistical computing and graphics (R Core Team, 2019b). It provides a wide variety of statistical 

and graphical techniques, allowing for easy data handling, calculations and display of publication 

quality plots. Although a great care has been taken over the defaults for the statistical bases 

provided, one of the mains strength of R language and its environment is its versatility, by allowing 

not only the user to manipulate and explore the potential of each of the functions provided directly 

with the basic installation and the vast array of others provided in the its vast library CRAN (R Core 

Team, 2019a, 2019b) in the form of packages, but also by allowing the users to generate new 

functions and packages for answer to particular questions he may find, and to be able to share 

those new implementations with others and thus contribute to the ever expanding R repository. 

As shown in Chapter 3 and further explored in Chapter 4, the R environment proves to be 

a useful tool when at end is a task for generation of new statistical analysis, by both proving its 

great flexibility and easy access and use.  
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3.1. Summary 

 

1) Loop analysis is a qualitative modelling technique that uses signed digraphs of 

interacting variables, and allows the prediction of the direction of change in the biomass of system 

variables in response to parameter alteration targeted to specific variables 

 

2) Here, we introduce LevinsAnalysis, an R package for loop analysis. The functions put 

forward within this package allow the user to exploit the full potential of the qualitative algorithm of 

loop analysis coupled with a novel approach to explore the importance of interaction strength and 

path analysis, keeping the drawbacks of the qualitative nature of the analysis at a minimum. 

 

3) In addition to an overview of the package a practical application of the package is made, 

highlighting its novel approach to systems mechanics study. 

 

 

Keywords: Levins loop analysis, graph structure, community matrix, predictions, complex 

systems, open-source software 

 

 

3.2. Introduction 

 

Loop analysis is a qualitative modelling technique that uses signed digraphs to represent 

networks of interacting variables (Richard Levins, 1974; Puccia & Levins, 1985). Loop analysis 

allows predicting the direction of change in the level (e.g. biomass, number of individuals) of 

system variables in response press perturbations. These latter are factors (both internal and 

external to the system) that alter the parameters in the rate of change of the variables so that these 

functions increase or decrease with effects on the level of the affected variable. Also, there are 

effects beyond the target variable: impacts cascade through the entire community using pathways 

of interactions and are modulated by the feedback structure that is created by the reticulate 

connections among the variables. The loop analysis algorithm predicts those changes and 

summarizes them in a table of predictions that becomes a diagnostic tool for the causes of change. 

Being the algorithm qualitative, the predictions indicate only the direction of change in the 

equilibrium level of the variables: increase (+), decrease (-) or no change (0). 

An increase in the number of variables and/or interactions raises the chance of having 

multiple pathways with opposite effects. In these cases, the algorithm might yield ambiguous 

results, with positive and negative pathways that act in opposite directions. In these cases, there 

can be a prevalence of either positive effects or negative effects but also compensation: in any 

case in the absence of any quantitative specification for the link magnitude it remains impossible to 

precisely define the final outcome. To overcome this difficulty a numerical simulation routine can be 

helpful.  In general, this routine keeps the community structure fixed and the interaction coefficients 
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are randomly assigned. Coupling the algorithm with the simulation allows for solving ambiguous 

predictions or at least finding a tendency for change, whereas a complete balance of positive and 

negative effects is meant as compensation of effects that results in no change in the predicted level 

of that variable. Such possibility allows the user to recreate a step closer the real-world 

interactions.  

The LevinsAnalysis R package is a collection of functions developed with the aim to exploit 

the full potential of the qualitative algorithm of loop analysis keeping the drawbacks of the 

qualitative nature of the analysis at a minimum. With this package the user can explore in depth the 

effects of inputs that enter the system through any of the variables that compose it. Single input as 

well as concurrent inputs, that is contemporary inputs on more than one component, can be 

analysed using interaction strengths assigned to the links. The package is designed to help the 

user to investigate 1) the causal mechanisms behind changes in the biomass level of species in an 

ecological network, through unveiling the relationships between the sources of change (i.e., the 

pressures), the structure of the linkage between the variables, and the variation in the level of the 

variables. 

In this paper, we present an overview of LevinsAnalysis highlighting some of its 

functionalities and advantages in comparison to other existing loop analysis algorithms. An in-depth 

analysis of loop analysis algorithm, its uses and interpretation go beyond the scope of this paper. 

Nevertheless, interested users are recommended a selection of papers (Bodini, 1998, 2000; 

Levins, 1974; Puccia & Levins, 1985). For a more comprehensive description of the package 

LevinsAnalysis functions, consult the in-package help.pages of each function, where a more 

detailed description of each function can be obtained along with fully functional examples. 

 

 

3.3.  LevinsAnalysis 

 

3.3.1.  Overview 

The LevinsAnalysis R package is designed to allow exploring the structure of a network, 

generating signed digraphs, simulating the effect of press perturbations, with the novel option to 

manipulate the intensity of interactions between variables in an inherently qualitative algorithm. 

In brief, the package’s functions performs the following: 1) structural information of the 

network (i.e., network stability status, number of variables, number of links between variables, 

number of simple paths and their information); 2) graphical visualizations of the network through 

signed digraphs; 3) table of predictions for single and concurrent inputs using either random or user 

defined interaction strengths for network links. In Table 3.1 a summary of each function present in 

the package with brief description of their use. 

Below we will describe in more details the type of data necessary to run the various 

functionalities in LevinsAnalysis R package. A practical example of usage will be given afterwards 

using one of the model’s that the package makes available as case studies.  
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3.3.2.  Data Requirements and Input 

Different functions from the package LevinsAnalysis use different types of data for input, 

and apart from the original adjacency matrix describing the Ecological Network to be studied, all 

the other data matrices can be obtained from within the package through the computation of 

dedicated functions. Independently from which data type it is all data matrices used by the package 

are formatted in the same manner, and therefore, can be imported using the same code. For the 

sake of simplicity, here we describe how to import a community matrix into the LevinsAnalysis 

package.  

The loop analysis algorithm exploits the qualitative character of the interactions between 

any two variables and translates this information into a signed digraph made of only two types of 

connections: arrows for positive qualitative effects and circle-head links for qualitative negative 

effects. The matrix counterpart of the signed digraph is the adjacency matrix, where the positive 

links are represented by a +1 and the negative links by -1, while non-existing links between 

variables are represented with a 0. In Figure 3.1 a representation of a signed digraph for an 

example model (model MM) is given. 

 

  

 Figure 3.1: Model MM signed digraph. In the graph (on the left), positive interactions are denoted 

with arrow-headed links while negative interactions are visualized with circle-headed links. Code script to 

load an adjacency matrix from a txt file (on the right). In the original txt file, the first line consists of the 

names of each node. Each subsequent row indicates the effect of each variable i on each variable j following 

the order of variables on the first line. 

 

For the use of the LevinsAnalysis package, an adjacency matrix (symmetrical matrix) is 

necessary, constructed using the appropriate symbology indicated above and written by indicating 

the qualitative direct causal effect from variable i (row) on variable j (column). Column and row 

variables should be identified. Figure 3.1 reports the code needed for loading the adjacency matrix 
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for the MM signed digraphs. This example model serves to demonstrate how an adjacency matrix 

should look like. 

 

 

3.3.3.  Visualization 

Visualization of a signed digraph is always a useful tool to better understand the interplay 

between nodes. In LevinsAnalysis R package the user has the possibility to graphically represent 

both the community matrix and the table of predictions in the form of signed digraphs. The function 

cm_graph allows computing the community matrix, allowing the user to quickly visualize its 

corresponding network as signed digraph. The function pred_graph allows the user to compute 

the results from the table of predictions, i.e., the predicted effect in a variable j (column; arrows 

end) due to a press perturbation in an input in variable i (row; arrow begin) as obtained from the 

simulations, giving the user a supplementary tool to observe and study the effects that a press 

perturbation might have in the network (example signed digraph in Annex A: Pred_graph). The 

code for generation of either of the signed digraphs can be seen in the help.page of each of the 

functions, here functional examples codes are available using in package models, such has the 

Savannah Fires model from Bodini and Clerici (2016) which we will use bellow as an example 

application of the package. 

 

 

3.3.4.  Algorithm overview 

The analytical functions available in the LevinsAnalysis package can be divided in three 

categories, the graphical (already discussed above), the structural and the predictive functions. In 

Table 3.1 we present the functions of the package together with a brief indication of their use.  

The structural functions are intended to provide the user with an in-depth knowledge of the 

network structure and level of interaction between variables, and so unravel and study hypothesis 

on how certain pressures might affect the system through the study of the networks 

interconnectedness. The structural functions provide information about the following network 

features: number of nodes, number of links between variables, total number of simple paths, and a 

description of each simple-path present in the system (variables involved, path length, its sign and 

strength), trophic level of each variable and if the adjacency matrix of the network is stable. 

The core functions for the loop analysis are in the predictive group. With 

levins_predictions the user is able to run simulations for the effect of inputs for any variable 

so that a series of predictions upon any single variable of the model is obtained; simulating input to 

each variable one obtains the so called table of predictions, that is a summary of all the possible 

consequences on the level of each and every variable due to input on any single component. The 

routine levins_concurrent allows simulating the effect of more than one input at a time 

(concurrent inputs). Advancing on existing methodologies, the approach used in our algorithm 

solves the problem of uncertain results due to the existence of multiple paths with opposite signs. 

In our algorithm strength values are assigned to each of the links between the nodes within the 

interval ]0,1] using one of three predefined types of distributions: uniform, normal and pareto, which 
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can be selected by the user. An option that allows the user to select the strength values for a more 

reliable description of the system is also at disposal. Although some uncertain results may still be 

obtained (signed as 0*), the user is now able to distinguish between true null effects and between 0 

net effects where the actual effect, that is, results for which there is a balance between the strength 

of positive and negative paths on the variable. A last function that completes the predictive 

functions is pred_correlation which allows investigating whether correlations emerge from the 

predictions. 

 

Table 3.1: Functions present in LevinsAnalysis R package 

 

 

3.3.5. Example Application 

Given an ecological network model, to use the loop analysis algorithm present in the 

LevinsAnalysis package and compute a prediction table is a straightforward process. Here follows 

a brief sketch of the functionalities included in the package. They refer to the following issues: 1) 

testing for model stability, 2) graphical representation, 3) structural information, 4) computing a 

strength matrix 5) highlighting simple paths, and 6) computing a table of predictions. A quick 

analysis and discussion of the results will be performed to interpret the analytical output. In the 

Annex A: R Code for Simulation follows the script used for the analysis performed. 

 The model to be used in this practical example, called here Savannah Fires (Antonio 

Bodini & Clerici, 2016), is already loaded with the package, therefore a simple call for its tag name 

(as shown in Table 3.2) will produce the adjacency matrix. The graph related to this example is 

depicted in Figure 3.2. 

 

 

 

Graphical Functions Description 

cm_graph Generates signed digraphs from adjacency matrix 

pred_graph Generates signed digraphs from table of predictions 

Structural Functions Description 

cm_interaction 
Calculates the number of paths beginning in row variables and ending 

in column variables 

cm_paths Retrieves the information for all simple paths 

cm_stability Tests the adjacency matrix stability 

cm_strength Generates a table of interaction strength 

cm_structure Retrieves structural information 

Predictive Functions Description 

levins_predictions Calculates the table of predictions for single inputs 

levins_concurrent Calculates the table of predictions for concurrent inputs 

pred_correlation Calculates the level of correlation between predictions 
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Figure 3.2: Savannah Fires model (Bodini and Clerici, 2016) signed digraph. Keys for nodes: w1 – 

superficial water table; w2 – deep water table; G – grasses; W – woody plants; HG – grazers; HB – browsers; 

EF – early fires; LF – late fires. 

 

The interest in the study of this model is to test the hypothesis found across the literature 

for the type of interaction between two nodes, G (grasses) and W (woody plants). In particular, 

there would be a competitive interaction in savannah ecosystems between grass and woody 

vegetation that may affect the dynamics of this system. Bi-stability was documented for these 

systems, with possible dominance of either grass (G) or woody (W) in different conditions. In their 

paper, Bodini and Clerici (2016) tested whether the reciprocal inhibition between grass and woody 

vegetation could affect and in what form the dynamics of the savannah system. These authors 

highlighted that a model that reproduces in a correct way experimental data is one in which only 

one inhibition link from W to G, [W -o G], characterizes the interactions between the two vegetation 

variables. Here we show how by means of the LevinsAnalysis package one can explore in detail 

the effects of this link when its magnitude varies. For that we will generate strength matrices where 

we define the strength of interaction of the pair W-G and compare predictions obtained with those 

of a purely randomly generated strength matrix. A first test in the analysis of our function is always 

to test its stability, this is done by running the adjacency matrix through the function 

cm_stability. The model is a stable matrix, and so no reworking is needed. One can proceed to 

the second step which will generate the signed digraph. In the example code provided in Figure 3.3 

we demonstrate how a user-defined structure for the graphic generation (Figure 3.2) can be 

constructed using the cm_graph function. 
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> savannah_coord <- cbind(c(2,3,2,3,1,4,2,3),

+     c(0.75,0.75,2,2,3,3,3.5,3.5))

> colnames(savannah_coord) <- c("x", "y")

> rownames(savannah_coord) <- c("w1","w2","G",

+     "W","HG","HB","EF","LF")

> cm_graph(savannah_fires, fname = "savannah_fires", 

+     layout_g = "user", coord = savannah_coord,  

+     save_file = "pdf")

 

 Figure 3.3: R Code script for generation of a signed digraph for the model Savannah Fires (Bodini 

and Clerici, 2016) using a user-defined node layout on LevinsAnalysis graphical function cm_paths. Keys for 

nodes: w1 – superficial water table; w2 – deep water table; G – grasses; W – woody plants; HG – grazers; 

HB – browsers; EF – early fires; LF – late fires. 

 

After the graph is obtained the following step in the analysis is to describe the structure of 

the model. The cm_structure function does this. The structural analysis tells that the model is 

not very intricate with its 160 simple paths, a result of 26 links, 8 of which are self-loops and 

therefore do not count for simple paths construction. 

The package capability to define the values of interaction strength between variables was 

applied to the savannah model to understand the effect of varying the magnitude of the link [W -o 

G]. The function cm_strength makes this computation. Three scenarios were defined as follows: 

i) the interaction strength for the W-G pair is limited to the interval [0.5, 1], which will emulate a high 

intensity interaction, ii) the interaction strength for the W-G pair is limited to the interval ]0, 0.5], 

which will emulate a low intensity interaction, iii) the interaction strength for the W-G pair is defined 

randomly using a uniform distribution, with the value falling in-between those of the two scenarios. 

After we compute the strength matrices, we can retrieve the information of all simple paths for each 

of the scenarios. The appropriate function is cm_paths which renders the full list of simple paths or 

specific subsets. In the case of the savannah model of Figure 3.2 we considered here only the 

paths linking variable w1 (superficial water table, see Figure 3.2 for details about the keys for the 

variables) to G.  The results of this function are always exported to a txt file and shown in Figure 

3.4. 
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a d

nodes path strength

# 

nodes

path 

sign

w1, w2, W, G 0.124122591 4 -1

w1, w2, W, LF, G 0.06332306 5 -1

w1, G 0.502281337 2 1

w1, W, G 0.244773276 3 -1

w1, W, LF, G 0.124874873 4 -1

b c

nodes path strength

# 

nodes

path 

sign nodes path strength

# 

nodes

path 

sign

w1, w2, W, G 0.064016084 4 -1 w1, w2, W, G 0.186271793 4 -1

w1, w2, W, LF, G 0.062821555 5 -1 w1, w2, W, LF, G 0.062768681 5 -1

w1, G 0.500270659 2 1 w1, G 0.501167574 2 1

w1, W, G 0.126248062 3 -1 w1, W, G 0.365914794 3 -1

w1, W, LF, G 0.123892295 4 -1 w1, W, LF, G 0.123303634 4 -1

 

 

Figure 3.4: Information for paths between w1 and G, with a) randomly assigned strength values, b) 

strength values defined to emulate a low intensity interaction between W-G, c) strength values defined to 

emulate a high intensity interaction between W-G. Graph d) designed to include only the links leading from 

w1 to G. 

 

After the analysis of the structure of our model we proceeded to the loop analysis proper. 

Simulating press perturbations on each of the variables of the system the function 

levins_prediction renders a table of predictions for the level of the variables. Three 

simulations were run for each of the interaction strengths scenarios described above. The tables of 

predictions from our runs are show in Figure 3.5 (key for each symbol used in the table of 

predictions and table of concurrent predictions are shown and explained in Chapter 2: 2.1.2 

Interaction Strength). 
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a b c
w1 w2 G W HG HB EF LF w1 w2 G W HG HB EF LF w1 w2 G W HG HB EF LF

w1 + + ?+ + ?+ + ?+ + w1 + + 0* + 0* + 0* + w1 + + 0* + 0* + 0* +

w2 - + - + - + - + w2 - + - + - + - ?+ w2 ?- + - + - + - ?+

G - 0* + - + - + + G - 0* + - + - + + G - 0* + - + - + +

W - - - + - + - + W - - - + - + - ?+ W ?- - - + - + - ?+

HG + 0* - + + + - - HG + 0* - + + + - - HG + 0* - + + + - -

HB + + + - + + + - HB + + + - + + + ?- HB ?+ + + - + + + ?-

EF + 0* - + - + + - EF + 0* - + - + + - EF + 0* - + - + + -

LF + + - ?- - ?- - + LF + + - ?- - ?- - + LF + + - ?- - ?- - +

 

Figure 3.5: Table of predictions for the Savannah Fires model (Bodini and Clerici, 2016), following 

three interaction strength scenarios for the link W -o G. a) strength value set to emulate a low intensity 

interaction, b) value randomly assigned following a uniform distribution, c) strength value set to emulate a 

high intensity interaction.  Predictions marked in grey are those for which there is an interest in analysis. 

Keys for nodes: w1 – superficial water table; w2 – deep water table; G – grasses; W – woody plants; HG – 

grazers; HB – browsers; EF – early fires; LF – late fires. 

 

The scenarios for predictions (Figure 3.5) would be confronted with evidences from the 

literature. It comes from the analysis of the literature that an increase is expected in the level of 

woody plants (W) when there is an excess in the precipitation levels, which clearly corresponds to 

a positive input on the superficial water table (w1). Looking at the first row of each table, we can 

see the predicted direction of change in the level of the column variables due to a positive input on 

w1. By comparing the predicted effects on G and W (marked as grey) we can see that the only 

alternative scenario that matches with the original table of predictions (Figure 3.5-b), and the trends 

described in the literature, is that of Figure 3.5-c, which describes a system where the intensity of 

interaction between W-G  is on the high spectrum.  

A quick look at the lists of paths information retrieved previously for each scenario allows 

us to have a glimpse at how this single alteration of a strength value was able to produce different 

results.  Figure 3.4-a:c summarizes the information for the paths between w1 and G, which are 

depicted in a graph (Figure 3.4-d)  As many as 5 simple paths connect  w1 to G, and only two of 

these paths include a direct link from W to G (Figure 3.4-a,c). By comparing the scenario results a 

change in predictions comes passing from the low intensity scenario (low strength for the link [W -o 

G]) to the other two scenarios.  In the first case a positive input to w1 is expected to increase both 

W and G which would not explain the dominance of woody vegetation in the case of heavy rain, as 

documented in the literature. The high interaction scenario (Figure 3.4-c, 3.5-c) seems ecologically 

more realistic so that it introduces the hypothesis that for the phenomenon of woody dominance in 

case of excess rain a strong inhibitory effect of W over G is necessary. 

Further analysis of the effect of the intensity of the interaction strength between W and G 

could be done to pinpoint the exact level at which the predictions would still fit with the observed 

trends. Another analysis possible by the LevinsAnalysis package would be to compute the effect of 

multiple concurrent inputs on the system and cross check these predictions with observed trends, 
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but this analysis and further ones are beyond the scope of our analysis here. A more thorough use 

of each function can be seen on each functions help.page. 

 

 

3.3.6. Extras features 

To facilitate the understanding and use of the functions available in the LevinsAnalysis 

package we include example data matrices of each of the different types of data used within, all 

based on a simple 5x5 imaginary ecological network model (model MM from Figure 3.1) designed 

for simple use and understanding of the outcomes that can be expected. A small data library was 

also added to the package, composed of 4 different models, each representing a real-world 

ecological network system which have been studied using the loop analysis methodology. These 

extra features are presented and briefly described in Table 3.2. 

 

Example Data Description 

MM Adjacency matrix for example model MM 

PM Table of Predictions for example model MM 

P_Pred Matrix of positive percentage predictions for model MM 

SM Interaction strength matrix for model MM 

Example Models Description 

baja_california 
Adjacency matrix for the Baja California ecological network (Martone, 

Bodini, & Micheli, 2017) 

black_sea 
Adjacency matrix for the Black Sea ecological network (Antonio Bodini, 

Rocchi, & Scotti, 2018) 

lake_mosvatn 
Adjacency matrix for the Lake Mosvatn ecological network (Antonio 

Bodini, 2000) 

savannah_fires 
Adjacency matrix for the Savannah Fires ecological network (Antonio 

Bodini & Clerici, 2016) 

 

Table 3.2: Data Library from LevinsAnalysis. Example model MM and matrices for function 

testing, and real-world ecological network models. 

 

 

3.4. Conclusion and future developments 

 

The value features that the LevinsAnalysis package brings in comparison to other existing 

analytical tools of loop analysis in ecological systems (and to some extent the code used and made 

available by Bodini and Clerici, 2016) are i) the use of a quantitative approach (here designated 

has interaction strength) to deal with the ambiguities in the predictions by allowing the user to 

specify the strength of particular variable pairs, ii) the retrieval of descriptive information of each 

path, and iii) allowing the user to compute the effect of concurrent predictions, basing the 
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predictions on the same theoretical background as used for single inputs, instead of the use of 

simple arithmetic calculation over the signs of predictions of single inputs. 

Although the loop analysis is a qualitative approach, coupling it with a quantitative 

methodology to deal with the effect of multiple paths with opposite effect may help disentangling 

the effects of intricate paths that would otherwise cloud the real effect of an input. This 

methodology takes in consideration the effect that the intensity of interactions between nodes, and 

the length of the paths between two variables affects the effect an input will ultimately have. This 

approach allows also the users to manipulate the strengths of each variable pair to make the 

system more ecologically reliable in describing real cases and to study the effect of how the 

strength of the links can influence the response of the system to press perturbations. Coupled with 

paths information function, it enables the user also to study in detail how a change in the value of a 

given interaction strength will affect the strength of paths that connect any two variables and how 

this will possibly affect the modelling outcome.  

The LevinsAnalysis is continuously developing. Debugging to make it more efficient in its 

computations and implementation of in-function error message system to allow the user to better 

understand where a problem in case of a malfunction is are one of the branches of this continuous 

upgrade on the package. Another branch of this upgrade is the introduction of new functions to 1) 

test the models validity, relying not only in mathematical data, but testing the model directly versus 

the real world ecosystem which emulates, and 2) functions which will allow the user the further 

explore its network mechanics and interpret the results from the loop analysis predictions it might 

produce.  

In conclusion, the LevinsAnalysis has been designed to facilitate the use, integration and 

interpretation of the loop analysis methodology in a user’s network analysis protocol. The functions 

here included have the intention to give the user a tool to study and get a more comprehensive 

understanding of the mechanics of his network in their response to perturbations, and the 

importance that certain variables and paths might play in this response. The use of loop analysis in 

the study of ecological networks is a growing field, and we look forward to seeing new discoveries 

made through the use of LevinsAnalysis. 
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3.5. Annex A – Supplementary materials 

 

3.5.1. Pred_graph 

 

 

Figure 3.6: Signed digraph from table of predictions for the example model MM. Arrow-headed 

links represent positive effects and circle-headed links represent negative effects. More information on the 

use of the pred_graph function can be found on the functions help.page 

 

 

3.5.2. R code for simulations 

Bellow follows the R code used for the simulations discussed in this chapter. For brevity, 

only selected results of the executed functions are shown. 

 

> # loading of LevinsAnalysis package 

>library(LevinsAnalysis) 

> # visualization of the models adjacency matrix   

> savannah_fires    

   w1 w2  G  W HG HB EF LF 

w1 -1  1  1  1  0  0  0  0 

w2  0 -1  0  1  0  0  0  0 

G  -1  0 -1  0  1  0  1  1 

W  -1 -1 -1 -1  0  1  0  1 

HG  0  0 -1  0 -1  0  0  0 

HB  0  0  0 -1  0 -1  0  0 

EF  0  0 -1  0  0  0 -1  0 

LF  0  0 -1 -1  0  0  0 -1 

> # stability test 

> cm_stability(savannah_fires) 

[1] "The community matrix is stable" 
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> # data structure extraction 

> cm_structure(savannah_fires, fname = "savannah_fires") 

... 

No. of Nodes of the Community Matrix: 8 

Total no. of Nodal Interactions: 26 

Number of possible paths of the Community Matrix: 160 

... 

> # creation of interval matrices for interaction strength 

> savannah_minv <- matrix(rep(0,(length(savannah_fires))), nrow = 

sqrt(length(savannah_fires))) 

> row.names(savannah_minv)=colnames(savannah_fires) 

> colnames(savannah_minv)=colnames(savannah_fires) 

> savannah_maxv <- matrix(rep(0,(length(savannah_fires))), nrow = 

sqrt(length(savannah_fires))) 

> row.names(savannah_maxv)=colnames(savannah_fires) 

> colnames(savannah_maxv)=colnames(savannah_fires) 

> # value assignment for interaction strength intervals 

> savannah_minv[4,3]= c(0.5) 

> savannah_maxv[4,3]= c(0.5) 

> # generation of strength matrix 

> savannah_strg <- cm_strength(savannah_fires, fname = "savannah_fires") 

... 

> # generation of strength matrices with user defined intervals for interaction 

strength 

> savannah_strg_min <- cm_strength(savannah_fires, INT_MIN = savannah_minv, fname 

= "savannah_fires_min") 

... 

> savannah_strg_max <- cm_strength(savannah_fires, INT_MAX = savannah_maxv, fname 

= "savannah_fires_max") 

... 

> #retrieval of path information 

> NodetN <- c("w1","G") 

> cm_paths(savannah_fires, savannah_strg$`Average Strength Matrix`, Threshold = 

"NodetN", fname = "savannah_fires_w1_g") 

> cm_paths(savannah_fires, savannah_strg_min$`Average Strength Matrix`, Threshold 

= "NodetN", fname = "savannah_fires_min_w1_g") 

> cm_paths(savannah_fires, savannah_strg_max$`Average Strength Matrix`, Threshold 

= "NodetN", fname = "savannah_fires_max_w1_g") 

> # computation of levins analysis algorithm 

> savannah_lp <- levins_predictions(savannah_fires, fname = "savannah_fires") 

... 

Levins Table of Predictions 

   w1 w2 G  W  HG HB EF LF 

w1 +  +  0* +  0* +  0* +  

w2 -  +  -  +  -  +  -  ?+ 

G  -  0* +  -  +  -  +  +  

W  -  -  -  +  -  +  -  ?+ 

HG +  0* -  +  +  +  -  -  

HB +  +  +  -  +  +  +  ?- 

EF +  0* -  +  -  +  +  -  

LF +  +  -  ?- -  ?- -  +  

> # computaiton of levins analysis algorithm with user defined intervals for 

interaction strength 

> savannah_lpmin <- levins_predictions(savannah_fires,INT_MIN = 

savannah_minv,fname = "savannah_fires_min") 

... 

> savannah_lpmax <- levins_predictions(savannah_fires,INT_MAX = 

savannah_maxv,fname = "savannah_fires_max") 

... 
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4.1. Summary 

 

In the 50s of the last century the Caspian Sea underwent transformations that culminated 

in the collapse of several fish and mammal species, and the rise in phytoplankton biomass, 

pushing the system toward eutrophication. Of particular concern was the decline observed in the 

populations of the Caspian seal (Pusa caspica), the sturgeons (Acipenser spp., and Huso huso) 

and the kilka species (Clupeonella spp). 

In this chapter I aimed at unravelling the mechanisms behind the changes reported for the 

Caspian Sea ecosystem in the period before the invasion of Mnemiopsis leidyi. I mapped the 

interactive web that characterized the ecological community and analysed it applying the qualitative 

algorithm of loop analysis, using observed changes in multiple variables as benchmarks for the 

changes in the variables predicted through the simulations. 

From the analysis performed over the model designed for the Caspian Sea it comes that: 

1) bony fish and kilkas might play an important role in the system response to pressures; 2) 

phytoplankton seems to play an important role in the system, in particular negative pressure on this 

variable produces one of the best rate of predictions and trends match; 3) throughout the analysis, 

indications from the predictions pointed in the direction that the paths connecting multiple variables 

of the system and their strength, and from there, the interactions strength between variables, 

seems to play an important role on the Caspian Sea; 4) from the lack of agreement of the 

predictions from concurrent inputs and the trends, it can be hypothesised that either the pressures 

did not all occurred at the same time or their intensity was not the same. 

 

 

Keywords: Caspian Sea, complex systems, kilkas, press perturbations, population 

decline, qualitative modelling, Levins loop analysis 

 

 

4.2. Introduction 

 

In the 50s of the last century the Caspian Sea underwent transformations that culminated 

in the collapse of several fish and mammal species, and the rise in phytoplankton biomass, 

pushing the system toward eutrophication (CEP, 2007; Daskalov & Mamedov, 2007; Fazli, 

Ghanghermeh, & Shahifar, 2017; Aboulghasem Roohi et al., 2010). In 2011, the latest report on 

the State of the Caspian Sea Environment (UNEP, 2011) highlighted the state of the Caspian Sea 

as produced by several sources of pressure which include, among others, overfishing, river 

damming, water pollution and invasion of alien species. 

Of particular concern was the decline observed in the populations of the Caspian seal 

(Pusa caspica), the sturgeons (Acipenser spp., and Huso huso) and the kilka species (Clupeonella 

spp). The Caspian seal, the only aquatic mammal of this system, counted over 1 million individuals 

in the early 20th century and diminished to 110,000 individuals in the early 2000s (Dmitrieva et al., 

2015; Harkonen et al., 2012; Krylov, 1990). The sturgeons industry, which represented once 80-
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90% of the world’s caviar production, collapsed to less than 5 thousand tonnes in the 2000s while 

in the 80s they reached a maximum catch of 27 thousand tonnes (CEP, 2007; UNEP, 2011)(CEP, 

2007). The Kilkas caught in the Caspian Sea decayed from 410 thousand tonnes in the 70s to just 

54.3 thousand tonnes in 2005 (UNEP, 2011). 

The collapse of these species was variously connected with the multiplicity forms of stress 

that acted on the Caspian Sea (CEP, 2002; H. Dumont, 1995; UNEP, 2011). In the case of kilka 

species, for example, their decline was associated to the outburst of the invader Mnemiopsis leidyi 

(Bilio & Niermann, 2004; Aboulghasem Roohi et al., 2010) a gelatinous species that played a role 

in the transformations that characterized the community of the Black Sea ecosystem (Antonio 

Bodini et al., 2018) and that affected other marine communities. The comb jelly was first detected 

in the Caspian Sea in 1995 with sporadic presences (signalled by fishermen) and peaked in 2002 

(Bagheri, Mansor, Maznah, & Negarestan, 2010; Abolghasem Roohi et al., 2008). A stark reduction 

of the kilka species catch characterized the Caspian Sea in the years that followed Mnemiopsis 

detection (Daskalov & Mamedov, 2007). The comb jelly should have affected kilka species through 

competition for the same food (zooplankton) but also through a direct predatory behaviour over the 

kilkas larvae (Finenko et al., 2006; Shiganova et al., 2001; UNEP, 2011). If kilkas declined strongly 

in the post-invasion period, it is however known that its decline was already occurring before 

Mnemiopsis appeared in the Caspian Sea. In fact, from its maximum in the 70s (410,000tonnes) it 

declined by almost 3 times to 132 thousand tonnes in 1996 (UNEP, 2011). Overfishing was 

indicated as mainly responsible for this negative trend. 

Overfishing and hunting affected also sturgeons and Caspian Seal (CEP, 2002; Dmitrieva 

et al., 2013; Ermolin & Svolkinas, 2018; Harkonen et al., 2012; Kouraev et al., 2004), while an 

excess input of nutrients perturbed the system from the bottom (UNEP, 2011) . The co-occurrence 

of multiple stressors makes understanding their role as sources of change in a causal perspective 

difficult. Although it is commonplace to see a direct causal relation between a driver and the 

changes shown by its target variable (e.g. kilkas reduction due to overfishing on it), this view 

represents an oversimplification because i) the impact of drivers percolates from target variables to 

the rest of the community through pathways of interactions that emerge from the linkage structure 

of the community; ii) the response of the target variable to its stressor is mediated by the feedback 

structure created by the linkages.  It is well known for example that kilka species represent a bridge 

that channels the energy flow from primary producers to top predators, in particular sturgeons and 

seals. Accordingly, overfishing on kilkas may percolate up to its predators inasmuch as perturbing 

these latter components might have top down effects on their prey. In turn, the response of kilka 

species to overfishing depends also on the feedbacks that interactions between kilkas and other 

variables create in the community (Antonio Bodini & Clerici, 2016; Antonio Bodini et al., 2018; P. 

Lane & Levins, 1977). This scenario suggests that changes in the abundance of the species can 

hardly be seen as the direct effect of a single driver acting on its target; most likely they are the 

result of the interplay between the multiple stressors and the structure of the interactions in the 

community which produces indirect effects. Disentangling this interplay is a prerequisite to 

understand the causal mechanisms that explain the changes observed in the abundance of the 

species. 
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The major aim of this chapter is to contribute to the wider understanding of the 

mechanisms responsible for changes in the Caspian Sea ecosystem. In particular, we focused on 

kilkas, a major player of the system for both economic and ecological importance, aiming to 

elucidate the mechanisms behind its decline in the years before the invasion of the Caspian Sea by 

the comb jelly M. leidyi.  I mapped out the interactive web that characterized the ecological 

community and analysed it by applying the qualitative algorithm of loop analysis (Richard Levins, 

1974; Puccia & Levins, 1985). Changes observed in kilkas and in other species, such as Caspian 

seals, sturgeons and some bony fish species and on nutrients were used as benchmarks for the 

changes in the level of the variables predicted through the qualitative models assuming different 

pressures occurring on different target variables. This procedure helps hypothesizing causal 

mechanisms responsible for the decline of kilkas and the other variables as it unveils the 

relationship between the sources of change (i.e., the drivers), the structure of the linkages between 

the variables, and the variation in the level of the variables (J. M. Dambacher & Ramos-Jiliberto, 

2007). Specifically the objectives can be defined as: (1) identification of the patterns of variation in 

response to the different drivers; (2) additional hypotheses, in comparison with mechanisms 

advanced in the literature, on the role of drivers in respect to the changes that Caspian Sea 

species underwent in the considered period.  

To investigate the effects of the different pressures occurring in the Caspian Sea, the 

importance of each species in the system response to such pressures and the importance of the 

level of strength of the interplay between each of the variables, I applied the loop analysis 

qualitative methodology implemented in the LevinsAnalysis R package (Pereira et al. in 

preparation) and generated simulations, both for single and concurrent inputs and by manipulating 

the interaction strengths of key variable. 

 

 

4.3. Materials (and Methods) 

 

I used qualitative network models of the Caspian Sea ecological community in the form of 

signed digraphs as pictorial representations of the community matrix. Model outcomes, that are 

model predictions about the response of the variables to external press perturbations, were 

compared with trends of species population abundances recorded in the period of investigation. 

For certain species populations, when data were not available, landings data was used as proxy 

(Daskalov, Grishin, Rodionov, & Mihneva, 2007).  Our models mirror the indications that I found in 

the literature about the ecological habits of the species so that the structure of the interactions 

could emerge as a plausible representation of the community under investigation.  The models 

were analysed following the algorithm of loop analysis (Richard Levins, 1974; Puccia & Levins, 

1985) which was translated in a R package called LevinsAnalysis by the authors (Pereira et al., in 

preparation).  
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4.3.1. Loop Analysis 

Loop Analysis is a qualitative modelling technique that uses signed digraphs to represent 

networks of interacting variables (Richard Levins, 1974; Puccia & Levins, 1985). Loop analysis 

allows predicting the direction of change in the level (e.g. biomass, number of individuals) of 

system variables in response to a parameter alteration or press perturbations on a targeted 

variable. Press perturbations affect the rate of change of a target variable with effects that 

propagate to the other species in the community and that are modulated by the feedback structure 

that is created by the multiple interactions among the variables.  Their response can be predicted 

by the loop analysis algorithm and summarized in a table of predictions that becomes a diagnostic 

tool for the causes of change. Being the algorithm qualitative, the predictions indicate only the 

direction of change in the equilibrium level of the variables: increase (+), decrease (-) or no change 

(0). 

One example is given in Figure 4.1 and summarizes all possible outcomes for the example 

model depicted in the Figure (model MM). The entries of the table denote variations expected in 

the level (e.g., biomass) of all column variables in response to positive parameter inputs (i.e., 

perturbations that increase the rate of change of target variables) affecting any row variable. 

Conventionally, the calculation considers positive inputs; consequences of negative inputs can be 

obtained by simply reversing the signs in the table. In models with few variables and/or a limited 

number of connections, expected changes for the variables can be tracked through the graph 

anatomy (Antonio Bodini, 1998, 2000). However, when variables and connections increase, 

multiple pathways of interactions emerge and the probability that pathways have opposite effects 

increases. In these cases, the model yields ambiguous predictions (i.e., some positive and some 

negative paths that produce opposite effects). To overcome this problem, I performed our analysis 

using the tools available in the R package LevinsAnalysis (Pereira et al. in preparation), which 

includes a numerical simulation based on a routine that randomly assigns (from a uniform 

distribution) numerical values in the interval ]0,1] to the coefficients of the community matrix (i.e., 

the coefficients of the links in the signed digraph) . 
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 Figure 4.1: Model MM signed digraph and corresponding adjacency matrix and table of predictions 

from LevinsAnalysis R package (Pereira et al. in preparation). In the graph (on the left), positive interactions 

are denoted with arrow-headed links while negative interactions are visualized with circle-headed links. 

Values on MM adjacency matrix (on the top right) correspond to the qualitative effect of variable i (row) in 

variable j (column). Signs in the table of prediction (on the lower right) correspond to the expected direction 

of change in the level of the column variable j due to the pressure in the row variable i. 

 

 

4.3.2. Data structure and trends 

The reliability of our model in describing the Caspian Sea community was tested against 

abundance trends of some of the variables included in the model. Such trends were deduced from 

the literature through a meta-analysis in which a number of papers were scrutinized to reconstruct 

qualitatively the trends. This strategy was necessary to overcome the lack of the original 

abundance data that would have been used to compile a data set to be exploited for the purposes 

of this investigation. Also, this procedure highlighted lack of coherence about the trends of certain 

species as they were reported in different pieces of the literature. The procedure I adopted allowed 

me identifying the direction of the trends for the populations but seriously impaired our capability to 

perform statistical analysis about the variations in the trends and that could support effectively 

model predictions (Antonio Bodini & Clerici, 2016; Antonio Bodini et al., 2018).  

Despite the difficulties to obtain data about the trends for all the species, still, general 

indications about the direction of the trends for multiple species of our model could be obtained. I 

summarize these trends in Table 4.1. Information regarding the literature from which these trends 

were drawn can be seen in Annex A – Species trends. 
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Seals Sturgeons Bony 

Fish 

Kilkas Zooplankton Phytoplankton Benthic 

Organisms 

Bacteria Nutrients 

- - - -     + 
 

Table 4.1: Direction of trends of the variables of our model of the Caspian Sea in the pre-invasion 

period (pre-1998). The “+” indicates a positive trend, i.e., an increase in the biomass level of the species; the 

“-“ symbolizes a negative trend, i.e., a decrease in the biomass level of the species. 

 

 

4.3.3. Model construction, validation and analysis 

The model for the Caspian Sea ecological community was constructed based on the 

trophic and non-trophic interactions among the major groups as they are described in the literature. 

The model discussed here considers the community structure before the outburst of the comb jelly 

M. leidyi that occurred in 1998. That is, it describes the community structure for the period 1950 - 

1998. From literature a complex model, with 23 variables and 223 links between nodes, was 

generated. Increased complexity in a system increases not just the difficulty in analysis to discern 

any possible information, but also leads to generation of tables of predictions with a higher 

percentage of indeterminacies (predictions where the value assigned is either 0*, ?+ or ?-). For the 

sake of simplicity, I collapsed our network into a model with 9 variables and 38 links between 

nodes. The model and its community matrix are represented in Figure 4.2. In this model, I 

maintained the major species and functional groups that are known to play an important role on the 

Caspian Sea, that is, species that have been recognized as of ecological or economic importance.  

Next decision had to be taken as to which interactions should be considered for the skeleton of the 

model. I included only those interactions that could be deduced directly from the literature about the 

Caspian Sea and, in general, from the literature describing the ecology of the species in general 

(Froese & Pauly, 2019; Kosarev & Yablonskaya, 1994). In the process of model reconstruction 

from ecological facts or evidences often uncertainties emerge about the type of interactions 

between the variables.  When in doubt about the existence or the importance of a given interaction 

building alternative models is the best strategy (Antonio Bodini et al., 2018). In this analysis, I did 

not consider alternative graphs; rather I took advantage of the facilities that  the LevinsAnalysis R 

package (Pereira et al. in preparation) provides to simulate interaction strengths to investigate the 

role of specific interactions. 
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Figure 4.2: Signed digraph describing the community structure for the pre-invasion period of the 

Caspian Sea by M. leidyi (a) and its adjacency matrix (b). All interactions refer to trophic relationships or 

consumption of resources (i.e., see the connection from nutrients to phytoplankton. Keys for nodes: seals 

(Sl), sturgeons (St), bony fish (Bf), kilkas (Kk), zooplankton (Zoo), phytoplankton (Phy), benthic organisms 

(Bo), bacteria (Bac), nutrients (N). 

 

Trends were searched in the literature for the species of interest to serve as benchmarks to 

verify model predictions and define model reliability. A reliable model is one that correctly predicts 

the observed changes. Although in ecology, often the entry point of a parameter change (a 

perturbation) is unknown, in the case of the Caspian Sea, however, several literature sources 

agree in identifying particular types of perturbations that affected the system during a given period 

which I summarized in Table 4.2. 

 

Seals Sturgeons Bony 

Fish 

Kilkas Zooplankton Phytoplankton Benthic 

Organisms 

Bacteria Nutrients 

- - - -     + 
 

Table 4.2: Input signs of pressures in the Caspian Sea species. A negative sign (“-”) signifies a 

pressure that causes a reduced rate of change for that variable; a positive sign (“+”) signifies a pressure that 

causes an increase in the rate of change for the variable, in accordance with the meaning of the input (see 

Methods). 

 

Using the LevinsAnalysis package (Pereira et al. in preparation) I performed simulations for 

the effect of single and concurrent inputs in the system taking in account the press perturbations 

listed in Table 4.2. According to the qualitative nature of the algorithm, the outcomes of a table of 

predictions describe the expected direction of change in the equilibrium level of the column 

variables (i.e., biomass, number of individuals) due to a positive parameter input on the row 

variables (the predictions for a negative input can be obtained by sign inversion). For concurrent 
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inputs, the expected direction of change in the equilibrium level of a variable is listed as the sum of 

the effects caused by each input on the entry point variables considered. The predictions were 

obtained through simulations based on quantification of the interaction coefficients (i.e., link 

strength). Values of link strength were assigned randomly in the uniform distribution within the 

interval ]0,1], with exception for the tests on the importance of strength of interaction, where 

strength of interaction was changed by us to reflect specific scenarios (in Annex B – R code for 

simulations is given the code to perform the analysis). The predictions for the direction of change 

obtained by the simulations on our model were compared with the biomass trends for the period of 

1950-1998 (Table 4.1). 

 

 

4.4. Results 

 

4.4.1. Model validation 

After assessing model stability, I computed the table of predictions simulating concurrent 

pressures as they occurred in the Caspian Sea. Such press perturbations are summarized in Table 

4.2 as signs indicating variations in the rate of change of the variables, increase (+) or decrease (-) 

as they likely were produced by the types of perturbations affecting the single components. Table 

4.3 summarizes the predictions obtained from simulating the press perturbations listed in Table 4.2. 

Variations in the abundance trends of some of the components are listed in the last row of Table 

4.3, according to the data set at disposal. The penultimate row of Table 4.3 indicates the possible 

net effects of the multiple inputs, that is the concurrent predictions. 
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 Table 4.3: Table of concurrent predictions for pressures on the Caspian Sea model and comparison 

with the observed trends for each of the species. Row values indicate the percentage of either positive or 

negative matrices that determined the sign of each affected value (column) due to the input pressures (row 

variables). Row “mean” and “signs” indicate the cumulative impact generated by the concurrent effect of the 

multiple inputs, while the “trends” row indicates the trends obtained from literature for each node. Keys for 

the nodes: seals (Sl), sturgeons (St), bony fish (Bf), kilkas (Kk), zooplankton (Zoo), phytoplankton (Phy), 

benthic organisms (Bo), bacteria (Bac), nutrients (N). 

 

From the results of the model validation test summarized in Table 4.3 0 matches between 

predictions and the trend variations were obtained. This means that the model is not able to 

reproduce the observed patterns of abundance. However the graph is structurally coherent with the 

structure of the interactions as it was conceived by Kosarev and Yablonskaya (1994, Froese and 

Pauly, 2019). Nevertheless, although the model seems to be sound according to other authors who 

too depicted the structure of the interactions in the Caspian Sea, it does not work fine in predicting 

the observed changes in the level of the variables. Many reasons can justify these outcomes. 

Several problems arose with the data. Abundance trends used for the model reliability test were 

from different pieces of the literature and so they reflected different experimental conditions, 

different areas of sampling and combined data from various regions that were presented in 

different studies. The heterogeneity of the data makes difficult to compare results in a meaningful 

way. Here, I followed the whole basin approach and combined data from different regions to obtain 

average values for the biomass of the main pelagic components. Also, there is the problem of the 

timing of the inputs. Precise indications about when specific inputs occurred in the system do not 

exist and also, the time of response of the system to press perturbation is a critical point. So, 

despite these inconveniencies I can consider the graph a coherent description of the structure of 

the interactions although an in-depth revision of the data would be needed to compile a more 

coherent database to be used as benchmark for model predictions. A critical point in this respect is 

that most of the documents presenting data are written in Russian or other languages that are not 
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in use in the scientific community. Also, with a total of 1463 possible simple paths (i.e. paths that 

never repeat any of the nodes twice), some confounding mechanism may be in action. By 

analysing the results of the concurrent predictions we can see that the mismatch between trends 

and predictions is mostly due to the 0* prediction (in 4 out of 5 comparisons the model prediction is 

of this type), which means a balance between the effect of negative and positive paths affecting the 

target variable. 

This outcome points out one aspect about the complexity of the system. A 0* prediction 

summarizes the balance between multiple paths carrying opposite effects. Nonetheless this 

balance is the result of a statistical rule that assign a quasi-compensation when the difference 

between the percentage of positive predictions and percentage of negative predictions of the 

simulated matrices is in the range from [-20, 20] (see Chapter 2: 2.1.2 Interaction Strength). This 

implies that if this range is restricted (new rules of selection) likely a tendency to change will 

emerge. In that case, in fact, even small differences in the balance between positive and negative 

signs can be detected and produce a prediction sign different from the 0*. Possibly some of the 

pressures might have played a stronger role than others and may not have occurred concurrently. I 

assumed the input occurred concurrently because from the literature it was not possible to assess 

the timing of their occurrence. 

In particular, I considered two alternative cases with different schemes of concurring 

pressures: 1) overexploitation of seals and the fish only (no nutrient load to the system); 2) 

overexploitation of seals, sturgeons and kilkas. The results I obtained from the comparison 

between predictions and the observed trends improved over that from when all pressures were 

considered concurrent. Table 4.4 summarizes the results of the alternative scenarios, with the 

models showing 2 and 3 matches out of 5 trends, respectively. A third scenario, in which I 

considered nutrient concentration trend to be 0 (from literature there are indices that in last few 

years of our period of analysis, some improvements in wastewater treatment plants may have 

reduced the level on nutrient input in the system), and considering only the negative inputs in seals, 

sturgeons and kilkas I obtained a match of 4 out of 5 trends (results in Annex C – Complimentary 

analysis: Model validation). 
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Table 4.4: Table of concurrent predictions for alternative schemes of pressures on the Caspian Sea 

model and comparison with the trends for each of the species. Row values indicate the percentage of either 

positive or negative matrices that determined the sign of each affected value (column) due to the input 

pressures (row variables). Row “mean” and “signs” indicate the cumulative impact generated by the 

concurrent effect of the multiple inputs, while the “trends” row indicate the trends obtained from literature 

for each node. Keys for the nodes: seals (Sl), sturgeons (St), bony fish (Bf), kilkas (Kk), zooplankton (Zoo), 

phytoplankton (Phy), benthic organisms (Bo), bacteria (Bac), nutrients (N). 

 

 

4.4.2. Table of Predictions 

According to the literature the main drivers that affected the Caspian Sea between the 

1950’s and the 1990’s were i) overexploitation of faunal resources, ii) damming  of the main rivers 

that feed the basin (most important of all the Volga river), and iii) the increase in nutrient loading. 

Although most of the effect of some of these pressures showed up after the 50’s, some of these 

were already present. The damming of rivers that fed the Caspian Sea started in the 30’s. A 

particular case is the damming of the Volga river which began in the 30’s to be completed  in 1961 

(CEP, 2002; Kosarev & Yablonskaya, 1994; RusHydro, 2019) This project  prevented  species to 

access the upriver spawning grounds. In particular the Caspian sturgeon’s spawning grounds 

greatly shrank (e.g. the beluga sturgeon saw 90% of its spawning grounds lost (CEP, 2002; UNEP, 

2006)). 
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Fishing in the Caspian saw not just an increase in the number of fishing vessels, but also in 

the modernization of its fleets in the middle of the century, which lead to an increase in the fishing 

capacities of the multiple fishing industries such as that of kilkas (Kosarev & Yablonskaya, 1994), 

and with the introduction of some techniques, also led to the increase in by-catch of other  species 

such has seals and sturgeons (Dmitrieva et al., 2013; Ruban & Khodorevskaya, 2011). Also, illegal 

catch is a very serious threat , and for some species,  it  far surpasses the legal catch (Raymakers, 

2002; UNEP-WCMC, 2010). Pollution has affected the Caspian Sea in two forms: toxin loading and 

nutrient enrichment. The former might have affected all the trophic levels of the ecological 

community and the latter entered as a perturbation at the very bottom of the food web. The level of 

toxins in the Caspian saw a steady and rapid rise with the development of the oil from the middle of 

the century onwards, together with the input from different industrial developments all along the 

littoral of the sea (CEP, 2002, 2007; UNEP, 2011). Nutrient enrichment too has been a constant in 

the sea, both from natural causes, such as the inundation of shallow lands upon the rise of the sea 

level in the 70’s (Kosarev & Yablonskaya, 1994), and due to run-offs from agriculture and domestic 

waters. The population in the littoral of the Caspian have steadily and rapidly grown, in particular in 

the last decades of the past century, albeit without proper development of waste-water treatment 

plants (CEP, 2002, 2007; UNEP, 2011). 

Table 4.5 shows the result of the simulations of the loop analysis algorithm over the 

Caspian Sea model from Figure 4.1, that is, in the table are presented the predictions for the 

model. 

 

 Table 4.5: Table of predictions for pressures on the Caspian Sea model. Signs in the Levins table of 

prediction are the expected direction of change in the level of the column variables for a pressure on the row 

variable. Keys for the nodes: seals (Sl), sturgeons (St), bony fish (Bf), kilkas (Kk), zooplankton (Zoo), 

phytoplankton (Phy), benthic organisms (Bo), bacteria (Bac), nutrients (N). 
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Seals 

In the past century the Caspian seals declined considerably, due to multiple causes such 

as hunting and by-catch. The scenario that may describe the conditions for this species is one that 

includes a negative input on seals and kilkas (-Sl and -Kk in Table 4.5). It is possible to observe 

that for both cases a negative prediction would be obtained, matching the observed trends for 

Seals. Another food source for Seals, although not as important as the kilkas, is bony fish, which 

was heavily exploited. When considering a negative input on bony fish (-Bf) the predicted result for 

the effect on seals did not match with the trend. Nutrient is a particular case, since it affects 

negatively every species in the system due to toxin loading, represented in the loop analysis as a 

negative input directly on seals, (-Sl in Table 4.5), but also has the potential to affect it positively 

with nutrient enrichment on the lower levels of the trophic system,  which kilkas and bony fish feed 

upon. A positive input on nutrients (+N in Table 4.5) goes in the opposite direction than expected 

from the trend so matching is possible if a negative input is taken into account. Taking the analysis 

a step further I verified the effect of the multiple scenarios of concurrent pressures on seals and all 

agree with the trend of decline for this species, with the best  results associated with negative 

pressure on both seals and  kilkas (results in Annex C – Complimentary analysis: Concurrent 

predictions - Seals). 

 

Sturgeons 

The spawning grounds for sturgeons shrank dramatically with the damming of multiple 

rivers. Also, the fishing pressure constantly increased throughout the century, along with by-catch 

and toxic loading. The predicted effect of these pressures, all generating a negative input on St (-

St) matches with the observed trends, which indicates a decline of the sturgeons’ populations. 

Reduction in kilkas and bony fish from overfishing, both preys of sturgeons, overall lead to 

predicted decline of sturgeons (decrease for a negative input on kilkas and no change associated 

to a negative input to bony fish. When considering a positive input on nutrients (+N) opposite 

predictions in relation to the trends were obtained. Concurrent predictions were calculated to 

include multiple scenarios of these pressures, and with the exception of the scenario with nutrient 

enrichment on top of overfishing for sturgeons, bony fish and kilkas (which produced inconclusive 

results), all concurrent prediction scenarios agree with the trends of decline in sturgeons 

population. Overfishing of sturgeons and kilkas revealed to be the scenario with the strongest result 

(results in Annex C – Complimentary analysis: Concurrent predictions - Sturgeons). 

 

Bony fish 

River damming reduced bony fish’s spawning grounds. Also, perturbations were due to 

overfishing and toxins loading. The predictions (Table 4.5) for a negative input to bony fish (-Bf) 

match with the trends.  A negative input on kilkas (-Kk), produces a prediction with opposite sign of 

that of the observed trend for its predator. A positive input to Nutrients (+N) is predicted to produce 

changes that are not in agreement with the observed trend for this component. Although no trends 

about both zooplankton and phytoplankton were at disposal in the literature it is possible to see that 

a positive input on each of these two groups (+Zoo/ +Phy) would predict a change in bony fish 
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opposite to the observed  trend for this species; a negative input occurring in any of them would  

predict a change in agreement with the observed trend. Predictions about the level of bony fish 

match with the observed trend for this species for most of the concurrent pressure scenarios with 

input on zooplankton and phytoplankton developed (see in Annex C – Complimentary analysis: 

Concurrent predictions - Bony fish). To consider also is the effect on bony fish species from the 

depletion on the population levels of its predators, seals and sturgeons, concurrently with its own 

pressures (see in Annex C – Complimentary analysis: Concurrent predictions - Bony fish). 

From the concurrent predictions results for these hypotheses it comes that the only case with a 

match between predictions and the observed trends for the effect of negative inputs in the system 

on bony fish is when we consider only the concurrent negative in bony fish and sturgeons. 

 

Kilkas  

With the increase of efficiency and effort, fishing pressure on the kilka species augmented 

considerably. Model predictions confirm the decline of this component if subjected to a negative 

input (-Kk in Table 4.5). Thus, in this case predictions match with the observation. From the 1950s 

to the 1970s years of maximum fishing effort on these populations its predators, seals, sturgeons 

and bony fish all suffered from negative pressures as well. By observing the signs in Table 4.5 it 

comes that a null change in the level of kilkas follows a negative input on top predators (-Sl and -

St).  A negative input on its other predator (-Bf), is expected to increase kilkas. A positive input on 

nutrients alone would cause no change in kilkas level. Although no abundance trends could be 

reconstructed for zooplankton and phytoplankton, akin to the bony fish case it would be interesting 

to see the effect that an hypothetical input on these two nodes would cause on kilkas, but no 

change is expected in the levels of kilkas. Interestingly enough, no change in the expected level of 

kilkas emerged from the simulation despite the observed trend indicating a decline in the 

population. Some concurrent input scenarios where drawn and tested for the possible concurrent 

inputs with kilkas overfishing (see Annex C – Complimentary analysis: Concurrent predictions 

- Kilkas). The only cases in which an expected negative change is predicted is the concurrent 

effects of over-exploration of both kilkas and its top predators (seals and sturgeons); the other 

scenarios combinations again give a no change expected prediction. The concurrent effect with 

nutrient enrichment is also predicted to lead to kilkas decrease; but when this pressure is coupled 

with input on its predators no change is expected.  The hypothetical case of an input into 

zooplankton and phytoplankton, regardless if an input in one or concurrently on both 

(independently of the sign of the input), the expected result is always the same, an expected 

negative change in kilkas population levels in accordance with the observed trends. In the case of 

kilkas there seems to be no one concurrent prediction scenario that is much better than the other, 

with only the single extra concurrent input added being the cases that presented a slightly higher 

strength (all results in Annex C – Complimentary analysis: Concurrent predictions - Kilkas). 
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Nutrients and toxic compounds 

Nutrient loading increased noticeably with economic development and the associated 

increase of the human population living along the Caspian coast. Nitrogen and Phosphorous but 

also, toxic substances such as hydrocarbons and DDT were released in the Caspian Sea. The 

effects of toxicity, which was documented to increase the mortality of seals and of the fish 

compartments, as already been discussed above for each species, concomitantly with other 

negative inputs affecting each species, since through this analysis the effect of different pressures 

of a same sign cannot be discerned from one another. When we consider the concurrent effect on 

the system from positive input on Nutrients and negative input on seals and the fish comportments 

(all together; Table 4.3), it comes out that the predictions do not match the observed trends for any 

of these species. When we consider the concurrent effect that nutrient enrichment and negative 

pressure on seals, sturgeons, bony fish and kilkas (individually) we obtained that for the Caspian 

Sea top predators these predictions fail to match with the trends and only for the scenarios with 

bony fish and kilkas we see a match between trends and the predicted effect for these species. 

(results in Annex C – Complimentary analysis: Concurrent predictions - Nutrients). 

 

 

4.4.3. Interaction Strength 

The LevinsAnalysis R package (Pereira et al. in preparation) offers the user the opportunity 

to include and varying link magnitude in the analysis.  Intensity values can be selected randomly 

from uniform, normal or pareto distributions. Also, it is possible to define the magnitude of specific 

links in the case its intensity is known from experimental investigations or from the literature. In the 

analysis presented so far, I extracted link magnitude from the uniform distribution. But it is known 

that any interaction between species may have a defined range of intensities. For example, even 

though seals predate both on kilkas and bony fish, its main food source is kilkas; therefore, the 

intensity of this interaction can be set up to be stronger than that of the interaction between seals 

and bony fish. 

 This manipulation of the interaction strength makes the model ecologically more reliable in 

the sense that it mimics better the ecological reality. It also allows investigating the sensitivity of the 

response of the variables to external inputs.  The effect of changing the strength of the links that 

constitute the network of the Caspian Sea is represented by the barplot depicted in Figure 4.3.  It 

highlights the percentage of prediction signs changes. Predictions are mostly sensitive to the 

magnitude of the negative effect of sturgeons on bony fish [St -o Bf] and the positive effect of 

zooplankton on bony fish [Zoo -> Bf], with the former showing a higher confidence interval. Overall 

the higher sensitivity does not exceed the 15% of the predictions. The link whose variations in 

magnitude affects less the predictions is the positive effect from bacteria to nutrients [Bac -> N], 

with a percentage of changing predictions that is below 5%. 

 



 

 

47 

 

 

 Figure 4.3: Number of deviations in the signs of the table of predictions of the Caspian Sea model 

due to changes in the strength of interactions (whiskers signal the interval of confidence). The different 

interaction links are along the Y axis, and the percentage of change in the predictions are reported along the 

X axis. Keys for the nodes: seals (Sl), sturgeons (St), bony fish (Bf), kilkas (Kk), zooplankton (Zoo), 

phytoplankton (Phy), benthic organisms (Bo), bacteria (Bac), nutrients (N). 

 

From Figure 4.3 it is also possible to see that nodes that appear more frequently on the top 

10 links are kilkas and sturgeons. Apart from the positive link from zooplankton to benthic 

organisms, which has the smallest interval of confidence, most of the links present fairly large 

intervals of confidence, with the two links with the highest interval of confidence being the positive 

link from phytoplankton to kilkas [Phy -> Kk] and the negative link from benthic organisms to 

bacteria [Bo -o Bac], with the latest having its interval of confidence left side at 0 and its right side 

at above the 10% mark. The results from this table serve to indicate which links would produce a 

higher change in the table of matrix predictions if I changed their strength values. 

 A further scenario was designed where table of predictions were computed with strength 

matrices values fixed at defined levels for the top 5 interactions presented in Table 4.3. Strength 

variations were performed on single links or various combinations of these top 5 interactions. 

Although none of the resulting simulations predicted better results than those obtained previously  

for the model validation analysis, there was an improvement in the resolution of some of the 

predictions, with some ambiguities being solved, in particular the 0* predictions made along the 

bony fish row and kilkas (results in Annex C – Complimentary analysis: Strength interaction). 
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Sl St Bf Kk Zoo Phy Bo Bac N

Sl + - ?- ?- + ?- ?+ ?- 0*

St ?- + - ?+ + + - + 0*

Bf 0* ?+ + - ?+ 0* - + ?+

Kk + 0* - + - ?+ 0* 0* ?-

Zoo + 0* + ?- + - - + +

Phy + + ?+ 0* + + ?+ ?- -

Bo - + - 0* 0* - + - ?-

Bac ?- + ?- ?+ ?+ ?+ + + +

N + + ?+ 0* + + ?+ ?- +

 

 

Figure 4.3: Table of predictions for pressures on the Caspian Sea model, with changes in the values 

of interactions for the top 5 links of Figure 4.3. Keys for the nodes: seals (Sl), sturgeons (St), bony fish (Bf), 

kilkas (Kk), zooplankton (Zoo), phytoplankton (Phy), benthic organisms (Bo), bacteria (Bac), nutrients (N). 

 

 

4.5. Discussion and Conclusion 

 

Model construction is not a trivial process. From the choice of variables to interactions one 

should put much effort in the attempt to select components that play an ecological role and identify 

links that at best describe the way variables interact. The analytical approach that I used to test the 

models validity, by computing the effect of the multiple pressures on the system that occurred 

within the study period (1950-1998) and matching those predictions with the general trends (Table 

4.1) of the models variables during the same period dictated that our model was unfit (Table 4.3). 

As discussed above, the information taken from the literature indicates that the model presented 

here is reliable descriptions of the Caspian Sea network. When the effect of different pressures are 

considered independently from one another the percentage of matches between predictions and 

the trends increases (Table 4.4). Therefore the incongruence arisen in the exercise of testing 

model reliability, coupled with the structural soundness of the proposed structure of the interactions 

that emerged from the literature and the various scenarios of concurrent inputs suggest that : 1) not 

all of the pressures occurred concurrently and their relative intensity might have affected the overall 

outcomes in a way that could not be grasped by the simulations; 2) model validation  is a complex 

process, which requires great assimilation of facts, ecological understanding and coherent 

indication from the literature as well as well-structured and complete data sets. 

 Table 4.5 highlights that the entry point of external perturbations for which a higher number 

of predictions match with abundance trends is kilkas. In particular, for a negative input on this 
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variable (-Kk), predictions for 3 out of 5 variables match with real trends for seals, sturgeons and 

kilkas itself. This result points to the importance of Kilkas and its overfishing as an important factor 

for the dynamics of the entire system. Input on bony fish leads to many 0* predictions. They are 

indicative of a compensation of effects between paths of opposite sign. This result can be 

interpreted as a sign of the bony fish node centrality and high level of connectance involving this 

variable. But this is not the only variable for which this conclusion holds. A table of predictions 

reads from the row variables (target of perturbations) to the column variables (effect variables), i.e. 

the outbound effect, and therefore information is taken row by row. But information can also be 

retrieved down the columns which gives the effect column species suffers from inputs entering 

through the row variable (inbound effect). Reading the table by columns kilkas node once again 

stands out. It appears rather insensitive to external perturbations entering through any variable, as 

in only two cases its abundance is expected to vary (input on bony fish and on kilkas) whereas in 

all the other cases (0*) is the outcome. This suggests that kilkas is structurally central in the 

system. Looking at predictions due to concurrent inputs (see Annex C – Complimentary 

analysis: Concurrent Predictions) the two scenarios for which a higher level of matches with the 

trends emerges (4 matches) both include negative pressure on bony fish and kilkas (scenarios: -Bf 

and -Phy; -Kk and -Phy; -Kk, +Zoo and -Phy). Considering phytoplankton as entry point of 

perturbations reducing its rate of change (negative input) expected changes for 4 variables are 

coherent with observed trends.  Overall, bony fish and kilkas play different roles in the spreading of 

effects due to external perturbations.  Input entering through bony fish spread only to kilkas and 

bony fish itself whereas the other variables experience null changes or of very low magnitude due 

to the compensation of effects associated to paths of different sign. On the other hand input 

entering to kilkas is likely to spread all over the system (only nutrients do not change their level) but 

at the same time it is the most resistant species in the system as its level is predicted to change 

only for input on itself and on bony fish. For these reasons kilkas seem to play an important role 

from the structural point of view.  

Another outcome that is worth mentioning is that bony fish and kilkas appear as true 

competitors.  They feed on the same resources (zooplankton and phytoplankton) but there is also a 

direct interaction between them as bony fish preys upon kilkas. This asymmetric competition 

(sensu Levins, 1979) nevertheless, does not mitigate the reciprocal inhibition which appears clearly 

when input on kilkas and on bony fish occurs, in both cases the two variables change in the 

opposite directions, revealing the same patterns of correlation than two competitors would show 

(Giavelli, Bodini, & Rossi, 1990). In the light of these results it can be said that overfishing on kilkas 

might have had consequences well beyond the variable itself. Consequences of input to 

phytoplankton confirm the observed trends in 4 cases. However, despite this result the input to 

these variables may remain fictitious as there are no indications in the literature that some driver 

acted on phytoplankton and further review of the literature about possible pressures on 

phytoplankton and their temporal occurrence will clarify this point. However, the damming of the 

Volga river, and the subsequent years of constant change in the Caspian Sea level, might be put 

forward as an hypothesis for the possible negative input into phytoplankton. 

 As discussed above, interaction strength highly affects predictions. In theory, the 

compensation between paths of different sign which produce a 0* prediction could be solved by 
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playing with link intensity so that pathways may differentiate their effects. The analysis of 

interaction strength variations shows that substantial modifications in the structure of the 

predictions does not follow from changes in link magnitude (max 20% of changes in predictions 

follows variations of link strength), but some of the links have the greatest share of the overall 

variation.  Interactions whose variation mostly change patterns of model predictions are shared by 

bony fish and kilkas (see Figure 4.3). From the concurrent input scenarios where we changed the 

interaction strength of the top interaction pairs, it comes that the only cases where we obtain a 

change away from null effect (0*), both on bony fish row (effect that input on itself has on others) 

and on kilkas column (effect that input on other have on itself), is when we consider all these 

interaction strength changes together (Table 4.6).  All these results seem to point on the direction 

of the importance of bony fish and kilkas nodes within the network and its response to pressures, 

but offering divergent views on the cause of this importance, from one side their inbound 

importance, from the other their outbound importance (both bony fish and kilkas have their 

importance, in both results, pointing in different directions). To solve this problem, and the two 

seemingly results can be brought together to explain the importance of these two nodes and what 

role they play and in which way they play it in the systems response to pressures, further analysis 

into the specific paths involving each of these variables and their specific lengths, nodes involved 

and strengths, should be done. An hypothesis that can be made is that although these species may 

play an important role in the system, the intensity of their interactions with others might not be so 

important, but rather the interactions of other variables, through which the paths connecting bony 

fish and kilkas to the rest of the system rely on.  

 From Table 4.5 and subsequent concurrent input analysis (see Annex C – 

Complimentary analysis: Concurrent input) a positive input on nutrients leads to low levels of 

matches between trends and predictions. This input is due to nutrient enrichment, which seems to 

not be able to explain the observed trends in the Caspian. Toxic loading can be seen as a negative 

input on each of the biological variables. In this case, although this diffuse negative input  yields 

predictions that match with observed trends, the point here is that the contribution of the toxic load 

cannot be discerned as it is diffuse on all the variables but nutrients and because of that it cannot 

be distinguished from other negative inputs that are instead specifically defined as acting on single 

variables. The importance of the nutrient loading into the Caspian Sea could be assessed, both 

nutrient enrichment and toxic loading, by identifying points in time when nutrient loading into the 

system is known to be prevalent and its effect on the system hypothesised to be superior to other 

pressures, and taking in consideration the trends for the species trends within the same period, to 

analyse the effect that nutrient loading would have. A match within these conditions would clarify 

the importance of nutrients pressure in terms of its capacity to affect the system globally and to 

have played a role, even if within a limited timeframe, on the determination of the trends of the 

system. Although not a test on the effect that nutrient might have had in the system, from the model 

validity tests it came an alternative scenario for the trends in the Caspian Sea. In this scenario I 

considered the trend of nutrients in the system to be 0, that is, I considered the hypothesis of a  

possible stabilization of the nutrient levels in the Caspian Sea that some reports point to due to a 

higher control in toxic loading and nutrient enrichment in the Caspian by implementation of control 

laws and improvement of water treatment plants (results in Annex C – Complimentary analysis: 
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Model validation). When I considered this hypothesis, the results improved by increase in one 

match for all the tests, with the best scenario being for concurrent negative pressures on seals, 

sturgeons and kilkas, for which a match between predictions and trends was obtained for 4 

variables. 

  

Building a graph for the structure of the interactions in the Caspian Sea was a challenging 

task. Model predictions needed to be validated through a comparison with observed changes in the 

level of the variables; these changes should be deduced from long term abundance trends. Such 

trends were not available for most of the variables that compose the Caspian Sea community: data 

found in the literature were inadequate to reproduce variations which should have been tested 

through a statistical analysis to assess significant variations along defined time intervals (Bodini et 

al. 2018). Most of the data were published in papers written in languages that are not in use in the 

scientific community and this precluded to exploit data efficiently to build up temporal trends. Lack 

of sufficient and clear data for multiple variables dictated that statistical analysis for trends 

development were not possible, and a general sense of a trend could not even be retrieved at all 

from the literature review for some variables. The timing of the input, that is the period of time in 

which perturbations acted on the system, could not be defined even with an acceptable 

approximation. Too vague were the indications in the literature about the occurrence of the 

perturbations. An in-depth analysis of the paths connecting the variables and the strength of 

interplay between them should be carefully taken into account in further analysis. In particular, the 

paths involving bony fish and kilkas should be studied in detail and a trend for phytoplankton and 

possible stresses involving this node should be considered.  

Despite these setbacks some information could be taken and some hypothesis can be 

drawn to further studies: 1) bony fish and kilkas might play an important role in the system 

response to pressures, and therefore pressures on these species should be analysed in depth; 2) 

phytoplankton too seems to play an important role in the system, in particular a negative pressure 

on this variable produces one of the best rate of prediction and trends match, which points to its 

importance, and an hypothesis can be made that the water level instability in the early years of 

dam construction in the Volga might be the possible explanation for this negative input on 

phytoplankton, and therefore a further review of the literature should be made in order to verify it; 3) 

the high number of mismatches between predictions and trends, and the for some cases the 

prevalence of 0* signs in the predictions seems to indicate that the paths connecting the multiple 

variables of the system and their strength, and from there, the interactions strength between 

variables, seems to be of a high importance on the Caspian Sea. On a system where the 

importance of strength of interaction between nodes was low, trends would be easier explained 

with the results from table of predictions and further analysis, by contrast in a system where the 

interaction strength between variables and the paths connecting them as a higher importance, a 

study of the effects on inputs on a variable will have on the system where all interactions are 

ranked equally and path strength is simply determined by its length, the predictions outputted by 

the simulations will tend to fail more often; 4) from the lack of agreement of the predictions from 

concurrent inputs and the trends, it can be hypothesised that either the pressures did not occurred 

all at the same time, or their intensity was not the same, with some proving to overpower the 
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others. The loop analysis algorithm does not allow to take in account the intensity of each pressure 

on the system, therefore a further analysis would have to rely on in-depth studies of multiple 

hypothetical scenarios of concurrent inputs drawn from the literature and of their results. 

 

The major aim of this chapter was to build a reliable graph of the Caspian Sea network to 

explore the mechanisms behind the changes observed in the second part of the last century, in 

particular those involving kilkas, a major player of the system both for its economic and ecological 

importance. Due to the complexity of the system and the apparent importance that interaction 

strength plays in the systems response to pressures, it was impossible to give a conclusive answer 

to the questions posed for this chapter, instead we are left with more questions, in particular to the 

role interaction strength and paths strength play in the Caspian Sea. What became clear during this 

analysis is that the multiple pressures on the system might not have all occurred at the same time, 

even if their effects are seen concomitantly, and that a that a clear-cut answer on how a given 

pressure on the system will affect it cannot be provided without a complete understanding of how 

the system dynamics operate.  
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4.6. Annex A – Species trends 

 

4.6.1. On data records 

 For the generation of the trends to be used as benchmarks to validate our model, a 

literature review was made. In this review we looked for data relative to either population biomass, 

numbers, or landing records (data used often as a proxy for fish population size), or when such 

data was not possible, literature statements over trends was also taken in consideration. 

 As stated in the main body of this paper, it wasn’t possible to obtain such data on 

population size for all species, or even for those which some data was available, the records were 

not enough in order to construct a time series. Either way, data was present for most of the 

important species of our full-scale model of the Caspian Sea and then, for a good part of the nodes 

in our concatenated model, which was the one used for the analysis. In some cases, though, only a 

verbal declaration of the general direction of the trend was found. When necessary, a cross check 

between literature references was made in order to ascertain the general opinion on the literature 

over the trends in case. 

 Below follows a description of the trend obtained from the literature for each of the nodes in 

our analysis.  

 

 

4.6.2. General fish landing trends 

 The landing records in the Caspian Sea have varied considerably in the past century. 

Changes in the sea level, dam constructions, increase in pollution and increase in fishing effort for 

most of the economic species as led to the observed variation in the landing records. Despite this 

variation  across the last century, including during our period of analysis from 1950’s to 1998, the 

record does show a steady decline in the total landing records in the Caspian Sea from the early 

1970’s until the end of 1990’s,  which can be interpreted as the landing records finally catching up 

with the real population trends of the multiple species fished in the Caspian Sea. 
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 Figure 4.4: Catch dynamics of the Caspian Sea main species/ groups. Source: Fazli, Ghanghermeh, 

& Shahifar, 2017. 

 

 

4.6.3. Species Trends 

 Seals 

The Caspian Seal is the only aquatic mammal of the Caspian Sea, thus it has a great 

importance. Historical records point the existence of over a 1 million individuals in the early 20th 

century (CEP, 2007; Harkonen et al., 2012). During most of the past century, seals suffered from 

pressure from traditional seal pups hunting, which led its population to decline. The estimates for 

population size in 1989 vary between 128 and 400 thousand individuals (Harkonen et al., 2012). 

The Caspian Seal is currently considered an Endangered species in the IUCN Red List of 

Threatened Species (Goodman & Dmitrieva, 2016). From the literature we can ascertain that the 

Caspian Seals suffered a decline in its population levels across the past century and, therefore, we 

shall consider its trend to be negative, assigning it a “-“ value. 
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 Figure 4.5: Total Seals hunting landing records from 1950 to 2000. Source CEP, 2007. 

 

 

 Sturgeons 

 The Caspian sturgeons accounted in the past for 80-90% of the total world caviar 

production. The effects of pollution and cut-off access to upper river spawning grounds have had a 

drastic effect in the population levels of the sturgeons, which are shown in the landing records, with 

a decline from 25 thousand tonnes in the early 1980’s to 16.500 tonnes in 1990, to only 900 tonnes 

in 2004 (CEP, 2007; Kosarev & Yablonskaya, 1994). Once the major source of caviar in the world, 

almost all of the Caspian Sea sturgeon species have drastically declined as indicated by their 

status of Critically Endangered species, except for Sterlet Sturgeon which is ranked as Vulnerable 

in the IUCN Red Lis of Endangered Species (Gesner, Chebanov, & Freyhof, 2010; Gesner, 

Freyhof, & Kottelat, 2010b, 2010c, 2010a, 2010d; Qiwei, 2010).  From the literature it is clear that 

the sturgeons of the Caspian Sea have been in decline through the past century, therefore in our 

analysis we will consider the sturgeons trend as negative and assign it a “-“ value. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

56 

 

 

 Figure 4.6: total landing records of sturgeons in the Caspian basin. Source: Ruban & 

Khodorevskaya, 2011 

 

 

 

 Figure 4.7: Total sturgeons landing records from 1900 until 2005. Source: CEP, 2007. 
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 Bony fish 

 In our model a diverse group of species was considered under the umbrella of bony fish, 

e.g.: Wels catfish (Silurus glanis), European pikeperch (Sander lucioperca), Northern pike (Esox 

luceus), European bream (Abramis brama) and Roach (Rutilus Rutilus caspicus). Although a 

concise landing data for all the species considered under this group of species for the Caspian 

basin could not be retrieved from the literature, a clear picture could be taken for a general decline 

in the level of biomass of these species and of the group in general (Kosarev & Yablonskaya, 1994; 

UNEP, 2011). European bream landing peaked at more than 100 thousand tonnes in the early 

1930s, experiencing a fall and stabilization over time at approximately 20 thousand annual tonnes. 

The Caspian roach experienced a decline from 167 thousand tonnes in 1935 to 20 thousand 

tonnes in 1996. European pikeperch saw a decline from 55 thousand tonnes in 1948 to 0.77 

thousand tonnes in 1979, with only a slight increase afterwards, although the levels remained very 

low. From the trends retrieved from the literature we conclude that the population levels of the 

multiple species on this group were in decline for our period of analysis and therefore we will 

assume a negative trend and assign a “-“ value. 

 

 

 Figure 4.8: Dynamics of Salmon catches in the Caspian Sea. Source: Kosarev & Yablonskaya, 

1994. 

 

 

Figure 4.9: Dynamics of catches of Shads in the Caspian Sea. Source: Kosarev and Yablonskaya, 1994. 
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Figure 4.10: Dynamics of catches of semi-migratory (upper) and river fish (bottom) in the Caspian Sea. 

Source: Kosarev and Yablonskaya, 1994. 

 

 

 Kilkas 

 The Caspian kilkas are one of the most important species of this ecosystem, both for its 

economic importance for the populations around its shores, but also for its importance as a central 

node in the Caspian trophic chain. The kilkas fisheries has seen an increase in numbers from the 

50s until the 70s due to increase in fishing efforts through an increase in the number of fishing 

vessels and implementation of improved fishing techniques that allowed for a higher yield. From 

the 70’s onwards though, the numbers of landing started to decline, reflecting a possible decline in 

the population levels of the three species of Caspian kilkas (Mamedov, 2006). From the maximum 

landing records of 410 thousand tonnes in the 70’s, the kilkas fishing industry declined to 132 

thousand tonnes in 1996 (CEP, 2002; UNEP, 2011). This continuous decline in kilkas landing 

records, which saw only a brief recovery period in the late 90’s is an indicator that the population 

levels of kilkas were in decline for our period of analysis and we will therefore assume a negative 

trend and assign a “-“ value. 
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 Figure 4.11: Total catches of kilkas in the Caspian Sea. Source: UNEP, 2011 

 

 

 Zooplankton, Phytoplankton, Benthic Organisms and Bacteria 

  Due to their economic importance, for most of the Caspian Sea fish species 

records of landing can be found, and from them trends for population levels can be derived, the 

same is not true for the primary and secondary producers of the system. For both zooplankton and 

phytoplankton exists gaps in their population records, with the date being multiple times presented 

using distinct units of measure and with conflicting records. This situation is aggravated by the fact 

that the population levels of both plankton groups present differences across the Caspian waters, 

and therefore the existing data is most often presented in relation to one of Caspian regions and 

not for the whole sea. The data presented for both phytoplankton and zooplankton is also limited to 

the year of 1986 in the best case, with records for the south Caspian  for zooplankton ending 

almost one decade later, while those for the phytoplankton are limited to only 1976, with the 

southern records not being as complete as the other regions. 

 Some data exists for both zooplankton and phytoplankton in the late 90’s, but since there is 

a great level of variability in the records shown, the difference between the last recorded data in the 
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80’s and the data on the 90’s can not be assumed as a trend, that is, an increase in the population 

levels between the late 80’s and late 90’s cannot be assumed as a positive trend, because since 

we don’t know the real story of the population, which might have actually risen during the first years 

of the 90’s and then be under a decline trend middle 90’s onwards until the present data, leading 

us to false conclusions. 

 In similar fashion, also for the benthic organisms and bacteria, the data is temporal limited 

until late 80’s, impairing our capacity to drawn trends for these groups. 

As pointed out by multiple authors (CEP, 2002, 2007; H. J. Dumont, 1998), the recovery of data for 

the nodes of the lower trophic levels of the Caspian sea ecosystem is difficult. The access to 

original data is often impossible due to lack of source indication, or the source being in Russian or 

Arabic language. On top of this, the data that can be retrieved presents temporal gaps that makes 

it impossible to derive trends. And from written reports and notes it is also impossible to draw 

possible trends, since often there seem to be inconsistencies between authors.  

 For the reasons above, due to impossibility of drawing trends for the zoo- phytoplankton, 

benthic organisms and bacteria, trend signs won’t be assigned in our analysis for these nodes. 

 

 

 Nutrients 

 Before the damming of many of the subsidiary rivers of the Caspian Sea, in particular its 

main affluent, the Volga river in the North-Western part of the lake, the main source of nutrient to 

the sea came from its tributary rivers’ waters. The river damming, in special the Volga led to a 

decrease in the level of nutrients and pollutants reaching the Caspian waters. Even after the dam’s 

reservoirs have been filled and the water discharges were again regulated, the levels of nutrient 

import were still below that of previous times. After the 70’s though, with the increase of the 

agricultural industry and populations living in the lake shores, the levels of nutrient enrichment rose 

again due to runoff from agriculture and domestic waters, so much that it surpassed even the 

values observed in the pre-damming period (H. J. Dumont, 1998; UNEP, 2011). Taking this in 

consideration we will assume a positive trend and assign a “+” value. 

  

 

4.7. Annex B – R code for simulations 

 

 Bellow follows the R code used for the simulations discussed in this chapter. For brevity, 

only the code and not the results are shown. 

 

># loading of LevinsAnalysis package 

>library(LevinsAnalysis) 

># loading of the Caspian Sea models adjacency matrix 

>caspian_c<-as.matrix(read.table("Caspian Net_C_v2.txt", header=T, sep="\t"))  

>row.names(caspian_c)=colnames(caspian_c) 

># signed digraph generation with user coordinates 

>caspian_c_coord <- cbind(c(0,2,0,2,2,1,0,0,2),c(4,4,3,3,2,1,2,0,0)) 

>colnames(caspian_c_coord) <- c("x", "y") 

>rownames(caspian_c_coord) <- c("Sl","St","Bo","Kk","Zoo","Phy","Bo","Bac","N") 
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>la_graph(J = caspian_c, fname = "caspian_c", layout_g = "user", coord = 

caspian_c_coord, save_file = "pdf") 

># stability tes 

>cm_stability(caspian_c) 

># computation of levins analysis algorithm 

>caspian_lp <- levins_predictions(caspian_c, NT= 1112, fname= "caspian_c") #the 

NT=1112 ensures for this matrix size a minimum of 10k random matrices creation 

># models validation test 

>caspian_press = as.list(rep(NA,1)) 

>Press_t1 <- cbind(c("-","-","-","-","+"),c("Sl","St","Bf","Kk","N")) 

>caspian_press[[1]] <- Press_t1 

>caspian_targ = matrix(c("-","-","-","-",NA, NA, NA, NA, "+"), nrow = 1, byrow = 

TRUE) 

>colnames(caspian_targ) <- c("Sl", "St", "Bf", "Kk", "Zoo", "Phy", "Bo", "Bac", 

"N") 

>caspian_mval <- model_validation(OUT_LP = caspian_lp, DF_list = caspian_press, 

MV_target = caspian_targ, fname = "caspian_c") 

># alternative pressure 1: overf only 

># alternative pressure 2: overf only in Sl, St, Kk 

>caspian_press_alt = as.list(rep(NA,2)) 

>Press_t2 <- cbind(c("-","-","-","-"),c("Sl","St","Bf","Kk")) 

>Press_t3 <- cbind(c("-","-","-"),c("Sl","St","Kk")) 

>caspian_press_alt[[1]] <- Press_t2 

>caspian_press_alt[[2]] <- Press_t3 

>caspian_targ_alt = matrix(c("-","-","-","-",NA, NA, NA, NA, "+","-","-","-","-

",NA, NA, NA, NA, "+" ), nrow = 2, byrow = TRUE) 

>colnames(caspian_targ_alt) <- c("Sl", "St", "Bf", "Kk", "Zoo", "Phy", "Bo", 

"Bac", "N") 

>caspian_mval_alt <- model_validation(OUT_LP = caspian_lp, DF_list = 

caspian_press_alt, MV_target = caspian_targ_alt, fname = "caspian_c_alt") 

># alternative target: stabilization of N 

>caspian_targ_alt_2 = matrix(c("-","-","-","-",NA, NA, NA, NA, "0"), nrow = 1, 

byrow = TRUE) 

>colnames(caspian_targ_alt_2) <- c("Sl", "St", "Bf", "Kk", "Zoo", "Phy", "Bo", 

"Bac", "N") 

>caspian_targ_alt_3 = matrix(c("-","-","-","-",NA, NA, NA, NA, "0","-","-","-","-

",NA, NA, NA, NA, "0" ), nrow = 2, byrow = TRUE) 

>colnames(caspian_targ_alt_3) <- c("Sl", "St", "Bf", "Kk", "Zoo", "Phy", "Bo", 

"Bac", "N") 

>caspian_mval_alt_2 <- model_validation(OUT_LP = caspian_lp, DF_list = 

caspian_press, MV_target = caspian_targ_alt_2, fname = "caspian_c_alt_2") 

>caspian_mval_alt_3 <- model_validation(OUT_LP = caspian_lp, DF_list = 

caspian_press_alt , MV_target = caspian_targ_alt_3, fname = "caspian_c_alt_3") 

># strength interaction test and barplot generation 

>caspian_sit <- sa_interaction_strength(OUT_LP = caspian_lp, NTS = 100, fname = 

"caspian_c") 

>barplot_sa_strength(OUT_SIS = caspian_sit, fname = "caspian_c") 

># creation of ionterval matrices for interaction strength 

>caspian_minv <- matrix(rep(0,(length(caspian_c))), nrow = 

sqrt(length(caspian_c))) 

>row.names(caspian_minv)=colnames(caspian_c) 

>colnames(caspian_minv)=colnames(caspian_c) 

>caspian_maxv <- matrix(rep(0,(length(caspian_c))), nrow = 

sqrt(length(caspian_c))) 

>row.names(caspian_maxv)=colnames(caspian_c) 

>colnames(caspian_maxv)=colnames(caspian_c) 

># value assignment for interaction strength intervals 

>caspian_minv_st_bf<-edit(caspian_minv) #edit st-bf pair to 0.5 

>caspian_minv_zoo_bf<-edit(caspian_minv) #edit zoo-bf pair to 0.5 

>caspian_minv_bo_st<-edit(caspian_minv) #edit bo-st pair to 0.5 

>caspian_minv_kk_zoo<-edit(caspian_minv) #edit kk-zoo pair to 0.5 
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>caspian_maxv_kk_st<-edit(caspian_maxv) # edit kk-st pair to 0.5 

>caspian_minv_top_5<-edit(caspian_minv) #edit top 5 pair to 0.5 

># computaiton of levins analysis algorithm with user defined intervals for 

interaction strength 

>caspian_lp_minv_st_bf <- levins_predictions(caspian_c, INT_MIN = 

caspian_minv_st_bf, NT= 1112, fname= "caspian_c_min_st_bf") 

>caspian_lp_minv_zoo_bf <- levins_predictions(caspian_c, INT_MIN = 

caspian_minv_zoo_bf, NT= 1112, fname= "caspian_c_min_zoo_bf") 

>caspian_lp_minv_bo_st <- levins_predictions(caspian_c, INT_MIN = 

caspian_minv_bo_st, NT= 1112, fname= "caspian_c_min_bo_st") 

>caspian_lp_minv_kk_zoof <- levins_predictions(caspian_c, INT_MIN = 

caspian_minv_kk_zoo, NT= 1112, fname= "caspian_c_min_kk_zoo") 

>caspian_lp_maxv_kk_st <- levins_predictions(caspian_c, INT_MAX = 

caspian_maxv_kk_st, NT= 1112, fname= "caspian_c_max_kk_st") 

>caspian_lp_minv_maxv_top_5 <- levins_predictions(caspian_c, INT_MIN = 

caspian_minv_top_5, INT_MAX = caspian_maxv_kk_st, NT= 1112, fname= 

"caspian_c_min_&_max_top_5") 

># model validation test with intervals for top 5 

>caspian_mval_alt_4 <- model_validation(OUT_LP = caspian_lp_minv_maxv_top_5, 

DF_list = caspian_press, MV_target = caspian_targ, fname = 

"caspian_c_alt_4_min_max_top_5") 

># model validation test with intervals for top 5 alternative pressures 

>caspian_mval_alt_5 <- model_validation(OUT_LP = caspian_lp_minv_maxv_top_5, 

DF_list = caspian_press_alt, MV_target = caspian_targ_alt, fname = 

"caspian_c_alt_5_min_max_top_5") 

># model validation test with intervals for top 5 with alternate target 

>caspian_mval_alt_6 <- model_validation(OUT_LP = caspian_lp_minv_maxv_top_5, 

DF_list = caspian_press, MV_target = caspian_targ_alt_2, fname = 

"caspian_c_alt_6_min_max_top_5") 

># model validation test with intervals for top 5 alternative pressures and 

alternative target 

>caspian_mval_alt_7 <- model_validation(OUT_LP = caspian_lp_minv_maxv_top_5, 

DF_list = caspian_press_alt, MV_target = caspian_targ_alt_3, fname = 

"caspian_c_alt_7_min_max_top_5") 

># computation of table of concurrent predictions 

>#  concurrent predictions on seals pressure hypothesis 1: -Sl and -Kk 

>Press_Sl_h1 <- cbind(c("-","-"),c("Sl","Kk")) 

>levins_concurrent(caspian_c, DF = Press_Sl_h1, NT= 1112, fname = 

"caspian_c_press_sl_h1") 

>#  concurrent predictions on seals pressure hypothesis 2: -Sl, -Bf and -Kk 

>Press_Sl_h2 <- cbind(c("-","-", "-"),c("Sl","Bf","Kk")) 

>levins_concurrent(caspian_c, DF = Press_Sl_h2, NT= 1112, fname = 

"caspian_c_press_sl_h2") 

>#  concurrent predictions on seals pressure hypothesis 4: -Sl, -Bf, -Kk and 

+N 

>Press_Sl_h4 <- cbind(c("-","-","-","+"),c("Sl","Bf","Kk","N")) 

>levins_concurrent(caspian_c, DF = Press_Sl_h4, NT= 1112, fname = 

"caspian_c_press_sl_h4") 

>#  concurrent predictions on seals pressure hypothesis 5: -Sl, -Bf 

>Press_Sl_h5 <- cbind(c("-","-"),c("Sl","Bf")) 

>levins_concurrent(caspian_c, DF = Press_Sl_h5, NT= 1112, fname = 

"caspian_c_press_sl_h5") 

>#  concurrent predictions on sturgeons pressure hypothesis 1: -St and -Bf 

>Press_St_h1 <- cbind(c("-","-"),c("St","Bf")) 

>levins_concurrent(caspian_c, DF = Press_St_h1, NT= 1112, fname = 

"caspian_c_press_st_h1") 

>#  concurrent predictions on sturgeons pressure hypothesis 1: -St and -Kk 

>Press_St_h2 <- cbind(c("-","-"),c("St","Kk")) 

>levins_concurrent(caspian_c, DF = Press_St_h2, NT= 1112, fname = 

"caspian_c_press_st_h2") 
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>#  concurrent predictions on sturgeons pressure hypothesis 1: -St, -Bf and -

Kk 

>Press_St_h3 <- cbind(c("-","-","-"),c("St","Bf","Kk")) 

>levins_concurrent(caspian_c, DF = Press_St_h3, NT= 1112, fname = 

"caspian_c_press_st_h3") 

>#  concurrent predictions on sturgeons pressure hypothesis 1: -St, -Bf, -Kk 

and +N 

>Press_St_h6 <- cbind(c("-","-","-","+"),c("St","Bf","Kk","N")) 

>levins_concurrent(caspian_c, DF = Press_St_h6, NT= 1112, fname = 

"caspian_c_press_st_h6") 

>#  concurrent predictions on sturgeons pressure hypothesis 1: -St, -Bo 

>Press_St_h7 <- cbind(c("-","-"),c("St","Bo")) 

>levins_concurrent(caspian_c, DF = Press_St_h7, NT= 1112, fname = 

"caspian_c_press_st_h7") 

>#  concurrent predictions on sturgeons pressure hypothesis 1: -St, -Bf, -Kk, 

-Bo 

>Press_St_h4 <- cbind(c("-","-","-","-"),c("St","Bf","Kk","Bo")) 

>levins_concurrent(caspian_c, DF = Press_St_h4, NT= 1112, fname = 

"caspian_c_press_st_h4") 

>#  concurrent predictions on bony fish pressure hypothesis 1: -Bf and -Kk 

>Press_Bf_h1 <- cbind(c("-","-"),c("Bf","Kk")) 

>levins_concurrent(caspian_c, DF = Press_Bf_h1, NT= 1112, fname = 

"caspian_c_press_bf_h1") 

>#  concurrent predictions on bony fish pressure hypothesis 1: -Bf, -Kk and +N 

>Press_Bf_h2 <- cbind(c("-","-","+"),c("Bf","Kk","N")) 

>levins_concurrent(caspian_c, DF = Press_Bf_h2, NT= 1112, fname = 

"caspian_c_press_bf_h2") 

>#  concurrent predictions on bony fish pressure hypothesis 1: -Bf and -Zoo 

>Press_Bf_h3 <- cbind(c("-","-"),c("Bf","Zoo")) 

>levins_concurrent(caspian_c, DF = Press_Bf_h3, NT= 1112, fname = 

"caspian_c_press_bf_h3") 

<#  concurrent predictions on bony fish pressure hypothesis 1: -Bf and +Zoo 

>Press_Bf_h4 <- cbind(c("-","+"),c("Bf","Zoo")) 

>levins_concurrent(caspian_c, DF = Press_Bf_h4, NT= 1112, fname = 

"caspian_c_press_bf_h4") 

>#  concurrent predictions on bony fish pressure hypothesis 1: -Bf and -Phy 

>Press_Bf_h5 <- cbind(c("-","-"),c("Bf","Phy")) 

>levins_concurrent(caspian_c, DF = Press_Bf_h5, NT= 1112, fname = 

"caspian_c_press_bf_h5") 

>#  concurrent predictions on bony fish pressure hypothesis 1: -Bf and +Phy 

>Press_Bf_h6 <- cbind(c("-","+"),c("Bf","Phy")) 

>levins_concurrent(caspian_c, DF = Press_Bf_h6, NT= 1112, fname = 

"caspian_c_press_bf_h6") 

>#  concurrent predictions on bony fish pressure hypothesis 1: -Bf, -Zoo and -

Phy 

>Press_Bf_h7 <- cbind(c("-","-","-"),c("Bf","Zoo","Phy")) 

>levins_concurrent(caspian_c, DF = Press_Bf_h7, NT= 1112, fname = 

"caspian_c_press_bf_h7") 

>#  concurrent predictions on bony fish pressure hypothesis 1: -Bf, +Zoo and 

+Phy 

>Press_Bf_h8 <- cbind(c("-","+","+"),c("Bf","Zoo","Phy")) 

>levins_concurrent(caspian_c, DF = Press_Bf_h8, NT= 1112, fname = 

"caspian_c_press_bf_h8") 

>#  concurrent predictions on bony fish pressure hypothesis 1: -Bf, -Zoo and 

+Phy 

>Press_Bf_h9 <- cbind(c("-","-","+"),c("Bf","Zoo","Phy")) 

>levins_concurrent(caspian_c, DF = Press_Bf_h9, NT= 1112, fname = 

"caspian_c_press_bf_h9") 

>#  concurrent predictions on bony fish pressure hypothesis 1: -Bf, +Zoo and -

Phy 

>Press_Bf_h10 <- cbind(c("-","+","-"),c("Bf","Zoo","Phy")) 
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>levins_concurrent(caspian_c, DF = Press_Bf_h10, NT= 1112, fname = 

"caspian_c_press_bf_h10") 

>#  concurrent predictions on bony fish pressure hypothesis 1: -Bf, -Sl 

>Press_Bf_h11 <- cbind(c("-","-"),c("Bf","Sl")) 

>levins_concurrent(caspian_c, DF = Press_Bf_h11, NT= 1112, fname = 

"caspian_c_press_bf_h11") 

>#  concurrent predictions on bony fish pressure hypothesis 1: -Bf, -St 

>Press_Bf_h12 <- cbind(c("-","-"),c("Bf","St")) 

>levins_concurrent(caspian_c, DF = Press_Bf_h12, NT= 1112, fname = 

"caspian_c_press_bf_h12") 

>#  concurrent predictions on bony fish pressure hypothesis 1: -Bf, -Sl and -

St 

>Press_Bf_h13 <- cbind(c("-","-","-"),c("Bf","Sl","St")) 

>levins_concurrent(caspian_c, DF = Press_Bf_h13, NT= 1112, fname = 

"caspian_c_press_bf_h13") 

>#  concurrent predictions on bony fish pressure hypothesis 1: -Bf, -Sl, -St 

and -Kk 

>Press_Bf_h14 <- cbind(c("-","-","-","-"),c("Bf","Sl","St","Kk")) 

>levins_concurrent(caspian_c, DF = Press_Bf_h14, NT= 1112, fname = 

"caspian_c_press_bf_h14") 

>#  concurrent predictions on kilkas pressure hypothesis 1: -Kk and -Zoo 

>Press_Kk_h1 <- cbind(c("-","-"),c("Kk","Zoo")) 

>levins_concurrent(caspian_c, DF = Press_Kk_h1, NT= 1112, fname = 

"caspian_c_press_kk_h1") 

>#  concurrent predictions on kilkas pressure hypothesis 2: -Kk and +Zoo 

>Press_Kk_h2 <- cbind(c("-","+"),c("Kk","Zoo")) 

>levins_concurrent(caspian_c, DF = Press_Kk_h2, NT= 1112, fname = 

"caspian_c_press_kk_h2") 

>#  concurrent predictions on kilkas pressure hypothesis 3: -Kk and -Phy 

>Press_Kk_h3 <- cbind(c("-","-"),c("Kk","Phy")) 

>levins_concurrent(caspian_c, DF = Press_Kk_h3, NT= 1112, fname = 

"caspian_c_press_kk_h3") 

>#  concurrent predictions on kilkas pressure hypothesis 4: -Kk and +Phy 

>Press_Kk_h4 <- cbind(c("-","+"),c("Kk","Phy")) 

>levins_concurrent(caspian_c, DF = Press_Kk_h4, NT= 1112, fname = 

"caspian_c_press_kk_h4") 

>#  concurrent predictions on kilkas pressure hypothesis 5: -Kk, -Zoo and -Phy 

>Press_Kk_h5 <- cbind(c("-","-","-"),c("Kk","Zoo","Phy")) 

>levins_concurrent(caspian_c, DF = Press_Kk_h5, NT= 1112, fname = 

"caspian_c_press_kk_h5") 

>#  concurrent predictions on kilkas pressure hypothesis 6: -Kk, +Zoo and +Phy 

>Press_Kk_h6 <- cbind(c("-","+","+"),c("Kk","Zoo","Phy")) 

>levins_concurrent(caspian_c, DF = Press_Kk_h6, NT= 1112, fname = 

"caspian_c_press_kk_h6") 

>#  concurrent predictions on kilkas pressure hypothesis 7: -Kk, +Zoo and -Phy 

>Press_Kk_h7 <- cbind(c("-","+","-"),c("Kk","Zoo","Phy")) 

>levins_concurrent(caspian_c, DF = Press_Kk_h7, NT= 1112, fname = 

"caspian_c_press_kk_h7") 

>#  concurrent predictions on kilkas pressure hypothesis 8: -Kk, -Zoo and +Phy 

>Press_Kk_h8 <- cbind(c("-","-","+"),c("Kk","Zoo","Phy")) 

>levins_concurrent(caspian_c, DF = Press_Kk_h8, NT= 1112, fname = 

"caspian_c_press_kk_h8") 

>#  concurrent predictions on kilkas pressure hypothesis 9: -Kk and +N 

>Press_Kk_h9 <- cbind(c("-","+"),c("Kk","N")) 

>levins_concurrent(caspian_c, DF = Press_Kk_h9, NT= 1112, fname = 

"caspian_c_press_kk_h9") 

>#  concurrent predictions on kilkas pressure hypothesis 10: -Kk and -Sl 

>Press_Kk_h10 <- cbind(c("-","-"),c("Kk","Sl")) 

>levins_concurrent(caspian_c, DF = Press_Kk_h10, NT= 1112, fname = 

"caspian_c_press_kk_h10") 

>#  concurrent predictions on kilkas pressure hypothesis 11: -Kk and -St 
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>Press_Kk_h11 <- cbind(c("-","-"),c("Kk","St")) 

>levins_concurrent(caspian_c, DF = Press_Kk_h11, NT= 1112, fname = 

"caspian_c_press_kk_h11") 

>#  concurrent predictions on kilkas pressure hypothesis 12: -Kk and -Bf 

>Press_Kk_h12 <- cbind(c("-","-"),c("Kk","Bf")) 

>levins_concurrent(caspian_c, DF = Press_Kk_h12, NT= 1112, fname = 

"caspian_c_press_kk_h12") 

>#  concurrent predictions on kilkas pressure hypothesis 13: -Kk, -Sl, -St and 

-Bf 

>Press_Kk_h13 <- cbind(c("-","-","-","-"),c("Kk","Sl","St","Bf")) 

>levins_concurrent(caspian_c, DF = Press_Kk_h13, NT= 1112, fname = 

"caspian_c_press_kk_h13") 

>#  concurrent predictions on kilkas pressure hypothesis 14: -Kk, -Sl, -St, -

Bf and +N 

>Press_Kk_h14 <- cbind(c("-","-","-","-","+"),c("Kk","Sl","St","Bf","N")) 

>levins_concurrent(caspian_c, DF = Press_Kk_h14, NT= 1112, fname = 

"caspian_c_press_kk_h14") 

>#  concurrent predictions on nutrients pressure hypothesis 1: +N and -Sl 

>Press_N_h1 <- cbind(c("+","-"),c("N","Sl")) 

>levins_concurrent(caspian_c, DF = Press_N_h1, NT= 1112, fname = 

"caspian_c_press_n_h1") 

>#  concurrent predictions on nutrients pressure hypothesis 2: +N and -St 

>Press_N_h2 <- cbind(c("+","-"),c("N","St")) 

>levins_concurrent(caspian_c, DF = Press_N_h2, NT= 1112, fname = 

"caspian_c_press_n_h2") 

>#  concurrent predictions on nutrients pressure hypothesis 3: +N and -Bf 

>Press_N_h3 <- cbind(c("+","-"),c("N","Bf")) 

>levins_concurrent(caspian_c, DF = Press_N_h3, NT= 1112, fname = 

"caspian_c_press_n_h3") 

>#  concurrent predictions on nutrients pressure hypothesis 4: +N and -Kk 

>Press_N_h4 <- cbind(c("+","-"),c("N","Kk")) 

>levins_concurrent(caspian_c, DF = Press_N_h4, NT= 1112, fname = 

"caspian_c_press_n_h4") 

>#  concurrent predictions on nutrients pressure hypothesis 5: +N, -Sl, -St, -

Kk 

>Press_N_h5 <- cbind(c("+","-","-","-"),c("N","Sl","Bf","Kk")) 

>levins_concurrent(caspian_c, DF = Press_N_h5, NT= 1112, fname = 

"caspian_c_press_n_h5") 
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Sl St Bf Kk Zoo Phy Bo Bac N

-Sl -94.563 66.935 69.432 7.432 -65.302 33.1 -53.541 53.541 12.239

-St 33.123 -96.873 25.493 1.038 -76.362 -63.948 88.566 -88.566 -25.166

-Kk -70.715 -58.581 63.225 -98.833 56.878 -28.55 46.727 -46.727 -9.859

mean -44.052 -29.506 52.717 -30.121 -28.262 -19.799 27.251 -27.251 -7.595

signs ?- ?- + ?- ?- 0* ?+ ?- 0*

trends - - - - 0

Sl St Bf Kk Zoo Phy Bo Bac N

-Sl -94.563 66.935 69.432 7.432 -65.302 33.1 -53.541 53.541 12.239

-St 33.123 -96.873 25.493 1.038 -76.362 -63.948 88.566 -88.566 -25.166

-Bf -5.915 -0.992 -98.763 98.157 4.725 1.178 0.478 -0.478 -0.548

-Kk -70.715 -58.581 63.225 -98.833 56.878 -28.55 46.727 -46.727 -9.859

+N 63.272 80.772 55.828 -0.385 63.108 95.1 39.68 -39.692 95.03

mean -14.96 -1.748 23.043 1.482 -3.391 7.376 24.382 -24.384 14.339

signs 0* 0* ?+ 0* 0* 0* ?+ ?- 0*

trend - - - - 0

4.8. Annex C – Complimentary analysis 

 

4.8.1. Model Validation 

 Extra scenarios for model validation of the Caspian Sea model considering the stable trend 

in Nutrients: 

 

Table 4.7: Prediction for the concurrent negative inputs on seals (-Sl), sturgeons (-St), bony fish (-Bf) and 

kilkas (-Kk) and positive input on nutrient (+N). 

 

 

 

Table 4.8: Prediction for the concurrent negative inputs on seals (-Sl), sturgeons (-St), bony fish (-Bf) and 

kilkas (-Kk). 

 

 

 

Table 4.9: Prediction for the concurrent negative inputs on seals (-Sl), sturgeons (-St) and kilkas (-Kk). 

  

 

 

 

 

 

Sl St Bf Kk Zoo Phy Bo Bac N

-Sl -94.563 66.935 69.432 7.432 -65.302 33.1 -53.541 53.541 12.239

-St 33.123 -96.873 25.493 1.038 -76.362 -63.948 88.566 -88.566 -25.166

-Bf -5.915 -0.992 -98.763 98.157 4.725 1.178 0.478 -0.478 -0.548

-Kk -70.715 -58.581 63.225 -98.833 56.878 -28.55 46.727 -46.727 -9.859

mean -34.518 -22.378 14.847 1.948 -20.015 -14.555 20.558 -20.558 -5.833

signs ?- ?- 0* 0* ?- 0* ?+ ?- 0*

trend - - - - 0
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Sl St Bf Kk Zoo Phy Bo Bac N

-Sl -94.666 66.953 68.019 6.609 -65.213 31.447 -54.499 54.499 13.544

-Kk -71.475 -58.024 62.43 -98.609 57.421 -28.224 47.356 -47.356 -11.572

mean -83.07 4.465 65.225 -46 -3.896 1.611 -3.572 3.572 0.986

signs - 0* + ?- 0* 0* 0* 0* 0*

Sl St Bf Kk Zoo Phy Bo Bac N

-Sl -94.5 67.443 68.941 5.933 -66.413 30.345 -55.436 55.436 16.723

-Bf -5.957 -2.891 -98.76 98.151 2.984 0.035 2.025 -2.025 -2.61

-Kk -70.884 -56.864 62.996 -98.642 58.783 -26.319 46.776 -46.776 -10.731

mean -57.114 2.563 11.059 1.814 -1.549 1.354 -2.212 2.212 1.127

signs - 0* 0* 0* 0* 0* 0* 0* 0*

Sl St Bf Kk Zoo Phy Bo Bac N

-Sl -95.374 66.382 68.532 4.754 -63.906 32.601 -54.678 54.678 13.328

-Bf -4.544 -2.815 -99.019 98.762 3.212 -1.904 2.441 -2.441 -0.502

-Kk -70.354 -57.061 63.135 -98.785 58.042 -28.186 45.707 -45.707 -10.548

+N 62.691 79.909 56.676 -0.502 60.589 95.001 40.498 -40.498 94.977

mean -26.895 21.604 22.331 1.057 14.484 24.378 8.492 -8.492 24.314

signs ?- ?+ ?+ 0* 0* ?+ 0* 0* ?+

Sl St Bf Kk Zoo Phy Bo Bac N

-Sl -95.004 66.028 68.2 4.786 -67.196 31.24 -52.136 52.136 13.075

-Bf -7.308 -2.475 -98.996 98.342 4.623 -2.498 1.097 -1.097 0.514

mean -51.156 31.777 -15.398 51.564 -31.287 14.371 -25.52 25.52 6.794

signs - ?+ 0* + ?- 0* ?- ?+ 0*

4.8.2. Concurrent Predictions 

 Seals    

 

 

 Table 4.10: Prediction for the concurrent negative inputs on seals (-Sl) and kilkas (-Kk). 

 

 

 Table 4.11: Prediction for the concurrent negative inputs on seals (-Sl) and bony fish (-Bf). 

 

 

 

 Table 4.12: Prediction for the concurrent negative inputs on seals (-Sl), bony fish (-Bf) and kilkas (-

Kk). 

 

 

 

 Table 4.13: Prediction for the concurrent negative inputs on seals (-Sl), bony fish (-Bf), kilkas         

(-Kk) and positive input on nutrients (+N). 
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Sl St Bf Kk Zoo Phy Bo Bac N

-St 33.115 -96.819 25.117 1.356 -74.813 -64.85 87.909 -87.909 -23.152

-Bf -5.285 -3.274 -99.181 98.503 1.123 -2.128 2.268 -2.268 -0.21

mean 13.915 -50.047 -37.032 49.929 -36.845 -33.489 45.089 -45.089 -11.681

signs 0* - ?- ?+ ?- ?- ?+ ?- 0*

Sl St Bf Kk Zoo Phy Bo Bac N

-St 32.335 -96.982 26.182 -0.14 -74.825 -65.863 89.541 -89.541 -23.163

-Kk -71.455 -56.996 64.319 -98.971 57.721 -27.632 45.391 -45.391 -9.265

mean -19.56 -76.989 45.251 -49.556 -8.552 -46.748 67.466 -67.466 -16.214

signs 0* - ?+ ?- 0* ?- + - 0*

Sl St Bf Kk Zoo Phy Bo Bac N

-St 31.339 -96.786 25.405 -0.141 -73.939 -65.564 88.67 -88.67 -23.27

-Bf -6.592 -3.143 -98.968 98.076 4.269 -1.173 2.545 -2.557 -0.844

-Kk -71.194 -57.026 62.773 -98.733 56.24 -27.868 46.563 -46.563 -11.471

mean -15.482 -52.318 -3.597 -0.266 -4.477 -31.535 45.926 -45.93 -11.862

signs 0* - 0* 0* 0* ?- ?+ ?- 0*

Sl St Bf Kk Zoo Phy Bo Bac N

-St 32.85 -96.419 27.63 -0.293 -74.254 -65.126 88.555 -88.555 -23.464

-Bf -5.372 -3.242 -99.204 98.291 1.229 -3.171 0.293 -0.293 0.339

-Kk -70.977 -57.028 63.862 -99.04 57.73 -25.711 47.431 -47.431 -13.329

+N 63.183 81.486 53.049 3.101 60.187 95.132 38.771 -38.771 95.038

mean 4.921 -18.801 11.334 0.515 11.223 0.281 43.763 -43.763 14.646

signs 0* 0* 0* 0* 0* 0* ?+ ?- 0*

 Sturgeons 

 

 

 Table 4.14: Prediction for the concurrent negative inputs on sturgeons (-St) and bony fish (-Bf). 

 

 

 Table 4.15: Prediction for the concurrent negative inputs on sturgeons (-St) and kilkas (-Kk). 

 

 

 

 Table 4.16: Prediction for the concurrent negative inputs on sturgeons (-St), bony fish (-Bf) and 

kilkas (-Kk). 

 

 

 

 Table 4.17: Prediction for the concurrent negative inputs on sturgeons (-St), bony fish (-Bf), kilkas        

(-Kk) and positive input on nutrients (+N). 

 

 

 

 

 



 

 

69 

 

Sl St Bf Kk Zoo Phy Bo Bac N

-St 33.473 -96.705 25.235 0.986 -75.125 -63.012 88.955 -88.955 -23.077

-Bf -4.977 -2.378 -99.049 98.422 2.541 -3.539 1.497 -1.497 -0.569

-Kk -71.528 -58.162 63.847 -98.817 58.046 -27.416 47.268 -47.279 -9.897

-Bo 78.141 -40.109 71.389 2.75 9.595 86.216 -94.338 94.338 28.553

mean 8.777 -49.338 15.355 0.835 -1.236 -1.938 10.846 -10.848 -1.248

signs 0* ?- 0* 0* 0* 0* 0* 0* 0*

Sl St Bf Kk Zoo Phy Bo Bac N

-St 32.365 -96.235 26.601 1.15 -75.015 -65.322 87.519 -87.519 -21.883

-Bo 77.176 -38.222 74.178 1.336 10.75 85.567 -93.818 93.818 29.832

mean 54.77 -67.228 50.389 1.243 -32.133 10.122 -3.149 3.149 3.975

signs + - + 0* ?- 0* 0* 0* 0*

Sl St Bf Kk Zoo Phy Bo Bac N

-Bf -6.996 -2.901 -99.275 98.409 2.176 -2.574 0.515 -0.515 0.842

-Kk -69.911 -57.347 63.453 -98.76 58.259 -26.907 46.982 -46.982 -9.71

mean -38.453 -30.124 -17.911 -0.175 30.218 -14.741 23.748 -23.748 -4.434

signs ?- ?- 0* 0* ?+ 0* ?+ ?- 0*

Sl St Bf Kk Zoo Phy Bo Bac N

-Bf -5.889 -1.201 -98.927 98.741 3.02 -0.408 2.904 -2.904 -0.105

-Kk -69.353 -57.714 63.755 -98.741 57.294 -27.627 43.883 -43.883 -10.134

+N 63.452 80.035 55.242 -0.362 61.399 94.682 40.875 -40.875 94.985

mean -3.93 7.04 6.69 -0.121 40.571 22.216 29.221 -29.221 28.249

signs 0* 0* 0* 0* ?+ ?+ ?+ ?- ?+

 

 Table 4.18: Prediction for the concurrent negative inputs on sturgeons (-St) and benthic organisms 

(-Bo). 

 

 

 

 Table 4.19: Prediction for the concurrent negative inputs on sturgeons (-St), bony fish (-Bf), kilkas        

(-Kk) and benthic organisms (+Bo). 

 

 

 Bony fish 

 

 Table 4.20: Prediction for the concurrent negative inputs on bony fish (-Bf) and kilkas (-Kk). 

 

 

 

 Table 4.21: Prediction for the concurrent negative inputs on bony fish (-Bf) and kilkas (-Kk) and 

positive input in nutrients (+N). 
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Sl St Bf Kk Zoo Phy Bo Bac N

-Bf -5.436 -5.436 -98.99 98.309 2.383 -3.605 0.951 -0.951 2.337

-Zoo -53.035 -8.606 -45.638 -4.873 -95.844 73.042 77.175 -77.175 -88.024

mean -29.235 -7.021 -72.314 46.718 -46.73 34.718 39.063 -39.063 -42.843

signs ?- 0* - ?+ ?- ?+ ?+ ?- ?-

Sl St Bf Kk Zoo Phy Bo Bac N

-Bf -4.644 -3.283 -99.132 98.265 2.345 -1.266 1.618 -1.618 0.61

+Zoo 52.955 8.748 44.653 3.94 95.591 -73.734 -75.797 75.797 88.673

mean 24.155 2.732 -27.24 51.102 48.968 -37.5 -37.09 37.09 44.642

signs ?+ 0* ?- + ?+ ?- ?- ?+ ?+

Sl St Bf Kk Zoo Phy Bo Bac N

-Bf -6.494 -1.518 -99.299 98.388 0.327 -2.756 1.588 -1.588 -0.514

-Phy -63.513 -79.911 -54.1 -2.523 -62.158 -94.487 -41.299 41.299 86.872

mean -35.004 -40.715 -76.7 47.933 -30.916 -48.621 -19.855 19.855 43.179

signs ?- ?- - ?+ ?- ?- 0* 0* ?+

Sl St Bf Kk Zoo Phy Bo Bac N

-Bf -6.273 -0.409 -99.112 97.921 2.628 -2.511 0.502 -0.502 0.899

+Phy 64.77 80.259 55.122 2.208 62.691 95.024 41.596 -41.596 -87.011

mean 29.248 39.925 -21.995 50.065 32.66 46.257 21.049 -21.049 -43.056

signs ?+ ?+ ?- + ?+ ?+ ?+ ?- ?-

 

 Table 4.22: Prediction for the concurrent negative inputs on bony fish (-Bf) and zooplankton           

(-Zoo). 

 

 

 

 Table 4.23: Prediction for the concurrent negative inputs on bony fish (-Bf) and a positive input on 

zooplankton (+Zoo). 

 

 

 

 Table 4.24: Prediction for the concurrent negative inputs on bony fish (-Bf) and phytoplankton           

(-Phy). 

 

 

 

 Table 4.25: Prediction for the concurrent negative inputs on bony fish (-Bf) and positive input on 

phytoplankton (+Phy). 
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Sl St Bf Kk Zoo Phy Bo Bac N

-Bf -6.541 -2.663 -99.182 98.131 2.289 -0.888 1.378 -1.378 0.047

-Zoo -54.263 -7.942 -44.055 -4.275 -95.959 73.744 76.197 -76.197 -89.045

-Phy -63.63 -80.612 -54.613 -2.313 -62.088 -94.791 -39.851 39.851 87.737

mean -41.478 -30.406 -65.95 30.514 -51.919 -7.312 12.575 -12.575 -0.42

signs ?- ?- - ?+ - 0* 0* 0* 0*

Sl St Bf Kk Zoo Phy Bo Bac N

-Bf -5.853 -1.175 -99.154 98.26 2.374 -2.351 2.045 -2.045 1.011

+Zoo 52.539 9.379 46.45 2.468 95.745 -73.296 -77.08 77.08 88.999

+Phy 63.517 80.254 54.584 0.682 61.777 95.369 40.809 -40.809 -87.941

mean 36.734 29.486 0.627 33.803 53.299 6.574 -11.409 11.409 0.69

signs ?+ ?+ 0* ?+ + 0* 0* 0* 0*

Sl St Bf Kk Zoo Phy Bo Bac N

-Bf -4.874 -4.897 -99.084 98.309 1.703 -1.28 3.464 -3.464 -0.928

-Zoo -52.249 -6.518 -45.297 -2.736 -95.655 73.647 76.371 -76.371 -88.162

+Phy 64.674 79.918 55.349 1.632 60.869 94.974 41.844 -41.844 -87.316

mean 2.517 22.834 -29.677 32.402 -11.028 55.78 40.56 -40.56 -58.802

signs 0* ?+ ?- ?+ 0* + ?+ ?- -

Sl St Bf Kk Zoo Phy Bo Bac N

-Bf -7.214 -0.58 -98.887 98.423 2.598 0.325 0.65 -0.65 -0.487

+Zoo 54.465 9 46.138 2.041 95.639 -73.684 -77.036 77.036 88.564

-Phy -63.814 -80.817 -55.184 -0.742 -62.213 -95.106 -40.431 40.431 87.822

mean -5.521 -24.132 -35.978 33.241 12.008 -56.155 -38.939 38.939 58.633

signs 0* ?- ?- ?+ 0* - ?- ?+ +

 

 Table 4.26: Prediction for the concurrent negative inputs on bony fish (-Bf), zooplankton (-Zoo) and 

phytoplankton (-Phy). 

 

 

 

 Table 4.27: Prediction for the concurrent negative inputs on bony fish (-Bf) and positive input on 

zooplankton (+Zoo) and phytoplankton (+Phy). 

 

 

 

 Table 4.28: Prediction for the concurrent negative inputs on bony fish (-Bf) and zooplankton           

(-Zoo) and positive input on phytoplankton (+Phy). 

 

 

 

 Table 4.29: Prediction for the concurrent negative inputs on bony fish (-Bf) and phytoplankton     (-

Phy) and negative input on zooplankton (+Zoo). 

 

 



 

 

72 

 

Sl St Bf Kk Zoo Phy Bo Bac N

-Bf -6.447 -3.3 -99.114 98.438 0.968 -3.416 0.082 -0.082 1.038

-Sl -95.01 67.028 68.334 5.048 -64.603 35.758 -53.597 53.597 11.344

mean -50.729 31.864 -15.39 51.743 -31.817 16.171 -26.758 26.758 6.191

signs - ?+ 0* + ?- 0* ?- ?+ 0*

Sl St Bf Kk Zoo Phy Bo Bac N

-Bf -5.189 -3.02 -98.927 98.087 2.857 -4.093 1.061 -1.061 1.994

-St 32.991 -96.711 26.647 0.28 -74.904 -64.921 88.245 -88.245 -23.802

mean 13.901 -49.865 -36.14 49.184 -36.023 -34.507 44.653 -44.653 -10.904

signs 0* ?- ?- ?+ ?- ?- ?+ ?- 0*

Sl St Bf Kk Zoo Phy Bo Bac N

-Bf -5.973 -1.874 -98.929 98.533 3.272 -1.176 1.735 -1.735 0.221

-Sl -95.203 66.678 68.075 4.622 -65.304 33.054 -52.87 52.87 11.328

-St 32.658 -96.67 25.998 -0.105 -74.083 -64.652 87.705 -87.705 -22.04

mean -22.839 -10.622 -1.619 34.35 -45.372 -10.925 12.19 -12.19 -3.497

signs ?- 0* 0* ?+ ?- 0* 0* 0* 0*

Sl St Bf Kk Zoo Phy Bo Bac N

-Bf -6.508 -2.916 -99.347 98.46 1.819 -1.889 2.251 -2.263 -0.84

-Sl -95.101 66.55 67.786 4.945 -65.034 33.497 -55.004 55.004 13.972

-St 32.727 -96.921 26.545 0.676 -75.134 -65.337 89.153 -89.153 -23.046

-Kk -70.842 -58.083 63.891 -99.114 58.642 -28.295 47.586 -47.586 -10.893

mean -34.931 -22.843 14.719 1.242 -19.927 -15.506 20.997 -21 -5.202

signs ?- ?- 0* 0* 0* 0* ?+ ?- 0*

 

 Table 4.30: Prediction for the concurrent negative inputs on bony fish (-Bf) and seals (-Sl). 

 

 

 

 Table 4.31: Prediction for the concurrent negative inputs on bony fish (-Bf) and sturgeons (-St). 

 

 

 

 Table 4.32: Prediction for the concurrent negative inputs on bony fish (-Bf), seals (-Sl) and 

sturgeons (-St).  

 

 

 

 Table 4.33: Prediction for the concurrent negative inputs on bony fish (-Bf), ), seals (-Sl), sturgeons 

(-St) and kilkas (-Kk). 
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Sl St Bf Kk Zoo Phy Bo Bac N

-Kk -69.779 -57.788 63.097 -98.743 56.81 -27.823 46.1 -46.1 -9.686

-Zoo -53.714 -8.801 -45.215 -3.423 -96.182 73.318 76.624 -76.624 -89.756

mean -61.746 -33.294 8.941 -51.083 -19.686 22.747 61.362 -61.362 -49.721

signs - ?- 0* - 0* ?+ + - ?-

Sl St Bf Kk Zoo Phy Bo Bac N

-Kk -71.405 -59.433 62.757 -98.838 58.224 -28.653 46.623 -46.623 -11.147

+Zoo 54.458 5.661 45.879 2.011 95.629 -72.428 -76.613 76.613 88.33

mean -8.474 -26.886 54.318 -48.413 76.927 -50.54 -14.995 14.995 38.591

signs 0* ?- + ?- + - 0* 0* ?+

Sl St Bf Kk Zoo Phy Bo Bac N

-Kk -71.054 -56.882 63.898 -98.978 57.138 -27.82 46.8 -46.8 -10.768

-Phy -64.061 -79.556 -56.255 -0.221 -62.992 -95.145 -39.83 39.83 87.339

mean -67.558 -68.219 3.822 -49.599 -2.927 -61.483 3.485 -3.485 38.285

signs - - 0* ?- 0* - 0* 0* ?+

Sl St Bf Kk Zoo Phy Bo Bac N

-Kk -70.376 -58.289 62.216 -98.737 58.312 -28.618 46.271 -46.271 -10.825

+Phy 63.526 79.939 55.506 1.192 61.913 94.435 40.402 -40.39 -86.86

mean -3.425 10.825 58.861 -48.773 60.112 32.909 43.337 -43.331 -48.843

signs 0* 0* + ?- + ?+ ?+ ?- ?-

 Kilkas 

  

 Table 4.34: Prediction for the concurrent negative inputs on kilkas (-Kk) and zooplankton (-Zoo). 

 

 

 

 Table 4.35: Prediction for the concurrent negative inputs on kilkas (-Kk) and positive input on 

zooplankton (+Zoo). 

 

 

 

 Table 4.36: Prediction for the concurrent negative inputs on kilkas (-Kk) and phytoplankton            

(-Phy). 

 

 

 

 Table 4.37: Prediction for the concurrent negative inputs on kilkas (-Kk) and positive input on 

phytoplankton (+Phy). 
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Sl St Bf Kk Zoo Phy Bo Bac N

-Kk -71.379 -56.187 63.029 -98.748 57.231 -26.406 44.683 -44.683 -12.559

-Zoo -53.52 -10.727 -44.776 -3.467 -96.544 72.121 76.76 -76.76 -87.916

-Phy -63.841 -79.984 -54.958 -0.499 -63.168 -94.781 -39.974 39.974 87.313

mean -62.913 -48.966 -12.235 -34.238 -34.16 -16.355 27.156 -27.156 -4.387

signs - ?- 0* ?- ?- 0* ?+ ?- 0*

Sl St Bf Kk Zoo Phy Bo Bac N

-Kk -70.912 -56.638 63.611 -98.85 59.103 -26.775 44.9 -44.9 -9.379

+Zoo 54.056 9.766 45.346 3.205 95.868 -72.626 -77.11 77.11 88.215

+Phy 63.165 81.242 54.807 0.951 61.521 94.765 40.697 -40.697 -87.393

mean 15.436 11.457 54.588 -31.565 72.164 -1.545 2.829 -2.829 -2.852

signs 0* 0* + ?- + 0* 0* 0* 0*

Sl St Bf Kk Zoo Phy Bo Bac N

-Kk -71.675 -56.86 64.71 -98.789 57 -25.786 46.168 -46.168 -12.439

+Zoo 53.086 7.035 45.097 2.702 95.365 -73.072 -75.868 75.868 88.26

-Phy -63.382 -79.991 -54.321 -2.236 -60.354 -95.318 -39.879 39.879 87.282

mean -27.324 -43.272 18.495 -32.774 30.67 -64.725 -23.193 23.193 54.368

signs ?- ?- 0* ?- ?+ - ?- ?+ +

Sl St Bf Kk Zoo Phy Bo Bac N

-Kk -71.695 -57.87 62.868 -98.716 57.286 -25.759 47.875 -47.875 -12.728

-Zoo -52.405 -7.426 -45.446 -1.892 -96.544 73.05 76.6 -76.6 -87.996

+Phy 63.709 80.873 54.39 0.397 60.953 95.049 40.005 -40.005 -88.347

mean -20.13 5.192 23.937 -33.404 7.232 47.447 54.827 -54.827 -63.024

signs ?- 0* ?+ ?- 0* ?+ + - -

 

 Table 4.38: Prediction for the concurrent negative inputs on kilkas (-Kk), zooplankton (-Zoo) and 

phytoplankton (-Phy). 

 

 

 

 Table 4.39: Prediction for the concurrent negative inputs on kilkas (-Kk) and positive input on 

zooplankton (+Zoo) and phytoplankton (+Phy). 

 

 

 

 Table 4.40: Prediction for the concurrent negative inputs on kilkas (-Kk) and zooplankton (-Zoo) 

and positive input on phytoplankton (+Phy). 

 

 

 

 Table 4.41: Prediction for the concurrent negative inputs on kilkas (-Kk) and phytoplankton (-Phy) 

and positive input on zooplankton (+Zoo). 
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Sl St Bf Kk Zoo Phy Bo Bac N

-Kk -70.17 -57.492 62.591 -98.795 58.674 -29.146 47.317 -47.317 -10.627

+N 63.936 80.971 56.542 0.498 64.121 95.202 39.39 -39.39 95.202

mean -3.117 11.74 59.567 -49.148 61.397 33.028 43.353 -43.353 42.288

signs 0* 0* + ?- + ?+ ?+ ?- ?+

Sl St Bf Kk Zoo Phy Bo Bac N

-Kk -71.615 -57.271 63.392 -98.622 56.22 -28.513 46.011 -46.011 -11.272

-Sl -94.417 66.92 68.835 4.754 -64.747 33.115 -53.604 53.592 13.725

mean -83.016 4.825 66.114 -46.934 -4.264 2.301 -3.796 3.79 1.226

signs - 0* + ?- 0* 0* 0* 0* 0*

Sl St Bf Kk Zoo Phy Bo Bac N

-Kk -71.218 -58.444 64.889 -98.781 57.131 -28.161 47.217 -47.217 -10.278

-St 33.224 -96.578 26.474 0.223 -75.741 -64.655 88.351 -88.351 -22.724

mean -18.997 -77.511 45.681 -49.279 -9.305 -46.408 67.784 -67.784 -16.501

signs 0* - ?+ ?- 0* ?- + - 0*

Sl St Bf Kk Zoo Phy Bo Bac N

-Kk -71.124 -57.552 63.613 -98.736 54.885 -26.922 45.314 -45.314 -10.752

-Bf -4.388 -3.826 -99.134 98.292 4.341 -1.907 2.001 -2.001 0.433

mean -37.756 -30.689 -17.761 -0.222 29.613 -14.415 23.657 -23.657 -5.16

signs ?- ?- 0* 0* ?+ 0* ?+ ?- 0*

 

 

 Table 4.42: Prediction for the concurrent negative inputs on kilkas (-Kk) and positive input on 

nutrients (+N). 

 

 

 

 Table 4.43: Prediction for the concurrent negative inputs on kilkas (-Kk) and seals (-Sl). 

 

 

 

 Table 4.44: Prediction for the concurrent negative inputs on kilkas (-Kk) and sturgeons (-St). 

 

 

 

 Table 4.45: Prediction for the concurrent negative inputs on kilkas (-Kk) and bony fish (-Bf). 
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Sl St Bf Kk Zoo Phy Bo Bac N

-Kk -70.239 -56.105 63.475 -99.02 58.274 -26.577 47.172 -47.172 -11.673

-Sl -94.892 66.274 68.816 4.187 -62.589 32.525 -53.726 53.726 12.373

-St 33.085 -96.851 25.038 1.878 -75.837 -64.525 89.155 -89.155 -24.362

-Bf -4.187 -2.577 -98.95 98.087 3.23 -1.668 0.431 -0.431 0.991

mean -34.058 -22.315 14.595 1.283 -19.23 -15.061 20.758 -20.758 -5.668

signs ?- ?- 0* 0* 0* 0* ?+ ?- 0*

Sl St Bf Kk Zoo Phy Bo Bac N

-Kk -70.478 -57.572 62.299 -98.795 59.101 -27.355 46.681 -46.681 -10.833

-Sl -95.505 67.628 69.297 4.414 -64.801 35.28 -54.026 54.026 11.806

-St 34.561 -96.964 26.127 0.962 -75.715 -64.268 88.877 -88.877 -23.671

-Bf -6.732 -4.206 -99.235 98.285 3.14 -3.372 1.425 -1.425 0.753

+N 63.805 79.84 54.188 2.213 61.858 94.694 41.096 -41.096 94.694

mean -14.87 -2.255 22.535 1.416 -3.283 6.996 24.811 -24.811 14.55

signs 0* 0* ?+ 0* 0* 0* ?+ ?- 0*

Sl St Bf Kk Zoo Phy Bo Bac N

+N 64.183 81.293 55.921 0.106 62.939 94.742 40.43 -40.43 95.376

-Sl -94.742 67.21 69.276 1.49 -64.488 32.285 -53.761 53.761 13.367

mean -15.279 74.251 62.599 0.798 -0.774 63.514 -6.666 6.666 54.372

signs 0* + + 0* 0* + 0* 0* +

Sl St Bf Kk Zoo Phy Bo Bac N

+N 62.315 80.946 53.235 2.94 61.844 95.06 40.767 -40.767 94.895

-St 34.251 -96.589 26.817 0.118 -74.571 -65.232 88.215 -88.215 -20.63

mean 48.283 -7.822 40.026 1.529 -6.363 14.914 64.491 -64.491 37.133

signs ?+ 0* ?+ 0* 0* 0* + - ?+

 

 

 Table 4.46: Prediction for the concurrent negative inputs on kilkas (-Kk), seals (-Sl), sturgeons (-St) 

and bony fish (-Bf). 

 

 

 

 Table 4.47: Prediction for the concurrent negative inputs on kilkas (-Kk), seals (-Sl), sturgeons (-St) 

and bony fish (-Bf) and positive input on nutrients (+N). 

 

 

 Nutrients 

 

 Table 4.48: Prediction for the concurrent positive inputs on nutrient (-N), and negative input on 

seals (-Sl). 

 

 

 

 Table 4.49: Prediction for the concurrent positive input on nutrient (-N), and negative input on 

sturgeons (-St). 
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Sl St Bf Kk Zoo Phy Bo Bac N

+N 64.904 80.5 56.165 -0.337 63.579 95.142 41.336 -41.336 95.816

-Bf -4.614 -4.172 -99.279 98.21 5.497 -2.684 0.383 -0.383 1.732

mean 30.145 38.164 -21.557 48.936 34.538 46.229 20.86 -20.86 48.774

signs ?+ ?+ ?- ?+ ?+ ?+ ?+ ?- ?+

Sl St Bf Kk Zoo Phy Bo Bac N

+N 63.9 80.301 54.051 1.97 62.233 94.708 39.585 -39.585 94.428

-Kk -70.649 -57.035 64.075 -98.951 55.053 -27.218 45.798 -45.798 -11.621

mean -3.375 11.633 59.063 -48.49 58.643 33.745 42.692 -42.692 41.404

signs 0* 0* + ?- + ?+ ?+ ?- ?+

Sl St Bf Kk Zoo Phy Bo Bac N

Sl + - - 0* + ?- + - 0*

St ?- + - ?+ + + - + ?+

Bf 0* 0* + - 0* 0* 0* 0* 0*

Kk + + - + - ?+ ?- ?+ 0*

Zoo + 0* ?+ 0* + - - + +

Phy + + ?+ 0* + + ?+ ?- -

Bo - ?+ - 0* 0* - + - ?-

Bac ?- + ?- ?+ ?+ ?+ + + +

N + + ?+ 0* + + ?+ ?- +

 

 

 Table 4.50: Prediction for the concurrent positive input on nutrient (-N), and negative input on bony 

fish (-Bf). 

 

 

 

 Table 4.51: Prediction for the concurrent positive input on nutrient (-N), and negative input on 

kilkas (-Kk). 

 

 

4.8.3. Interaction Strength 

 Tables of predictions tests using user-defined interaction strengths for specific variable 

pairs: 

 

  

 

 Table 4.52: Table of predictions with constrain on the interaction strength of sturgeon to bony fish 

link [Sl -o Bf] to a minimum value of 0.5. 
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Sl St Bf Kk Zoo Phy Bo Bac N

Sl + - - 0* + ?- + - 0*

St ?- + 0* 0* + + - + ?+

Bf 0* 0* + - 0* 0* 0* 0* 0*

Kk + ?+ - + - ?+ ?- ?+ 0*

Zoo ?+ 0* + ?- + - - + +

Phy + + + 0* + + ?+ ?- -

Bo - ?+ - 0* 0* - + - ?-

Bac ?- + 0* 0* + ?+ + + +

N + + + 0* + + ?+ ?- +

Sl St Bf Kk Zoo Phy Bo Bac N

Sl + - - 0* + ?- + - 0*

St ?- + ?- 0* + + - + ?+

Bf 0* 0* + - 0* 0* 0* 0* 0*

Kk + + - + - ?+ ?- ?+ 0*

Zoo + 0* ?+ 0* + - - + +

Phy + + + 0* + + ?+ ?- -

Bo - + - 0* 0* - + - ?-

Bac ?- + ?- 0* + ?+ + + +

N + + + 0* + + ?+ ?- +

Sl St Bf Kk Zoo Phy Bo Bac N

Sl + - - 0* + ?- + - 0*

St ?- + ?- 0* + + - + ?+

Bf 0* ?+ + - 0* 0* ?- ?+ 0*

Kk + ?+ - + - 0* ?- ?+ 0*

Zoo + 0* ?+ 0* + - - + +

Phy + + + 0* + + ?+ ?- -

Bo - ?+ - 0* 0* - + - ?-

Bac ?- + ?- 0* + ?+ + + +

N + + + 0* + + ?+ ?- +

 

  

 

 Table 4.53: Table of predictions with constrain on the interaction strength of zooplankton to bony 

fish link [Zoo -> Bf] to a minimum value of 0.5. 

 

 

 

 Table 4.54: Table of predictions with constrain on the interaction strength of benthic organisms to 

sturgeons link [Bo -> St] to a minimum value of 0.5. 

 

 

 

 Table 4.55: Table of predictions with constrain on the interaction strength of kilkas to sturgeons link 

[Kk -> St] to a maximum value of 0.5. 
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Sl St Bf Kk Zoo Phy Bo Bac N

Sl + - - 0* + ?- + - 0*

St ?- + ?- 0* + + - + ?+

Bf 0* 0* + - ?+ 0* 0* 0* ?+

Kk + + - + - + ?- ?+ 0*

Zoo + 0* ?+ 0* + - - + +

Phy + + + 0* + + ?+ ?- -

Bo - ?+ - 0* 0* - + - ?-

Bac ?- + ?- 0* ?+ ?+ + + +

N + + + 0* + + ?+ ?- +

Sl St Bf Kk Zoo Phy Bo Bac N

-Sl -93.288 65.24 42.323 27.005 -65.264 32.494 -46.638 46.638 3.512

-St 33.309 -95.469 51.025 -24.464 -56.538 -63.85 83.867 -83.867 -18.566

-Bf -9.361 -41.58 -99.76 98.562 -42.635 4.423 53.35 -53.35 -34.316

-Kk -53.758 -9.313 91.37 -99.808 88.949 -29.162 -17.895 17.895 31.128

+N 60.254 86.384 43.282 8.282 57.449 92.641 41.292 -41.292 95.206

mean -12.569 1.052 25.648 1.915 -3.608 7.309 22.795 -22.795 15.393

signs 0* 0* ?+ 0* 0* 0* ?+ ?- 0*

trends - - - - +

Sl St Bf Kk Zoo Phy Bo Bac N

-Sl -93.288 65.24 42.323 27.005 -65.264 32.494 -46.638 46.638 3.512

-St 33.309 -95.469 51.025 -24.464 -56.538 -63.85 83.867 -83.867 -18.566

-Bf -9.361 -41.58 -99.76 98.562 -42.635 4.423 53.35 -53.35 -34.316

-Kk -53.758 -9.313 91.37 -99.808 88.949 -29.162 -17.895 17.895 31.128

mean -30.774 -20.28 21.239 0.324 -18.872 -14.024 18.171 -18.171 -4.561

signs ?- ?- ?+ 0* 0* 0* 0* 0* 0*

trends - - - - +

 

 

 Table 4.56: Table of predictions with constrain on the interaction strength of kilkas to zooplankton 

link [Kk -> Zoo] to a minimum value of 0.5. 

 

 

 Models validation tests using user-defined interaction strengths for the top 5 pairs of the 

analysis of interaction strength influence in predictions: 

 

 

 Table 4.57: Prediction for the concurrent negative inputs on seals (-Sl), sturgeons (-St), bony fish (-

Bf) and kilkas (-Kk) and positive input on nutrient (+N), using the strength interval constrains as defined 

above. 

 

 

 

 Table 4.58: Prediction for the concurrent negative inputs on seals (-Sl), sturgeons (-St), bony fish (-

Bf) and kilkas (-Kk), using the strength interval constrains as defined above. 
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Sl St Bf Kk Zoo Phy Bo Bac N

-Sl -93.288 65.24 42.323 27.005 -65.264 32.494 -46.638 46.638 3.512

-St 33.309 -95.469 51.025 -24.464 -56.538 -63.85 83.867 -83.867 -18.566

-Kk -53.758 -9.313 91.37 -99.808 88.949 -29.162 -17.895 17.895 31.128

mean -37.912 -13.181 61.573 -32.422 -10.951 -20.173 6.445 -6.445 5.358

signs ?- 0* + ?- 0* ?- 0* 0* 0*

trends - - - - +

Sl St Bf Kk Zoo Phy Bo Bac N

-Sl -93.288 65.24 42.323 27.005 -65.264 32.494 -46.638 46.638 3.512

-St 33.309 -95.469 51.025 -24.464 -56.538 -63.85 83.867 -83.867 -18.566

-Bf -9.361 -41.58 -99.76 98.562 -42.635 4.423 53.35 -53.35 -34.316

-Kk -53.758 -9.313 91.37 -99.808 88.949 -29.162 -17.895 17.895 31.128

+N 60.254 86.384 43.282 8.282 57.449 92.641 41.292 -41.292 95.206

mean -12.569 1.052 25.648 1.915 -3.608 7.309 22.795 -22.795 15.393

signs 0* 0* ?+ 0* 0* 0* ?+ ?- 0*

trends - - - - 0

Sl St Bf Kk Zoo Phy Bo Bac N

-Sl -93.288 65.24 42.323 27.005 -65.264 32.494 -46.638 46.638 3.512

-St 33.309 -95.469 51.025 -24.464 -56.538 -63.85 83.867 -83.867 -18.566

-Bf -9.361 -41.58 -99.76 98.562 -42.635 4.423 53.35 -53.35 -34.316

-Kk -53.758 -9.313 91.37 -99.808 88.949 -29.162 -17.895 17.895 31.128

mean -30.774 -20.28 21.239 0.324 -18.872 -14.024 18.171 -18.171 -4.561

signs ?- ?- ?+ 0* 0* 0* 0* 0* 0*

trends - - - - 0

 

 

 Table 4.59: Prediction for the concurrent negative inputs on seals (-Sl), sturgeons (-St) and kilkas (-

Kk), using the strength interval constrains as defined above. 

 

 

 Table 4.60: Prediction for the concurrent negative inputs on seals (-Sl), sturgeons (-St), bony fish (-

Bf) and kilkas (-Kk) and positive input on nutrient (+N), using the strength interval constrains as defined 

above and alternative trend scenario (N=0). 

 

 

 

 Table 4.61: Prediction for the concurrent negative inputs on seals (-Sl), sturgeons (-St), bony fish (-

Bf) and kilkas (-Kk), using the strength interval constrains as defined above and alternative trend scenario 

(N=0). 
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Sl St Bf Kk Zoo Phy Bo Bac N

-Sl -93.288 65.24 42.323 27.005 -65.264 32.494 -46.638 46.638 3.512

-St 33.309 -95.469 51.025 -24.464 -56.538 -63.85 83.867 -83.867 -18.566

-Kk -53.758 -9.313 91.37 -99.808 88.949 -29.162 -17.895 17.895 31.128

mean -37.912 -13.181 61.573 -32.422 -10.951 -20.173 6.445 -6.445 5.358

signs ?- 0* + ?- 0* ?- 0* 0* 0*

trends - - - - 0

 

 

 Table 4.62: Prediction for the concurrent negative inputs on seals (-Sl), sturgeons (-St), and kilkas (-

Kk) and positive input on nutrient (+N), using the strength interval constrains as defined above and 

alternative trend scenario (N=0).  
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5.1. Summary 

 

The sustainable management of social-ecological systems (SESs) requires understanding 

the complex structure of relationships and feedback among ecosystems (with their resources) and 

human entities (e.g. users and governance organizations). A core challenge is combining isolated 

knowledge from different fields (e.g. ecology, sociology, economy and political science) to 

represent the most relevant variables and interactions. Therefore, the construction and analysis of 

models integrating ecological and human actors is crucial to describe the functioning of SESs. 

Qualitative modelling is ideal for studying the dependencies between humans and nature. In 

particular, the qualitative technique of loop analysis allows yielding predictions on the effect that 

press perturbations (e.g. increase of nutrients’ load or market-based incentives) have on the 

response of all systems’ variables. Different interaction types, scarce information about functional 

relationships among variables and uncertainties in the values of the parameters are the rule rather 

than exception when studying SESs.  Accordingly, a tool that deals with such uncertainties is called 

for and qualitative loop analysis seem to be perfectly suitable to investigate SESs. Here we 

introduce the key aspects of loop analysis and compare it with other qualitative methods (i.e. 

Bayesian Belief Networks, BBNs; Causal Loop Diagrams, CLDs; and Fuzzy Cognitive Maps, 

FCMs). We discuss current applications to SESs and suggest potential methodological 

developments. We conclude that loop analysis is an effective tool to model SESs, but some limits 

exist: (1) difficulties to define the timing of changing conditions and their impact; (2) issues in the 

identification of the variables exposed to diffuse press perturbations; (3) lack of solutions to assess 

nonlinear relations. However, it requires simple information concerning the presence of interactions 

(and their sign) and is appropriate in the context of poor data availability, being thus useful to move 

the first steps for the integration of the three dimensions of sustainability. 

 

 

Keywords: ecological networks; Levins loop analysis; resilience; social-ecological 

systems; sustainability 

  

 

5.2. Introduction 

 

Human societies and their well-being depend on the provision of goods and services from 

ecosystems (Haines-Young & Potschin, 2010). Healthy ecosystems respond to human needs by 

maintaining structure and functioning over time (Costanza & Mageau, 1999), and the conservation 

of biodiversity is crucial for preserving stability and productivity of natural systems (Stachowicz, 

Fried, & Whitlatch, 2002; Worm et al., 2006). However, biodiversity is deteriorating worldwide at 

unprecedented rates and such decline poses concerns on the sustainable supply of goods and 

services from ecosystems (Lotze et al., 2006). The increasing level of human-induced impacts (e.g. 

overexploitation of resources, introduction of alien species in non-native environments, chemical 

pollution, nutrient enrichment and Climate Change) threatens biodiversity in both aquatic and 
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terrestrial systems and calls for the formulation of effective conservation practices. Classical 

strategies focused on single populations but failed in implementing successful schemes for 

sustainable management (Hilborn, 2007). They showed to be ineffective for protecting marine 

ecosystems from human-related pressures and led to the decline of fish stocks, thus impairing the 

provision of food and services to human populations. There is therefore the need of a shift from 

conventional single-species, single-goal practices to a global strategy in which the unit of 

management is the whole social-ecological system (SES). Such change in perspective 

corresponds to move towards ecosystem-based management (EBM). Long et al. (2015) 

highlighted that consensus around the meaning of EBM has to be attained to foster its application 

and identified fifteen key principles for the definition of EBM. Among these principles they included 

the modelling of interconnections between ecological, social and governance systems, which 

emphasizes how network analysis can be appropriate for the assessment of ecosystem health and 

EBM. 

The adoption of the network perspective implies that the interactions that link variables 

belonging to the human and the ecological domains have to be concurrently taken into account, so 

that the SESs as a whole becomes the unit of management. The challenge is the identification of 

relationships at different hierarchical levels, which occur at various spatial and temporal scales. To 

facilitate integration Ostrom (2009) proposed a classificatory framework that describes the four 

essential dimensions of SESs: resource users, governance system, resource units and resource 

system. The relationships among these four dimensions occur at various geographical and 

temporal scales, within the rules defined by the ecological, social, economic and political settings. 

The choice of the suitable scales and the proper identification of the variables that constitute the 

SES and their connections are essential to assess under what conditions sustainability can be 

enhanced. Moreover, the concept of sustainability is multi-dimensional, and the spatial 

heterogeneity of SES variables can cause the mismatch between objectives that belong to either 

social or ecological domain. Indeed, the study of small-scale fisheries (SSFs) in the Mexican state 

of Baja California Sur showed the lack of association between different dimensions of sustainability 

(Leslie et al., 2015). Policies for the sustainable use of ecosystem goods and services require that 

the set of interactions linking ecological resilience (i.e. the adaptive capacity to withstand recurrent 

perturbations) to the society, the economy and the rules of governance (Hughes et al., 2005) be 

taken into account. This difficulty is witnessed and also enhanced by the adoption of strictly 

sectorial approaches: most studies about the social dimension of resource and environmental 

management mainly focused on social dynamics and treated the ecosystem as a black box; in 

parallel, the ecological approach to sustainability considered the social aspects only at the 

boundaries of the natural systems (Binder et al., 2013; Folke, 2006; Partelow et al., 2019). The 

balanced integration of social and ecological variables within the same modelling scheme is often 

precluded by: (1) difficulties in the identification of the most important interactions linking the 

variables; (2) missing details about the mathematical form of the interactions; (3) lack of 

qualitatively homogeneous data. Qualitative models represent an ideal tool to fill these gaps and 

due to simple application requirements (i.e. describing the presence of interactions and their sign) 

the algorithm of loop analysis (Richard Levins, 1968, 1974) can be used to concurrently consider 

the interactions in SESs among variables from different domains. 
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Loop analysis was developed to model the equilibrium levels of a system when growth 

rates of specific variables are altered by environmental variability. Methodologically loop analysis 

requires that only the sign of the relationships between the variables is specified. That is whether a 

variable positively or negatively affects another one. This simplicity overcomes the lack of 

quantitative information and simplifies the semantic conversion of the concepts related to the 

processes in which variables take part when belonging to different domains. Most of the works 

published so far focused on ecosystems and considered the human component as source of 

external perturbations. For example, Bodini et al. (2018) showed how overfishing affected the 

internal dynamics of the Black Sea but did not consider how socio-economic drivers inflated 

overfishing. Applications of loop analysis to SESs are taking ground (Dambacher et al., 2007; 

Martone et al., 2017). Here we show the potential of loop analysis for the integrative modelling of 

SESs. First, we introduce the methodological aspects behind the tool. Second, we discuss merits 

and limits of loop analysis for studying the dynamical behaviour of SESs. Then, we compare loop 

analysis with other qualitative methods that can be applied to SESs. Finally, we present ideas of 

possible methodological developments that could favour the diffusion of loop analysis in the context 

of SESs. 

 

 

5.3. Loop analysis methodological aspects 

 

Loop analysis is a qualitative technique for modelling complex systems as signed, directed 

graphs. Interactions are depicted as either positive or negative effects, but their strength is not 

specified (Figure 5.1a). Positive interactions are illustrated by arrow-headed links while negative 

interactions are visualized using circle-headed links. Any signed digraph has a matrix counterpart 

(adjacency matrix) in which positive (arrowheads) and negative (circle-heads) interactions are 

represented by the coefficients +1 and -1, respectively. Zeroes in the matrix stands for null direct 

relationships between variables (Figure 5.1b). The diagonal elements of the interaction matrix are 

self-effects on the variables and correspond to self-link in the graph (i.e. an arrowhead connecting 

one variable to itself) Loop analysis allows predicting how the variables respond to press 

perturbations that target specific variables. Press perturbations are forces that modify parameters 

in the variables’ growth rates (Bender et al., 1984), such as warming that enhances the 

reproductive rate of jellyfish or ecolabels that increase the rate at which income of fishing 

cooperatives is produced. There are as many targets of press perturbations as the number of 

variables in the system (i.e. any variable can represent the entry point for press perturbations). 

Analysing the structural properties of the graph allows making predictions about the effect of press 

perturbations (Richard Levins, 1974, 1975). 

The links in signed digraphs carry a direction (e.g., where the arrow and the circle point to). 

By following this direction one can identify paths that connect variables that can be far apart from 

one another in the system. With reference to Figure 5.1a nutrients (N) are connected to demersal 

fish (DM) by several paths, one of which is [N -> EP -> EZ -> PF -> DF]. Paths are the routes along 

which effects of press perturbations travels through the system. The effect of a path is positive or 

negative depending on the product of the signs of the links that compose the path. 
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Figure 5.1: Signed directed graph describing the Black Sea food web (a) and corresponding matrix 

of interactions (b) (Bodini et al., 2018). In the graph, positive interactions are denoted with arrow headed 

links while negative interactions are visualized with circle headed links. Names of all variables (i.e. nodes in 

the graph) are below the matrix of interactions. Loop analysis results for the Black Sea in the period 1960-

1989 are summarized in the table of predictions (c). Additive and multiplicative rules are considered for 

predictions (the example here refers to a theoretical system with three variables) (d). 

 

Next there is the feedback, which can be negative or positive. The former is a process in 

which an initial change in a variable gives rise to events that turn the variable back to its original 

value. A negative feedback, for example, occurs in agriculture when high agricultural yield reduces 

prices and so investments are cut, so that yield is reduced.  The positive feedback occurs when an 

initial change gives rise to a chain of events that amplify the original change. For instance, during 

the period of the civil war in Colombia the level of violence displaced people from their land, and 

this contributed to further increase the level of violence. Because the feedback is “return effect” it 

originates when variables are linked by closed paths (e.g. circuits or loops) and they are negative 
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or positive depending on the product of the signs of the links that form the loop (but see Puccia and 

Levins 1985, for a rigorous method to compute the feedback sign). In Figure 5.1d, for example the 

arrow from A to B and the circle headed link from B to A form a closed path, or loop, with negative 

feedback, because the product of the two links is negative. There can be circuits of different length 

depending on the number of variables linked together in a closed path. With these definitions we 

can express conceptually the algorithm of loop analysis (Puccia & Levins, 1985) and the sensitivity 

of a variable to a press perturbation depends on: a) whether the perturbation increases (+ sign) or 

decreases (- sign) the rate of change of the variable through which it enters the system; b) the sign 

of the path connecting the variable targeted by the press to the effect variable (the variable we 

want to predict its response); c) the sign of the feedback of the subsystem that remains when all 

variables on the path are ideally removed from the system (this is called complementary feedback); 

and d) the overall feedback, that is the feedback of the circuits that connect all the variables in the 

system. This algorithm can be summarized in the following formula: 

𝛿𝑥𝑗

𝛿𝑐
=
∑ [

𝛿𝑓𝑖
𝛿𝑐

]𝑖,𝑘 × [𝑝𝑗𝑖
(𝑘)
] × [𝐹𝑛−𝑘

(𝑐𝑜𝑚𝑝)
]

𝐹𝑛
 

in which [∂fi /∂c] expresses whether the rate of change of the target variables (𝑖) increases or 

decreases because of the changing parameter (𝑐); [𝑝𝑗𝑖
(𝑘)
],is the pathway to the response variable 

from the target variable, [𝐹𝑛−𝑘
(𝑐𝑜𝑚𝑝)

] is the complementary feedback and [𝐹𝑛] is the overall feedback.  

Summation occurs along all paths from the target variable to the effect variable 

 

The complementary feedback can be envisioned as a reflecting barrier; if it is negative and 

strong, the more an impact is reflected back to the effect variable. If it is positive, then the effect 

variable changes in the opposite direction from the sign of the path. The overall feedback, the 

denominator of the formula, measures the resistance of the whole system to change. The 

responses can be positive (+, increase), negative (-, decrease) or null (0, no change) and are 

summarized in the table of predictions (Figure 5.1c). The convention is that effects generated by 

positive perturbations (those increasing the rate of change of the target variables) on row variables 

can be read along the columns. Consequences of negative perturbations are obtained by reversing 

the signs of the predictions.  

For example, consider a positive press perturbation ([∂fi /∂c] > 0)  on node A (Figure 5.1d) if 

the focus is on the consequences that the press perturbation targeting A has on B , then the path is 

the positive link from A to B and the complementary subsystem is node C alone and in this case it 

does not form any circuit and the complementary feedback is null (i.e. equal to 0). The overall 

feedback is the feedback produced by the circuit that connects all the variables in the system (but 

see Puccia and Levins 1985 for further details). In the digraph of Figure 5.1d there is one single 

circuit connecting all the variables and includes three interactions by starting and ending with node 

A: [A −𝑜𝐶 − 𝑜𝐵 − 𝑜𝐴]; its sign is the product of the three negative links and thus it is negative. 

In presence of graphs with many variables and interactions the number of paths between 

variables often increases, which leads to several null predictions (i.e. the number of positive paths 

equals that of negative paths). To deal with such ambiguities a simulation approach can be 
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adopted, which introduces a random assignment of the magnitude to each and all the link 

coefficients. During simulations the coefficient intensities are taken from a uniform distribution in 

the interval ]0, 1]. Only the matrices that satisfy the conditions of stability (i.e. those with the 

determinant different from zero and admitting matrix inversion) are accepted (Logofet, 1993). The 

elements of the inverse matrix show the net effect that press perturbations targeting the row 

variable xi have on the column variable xj. Such net effect is obtained by summing the contribution 

of impacts that diffuse through both direct links and all possible indirect pathways (Bender et al., 

1984): 

 

After n simulations an overall table of predictions is constructed by combining the z 

matrices that are stable and allow matrix inversion. For each stable matrix assembled using 

simulated interaction strengths, unambiguous responses in the table of predictions are generated 

(i.e. the signs are certain). The overall table of predictions is composed of symbols that depend on 

the percentages of signs from the various simulation runs. Hence, if the same entry in the tables of 

predictions from all z (stable) matrices yields the same sign (+ or -) then the expected direction of 

change is unambiguous. However, during simulations there are cases for which divergent 

predictions are recorded (i.e. depending on the random arrangement of interaction strength, the 

same element in the table of predictions can show either positive or negative sign). The conversion 

of the outcomes from each simulation run to symbols in the overall table of predictions depends on 

the percentages of positive (+) and negative (-) signs. The rules to move from simulations’ results 

to the overall table of predictions are summarized in Table 2.1 from Chapter 2. 

 

 

5.4. Merits and limits of loop analysis to model SESs 

 

Loop analysis is particularly suitable to investigate SESs. First, interconnections extend 

beyond the single domains, ecology, economy, societal and create complex wholes. After the Nile 

perch invaded Lake Victoria a dramatic restructuring of the ecological community took place, 

which, in turn, cascaded into deep societal and economic changes (Downing et al., 2014). To 

disentangle drivers and dynamics of change in such complex scenario, Downing and co-workers 

designed an eco-social qualitative model that traced connections across disciplinary boundaries. 

Second, loop analysis educates intuition to cope with complexity. Often complex systems 

defy our predictions and effects of policies or management interventions are at best ineffective if 

not damaging (Richard Levins, 1995). This depends on the feedbacks that are produced by the 

linkages between the variables and that remain hidden to our comprehension if complexity does 

not become our central intellectual issue. Cinner (2011), by discussing problems of the reef fishery, 

emphasizes that the feedback between social and ecological variables may create social-
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ecological traps (e.g. situations when feedbacks between social and ecological systems lead 

toward an undesirable state that may be difficult or impossible to reverse): these phenomena are 

extremely interesting to be explored by loop analysis which, by disentangling feedbacks loops, 

helps making the arcane obvious. This opportunity, however, cannot be fully exploited if the 

feedback structure of the systems is not adequately represented and the relationships between the 

variables remain mostly unidirectional as it may occur when social and environmental variables are 

incorporated in a unique model (J. M. Dambacher et al., 2007).  

Third, loop analysis proposes a rigorous approach to diagnosis. Increasingly, diagnostic 

approaches are requested in the analysis of SESs to causally understand the multiple outcomes 

that can arise from the interaction of different system attributes (Kittinger et al., 2013). The table of 

predictions, the main outcome of loop analysis, allows disentangling causative mechanisms by 

linking correlation patterns, source of change and network structure (Bodini & Clerici, 2016; Bodini 

et al., 2018). For any entry point of press perturbation (any row in the table of predictions, see 

Figure 5.1c) variables are predicted to change so that correlation patterns among them emerge. By 

comparing such patterns with observed changes in the level of the variables one can identify which 

component is affected by external drivers and find the cause and effects mechanisms responsible 

for those changes as due to the linkage structure. 

Fourth, loop analysis incorporates external drivers as inputs to the rate of change of the 

variables. External drivers, both social and biophysical, have been described as playing an 

important role in SESs dynamics (Kittinger et al., 2013). In Baja California, Mexico, for example, 

climate-driven hypoxia caused mortality in marine species with limited mobility, resulting in declines 

in stocks targeted by small scale local fisheries, which, in turn, may have caused small-scale 

fishers to switch fishing effort toward less-affected species (Micheli et al., 2012). This effect was 

explored in a scenario analysis using qualitative loop analysis (Martone et al., 2017) a predicted 

large scale consequences of this environmentally external driver. 

The intuitive visualization of the entities and the interactions among them is suitable to 

accommodate the general framework proposed by Ostrom (2009) for analysing the sustainability of 

SESs. Each node in the digraph can be one of the four elements (i.e. core subsystems: 

governance system, resource users, resource system, and resource units) and either positive or 

negative links can visualize their direct relationships. So far, the main focus has been dedicated to 

the visualization of ecological variables and interactions, and the inclusion of social-economic 

aspects have been treated as external to the system (Carey et al., 2013; Espinoza-Tenorio et al., 

2013; Reum et al., 2015). The simple graphical format that constitutes the input for the loop 

analysis facilitates the participation of all stakeholders to model construction. Although most of the 

current applications adopted a top-down approach to embed management strategies in the models 

(i.e. literature data were consulted for defining the interactions) the study of Espinoza-Tenorio et al. 

(2013) presents a valid alternative. In this work both quantitative and qualitative information 

regarding the biological and social aspects of fisheries dynamics and management were retrieved 

using structured interviews with fishermen, participatory research, key informant interviews, and 

workshops. 

However, some limits should be taken into account. Theoretically there are limitations that 

have already been discussed (Justus, 2006) and here we focus on those that matter with the use of 
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loop analysis in studying SESs. First, there can be difficulties to define the timing of changing 

conditions and that of the system response to impacts. SESs are resilient and cope with continuous 

exposure to press perturbations according to adaptive dynamics principles (Folke, 2006; Hughes et 

al., 2005). It can therefore be complicated to identify whether the SESs reside in stable states or 

dynamically change their equilibrium.  The exact moment at which the system responds to a press 

perturbation cannot be detected with precision and the contribution of concomitant perturbations 

may further confound this detection.  

Second, the variables of SESs (e.g. resources and their users) can show asynchronous 

behaviour and heterogeneous geographical distribution (Leslie et al., 2015). Their optimization 

does not necessarily occur at the same temporal and spatial scale, an aspect that might remain 

overlooked when constructing graphs. The uneven geographical distribution of the actors might be 

addressed by including in the models different variables for the same type of user (e.g. various 

nodes that indicate the fishermen and their interactions in different regions). Third, there can be 

issues in the identification of the variables exposed to press perturbations (i.e. impacts of 

overfishing vs. Climate Change). While marketing solutions (e.g. the introduction of ecolabels) can 

be easily targeted to specific user groups (e.g. the members of fishing cooperatives; see Martone 

et al., 2017). Some press perturbations that act on the ecological subsystem can be more easily 

assigned to specific variables (e.g. nutrient enrichment takes the form of positive inputs on 

phytoplankton and overfishing targets the node of small and medium pelagics; see Bodini et al., 

2018). Climate change (e.g. warmer winters) affects many components of the ecological system. 

One possible solution is prioritizing as press perturbation’s targets the most responsive biological 

variables (e.g. jellyfish have faster blooming rates than expected from the body size; see Nival & 

Gorsky, 2001). Finally, loop analysis is problematic for assessing nonlinear relationships. Non-

linearity can emerge by combining the impacts of pathways of different lengths. Longer pathways 

have lower intensity than shorter ones since the interaction strengths randomly assigned during the 

simulations are in the interval ]0,1] (i.e. the intensity of each pathway is obtained by multiplying the 

strength of its constitutive links that have upper bound equal to 1). To avoid penalizing the impact 

of longer pathways simulations could be carried out by constraining the lower limit from which 

interaction strengths are randomly drawn during simulations (i.e. by setting the lower limits of some 

“strong” interactions closer to 1). As an alternative one could include non-linear functions to model 

those specific interactions that play crucial roles for the dynamics of the SES (e.g. by relying on 

previous literature data or results from specific experiments/surveys). 

 

 

5.5. Comparison of loop analysis with other qualitative methods for SESs 

 

SESs form complex networks of linkages and loop analysis is designed to qualitatively 

predict how variables that are embedded in SESs respond to policies and management 

interventions (e.g. introduction of new regulations for the exploitation of resources, market-based 

incentives and adoption of new marketing solutions as the ecolabels). A limited number of 

applications to investigate complex SES made use of the loop analysis, but the interest toward it is 
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taking ground especially in the context of fishery (Anthony, Dambacher, Walshe, & Beeden, 2013; 

Carey et al., 2013; J. M. Dambacher, Rothlisberg, & Loneragan, 2015; Espinoza-Tenorio et al., 

2013; Martone et al., 2017). This speaks about the potential of the method. One limitation of the 

loop analysis is that it predicts changes in the equilibrium level of the variables (Justus, 2006) but 

real systems are generally not at the equilibrium. Previous studies have however offered evidence 

that predictions from loop analysis apply successfully to changes in average values of the variables 

(Antonio Bodini, 2000). Average values should be long-term, but Bodini et al. (2018) showed that 

averages taken over either 5 or 10 years can be used to grasp variable responses to press 

perturbations. The appropriate time scale for taking averages, however, very much depends on the 

system under investigation. 

Other qualitative modelling approaches can be used to study SESs. Fuzzy Cognitive Maps 

(FCMs) is one of these. It makes the magnitude of links explicit through a semi-quantification of the 

relationships that link the variables (Kok, 2009; Özesmi & Özesmi, 2004). The semi-quantification 

of the links may resolve the ambiguities typical of loop analysis about the net effect generated by 

the combination of contrasting pathways. Also, FCMs can make predictions about multiple 

simultaneous perturbations. Both the state of the variables (concepts, in the technical language of 

FCMs) and the strength of the links (edges between the concepts) are quantified assigning 

standardized values in the range [0, 1] for states and [-1, 1] for the links. Although these are 

relative values (i.e. each of them is assigned in relation to the others), some criteria for the 

quantification must be identified. These criteria must be supported by some knowledge about the 

level of the variables and interactions in the system, and in particular the use of FCMs seems 

appropriate when the estimates of variable state and link strength are the outcomes of either a 

combination of multiple FCMs from individual stakeholders or a set of values defined through 

participatory workshops. This imposes a certain level of knowledge about the system and it 

automatically selects the working groups among stakeholders that possess some previous 

knowledge about the system. It follows that FCMs cannot be public, reproducible and intelligible in 

the way that loop analysis is. Kok (2009) posits that vague or complex concepts such as “consumer 

behaviour” must not be taken into account when applying FCMs as guessing about their 

magnitude, is inherently difficult. In contrast, loop analysis allows including “awareness” in a 

malaria model (Yasuoka et al., 2014), “environmental attractiveness” in a tourism model (Bodini et 

al., 2000), and the “role of the unions” in a model on diabetes (Lewontin & Levins, 2007). In these 

aspects it seems that FCMs share the same limitations of quantitative models, as they tend to 

exclude factors that are difficult or impossible to measure, no matter if they play a recognized role 

in the dynamics of the system. The connections among the variables in FCMs are designed on the 

basis of fuzzy conditional (IF-THEN) statements that are of the type “if the level of variable A is 

high, that of variable B is low”. Thus, connections are deduced from correlations between the 

variables derived from observing the system (Stylios & Groumpos, 1999). However, Levins and 

Puccia (1988) pointed out that patterns of correlation depend on the network structure and the 

entry point of the perturbation. For example, any two variables may show positive correlation in 

response to a specific press perturbation but opposite correlation (or no correlation) in response to 

some other input. It follows that defining interactions between variables on the base of their 

correlations may be misleading. Both loop analysis and FCMs allow predicting changes in the level 
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of the variables in a complex system following a perturbation to one of them. In loop analysis 

perturbations are changes in the parameter that governs the rate of change of the variables. For 

example, an increase in the mortality rate of a population triggered by a pollutant. FCMs instead 

consider perturbations as changes in the level of the variables. To predict, say, the impacts of a 

pollutant that affects a population, FCMs consider the change induced by the pollutant on the 

abundance of the target population as the initial event (i.e. the perturbation). Since the chemical 

pollutant is toxic more individuals will die in the unit time and the abundance of the target 

population will lower. Thus, the initial event is deduced from a more or less plausible linear 

sequence of steps. Indeed, this series of events overlooks the fact that the response of the target 

population to increased mortality is also mediated by the network of interactions with the other 

variables, which cannot be defined using common sense linear expectations. This leads to the 

circular argument that FCMs predict the effects given a cause that is in turn an effect that FCMs 

should predict. On the other hand, we can be confident that the pollutant increases the mortality 

rate of the target population, which is the initial event in loop analysis. Loop analysis considers the 

role of the environmental variability in changing the parameters that govern the growth rates of the 

variables and does not interpret it solely as the cause of variable fluctuations like FCMs do. 

Other qualitative modelling approaches used in SESs include Causal Loop Diagrams 

(CLDs; Hanspach et al., 2014; Tenza et al., 2017) and Bayesian Belief Networks (BBNs; Borsuk et 

al., 2004; Pollino et al., 2007). CLDs make predictions by logically reconstructing the chains of 

causes and effects between the variables on the basis of link polarities (e.g. the signs of the 

directed links, that is the effects of one variable over the other). Predicting the behaviour of 

complex networks by identifying the feedback effects using link polarity is difficult and can lead to 

misleading interpretations (D. C. Lane, 2008; Richardson, 1997). Most problems originate from 

polarities. Consider, for example, the case in which the level of violence displaces people from rural 

areas and force them to move to the cities (Colombia is a paradigmatic example, Ibáñez and Vélez, 

2008). The causal connections are that level of violence increases the migration rate which, in turn, 

increases the population level in the city. So, the higher the level of violence the greater the urban 

population. However, if the level of violence gets lower also the migration rate is reduced but this 

does not reduce the population in the city as it continues to increase unless an opposite migratory 

flux occurs. So major problems arise because variables can be stocks and rates and this confound 

the articulation of causal pathways (Sweeney & Sterman, 2007).  

Similarly, specifying the relevant conditional probabilities as required by BBNs can be a 

laborious and time-consuming process (Marcot et al., 2001; Ticehurst et al., 2007). Moreover, to 

include feedback mechanisms via cyclic network structures requires dynamic time-explicit BBNs, 

which depend on extensive parameterization. Similar to FCMs, combining BBNs with loop analysis 

has great potential for improving predictions and model validation (Anthony et al., 2013; 

Melbourne-Thomas et al., 2012). However, it must be emphasized that these applications of BBNs 

are based on the signs derived from the analysis of the loop models. As such, their outcomes are 

contingent on the assumptions and limitations of the signed diagraph models. 

Central for the understanding of the complex causality in SESs is our ability to diagram the 

relationships between the variables. Predictions are strongly dependent on the specific 

assumptions about the relevant components of the SESs, the nature of the linkages among these 
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components, and the overall structure of the network. There is no recipe for modelling 

development, but great effort must be devoted to assimilation of facts, observations and 

hypotheses. Increasing the reliability of predictions can be possible by designing alternative 

graphs. This allows addressing uncertainty about the system structure and determining which 

differences matter. Robust outcomes may be the effect of a core structure common to all models 

upon which few links added or removed cannot change radically the predictions. The core structure 

represents the fundamental backbone composed of more certain variables and interactions. 

Disagreements among stakeholders, scientists or managers, do not limit the application of loop 

analysis; rather, they offer the opportunity to involve stakeholders in a participatory model 

construction (Anthony et al., 2013) where different types of system’s knowledge can be used to 

determine variables and links that may be important to further examine (Stier et al., 2017). The 

adoption of such a comprehensive, system-wide approach aims to formulate management 

strategies that reconcile ecological integrity, intergenerational opportunities, and economic 

efficiency, three key dimensions of the sustainable development paradigm. 

 

 

5.6. Possible development for the application of loop analysis to SESs 

 

Making predictions is difficult, especially when we face the uncertainty associated with 

new, unknown events, changing dynamics and lack of quantitative data. This is the case for 

example of Climate Change, which produces completely new phenomena and dynamics. An 

adaptive management approach that allows for continually assessing new evidence as 

understanding has been called for. We believe that in the new scenarios that we are facing, the 

method of loop analysis can be helpful. It has the necessary adaptability to be used in changing 

contexts: when in doubt about critical linkages and dynamic features, alternative models can be 

developed to find out which difference matters and to reach robust conclusions. It is also flexible as 

it allows including and discarding variables easily, and above all it permits working with variables 

and links that are not readily measurable, even though their effects are crucial. However, its 

suitability to investigate SESs can be improved in several ways.  The intricacy of the feedbacks can 

be better resolved if a specific tool for pathways analysis is developed. Returning the total number 

of pathways between any pair of variables and their strength can show how single pathways 

differently contribute to specific effects, and which of them is mostly important to mediate the 

effects of press perturbations. The question of link strength deserves attention. We specified in the 

method section that link strength is randomly assigned to the interaction link. But this does not 

contradict the qualitative nature of the method; it only serves to assign certainty to paths and 

feedbacks in order to get unambiguous predictions, which remain qualitative in nature as only the 

direction of change for the variables is the output. Pathway anatomy would better serve the 

purpose of selecting causal chain that mostly affect system dynamics. Other relevant features that 

would improve suitability of loop analysis include: (1) considering multiple and simultaneous press 

perturbations; (2) delimiting upper and lower limits for randomly assigning the strength of 

interactions during simulations.  SESs are often exposed to different types of disturbance whose 
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interplay gives rise to net cumulative responses that would be useful to disentangle causative 

chains, an important contribution to the construction of a diagnostic approach (Kittinger et al., 

2013). For example, loop analysis diagnosed that multiple press perturbations and not only 

overfishing were responsible for the restructuring of the Black Sea community during the period 

1960-1980 (Bodini et al., 2018). Moreover, socioeconomic drivers amplify the impacts that are 

triggered by natural processes: for instance, both hypoxia and fisheries management affected 

abalone stock in the Baja California SES (Martone et al., 2017). The second development might 

extend loop analysis towards a semi-quantitative direction. At present the simulations are 

performed by randomly sampling interaction strength in the uniform interval ]0, 1]. This means that 

each interaction has an average strength of 0.5. Therefore, it is possible to calculate the magnitude 

of pathways of different lengths (e.g. a two-step path has strength 0.25, obtained by multiplying the 

strength of two interactions: 0.5 × 0.5 = 0.25). There are however cases when some interactions 

are known to be either strong or weak. Because it is difficult to translate strong and weak in 

numbers sensitivity analysis can help. Either the upper (i.e. 1) or the lower (i.e. 0, excluded) limit of 

interaction strength could be iteratively changed to quantify the results’ consistency in the table of 

predictions. For example, performing the sensitivity analysis for the strength of specific interactions 

might help modelling competitive advantage (e.g. Noctiluca scintillans vs. zooplankton in the Black 

Sea; Bodini et al., 2018) in the ecological domain and power or information asymmetries between 

socioeconomic actors (Bousquet et al., 2015). Therefore, exploring alternative scenarios by 

constraining the strength of some interactions would be of great benefit for modelling SESs. 
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6. Discussion and Conclusion 

 
 

Central aim of this thesis was the improvement of the in-silica algorithms available for loop 

analysis to give users a simple methodology and comprehensive tool for application of loop 

analysis in their protocols. Although a package as not yet been made available in the Rs’ repository 

library, CRAN (R Core Team, 2019b, 2019a), a stable version of the package already exists for 

use, even though its dissemination is confined to participants to seminar, presentations or 

workshops made by us, the developers, to raise awareness of its applications and potential. As 

stated in Chapter 3, new implementations of analytical functions are in the course of completion for 

future versions of the package to provide a wither range of tools for the qualitative analysis of 

complex systems and further functions. It is expected to have these implementations running within 

the package and shortly made it available, through CRAN (R Core Team, 2019a), for a wider 

audience of potential practitioners. 

A second objective was the development, within our package, of a facility  that allowed 

exploiting the information about the strength of interactions, to render the loop analysis algorithm 

more powerful in terms of its capability to explore the importance of the systems variables (and 

pathways) in spreading the effects of press perturbations. By exploiting and extending a 

background quantitative approach, used originally to solve the problem of predictions uncertainty 

due to the existence of multiple pathways of opposite sign, the package now allows the users to 

represent their ecosystems with a higher level of realism, by assigning values of intensity to the 

linkages between variables, and by proxy, simulating the effect of the intensity of the interactions 

between the variables, and how that reflects on the system’s ability to respond to pressures. 

Derived from this implementation, another one was developed for the exploration of networks 

pathways and their significance, by allowing the user to gather the information of the pathways of 

either all or of particular sections of its network, that is, the variables involved in the pathway and 

therefore its length, its sign and its carried strength (i.e., the strength by which it will carry an effect 

from the initial variable to the last one of the path). 

As demonstrated in the Chapters 3 and 4, the new implementations developed for the 

LevinsAnalysis package have a great potential in helping resolve and understand the mechanisms 

behind a systems response to changes in its variables. But has proven in Chapter 4 the 

implementation of these tools does not directly correlates to a complete understanding of the 

systems mechanics. In fact, from the Chapter 4 it becomes clear that an in-depth knowledge of the 

system in study is necessary for a full and precise application of these tools, and even then, the 

growth of a systems complexity will only serve to raise the complexity in disentangling the 

information provided by these implementations. A comparison between the application of these 

tools in two different systems, such has the Savannah Fires (Bodini & Clerici, 2016) and the 

Caspian Sea models, from Chapters 3 and 4, respectively, is sufficient to understand the 

difference that a systems complexity can have in the resolution obtained from the application of 

these novel approaches. While in the former we were able to find a solution to the question posed, 

even if a simple term, for the later, although some answers could be resolved we were also left with 
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many more questions about the system and its complexity, questions which can only be solved 

with a more in-depth study and testing of the information obtained. 

 

On Chapter 4, I explored the Caspian Sea and its dynamics, with focus on the causes that 

lead to the decline in multiple species, in particular the kilkas (Clupeonella spp.). As stated 

throughout this body of work, the structure of the system of interest was constructed with a certain 

degree of realism, compatible with the evidence provided by the bulk of the literature that described 

the structure of that community. The possibility to use signed digraphs strictly depends on the 

reliability of long-term data for the abundance trend of the variables that make the network. These 

represent a fundamental benchmark against which model predictions can be compared. From this 

comparison exercise the reliability of the signed digraph as a realistic representation of the 

structure of the interactions should come out. Also, knowledge of the pressures acting on the 

system, either globally or in specific target variables, that are known to have caused specific 

changes or are hypothesized to have done so, must also be compiled in order to identify the entry 

points on the system and effects to be analysed. In short, model validation is a complex process, 

which requires great assimilation of facts, ecological understanding and coherent indication from 

the literature as well as well-structured and complete data sets. 

The Caspian Sea was selected as benchmark for two reasons, 1) the small body of work 

dedicated to the exploration of the mechanisms behind the changes observed in that ecosystem, 

and 2) the rapid decline of the state of the Caspian Sea environment which calls for a rapid action 

based on a complete understanding of its consequences. Also, the Caspian Sea represented an 

interesting case study because it showed an explosion of the population of the comb jelly 

Mnemiopsis leidyi which was already observed in several of the European seas  (Black Sea, 

Mediterranean Sea, Baltic Sea) (Javidpour, Sommer, & Shiganova, 2006; Kideys & Niermann, 

1993; Vinogradov, Shushkina, Musaeva, & Sorokin, 1989). So, this study may represent another 

“brick in the wall” to the knowledge of the dynamics that characterize Mnemiopsis outburst in 

European seas. In the particular case of the Caspian, the outburst of Mnemiopsis was not 

investigated, as the objective was to provide a baseline knowledge of the ecological mechanisms 

that could be exploited to investigate the interference by the comb jelly. There is a lack of 

information about the species that inhabit the Caspian Sea, their relationships, and most 

importantly, variation in the abundance of these species in the course of time (CEP, 2002, 2007). 

The acquisition of the necessary data was made difficult by the lack of data pertaining the particular 

populations of certain species that inhabit the Caspian, with their habits and inter-species 

relationships being often drawn from other populations of the same species inhabiting similar seas. 

The geography of the Caspian Sea and the geopolitical situation of the bordering countries 

(Zimnitskaya & von Geldern, 2011) also conspired to make the difficulty in data access, with data 

reports and publications being made in a language inaccessible for me, or data on some species 

not even being available to public consultation. Despite these problems, an analysis was possible 

and from there some information regarding the system and its mechanisms of response to 

pressures were retrieved.  

From the study presented here kilkas emerges as an important component of the system 

as it plays a role in the spreading of the effects of external perturbations. It comes then that any 
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pressure on kilkas has the potential to disturb the system and make it move away from the from his 

state of equilibrium. Also, bony fish seem to occupy a central position in this respect. Such a 

pressure, as overfishing, on these variables as therefore the potential to not only cause the decline 

on them, as observed on the collected trends, but also to disturb other species through indirect 

pathways. From the hypothetical scenarios that were simulated also phytoplankton too seems to 

play an important role on the systems response to pressures, in particular a negative pressure on 

this variable produces one of the best rate of prediction and trends match, which points to its 

importance, and an hypothesis can be made that the water level instability in the early years of 

dam construction in the Volga might be the possible explanation for this negative input on 

phytoplankton, and therefore a further review of the literature should be made in order to verify it. 

Nutrients, and in particular nutrient enrichment, on the other hand seemed to not be so important in 

the systems response to perturbations as predictions from positive inputs on this node tended to be 

of opposite sign of the trends that we collected. As stated above, the interaction strength between 

variables may have different degrees of importance in a systems response to perturbation. In the 

case of the Caspian Sea, the high number of mismatches between predictions and trends, and the 

for some cases the prevalence of 0* signs in the predictions seems to indicate that the paths 

connecting the multiple variables of the system and their strength, and from there, the interactions 

strength between variables, seems to be of a high importance. And last, from the lack of agreement 

of the predictions from concurrent inputs and the trends, it can be hypothesised that either the 

pressures did not all occurred at the same time, even if their effect on each species might have, or 

their intensity was not the same, with some proving to overpower the others.  

The major aim of this chapter was to build a reliable graph of the Caspian Sea network to 

explore the mechanisms behind the changes observed in the second part of the last century, but 

due to the complexity of the system and the apparent importance that interaction strength plays in 

the systems response to pressures, it was impossible to give a conclusive answer to the questions 

posed for this chapter, instead we are left with more questions, in particular to the role interaction 

strength and paths strength play in the Caspian Sea, and therefore a clear-cut answer on how a 

given pressure on the system will affect it cannot be provided without a complete understanding of 

how the system dynamics operate.  

 

On Chapter 5 an exercise on the potential uses of the qualitative algorithm of loop analysis 

beyond the ecological field is made, in particular to the possible advantages of its use on socio-

ecological settings. It is shown that the method of loop analysis can be helpful. Its adaptability 

allows it to be used in changing contexts, such has when in doubt about critical linkages and 

dynamic features arises, and alternative models are necessary to be developed to reach robust 

conclusions. Nonetheless, its suitability to investigate SESs can be improved in several ways. The 

intricacy of the feedbacks can be better resolved with the use of pathways analysis. Returning the 

total number of pathways between any pair of variables and their strength can show how single 

pathways differently contribute to specific effects, and which of them is mostly important to mediate 

the effects of press perturbations. Considering multiple and simultaneous press perturbations and 

delimiting upper and lower limits for randomly assigning the strength of interactions during 

simulations are also implementations that would improve loop analysis suitability.   
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