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Preface

A doctrine of nature can only
contain so much science proper
as there is in it of applied
mathematics.

Immanuel Kant

In 1945 Pablo Picasso created a celebrated ensemble of 11 lithographs
known as Bull, which rapidly became a milestone in the manner in which
the abstract arts synthesize the observable world by reducing its complexity,
such that the structure of the subjects may emerge. In the artwork in Figure
1, each plate is a successive stage used to find the spirit of the beast. In
other words, Picasso visually dissects step by step the initial representation
of a full bull to demonstrate the way in which its essential presence is given
only by reproduction and fighting.

This suite of drawings clearly exemplifies how mathematics move from
observable phenomena to their artificial synthesis. The strength of math-
ematical modeling relies, in fact, on a reduction of physical reality, which
contains all the ingredients for making the model realistic, even though it
is not real. Hence, the importance of a sound mathematical model goes
hand in hand with the necessity to reproduce and predict the behavior of
the phenomena under investigation.

Among others, the development of mathematical tools for the description
of emerging collective phenomena in interacting systems may be viewed
as the scientific counterpart of the dictates of abstract art. In fact, in the
modeling of many complex systems composed of a large number of agents, a
rather common assumption lies in considering the entire population to be
formed by indistinguishable particles. These are endowed with a finite set of
characteristic variables determining their coordinates, which do not need to
be defined in the geometrical space, but may be a location in the velocity
space as well as in the social structure of the population. Hence, it is of
paramount importance to identify the fundamental factors that generate an
observable experiment, quantifying their impact.

The intriguing world of these self–organizing systems has gained increasing

v



Preface

Figure 1: Pablo Picasso Bull (1945–1946).

interest in heterogeneous research communities in biology, robotics, sociology,
and economics. Classical examples of such systems are groups of animals
or humans with the tendency to herd, stockbrokers working in a financial
market, and potential voters during elections.

To study the evolution in time of this active matter, the dynamics must
be defined for the set of detected variables. Realistic models start from the
definition of rationally simple interaction rules, defined for each agent of the
system. Hence, it is often possible to observe the emergence of global patterns
and structures, also called collective phenomena. From the mathematical
viewpoint, this level of description is usually known as microscopic and is
achieved by considering systems of ordinary differential equations (ODEs).
The resulting differential problem for the general N -body system follows:

ẋi =
N∑
j=1

wjP (xi,xj), i = 1, . . . , N,

where xi denotes the set of evolving variables, wj denotes a weight function,
and P (·, ·) denotes a pairwise interaction term depending on the whole set of
variables characterizing the ith and jth particle. At the computational level,
the introduced general dynamics is related to a considerable computational
complexity of the order of O(N2), due to the summation term. Then we
highlight how the microscopic description level induces unaffordable numerical
costs for a system composed of a very large number of particles.

The key idea behind the reduction in complexity of the introduced modeling
is through a change of scale in the description of the phenomena, implying
the derivation of the so-called mesoscopic and macroscopic models. The main
tools rely on a statistical description based on the kinetic theory, where the
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Preface

particle density distribution in the phase space is studied. The new equations
are derived in the limit of a large number of agents from the microscopic
modeling. This mesoscopic level of description leads to partial differential
equations describing the evolution of density functions.

Kinetic modeling gained an increased interest in the community studying
the collective behavior of interacting systems owing to strong analogies
between these models and classical kinetic theory of rarefied gases described
by the Boltzmann equation [10, 83, 165]. Analytical methods allow the
explicit computation of the stationary states of the whole system [92, 146,
164, 165] and a minimal energy state [169, 99].

Rigorous derivation of mean–field models from microscopic equations is
a deeply fascinating issue that may pose nontrivial questions. There exist
several approaches for first- or second-order systems of ODEs such as the
BBGKY hierarchy [63, 109], mean–field limit [31, 53, 90], as well as the binary
interaction approximation of the dynamics [66, 83, 145, 164]. In any case,
the transition to chaos remains an indispensable ansatz to deduce the new
mesoscopic model. This latter issue is definitely significant in mathematical
terms, involving the proof of the propagation in time of chaos [122].

Finally, the macroscopic level of description of the dynamics may be
deduced from the mesoscopic level by the extrapolation of thermodynamic
quantities through the definition of the moment equations. The resulting
continuous equations are also called hydrodynamic equations and generally
require a closure.

Once a sound mathematical model is available, the reflection of our ultimate
understanding of a complex system relies on the possibility of controlling its
evolution. The scientific keyword comes in this case from the engineering
literature: with the aim of minimizing the cost of the required interventions
to steer the dynamics toward the prescribed state we introduce the optimal
control problems. The control mechanisms of self–organized systems have
been investigated as follow–up questions to the progress in the mathematical
modeling and simulation. The control of emergent patterns has been studied
on the level of microscopic particles as well on the level of kinetic or fluid
dynamics equations.

Fundamental to the construction of more realistic models is the intro-
duction of uncertainty in the dynamics, reflecting a wide range of possible
perturbations and mimicking our imperfect knowledge of the phenomena.
These errors are due to the random effects of a wide range of uncontrollable
phenomena such as the influence of weather during an experiment, temper-
ature variations, or even human carelessness. This is particularly relevant
in many problems in the natural and socio-economic sciences, where the
interaction rules are based on observations and empirical evidence and not on
physical laws. In such cases, we can have at most statistical information on
the modeling parameters. Therefore, statistical errors become ineradicable
from any quantitative representation. To fully understand simulation results
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and produce predictions, it is of utmost importance to incorporate uncer-
tainty from the beginning of the modeling. The introduction of randomness
in kinetic and mean-field equations is central to many practical applications
of these deeply studied results with an interest in physical and engineering
sciences.

From the numerical point of view, the implementation of accurate numerical
methods is fundamental to quantify the impact of uncertainty in the overall
dynamics. Among the most efficient methods in uncertainty quantification
(UQ) for partial differential equations, generalized polynomial chaos (gPC)
and stochastic Galerkin (SG) methods are very attractive thanks to their
property of spectral convergence in the probability space, see [176, 177], rep-
resenting an important step forward from the classic Monte Carlo technique,
whose convergence is extremely slow. Despite its accuracy, the intrusive SG–
gPC formulation may significantly modify the original problem. One the most
evident and significant losses affects systems of hyperbolic equations [77, 151].

The aim of the present manuscript is to investigate a novel perspective
in the modeling and control of complex system both in the deterministic
and stochastic case, with particular attention to numerical methods, control
methodologies and uncertainty quantification. Each chapter is designed to
be self-consistent, starting from a general framework of the treated problem
in the introduction and then moving through results and conclusions. In
particular, each chapter refers to a previously published research article,
manuscript under the revision process in a peer-reviewed journal, or ongoing
research.

In Chapter 1 the research addressed in [11] is presented. In this work, we
applied the techniques developed in [6] for the Boltzmann-type control of a
consensus dynamics to the case of a hierarchical opinion model in the presence
of different populations: the first composed by the so–called followers which
are influenced by a second group, i.e. the leader group, controlled by external
agents. Based on a microscopic model we design a Boltzmann-type optimal
control thanks to the model predictive control (MPC) approach in the case of
an instantaneous control. MPC utilizes the assumption that agents optimize
their cost functional not necessarily over an infinite time horizon, instead
they determine their locally best action by minimizing their cost over a short
time interval which recedes as time evolves. We formulated a control strategy
by embedding the control action in the binary interaction dynamics, thereby
deriving the kinetic formulation of the problem. The main advantages lie in
the efficiency of the instantaneous controls, which can be explicitly embedded
in the dynamics, and the Boltzmann binary approximation applied to an
MPC of an interacting system of N agents with computational cost O(N),
instead of O(N2) of the standard dynamics which must be solved forward–
backward in time. In the quasi–invariant limit [91, 164] the corresponding
Fokker–Planck formulation has been derived and explicit expressions of the
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steady states have been computed.
A fruitful application of the MPC methodology has been applied in the

context of complex networks in Chapter 2, where a control acts over a
minimum set of nodes/agents influencing the dynamics of the whole network.
There exists an incredible number of applications of control strategies on
graphs: from pure social–marketing purposes, to national security reasons
for the fastest spreading of information. Even if the introduced problem is a
priori of a difficult solution, a first attempt to deal with the problem from a
microscopic point of view has been made in [12], where the mathematical
model is formulated as a coupling of an opinion alignment system with a
probabilistic description of the graph. Let us consider the optimal control
problem for opinions on the complex network GN (t)

min
u∈U

1

2

∫ tf

t0

[ 1

N

N∑
j=1

(wj − wd)2 + νu2
]
ds

subject to

ẇi =
1

ci

∑
j∈Si

P (wi, wj ;GN )(wj − wi) + uχ(ci ≥ c∗), wi(0) = wi,0

for each i = 1, . . . , N . We adopted the notation (wi)
N
i=1 ∈ I = [−1, 1] and

(ci)
N
i=1 = {0, . . . , cmax} for the opinions and the number of connections of

the ith agent, wd ∈ I is the desired opinion of the system, and ν > 0 is
a regularization parameter. As before, P (·, ·; ·) is an interaction potential
which weights the opinion wi on the subgraph Si of the agents connected with
the ith agent. It depends, in general, on the opinions and on the statistical
properties of GN . Observe the way in which the action of the control u is
weighted by an indicator function χ(·), therefore the control is active only
on the nodes with a degree of connection ci ≥ c∗, for a certain threshold
c∗. The evolution of the network is coherent with a preferential attachment
mechanism, see Figure 2. The introduction of a suitable selective control
depending on the connection degree of each node is capable of driving the
overall opinion towards consensus.

In Chapter 3, where we present joint research published with Professor
Michael Herty [117], the mean–field formulation of kinetic under control ac-
tions is investigated. In particular, we consider a control formulated through
an MPC strategy with varying horizon focusing on the relation between
the (usually hard to compute) optimal control and the MPC approach in
the mean-field case. We have established a computable and provable bound
on the difference in the cost functional for MPC-controlled and optimally
controlled dynamics in the case of a large number of agents. The derived esti-
mates yield performance bounds for general symmetric multiagent dynamics
with applications to swarming dynamics, consensus modeling, or economics.
Numerical examples confirm the theoretical analysis.
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Figure 2: Evolution of a graph with density of connectivity γ = 5 through a
rewiring process with preferential attachment. The diameter of each node is
proportional to its connection.

The development of numerical schemes for the mean-field equation for
collective behavior is the subject of Chapter 4. The presented results are a
joint research with my advisor Professor Lorenzo Pareschi and refer to [149,
148], . The developed schemes are based on a generalization of the classical
Chang–Cooper approach and capable of preserving the structural properties
of the systems: non-negativity of the solution, physical conservation laws,
entropy dissipation, and stationary solutions. In this work, we considered
the following class of nonlinear Fokker–Planck equations

∂tf + L[f ] = ∇w · [B[f ]f +∇w(Df)] ,

with f = f(x,w, t) depending on x ∈ Rdx and w ∈ Rdw , where dx, dw ≥ 1,
L[·] is an operator for the agents’ dynamics with respect to the x variable,
B[·] is an alignment operator, and D = D(x,w) ≥ 0 is a diffusion function.
The presented equation describes a wide class of models for the collective
behavior such as the mean–field Cucker–Smale model [8, 53, 71], for which

L[f ] = w · ∇xf, B[f ] =

∫
Rdx×Rdw

H(x, y)(w − v)f(y, v, t) dy dv,

with

H(x, y) =
1

(1 + |x− y|2)γ
, D(x,w) = D ∈ R+,

or the non–homogeneous mean–field Cordier–Pareschi–Toscani model for
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wealth distribution [66, 146], where

L[f ] = φ(x,w)∇xf, B[f ] =

∫
R+

(w−v)f(y, v, t) dw, D(x,w) =
σ2

2
w2.

The proposed schemes have the property of being entropic and describing
with arbitrary accuracy the steady-state solution of the mean–field problem.

In Chapter 5 we deal with opinion dynamics over a large network, where
interactions depend on the opinion itself and on the discrete number of
connections c ∈ C = {0, . . . , cmax}. The increasing capacity to produce data
seems to be unavoidable in contemporary societies. This is mainly due to the
rapid proliferation in the sources of data that the social media are able to
capture: we are consumers as well as producers of data. The need to handle
millions, and often billions, of vertices implies a considerable shift of interest
to large–scale statistical properties of the network architectures.

Hence, the evolution of the distribution f(w, c, t), given by the density
of opinion and connections, obeys the introduced Fokker–Planck equation
where the operator L[f ] is now defined as follows

L[f(w, c, t)] =− 2Vr(f ;w)

γ + β
[(c+ 1 + β)f(w, c+ 1, t)− (c+ β)f(w, c, t)]

− 2Va(f ;w)

γ + α
[(c− 1 + α)f(w, c− 1, t)− (c+ α)f(w, c, t)] ,

where γ is the mean density of connectivity, α, β > 0 are attraction coeffi-
cients, and Vr(f ;w) ≥ 0 and Va(f, w) ≥ 0 are characteristic rates of removal
and addition, respectively. At the boundaries of C it is defined in such a
way that the overall number of connections is conserved. The interaction
operator is now defined as follows

B[f ](w, c, t) =

cmax∑
c∗=0

∫
[−1,1]

P (w,w∗; c, c∗)(w∗ − w)f(w∗, c∗, t) dw∗,

where P (·, ·; ·, ·) is an interaction kernel depending on opinions and connec-
tions of the interacting dyads. It has been proven that for different choices
of weights functions the introduced generator of the network may produce
stationary scale-free degree distributions as well as uniform random graphs.
Further, we observed that the presence of a small portion of highly connected
agents may drive the overall dynamics towards their position, see Figure 3.

In Chapter 6, based on [147], we further investigate the proposed setting
with a direct application to decision science. In particular, we introduce and
discuss multivariate kinetic models describing the influence of competence in
the evolution of decisions in a multiagent system. The exchange mechanism
includes the role of the agents’ tendency to behave in the same way as if they
were as good, or as bad, as their partner: the so–called equality bias. The
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Figure 3: Evolution highlighting the way in which a small portion of agents
with high connectivity can bias the majority of the evolution of the overall
population.

presented modeling is inspired by real experiments [124, 131] and reproduces
the empirical findings. Analytic and numerical results describe the way in
which the equality bias leads the group to suboptimal collective decisions.

The role of stochastic quantities in the dynamics is investigated in Chapter
7, which refers to the article [13]. Here we analyze the effect of the un-
certainty in the interaction parameter in a Cucker–Smale microscopic-type
system using a gPC approach. Analytic evidence of threshold effects in
the alignment dynamics, due to the presence of the random parameter, is
given. In particular, the presence of negative tails in the distribution of the
random inputs lead to the divergence of the expected velocities of the system
of agents, even in the regimes of unconditional flocking. At the numerical
level, we introduce in detail the SG–gPC numerical approach to the problem.
We formalized a selective MPC approach to stabilize the dynamics and to
steer the expected velocities toward the desired one, even in the divergence
regimes.

Finally, in Chapter 8, we present the ongoing work in collaboration with
Professor Josè Antonio Carrillo and Professor Lorenzo Pareschi [55]. Here, we
investigate alignment models at the mesoscopic level of description depending
on random inputs. The stochastic quantities act on the dynamics through
perturbation of the initial conditions as well as typical modeling parameters.
The derivation of mean–field models has been formally completed through the
BBGKY hierarchy. The aim of this chapter is to develop positive preserving
numerical schemes that maintain the spectral accuracy for the statistical
quantities of interest. To this end, we have formulated a Monte Carlo
SG–gPC method and numerical tests have been performed to prove the
effectiveness of the algorithm.
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Chapter 1

Boltzmann-type control of
opinion consensus

1.1 Introduction

Mean-field games and mean-field type control theory has raised a lot
of interest in the recent years (see for example [27, 43, 76, 89, 128] and
the references therein). The general setting consists in a control problem
involving a very large number of agents where both the evolution of the state
and the objective functional of each agent are influenced by the collective
behavior of all other agents. Typical examples in socio-economical sciences,
biology and engineering are represented by the problems of persuading voters
to vote for a specific candidate, influencing buyers towards a given good or
asset, forcing human crowds or group of animals to follow a specific path or
to reach a desired zone, or optimizing the traffic flow in road networks and
supply chains [9, 25, 43, 69, 82, 114, 115, 130, 132, 161].

In this paper we focus on control problems where the collective behaviour
corresponds to the formation process of opinion consensus [26, 38, 94, 113,
139, 162, 164]. In particular, we consider models where the control strategy
is based on hierarchical leadership. This concept of hierarchical leadership
has been discussed in [82], where a population of leaders is considered giving
rise to aggregate opinions and convergence towards specific patterns. Further,
opinion dynamics in presence of different populations has been previously
introduced in [34, 166, 173]. We mention here that control through leaders
in self-organized flocking systems has been studied in [9, 161].

We introduce a hierarchical opinion formation dynamics where the leaders
aim at controlling the followers through a suitable cost function which
characterizes the leaders strategy in trying to influence the followers opinion.
Based on this microscopic model, we develop a Boltzmann type optimal
control approach following the ideas recently presented in [6]. The approach
is closely related to model predictive and instantaneous control techniques

3
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[44, 62, 110, 133]. We derive an explicit controller for the leader dynamics
using an instantaneous binary control framework on the microscopic level
and, similarly to the mean field control, study the related kinetic description
for large number of agents. Thanks to this formulation, the minimization of
the cost functional is embedded into the microscopic leaders interactions of
the corresponding Boltzmann equation.

The rest of the manuscript is organized as follows. First in Section 1.2
we introduce the microscopic model of the leader strategy in the leader-
follower interactions and derive the corresponding Boltzmann-type control
formulation. The main properties of the kinetic model are studied in Section
1.3, in particular we show that that the leaders control strategy may lead
the followers opinion towards the desired state. Explicit asymptotic opinion
distributions are computed in Section 6.4 using an approximated Fokker-
Planck description derived in the so-called quasi invariant opinion limit.
Several numerical results confirm the theoretical analysis in Section 7.5.

1.2 Microscopic models of opinion control through
leaders

A rather common assumption in opinion formations is that interactions
are formed mainly by binary exchange of informations, see for example
[38, 100, 145, 164]. Similar to [82] we are interested in the opinion formation
process of a followers’ population steered by the action of a leaders’ group.
The major novelty here is that the leaders’ behaviour is driven by a suitable
control strategy based on the interplay between the desire to force followers
towards a given state and the necessity to keep a position close the the mean
opinion of the followers in order to influence them. In the following we first
generalize the approach of [6] starting from a differential system describing
the evolution of the two populations of leaders and followers. In the second
part we present a binary interaction model for the same dynamics showing
how the two descriptions are related.

Microscopic modeling We assume to have two populations, one of fol-
lowers and one of leaders. Each follower is mutually influenced by the other
followers and by the leaders, whose target is to steer the followers’ opinion to
a desired configuration of consensus following some prescribed strategy. We
consider the evolution of a population of NL leaders and NF followers, with
opinions wi, w̃k ∈ I = [−1, 1], for i = 1, . . . , NF and k = 1, . . . , NL, evolving
according to

ẇi =
1

NF

NF∑
j=1

P (wi, wj) (wj − wi) +
1

NL

NL∑
h=1

S (wi, w̃h) (w̃h − wi) ,

wi (0) = wi,0,

(2.1)

4



Chapter 1 Boltzmann–type control of opinion consensus

˙̃wk =
1

NL

NL∑
h=1

R (w̃k, w̃h) (w̃h − w̃k) + u,

w̃k (0) = w̃k,0,

(2.2)

where P (·, ·), S(·, ·) and R(·, ·) are given compromise functions, typically
taking values in [0, 1], measuring the relative importance of the interacting
agent in the consensus dynamics. The control term u characterizes the
strategy of the leaders, and is given by the solution of the following optimal
control problem

u = argmin {J(u,w, w̃)} , (2.3)

where

J(u,w, w̃) =
1

2

∫ T

0

{
ψ

NL

NL∑
h=1

(w̃h − wd)2 +
µ

NL

NL∑
h=1

(w̃h −mF )2

}
ds (2.4)

+

∫ T

0

ν

2
u2ds.

In the latter equation w and w̃ are the vectors with the followers and leaders
opinions, T represents the final time horizon, wd is the desired opinion and
mF is the average opinion of the followers group at time t ≥ 0 defined as

mF =
1

NF

NF∑
j=1

wj .

The parameter ν > 0, as usual, is a regularization term representing the
importance of the control u in the overall dynamics. More precisely, ν
penalizes the action of the control u in such a way that for large values of ν
the control action vanishes and viceversa.

The problem may also be formulated as constrained minimization problem
for un, wn, w̃n in the form

min J (un, wn, w̃n)

subject to (2.1)− (2.2).
(2.5)

In general the solution of this problems is a difficult task, in particular
for nonlinear constrains and non convex functional. In the following we
assume sufficient regularity on the constrains of (2.5), in such a way that
the minimizer fulfills the necessary first order optimality conditions. We
refer to [129] for a detailed discussion of necessary and sufficient optimality
conditions.

Thus the control strategy of the leaders’ population is based on an interplay
of two behaviours weighted by the nonnegative constants ψ and µ such that

5
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ψ + µ = 1. On one hand they aim at minimizing the distance with respect
to the desired state wd (radical behaviour) and on the other hand they
aim at minimizing the distance with respect to the followers’ mean opinion
(populistic behaviour). Therefore, the leaders influence the followers opinion
interacting through the function S(·, ·) and the followers influence the leaders
strategy through their mean opinion in the cost functional (2.4).

The above optimization problem is approximated using the Boltzmann
type optimal control approach recently presented in [6] which corresponds to
a binary model predictive control of (2.1)-(2.3) in the case of a very large
number of agents [133, 44].

Instantaneous binary control The main idea is to avoid the solution of
the dynamics on the whole time interval and to consider a closed-loop strategy
for the opinion model in the case of binary interactions. Hence, we split
the time interval [0, T ] in M time intervals of length ∆t and let tn = ∆t n
and solve sequentially the optimal control problem in each time interval.
This approach is related to the receding horizon strategy, or instantaneous
control in the engineering literature, which allows to express the control as a
feedback of the state variables. In general, with respect to the associated
optimal control problem (2.1)-(2.3) this technique furnishes a suboptimal
solution. Rigorous results on the properties of u for a constrained quadratic
cost functional are discussed, for example, in [133, 44].

More precisely, we approximate both (2.1) and (2.2) by the following
discretized binary dynamicsw

n+1
i = wni + αP (wni , w

n
j )(wnj − wni ) + αS(wni , w̃

n
l )(w̃nl − wni )

wn+1
j = wnj + αP (wnj , w

n
i )(wni − wnj ) + αS(wnj , w̃

n
l )(w̃nl − wnj )

(2.6)

w̃
n+1
k = w̃nk + αR(w̃nk , w̃

n
h)(w̃nh − w̃nk ) + 2αun

w̃n+1
h = w̃nh + αR(w̃nh , w̃

n
k )(w̃nk − w̃nh) + 2αun

(2.7)

where α = ∆t/2, i and j are the indexes of the two interacting followers, l
the index of an arbitrary leader, h and k the indexes of the two interacting
leaders. The control variable u is given by the solution of the following
optimization problem

un = argmin {J (un, wn, w̃n)} (2.8)

J (un, wn, w̃n) = α

(
ψ

2

∑
p={k,h}

(w̃np − wd)2

+
µ

2

∑
p={k,h}

(w̃np −mn
F )2 + ν(un)2

)
.

(2.9)

6



Chapter 1 Boltzmann–type control of opinion consensus

In order to solve the minimization problem introduced in (2.8), we can
proceed as in [6] using a standard Lagrange multipliers approach to compute
explicitly un. In this way we obtain the feedback control

2αun = −
∑

p={k,h}

2α2

ν

[
ψ(w̃n+1

p − wd) + µ(w̃n+1
p −mn+1

F )
]
. (2.10)

Note that since the feedback control un in (2.10) depends on the post
interaction opinion the constrained binary interaction (2.7) is implicitly
defined but it can be easily inverted. The explicit version of the control reads

2αun =−
∑

p={k,h}

β

2

[
ψ(w̃np − wd) + µ(w̃np −mn

F )
]

− αβ

2
(R(w̃nk , w̃

n
h)−R(w̃nh , w̃

n
k ))(w̃nh − w̃nk ),

(2.11)

where we further approximated mn+1
F with mn

F to have a fully explicit
expression and introduced the parameter β defined as

β =
4α2

ν + 4α2
. (2.12)

1.3 Boltzmann-type control

In this section, we consider a Boltzmann dynamics corresponding to the
above instantaneous control formulation. In order to derive a kinetic equation
we introduce a density distribution of followers fF (w, t) and leaders fL(w̃, t)
depending on the opinion variables w, w̃ ∈ I and time t ≥ 0. It is assumed
that the followers’ density is normalized to 1, that is∫

I
fF (w, t) dw = 1,

whereas ∫
I
fL(w̃, t) dw̃ = ρ ≤ 1.

The kinetic model can be derived by considering the change in time of fF (w, t)
and fL(w̃, t) depending on the interactions with the other individuals and
the leaders’ strategy. This change depends on the balance between the gain
and loss due to the binary interactions.

Binary constrained interactions dynamics Let us consider the pair-
wise opinions (w, v) and (w̃, ṽ), respectively of two followers and two leaders,
the corresponding post interaction opinions are computed according with
three dynamics, the interaction between two followers, the interaction be-
tween follower and leader and finally between two leaders.

7
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The post-interaction opinions (w̃∗, ṽ∗) of two leaders are given by{
w̃∗ = w̃ + αR(w̃, ṽ)(ṽ − w̃) + 2αu+ θ̃1D̃(w̃)

ṽ∗ = ṽ + αR(ṽ, w̃)(w̃ − ṽ) + 2αu+ θ̃2D̃(ṽ),
(3.1)

where the feedback control is defined as

2αu =− β

2
[ψ ((w̃ − wd) + (ṽ − wd)) + µ ((w̃ −mF ) + (ṽ −mF ))]

− αβ

2
(R(w̃, ṽ)−R(ṽ, w̃))(ṽ − w̃),

(3.2)

and

mF (t) =

∫
I
fF (w, t)w dw. (3.3)

Note that the control term is now embedded into the binary interaction and
that we considered an additional noise component such that the diffusion
variables θ̃1, θ̃2 are realizations of a random variable with zero mean and
finite variance σ̃2. Moreover the noise influence is weighted by the function
D̃(·), representing the local relevance of diffusion for a given opinion, and
such that 0 ≤ D̃(·) ≤ 1.

We assume that the opinions (w∗, v∗) in the follower-follower interactions
are derived according to{

w∗ = w + αP (w, v)(v − w) + θ1D(w),

v∗ = v + αP (v, w)(w − v) + θ2D(v),
(3.4)

where the diffusion variables θ1, θ2 are again realizations of a random variable
with zero mean, finite variance σ2 and 0 ≤ D(·) ≤ 1. Finally the leader-
follower interaction is described for every agents from the leaders’ group,
thus in general we have{

w∗∗ = w + αS(w, ṽ)(ṽ − w) + θ̂D̂(w)

ṽ∗∗ = ṽ
(3.5)

where similar to the previous dynamics, θ̂ is a random variable with zero
mean and finite variance σ̂2 and 0 ≤ D̂(·) ≤ 1

Since we are dealing with a kinetic problem in which the variable belongs
to a bounded domain, namely I = [−1, 1], we must deal with additional
mathematical difficulties in the definition of agents interactions. In fact, it is
essential to consider only interactions that do not produce values outside the
finite interval.

For the leaders’ interaction if we consider the constrained binary inter-
actions system (3.1)-(3.2), without diffusion we obtain that |w̃∗ − ṽ∗| is a
contraction if α ≤ 1/2

|w̃∗ − ṽ∗| = |(w̃ − ṽ)− α(w̃ − ṽ)(R(w̃, ṽ) +R(ṽ, w̃))| ≤ |1− 2α||w̃ − ṽ|.

8
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The following proposition gives sufficient conditions to preserve the bounds
for the leaders’ interactions (3.1).

Proposition 1.3.1. Let r, d+ and d− be defined as follows

r = min
ṽ,w̃∈I

[R(ṽ, w̃)] , d± = min
w̃∈I

[
1∓ w̃
D̃(w̃)

, D̃(w̃) 6= 0

]
. (3.6)

If ṽ, w̃ ∈ I then ṽ∗, w̃∗ ∈ I if the following conditions hold

αr ≥ β

2
, d−

(
1− β

2

)
≤ θ̃i ≤ d+

(
1− β

2

)
, i = 1, 2. (3.7)

The proof follows by the same arguments used in [6, 82] and we omit the
details. On the other hand from the definition of binary interaction between
followers (3.4), in absence of diffusion, the boundaries are never violated.
Indeed since |w| ≤ 1 it follows that |v − w| ≤ 1 and being 0 ≤ P (·, ·) ≤ 1 it
is easily seen that w∗, v∗ ∈ I.

Finally, as shown in [82], the post-interaction opinion of followers w∗∗, in
the leader-follower interaction (3.5), takes values in the reference interval I
if the hypothesis of the following proposition are satisfied.

Proposition 1.3.2. Let K− and K+ be defined as follows

K± = min
w∈I

[
1∓ w
D̂(w)

, D̂(w) 6= 0

]
. (3.8)

If w ∈ I then w∗∗ ∈ I if the following conditions hold

(1− α)K− ≤ θ̂ ≤ (1− α)K+, i = 1, 2. (3.9)

Main properties Following the derivation in [145], for a suitable choice
of test functions ϕ we can describe the evolution of fF (w, t) thanks to the
integro-differential equation of Boltzmann type

d

dt

∫
I
ϕ(w)fF (w, t)dw = (QF (fF , fF ), ϕ) + (QFL(fL, fF ), ϕ) (3.10)

where

(QF (fF , fF ), ϕ) =

〈∫
I2
BF
int(ϕ(w∗)− ϕ(w))fF (w, t)fF (v, t)dwdv

〉
(3.11)

and

(QFL(fF , fL), ϕ) =

〈∫
I2
BFL
int (ϕ(w∗∗)

− ϕ(w))fF (w, t)fL(ṽ, t)dwdṽ

〉
.

(3.12)

9
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In (3.11) and (3.12) we used the notation 〈 · 〉 to indicate the expectations
with respect the random variables, respectively θi, i = 1, 2 and θ̂, and the
nonnegative interaction kernels BF

int, B
FL
int are related to the probability of

the microscopic interactions. The simplest choice of interaction kernels which
guarantees that the post interaction opinions never violate the bounds is
given by

BF
int = BF

int(w, v, θ1, θ2) = ηFχ(|w∗| ≤ 1)χ(|v∗| ≤ 1)

BFL
int = BFL

int (w, ṽ, θ̂) = ηFLχ(|w∗∗| ≤ 1)χ(|v̂| ≤ 1)
(3.13)

where ηF , ηFL > 0 are constant relaxation rates and χ(·) is the indicator
function. If we now assume that the interaction parameters are such that
|w∗|, |w∗∗| ≤ 1 the Boltzmann operators can be written as

(QF (fF , fF ), ϕ) = ηF

〈∫
I2

(ϕ(w∗)− ϕ(w))fF (w, t)fF (v, t)dwdv

〉
(3.14)

(QFL(fF , fL), ϕ) = ηFL

〈∫
I2

(ϕ(w∗∗)

− ϕ(w))fF (w, t)fL(ṽ, t)dwdṽ

〉
.

(3.15)

In order to study the evolution of the average opinion mF (t), we take
ϕ(w) = w in (3.10). We have that the evolution of the average opinion of
followers is

d

dt
mF (t) =

ηF
2

[∫
I2

(w∗ + v∗ − w − v)fF (w, t)fF (v, t)dwdv

]
+ ηFL

∫
I2

(w∗∗ − w)fF (w, t)fL(ṽ, t)dwdṽ,

(3.16)

since the noise in (3.4) has zero mean. From the definition of binary interac-
tions between followers (3.4) and the definition of interaction leader-follower
(3.5) we have

d

dt
mF (t) =

ηF
2
α

∫
I2

(v − w)(P (w, v)− P (v, w))fF (w, t)fF (v, t)dwdv

+ ηFLα

∫
I2
S(w, ṽ)(ṽ − w)fF (w, t)fL(ṽ, t)dwdṽ.

(3.17)

Remark 1. If we suppose P symmetric, that is P (w, v) = P (v, w), and
S ≡ 1 we obtain a simplified equation for the time evolution of mF

d

dt
mF (t) = η̃FL α(mL(t)−mF (t)) (3.18)

where we introduced the notations η̃FL = ρ ηFL and mL(t) =
1

ρ

∫
I
w̃fL(w̃, t)dw̃.

10
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The evolution equation for mL(t) can be found thanks to similar arguments.
We can describe the dynamics of fL(w̃, t) thanks to the following integro-
differential equation of Boltzmann type in weak form

d

dt

∫
I
ϕ(w̃)fL(w̃, t)dw̃ = (QL(fL, fL), ϕ) (3.19)

where

(QL(fL, fL), ϕ) =

〈∫
I2
Bint(ϕ(w̃∗)− ϕ(w̃))fL(w̃, t)fL(ṽ, t)dw̃dṽ

〉
. (3.20)

As before 〈 · 〉 denotes the expectation taken with respect to the random
variables θ̃i, i = 1, 2 and Bint is related to the probability of the microscopic
interactions. A choice which preserves post interaction opinion bounds is

Bint = Bint(w̃, ṽ, θ̃1, θ̃2) = ηLχ(|w̃∗| ≤ 1)χ(|ṽ∗| ≤ 1) (3.21)

where ηL > 0 is a constant rate and χ(·) is the indicator function. Let us
consider as test function ϕ(w̃) = w̃. Then equation (3.19) assumes the form

d

dt

∫
I
w̃fL(w̃, t)dw̃ = ηL

〈∫
I2

(w̃∗ − w̃)fL(w̃, t)fL(ṽ, t)dw̃dṽ

〉
, (3.22)

which is equivalent to consider

d

dt

∫
I
w̃fL(w̃, t)dw̃ =

ηL
2

〈∫
I2

(ṽ∗ + w̃∗ − ṽ − w̃)fL(w̃, t)fL(ṽ, t)dw̃dṽ

〉
.

Then being the noise in (3.1) with zero mean we have

d

dt
mL(t) =

ηLα (1− β)
1

ρ

∫
I2

(R(w̃, ṽ)−R(ṽ, w̃))ṽfL(w̃, t)fL(ṽ, t)dw̃dṽ

+ η̃Lψβ(wd −mL(t)) + η̃Lβµ(mF (t)−mL(t)),

(3.23)

where η̃L = ρηL.

Remark 2. If R(w̃, ṽ) = R(ṽ, w̃) equation (3.23) becomes

d

dt
mL(t) = η̃Lψβ(wd −mL(t)) + η̃Lµβ(mF (t)−mL(t)). (3.24)

Moreover if the assumptions on P and S in Remark 1 hold we obtain the
following closed system of differential equations for the mean opinions mL

and mF
d

dt
mL(t) = η̃Lψβ(wd −mL(t)) + η̃Lµβ(mF (t)−mL(t))

d

dt
mF (t) = η̃FLα(mL(t)−mF (t)).

(3.25)
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Straightforward computations show that the exact solution of the above system
has the following structure

mL(t) = C1 exp {−|λ1|t}+ C2 exp {−|λ2|t}+ wd

mF (t) = C1

(
1 +

λ1

βµη̃L

)
exp {−|λ1|t}

+C2

(
1 + λ2

βµη̃L

)
exp {−|λ2|t}+ wd

(3.26)

where C1, C2 depend on the initial data mF (0),mL(0) in the following way

C1 =− 1

λ1 − λ2
((βη̃LmL(0) + λ2)mL(0)− µβη̃LmF (0)− (λ2 + βη̃Lψ)wd)

(3.27)

C2 =
1

λ1 − λ2
((βη̃LmL(0) + λ1)mL(0)− µβη̃LmF (0)− (λ1 + βη̃Lψ)wd)

(3.28)

with

λ1,2 = −1

2
(αη̃FL + βη̃L)± 1

2

√
(αη̃FL + βη̃L)2 − 4ψαβη̃Lη̃FL. (3.29)

Note that λ1,2 are always negative, this assures that the contribution of the
initial averages, mL(0),mF (0), vanishes as soon as time increases and the
mean opinions of leaders and followers converge towards the desired state
wd.

We now take into account the evolution of the second order moments

EF (t) =

∫
I
w2fF (w, t) dw, EL(t) =

1

ρ

∫
I
w̃2fL(w̃, t) dw̃.

First we analyze the followers group from equation (3.10) with test functions
ϕ(w) = w2, we have

d

dt
EF (t) =

ηF
2

〈∫
I2

(
(w∗)2 + (v∗)2 − w2 − v2

)
fF (w, t)fF (v, t)dwdv

〉
+ ηFL

〈∫
I2

(
(w∗∗)2 − w2

)
fF (w, t)fL(ṽ, t)dwdṽ

〉
.

(3.30)
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Thanks to (3.4) -(3.5), in the simplified case P ≡ S ≡ 1, we obtain

d

dt
EF (t) =2ηFα(α− 1)(EF (t)−m2

F (t))

+ η̃FLα
2(EL + EF − 2mL(t)mF (t))

+ 2αη̃FL(mF (t)mL(t)− EF (t))

+ ηFσ
2

∫
I
D2(w)fF (w, t)dw

+ η̃FLσ̂
2

∫
I
D̂2(w)fF (w, t)dw.

(3.31)

Finally, for the leaders group let us consider the function ϕ(w̃) = w̃2 in (3.19)
and the case R ≡ 1. Then thanks to equation (3.1) we obtain

d

dt
EL(t) =

ηL
2

1

ρ

〈∫
I2

((w̃∗)2 + (ṽ∗)2 − w̃2 − ṽ2)

fL(w̃, t)fL(ṽ, t)dw̃dṽ
〉

=η̃L

[
2α(α− 1)(EL(t)−m2

L(t))

− β

2
(2− β)(EL(t) +m2

L(t))

+ 2β(1− β)(ψwd + µmF (t))mL(t) + β2(ψwd

+ µmF (t))2 + σ̃2

∫
I
D̃2(w̃)fL(w̃, t)dw̃

]
.

(3.32)

In absence of diffusion, since mF (t),mL(t)→ wd as t→∞, it follows that
EF (t), EL(t) converge toward w2

d. Then the quantities∫
I
fF (w, t)(w − wd)2dw =EF (t) + w2

d − 2mF (t)wd

1

ρ

∫
I
fL(w̃, t)(w̃ − wd)2dw̃ =EL(t) + w2

d − 2mL(t)wd

(3.33)

go to zero as t → ∞, i.e. under the above assumptions the steady state
solutions have the form of a Dirac delta centered in the target opinion wd.

1.4 Fokker-Planck modeling

In the general case, it is quite difficult to obtain analytic results on the
large time behaviour of the kinetic equation (3.10). A step towards the
simplification of the analysis, is the derivation of asymptotic states of the
Boltzmann model resulting in simplified Fokker-Planck type models, for which
the study of the asymptotic properties is easier [145]. In order to obtain such
simplification we will follow the approach usually referred as quasi–invariant
opinion limit [145, 164], which is closely related to the so-called grazing
collision limit of the Boltzmann equation (see [91, 168]).
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Quasi invariant opinion limit The main idea is to rescale the interaction
frequencies ηL, ηF , ηFL, the propensity strength α, the diffusion variances
σ̃2, σ2, σ̂2 and the action of the control ν at the same time, in order to
maintain, at level of the asymptotic procedure, memory of the microscopic
interactions.

Let us introduce the parameter ε > 0, and consider the rescaling

α = ε, ν = εκ, σ2 = ες2, σ̂2 = ες̂2, σ̃2 = ες̃2,

ηF =
1

cF ε
, ηFL =

1

cFLε
, ηL =

1

cLε
, β =

4ε

κ+ 4ε
.

(4.1)

This corresponds to the situation where the interaction operator concentrates
on binary interactions which produce a very small change in the opinion of
the agents. From a modeling viewpoint, we require that the scaling (3.1)
in the limit ε→ 0 preserves the main macroscopic properties of the kinetic
system. To this extent, let us consider the evolution of the scaled first two
moments under the simplifying hypothesis P,R symmetric and S ≡ 1.

The evolution of the mean opinions described in the system (3.25) rescales
as 

d

dt
mF (t) =ε

1

cFLε
(mL(t)−mF (t))

d

dt
mL(t) =

ψ

cLε

4ε

κ+ 4ε
(wd −mL(t))

+
µ

cLε

4ε

κ+ 4ε
(mF (t)−mL(t))

(4.2)

which as ε→ 0 yields
d

dt
mF (t) =

ρ

cFL
(mL(t)−mF (t))

d

dt
mL(t) =

4ρ

cLκ
[ψ(wd −mL(t)) + µ(mF (t)−mL(t)))] .

(4.3)

The second moment equations (3.31) and (3.32) are then scaled as follows

d

dt
EF (t) =(ε− 1)

2

cF
(EF (t)−m2

F (t))

+
ερ

cFL
(EL(t) + EF (t)− 2mL(t)mF (t))

+
2ρ

cFL
(mF (t)mL(t)− EF (t)) +

ς2

cF

∫
I
D2(w)fF (w, t)dw

+
ς̂2ρ

cFL

∫
I
D̂2(w)fF (w, t)dw

(4.4)
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d

dt
EL(t) =

ρ

cLε

[
2ε(ε− 1)(EL(t)−m2

L(t))

− 2ε

κ+ 4ε
(2− 4ε

κ+ 4ε
)(EL(t) +m2

L(t))

+
8ε

κ+ 4ε
(1− 4ε

κ+ 4ε
)(ψwd + µmF (t))mL(t)

+

(
4ε

κ+ 4ε

)2

(ψwd + µmF (t))2

+ σ̃2

∫
I
D̃2(w̃)fL(w̃, t)dw̃

]
(4.5)

and as ε→ 0 we obtain

d

dt
EF (t) =− 2

cF
(EF (t)−m2

F (t)) +
2ρ

cFL
(mF (t)mL(t)− EF (t))

+
ς2

cF

∫
I
D2(w)fF (w, t)dw +

ς̂2ρ

cFL

∫
I
D̂2(w)fF (w, t)dw

d

dt
EL(t) =− 2ρ

cL
(EL(t)−m2

L(t))− 4ρ

cLκ
(EL(t) +m2

L(t))

+
8ρ

cLκ
(ψwd + µmF (t))mL(t) +

ς̃2ρ

cL

∫
I
D̃2(w̃)fL(w̃, t)dw̃.

(4.6)

Therefore the asymptotic scaling preserve the behaviour of the first two
moments of the solution. We show how this approach leads to a constrained
Fokker–Planck system for the description of the opinion distribution of
leaders and followers. We present formal computation, following the same
arguments in [145, 164] it is possible to give a rigorous mathematical basis
of our derivation. Here we omit the details for the sake of brevity.

Fokker-Plank equations The scaled equation (3.10) reads

d

dt

∫
I
ϕ(w)fF (w, t)dw =

1

cF ε

〈∫
I2

(ϕ(w∗)− ϕ(w))fF (w, t)fF (v, t)dwdv

〉
+

1

cFLε

〈∫
I2

(ϕ(w∗∗)− ϕ(w))fF (w, t)fL(w̃, t)dwdw̃

〉
.

(4.7)

Considering the second order Taylor expansion of ϕ around w we obtain

ϕ(w∗)− ϕ(w) = (w∗ − w)ϕ′(w) +
1

2
(w∗ − w)2ϕ′′(w̄)

ϕ(w∗∗)− ϕ(w) = (w∗∗ − w)ϕ′(w) +
1

2
(w∗∗ − w)2ϕ′′(ŵ)

(4.8)
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where for some 0 ≤ ϑ1, ϑ2 ≤ 1

w̄ = ϑ1w
∗ + (1− ϑ1)w, ŵ = ϑ2w

∗∗ + (1− ϑ2)w.

Taking into account the binary interactions (3.4)-(3.5) in (4.8), and substi-
tuting in (4.7), we obtain a second order approximation of the dynamics. In
the limit ε→ 0 the leading order is given by

d

dt

∫
I
ϕ(w)fF (w)dw =

1

cF

[∫
I2
P (w, v)(v − w)ϕ′(w)fF (w, t)fF (v)dwdv

]
+

1

cFL

[∫
I2
S(w, w̃)(w̃ − w)ϕ′(w)fF (w)fL(w̃)dwdw̃

]
+

1

2

ς2

cF

∫
I
ϕ′′(w)D2(w)fF (w, t)dw

+
1

2

ς̂2ρ

cFL

∫
I
ϕ′′(w)D̂2(w)fF (w, t)dw.

(4.9)

Integrating back by parts the last expression we obtain the Fokker-Planck
equation for the followers’ opinion distribution

∂fF
∂t

+
∂

∂w

(
1

cF
KF [fF ](w) +

1

cFL
KFL[fL](w)

)
fF (w) =

1

2

∂2

∂w̃2

(
ς2

cF
D̃2(w̃) +

ς̂2ρ

cFL

)
fF (w),

(4.10)

where

KF [fF ](w) =

∫
I
P (w, v)(v − w)fF (v, t)dv,

KFL[fL](w) =

∫
I
S(w, w̃)(w̃ − w)fL(w̃)dw̃.

(4.11)

Following the same strategy we obtain the analogous result for the leaders’
opinion distribution

∂fL
∂t

+
∂

∂w̃

(
ρ

cL
H[fL](w̃) +

1

cL
KL[fL](w̃)

)
fL(w̃) =

1

2

ς̃2ρ

cL

∂2

∂w̃2
D̃2(w̃)fL(w̃)

(4.12)

where

K[fL](w̃) =

∫
I
R(w̃, ṽ)(ṽ − w̃)fL(ṽ, t)dṽ (4.13)

and

H[fL](w̃) =
2ψ

κ
(w̃ +mL(t)− 2wd) +

2µ

κ
(w̃ +mL(t)− 2mF (t)) . (4.14)
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Steady state solutions In this section we show that in some cases it is
possible to find explicit stationary states of the Fokker-Planck system of
equation described in (4.10) and (4.12). Here we restrict to the simplified
situation where every interaction function is constant and unitary, i.e. P ≡
S ≡ R ≡ 1, and

D(w) = D̃(w) = D̂(w) = 1− w2. (4.15)

The steady state of equations (4.10) and (4.12) is solution of the following
equations (

1

cF
(mF − w) +

ρ

cFL
(mL − w)

)
fF,∞ =

1

2

(
ς2

cF
+
ς̂2ρ

cFL

)
∂

∂w
D2(w)fF,∞,

(4.16)

and (
2ψ

κ
[w̃ − 2wd −mL] +

2µ

κ
[w̃ − 2mF +mL]

)
fL,∞ =

1

2

ς̃2ρ

cL

∂

∂w̃
D2(w̃)fL,∞.

(4.17)

As soon as t→∞, thanks to equation (4.3), the followers and the leaders’
mean opinion mF and mL relax to the desired opinion wd. Then(

1

cF
+

ρ

cFL

)
(wd − w)fF,∞ =

1

2

(
ς2

cF
+
ς̂2ρ

cFL

)
∂

∂w
D2(w)fF,∞, (4.18)

that is (
1

cF
+

ρ

cFL

)
(wd − w)

gF
D2(w)

=
1

2

(
ς2

cF
+
ς̂2ρ

cFL

)
∂

∂w
gF (4.19)

where gF = D2(w)fF,∞. This implies

gF,∞ = aF exp

{
− 2

bF

∫ w

0

z − wd
(1− z2)2

dz

}
, bF =

ς2cFL + ς̂2cFρ

cFL + cFρ
, (4.20)

and aF is a normalization constant such that
∫
I gF,∞dw = 1. Finally we

have

fF,∞ =
aF

(1− w2)2
exp

{
− 2

bF

∫ w

0

z − wd
(1− z2)2

dz

}
. (4.21)

Similarly we can find the steady state fL,∞ as a solution of the equation

−
(

2ψ

κ
+

2µ

κ

)
(wd − w̃)

gL,∞
D2(w̃)

=
1

2

ς̃2ρ

cL

∂

∂w̃
gL,∞, (4.22)
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where gL,∞ = fL,∞D
2(w). The solution of the differential equation (4.22) is

given by

gL,∞ = aL exp

{
− 2

bL

∫ w̃

0

(
z − wd

(1− z2)2

)
dz

}
, bL =

ς̄ρκ

2cL(ψ + µ)
, (4.23)

and aL is chosen such that the mass of gL,∞ is equal to ρ. Then the steady
state is

fL,∞ =
aL

(1− w̃2)2
exp

{
− 2

bL

∫ w̃

0

(
z − wd

(1− z2)2

)
dz

}
. (4.24)

1.5 Numerical Simulation

In this section we present several numerical results concerning the numerical
simulation of the Boltzmann type control model introduced in the previous
paragraphs. All the results have been computed by a Monte Carlo method
for the Boltzmann model (see [145] for more details) in the Fokker-Planck
regime ε = 0.01 under the scaling (3.1). In the numerical tests we assume
that the five per cent of the population is composed by opinion leaders, see
for example [82]. Note that, for clarity, in all figures the leaders’ profiles have
been magnified by a factor 10. The regularization term in the control is fixed
to ν = 1. The random diffusion effects have been computed in the case (4.15)
for a uniform random variable with scaled variance ς2 = ς̃2 = ς̂2 = 0.01. It
is easy to check that the above choices preserve the bounds in the numerical
simulations. First we present some test cases with a single population of
leaders as discussed in our theoretical analysis. Then we consider the case of
multiple leaders’ populations with different time-dependent strategies. This
leads to more realistic applications of our arguments, introducing the concept
of competition between leaders’ populations. For the sake of simplicity we fix
constant interaction functions P (·, ·) ≡ 1 and R(·, ·) ≡ 1 and the remaining
scaled computational parameters have been summarized in Table 5.1.

Test S(·, ·) cF ĉFL ĉL ρ ψ wd

1a 1 1 0.1 0.1 0.05 0.5 0.5

1b (5.3) 1 0.1 0.1 0.05 0.5 0.5

S(·, ·) cF ĉFL1 ĉL1 ρ1 ψ1 wd1 ĉFL2 ĉL2 ρ2 ψ2 wd2
2 1 1 0.1 0.1 0.05 0.5 0.5 0.1 0.1 0.05 0.5 -0.5

3 1 1 0.1 0.1 0.05 (5.7) 0.5 1 0.1 0.05 (5.7) -0.5

Table 5.1: Computational parameters for the different test cases.

Test 1. Leaders driving followers In the first test case we consider
a single population of leaders driving followers described by the following
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Figure 5.1: Test 1a: Kinetic densities evolution over the time interval [0, 1]
for a single population of leaders.

system of Boltzmann equations
d

dt

∫
I
ϕ(w)fF (w, t)dw = (QF (fF , fF ), ϕ) + (QFL(fF , fL), ϕ)

d

dt

∫
I
ϕ(w̃)fL(w̃, t)dw̃ = (QL(fL, fL), ϕ) .

(5.1)

Numerical experiments show that the optimal control problem is capable
to introduce a non monotone behaviour of mL(t). We report the evolution,
over the time interval [0, 1], of the the kinetic densities fF (w, t) and fL(w̃, t)
in Figure 5.1 for constant interaction functions P,R and S. The initial
distributions fF ∼ U([−1,−0.5]) and fL ∼ N(wd, 0.05) where U(·) and
N(·, ·) denote, as usual, the uniform and the normal distributions. We used
the compact notations

ĉFL = cFL/ρ, ĉL = cL/ρ. (5.2)

This non monotone behaviour shows that the leaders use a combination of
populistic and radical strategy to drive the followers towards their desired
state. In an electoral context, this is a characteristic which can be found
in populistic radical parties, which typically include non-populist ideas and
their leadership generates through a dense network of radical movements
[140].

Next we consider a bounded confidence model for the leader-follower
interaction with

S(w, w̃) = χ(|w − w̃| ≤ ∆), (5.3)

where 0 ≤ ∆ ≤ 2. In the simulation we assume ∆ = 0.5 and use the same
initial data of the previous case. It is interesting to observe how the model
is capable to reproduce a realistic behavior where the leaders first are able
to attract a small group of followers which subsequently are capable to drive
the whole majority towards the desired state (see Figures 5.2 and 5.3).
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Figure 5.2: Test 1b: Kinetic densities at different times for a single population
of leaders with bounded confidence interaction.
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Figure 5.3: Test 1b: Kinetic densities evolution over the time interval [0, 3]
for a single population of leaders with bounded confidence interaction.

Test 2. The case of multiple leaders populations Similarly, if more
than one population of leaders occurs, each one with a different strategy, we
can describe the evolution of the kinetic density of the system through a
Boltzmann approach. Let M > 0 be the number of families of leaders, each
of them described by the density fLp , p = 1, ...,M such that

∫
I
fLp(w̃)dw̃ = ρp. (5.4)

If we suppose that an unique population of followers does exist, with density
fF , and that every follower interacts both with the others agents from the
same population and with every leader of each p-th family, for a suitable test
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Figure 5.4: Test 2: Kinetic densities at different times reproducing a Hotelling-
like model behaviour for two populations of leaders.
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Figure 5.5: Test 2: Kinetic densities evolution over the time interval [0, 0.25]
reproducing a Hotelling-like model behaviour for two populations of leaders.
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function ϕ we obtain the following system of Boltzmann equations
d

dt

∫
I
ϕ(w)fF (w, t)dw = (QF (fF , fF ), ϕ) +

M∑
p=1

(
QFL(fLp , fF ), ϕ

)
d

dt

∫
I
ϕ(w̃)fLp(w̃, t)dw̃ = (QL(fLp , fLp), ϕ), p = 1, . . . ,M.

(5.5)
We assume that the leaders aim at minimising cost functionals of the type
(2.8) and therefore the differences consist in two factors: the target opinions
wdp and in the leaders’ attitude towards a radical (ψp ≈ 1) or populistic
strategy (µp ≈ 1). We therefore introduce the analogous rescaling (3.1) and
we define

ĉFLp = cFLp/ρp, ĉLp = cLp/ρp, p = 1, . . . ,M. (5.6)

In the numerical test we establish a link between our arguments and a
Hotelling’s type model [118]. The model describes how two shop owners,
which sell the same product at the same price in the same street, must
locate their shops in order to reach the maximum number of customers,
uniformly distributed along the street (in other words, in order to maximize
their profits). Paradoxically the model yields that the equilibrium, without
changing prices, is reached if they get closer. In the cited original paper
electoral dynamics are placed in this context and it can be regarded as the
reason why political parties’ programs are often perceived as similar. We
consider the case of two populations of leaders, described by the densities
fL1 and fL2 , exercising different controls over a population of followers
uniformly distributed within the interval I = [−1, 1]. Initially the leaders are
distributed as fLp ∼ N(wdp , 0.05), p = 1, 2. We can observe that the model
leads to a centrist population of followers, whose opinion spreads in a range
between leaders’ mean opinions (see Figures 5.4 and 5.5).

Test 3. Two leaders populations with time-dependent strategies
Finally we introduce a multi-population model for opinion formation with
time-dependent coefficients. This approach leads to the concept of adaptive
strategy for every family of leaders p = 1, ...,M . The coefficients ψ and µ
which appear into the functional now evolve in time and are defined for every
t ∈ [0, T ] as

ψp(t) =
1

2

∫ wdp+δ

wdp−δ
fF (w)dw +

1

2

∫ mLp+δ̄

mLp−δ̄
fF (w)dw

µp(t) =1− ψp(t)
(5.7)

where both δ, δ̄ ∈ [0, 1] are fixed and mLp is the average opinion of the p-th
leader. This choice of coefficients is equivalent to introduce a competition
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Figure 5.6: Test 3: Kinetic densities at different times for for a two popula-
tions of leaders model with time dependent strategies.
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Figure 5.7: Test 3: Kinetic density evolution over the time interval [0, 1] for
a two populations of leaders model with time dependent strategies.

between the populations of leaders, where each leader try to adapt its
populistic or radical attitude accordingly to the success of the strategy. Note
also that the success of the strategy is based on the local perception of the
followers.

In the numerical experiments reported in Figure 5.6 and Figure 5.7 we
take into account two populations of leaders, initially normally distributed
with mean values wd1 and wd2 and parameters δ = δ̄ = 0.5, respectively,
and a single population of followers, represented by a skewed distribution
fF ∼ Γ(2, 1

4) over the interval [−1, 1], where Γ(·, ·) is the Gamma distribution.
Here the frequencies of interactions are assumed to be unbalanced since
ĉFL1 = 0.1 and ĉFL2 = 1. In the test case we assume that the followers group
has an initial natural inclination for a position represented by one leader but,
thanks to communication strategies pursued by the minority leader, it is
driven to different positions (see Figures 5.6 and 5.7). In a bipolar electoral
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context, an example of the described behaviour would be a better use of the
media in a coalition with respect to the opponents.

1.6 Conclusions

We introduced a Boltzmann type control for a hierarchical model of
opinion formation where the leader behaviour is influenced both by the desire
to achieve a prescribed opinion consensus and by the mean opinion of the
followers. The main novelty of the method is that, thanks to an instantaneous
binary control approximation, the control is explicitly incorporated in the
resulting leader dynamics. The use of instantaneous control and the kinetic
description permit to pass from an O(N2) dynamics, which must be solved
forward-backward in time, to a much simpler forward O(N) stochastic
simulation. This is of paramount importance in view of possible applications
of this kind of constrained opinion modeling. In the so-called quasi invariant
opinion limit the corresponding Fokker-Planck descriptions have been derived
and explicit expressions of their steady states computed. Several numerical
examples illustrate the robustness of the controlled dynamics using various
leaders strategies even in presence of different groups of competing leaders.
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Chapter 2

Optimal control of opinion
dynamics over complex
networks

2.1 Introduction

Graph theory has emerged in recent years as one of the most active
fields of research [3, 21, 24, 175]. In fact, the study of technological and
communication networks earned a special attention thanks to a huge amount
of data coming from empirical observations and more recently from online
platforms like Facebook, Twitter, Instagram and many others. This fact
offered a real laboratory for testing on a large-scale the collective behavior
of large populations of agents [123, 159] and new challenges for the scientific
research has emerged. In particular, the necessity to handle millions, and
often billions, of vertices implied a substantial shift to large-scale statistical
properties of graphs giving rise to the study of the so-called scale-free networks
[21, 143, 175].

In this work, we will focus our attention on the modelling and control of
opinion dynamics on a time evolving network. We consider a system of agents,
each one belonging to a node of the network, interacting only if they are
connected through the network. Each agent modifies his/her opinion through
a compromise function which depends both on opinions and the network
[6, 11, 13, 61, 72, 172]. At the same time new connections are created and
removed from the network following a preferential attachment process. For
simplicity here we restrict to non-growing network, that is a graph where the
total number of nodes and the total number of edges are conserved in time.
An optimal control problem is then introduced in order to drive the agents
toward a desired opinion. The rest of the chapter is organized as follows.
In Section 6.2 we describe the alignment model for opinions spreading on a
non-growing network. In order to control the trajectories of the model we
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introduce in Section 2.3 a general setting for a control technique weighted
by a function on the number of connections. A numerical method based on
model predictive control is then developed. Finally in Section 6.5 we perform
numerical experiments showing the effectiveness of the present approach.
Some conclusion are then reported in the last Section.

2.2 Modeling opinion dynamics on networks

In the model each agent i = 1, . . . , N is characterized by two quantities
(wi, ci), i = 1, . . . , N , representing the opinion and the number of connections
of the agent ith respectively. This latter term is strictly related to the
architecture of the social graph where each agent shares its opinion and
influences the interaction between individuals. Each agent is seen here as
a node of a time evolving graph GN = GN (t), t ∈ [t0, tf ] whose nodes are
connected through a given set of edges. In the following we will indicates
the density of connectivity the constant γ ≥ 0.

2.2.1 Network evolution without nodes’ growth

In the sequel we will consider a graph with both a fixed number of nodes N
and a fixed number of edges E. In order to describe the network’s evolution
we take into account a preferential attachment probabilistic process. This
mechanism, known also as Yule process or Matthew effect, has been used in
the modeling of several phenomena in biology, economics and sociology, and
it is strictly connected to the generation of power law distributions [21, 175].
The initial state of the network, GN (0), is chosen randomly and, at each time
step an edge is randomly selected and removed from the network. At the
same time, a node is selected with probability

Πα(ci) =
ci + α∑N

j=0(cj + α)
=

ci + α

2E +Nα
, i = 1, . . . , N, (2.1)

among all possible nodes of GN , with α > 0 an attraction coefficient. Based
on the probability (2.1) another node is chosen at time t and connected
with the formerly selected one. The described process is repeated at each
time step. In this way both the number of nodes and the total number of
edges remains constant in the reference time interval. Let p(c, t) indicates
the probability that a node is endowed of degree the c at time t. We have

∑
c

p(c, t) = 1,
∑
c

c p(c, t) = γ. (2.2)
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The described process may be described by the following master equation
[14]

d

dt
p(c, t) =

D

E
[(c+ 1)p(c+ 1, t)− cp(c, t)]

+
2D

2E +Nα
[(c− 1 + α)p(c− 1, t)− (c+ α)p(c, t)] ,

(2.3)

where D > 0 characterizes the relaxation velocity of the network toward
an asymptotic degree distribution p∞(c), the righthand side consists of four
terms, the first and the third terms account the rate of gaining a node of
degree c and respectively the second and fourth terms the rate of losing a
node of degree c. The equation (2.22) holds in the interval c ≤ E, whereas
for each c > E we set p(c, t) = 0. While most the random graphs models with
fixed number of nodes and vertices produces unrealistic degree distributions
like the Watts and Strogatz generation model, called small-world model
[171], the main advantage of the graph generated through the described
rewiring process stands in the possibility to recover the scale-free properties.
Indeed we can easily show that if γ = 2E/N ≥ 1 with attraction coefficient
α� 1 then the stationary degree distribution p∞(c) obeys a power-law of
the following form

p∞(c) =

(
α

γ

)α α
c
. (2.4)

When α� 1 we loose the features of the preferential attachment mechanism,
in fact high degree nodes are selected approximately with the same probability
of the nodes with low degree of connection. Then the selection occurs in
a non preferential way and the asymptotic degree distribution obeys the
Poisson distribution

p∞(c) =
e−γ

c!
γc. (2.5)

A simple graph is sketched in Figure 2.1 where we can observe how the
initial degree of the nodes influences the evolution of the connections. In
order to correctly observe the creation of the new links, that preferentially
connect nodes with the highest connection degree, we marked each node
with a number i = 1, . . . , 20 and the nodes’ diameters are proportional with
their number of connections.

2.2.2 The opinion alignment dynamics

The opinion of the ith agent ranges in the closed set I = [−1, 1], that
is wi = wi(t) ∈ I for each t ∈ [t0, tf ], and its opinion changes over time
according to the following differential system

ẇi =
1

|Si|
∑
j∈Si

Pij(wj − wi), i = 1, . . . , N (2.6)
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Figure 2.1: Left: initial configuration of the sample network G20 with density
of connectivity γ = 5. Right: a simulation of the network G20 after 10 time
steps of the preferential attachment process. The diameter of each node is
proportional to its degree of connection.

where Si indicates the set of vertex connected with the ith agent and reflects
the architecture of the chosen network, whereas ci = |Si| < N stands for the
cardinality of the set Si, also known as degree of vertex i. Note that the
number of connections ci evolves in time accordingly to the process described
in Section 2.2.1. Furthermore we introduced the interaction function Pij ∈
[0, 1], depending on the opinions of the agents and the graph GN which can
be written as follows

Pij = P (wi, wj ;GN ). (2.7)

A possible choice for the interaction function is the following

P (wi, wj ;GN ) = H(wi, wj)K(GN ), (2.8)

where H(·, ·) represents the positive compromise propensity, and K a general
function taking into account statistical properties of the graph G. In what
follows we will consider K = K(ci, cj), a function depending on the vertices’
connections.

2.3 Optimal control problem of the alignment model

In this section we introduce a control strategy which characterizes the
action of an external agent with the aim of driving opinions toward a given
target wd. To this goal, we consider the evolution of the network GN (t) and
the opinion dynamics in the interval [t0, tf ]. Therefore we introduce the
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following optimal control problem

min
u∈U

J(w, u) :=
1

2

∫ tf

t0

{ 1

N

N∑
j=1

(wj(s)− wd)2 + νu(s)2
}
ds, (3.1)

subject to

ẇi =
1

|Si|
∑
j∈Si

Pij(wj − wi) + uχ(ci ≥ c∗), wi(0) = w0
i , (3.2)

where we indicated with U the set of admissible controls, with ν > 0 a
regularization parameter which expresses the strength of the control in the
overall dynamics and wd ∈ [−1, 1] the target opinion. Note that the action
of the control u is weighted by an indicator function χ(·), which is active
only for the nodes with degree ci ≥ c∗. In general this selective control
approach models an a-priori strategy of a policy maker, possibly acting under
limited resources or unable to influence the whole ensemble of agents. For
example we can consider a varying horizon control acting on a fixed portion
of connected agents.

The solution of this kind of control problems is in general a difficult task,
given that their direct solution is prohibitively expensive for a large number
of agents. Different strategies have been developed for alignment modeling in
order to obtain feedback controls or more general numerical control techniques
[5, 6, 11, 13, 32, 174, 117]. To tackle numerically the described problem a
standard strategy makes use of a model predictive control (MPC) approach,
also referred as receding horizon strategy.

In general MPC strategies solves a finite horizon open-loop optimal control
problem predicting the dynamic behavior over a predict horizon tp ≤ tf , with
initial state sampled at time t (initially t = t0), and computing the control
on a control horizon tc ≤ tp. The optimization is computed introducing a
new integral functional Jp(·, ·), which is an approximation of (3.1) on the
time interval [t, t+ tp], namely

Jp(w, ū) :=
1

2

∫ t+tp

t

{ 1

N

N∑
j=1

(wj(s)− wd)2 + νpū(s)2
}
ds (3.3)

where the control, ū : [t, t+ tp]→ U , is supposed to be an admissible control
in the set of admissible control U , subset of R, and νp a possibly different
penalization parameter with respect to the full optimal control problem.
Thus the computed optimal open-loop control ū(·) is applied feedback to the
system dynamics until the next sampling time t+ts is evaluated, with ts ≤ tc,
thereafter the procedure is repeated taking as initial state of the dynamics
at time t+ ts and shifting forward the prediction and control horizons, until
the final time tf is reached. This process generates a sub-optimal solution
with respect to the solution of the full optimal control problem (3.1)-(3.2).
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Let us consider now the full discretize problem, defining the time sequence
[t0, t1, . . . , tM ], where tn − tn−1 = ts = ∆t > 0 and tM := M∆t = tf , for
all n = 1, . . . ,M , assuming furthermore that tc = tp = p∆t, with p > 0.
Hence the linear MPC method look for a piecewise control on the time frame
[t0, tM ], defined as follows

ū(t) =
M−1∑
n=0

ūnχ[tn,tn+1](t). (3.4)

In order to discretize the evolution dynamics we consider a Runge-Kutta
scheme, the full discretized optimal control problem on the time frame
[tn, tn + p∆t] reads

min
ū∈U

Jp(w, ū) :=
1

2

∫ tn+p∆t

tn

{ 1

N

N∑
j=1

(wj(s)− wd)2 + νpū
2
}
ds (3.5)

subject to

W
(n)
i,l = wni + ∆t

s∑
k=1

al,k

(
F (t+ θk∆t,W

(n)
i,k ) + Ū

(n)
k Qi(t+ θk∆t)

)
,

wn+1
i = wni + ∆t

s∑
l=1

bl

(
F (t+ θl∆t,W

(n)
i,l ) + Ū

(n)
l Qi(t+ θl∆t)

)
,

wni = wi(tn),

(3.7)

for all n = 1, . . . , p−1; l = 1, . . . , s; i, . . . , N and having defined the following
functions

F (t, wi) =
1

|Si(t)|
∑

j∈Si(t)

Pij(wj − wi), Qi(t) = χ(ci(t) ≥ c∗).

The coefficients (al,k)l,k, (bl)l and (θl)l, with l, k = 1, . . . , s, define the Runge-

Kutta method and (Ū (n))l, (W
(n)
i,l )l are the internal stages associated to

ū(t), wi(t) on time frame [tn, tn+1].

2.3.1 Instantaneous control

Let us restrict to the case of a single prediction horizon, p = 1, where we
discretize the dynamics with an explicit Euler scheme ( a1,1 = θ1 = 0 and
b1 = 1). Notice that since the control ū is a constant value and assuming
that the network, GN remains fixed over the time interval [tn, tn + ∆t] the
discrete optimal control problem (3.5) reduces to

min
ū∈U

Jp(w, ū
n) := ∆t

{ 1

N

N∑
j=1

(wn+1
j (ūn)− wd)2 + νp(ū

n)2
}

(3.8)
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with

wn+1
i = wni + ∆t (F (tn, w

n
i ) + ūnQni ) , wni = wi(tn). (3.9)

In order to find the minima of (3.5) is sufficient to find the value ū satisfying
∂ūJp(w, ū) = 0, which can be computed by a straightforward calculation

ūn = − 1

Nν + ∆t
∑N

j=1(Qnj )2

 N∑
j=1

Qnj
(
wnj − wd

)
+ ∆t

N∑
j=1

Qnj F (tn, w
n
i )

 .

(3.10)

where we scaled the penalization parameter with νp = ∆tν.

2.4 Numerical results

In this section we present some numerical results in order to show the main
features of the control introduced in the previous paragraphs. We considered
a population of N = 100 agents, each of them representing a node of an
undirected graph with density of connectivity γ = 30. The network G100

evolves in the time interval [0, 50] with attraction coefficient α = 0.01 and
represents a single sample of the evolution of the master equation (2.22) with
D = 20. The control problem is solved by the instantaneous control method
described in Remark 2.3.1 with ∆t = 5 10−2. In Figure 4.3 we present the
evolution over the reference time interval of the constrained opinion dynamics.
The interaction terms have been chosen as follows

K(ci, cj) = e−λci
(

1− e−βcj
)
, H(wi, wj) = χ(|wi − wj | ≤ ∆), (4.1)

where the function H(·, ·) is a bounded confidence function with ∆ = 0.4,
while K(·, ·) defines the interactions between the agents i and j taking into
account that agents with a large number of connections are more difficult to
influence and at the same time they have more influence over other agents.
The action of the control is characterized by a parameter κ = 0.1 and target
opinion wd = 0.8. We present the resulting opinion dynamics for a choice
of constants λ = 1/100, β = 1 in Figure 4.2. We report the evolution of the
network and of the opinion in Figure 4.3, here the diameter of each node
is proportional with its degree of connection whereas the color indicates its
opinion. As a measure of consensus over the agents we introduce the quantity

Vwd =
1

N − 1

N∑
i=1

(wi(tf )− wd)2, (4.2)

where wi(tf ) is the opinion of the ith agent at the final time tf . In Figure 4.4
we compare different values of Vwd as a function of c∗. Here we calculated
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Figure 4.2: Evolution of the constrained opinion dynamics with uniform
initial distribution of opinions over the time interval [0, 50] for different values
of c∗ = 10, 15, 30 with target opinion wd = 0.8, control parameter κ = 0.1,
∆t = 10−3 and confidence bound ∆ = 0.4.

the size of the controlled agents and the values of Vwd both, starting from a
given uniform initial opinion and the same graph with initial uniform degree
distribution. It can be observed how the control is capable to drive the
overall dynamics toward the desired state acting only on a portion of the
nodes.

2.5 Conclusions and perspectives

In this short note we focus our attention on a control problem for the
dynamic of opinion over a time evolving network. We show that the intro-
duction of a suitable selective control depending on the connection degree
of the agent’s node is capable to drive the overall opinion toward consensus.
In a related work we have considered this problem in a mean-field setting
where the number of agents, and therefore nodes, is very large [14]. In future
works we plan to concentrate on the model predictive control setting, where
the evolution of the control is based on the evolution of the network, and
on the case with varying prediction horizon acting on a given portion of the
agents.
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Figure 4.3: Evolution of opinion and connection degree of each node of the
previously evolved graph G100. From left to right: graph at times t = 0, 25, 50.
From the top: opinion dynamics for threshold values c∗ = 10, 20, 30. The
target opinion is set wd = 0.8 and the control parameter κ = 0.1.
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Figure 4.4: Left: the red squared plot indicates the size of the set of
controlled agent at the final time tf in dependence on c∗ whereas the blue
line indicates the mean square displacement Vwd . Right: values of the control
u at each time step for c∗ = 10, 20, 30. In the numerical test we assumed
∆ = 0.4,∆t = 5 10−2, κ = 0.1.
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Chapter 3

Performance bounds for
mean–field constrained
dynamics

3.1 Introduction

In recent years many mathematical models of self-organized systems of
interacting agents have been introduced in the literature, see for example
[16, 19, 46, 67, 66, 68, 70, 71, 74, 94, 115, 119, 139, 145, 164] and the
references therein. The general setting consists of a microscopic dynamics
described by systems of ordinary differential equations where the evolution
of the state of each agent is influenced by the collective behavior of all other
agents. Examples in those microscopic interacting systems are frequently
seen in the real world like: schools of fish, swarm of bees, herds of sheep,
opinion formation in crowds and financial markets. Of interest is usually the
case when the number of agents becomes very large. Here, the qualitative
behavior is studied through a different level of description, i.e. through the
introduction of distribution functions whose behavior is governed by kinetic
(or fluid–dynamic) partial differential equations.

The control mechanisms of self–organized systems has been investigated
recently as follow–up questions to the progress in mathematical modeling
and simulation. The control of emergent behavior has been studied on the
level of the microscopic agents [13, 33] as well as on the level of the kinetic
[6, 11, 116] or fluid–dynamic equations [27, 65, 75, 89]. The contributions
have to be further distinguished depending on the type of applied control.
Without intending to review all literature we give some references on certain
classes of control, e.g., sparse control [88], Nash equilibrium control [128],
control using linearized dynamics and Riccati equations [115, 116] or control
driven by other external dynamics [11, 82].

Here, we focus on a general method to construct a control mechanism,
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called model predictive control (MPC). MPC utilizes the assumption that
agents optimize their cost functional not necessarily over a large time hori-
zon. Instead they determine their (locally best) action by minimizing their
cost only over a short time interval which recedes as time evolves. The
methodology of MPC is also called receding horizon control (or instantaneous
control when the length of the horizon is equal to one). From the modeling
point of view the fact that agents may be able to optimize strategically
their trajectories over a small, but finite, interval of time opened several
connections to socio–economic problems, where each agent, or a portion
of them, is influenced in order to force the entire system toward specific
patterns.

MPC has been used in the engineering community for over fifty years, see
e.g. [134, 135, 136, 163] for an overview and further references. However,
therein, only a small number of agents M < ∞ is considered and the
optimization problems are then studied at the level of ODEs. The link
between MPC on the level of agents and the MPC on the level of kinetic and
fluid–dynamic equations has been subject to recent investigations [6, 75, 116],
and also the relation between MPC and mean-field games [128] has been a
subject to recent studies [73]. However, in all currently presented approaches
on MPC in relation to mean-field limits the special case of a receding time
horizon has been considered. While this is computationally advantageous,
it is known to have some severe drawbacks: in the case of finitely many
agents stability of the controlled system can expected only if the horizon
is sufficiently large, the instability of the controlled system has been also
observed numerically e.g. in [11]. Further, MPC leads to a control that is
suboptimal compared with the theoretical optimal one, that is a control with
infinite control horizon. Except for a very particular case [116] there is no
result on the relation between the optimal control and the MPC approach in
the mean-field limit.

In the case M <∞ there has been recent progress on the relation between
the time horizon for MPC and the stability as well as optimality estimates of
MPC controls [105, 106, 107, 121]. In particular an estimate on the difference
between MPC and optimal control has been given in [106, Corollary 4.5].
The theory therein covers finite and infinite dimensional phase spaces, but
still requires the number M of agents to be finite.

The main purposes of the present work is to extend the theory presented
in [106] to the limit case of infinitely many agents. The goal is to derive
the corresponding mean-field results for the optimality estimates under the
same assumptions as in the case M <∞. While the presentation will cover a
general dynamics we exemplify the results on a first–order alignment model,
as an extension to models recently presented [6, 11].

The rest of the manuscript is organized as follows. First, in Section 3.2,
we introduce some notations and results for an exemplified constrained
model deriving its mean-field formulation and highlighting the main features
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of the performance estimate for the MPC approach. In a more general
setting, in Section 3.3, we define the objects of a mean-field optimal control
problem subject to a given dynamics proving several estimates in relation to
MPC. Here, an example is proposed with numerical results, in Section 3.4,
confirming the theoretical analysis. In 5.6 we recall technical details.

3.2 Notation and motivating example

In this section, in order to clarify the notations and exemplify the aims
of this work, we introduce a stylized problem which has been extensively
investigated in several recent works on constrained alignment dynamics
[5, 6, 13]. At the microscopic level, the mathematical description of collective
motion is given by a nonlinear system of ordinary differential equations, from
which the mean-field level may be obtained through specific assumptions
[53, 66, 90]. Let us assume that M > 0 agents fulfill the dynamics in
discretized form

xi,n+1 = xi,n +
∆t

M

M∑
j=1

P (xj,n − xi,n) + un (2.1)

where P ≥ 0 is a general interaction function that may also depend on
variables (xj,n)Mi=1 and xi,n = xi(t

n) ∈ X ⊂ R is the state of the ith agent at
time tn ≥ 0 with tn = n ∈ N. We denote by

Xn = (xi,n)Mi=1, X−i,n = (xj,n)Mj=1,j 6=i (2.2)

the state of the full system at time tn and the state of the all agents except
the ith agent, respectively. In the following we will drop the dependence on
the time variable whenever the intention is clear. Moreover we assume that
initial conditions X(t0) = X0 are given.

The control sequence (un)n is to be determined in order to minimize a
given cost functional

Ju∞(X0) :=
∞∑
n=0

`(Xn, un) (2.3)

where Xn is the solution to (2.1) for the control un ∈ U , with U ⊂ R
bounded, and initial datum X(0) = X0. In (2.3) we introduce a general
function ` : RM × U → R. Hence, the functional J depends on the initial
datum X0 as well as the choice of the control sequence u = (un)n. The
dependence of J on the time horizon is indicated by a subscript +∞, whereas
the dependence on the control by the superscript u. We assume here that
there exists a solution u∗ of the optimal control problem

u∗ = arg min
u
Ju∞(X0). (2.4)
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From the computational point of view this approach is generally too expensive,
therefore, a suboptimal approach named model predictive control (MPC)
has been proposed. The leading idea of the MPC approach is to avoid
the solution of the dynamics on the whole time interval by considering a
closed-loop control for the considered model, see [44, 158] for an exhaustive
introduction. In particular a control mechanism designed through a MPC
might be interpreted as a strategy in the contest of the mean-field games
[73].

(Single-step) MPC with receding time horizon N applies a control u of the
type

uMPC(t) =

∞∑
n=0

uMPC
n χ[tn,tn+1)(t). (2.5)

The unknown control actions uMPC
n ∈ R are determined at each time tn by

uMPC
n = v1 (2.6)

where (vk)
N
k=1 are the solutions of the following auxiliary minimization

problem

(vk)k=1,...,N = arg min
(vk)Nk=1

∆t
N∑
k=1

`(Yk, vk) subject to (2.8), (2.7)

where the states Yk, k = 1, . . . , N, are given by the dynamics (2.8) for an
initial value Xn and a time horizon N , i.e., for each k = 1, . . . , N

yi,k+1 = yi,k +
∆t

M

M∑
j=1

P (yj,k − yi,k) + ∆tvk, yi,1 = xi,n. (2.8)

In the introduced notations, the case N = 2 corresponds to instantaneous-
type control, which has been extensively investigate in the literature, see
[6, 11, 73, 75].

A first obvious relation between the optimal control and the control intro-
duced through a model predictive approach is the following

Ju
MPC

∞ (X0) ≥ Ju∗∞ (X0). (2.9)

Part of the investigation in [106] is related to a result to establish an upper

bound on Ju
MPC

∞ by a multiple of Ju
∗
∞ , in particular the result [106, Theorem

4.2] proves that such a multiplicative factor can be obtained and depends
in particular on the optimization horizon N and on the decay rate of the
function `(·, ·). The result of the aforementioned work leads to an estimate
at the ODE level of the type

αNJ
u∗
∞ (X0) ≤ αNJ

uMPC
N∞ (X0) ≤ Ju∗∞ (X0), (2.10)
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for some 0 < αN ≤ 1. Where we indicated the dependence of uMPC on the
time horizon in problem (2.7) by the subscript N on the control. Further,

an estimate αNJ
uMPC
N∞ (X0) ≤ Ju∗N (X0) has been established as an additional

result in [106, Corollary 4.5]. Here, Ju
∗

N is defined as in equation (2.3) but
for a finite time horizon T = N∆t. An estimate on the crucial constant αN
is provided e.g. in [107].

We are interested in a corresponding result in the case of a large number
of agents, that is in the limit M →∞. We sketch here the derivation of the
semi discrete mean-field formulation of the constrained problem (2.1). Let us
suppose that for each n ≥ 0 the introduced MPC control uMPC

n is symmetric
with respect to each position of the system of agents at time tn. We define
the empirical measure

fM (tn) = fM,n =
1

M

M∑
i=1

δ(x− xi,n), (2.11)

where δ is the Dirac delta, or localizing function, defined in the space of
probability measures of Rd, namely P(Rd). For any test function function
φ ∈ C1

0(Rd) we have ∫
R
φ(x)fM,n(x)dx =

1

M

M∑
i=1

φ(xi,n), (2.12)

then through a first order Taylor expansion we obtain

φ(xi,n+1)− φ(xi,n) = φ′(xi,n)(xi,n+1 − xi,n) +O(∆t2) (2.13)

Now from the original dynamic (2.1) we can replace the quantity xi,n+1−xi,n
in (2.13), we have

φ(xi,n+1)− φ(xi,n) = φ′(xi,n)

∆t

M

M∑
j=1

P (xj,n − xi,n) + ∆tuMPC
n

 . (2.14)

If we consider not the sum over i = 1, . . . ,M equation (2.14) assumes the
following form

1

M

M∑
i=1

φ(xi,n+1)− φ(xi,n) =

1

M

M∑
i=1

φ′(xi,n)

∆t

M

M∑
j=1

P (xj,n − xi,n) + ∆tuMPC
n

 . (2.15)

Given that fM,n is a probability measure in the space P(Rd) with uniform
support with respect to M , Prokhorov’s theorem implies that the sequence
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(fM,n)M is weakly-* relatively compact, i.e. there exists a subsequence
(fMm,n)m and a probability measure fn ∈ P(Rd) such that

fMm,n →w∗ fn (2.16)

in P(Rd) pointwise in time. Recall that for the Cucker-Smale model the
tightness hypothesis is in general satisfied if the initial distribution fM,0 is
compactly supported with respect to M . For a rigorous proof we refer to
[53, 90].

As an example, consider the special function ` : RM × U → R

`(X,u) =
1

2

 1

M

M∑
j=1

xj

2

+
ν

2
u2, (2.17)

for some regularization parameter ν > 0. Then, the limit M →∞ of ` exists
and is given by

˜̀(f, u) =
1

2

(∫
R
yf(y)dy

)2

+
ν

2
u2 (2.18)

with l̃ : P(R)× U → R, where P(R) denotes the probability measures on R.

Let us consider the dynamics (2.8) and denote by y → fk(y) the agent
probability density at time tk with fk(·) ∈ P(R) for k = 1, . . . , N . The
limiting equation corresponding to the microscopic dynamics in (2.8) for
M →∞ and a.e. y ∈ R reads

fk+1(y) = fk(y)−∆t∂y

∫
X
P (z − y) fk(z)fk(y)dz −∆tvk∂yfk(y),

f1(y) = hn(y).

(2.19)

The probability distribution hn(·) ∈ P(R) is the distribution h(tn) at time
tn obtained by propagation of the mean-field limit of the original dynamics
(2.1), i.e. for each n ≥ 0

hn+1(x)−hn(x)+∆t∂x

(∫
X
P (z − x)hn(z)hn(x)dz − unhn(x)

)
= 0 (2.20)

In equation (2.20) u(·) = uMPC(·) is the control obtained by the MPC
approximation (2.5) and (2.6). The initial state h(t0, 0) = h0(x) is obtained
as the probability distribution corresponding to the mean-field limit of the
initial data to (2.1). The control (vk)

N
k=1 in equation (2.6) is determined by

solving the corresponding mean-field optimization problem, i.e.,

(vk)k=1,...,N = arg min
(vk)Nk=1

∆t

N∑
k=1

˜̀(fk(·), vk), subject to (2.19). (2.21)
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As usual, the constrained initial discrete dynamics in the case of the
introduced MPC control is recovered by substituting the discrete measure
fM,n, defined in (2.11), in the weak form of the equation (2.19). Again, we
refer to [53, 90, 138] for rigorous results and more details on the mean-field
limit. As an example, note that the mean-field limit Ju∞ : P(R)→ R is

J̃u∞(h0) =

∞∑
n=0

˜̀(hn(·), un), (2.22)

where h is determined by equation (2.20) with initial condition h0 ∈ P(R). As
before a horizon of N =∞, corresponding to the optimal case, is desirable but
computationally inefficient. In the sequel we want to establish the estimate
(2.10) also for the mean-field cost functional J̃u. Except for the assumptions
required to derive the mean-field limit we only enforce the assumptions of
[106, Theorem 4.2] and we will show how those are sufficient to derive the
corresponding estimates. Also, we will justify by obtaining the suitable
mean-field limits the previously outlined recipe for MPC mean-field control
for a broader class of agent dynamics.

3.3 Optimality estimate for the mean-field cost
functional using MPC approach

We will follow the approach described in [106, 107] with applications to
the infinite dimensional mean-field case taking first into account a discretized
system of ordinary differential equations.

Let us consider a homogeneous time discretization for a general problem
ẋi = g(xi(t), X−i(t)) + u(t) given by

xi,n+1 = xi,n + ∆tg (xi,n, X−i,n) + ∆tun (3.1)

where g : RM → R is a general differentiable function that depends on the
state of the ith agent and on the states of the other agents (2.2). Also,
∆t = tn+1 − tn > 0 and for simplicity we assume ∆t = 1. Let us suppose
that g fulfills the assumptions of [29, Section 4], see also 5.6. In order to
pass to the mean-field limit we require that the trajectory of each agent
xi,n belongs to a compact subset X of R for all time steps n ≥ 0. Let U
be a compact subset of R. Then, we assume that for xi,0 ∈ X and un ∈ U
we have xi,n ∈ X for each i = 1, . . . ,M. Then, according to the result 3.5.1
there exists a function

G : X × P(X )→ R

such that the sequence

GM (xi,n,m
M
X−i,n) = g(xi,n, X−i,n)
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converges toward G in the limit M → ∞. For the precise definition of
(GM )M with GM : X ×P(X )→ R we refer to equation (5.3). This allows to
obtain that the particle density function fn ∈ P(X ) satisfies the semi–discrete
partial differential equation in strong form

fn+1(x) = fn(x)− ∂x[G(x, fn(x))fn(x)]− ∂x[fn(x) un], (3.2)

for a given initial distribution f0 ∈ P(X ). We denote with U the set of
admissible control sequences (un)n∈N0 , where un ∈ U ⊂ R. In the following
we will always assume that for any given initial distribution f0 ∈ P(X ) and
control u = (un)n, there exists a sequence of sufficiently regular functions
(fn)n∈N0 , fn ∈ P(X ), given by the dynamics described in (3.2). This sequence
depends on the initial distribution f0 and on the choice of the control sequence
u = (un)n. We observe how equation (3.2) is meaningful provided that fn are
absolute continuous, in the sense of Radon-Nikodym, with sufficiently smooth
densities. The assumption is rather strong for the introduced dynamics G(·, ·)
and it is not trivial that, for a general f0, the distribution fn for all n > 0
stays smooth.

The equation (3.2) is the discrete time counterpart of a non-local non-linear
transport equation, see [64] and the references therein.

Definition 3.3.1. The infinite horizon mean-field cost Ju∞ : P(X )→ R+
0 is

denoted by

Ju∞(f0) =
+∞∑
n=0

`(fn, un), (3.3)

where l : P(X )× U → R+
0 is the running cost function and where (fn)n, fn :

P(X ) → R, is the solution to equation (3.2) with initial distribution f0 ∈
P(X ) and given control sequence u = (un)n.

Example 1. Consider the discrete problem (2.8). Let the cost functional be
given by a discretization of (2.3) with ` as in the previous section:

`(Xn, un) =
1

2

(
1

M

M∑
i=1

xi,n

)2

+
ν

2
u2
n

for some fixed parameter ν > 0. The function ` is symmetric in Xn. Provided
that xi,n ∈ X , un ∈ U , we obtain that ` is uniformly bounded independently
on M , i.e. ‖`(·, ·)‖∞ ≤ C0. Further, ` is locally Lipschitz-continuous in
Xn as composition of locally Lipschitz continuous functions. In fact let
xi,n, yi,n ∈ X , then we can compute∣∣∣∣∣∣12
(

1

M

M∑
i=1

xi,n

)2

+
ν

2
un

2 − 1

2

(
1

M

M∑
i=1

yi,n

)2

− ν

2
un

2

∣∣∣∣∣∣ ≤ 2C1

M

∣∣∣∣∣
M∑
i=1

(xi,n − yi,n)

∣∣∣∣∣ ,
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with C1 ≥ 0 the Lipschitz constant. Therefore, `(·, ·) fulfills as function of X
the assumptions of Theorem 3.5.1 and its mean-field limit exists and is given
by

`(fn, un) =
1

2

(∫
X
xfn(x)dx

)2

+
ν

2
u2
n. (3.4)

The previous example shows that the cost functional (2.3) requires strong
symmetry assumptions. This is fulfilled for example if it depends on functions
of average quantities of the state of the particles. Under the symmetry
assumption we expect to extend the results proposed in [106]. Therefore, we
require in the following that the running cost ` is symmetric with respect
to each agent, that the running costs are uniformly bounded and Lipschitz
continuous with respect to the distance d1, defined in 5.6.

Let us now introduce the notion of optimal value-function, in the mean-field
setting, and show a first result.

Definition 3.3.2. We denote by V∞ : P(X )→ R the optimal value function
of the mean-field control problem (3.2) associated with the infinite horizon
cost Ju∞(f0) :

V∞(f0) = inf
u∈U

Ju∞(f0). (3.5)

We define the approximate optimal cost JuN : P(X )→ R with optimization
horizon N as

JuN (f0) =
N−1∑
n=0

`(fn, un). (3.6)

The approximate value function VN (f0) : P(X )→ R in the case of receding
horizon strategy is defined by

VN (f0) = inf
u∈U

JuN (f0, u). (3.7)

Further we introduce the notion of a feedback law. A feedback law for M
agents is a mapping µM : XM → U . A symmetric feedback law is a feedback
law such that for all X ∈ XM : µM (X) = µM ((xi)σ(i)) and any permutation
σ ∈ SM , with SM the symmetric group of degree M

σ =

(
1 2 . . . M

σ(1) σ(2) . . . σ(M)

)
. (3.8)

As for the running cost `, we further assume that the feedback law µM is
symmetric, uniformly bounded and Lipschitz continuous with respect to d1.

We now establish an estimate of the type (2.10) in the mean-field case.
Note that the result in [106] alreadys covers the case of a cost functional (3.3)
and (3.2). Therefore, our purpose is to derive the estimate (2.10) starting
from the finite discrete dynamics (3.1) and in the mean-field limit case
M →∞.
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Proposition 3.3.1. Let us consider a set of M agents which evolve according
to the microscopic dynamics (3.1) with known initial data (xi,0)Mi=1. Consider
the functions `M : XM → R, and ṼM : XM × U → R, and a symmetric
feedback µM : XM → U , fulfilling the assertions of Theorem 3.5.1 and
Definition 3.3.2.

Assume furthermore that ṼM fulfills for all X0 ∈ XM the inequality

ṼM (X0) ≥ṼM
(

(x0,i + ∆t (g(xi,n, X−i,n) + µM (X0)))Mi=1

)
+ α`M (X0, µM (X0))

(3.9)

with α ∈ (0, 1]. Then, there exists a function Ṽ : P(X )→ R as mean-field
limit of ṼM for M →∞ such that for all f ∈ P(X ) we obtain

αV∞(f) ≤ αJu∞(f) ≤ Ṽ (f). (3.10)

for u = (un)n, un = µ(fn), where µ is the mean-field limit of (µM )M .

Proof. Due to the assertion of Theorem 3.5.1 we have Ṽ , ` : P(X )× U → R
and µ : P(X ) → U exist. Further, we obtain for f0 ∈ P(X ) (as limit for
M →∞ of the sequence (mM

X0
)M ) the corresponding inequality for Ṽ

Ṽ (f0) ≥ Ṽ (f0 − ∂x[f0G(x, f0)]− ∂x[f0 µ(f0)]) + α`(f0, µ(f0)). (3.11)

In fact for all i = 1, . . . ,M and all M

x1,i = x0,i + ∆t g(xi,n, X−i,n) + ∆t µM (X0), (3.12)

which corresponds in the mean-field limit to

f1 = f0 − ∂x[f0G(x, f0)]− ∂x[f0 µ(f0)]. (3.13)

The mean-field limit Ṽ is obtained as limit of the sequence VM : P(X )→ R
where

VM (f) = inf
X∈XM

{VM (X) + ω(d1(mM
X , f))}, (3.14)

see Theorem 3.5.1. We therefore have VM (mM
X ) = VM (X) and therefore for

all X0 ∈ XM

VM (mM
X0

) ≥ VM (mM
X1

) + α`M (mM
X0
, µM (mM

X0
)).

Further, VM has modulus of continuity ω, i.e., |VM (f)−VM (g)| ≤ ω(d1(f, g)).
Let f0 ∈ P(X ) be the limit of mM

X0
for M →∞. Note that the limit exists for

metric d1 on the probability measures, since X is compact subset of R and
therefore mM

X0
has finite 1–Wasserstein distance, i.e.,

∫
X |x|dm

M
X0

< C with
C independent of M and X0. Due to the dynamics (3.12) we have f1 is then

44



Chapter 2 Performance bounds for mean–field constrained dynamics

the limit of mM
X1

, X1 given by (3.12). Since VM has modulus of continuity
ω, we obtain

VM (f0) ≥ VM (f1) + α`M (f0, µM (f0)).

Hence, we have
Ṽ (f0) ≥ Ṽ (f1) + α`(f0, µ(f0)).

Define now un = µ(fn) and consider the solution to (3.2). Since X0 ∈ XM
is arbitrary we obtain that (3.11) holds for all f0 ∈ P(X ) and therefore

Ṽ (fn) ≥ Ṽ (fn+1) + α`(fn, µ(fn)). (3.15)

Summation over n yields

α
K−1∑
n=0

`(fn, un) ≤ Ṽ (f0)− Ṽ (fK) ≤ Ṽ (f0). (3.16)

Let now K → ∞, then Ṽ (f0) is an upper bound for Ju∞ =
∑∞

n=0 `(fn, un)
and where un = µ(fn). Since un is an admissible control we obtain for all
f0 ∈ P(X )

αV∞(f0) ≤ αJu∞(f0) ≤ Ṽ (f0), (3.17)

our assertion as limit of discrete measures.

The previous results hold for any family of functions ṼM and any symmetric
feedback law. The idea is now to establish the inequality in (3.9) for a general
MPC strategy and a family of functions ṼM given by the optimal running
costs VN as in Definition (3.3.2). In order to establish equation (3.9) for a
broad class of running costs `, the functions ρ, β have been introduced in
Section 3 in [106]. We recall their definition and assertions in Definition
3.3.3 below. Under Assumption 1 we prove that µ = uMPC

N and VN fulfill
the assertions of Proposition 8.2.3. The Assumption 1 is the mean-field
analogous to the assumption imposed in [106, Assumption 3.1].

Definition 3.3.3. We say that a function ρ : R+ → R+ is of class K∞ if

(i) ρ(0) = 0,

(ii) ρ(·) is strictly increasing

(iii) ρ(·) is unbounded.

Moreover a continuous function β : R+×R+ → R+ is of class KL0, if ∀r > 0
we have lim

r→+∞
β(r, t) = 0 and for each t ≥ 0 we either have β(·, t) ∈ K∞ or

(b) β(·, t) ≡ 0.

We will denote by `∗(f) the minimum of the mean-field running cost ` and
as in [106] we assume it exists

`∗(f) = min
u∈U

`(f, u). (3.18)
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Assumption 1. We assume that `∗(f) is well–defined for all f ∈ P(X ).
Further, for given β ∈ KL0 and each f0 ∈ P(X ) ,there exists a sequence of
controls (un)n, un ∈ U depending only on f0 such that for each n we have

`(fn, un) ≤ β(`∗(f0), n). (3.19)

In the following Lemma we prove that Assumption 1 is fulfilled provided
that the finite–dimensional problem fulfills the corresponding assumption
[106, Assumption 3.1]. We establish the proof in the special case of β given
by

β(r, n) = Cσnr, (3.20)

where C ≥ 1 is the overshoot constant and σ ∈ (0, 1) the decay rate. Clearly,
the particular choice β(r, n) ∈ KL0.

Lemma 3.3.2. Let β be given by equation (3.20). Consider a dynamics with
M agents given by the dynamics of equation (3.1) with a control sequence
(un)n and un ∈ U and initial conditions X0 ∈ XM . Assume `M : XM×U → R
and `∗M : XM → R fulfill the assumptions of Proposition 8.2.3 for all M .
Further, we assume that [106, Assumption 3.1] holds, that is for all M we
have

`M (Xn, un) ≤ β(`∗M (X0), n). (3.21)

Then, the mean-field limit (`M )M and (`∗M )M exist and the limit ` : P(X )×
U → R and `∗ : P(X )→ R, fulfills Assumption 1:

`(fn, un) ≤ β(`∗(f0), n). (3.22)

Proof. Due to the assumptions on the family (`M )M given in Proposition
8.2.3 we have the existence of the mean-field limit ` according to Theorem
3.5.1. Consider the family of functions

βM (X,n) := β(`∗M (X), n).

Clearly, the function βM is symmetric in X ∈ XM . Using the definition
of β by equation (3.20) and the properties of `∗M we have that βM (X,n)
is uniformly bounded with respect to X on the compact subset XM by
Cσn‖`∗M (X)‖. For each r1, r2 such that |r1 − r2| < δ we have

|β(r1, n)− β(r2, n)| ≤ Cσn|r1 − r2|.

Hence, for ε = Cσnδ, we have uniform continuity of βM due to the uniform
continuity of `∗M . If ω(·) is the modulus of continuity of `∗M then Cσñ|ω(·)|
is the modulus of continuity of βM . Hence, for each fixed n there exists the
mean-field limit β of (βM )M . Also, there exists the mean-field limit `∗ of (`∗M ).
Due to the Lipschitz continuity of β we also have that supX |β(`∗Mk

(X))−
β(`∗(mMk

X )| → 0 for (Mk)k →∞. Therefore, the mean-field limit β(f, n) =
β(`∗(f), n). Similarly to what we have proven in Proposition 8.2.3 it follows
that the inequality (3.21) implies then (3.22).
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Example 2. Consider the example of Section 3.2. The running cost has
been given by

`(fn, un) =
1

2

(∫
X
xfn(x)dx

)2

+
ν

2
u2
n. (3.23)

The optimal running cost `∗ can be computed explicitly and is given by

`∗(fn) =
1

2

(∫
X
xfn(x)dx

)2

. (3.24)

From the mean-field dynamics for fn are given by (2.19). Upon integration
on X we obtain ∫

X
xfn+1(x)dx =

∫
X
xfn(x)dx+ ∆t un. (3.25)

In [6] the following feedback law µ : P(X )→ U has been proposed as instan-
taneous MPC:

µ(fn) =
1

1 + ν

∫
X
xfn(x)dx. (3.26)

Using ∆tun := µ(fn) the optimal running cost `∗(fn) is expressed in terms
of the initial cost `∗(f0) as

`∗(fn) =
1

2

(
1− 1

1 + ν

)2(∫
Ω
xfn−1dx

)2

=

(
1− 1

1 + ν

)2n

`∗(f0). (3.27)

Therefore we have

`(fn, un) =

(
1 +

ν

(1 + ν)2

)(
1− 1

1 + ν

)2n

`∗(f0) = Cσn`∗(f0). (3.28)

The overshoot constant C and the decay rate σ are computed explicitly for a
given regularization ν > 0 as

C = 1 +
ν

(1 + ν)2
≥ 1, σ =

(
1− 1

1 + ν

)2

∈ (0, 1). (3.29)

Consider the receeding horizon costs with length one as Ṽ : P(X )→ R defined
as

Ṽ (f0) :=

1∑
n=0

`(fn, µ(fn)). (3.30)

Due to equation (3.28) we obtain the assertion of Proposition 8.2.3 is true
by simple computation

Ṽ (f0) ≥ Ṽ (f1) + α`(f0, µ(f0)) (3.31)

provided that α := 1 − (Cσ)2 fulfills 0 < α. This yields a bound on the
regularization parameter ν. This estimate for α is only valid in the case
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of the feedback law (3.26). The idea is to generalize the result to arbitrary
symmetric running costs ` and different control horizons. In the numerical
results we then observe for large values of ν also a decay in the receeding
horizon costs provided the control horizon is sufficiently large.

The following Lemma is the analog to [106, Theorem 4.2]. The main
idea is to establish the inequality (3.9) using Lemma 3.3.2 for a function Ṽ
given by the approximate value function (3.7). The discrete approximate
optimal cost JuN,M : XM × UN → R with running cost `M : XM × U → R
and corresponding approximate value function VN,M : XM → R are obtained
by considering the discrete measure mM

X for X ∈ XM and fixed M :

VN,M (X0) := VN (mM
X0

), JuN,M (X0, (un)N−1
n=0 ) :=

N−1∑
n=0

`M (Xn, un). (3.32)

where

`M (X) = `(mM
Xn , un). (3.33)

Here, Xn = (xi,n)Mi=0 fulfills the discrete dynamics (3.12) with initial data
xi(0) = xi,0. We assume that the discrete functions fulfill the corresponding
relation (3.7) for all X ∈ XM :

VN,M (X) = min
(un)∈UN

JuN,M (X, (un)N−1
n=0 ).

The symmetric feedback law µ is the MPC feedback introduced on the
discrete level by equation (2.6) and equation (2.7), respectively.

Lemma 3.3.3. Consider the discrete dynamics (3.1) with M agents and
β given by equation (3.20) with C ≥ 1 and σ ∈ (0, 1). Consider a model
predictive control horizon of N. Assume the family (`M )M , `M : XM×U → R
fulfill the assertions of Proposition 8.2.3. Assume assumption 1 holds true.
Let VN,M , `M and JuN,M be given by equation (3.32). Given are sequences
λn > 0, n = 0, . . . , N − 1 and ν > 0 such that

N−1∑
n=k

λn ≤ Cλk
1− σN−k

1− σ
, k = 0, . . . , N − 2, (3.34)

ν ≤
j−1∑
n=0

λn+1 + Cλj+1
1− σN−j

1− σ
, j = 0, . . . , N. (3.35)

holds true. Assume that then also

N−1∑
n=0

λn − ν ≥ λ0α, (3.36)

48



Chapter 2 Performance bounds for mean–field constrained dynamics

holds true for some α ∈ (0, 1]. Then, for any M and any X0 ∈ XM and any
running cost `M fulfilling (3.21) we obtain (3.9) for the MPC feedback law
µM given by (3.39) and for the value function

ṼM := VN,M .

Provided that (µM )M is symmetric and fulfills the assertions of Theorem 3.5.1,
we obtain for each f ∈ P(X ) as limit of (mM

X )M ,M →∞, the inequality

αV∞(f) ≤ αJu∞(f) ≤ VN (f) (3.37)

where u = (un)n, un = µ(fn) and where µ is the mean-field limit of (µM )M .

Sketch of the proof. The proof is analogous to the proof of [106, Theorem
4.2]. We recall that condition (3.36) is equivalent to the assertion [106, (4.3)].
For β given by equation (3.20) the assertions [106, (4.1),(4.2)] simplify to
equation (3.35) and (3.34), respectively. Consider M agents with correspond-
ing arbitrary initial condition X0 ∈ XM . Consider the finite horizon problem
of length N given by

(u∗n)N−1
n=0 = arg min

(un)n∈UM
JuN,M (X0, (un)N−1

n=0 ). (3.38)

Then, we denote the corresponding optimal trajectory X∗n obtained through
the dynamics (3.1) for un = u∗n. We define

λn,M = `M (X∗n, u
∗
n), n = 0, . . . , N − 1

and
νM = VN,M (X∗1 ).

Similarly to [106, Proposition 4.1] the values λn,M and νM defined in the
proof above fulfill equation (3.35) and equation (3.34). This result has been
established in the case of finite number of agents in a sequence of auxiliary
aftermaths that are not repeated here. Now, consider the MPC feedback law
µM (X) = v0 where

(v0)k=0,...,N−1 = arg min
(vk),vk∈U

N−1∑
n=0

`M (Yn, vk) (3.39)

where Yn ∈ XM solves equation (3.1) with initial data Y0 = X and let
(Xµ

n )n be the trajectory obtained through (3.1) for initial data X0 and for
un = µ(Xn). We observe that u∗0 = µ(X0) and Xµ

i = X∗i for i = 0 and i = 1.
Therefore, `M (X0, u

∗
0) = `M (X0, µ(X0)). Therefore, we obtain for all M and

any α from equation (3.36)

VN,M (Xµ
1 ) + α`M (X0, µ(X0)) = VN,M (X∗1 ) + α`M (X0, u

∗
0)

= νM + αλ0,M ≤
N−1∑
n=0

λn,M =
N−1∑
n=0

`M (X∗n, u
∗
n) = VN,M (X0).
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Therefore, VN,M fulfills the assertion on ṼM of Proposition 8.2.3. The second
assertion follows as a consequence of Proposition 8.2.3. This finishes the
outline of the proof.

The assumption on existence of an optimal control (3.38) for JN,M is also
precisely as in the case of finitely many agents. Note that as in the finite
dimensional case the optimal control might not exist. The previous result
(3.37) gives a performance bound in the following sense: due to the definition
of the approximate value function VN (f) and V∞(f) we have

VN (f) ≤ V∞(f).

Therefore, we obtain the (usable) estimate on the suboptimality of the MPC
µ as

Ju∞(f) ≤ 1

α
V∞(f). (3.40)

This precisely tells the dependence of the MPC cost on the optimal expected
cost V∞ provided that α is known. The value of α is the effective degree
of µ with respect to the (unknown) infinite horizon control. Clearly, the
computation of α fulfilling inequality (3.36) is in general a difficult task
requiring estimates on the value function and running costs. However, for β
given by equation (3.20) we may estimate α solely based on the inequalities
(3.34) and (3.35). This estimate is denoted by αN . The corresponding result
is independent of the mean-field limit and has been established in [107,
Theorem 5.4].

Lemma 3.3.4. Let β be given by equation (3.20) for some C ≥ 1 and
σ ∈ (0, 1). Let N be the prediction horizon N . Given is a sequence λn and
ν > 0 such that equation (3.34) and (3.35) holds true. Assume that

αN = 1−
(γN − 1)

N∏
i=2

(γi − 1)

N∏
i=2

γi −
N∏
i=2

(γi − 1)

> 0 (3.41)

holds with γi = C

i−1∑
n=0

σn. Then, for α = αN the inequality (3.36) is fulfilled.

Equation (3.41) is therefore called performance bound and may be com-
puted a priori to estimate the distance of the optimal cost towards the MPC
controlled problem. It solely depends on C and σ being the estimates on a
the running cost `. As already noted in [106] this estimate might give not
necessarily optimal performance bounds.

50



Chapter 2 Performance bounds for mean–field constrained dynamics

3.4 Numerical Results

First, we investigate the performance bound (3.41). In the example 2 we
have the following explicit values for C and σ:

C = 1 +
ν

(1 + ν)2
, σ =

(
1− 1

1 + ν

)2

.

Estimations on the coefficient αN allow to measure the quality of the MPC
generated control sequence. We depict the value of αN as a function of N
and ν in Figure 4.1. The performance bound can only be used if αN > 0 and
we indicate the line αN = 0 by a black line. We observe that the performance
bound increases with respect to the MPC horizon as expected. The best
bound is αN = 1/2. For large values of the regularization parameter ν we
have to consider a sufficiently large MPC horizon N in order to use the
theoretical results. Moreover, we observe that the result of Lemma 3.3.4
is consistent with the estimate derived in the special case of example 2 in
the case N = 2. The numerical results below indicate that the bound is
too pessimistic, similarly to what has been already observed in the finite
dimensional case.

0

100

200

0

50

100
0

0.5

1

νN

α
N

Figure 4.1: Computation of αN for different values of the regularization
parameter ν.

As a numerical example we propose the following discretization coherently
with what we discussed in Section 3.3. This discretization reduces the N step
MPC problem to again a discrete problem of M agents. We approximate
the initial distribution f0 ∈ P(X ) by fM,0 given by a sum of Dirac delta

fM,0 =
1

M

M∑
i=1

δ(x− xi,0). (4.1)

51



Performance bounds for mean–field constrained dynamics Chapter 2

located at points xi,0 ∈ X . Following this approach we recover the micro-
scopic formulation of [106, 107] from which we started in Section 3.3. The
continuous description is approximated in the large particle limit M → +∞.
In particular the Example 2 we observe that if f0 = fM,0, then fn is also
composed of a sum of Dirac delta. We assume in the following that f0 as
well as fn decays to zero at the boundaries x ∈ ∂X . We observe that if∫
X f0dx = 1 then we have

∫
X fndx = 1. An approach based on Dirac delta

converges toward a continuous distribution function in the limit M → +∞,
provided we have a considerably amount of particles centered in xi,n ∈ X .
Within the described discretization we also recover the setting of [106, 107]
as numerical scheme.

Thanks to the structure of example 2 further simplifications can be obtained.

We recall the mean-field running cost `(fn.un) =
1

2

(∫
X xfn(x)dx

)2
+
ν

2
u2
n.

We consider the mean-field equation equivalent to the discretized dynamics
of (2.1) for P = 1 and ∆t = 1

fn+1(x) = fn(x)− ∂x
∫
X

(y − x)fn(y)fn(x)dy − ∂x (unfn(x)) , (4.2)

a detailed derivation is given in Section 3.3. Upon multiplicating by a general
x ∈ X and integrating with respect dx we obtain∫

X
xfn+1(x)dx =

∫
X
xfn(x)dx+ un. (4.3)

If we introduce a new variable for the mean Yn :=
∫
X xf

n(x)dx the problem
simplifies to the equation for the evolution of Yn. Further, the cost function
is also expressed in terms of Yn as `(Yn, un) = 1

2Y
2
n + ν

2u
2
n, and equation (4.3)

Yn+1 = Yn + un.

Using the reformulation of the control of the mean the problem therefore
reduces to a problem appearing in the existing theory [106]. In particular,
the MPC subproblem to determine the optimal control for the horizon N is
solved explicitly for the previous dynamics. We computed for a horizon N
the MPC control at time n and initial data Y0 as (uMPC

N )n(Y0) = v1, where

(vj)
N
j=1 := arg min

n+N∑
j=n

`(Yj , uj), Yj+1 = Yj + uj , Yn = Y0.

For a fixed time horizon T = 100, fixed initial datum Yo and fixed N we
then compute the value of the cost functional for

J
uMPC
N

T =
T∑
n=0

`(Yj , (u
MPC
N )n)
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where Yj+1 = Yj + (uMPC
N )n(Yn). Further, we compute J

uMPC
N

100 to obtain the
optimal cost V ∗100.

According to Lemma 3.3.4 we obtain the behavior of the MPC cost J
uMPC
N

T

in relation to the optimal cost V ∗100 in Figure 4.2. As expected for larger MPC
horizons we observe convergence towards the optimal cost. The performance
bound αN is negative for N ≤ 4 and therefore the Theorem 4.2.5 can not be
applied. In the results we choose ν = 102. We observe that the bound on
αN is quite pessimistic and the distance of the estimated mismatch of the
MPC controlled case to the optimal one is quite large for small horizons, i.e.,
of order 103 for the horizon N = 5.

5 10 15 20 25 30 35 40

102

MPC horizon

 

 

J
uM P C
N∞

V ∗
∞/αN

Figure 4.2: Value of the cost functional J
uMPC
N

T (X0) for controls obtained
using a MPC strategy with control horizon N (red) and presentation of the
optimal costs V ∗T (X0) multiplied by 1

αN
where αN is computed as in [107,

Theorem 5.4]. For N ≤ 4 no estimate of the type (2.10) could be established.

We further investigate the behavior of the particle system (4.2) for controls
with different MPC horizon. According to the behavior of the cost we expect
that for increasing time horizon we are closer to the optimal cost. Defining

En :=

∫
R
x2f(x)dx.

we obtain from equation (4.2)

En+1 = −En + 2Y 2
n + unYn.

The running cost tries to minimizes a trade–off of the mean of the distribution
and the control action. If the mean Yn tends to zero, then we observe that the
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Figure 4.3: Experimental results for the optimization problem with varying
optimization horizon N and regularization constant ν = 102.

energy En tends to zero exponentially fast. Therefore, we expect with longer
time horizon a mean Yn closer to zero and small variance of the solution to
the kinetic equation. We simulate using M = 105 discrete points randomly
distributed on X = [−1, 1] as initial condition fM,0 as in equation (4.1). The
MPC control is computed according to the considerations above for ν = 102

and ν = 103 reported in Figure 4.3 and Figure 4.4. In both figures we show
the computational results for the time evolution of the distribution fn for
n = 0, . . . , 100. As expected longer optimization horizons leads to a faster
decay in the variance of the distribution fn.

3.5 Conclusion

We have extended the estimates for the suboptimal MPC to the mean-
field limit. The derived estimates yield performance bounds for general
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Figure 4.4: Experimental results for the optimization problem with varying
optimization horizon N and regularization constant ν = 103.
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symmetric multi–agent dynamics. Except for the assumptions necessary
to obtain the mean-field limit no additional requirements compared to the
finite–dimensional theory are required. The results apply to common agent
dynamics modeling for example swarming, alignment and economics. We
exemplified the theoretical results as well as the estimates on a simple opinion
formation model. The stability of the mean-field controller is still open and
will be investigated in a forthcoming work. Further, the estimates on αN
are pessimistic due to its generality. It is expected that the bounds can be
improved for specific problems as in the finite dimensional case.

Appendix Ch.3

We collect some results of [48] for convenience; see also [29, Theorem 4.1].
The Kantorowich–Rubenstein distance d1(µ, ν) for measures µ, ν ∈ P(Q) is
defined as

d1(µ, ν) := sup{
∫
φ d(µ− ν);φ : Q→ R, φ is 1 - Lipschitz }. (5.1)

Theorem 3.5.1 (Theorem 2.1[48]). Let QM be a compact subset of RM .
Consider a sequence of functions (uM )∞M=1 with uM : QM → R. Assume each
uM (X) = uM (x1, . . . , xM ) is a symmetric function in all variables, i.e.,

uM (X) = uM (xσ(1), . . . , xσ(M))

for any permutation σ on {1, . . . ,M}. Let d1 be the Kantorowich–Rubenstein
defined in (5.1) and let ω be a modulus of continuity independent of M .
Assume that the sequence is uniformly bounded ‖uM‖L∞(QM ) ≤ C. Further

assume that for all X,Y ∈ QM and all M we have

|uM (X)− uM (Y )| ≤ ω(d1(mM
X ,m

M
Y ))

where mM
ξ ∈ P(Q) is defined by mM

ξ (x) = 1
M

M∑
i=1

δ(x− ξi).

Then there exists a subsequence (uMk
)k of (uM )M and a continuous map

U : P(Q)→ R such that

lim
k→∞

sup
X∈RM

|uMk
(X)− U(mMk

X )| = 0. (5.2)

Theorem 3.5.1 has been extended to the case of functions g(xi, X−i) :
XM ⊂ RM → R being symmetric only in X−i. Here, X is a compact subset
of R. The corresponding result is given in [29, Section 4] and repeated here for
convenience. For any permutation σ of the set {1, . . . ,M}\{i} and all xi ∈ R
we have g(xi, X−i) = g(xi, (xσ(j))j 6=i). Moreover, there exists a modulus of
continuity ω such that for all xi, yi ∈ R and all M we have

‖g(xi, X−i)− g(yi, Y−i)‖ ≤ ω(‖xi − yi‖) + ω(d1(mM−1
X−i

,mM−1
Y−i

)).
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Further assume that ‖g(X)‖L∞(RM ) ≤ C. Then, g(xi, X−i) : RM → R can
be extended to a function GM : X × P(X )→ R by

GM (x, ν) = inf
X−i∈RM−1

{g(x,X−i) + ω(d1(mM−1
X−i

, ν))}. (5.3)

It can be shown as before that (GM )M is a sequence of uniformly equi–
continuous functions on X×P(X ). Therefore, (GM )M converges to a function
G : X × P(X ), see also [29, Theorem 4.1].
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Chapter 4

Structure preserving schemes
for nonlinear Fokker–Planck
equations

4.1 Introduction

In this paper we construct and discuss a steady-state preserving method
for a wide class of nonlinear Fokker-Planck equations of the form{

∂tf(w, t) = ∇w ·
[
B[f ](w, t)f(w, t) +∇w(D(w)f(w, t))

]
,

f(w, 0) = f0(w),
(1.1)

where t ≥ 0, w ∈ Ω ⊆ Rd, d ≥ 1, f(w, t) ≥ 0 is the unknown distribution
function, B[·] is a bounded operator which describes aggregation dynamics
and D(·) ≥ 0 is a diffusion function.

A typical example is given by mean-field models of collective behavior
where the nonlocal operator B[·] has the form

B[f ](w, t) = S(w) +

∫
Rd
P (w,w∗)(w − w∗)f(w∗, t)dw∗, (1.2)

with P : Rd×d → R+ and S : Rd → Rd. With the choice (1.2) equation (1.1)
describes typical features of the collective behavior in multiagent systems
with nonlocal type interactions. These models of collective behavior has
been extensively discussed in the last decades at the particle, kinetic and
hydrodynamic level [10, 14, 23, 22, 50, 51, 52, 71, 141, 164]. In particular,
many heterogeneous phenomena like swarming behaviors, human crowds
motion and formation of wealth distributions are described by these type of
PDEs under special assumptions. We refer to [142, 145], and the references
therein, for a recent overview of such models.
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In the following, we focus on the construction of numerical methods for
such problems which are able to preserve the structural properties of the
PDE, like non negativity of the solution, entropy dissipation and large time
behavior. The methods here developed are second order accurate, they do
not require any restriction on the mesh size and are capable to capture
the asymptotic steady states with arbitrary accuracy. These properties are
essential for a correct description of the underlying physical problem.

The derivation of the schemes follows the main lines of the seminal work
of Chang–Cooper for the linear Fokker-Planck equation [41, 60, 137, 156].
However, in the nonlinear case, the exact stationary solution is unknown and
a more advanced treatment is needed in order to find a good approximation to
the problem. Similar approaches for nonlinear Fokker-Planck equations were
previously derived in [40, 127]. Related methods for the case of nonlinear
degenerate diffusions equations were proposed in [28, 58] and with nonlocal
terms in [42, 50]. We refer also to [8] for the development of methods based
on stochastic approximations and to [101] for a recent survey on schemes
which preserve steady states of balance laws and related problems.

Although we derive the schemes in the case of Fokker-Planck equations,
the methods can be easily applied to more general problems where the
solution depends on additional parameters and the PDE is of Vlasov-Fokker-
Planck type. In this case, preservation of the steady states is of fundamental
importance in order to develop asymptotic-preserving methods [78].

The rest of the paper is organized as follows. In the next Section we first
derive the Chang-Cooper type schemes in one-dimension with a particular
attention to the steady state preserving properties. Extension to the multi-
dimensional case are also considered. We then prove non negativity of
solutions for explicit and semi-implicit schemes and entropy inequality for a
class of one dimensional Fokker-Planck models. In Section 3 we introduce
a modification of the schemes based on a more general entropy dissipation
principle. We show that these entropic schemes preserve stationary solutions
and derive sufficient conditions for non negativity of explicit and semi-implicit
schemes. Several applications of the schemes are finally presented in Section 4
for various nonlinear Fokker-Planck problems describing collective behaviors
in socio-economic and life sciences. Some conclusions are reported at the
end of the manuscript.

4.2 Chang-Cooper type schemes

In the following we focus on the design of numerical schemes for (1.1)
which we rewrite in divergence form as

∂tf(w, t) = ∇w · [(B[f ](w, t) +∇wD(w))f(w, t) +D(w)∇wf(w, t)]. (2.1)
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We can define the d-dimensional flux

F [f ](w, t) = (B[f ](w, t) +∇wD(w))f(w, t) +D(w)∇wf(w, t), (2.2)

therefore (2.1) reads
∂tf(w, t) = ∇w · F(w, t). (2.3)

4.2.1 Derivation of the schemes

In the one-dimensional case d = 1 equation (2.3) becomes

∂tf(w, t) = ∂wF [f ](w, t), w ∈ I ⊆ R, (2.4)

where now

F [f ](w, t) = (B[f ](w, t) +D′(w))f(w, t) +D(w)∂wf(w, t) (2.5)

using the compact notation D′(w) = ∂wD(w). Typically, when I is a finite
size set the problem is complemented with no-flux boundary conditions at
the extremal points. In the sequel we assume D(w) 6= 0 in the internal points
of I.

We introduce an uniform spatial grid wi ∈ I, such that wi+1 − wi = ∆w.
We denote as usual wi±1/2 = wi ±∆/2 and define the cell average as follows

fi(t) =
1

∆w

∫ wi+1/2

wi−1/2

f(w, t)dw. (2.6)

Integration of equation (2.4) yields

d

dt
fi(t) =

Fi+1/2[f ](t)−Fi−1/2[f ](t)

∆w
, (2.7)

where for each t ≥ 0 Fi±1/2[f ](t) is the numerical flux function characterizing
the discretization.

Let us set C[f ](w, t) = B[f ](w, t)+D′(w) and adopt the notations Di+1/2 =
D(wi+1/2), D′i+1/2 = D′(wi+1/2). We will consider a general flux function
which is combination of the grid points i+ 1 and i

Fi+1/2[f ] = C̃i+1/2f̃i+1/2 +Di+1/2
fi+1 − fi

∆w
, (2.8)

where
f̃i+1/2 = (1− δi+1/2)fi+1 + δi+1/2fi. (2.9)

For example, the standard approach based on central difference is obtained
by considering for all i the quantities

δi+1/2 = 1/2, C̃i+1/2 = C̃[f ](wi+1/2, t).
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It is well-known, however, that such a discretization method is subject to
restrictive conditions over the mesh size ∆w in order to keep non negativity
of the solution.

Here, we aim at deriving suitable expressions for δi+1/2 and C̃i+1/2 in such
a way that the method yields nonnegative solutions, without restriction on
∆w, and preserves the steady state of the system with arbitrary order of
accuracy.

First, observe that at the steady state the numerical flux should vanish.
From (2.8) we get

fi+1

fi
=

−δi+1/2C̃i+1/2 +
Di+1/2

∆w

(1− δi+1/2)C̃i+1/2 +
Di+1/2

∆w

. (2.10)

Similarly, if we consider the analytical flux imposing F [f ](w, t) ≡ 0, we have

D(w)∂wf(w, t) = −(B[f ](w, t) +D′(w))f(w, t), (2.11)

which is in general not solvable, except in some special cases due to the
nonlinearity on the right hand side. We may overcome this difficulty in
the quasi steady-state approximation integrating equation (2.11) on the cell
[wi, wi+1]∫ wi+1

wi

1

f(w, t)
∂wf(w, t)dw = −

∫ wi+1

wi

1

D(w)
(B[f ](w, t)+D′(w))dw, (2.12)

which gives

f(wi+1, t)

f(wi, t)
= exp

{
−
∫ wi+1

wi

1

D(w)
(B[f ](w, t) +D′(w))dw

}
. (2.13)

Now, by equating the ratio fi+1/fi and f(wi+1, t)/f(wi, t) of the numerical
and exact flux, and setting

C̃i+1/2 =
Di+1/2

∆w

∫ wi+1

wi

B[f ](w, t) +D′(w)

D(w)
dw (2.14)

we recover

δi+1/2 =
1

λi+1/2
+

1

1− exp(λi+1/2)
, (2.15)

where

λi+1/2 =

∫ wi+1

wi

B[f ](w, t) +D′(w)

D(w)
dw =

∆w C̃i+1/2

Di+1/2
. (2.16)

The numerical flux function (2.8)-(2.9) with C̃i+1/2 and δi+1/2 defined by
(2.14) and (2.15)-(2.16) vanishes when the corresponding flux (4.10) is equal
to zero over the cell [wi, wi+1]. Moreover the nonlinear weight functions
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δi+1/2 defined by (2.15)-(2.16) are such that δi+1/2 ∈ (0, 1). The latter result
follows from the simple inequality exp(x) ≥ 1 + x. We refer to this type of
schemes as structure preserving Chang-Cooper (SP-CC) type schemes.

By discretizing (2.16) through the midpoint rule∫ wi+1

wi

B[f ](w, t) +D′(w)

D(w)
dw =

∆w(Bi+1/2 +D′i+1/2)

Di+1/2
+O(∆w3), (2.17)

we obtain the second order method defined by

λmid
i+1/2 =

∆w(Bi+1/2 +D′i+1/2)

Di+1/2
(2.18)

and

δmid
i+1/2 =

Di+1/2

∆w(Bi+1/2 +D′i+1/2)
+

1

1− exp(λmid
i+1/2)

. (2.19)

Higher order accuracy of the steady state solution can be obtained using
suitable higher order quadrature formulas for the integral (2.14). We refer
to Section 4.4 for examples and more details. For linear problems of the
form B[f ](w, t) = B(w) with constant diffusion D′ = 0, the above scheme
(2.18)-(2.19) is referred to as the Chang-Cooper method [60, 137].

Remark 3.

• If we consider the limit case Di+1/2 → 0 in (2.18)-(2.19) we obtain the
weights

δi+1/2 =

{
0, Bi+1/2 > 0,

1, Bi+1/2 < 0

and the scheme reduces to a first order upwind scheme for the corre-
sponding aggregation equation.

• For linear problems of the form B[f ](w, t) = B(w) the exact stationary
state f∞(w) can be directly computed from the solution of

D(w)∂wf
∞(w) = −(B(w) +D′(w))f∞(w), (2.20)

together with the boundary conditions. Explicit examples of stationary
states will be reported in Section 4.4.

Using the knowledge of the stationary state we have

f∞i+1

f∞i
= exp

{
−
∫ wi+1

wi

1

D(w)
(B(w) +D′(w))dw

}
= exp

(
−λ∞i+1/2

)
,

(2.21)
therefore

λ∞i+1/2 = log

(
f∞i
f∞i+1

)
(2.22)
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Table 2.1: Different choices of the weights in (2.9)

Scheme δi+1/2 λi+1/2

Central difference 1/2 0

SP-CC
1

λi+1/2
+

1

1− exp(λi+1/2)

∫ wi+1

wi

B[f ](w, t) +D′(w)

D(w)
dw

SP-CC2 (midpoint)
1

λi+1/2
+

1

1− exp(λi+1/2)

∆w(Bi+1/2 +D′i+1/2)

Di+1/2

SP-CCE (exact)
1

log(f∞i )− log(f∞i+1)
+

f∞i+1

f∞i+1 − f∞i
log

(
f∞i
f∞i+1

)

and

δ∞i+1/2 =
1

log(f∞i )− log(f∞i+1)
+

f∞i+1

f∞i+1 − f∞i
. (2.23)

In this case, the numerical scheme preserves the steady state exactly.
Finally, in Table 2.1 we summarize the different expressions of the
weight functions.

4.2.2 The multi-dimensional case

In order to extend the previous approach to multi-dimensional situations
we consider here the case of two dimensional problems d = 2. We introduce a
uniform mesh (wi, vj) ∈ Ω ⊆ R2, with ∆w = wi+1 − wi and ∆v = vj+1 − vj .
We denote by Cij the cell [wi−1/2, wi+1/2] × [vj−1/2, vj+1/2], with wi+1/2 =
wi + ∆w/2 and vj+1/2 = vj + ∆v/2. Let fij(t) be the cell average defined as

fi,j =
1

∆w∆v

∫ ∫
Cij

f(w, v, t)dwdv. (2.24)

Integration of the nonlinear Fokker-Planck equation (2.3) yields

d

dt
fi,j =

Fi+1/2,j [f ]−Fi−1/2,j [f ]

∆w
+
Fi,j+1/2[f ]−Fi,j−1/2[f ]

∆v
, (2.25)

being Fi±1/2,j [f ], Fi,j±1/2[f ] flux functions characterizing the numerical
discretization. The quasi-stationary approximations over the cell [wi, wi+1]×
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[vi, vi+1] of the two dimensional problem now read∫ wi+1

wi

1

f(w, vj , t)
∂wf(w, vj , t)dw = −

∫ wi+1

wi

B[f ](w, vj , t) + ∂wD(w, vj)

D(w, vj)
dw,∫ vj+1

vj

1

f(wi, v, t)
∂vf(wi, v, t)dv = −

∫ vj+1

vj

B[f ](wi, v, t) + ∂vD(wi, v)

D(wi, v)
dv.

(2.26)

Therefore, setting

C̃i+1/2,j =
Di+1/2,j

∆w

∫ wi+1

wi

B[f ](w, vj , t) + ∂wD(w, vj)

D(w, vj)
dw

C̃i,j+1/2 =
Di,j+1/2

∆v

∫ vj+1

vj

B[f ](wi, v, t) + ∂vD(wi, v)

D(wi, v)
dv

(2.27)

and by considering the natural generalization of the one-dimensional numeri-
cal flux

Fi+1/2,j [f ] = C̃i+1/2,j f̃i+1/2,j +Di+1/2,j
fi+1,j − fi,j

∆w

f̃i+1/2,j = (1− δi+1/2,j)fi+1,j + δi+1/2,jfi,j

Fi,j+1/2[f ] = C̃i,j+1/2f̃i,j+1/2 +Di,j+1/2
fi,j+1 − fi,j

∆v

f̃i,j+1/2 = (1− δi,j+1/2)fi,j+1 + δi,j+1/2fi,j ,

(2.28)

we define δi+1/2,j and δi,j+1/2 in such a way that we preserve the steady state
solution for each dimension. The CC type structure preserving methods are
then given by

δi+1/2,j =
1

λi+1/2,j
+

1

1− exp(λi+1/2,j)
,

λi+1/2,j =
∆wC̃i+1/2,j

Di+1/2,j

(2.29)

and

δi,j+1/2 =
1

λi,j+1/2
+

1

1− exp(λi,j+1/2)
,

λi,j+1/2 =
∆vC̃i,j+1/2

Di,j+1/2
.

(2.30)

The cases of higher dimension d ≥ 3 may be derived in a similar way.
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4.2.3 Main properties

In order to study the structural properties of the numerical schemes,
like conservations, non negativity and entropy property, we restrict to the
one-dimensional case. To start with we consider the following simple result.

Lemma 4.2.1. Let us consider the scheme (2.7)-(2.8) for i = 0, . . . , N with
no flux boundary conditions FN+1/2 = F−1/2 = 0. We have

N∑
i=0

d

dt
fi(t) = 0, ∀ t > 0. (2.31)

Proof. From equation (2.34) we have

N∑
i=0

dfi
dt

=
1

∆w

N∑
i=0

(Fi+1/2 −Fi−1/2). (2.32)

Now since
N∑
i=0

(Fi+1/2 −Fi−1/2) = FN+1/2 −F−1/2, (2.33)

by imposing no flux boundary conditions we conclude.

Positivity preservation

Concerning non negativity, first we prove a result for the explicit scheme.
We introduce a time discretization tn = n∆t with ∆t > 0 and n = 0, . . . , T
and consider the simple forward Euler method

fn+1
i = fni + ∆t

Fni+1/2 −F
n
i−1/2

∆w
. (2.34)

Proposition 4.2.2. Under the time step restriction

∆t ≤ ∆w2

2(M∆w +D)
, M = max

i
|C̃ni+1/2|, (2.35)

the explicit scheme (2.34) with flux defined by (2.15)-(2.16) preserves non-
negativity, i.e fn+1

i ≥ 0 if fni ≥ 0, i = 0, . . . , N .

Proof. The scheme reads

fn+1
i = fni +

∆t

∆w

[(
(1− δni+1/2)C̃ni+1/2 +

Di+1/2

∆w

)
fni+1

+

(
C̃ni+1/2δ

n
i+1/2 − C̃

n
i−1/2(1− δni−1/2)− 1

∆w
(Di+1/2 +Di−1/2)

)
fni

−
(
C̃ni−1/2δ

n
i−1/2 −

Di−1/2

∆w

)
fni−1

]
.

(2.36)
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From (2.36) the coefficients of fni+1 and fni−1 should satisfy

(1− δi+1/2)C̃ni+1/2 +
Di+1/2

∆w
≥ 0, −δi−1/2C̃ni−1/2 +

Di−1/2

∆w
≥ 0, (2.37)

or equivalently

λi+1/2

(
1− 1

1− expλi+1/2

)
≥ 0,

λi−1/2

expλi−1/2 − 1
≥ 0, (2.38)

which holds true thanks to the properties of the exponential function. In
order to ensure the non negativity of the scheme the time step should satisfy
the restriction ∆t ≤ ∆w/ν, with

ν = max
0≤i≤N

{
C̃ni+1/2δ

n
i+1/2 − C̃

n
i−1/2(1− δni−1/2)−

Di+1/2 +Di−1/2

∆w

}
. (2.39)

Being M defined in (2.35), and 0 ≤ δi±1/2 ≤ 1, we obtain the prescribed
bound.

Remark 4. Higher order SSP methods [102] are obtained by considering a
convex combination of forward Euler methods. Therefore, the non negativity
result can be extended to general SSP methods.

In practical applications, it is desirable to avoid the parabolic restriction
∆t = O(∆w2) of explicit schemes. Unfortunately, fully implicit methods
originate a nonlinear system of equations due to the nonlinearity of B[f ] and
the dependence of the weights δi±1/2 from the solution. However, we can
prove that nonnegativity of the solution holds true also for the semi-implicit
case

fn+1
i = fni + ∆t

F̂n+1
i+1/2 − F̂

n+1
i−1/2

∆w
, (2.40)

where

F̂n+1
i+1/2 = C̃ni+1/2

[
(1− δni+1/2)fn+1

i+1 + δni+1/2f
n+1
i

]
+Di+1/2

fn+1
i+1 − f

n+1
i

∆w
.

(2.41)
We have

Proposition 4.2.3. Under the time step restriction

∆t <
∆w

2M
, M = max

i
|C̃ni+1/2| (2.42)

the semi-implicit scheme (2.40) preserves nonnegativity, i.e fn+1
i ≥ 0 if

fni ≥ 0, i = 0, . . . , N .
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Proof. Equation (2.40) corresponds to

fn+1
i

{
1− ∆t

∆w

[
C̃ni+1/2δ

n
i+1/2 − C̃

n
i−1/2(1− δni−1/2)− 1

∆w
(Di+1/2 +Di−1/2)

]}
+ fn+1

i+1

{
− ∆t

∆w

[
(1− δni+1/2)C̃ni+1/2 +

Di+1/2

∆w

]}
+ fn+1

i−1

{
− ∆t

∆w

[
−C̃ni−1/2δ

n
i−1/2 +

Di−1/2

∆w

]}
= fni

(2.43)

thanks to the definition of the flux function introduced in (2.8)-(2.9). Using
the indentity λni+1/2 = ∆wC̃ni+1/2/Di+1/2 we obtain

fn+1
i

{
1 +

∆t

∆w2

[
Di+1/2

λni+1/2

exp(λni+1/2)− 1
+Di−1/2

λni−1/2

exp(λni−1/2)− 1
exp(λni−1/2)

]}

+ fn+1
i+1

{
− ∆t

∆w2
Di+1/2

λni+1/2

exp(λni+1/2)− 1
exp(λni+1/2)

}

+ fni−1

{
− ∆t

∆w2
Di−1/2

λni−1/2

exp(λni−1/2)− 1

}
= fni .

(2.44)

Let us denote αni+1/2 =
λni+1/2

exp(λni+1/2)− 1
≥ 0 and

Rni = 1 +
∆t

∆w2

[
Di+1/2α

n
i+1/2 +Di−1/2α

n
i−1/2 exp(λni−1/2)

]
Qni = − ∆t

∆w2
Di+1/2α

n
i+1/2 exp(λni+1/2)

Pni = − ∆t

∆w2
Di−1/2α

n
i−1/2,

(2.45)

we can write
Rni f

n+1
i −Qni fn+1

i+1 − P
n
i f

n+1
i−1 = fni . (2.46)

If we introduce the matrix

(A[fn])ij =


Rni , j = i

−Qni , j = i+ 1, 1 ≤ i ≤ N
−Pni , j = i− 1, 0 ≤ i ≤ N − 1,

(2.47)

with Rni > 0, Qni ≥ 0, Pni ≥ 0 defined in (2.45) the semi-implicit scheme may
be expressed in matrix form as follows

A[fn]fn+1 = fn, (2.48)
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with fn = (fn0 , . . . , f
n
N ). Since fn ≥ 0, in order to prove that fn+1 ≥ 0 it

is sufficient to show A[fn]−1 ≥ 0. Now, A[·] is a tridiagonal matrix with
positive diagonal elements and if A is strictly diagonally dominant we can
conclude that A−1 ≥ 0.

The matrix A is strictly diagonally dominant if and only if

|Rni | > |Qni |+ |Pni |, i = 0, 1 . . . , N, (2.49)

condition which holds true if

1 >
∆t

∆w2

[
Di+1/2α

n
i+1/2

(
exp(λni+1/2)− 1

)
−Di−1/2α

n
i−1/2

(
exp(λni−1/2)− 1

)]
=

∆t

∆w2

[
Di+1/2λ

n
i+1/2 −Di−1/2λ

n
i−1/2

]
=

∆t

∆w

[
C̃ni+1/2 − C̃

n
i−1/2

]
.

(2.50)

Remark 5.

• Higher order semi-implicit approximations can be constructed follow-
ing [36]. Note, however, that the determination of nonnegative semi-
implicit schemes with optimal stability regions is an open problem which
goes beyond te purpose of the present manuscript.

• A similar argument permits to prove nonnegativity of the scheme with
the fully implicit fluxes

Fn+1
i+1/2 = C̃n+1

i+1/2

[
(1− δn+1

i+1/2)fn+1
i+1 + δi+1/2f

n+1
i

]
+Di+1/2

fn+1
i+1 − f

n+1
i

∆w
,

(2.51)
with

∆t <
∆w

2M
, M = max

0≤i≤N
|C̃n+1
i+1/2|. (2.52)

Similarly, we obtain the nonlinear system

A[fn+1]fn+1 = fn, (2.53)

where the matrix A[fn+1] has the same structure (2.47) with the entries
evaluated at time n+ 1. The above system can be solved iteratively at
each time step

fn+1
0 = fn,

fn+1
k+1 = A−1[fn+1

k ]fn, k = 0, 1, . . .
(2.54)

where now each iteration step is explicit and can be made non negative
under a stability restriction analogous to (2.42). Therefore, if fn+1

k →
fn+1 as k → +∞ we can infer the nonnegativity of the scheme under
the condition (2.52), being A[fn+1] ≥ 0 strictly diagonally dominant
and then A[fn+1]−1 ≥ 0.
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Entropy property

In order to discuss the entropy property we consider the prototype equation

∂tf(w, t) = ∂w [(w − u)f(w, t) + ∂w(D(w)f(w, t))] , w ∈ I = [−1, 1],
(2.55)

with −1 < u < 1 a given constant and boundary conditions

∂w(D(w)f(w, t)) + (w − u)f(w, t) = 0, w = ±1. (2.56)

If the stationary state f∞ exists equation (2.55) may be written in the
Landau form as

∂tf(w, t) = ∂w

[
D(w)f(w, t)∂w log

(
f(w, t)

f∞(w)

)]
, (2.57)

or in the non logarithmic Landau form as

∂tf(w, t) = ∂w

[
D(w)f∞(w)∂w

(
f(w, t)

f∞(w)

)]
. (2.58)

We define the relative entropy for all positive functions f(w, t), g(w, t) as
follows

H(f, g) =

∫
I
f(w, t) log

(
f(w, t)

g(w, t)

)
, (2.59)

we have [92]
d

dt
H(f, f∞) = −ID(f, f∞), (2.60)

where the dissipation functional ID(·, ·) is defined as

ID(f, f∞) =

∫
I
D(w)f(w, t)

(
∂w log

(
f(w, t)

f∞(w)

))2

dw,

=

∫
I
D(w)f∞(w, t)∂w log

(
f(w, t)

f∞(w)

)
∂w

(
f

f∞

)
dw.

(2.61)

Of course we might consider other entropies like the L2 entropy which is
defined as

L2(f, f∞) =

∫
I

(f(w, t)− f∞(w))2

f∞(w)
dw,

d

dt
L2(f, f∞) = −JD(f, f∞),

(2.62)

with

JD(f, f∞) = 2

∫
I
D(w)f∞

(
∂w

(
f(w, t)

f∞(w)

)2
)
, (2.63)

see [92] for further examples.
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Lemma 4.2.4. In the case B[f ](w, t) = B(w) the numerical flux function
(2.8)-(2.9) with C̃i+1/2 and δi+1/2 given by (2.14)-(2.15) can be written in
the form (2.58) and reads

Fni+1/2 =
Di+1/2

∆w
f̂∞i+1/2

(
fni+1

f∞i+1

− fni
f∞i

)
, (2.64)

with

f̂∞i+1/2 =
f∞i+1f

∞
i

f∞i+1 − f∞i
log

(
f∞i+1

f∞i

)
. (2.65)

Proof. In the hypothesis B[f ](w, t) = B(w) the definition of λi+1/2 does not
depends on time, i.e. λi+1/2 = λ∞i+1/2 and if a steady state exists we may
write

log f∞i − log f∞i+1 = λi+1/2. (2.66)

Furthermore, the flux function Fni+1/2 assumes the following form

Fni+1/2 =
Di+1/2

∆w

[
λi+1/2f̃

n
i+1/2 + (fni+1 − fni )

]
=
Di+1/2

∆w

[
λi+1/2(fni+1 + δi+1/2(fni − fni+1)) + (fni+1 − fni )

]
,

(2.67)

where

δi+1/2 =
1

log f∞i − log f∞i+1

+
f∞i+1

f∞i+1 − f∞i
. (2.68)

Hence we have

Fni+1/2 =
Di+1/2

∆w

[
log

(
f∞i
f∞i+1

)(
fni+1 +

fni − fni+1

log f∞i − log f∞i+1

+
f∞i+1

f∞i+1 − f∞i
(fni − fni+1)

)]
,

=
Di+1/2

∆w

[
log

(
f∞i
f∞i+1

)(
fni − fni+1

log f∞i − log f∞i+1

+
f∞i+1f

∞
i

f∞i+1 − f∞i

(
fni
f∞i
−
fni+1

f∞i+1

))]
(2.69)

which gives (2.64).

Theorem 4.2.5. Let us consider B[f ](w, t) = w − u as in equation (2.55).
The numerical flux (2.8)-(2.9) with C̃i+1/2 and δi+1/2 given by (2.14)-(2.15)
satisfies the discrete entropy dissipation

d

dt
H∆(f, f∞) = −I∆(f, f∞), (2.70)

where

H∆w(f, f∞) = ∆w

N∑
i=0

fi log

(
fi
f∞i

)
(2.71)
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and I∆ is the positive discrete dissipation function

I∆(f, f∞) =
N∑
i=0

[
log

(
fi+1

f∞i+1

)
− log

(
fi
f∞i

)]
·
(
fi+1

f∞i+1

− fi
f∞i

)
f̂∞i+1/2Di+1/2 ≥ 0.

(2.72)

Proof. From the definition of relative entropy we have

d

dt
H(f, f∞) = ∆w

N∑
i=0

dfi
dt

(
log

(
fi
f∞i

)
+ 1

)

= ∆w
N∑
i=0

(
log

(
fi
f∞i

)
+ 1

)
(Fi+1/2 −Fi−1/2),

(2.73)

and after summation by parts we get

d

dt
H(f, f∞) = −∆w

N∑
i=0

[
log

(
fi+1

f∞i+1

)
− log

(
fi
f∞i

)]
Fi+1/2. (2.74)

Thanks to the identity of Lemma 4.2.4 we may conclude since the function
(x− y) log(x/y) is non-negative for all x, y ≥ 0.

4.3 Entropic average type schemes

In this section we introduce a second class of structure preserving numerical
scheme based on the entropy dissipation principle. To this aim, let us consider
the general class of nonlinear Fokker-Planck equation with gradient flow
structure [22, 50, 54]

∂tf(w, t) = ∇w · [f(w, t)∇wξ(w, t)], w ∈ Ω ⊆ Rd, (3.1)

and no-flux boundary conditions. In the case of equation (1.1) with constant
diffusion D we have

∇wξ(w, t) = B[f ](w, t) +D∇w log f(w, t). (3.2)

We focus on the following prototype of function ξ(w, t), w ∈ Rd

ξ = (U ∗ f)(w, t) +D log f(w, t), (3.3)

which in our case corresponds to

B[f ](w, t) = ∇w(U ∗ f)(w, t), (3.4)

with U(w) an interaction potential.
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The corresponding free energy is given by

E(t) =
1

2

∫
Rd

(U ∗ f)(w, t)f(w, t)dw +D

∫
Rd

log f(w, t)f(w, t)dw. (3.5)

We have

d

dt
E(t) =

∫
Rd
∂tf(w, t)dw +

∫
Rd

((U ∗ f)(w, t) +D log f(w, t))∂tf(w, t)dw.

(3.6)
Hence from (3.1) and (3.3) and upon integration by parts we obtain the
dissipation of the free energy E(t) along solutions

d

dt
E(t) = −

∫
Rd
|∇wξ|2f(w, t)dw = −I(t), (3.7)

where I(·) is the entropy dissipation function.

4.3.1 Derivation of the schemes

Let us consider the discrete version of the entropy of the system given by

E∆(t) = ∆w
N∑
j=0

[
1

2
∆w

N∑
i=0

Uj−ififj +Dfj log fj

]
(3.8)

Therefore, we have

d

dt
E∆ = ∆w

N∑
j=0

[
∆w

N∑
i=0

Uj−ifi
dfj
dt

+D (log fj + 1)
dfj
dt

]

= ∆w

N∑
j=0

[
∆w

N∑
i=0

Uj−ifi +D log fj + 1

]
dfj
dt
.

(3.9)

Now using the general discrete conservative formulation

dfj
dt

=
Fj+1/2 −Fj−1/2

∆w
,

and the fact that ξj = U ∗ fj +D log fj we get

d

dt
E∆ =

N∑
j=0

(ξj + 1)(Fj+1/2 −Fj−1/2). (3.10)

Furthermore, after summation by parts we can write the last term as
follows

d

dt
E∆ = −

N∑
j=0

(ξj+1 − ξj)Fj+1/2. (3.11)
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Now, integrating (3.2) in the one-dimensional case we obtain

ξj+1 − ξj = ∆w B̃j+1/2 +D log

(
fj+1

fj

)
. (3.12)

Let us now consider a general scheme in the form (2.7), which in our case
can be rewritten as

Fi+1/2 =

(
B̃j+1/2 +

D

∆w
log

(
fj+1

fj

)
Kj+1/2

)
f̃j+1/2 (3.13)

with

Kj+1/2 =
1

f̃j+1/2

fj+1 − fj
(log fj+1 − log fj)

, fj+1 6= fj . (3.14)

Therefore, we have

d

dt
E∆ = −∆w

N∑
j=0

(
B̃j+1/2 +

D

∆w
log

(
fj+1

fj

))
(
B̃j+1/2 +

D

∆w
log

(
fj+1

fj

)
Kj+1/2

)
f̃j+1/2.

(3.15)

Thus we cannot prove that the discrete entropy functional (3.8) is dissipated
by the Chang-Cooper type scheme developed in the previous sections, unless
Kj+1/2 ≡ 1. This latter requirement is satisfied if we consider the new
entropic flux function

f̃Ei+1/2 =


fi+1 − fi

log fi+1 − log fi
fi+1 6= fi,

fi+1 fi+1 = fi.
(3.16)

We will refer to the above approximation of the solution at the grid point
i + 1/2 as entropic average of the grid points i and i + 1. In the general
case of the flux function (4.10) with non constant diffusion the resulting
numerical flux reads

FEi+1/2 = Di+1/2

(
C̃i+1/2

Di+1/2
+

log fi+1 − log fi
∆w

)
f̃Ei+1/2. (3.17)

Finally, concerning the stationary state, we obtain immediately imposing
the numerical flux equal to zero

C̃i+1/2

Di+1/2
+

log fi+1 − log fi
∆w

= 0,

and therefore we get

fi+1

fi
= exp

(
−

∆w C̃i+1/2

Di+1/2

)
. (3.18)
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By equating the above ratio with the quasi-stationary approximation (2.13)
we get the same expression for C̃i+1/2 as in (2.14)

C̃i+1/2 =
Di+1/2

∆w

∫ wi+1

wi

B[f ](w, t) +D′(w)

D(w)
dw. (3.19)

4.3.2 Main properties

A fundamental result concerning the entropic average (3.16) is the following
Lemma.

Lemma 4.3.1. The entropy average defined in (3.16) may be written as a
convex combination with nonlinear weights

f̃Ei+1/2 = δEi+1/2fi + (1− δEi+1/2)fi+1, (3.20)

where

δEi+1/2 =
fi+1

fi+1 − fi
+

1

log fi − log fi+1
∈ (0, 1). (3.21)

Proof. From (3.21) we have

f̃Ei+1/2 = fi+1 + δEi+1/2(fi − fi+1)

= fi+1 − fi+1 +
fi − fi+1

log fi − log fi+1

=
fi+1 − fi

log fi+1 − log fi
,

(3.22)

that is (3.17). It is a easy computation to verify that δEi+1/2 lies in the interval

(0, 1).

Remark 6. As a consequence the Chang-Cooper type average (2.9) and the
entropic average (3.16) define the same quantity at the steady state when
fi = f∞i . In fact, the Chang-Cooper type weights (2.23) are the same as
(3.21).

We can summarize our findings of Section 4.3.1 as follows.

Theorem 4.3.2. The numerical flux (3.17)-(3.16) for a constant diffusion
D satisfies the discrete entropy dissipation

d

dt
E∆ = −I∆(t), (3.23)

where E∆ is given by (3.8) and I∆ is the discrete entropy dissipation function

I∆ = ∆w

N∑
j=0

(ξj+1 − ξj)2f̃Ei+1/2 ≥ 0, (3.24)

with ξj+1 − ξj defined as in (3.12).
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Remark 7. On the contrary to the Chang-Cooper average the restrictions
for the non negativity property of the solution are stronger. In fact, by the
same arguments we used in the previous section, non negativity of the explicit
scheme requires

(1− δEi+1/2)C̃ni+1/2 +
Di+1/2

∆w
≥ 0, −δEi−1/2C̃

n
i−1/2 +

Di−1/2

∆w
≥ 0. (3.25)

However, the weights do not possess any special structure that permits to
avoid a constraint of the mesh size ∆w which now must satisfy

∆w ≤ min
i

{
Di+1/2

|C̃ni+1/2|
,
Di−1/2

|C̃ni−1/2|

}
. (3.26)

Therefore, similar to central differences, we have a restriction on the mesh
size which becomes prohibitive for small values of the diffusion function D(w).
It is easy to verify that the same condition is necessary also for the non
negativity of semi-implicit approximations.

Next we consider the case of linear flux B[f ](w, t) = B(w). The following
Lemma holds true.

Lemma 4.3.3. In the case B[f ](w, t) = B(w) the numerical flux (3.17)-
(3.16) corresponds to the form (2.57) and reads

F̃Ei+1/2 =
Di+1/2

∆w
f̃Ei+1/2

(
log

(
fi+1

f∞i+1

)
− log

(
fi
f∞i

))
. (3.27)

Proof. If a stationary f∞(w) state exists it nullify the flux and we have

C̃i+1/2 = −
Di+1/2

∆w

(
log f∞i+1 − log f∞i

)
. (3.28)

From the definition of the entropic flux (3.17) we obtain

F̃Ei+1/2 =C̃i+1/2f̃
E
i+1/2 +

Di+1/2

∆w
log

fi+1

fi
f̃Ei+1/2

=
Di+1/2

∆w
f̃Ei+1/2

[
(log fi+1 − log fi)− (log f∞i+1 − log f∞i )

]
,

(3.29)

from which we conclude.

We can now state the following entropy dissipation results for problem
(2.55) in the nonlogarithmic Landau form (2.58).

Theorem 4.3.4. Let us consider B[f ](w, t) = w − u as in equation (2.55).
The numerical flux (3.17)-(3.16) with C̃i+1/2 given by (2.14) satisfies the
discrete entropy dissipation

d

dt
H∆(f, f∞) = −IE∆(f, f∞), (3.30)
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where H∆w(f, f∞) is given by (2.71) and IE∆ is the positive discrete dissipation
function

IE∆(f, f∞) =
N∑
i=0

[
log

(
fi+1

f∞i+1

)
− log

(
fi
f∞i

)]2

Di+1/2f̃
E
i+1/2 ≥ 0. (3.31)

Proof.

d

dt
H(f, f∞) = −∆w

N∑
i=0

[
log

(
fi+1

f∞i+1

)
− log

(
fi
f∞i

)]
FEi+1/2 (3.32)

and being

FEi+1/2 =
Di+1/2

∆w

[
log

(
fi+1

f∞i+1

)
− log

(
fi
f∞i

)]
f̃Ei+1/2

we have

d

dt
H(f, f∞) = −

N∑
i=0

[
log

(
fi+1

f∞i+1

)
− log

(
fi
f∞i

)]2

Di+1/2f̃
E
i+1/2. (3.33)

4.4 Applications

In this section we present several numerical examples of Fokker-Planck
equations solved with the structure-preserving schemes here introduced.
An essential aspect for the accurate description of the steady state is the
approximation of the integral defining the quasi-stationary solution

λi+1/2 =

∫ wi+1

wi

B[f ](w, t) +D′(w)

D(w)
dw. (4.1)

Except for simple linear cases, a suitable quadrature formula is required. In
the following numerical examples we consider open Newton-Cotes formulas
up to order 6 and Gauss-Legendre quadrature.

4.4.1 Example 1: Opinion dynamics in bounded domains

Let us consider the evolution of a distribution function described by (1.1),
with w ∈ I, where I = [−1, 1], and

B[f ](w, t) =

∫
I
P (w,w∗)(w − w∗)f(w∗, t)dw∗, D(w) =

σ2

2
(1− w2)2.

(4.2)
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The model describes the evolution of the distribution functions of agents
having opinion w at time t (see [145, 164] for more details).

In the simplified case P ≡ 1 the corresponding stationary distribution
reads

f∞(w) =
C

(1− w2)2

(
1 + w

1− w

)u/(2σ2)

exp
{
− (1− uw)

σ2(1− w2)

}
, (4.3)

with σ ∈ R a given parameter, C > 0 is a normalization constant and
u =

∫
I wf(w, t)dw,.

We consider as initial distribution

f(w, 0) = β
[
exp

(
−c(w + 1/2)2

)
+ exp

(
−c(w − 1/2)2

)]
, c = 30,

(4.4)
with β > 0 a normalization constant. Since diffusion vanishes at the bound-
aries we present results for the Chang-Cooper type numerical schemes SP–CC
only.

In Figure 4.1 we compute the relative L1 error of the numerical solution
with respect to the exact (4.3) stationary state using N = 80 points for the
SP–CC scheme with various quadrature rules. We will adopt the notation
SP–CCk, k = 2, 4, 6, G when (4.1) is approximated with second, fourth, sixth
order Newton–Cotes quadrature or Gaussian quadrature respectively. It is
possible to observe how the different integration methods capture the steady
state with different accuracy. In particular with the Gaussian quadrature,
performed with M = 6 quadrature points, we essentially reach the machine
precision. In the same figure we illustrate how SP–CC scheme dissipates
the relative entropy (2.71) in the case of two coarse grids with N = 10 and
N = 20 points.

In Table 4.2 we estimate the overall order of convergence of the SP–CC
scheme for several integration methods. Here we used N = 20, 40, 80, with
reference solutions computed with N = 640 points. The time integration has
been performed with an explicit RK4 method and the time step chosen in
such a way that the CFL condition for the positivity of the scheme is satisfied,
i.e. ∆t = O(∆w2). As expected the method is second order accurate in the
transient regimes and, as it capture the steady state, assumes the order of
the quadrature method.

In the general case P (w,w∗) 6= 1 and it is not possible to give an analytical
formulation of the steady state solution f∞(w, t). In Figure 4.2 we represent
a typical evolution of an aggregation model in the bounded confidence case
[145]

P (w,w∗) = χ(|w − w∗| ≤ ∆), (4.5)

where χ(·) is the indicator function, for ∆ = 0.4, ∆ = 0.8. Here, the evolution
has been computed through a SP–CC with Gauss quadrature, the integral
B[f ](w, t) has been evaluated through a trapezoidal method.
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Figure 4.1: Example 1. Left: evolution of the relative L1 error with
respect to the stationary solution (4.3) for the SP–CC scheme with different
quadrature methods. Solution for the initial data (4.4) over the time interval
[0, 10], σ2/2 = 0.1, N = 80, ∆t = ∆w2/16σ2. Right: dissipation of the
numerical entropy for SP–CC scheme with Gaussian quadrature for two
coarse grids with N = 10 and N = 20 points.

SP − CCk
Time 2 4 6 G

1 1.9470 1.9773 1.9762 1.9762

5 1.9700 3.2323 2.3724 2.3522

10 1.9695 3.9156 6.8517 7.3252

Table 4.2: Example 1. Estimation of the order of convergence toward
the reference stationary state for explicit SP–CC, N = 20, 40, 80, reference
solution computed with N = 640, σ2/2 = 0.1, ∆t = ∆w2/16σ2.

0

1

0.5

1

20

f
(w

,t
) 1.5

15

w

2

0

t

2.5

10

5
-1 0

f(w, t)

fref(w)

(a)

0

1

1

20

2

f
(w

,t
)

15

3

w

0

t

4

10

5
-1 0

f(w, t)

fref(w)

(b)

Figure 4.2: Example 1. Opinion model in the bounded confidence case
with (a) ∆ = 0.4, (b) ∆ = 0.8. In both cases we considered ∆w = 0.05,
σ2/2 = 0.01, ∆t = ∆w2/16σ2. The reference solution (green) has been
computed with a discretization of the computational domain of N = 640
gridpoints.
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4.4.2 Example 2: Wealth evolution in unbounded domains

Let us consider equation (1.1) with w ∈ R+ and

B[f ](w, t) =

∫
R+

a(w,w∗)(w − w∗)f(w∗, t)dw∗, D(w) =
σ2

2
w2. (4.6)

With the above choice, the Fokker-Planck equation describes the evolution
of the wealth distribution w at time t in a large set of interacting economic
agents (see [142, 145] for details).

In the case of constant interaction a(w,w∗) ≡ 1 the steady state of the
equation is analytically computable

f∞(w) =
(µ− 1)µ

Γ(µ)w1+µ
exp

{
−µ− 1

w

}
, (4.7)

where µ = 1 + 2/σ2 is the so-called Pareto exponent. In the numerical test
we consider the initial distribution

f(w, 0) = β
[
exp

(
−c(w − u)2

)]
, c = 20, (4.8)

with β > 0 a normalization constant.

Again, due to degeneracy of the diffusion on the left boundary we report
results only for SP–CC schemes. In Figure 4.3 we present the solution with
u = 2 in the domain [0, L], L = 10. In both figures a(·, ·) = 1 whereas the
diffusion constant assumes different values. We report the evolution of the
solution and the relative L1 error with respect to the stationary state using
N = 201 points for the semi–implicit SP–CC scheme (SISP–CC). We observe
how the introduced methods describe the stationary state with different
levels of accuracy. Note that, at the right boundary we must introduce an
artificial boundary condition in order to truncate the computational domain.
In our numerical results we impose the quasi stationary condition (2.13) in
order to evaluate fN+1(t), that is

fN+1(t)

fN (t)
= exp

{
−
∫ wN+1

wN

B[f ] +D(w)

D(w)
dw
}
. (4.9)

In Table 4.3 we estimate the overall order of convergence of the SISP–CC
scheme for several integration methods with N = 51, 101, 201 for the domain
[0, L], L = 10, with reference solutions computed with N = 1601 gridpoints.
The time step is chosen in such a way that the CFL condition for the positivity
of the scheme is satisfied, i.e. ∆t = O(∆w). We can observe that for short
times the order of accuracy is limited by the semi–implicit method, which is
first order accurate, whereas as we approach to the stationary solution the
order depends on the quadrature formula used.
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Figure 4.3: Example 2. Left: evolution of the density f(w, t) for (4.6) with
P (·, ·) = 1, u = 2, σ2/2 = 0.1, L = 10. In green we report the analytical
steady state solution (4.7). Right: evolution of the relative L1 error for the
different quadratures methods for the semi–implicit SP–CC scheme in the
case a(·, ·) = 1, σ2/2 = 0.1 and ∆w = 0.05

SP − CCk
Time 2 4 6 G

1 1.3047 1.5010 1.5021 1.5021

10 1.9893 4.0634 2.8122 2.8682

20 1.9894 3.9842 6.0784 10.0422

Table 4.3: Example 2. Estimation of the order of convergence toward
the reference stationary state for the semi–implicit SP-CC scheme, N =
51, 101, 201, reference solution computed with N = 1601, σ2/2 = 0.1.
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4.4.3 Example 3: 2D model of swarming

Let us consider a self-propelled swarming model of Cucker-Smale type [22]
with diffusion. In this model the evolving distribution f(x,w, t) represents
the density of individuals (birds, fishes, . . .) in position x ∈ Rd having velocity
w ∈ Rd at time t > 0. We have the following dynamic

∂tf(x,w, t) + w∇xf(x,w, t) =∇w ·
[
αw(|w|2 − 1)f(x,w, t)

+ (w − uf )f(x,w, t) +D∇wf(x,w, t)
]
,

(4.10)

with

uf (x, t) =

∫
R2d K(x, y)wf(y, w, t)dwdy∫
R2d K(x, y)f(y, w, t)dwdy

, (4.11)

and K(w, y) > 0 a localization kernel, α > 0 a self-propulsion term and
D > 0 a constant noise intensity.

The space homogeneous version of the model (4.10) may be formulated in
terms of the nonlinear Fokker–Planck equation (1.1) with

B[f ](w, t) = αw(|w|2 − 1) +

∫
R2

P (w,w∗)(w − w∗)f(w∗, t)dw∗,

D(w) = D,

(4.12)

with α a positive constant and P (w,w∗) ≡ 1. The above equation can be
written as a gradient flow. In fact, if we define

ξ(w, t) = Φ(w) + (U ∗ f)(w, t) +D log f(w, t), (4.13)

with U(w) a Coloumb potential and Φ(w) a confining potential given by

Φ(w) = α

(
|w|4

4
− |w|

2

2

)
, (4.14)

the equation reads

∂tf(w, t) = ∇w · (f(w, t)∇wξ(w, t)) , w ∈ R2. (4.15)

A free energy functional which dissipates along solutions is defined by

E(t) =

∫
R2

(
α
|w|4

4
+ (1− α)

|w|2

2

)
f(w, t)dw−1

2
|uf |2+D

∫
R2

f(w, t) log f(w, t)dw,

(4.16)
with

uf (t) =

∫
R2 wf(w, t)dw∫
R2 f(w, t)dw

. (4.17)
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α = 0 SP − CCk SP − EAk
Time 2 4 6 G 2 4 6 G

1 2.1387 2.1387 2.1387 2.1387 2.4142 2.4142 2.4142 2.4142

5 6.9430 6.9430 6.9430 6.9430 10.0712 10.0712 10.0712 10.0712

10 20.0127 20.0127 20.0127 20.0127 23.9838 23.9838 23.9838 23.9838

α = 1 SP − CCk SP − EAk
Time 2 4 6 G 2 4 6 G

1 2.5310 2.5310 2.5310 2.5310 2.2614 2.2892 2.2892 2.2892

5 2.0498 7.6659 7.6659 7.6659 2.0635 10.9818 10.9818 10.9818

10 2.0503 18.7697 18.7697 18.7697 2.0613 14.8321 14.8321 14.8321

Table 4.4: Example 3. Estimation of the order of convergence for the
one-dimensional swarming model for the explicit SP–CC and SP–EA over
the domain [−L,L] with L = 5, N = 21, 41, 81, D = 0.4, ∆t = ∆w2/L2.

Stationary solutions should satisfy the identity ∇wξ = 0 and have the form

f∞(w) = C exp

{
− 1

D

[
α
|w|4

4
+ (1− α)

|w|2

2
− ū · w

]}
, (4.18)

with C > 0 a normalization constant and ū = uf . It is possible to prove the
following result (see [22] for more details).

Theorem 4.4.1. Let us consider equation (4.10) in the space-homogeneous
case, i.e. (1.1) with B[f ](w, t) and diffusion as in (4.12), exhibits a phase
transition in the following sense

i) For small enough diffusion coefficient D > 0 there is a function u =
u(D) with limD→0 u(D) = 1, such that f∞(w) with u = (u(D), 0, . . . , 0)
is a stationary solution of the original problem.

ii) For large enough diffusion coefficients D > 0 the only stationary
solution is the symmetric distribution given by (4.18) with uf ≡ 0.

Since diffusion is constant, we compute the solution both using SP–CC
type schemes and the entropic average schemes SP–EA. We use the same
subscript notation concerning the quadrature formula adopted. In Table 4.4
we estimate the order of convergence of the SP–CC and SP–EA schemes
in the 1D case for several integration methods. We can observe how each
method reach spectral accuracy in the case α = 0, i.e. when (4.12) is smooth
and has an exponential decay of the tails.

In Figure 4.4 we show that, as expected, on a coarse grid the SP–EA
method becomes unstable for vanishing diffusions, whereas the SP–CC scheme
remains stable and reduces to first order upwinding. In this case the solution
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Figure 4.4: Example 3. Stationary solution for the one-dimensional swarm-
ing model with α = 1 and D = 0.001, N = 41 (left) and N = 61 (right). As
expected the SP–EA scheme produces instabilities for a vanishing diffusion.
The SP–CC scheme remains stable and first order accurate.

becomes close to a Dirac delta in the velocity space. Finally, in Figure 4.5 we
present the resulting 2D nonlinear Fokker–Planck equation for swarming with
B[f ](w, t) and D(w) in (4.12), for several values of the diffusion coefficient
and fixed self-propulsion α = 2. The semi-implicit numerical scheme has
been used, with a 6th order open Newton–Cotes quadrature method. It is
possible to observe the threshold phenomenon occurring for an increasing
diffusion prescribed by Theorem 4.4.1. The results obtained with the two
different schemes are essentially equivalent in this case.

4.5 Conclusion

The construction of structure–preserving schemes for nonlinear Fokker–
Planck equations has been studied. Two different types of schemes have been
constructed. The first type represents a natural extension of the so–called
Chang–Cooper scheme to the nonlinear case. The second type of schemes
represents a modification with better entropy dissipation properties. Both
methods are second order accurate and capable to preserve the stationary
state with arbitrary accuracy. However, non negativity restrictions are more
severe for the second type of schemes. Even if the analysis is performed
in the one-dimensional case, extensions to multidimensional situations are
also considered. Several applications to linear and nonlinear Fokker-Planck
equations arising in socio-economic sciences are presented and show the
generality of the present approach. Extensions of the schemes to include
nonlinear diffusion terms and higher order schemes in the limiting of vanishing
diffusion are actually under study and will be presented elsewhere.

86



Chapter 4 SP schemes for nonlinear Fokker–Planck equations

w

v

0 1 2 3 4
0

1

2

3

4

0

0.5

1

1.5

(a) α = 0;D = 0.1

w

v

0 1 2 3 4
0

1

2

3

4

0

0.1

0.2

0.3

0.4

0.5

(b) α = 0;D = 0.3

w

v

0 1 2 3 4
0

1

2

3

4

0

0.05

0.1

0.15

0.2

0.25

0.3

(c) α = 0;D = 0.5

w

v

−2 0 2
−3

−2

−1

0

1

2

3

0

0.5

1

1.5

2

2.5

3

(d) α = 2;D = 0.1

w

v

−2 0 2
−3

−2

−1

0

1

2

3

0

0.1

0.2

0.3

0.4

0.5

0.6

(e) α = 2;D = 0.3

w

v

−2 0 2
−3

−2

−1

0

1

2

3

0.05

0.1

0.15

0.2

(f) α = 2;D = 0.5

w

v

−2 0 2
−3

−2

−1

0

1

2

3

0.5

1

1.5

2

2.5

3

3.5

4

(g) α = 4;D = 0.1

w

v

−2 0 2
−3

−2

−1

0

1

2

3

0

0.2

0.4

0.6

0.8

1

(h) α = 4;D = 0.3

w

v

−2 0 2
−3

−2

−1

0

1

2

3

0

0.05

0.1

0.15

0.2

0.25

(i) α = 4;D = 0.5

Figure 4.5: Example 3. Stationary state of the two-dimensional swarming
model for several values of the diffusion coefficient D > 0 and fixed self-
propulsion α = 0, 2, 4. In the case α > 0 for increasing values of D the
mean of the stationary distribution approaches to [0, 0]. We considered a
discretization (w, v) ∈ [−L,L] × [−L,L], L = 3, ∆w = ∆v = 0.05 and
∆t = dw/L. The initial distribution is a bivariate normal distribution
centered in (2, 2) and diagonal covariance matrix with σ2

w = σ2
v = 0.5.
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Chapter 5

Opinion dynamics over
complex networks

5.1 Introduction

In recent years, the importance of large scale social networks has grown
enormously and their study has raised lots of attentions, with the aim to
understand how their structure and connections may influence the spread
of opinions and ideas through human networks [1, 12, 17, 72, 80, 150, 153].
A major research topic is how to model the information exchange and, in
particular, to understand and analyze the effects of interpersonal influence
on processes such as opinion formation and creation and removal of new
connections. The latter aspect is closely related to the construction of graph
models for complex networks and has emerged as one of the most active
research fields [3, 15, 20, 143, 159]. The empirical studies of technological
and communication networks has been actively investigated thanks to a huge
amount of data coming from the online platforms. From the theoretical
point of view it is an unprecedented laboratory for testing the collective
behavior of large populations of agents [21, 171]. The need to handle with
millions, and often billions, of vertices implied a considerable shift of interest
to large-scale statistical properties of graphs.

In this context kinetic theory may play a major role in designing effective
models to characterize the statistical features of the opinion dynamics over
such large collection of data. In particular, it can be used to analyze the so
called stylized facts of the dynamics, like the asymptotic degree distribution
of the connections in the network and the large time opinion behavior. To
this aim, in this paper, we extend the kinetic model of opinion formation
introduced in [164] to the case where each agent possesses a certain number
of connections in the network. These connections evolve accordingly to
a preferential attachment dynamics for the removal and creation of new
connections. In this sense, the model here proposed falls in the general class
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of kinetic models for socio-economic problems where the dynamics of the
model is influenced by additional characteristics of the agents, like personal
conviction, leadership and knowledge [11, 39, 82, 84, 145, 146, 147].

In principle, the modeling here proposed is not limited to a particular
kind of opinion dynamics and one can adapt other models developed in
the literature [37, 82, 162] to evolve over networks by following the ideas
presented in this paper. We mention here that recently opinion models
have been considered in the context of optimal control in [6, 11, 12]. In a
recent note [12] we faced the solution of an optimal control problem for a
model of opinion dynamics described by a system of ordinary differential
equations over an evolving network. More precisely we considered a network
with a fixed number of vertices and edges which modifies its configuration of
connections in time through a preferential attachment rewiring process.

A further contribution of the present manuscript is the development of
numerical methods which are capable to describe correctly the large time
behavior of the system. In particular we will focus on finite-difference schemes
for the mean-field description of the opinion model over the network inspired
by the well-known Chang–Cooper method [41, 40, 60, 127]. We remark
that, at variance with the standard Chang–Cooper method, the Fokker-
Planck model considered here is nonlinear. Similar schemes for nonlinear
Fokker-Planck equations have been previously introduced in [40, 127].

The rest of the chapter is organized as follows. In Section 2 we introduce
the kinetic model and describe the evolution of the network of connections.
The main properties of the network and the evolution of some macroscopic
quantities, like the mean and the variance of the opinion over the network,
are discussed. Next in Section 3 we derive a Fokker-Planck model for the
opinion dynamics under the classical quasi-invariant scaling. This permits
to compute asymptotic stationary solutions of the opinion over the graph
in some simplified situations. Section 4 is devoted to the construction of
numerical methods for the above problems. Monte Carlo methods for the
Boltzmann model and finite difference schemes for the Fokker-Planck model
which are capable to describe correctly the steady states of the system
are introduced. Finally in Section 5 several numerical examples illustrate
our findings and show the behavior of the model. In separate Appendices
we report proofs related to the main properties of the network and to the
positivity preservation property of the finite difference scheme.

5.2 The kinetic model

In this section we introduce a general mathematical model based on a
kinetic description for the study of the opinion formation on a large evolving
network.
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5.2.1 Opinion dynamics

Let us consider a large system of agents interacting through a given network.
We associate to each agent an opinion w, which varies continuously in a
closed subset whose bounds denote two extreme and opposite opinions, and
its number of connections c, as a discrete variable varying between 0 and
the maximum number of connections allowed by the network. Note that
this maximum number typically is a fixed value which is several orders of
magnitude smaller then the size the network.

We are interested in the evolution of the density function

f = f(w, c, t), f : I × C × R+ → R+ (2.1)

where w ∈ I, I = [−1, 1] is the opinion variable, c ∈ C = {0, 1, 2, . . . , cmax} is
a discrete variable describing the number of connections and t ∈ R+ denotes
as usual the time variable. For each time t ≥ 0 we can compute the following
marginal density

ρ(c, t) =

∫
I
f(w, c, t)dw, (2.2)

which defines the evolution of the number of connections of the agents or
equivalently the degree distribution of the network. In the sequel we assume
that the total number of agents is conserved, namely

cmax∑
c=0

ρ(c, t) = 1. (2.3)

The overall opinion distribution is defined likewise as the following marginal
density function

g(w, t) =

cmax∑
c=0

f(w, c, t). (2.4)

We express the evolution of the opinions by a binary interaction rule. From
a microscopic point of view we suppose that the agents modify their opinion
through binary interactions which depend on opinions and number of con-
nections. If two agents with opinion and number of connections (w, c) and
(w∗, c∗) meet, their post-interaction opinions are given by{

w′ = w − ηP (w,w∗; c, c∗)(w − w∗) + ξD(w, c),

w′∗ = w∗ − ηP (w∗, w; c∗, c)(w∗ − w) + ξ∗D(w∗, c∗),
(2.5)

where w,w∗ ∈ I = [−1, 1] denote the pre-interaction opinions and w′, w′∗ the
opinions after the exchange of information between the two agents. Note
that, in the present setting the compromise function P (·, ·; ·, ·) depends
both on the opinions and on the number of connections of each agent. In
(2.7) the nonnegative parameter η influences the compromise rate while
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ξ, ξ∗ are centered random variables with the same distribution Θ with finite
variance ς2 and taking values on a Borel set B ⊂ R. The function D(·, ·) ≥ 0
describes the local relevance of the diffusion for a given opinion and number
of connections. We will consider by now a general interaction potential such
that 0 ≤ P (w,w∗, c, c∗) ≤ 1.

In absence of diffusion, ξ, ξ∗ ≡ 0, from (2.7) we have

|w′ − w′∗| = |1− η(P (w,w∗; c, c∗) + P (w∗, w; c∗, c))||w − w∗|, (2.6)

then the post-exchange distances between agents are still in the reference
interval [−1, 1] if we consider η ∈ (0, 1). In agreement with [6, 11, 82, 164]
we can state the following result which derives the conditions on the noise
term to ensure that the post-interaction opinions do not leave the reference
interval.

Proposition 5.2.1. If we assume that 0 < P (w,w∗; c, c∗) ≤ 1 and

|ξ| < d, |ξ∗| < d,

where

d = min
(w,c)∈I×C

{(1− w)

D(w, c)
, D(w, c) 6= 0

}
,

then the binary interaction rule (2.7) preserves the bounds being the post
interaction opinions w,w∗ contained in I = [−1, 1].

The evolution in time of the density function f(w, c, t) is described by the
following integro-differential equation of Boltzmann-type

d

dt
f(w, c, t) + N[f(w, c, t)] = Q(f, f)(w, c, t), (2.7)

where N[·] is an operator related to the evolution of the connections in the
network and Q(·, ·) is the binary interaction operator defined as follows

Q(f, f) =

cmax∑
c∗=0

∫
B2×I

(
′B

1

J
f(′w, c)f(′w∗, c∗)−Bf(w, c)f(w∗, c∗)

)
dw∗dξdξ∗,

(2.8)
where (′w,′w∗) are the pre-interaction opinions generated by the couple
(w,w∗) after the interaction. The term J denotes the Jacobian of the
transformation (w,w∗) → (w′, w′∗) and the kernels ′B,B define the binary
interaction. Here and in the rest of the section, for notation simplicity, the
explicit dependence from the time variable is omitted.

We will consider interaction kernels of the following form

B(w,w∗)→(w′,w′∗)
= λΘ(ξ)Θ(ξ∗)χ(|w′| ≤ 1)χ(|w′∗| ≤ 1), (2.9)

where λ > 0 is a constant relaxation rate representing the interaction fre-
quency.
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In order to write the collision operator Q(·, ·) in weak form we consider a
test function ψ(w) to get∫

I
Q(f, f)(w, c)ψ(w)dw =

λ

cmax∑
c∗=0

〈∫
I2

(
ψ(w′)− ψ(w)

)
f(w∗, c∗)f(w, c)dwdw∗

〉
,

(2.10)

where the brackets < · > denotes the expectation with respect to the random
variables ξ, ξ∗. Equation (2.7) may be written in weak form as follows

d

dt

∫
I
f(w, c, t)ψ(w)dw +

∫
I
N[f(w, c, t)]ψ(w)dw =

λ

cmax∑
c∗=0

〈∫
I2

(
ψ(w′)− ψ(w)

)
f(w∗, c∗, t)f(w, c, t)dwdw∗

〉
.

(2.11)

An alternative form, obtained by symmetry is the following

d

dt

∫
I
f(w, c, t)ψ(w)dw +

∫
I
N[f(w, c, t)]ψ(w)dw =

λ

2

cmax∑
c∗=0

〈∫
I2

(
ψ(w′) + ψ(w′∗)− ψ(w)− ψ(w∗)

)
f(w∗, c∗, t)f(w, c, t)dwdw∗

〉
.

(2.12)

5.2.2 Evolution of the network

We introduced in the previous paragraphs the operator N[·], characterizing
the evolution of the agents in the discrete space of connections. This, of
course, corresponds to the evolution of the underlying network of connections
between the agents. Here we will specify the details of the model considered
in the present paper, inspired by [175].

The operator N[·] is defined through a combination of preferential attach-
ment and uniform processes describing the evolution of the connections of
the agents by removal and adding links in the network. These processes are
strictly related to the generation of stationary scale-free distributions [20].

More precisely, for each c = 1, . . . , cmax − 1 we define

N[f(w, c, t)] =

− 2Vr(f ;w)

γ + β
[(c+ 1 + β)f(w, c+ 1, t)− (c+ β)f(w, c, t)]

− 2Va(f ;w)

γ + α
[(c− 1 + α)f(w, c− 1, t)− (c+ α)f(w, c, t)] ,

(2.13)
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where γ = γ(t) is the mean density of connectivity defined as

γ(t) =

cmax∑
c=0

cρ(c, t), (2.14)

α, β > 0 are attraction coefficients, and Vr(f ;w) ≥ 0, Va(f ;w) ≥ 0 are
characteristic rates of the removal and adding steps, respectively. The first
term in (2.13) describes the net gain of f(w, c, t) due to the removal of
connections between agents whereas the second term represents the net gain
due to the process of addition of connections. The factor 2 has been kept in
evidence since connections are removed and created pairwise.

At the boundary we have the following equations

N[f(w, 0, t)] =− 2Vr(f ;w)

γ + β
(β + 1)f(w, 1, t)

+
2Va(f ;w)

γ + α
αf(w, 0, t),

N[f(w, cmax, t)] =
2Vr(f ;w)

γ + β
(cmax + β)f(w, cmax, t)

− 2Va(f ;w)

γ + α
(cmax − 1 + α)f(w, cmax − 1, t),

(2.15)

which are derived from (2.13) taking into account the fact that, in the
dynamics of the network, connections cannot be removed from agents with 0
connections and cannot be added to agents with cmax connections.

Remark 8. If one defines the characteristic rates as

Vr(f ;w) = Ur
γ + β

γf + βg(w, t)
, Va(f ;w) = Ua

γ + α

γf + αg(w, t)
, (2.16)

where

γf (w, t) =

cmax∑
c=0

cf(w, c, t), (2.17)

and Ua, Ur are constants, the dynamics in (2.13) corresponds to a combination
of a preferential attachment process (α, β ≈ 0) and a uniform process (α, β �
1) for each agent with opinion w, with respect to the probability density of
connections f(w, c, t)/g(w, t).

The evolution of the network of connections can be recovered taking
ψ(w) = 1 in the master equation (2.11). From equation (2.2) we have

d

dt
ρ(c, t) +

∫
I
N[f(w, c, t)] dw = 0. (2.18)
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From the above definition of the network operator N[·] it follows that

d

dt

cmax∑
c=0

ρ(c, t) = 0. (2.19)

Then, for the collisional operator defined in (2.10) and the choice of N[·] in
(2.13), the total number of agents is conserved.

Let us take into account the evolution of the mean density of connectivity
γ defined in (2.14). We can prove that, for each t ≥ 0

d

dt
γ(t) =− 2

∫
I
Vr(f ;w)

γf + βg(w, t)

γ + β
dw

+ 2

∫
I
Va(f ;w)

γf + αg(w, t)

γ + α
dw

+
2β

γ + β

∫
I
Vr(f ;w)f(w, 0, t) dw

− 2(cmax + α)

γ + α

∫
I
Va(f ;w)f(w, cmax, t) dw.

(2.20)

Therefore, γ is not conserved in general. Asymptotically, conservation is
recovered in the case β = 0, if the characteristic rates are given by (2.16)
with Ua = Ur or are constants with Va = Vr, and for a sufficiently fast decay
of the density function f(w, cmax, t).

In Appendix 5.6-5.6 we report the explicit computations of the conservation
of the total number of connections (2.19) and of the evolution of the mean
density of connectivity (2.20).

In the particular case where Va and Vr are constants independent of f and
w, then the operator N[·] is linear and will be denoted by L[·]. In this case,
the evolution of the network of connections is independent from the opinion
and we get the closed form

d

dt
ρ(c, t) + L[ρ(c, t)] = 0, (2.21)

where

L[ρ(c, t)] =− 2Vr
γ + β

[(c+ 1 + β)ρ(c+ 1, t)− (c+ β)ρ(c, t)]

− 2Va
γ + α

[(c− 1 + α)ρ(c− 1, t)− (c+ α)ρ(c, t)] ,

(2.22)

and at the boundary

L[ρ(0, t)] =− 2Vr
γ + β

(β + 1)ρ(1, t) +
2Va
γ + α

αρ(0, t),

L[ρ(cmax, t)] =
2Vr
γ + β

(cmax + β)ρ(cmax, t)

− 2Va
γ + α

(cmax − 1 + α)ρ(cmax − 1, t).

(2.23)
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Note that the dynamics described by (2.22) corresponds again to a combina-
tion of preferential attachment processes (α, β ≈ 0) and uniform processes
(α, β � 1) with respect to the probability density of connections ρ(c, t).

Concerning the large time behavior of the network of connections, in the
linear case with Vr = Va, β = 0 and now denoting by γ the asymptotic value
of the density of connectivity, it is possible to prove the following result.

Proposition 5.2.2. For each c ∈ C the stationary solution to (2.21) or
equivalently

(c+ 1)ρ∞(c+ 1) =
1

γ + α
[(c(2γ + α) + γα)ρ∞(c)− γ(c− 1 + α)ρ∞(c− 1)]

(2.24)
is given by

ρ∞(c) =

(
γ

γ + α

)c 1

c!
α(α+ 1) · · · (α+ c− 1)ρ∞(0) (2.25)

where

ρ∞(0) =

(
α

α+ γ

)α
. (2.26)

Detailed computations are given in Appendix 5.6.
Further approximations are possible in the cases α � 1 and α ≈ 0.

For big values of α the preferential attachment process, described by the
master equation (2.22), is destroyed and the network approaches to a random
network, whose degree distribution is the Poisson distribution [21]. In fact,
in the limit α→ +∞ we have (α+ γ)c ≈ α(α+ 1) · · · (α+ c− 1) and

ρ∞(c) = lim
α→+∞

(
1 +

γ

α

)−α
γc =

e−c

c!
γc.

In the second case, for γ ≥ 1 and small values of α, the distribution can be
correctly approximated with a truncated power-law with unitary exponent

ρ∞(c) =

(
α

γ

)α α
c
.

5.2.3 Evolution of the moments

In order to study the evolution of the mean opinion, defined as

mw(c, t) =

∫
I
wf(w, c, t)dw,

we consider ψ(w) = w in (2.12)

d

dt

∫
I
wf(w, c, t)dw +

∫
I
wN [f(w, c, t)] dw =

λ

2

cmax∑
c∗=0

〈∫
I2

(
w′ + w′∗ − w − w∗

)
f(w∗, c∗, t)f(w, c, t)dwdw∗

〉
.

(2.27)
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Figure 2.1: Stationary states of (2.21) with relaxation coefficients Vr = Va =
1, mean density of connectivity γ = 30, cmax = 1500 and several values of the
attraction parameters α, and having fixed β = 0. Left: convergence toward
the Poisson distribution for big values of α. Right: convergence toward a

power-law distribution in the limit α→ 0, we indicated with p
(−k)
∞ , k = 1, 2, 3

the α−dependent stationary solutions for α = 10−1, 10−2, 10−3, respectively.

We obtain

d

dt
mw(c, t) +

∫
I
wN [f(w, c, t)] dw =

ηλ

2

cmax∑
c∗=0

∫
I2

(w − w∗) [P (w∗, w; c∗, c)− P (w,w∗; c, c∗)]

f(w∗, c∗, t)f(w, c, t)dw∗dw.

Of course, if the compromise function P (·, ·; ·, ·) is symmetric with respect to
the pairs (w,w∗) and (c, c∗) the overall opinion on the network is conserved

d

dt

cmax∑
c=0

mw(c, t) = 0.

In addition, if the operator N[·] is linear, the evolution of the mean opinion
obeys the same closed differential equation of the network of connections

d

dt
mw(c, t) + L[mw(c, t)] = 0. (2.28)

Therefore, all the conclusions of the previous section hold also for the mean
opinion on the network.

More generally we will consider compromise functions P (·, ·; ·, ·) with the
following form

P (w,w∗; c, c∗) = H(w,w∗)K(c, c∗), (2.29)

where 0 ≤ H(·, ·) ≤ 1 represents the positive compromise propensity and
0 ≤ K(·, ·) ≤ 1 a function taking into account the influence of number
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connections in the opinion exchange process. Note that, in this case, even
if we consider a symmetric compromise function H and a linear network
operator we have

d

dt
mw(c, t) + L[mw(c, t)] =

ηλ

2

cmax∑
c∗=0

B(t, c, c∗) [K(c∗, c)−K(c, c∗)]∫
I2
H(w∗, w)(w − w∗)f(w∗, c∗, t)f(w, c, t)dw∗dw,

(2.30)

and the evolution of the mean opinion cannot be expressed in closed form
due to the influence of the different connections that the agents possess. This
is a fundamental difference compared to classical kinetic models of opinion
[164].

In the case of the second moment of the opinion φ(w) = w2, if we assume
a symmetric function P , by denoting

Ew(c, t) =

∫
I
w2f(w, c, t)dw

we get

d

dt
Ew(c, t) +

∫
I
w2N[f(w, c, t)] dw =

ηλ

cmax∑
c∗=0

∫
I2
P (w∗, w; c∗, c)

2(w − w∗)2f(w∗, c∗, t)f(w, c, t)dw∗dw

+ λς2

∫
I
D2(c, w)f(w, c, t)dw,

(2.31)

which, in the case of a linear operator L[·] with P = 1 and in absence of
noise D = 0, simplifies to

d

dt
Ew(c, t) + L[Ew(c, t)] =

ηλ

(
Ew(c, t) + ρ(c, t)

cmax∑
c∗=0

Ew(c∗, t)− 2mw(c, t)

cmax∑
c∗=0

mw(c∗, t)

)
.

(2.32)

Equation (2.32) together with (2.21) and (2.28) form a closed system for the
evaluation of the second order moment of the opinion.

5.3 Fokker-Planck modeling

In general it is difficult to obtain analytic results on the large time behavior
of the opinion for the kinetic equation introduced in the previous section. A
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step toward the simplification of the analysis is the derivation of asymptotic
states of the Boltzmann-type equation derived from a simplified Fokker-
Planck-type models [145]. Here we recall briefly the approach usually referred
to as the quasi-invariant opinion limit [11, 39, 164].

5.3.1 Derivation of the model

The idea is to rescale the interaction frequency λ, the interaction propensity
η and the diffusion variance ς2 at the same time, in order to maintain
asymptotically the memory of the microscopic interactions. Let us introduce
the scaling parameter ε > 0 and consider the scaling

η = ε, λ =
1

ε
, ς2 = εσ2. (3.1)

The above scaling corresponds to the case where the interaction kernel
concentrates on binary interactions producing very small changes in the
agents’ opinion but, at the same time, the number of interactions becomes
very large. From a modeling point of view we require that the scaling (3.1)
preserves the macroscopic properties of the kinetic system in the limit ε→ 0,
i.e. the evolution of the mean and the variance of opinion derived in Section
5.2.3.

The scaled equation (2.11) reads

d

dt

∫
I
f(w, c, t)ψ(w)dw +

∫
I
N [f(w, c, t)]ψ(w) dw =

1

ε

cmax∑
c∗=0

〈∫
I2

(ψ(w′)− ψ(w))f(w∗, c∗, t)f(w, c, t)dwdw∗

〉
,

(3.2)

with scaled binary interactions given by

w′ − w = εP (w,w∗; c, c∗)(w∗ − w) + ξεD(w) +O(ε2), (3.3)

where ξε is a centered random variable with variance εσ2. Since as ε→ 0 we
have w′ → w we can consider the Taylor expansion of ψ around w to get

ψ(w′)− ψ(w) = (w′ − w)ψ′(w) +
1

2
(w′ − w)2ψ′′(w̄), (3.4)

where for some θ ∈ [0, 1]

w̄ = θw + (1− θ)w,

and from (3.2) we obtain

1

ε

cmax∑
c∗=0

〈∫
I2

(w′ − w)ψ′(w) +
1

2
(w′ − w)2ψ′′(w)

f(w∗, c∗, t)f(w, c, t)dwdw∗

〉
+R(ε),

(3.5)
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where R(ε) indicates the remainder, given by

R(ε) =
1

2ε

cmax∑
c∗=0

〈∫
I2

(w′ −w)2(ψ′′(w̄)− ψ′′(w))f(w∗, c∗, t)f(w, c, t)dwdw∗

〉
.

(3.6)
Therefore, the scaled binary interaction term reads

cmax∑
c∗=0

∫
I2

[
P (w,w∗; c, c∗)(w∗ − w)ψ′(w)

+
σ2

2
D(w, c)2ψ′′(w)

]
f(w∗, c∗, t)f(w, c, t)dwdw∗ +R(ε) +O(ε).

(3.7)

By similar arguments of [164] it can be rigorously shown that R(ε) in (3.6)
decays to zero in the limit ε→ 0. Thus, as ε→ 0 we recover

d

dt

∫
I
f(w, c, t)ψ(w)dw +

∫
I
N [f(w, c, t)]ψ(w)dw =

cmax∑
c∗=0

[∫
I2
P (w,w∗; c, c∗)(w∗ − w)ψ′(w)f(w∗, c∗, t)f(w, c, t)dw∗dw

+
σ2

2

∫
I
D(w, c)2ψ′′(w)f(w, c, t)dw

]
.

(3.8)

Integrating backward by parts equation (3.8) we obtain the following Fokker-
Planck differential equation for the evolution of the opinions’ distribution on
the evolving network

∂

∂t
f(w, c, t) + N [f(w, c, t)] =

∂

∂w
P[f ]f(w, c, t)

+
σ2

2

∂2

∂w2
(D(w, c)2f(w, c, t))

(3.9)

where

P[f ](w, c, t) =

cmax∑
c∗=0

∫
I
P (w,w∗; c, c∗)(w∗ − w)f(w∗, c∗, t)dw∗. (3.10)

5.3.2 Stationary solutions

In this section we will show how in some cases it is possible to compute
explicitly the steady state solution of the Fokker-Planck system (4.9). We
restrict to linear operators L[·] and asymptotic solutions of the form

f∞(w, c) = g∞(w)ρ∞(c), (3.11)
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where ρ∞(c) is the steady state distribution of the connections (see Proposi-
tion 5.2.2) and∫

I
f∞(w, c)dw = ρ∞(c),

cmax∑
c=0

f∞(w, c) = g∞(w). (3.12)

From the definition of the linear operator L[·] we have L[ρ∞(c)] = 0, so
stationary solutions of type (3.11) satisfy the following equation

∂

∂w
P[f∞]f∞(w, c) +

σ2

2

∂2

∂w2
(D(w, c)2f∞(w, c)) = 0. (3.13)

Under some simplifications we can analytically solve equation (3.13), as shown
in [11, 164]. If we assume (2.29), i.e. P (w,w∗; c, c∗) = H(w,w∗)K(c, c∗), the
operator P[f∞] can be written as follows

P[f∞](w, c) =

(
cmax∑
c∗=0

K(c, c∗)ρ∞(c∗)

)(∫
I
H(w,w∗)(w∗ − w)g∞(w∗)dw∗

)
=: K[ρ∞](c)H[g∞](w),

(3.14)

and if we further assume that K(c, c∗) = K̄(c∗) is independent from c, and
H(w,w∗) = H̄(w) independent from w∗, we have

K[ρ∞] =

cmax∑
c∗=0

K̄(c∗)ρ∞(c∗) =: κ, H[g∞] = H̄(w) (w − m̄w) ,

where m̄w =
∑cmax

c=0 mw(c, t).
Finally, if we consider D(w, c) = D(w), equation (3.13) reads(
κ
∂

∂w
H̄(w) (w − m̄w) g∞(w) +

σ2

2

∂2

∂w2
D(w)2g∞(w)

)
ρ∞(c) = 0. (3.15)

Therefore, on the support of ρ∞(c), stationary solutions can be derived from
the following equation

κH̄(w) (w − m̄w) g∞(w) +
σ2

2

∂

∂w
D(w)2g∞(w) = 0, (3.16)

which corresponds to the solution of the ordinary differential equation

dg∞
dw

= 2

(
κ

σ2

H̄(w − m̄w)

D2
− D′

D

)
g∞. (3.17)

Thus, we obtain

g∞(w) =
C0

D(w)2
exp

{
2κ

σ2

∫ w H̄(v)

D(v)2
(m̄w − v) dv

}
, (3.18)

where the constant C0 is chosen such that the total mass of g∞ is equal to
one. Some explicit examples are given below.
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Figure 3.2: Stationary solutions of type f∞(w, c) = g∞(w)p∞(c), where
g∞(w) is given by (3.19) with κ = 1, mw = 0, σ2 = 0.05 and p∞(c) defined
by (2.25), with Vr = Va = 1, γ = 30 and α = 10 on the left and α = 0.1 on
the right.

1. In the case H ≡ 1 and D(w) = 1 − w2, the steady state solution is
given by

g∞(w) = C0(1+w)−2+m̄wκ/σ2
(1−w)−2−mwκ/σ2

exp
{
− κ(1− m̄ww)

σ2(1− w2)

}
.

(3.19)

2. For H(w,w∗) = 1− w2 and D(w) = 1− w2, the steady state solution
is given by

g∞(w) = C0(1− w)−2+(1−m̄w)κ/σ2
(1 + w)−2+(1+m̄w)κ/σ2

. (3.20)

In Figure 3.2 as an example we report the stationary solution f∞(w, c) =
g∞(w)ρ∞(c), where g∞(w) is given by (3.19) and p∞(c) defined by (2.25)
for various α.

5.4 Numerical methods

In this section we consider the development of numerical methods for the
kinetic models studied in the previous sections. First we consider direct
simulation Monte Carlo methods for the Boltzmann model (2.8) introduced
in Section 5.2. Here the major difficulty is to consider a probabilistic
interpretation of the dynamics induced by the network operator N[·], whereas
the opinion interaction follows the standard binary sampling approach (see
[145] for details). Next we consider the derivation of numerical schemes for
the Fokker-Planck model (4.9), derived in Section 6.4. In particular we will
focus on the construction of finite-difference methods which are capable to
describe correctly the large time behavior of the model. To this aim we will
consider a nonlinear version of the Chang–Cooper type discretization which
has the nice feature of preserving the steady states and the non-negativity
of the numerical solution [60, 127].
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5.4.1 Direct simulation Monte Carlo

One of the most common approaches to solve Boltzmann-type equations is
based Monte Carlo methods. Let us consider the initial value problem given
by equation (2.7) with initial condition f(w, c, t = 0) = f0(w, c), the solution
at time tn = n · ∆tn, n ≥ 1 is obtained as a composition of the solutions
of the following problems: we first integrate the network term for all c ∈ C
along the time interval [tn, tn+1/2]

d

dt
f̃(w, c, t) + N[f̃(w, c, t)] = 0,

f̃(w, c, 0) = f0(w, c)

(4.1)

then we solve over [tn+1/2, tn+1] the interaction step
d

dt
f(w, c, t) = Q(f, f)(w, c, t),

f(w, c, 0) = f̃(w, c, tn+1/2).

(4.2)

The described process may be iterated in order to obtain the numerical
solution of the initial equation at each time step. At variance with standard
Monte Carlo methods for opinion dynamics, see for example [145], here we
face the additional difficulty of the network evolution. In the sequel we
describe the details of the Monte Carlo method for the network evolution in
the simplified case N[·] = L[·].

Let fn = f(w, c, tn) the empirical density function for the density of agents
at time tn with opinion w ∈ [−1, 1] and connections c ∈ C. For a any given
opinion w the solution of the transport step is given for each c > 0 and
c < cmax by

fn+1(w, c) =

(
1−∆t

Vr(c+ β)

γn + β
−∆t

Va(c+ α)

γn + α

)
fn(w, c)

+ ∆t
Vr(c+ β)

γn + β
fn(w, c− 1) + ∆t

Va(c+ α)

γn + α
fn(w, c+ 1),

(4.3)

with boundary conditions

fn(w, 0) =

(
1−∆t

Va(c+ α)

γn + α

)
fn(w, 0) + ∆t

Va(c+ α)

γn + α
fn(w, 1),

fn(w, cmax) =

(
1−∆t

Vr(c+ β)

γn + β

)
fn(w, cmax) + ∆t

Vr(cmax + β)

γn + β
fn(w, cmax − 1),

(4.4)

and temporal discretization such that

∆t ≤ min

{
γn + β

Vr(cmax + β)
,

γn + α

Va(cmax + α)

}
. (4.5)

An algorithm to simulate the above equation reads as follows
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Algorithm 5.4.1.

1. Sample (w0
i , c

0
i ), with i = 1, . . . , Ns, from the distribution f0(w, c).

2. for n = 0 to ntot − 1

(a) Compute γn = 1
Ns

∑Ns
j=1 c

n
j ;

(b) fix ∆t such that condition (4.5) is satisfied.

(c) for k = 1 to Ns

i. compute the following probabilities rates

p
(a)
k =

∆tVa(c
n
k + α)

γn + α
, p

(r)
k =

∆tVr(c
n
k + β)

γn + β
,

ii. set c∗k = cnk .

iii. if 0 ≤ c∗k ≤ cmax − 1,

with probability p
(a)
k add a connection: c∗k = c∗k + 1;

iv. if 1 ≤ c∗k ≤ cmax,

with probability p
(r)
k remove a connection: c∗k = c∗k − 1;

end for

(d) set cn+1
i = c∗i , for all i = 1, . . . , Ns.

end for

The collision step may be solved through a binary interaction algorithm
[8, 145], where the basic idea is to solve the binary exchange of information
described by (2.7), under the quasi-invariant opinion scaling (3.1).

The time-discrete scheme reads

fn+1(w, c) =

(
1− ∆t

ε

)
fn(w, c) +

∆t

ε
Q+
ε (fn, fn)(w, c), (4.6)

where we have made explicit the dependence of Q(f, f) on the frequency
of interactions 1/ε and with Q+

ε (fn, fn) we denoted the gain part, namely
it accounts the density of opinions gained at position w after the binary
interaction (2.7). The collisional step (4.6) is a convex combinations of
probability density under the time step constrain ∆t ≤ ε, which has to be
coupled with (4.5). For further details on the algorithm we refer to [8, 145].

In Figure 4.3 we show the two stationary states, already presented in
Figure 3.2, computed through the Monte Carlo procedure just described,
where we use Ns = 2× 104 samples to reconstruct the density and scaling
parameter ε = 0.01 and ∆t = ε.
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Figure 4.3: Stationary solutions captured via Monte Carlo simulations, with
Ns = 2 × 104 samples. Parameters of the model are chosen as follows
σ2 = 0.05, Vr = Va = 1, β = 0, α = 10 on the right hand side and α = 0.1
on the left hand side.

5.4.2 Chang–Cooper type numerical schemes

We consider the Fokker-Planck system (4.9) that we will rewrite in the
form

∂

∂t
f(w, c, t) + N [f(w, c, t)] =

∂

∂w
F [f ] (4.7)

where

F [f ] =
(
P[f ] + σ2D′(w, c)D(w, c)

)
f(w, c, t) +

σ2

2
D(w, c)2 ∂

∂w
f(w, c, t),

(4.8)
and P[f ] is given by (3.10).

The above equation is complemented with the initial data f(w, c, 0) =
f0(w, c) and considered in the domain (w, c) ∈ I ×C with zero flux boundary
condition on w. Note that in the variable c the equation is in discrete form
and therefore the discretization we will consider acts only on the continuous
opinion variable w ∈ I.

Let us introduce a uniform grid wi = −1 + i∆w, i = 0, . . . , N with
∆w = 2/N , we denote by wi±1/2 = wi ±∆w/2 and define

fi(c, t) =
1

∆w

∫ wi+1/2

wi−1/2

f(w, c, t) dw.

Integrating equation (4.7) yields

∂

∂t
fi(c, t) + N [fi(c, t)] =

Fi+1/2[f ]−Fi−1/2[f ]

∆w
, (4.9)

where Fi[f ] is the flux function characterizing the numerical discretization.
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We assume a flux function as a combination of upwind and centered
discretization as in the classical Chang–Cooper flux

Fi+1/2[f ] =

(
(1− δi+1/2)(P[fi+1/2] + σ2D′i+1/2Di+1/2) +

σ2

2∆w
D2
i+1/2

)
fi+1

+

(
δi+1/2(P[fi+1/2] + σ2D′i+1/2Di+1/2)− σ2

2∆w
D2
i+1/2

)
fi,

(4.10)

where Di+1/2 = D(wi+1/2, c) and D′i+1/2 = D′(wi+1/2, c).
The weights δi+1/2 have to be chosen in such a way that a steady state

solution is preserved. Moreover, as it is shown in Appendix 5.6, this choice
permits also to preserve nonnegativity of the numerical density.

Preservation of the steady states corresponds to assume that the numerical
flux vanishes when f is at the steady state f∞. Imposing the numerical flux
equal to zero, from (4.10) we get

fi+1

fi
=

−δi+1/2(P[fi+1/2] + σ2D′i+1/2Di+1/2) + σ2

2∆wD
2
i+1/2

(1− δi+1/2)(P[fi+1/2] + σ2D′i+1/2Di+1/2) + σ2

2∆wD
2
i+1/2

. (4.11)

Solving with respect to δi+1/2 yields

δi+1/2 =
σ2D2

i+1/2

2∆w(P[fi+1/2] + σ2D′i+1/2Di+1/2)
+

1

1− fi/fi+1
. (4.12)

On the other hand the same computation directly on the flux (4.8) gives the
differential equation

σ2D(w, c)2

2

∂

∂w
f(w, c, t) = −

(
P[f ] + σ2D′(w, c)D(w, c)

)
f(w, c, t), (4.13)

which in general cannot be solved, except is some special cases as discussed
in the previous section, due to the nonlinear term on the right hand side. A
possible way to overcome this difficulty is to consider a quasi steady-state
approximation as follows. We first integrate the previous equation in the cell
[wi, wi+1] to get∫ wi+1

wi

(
1

f

∂

∂w
f

)
(w, c, t) dw =

− 2

σ2

∫ wi+1

wi

1

D(w, c)2

(
P[f ] + σ2D′(w, c)D(w, c)

)
dw,

and then

fi+1

fi
= exp

(
− 2

σ2

∫ wi+1

wi

1

D(w, c)2

(
P[f ] + σ2D′(w, c)D(w, c)

)
dw

)
.

(4.14)

106



Chapter 5 Opinion dynamics over complex networks

Next we can approximate the integral on the right hand side with a suitable
quadrature formula. Because of singularities at the boundaries w = ±1 of
the integrand function we can resort on open formula of Newton-Cotes type.
For example, using the simple midpoint rule a second order approximation
is obtained

fi+1

fi
≈ exp

(
−2∆w

σ2

1

D2
i+1/2

(
P[fi+1/2] + σ2D′i+1/2Di+1/2

))
. (4.15)

Now by equating (4.15) and (4.11) we recover the following expression of the
weight functions

δi+1/2 =
1

λi+1/2
+

1

1− exp(λi+1/2)
, (4.16)

where

λi+1/2 =
2∆w

σ2

1

D2
i+1/2

(
P[fi+1/2] + σ2D′i+1/2Di+1/2

)
. (4.17)

Note that here, at variance with the standard Chang–Cooper scheme [60], the
weights depend on the solution itself as in [127]. Thus, we have a nonlinear
scheme which preserves the steady state with second order accuracy. In
particular, by construction, the weight in (4.16) are nonnegative functions
with values in [0, 1].

Higher order accuracy of the steady state can be recovered using a more
general numerical flux given by

Fi+1/2[f ] =

D2
i+1/2

∆w

(
(1− δi+1/2)

∫ wi+1

wi

P[f ] + σ2D′(w, c)D(w, c)

D(w, c)2
dw +

σ2

2

)
fi+1

+
D2
i+1/2

∆w

(
δi+1/2

∫ wi+1

wi

P[f ] + σ2D′(w, c)D(w, c)

D(w, c)2
dw − σ2

2

)
fi,

(4.18)

and taking

λi+1/2 =
2

σ2

∫ wi+1

wi

1

D(w, c)2

(
P[f ] + σ2D′(w, c)D(w, c)

)
dw. (4.19)

It is easy to verify that, independently of the quadrature method used to
evaluate the integrals in (4.18)-(4.19) the weights always satisfy (4.16). In
this way, thanks to (4.14), higher order approximations of the integrals in
(4.18)-(4.19) lead to higher order evaluations of the steady state solution.
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5.5 Numerical Results

In this section we perform several numerical test to validate our modeling
and numerical setting. We focus on the case α < 1, since it represents the
most relevant case in complex networks [3, 175]. For this case in fact we
proved in Section 5.2.2 the emergence of truncated power law distributions for
the network’s connectivity. Except for the first test case, where we analyze
the numerical convergence of the Boltzmann model in the quasi-invariant
limit, in all the other tests the opinion dynamics evolves according to (4.9).
Thus, in Test 2,3,4 the evolution is performed via the implicit-explicit scheme
(6.14) described in the appendix with the numerical flux (4.10) based on the
midpoint approximation (4.15) and using N = 80 grid points in w. We used
∆w = 2/N and a time step satisfying the stability condition (6.22) in the
Appendix. The choice of parameters for the different tests is summarized in
Table 4.1, the compromise and local diffusion functions, P (c, c∗;w,w∗) and
D(w, c), and additional parameters will be introduced in every single test.

5.5.1 Test 1

We first consider the simple test case where the opinion evolves indepen-
dently of the network and we validate the Chang–Cooper type scheme (6.14)
with the flux (4.18) comparing its convergence with respect to the DSMC
method.

We simulate the dynamics with the linear compromise function P (w,w∗; c, c∗) =
1, and D(w, c) = 1− w2, thus we can use the results (3.19), to compare the
solutions obtained through the numerical scheme with the analytical one.
The other parameters of the model are reported in Table 4.1 and we define
the following initial data

g0(w) =
1

2
√

2πσ2
F

(exp{−(w + 1/2)2/(2σ2
F )}+ exp{−(w − 1/2)2/(2σ2

F )}).

(5.1)

Test σ2 σ2
F σ2

L cmax Vr Va γ0 α β

#1 5× 10−2 6× 10−2 − 250 1 1 30 1× 10−1 0

#2 5× 10−2 6× 10−2 − 250 − − 30 1× 10−1 0

#3 5× 10−3 4× 10−2 2.5× 10−2 250 1 1 30 1× 10−4 0

#4 1× 10−3 − − 250 1 1 30 1× 10−1 0

Table 4.1: Parameters in the various test cases
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Figure 5.4: Test 1. One-dimensional setting: on the left, convergence of
(4.6) to the stationary solution (3.19), of the Fokker-Planck equation, for
decreasing values of the parameter ε, gN0 represents the initial distribution.
On the right, convergence of the Monte-Carlo (4.3) to the reference solution
(2.24) for increasing values of the the number of samples Ns.

In Figure 5.4, on the left hand-side, we report the qualitative convergence
of the Monte-Carlo methods for the Boltzmann dynamics, see [8, 146] for
further details on the Binary Interaction algorithms, where we consider
Ns = 105 samples to reconstruct the opinion’s density g(w, t) on a grid of
N = 80 points. The figure shows that for decreasing values of the scaling
parameter ε = {0.5, 0.05, 0.005}, we have the convergence to the reference
solutions (3.19) of the Fokker-Planck equation. On the right we report the
convergence to the stationary solution of the connectivity distribution (2.24)
for α = 0.1 and V = 1 and with cmax = 250. In this case we show two different
qualitative behaviors for an increasing number of samples Ns = {103, 105}
and for sufficient large times.

In Figure 5.5, on the left-hand side we report the qualitative solution of
the Chang–Cooper type scheme integrated with the explicit Euler method,
on the right-hand side we depict the decay of the L1 relative error to the
reference solution (3.19) i.e.

‖gN − g∞‖1
‖g∞‖1

, (5.2)

with gN representing the approximated solution of the numerical scheme.
We test the convergence of the scheme for different quadrature rules, and
additionally we compared them with the error of the Monte-Carlo simulation.
The plot on the right-hand side shows how the Change Cooper type scheme
is able to reach high order of accuracy, for high order quadrature rules in
(4.18)-(4.19). For the discretization we consider the following parameters:
N = 80, ∆w = 2/N and ∆t = (∆w)2/(4σ2) with a final time T = 10. The
DSMC method (Binary Interaction algorithm) is performed with ε = 0.0005
and with Ns = 105 samples.

109



Opinion dynamics over complex networks Chapter 5

w
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

gNT
gN
0

exact

t
0 1 2 3 4 5 6 7 8 9 10

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

‖gN − g∞‖1/‖g∞‖1

Midpoint

Milne rule

ε = 5× 10−4

Figure 5.5: Test 1. One-dimensional setting: on the left, the solution of the
Chang–Cooper type scheme with the flux (4.18) is indicated with gNT and
compared with the stationary solution (3.19), also the initial data gN0 (5.1) is
reported. On the right we report the decay of the L1 relative error (5.2) for
different choices of the quadrature rule, mid–point rule (4.15) and Milne’s
rule (respectively of 2nd and 4th order).

5.5.2 Test 2

Next we consider a second validation test in the full case where the opinion
and the evolution of the network are coupled, again with a constant compro-
mise function P (w,w∗; c, c∗) = 1 and local diffusion function D(w, c) = 1−w2.
In this case we are still able to characterize the analytical solution of the
model as the product of the two stationary solution for the opinion variable
and the connectivity, i.e. f∞(w, c) = ρ∞(c)g∞(w). We consider the initial
data

f0(w, c) =
2

3
p0(c)g+

0 (w) +
1

3
p0(c− c0)g−0 (w), (5.3)

where

p0(c) = k0 max{c(c− 2γ0), 0}, g±0 (c) =
1√

2πσ2
F

(exp{−(w ± 1/2)2/(2σ2
F )}.

(5.4)

and with coefficient c0 = 20 and k0 = 3/(20γ3
0). The parameters are defined

in Table 4.1 except for the characteristic rates, which will be defined in two
different ways in the following. We want to study the decay of the L1 relative
error with respect to the time, as depicted in Figure 5.5.

In the first case we consider constant characteristic rates, i.e. V = Va = Vr,
showing that for increasing values of V the convergence of the numerical
scheme is faster. This is not surprising, since for larger values of V the
dynamics of the connectivity distribution relaxes faster towards the stationary
state.

We report in Figure 5.6 the evolution of the density f(w, c, t) in the time
frame [0, T ] with T = 20, where on the plane (z, c) the distribution of the
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Figure 5.6: Test 2. From left to right and from the top to the bottom:
evolution of the density f(w, c, t) at different time steps. The plot (a)
represents the initial data f0(w, c) (5.3) and plot (d) the stationary solution.
On the plane (z, c) we depict with a blu line the marginal distribution p(c, t)
of the solution at time t, with red line we represent the reference marginal
distribution of the stationary solution.

connections ρ(c, t) is represented in order to better enlighten the convergence
to the power-law like distribution.

In a second test we performed the same simulation but with characteristic
rates defined as in Remark 8, thus

Vr(f ;w) = Ur
γ + β

γf + βg(w, t)
, Va(f ;w) = Ua

γ + α

γf + αg(w, t)
(5.5)

with U = Ua = Ur, β = 0 and γf (t) =
∑cmax

c=0 cf(w, c, t). Simulations shows
that in this case the same stationary solution are obtained.

We report in Figure 5.7 the decay of the errors for different values of the
characteristic rates, in the two different cases V = {103, 104, 105} for the
constant rate and U = {103, 104, 105} for the variable rates. In both cases
we observe a faster convergence to the stationary solution for increasing
values of the characteristic rates. Observe that, the same order of accuracy
of the mid–point rule in Figure 5.5 is recovered, on the other hand, small
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Figure 5.7: Test 2. Decay of the L1 relative error with respect to the station-
ary solution (3.19). On the left, fixed characteristic rates V = {103, 104, 105},
on the right, variable characteristic rates defined as in (5.5) with U =
{103, 104, 105}. In both cases for increasing values of the characteristic rate
V and U the stationary state is reached faster.

differences in the decay are observed between the two cases. In Figure
5.8, we enlighten the different evolution of the transient solution at time
t = 1, of the simulation in Figure 6. On the left we depict the solution with
constant characteristic rates, on the right with variable characteristic rates,
which shows that lower density in the opinion leads to faster spread on the
connections.

5.5.3 Test 3

In this test we analyze the influence of the connections over the opinion
dynamics by considering a compromise function of the type

P (w,w∗; c, c∗) = H(w,w∗)K(c, c∗),

where H(w,w∗) = 1 − w2 and K(·, ·), which models the influence of the
connectivity on the opinion evolution, is defined as follows

K(c, c∗) =

(
c

cmax

)−a( c∗
cmax

)b
, (5.6)

for a, b > 0. This type of kernel assigns higher relevance into the opinion
dynamics to higher connectivity and low influence to low connectivity. The
diffusivity is weighted by D(w, c) = 1− w2.

We perform a first computation with initial data

f0(w, c) = C0


ρ∞(c) exp{−(w + 1

2)2)/(2σ2
F )}, if 0 ≤ c ≤ 20,

ρ∞(c) exp{−(w − 3
4)2/(2σ2

L)}, if 60 ≤ c ≤ 80,

0, otherwise,

(5.7)
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Figure 5.8: Test 2. Evolution at time t = 1 of the initial data f0(w, c) (5.3)
as isoline plot. On the left in the case of constant characteristic rate on the
right variable characteristic rates defined as in (5.5). The right plot shows
that for lower opinion’s density the evolution along the connection is faster
and slower where the opinions are more concentrated.

where the choice of parameters is reported in the third line of Table 4.1
and a = b = 3 for the interaction function K(·, ·) (5.6). The evolution is
performed through the Chang–Cooper type scheme with ∆w = 2/N and
N = 80. We study the evolution of the system in the time interval [0, T ]
with T = 2.5.

In Figure 5.9 we report the result of the simulation. The initial configuration
is is split in two parts, the majority concentrated around opinion w̄F = −1/2
and only a small portion concentrated around w̄L = 3/4. From the upper-
right and bottom-left figures we observe that, because of the anisotropy
induced by K(c, c∗), the density with a low level of connectivity is immediately
influenced by the small concentration of density around wL with a large level
of connectivity; the bottom-right plot shows the final configuration.

In Figure 5.10 we depict, on the left-hand side, the initial and final marginal
density of the opinion, respectively g(w, 0) and g(w, T ), showing the change
of the total opinion. On the right, we enlighten the change of opinion plotting
the evolution of the average opinion.

5.5.4 Test 4

In the last test case, we consider a connection dependent Hegselmann-
Krause model [113], known also as bounded confidence model, where agents
interact only with agents whose opinion lays within a certain range of
confidence. Thus, we define the following compromise function

P (w,w∗; c, c∗) = χ{|w−w∗|≤∆(c)}(w∗), (5.8)
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Figure 5.9: Test 3. From left to right and from the first row to the second
row, evolution of the initial data (5.7) in time frame [0, T ] with T = 2. The
evolution shows how a small portion of density with high connectivity can
bias the majority of the population towards their position. (Note: The
density is scaled according to the marginal distribution ρ(c, t) in order to
better show its evolution, the actual marginal density ρ(c, t) is depicted in
the background, scaled by a factor 10).

where ∆(c) is the connection dependent confidence level. We define the
initial data

f0(w, c) =
1

2
ρ∞(c), (5.9)

therefore the opinion is uniformly distributed on the interval I = [−1, 1] and
it decreases along c ∈ [0, cmax] following ρ∞(c), as in (2.24), with parameters
defined in Table 4.1 and D(w, c) = 1 − w2. The evolution is performed
through the Chang–Cooper type scheme with ∆w = 2/N , with N = 80. We
consider the evolution of the system in the time interval [0, T ], with T = 100.

We study first a confidence level independent from the number of connec-
tions, therefore we set ∆(c) = ∆ = 0.25. In Figure 5.11 the evolution of the
initial data (5.9) shows the classical behavior of Hegselmann-Krause model,
where opinions’ clusters emerge.
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Figure 5.10: Test 3. On the left-hand side final and initial state of the
marginal distribution g(w, t) of the opinion, the green line represents the
evolution of the average opinion m̄(t), the red and blue dashed lines represent
respectively the opinions w̄L = 0.75 and w̄F = −0.5, which are the two
leading opinions of the initial data (5.7).

Next, we perform a second computation where the confidence bound
depends on the number of connections as follows

∆(c) = d0
c

cmax
. (5.10)

This choice reflects a behavior where agents with higher number of connections
are prone to larger level of confidence. We report in Figure 5.12 the evolution
of (5.9), where ∆(c) creates an heterogeneous emergence of clusters with
respect to the connectivity level: for higher level of connectivity consensus
is reached, since the bounded confidence level is larger, instead for lower
levels of connectivity multiple clusters appears, up to the limiting case c = 0,
where the opinions are not influenced by the consensus dynamics.

5.6 Conclusions

The construction of kinetic models and numerical methods for the spread-
ing of opinions over time dependent large scale networks has been considered.
First we have introduced a Boltzmann model for the opinion interactions
based on a preferential attachment process for the creation of new connec-
tions between agents. If the preferential attachment is independent from the
agents’ opinion the large time behavior of the network can be described ana-
lytically and originates both Poisson type distributions as well as truncated
power laws. Next, we derived the corresponding mean-field approximation
which permits to have a deeper understanding of the asymptotic behavior
of the opinion dynamics and to compute analytically stationary states in
simplified situations. Robust numerical methods, based on stochastic as
well as deterministic techniques have been introduced and their property
discussed. The results, for various test cases, show that the present approach

115



Opinion dynamics over complex networks Chapter 5

(a) t=0 (b) t=10

(c) t=50 (d) t=100

Figure 5.11: Test 4. Evolution of the Fokker-Planck model (4.9) where the
interaction are described by (5.8) with ∆ = 0.25, in the time frame [0, T ]
with T = 100. The evolution shows the emergence of three main opinion
clusters, which are not affected by the connectivity variable. (Note: In order
to better show its evolution, we represent the solution as log(f(w, c, t) + ε),
with ε = 0.001.)

is capable to reproduce realistic opinion/network distributions including the
emergence of opinion clusters. In principle, the model here introduced admits
various extensions. First, one may consider the case where the number of
agents in the network is not conserved, as it happens in a real social network.
Moreover, control problems with the aim to force consensus over the network
may be introduced. These subjects are actually under study and the results
will be presented elsewhere.

Appendix Ch.5: Properties of the network

In this section we report explicit computations concerning the properties
of the network operator N[·].
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Conservation of the total number of agents

First we show that
cmax∑
c=0

N[f(w, c, t)] dw = 0. (6.1)

From (2.13) we have

cmax−1∑
c=1

N[f(w, c, t)] =− 2Vr(f ;w)

γ + β

cmax−1∑
c=1

[(c+ 1 + β)f(w, c+ 1, t)− (c+ β)f(w, c, t)]

− 2Va(f ;w)

γ + α

cmax−1∑
c=1

[(c− 1 + α)f(w, c− 1, t)− (c+ α)f(w, c, t)]

=− 2Vr(f ;w)

γ + β
[(cmax + β)f(w, cmax, t)− (β + 1)f(w, 1, t)]

+
2Va(f ;w)

γ + α
[(cmax − 1 + α)f(w, cmax − 1, t)− αf(w, 0, t)] .

Using the boundary conditions (2.15) we have the desired property. As a
consequence we obtain the conservation of the total number of agents

d

dt

cmax∑
c=0

ρ(c, t) = −
∫
I

cmax∑
c=0

N[f(w, c, t)] dw = 0. (6.2)

Mean density of connectivity

Next we consider the evolution of the mean density of connectivity γ(t).
We prove that

cmax∑
c=0

cN[f(w, c, t)] = 2Vr(f ;w)
γf + βg(w, t)

γ + β
− 2Va(f ;w)

γf + αg(w, t)

γ + α

− 2Vr(f ;w)

γ + β
βf(w, 0, t) +

2Va(f ;w)

γ + α
(cmax + α)f(w, cmax, t).

(6.3)

In fact, thanks to (2.13), in the internal points we have

−
cmax−1∑
c=1

cN[f(w, c, t)] =
2Vr(f ;w)

γ + β

cmax−1∑
c=1

c [(c+ 1 + β)f(w, c+ 1, t)

−(c+ β)f(w, c, t)]

+
2Va(f ;w)

γ + α

cmax−1∑
c=1

c [(c− 1 + α)f(w, c− 1, t)

−(c+ α)f(w, c, t)] .

(6.4)
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We observe that the first sum in (6.4) is equal to

2Vr(f ;w)

γ + β

cmax−1∑
c=1

[c(c+ 1)f(w, c+ 1, t)− c2f(w, c, t)]

+
2Vr(f ;w)

γ + β
β

cmax−1∑
c=1

[cf(w, c+ 1, t)− cf(w, c, t)],

=
2Vr(f ;w)

γ + β
[cmax(cmax + β)f(w, cmax, t)− (γf + βg(w, t)) + βf(w, 0, t)] .

(6.5)

Similarly the second sum in (6.4) is equal to

2Va(f ;w)

γ + α

cmax−1∑
c=1

[c(c− 1)f(w, c− 1, t)− c2f(w, c, t)]

+
2Va(f ;w)

γ + α
α

cmax−1∑
c=1

[cf(w, c− 1, t)− cf(w, c, t)],

=
2Va(f ;w)

γ + α
[γf (w, t)− cmax(cmax − 1)f(w, cmax − 1, t)− cmaxf(w, cmax, t)]

+
2Va(f ;w)

γ + α
α [g(w, t)− cmaxf(w, cmax − 1, t)− f(w, cmax, t)] .

(6.6)

Using the boundary condition for c = cmax (since the one at c = 0 does not
play any role here) we have

−cmaxN[f(w, cmax, t)] =− cmax
2Vr(f ;w)

γ + β
(cmax + β)f(w, cmax, t)

+ cmax
2Va(f ;w)

γ + α
(cmax − 1 + α)f(w, cmax − 1, t),

(6.7)

which together with the above computations yields (6.3).

As a consequence we have

d

dt
γ(t) = −2

∫
I
Vr(f ;w)

γf + βg(w, t)

γ + β
dw + 2

∫
I
Va(f ;w)

γf + αg(w, t)

γ + α
dw

+
2β

γ + β

∫
I
Vr(f ;w)f(w, 0, t) dw − 2(cmax + α)

γ + α

∫
I
Va(f ;w)f(w, cmax, t) dw

(6.8)
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Asymptotic behavior

In the following we compute the explicit stationary solution ρ∞(c) for the
evolution of ρ(c, t) in the linear case with Va = Vr, β = 0 and assuming

cmax∑
c=0

ρ∞(c) = 1,

cmax∑
c=0

cρ∞(c) = γ∞.

Note that in the sequel, for notation simplicity, we denote by γ = γ∞ the
asymptotic stationary value reached by the mean density of connectivity.

Proposition 5.6.1. For each c ∈ C the stationary solution to (2.21) or
equivalently

(c+ 1)ρ∞(c+ 1) =
1

γ + α
[(c(2γ + α) + γα)ρ∞(c)− γ(c− 1 + α)ρ∞(c− 1)]

(6.9)
is given by

ρ∞(c) =

(
γ

γ + α

)c 1

c!
α(α+ 1) · · · (α+ c− 1)ρ∞(0) (6.10)

where

ρ∞(0) =

(
α

α+ γ

)α
. (6.11)

Proof. Let us show (6.10) by induction. First, from the boundary condition
(2.23) at c = 0 we immediately have

ρ∞(1) =

(
γ

γ + α

)
αρ∞(0). (6.12)

Now let us assume that (6.10) holds true for c, we want to prove that

ρ∞(c+ 1) =

(
γ

γ + α

)c+1 1

(c+ 1)!
α(α+ 1) · · · (α+ c)ρ∞(0). (6.13)

From (6.9) we have

(c+ 1)ρ∞(c+ 1) =
1

γ + α

[
(c(2γ + α) + γα)

(
γ

γ + α

)c 1

c!
α(α+ 1) · · · (α+ c− 1)ρ∞(0)

−γ(c− 1 + α)

(
γ

γ + α

)c−1 1

(c− 1)!
α · · · (α+ c− 2)ρ∞(0)

]

=

(
γ

γ + α

)c 1

(c− 1)!
α · · · (α+ c− 1)

[
c(2γ + α) + γα

c(γ + α)
− 1

]
ρ∞(0)

=

(
γ

γ + α

)c+1 1

c!
α · · · (α+ c− 1)(α+ c)ρ∞(0).

By direct inspection one verifies that also the boundary condition (2.23) at
c = cmax is verified.
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Appendix Ch. 5: Properties of the implicit-explicit
scheme

Let us consider the following implicit-explicit discretization of (4.9)

fn+1
i − fni

∆t
+ N[fn+1

i ] =
Fni+1/2 −F

n
i−1/2

∆w
, (6.14)

where fni = fni (c), endowed with a positive initial condition f0
i (c) = fi(c, 0).

The main motivation for the time discretization above is related to the severe
stability constraints of an explicit scheme applied to the network operator
which would require the time step to be O(1/cmax) where cmax � 1.

Positivity

In order to study the nonnegativity property of scheme (6.14) it is conve-
nient to rewrite it as a sequence of two steps

f
n+1/2
i = fni + ∆t

Fni+1/2 −F
n
i−1/2

∆w

fn+1
i = f

n+1/2
i −∆tN[fn+1

i ].

(6.15)

The first step involves the Chang–Cooper type scheme and reads

f
n+1/2
i = fni +

∆t

∆w

[(
(1− δi+1/2)Bn

i+1/2 +
1

∆w
Ci+1/2

)
fni+1

−
(

(1− δi−1/2)Bn
i−1/2 − δi+1/2B

n
i+1/2

)
fni −

1

∆w

(
Ci+1/2 + Ci−1/2

)
fni

−
(
δi−1/2B

n
i−1/2 −

1

∆w
Ci−1/2

)
fni−1

]
,

(6.16)

where Bn
i+1/2, Ci+1/2 are given by

Bn
i+1/2(c) =

D2
i+1/2

∆w

∫ wi+1

wi

1

D(w, c)2
(P[f ](w, c, tn) + σ2D′(w, c)D(w, c))dw,

Ci+1/2 =
σ2

2
D2
i+1/2 ≥ 0.

(6.17)

From the definition of the weight functions δi+1/2 in (4.16), the coefficients
of fni+1, f

n
i−1, satisfy

(1− δi+1/2)Bn
i+1/2 +

1

∆w
Ci+1/2 ≥ 0,

−δi−1/2B
n
i−1/2 +

1

∆w
Ci−1/2 ≥ 0.

(6.18)
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In fact, setting x = Bn
i+1/2∆w/Ci+1/2, y = Bn

i−1/2∆w/Ci−1/2 the two in-
equalities are equivalent to show that ∀x, y ∈ R

x

(
1− 1

1− ex

)
≥ 0,

y

ey − 1
≥ 0, (6.19)

which follow from the properties of the exponential function.
Then, in order to ensure the nonnegativity of the scheme the time step

must satisfy the restriction

∆t ≤ ∆w

νn
, (6.20)

where

νn = max
i

{
(1− δi−1/2)Bn

i−1/2 − δi+1/2B
n
i+1/2 +

1

∆w
Ci+1/2 +

1

∆w
Ci−1/2

}
.

(6.21)
Now, since the functions D(w, c), P (w,w∗; c, c∗) are bounded for all w ∈
I, c ∈ C we have that

|Bn
i+1/2| ≤ 2 + σ2M, Ci+1/2 ≤ σ2/2

where M = maxi |D′i+1/2|, and the condition (6.20) simplifies to

∆t ≤ 1

2

∆w(
2 + σ2M + σ2

2∆w

) . (6.22)

Therefore, we have shown

Proposition 5.6.2. Under the time step restriction (6.22) the first step

in (6.15) preserves nonnegativity, namely f
n+1/2
i (c) ≥ 0 if fni (c) ≥ 0, i =

1, . . . , N , c ∈ C.

Typically when σ2 is large this will originate a parabolic stability condition
that requires ∆t = O(∆w2). This can be avoided taking the diffusive part
implicitly, however, since we were mostly interested in the case of small
values of σ2 we will not pursue this direction here.

Next, we consider the second step

fn+1
i (c) = f

n+1/2
i (c)−∆tN[fn+1

i (c)]. (6.23)

Note that in general the fully implicit evaluation of N[·] would require the use
of a suitable iterative solver due to the nonlinearity in fn+1

i . We therefore
will consider a semi-implicit linearized version of the operator.

The scheme can be written as[
1 + dn+1/2(c) + an+1/2(c) + bn+1/2(c)

]
fn+1
i (c)

− an+1/2(c)fn+1
i (c+ 1)− bn+1/2(c)fn+1

i (c− 1) = f
n+1/2
i (c),

(6.24)
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where

an+1/2(c) = ∆tvn+1/2
r (c+ 1 + β), c = 0, . . . , cmax − 1

bn+1/2(c) = ∆tvn+1/2
a (c− 1 + α), c = 1, . . . , cmax

dn+1/2(c) = −∆tvn+1/2
r + ∆tvn+1/2

a , c = 1, . . . , cmax − 1

an+1/2(cmax) = 0, bn+1/2(0) = 0,

dn+1/2(0) = bn+1/2(1)− an+1/2(0),

dn+1/2(cmax) = −bn+1/2(cmax) + an+1/2(cmax − 1),

(6.25)

and we have set v
n+1/2
r = 2V

n+1/2
r /(γn+1/2 + β) and v

n+1/2
a = 2V

n+1/2
a /(γn+1/2 + α).

Since alle quantities an+1/2(·), bn+1/2(·) defined in (6.25) are nonnega-
tive, equations (6.24)-(6.25) define a diagonally dominant matrix of size
(cmax + 1)× (cmax + 1) if

∆t ≤ 1

v
n+1/2
r − vn+1/2

a

,
v
n+1/2
r

v
n+1/2
a

> 1,

∆t ≤ 1

v
n+1/2
r (1 + β)− vn+1/2

a α
,

v
n+1/2
r

v
n+1/2
a

>
α

(1 + β)
,

(6.26)

∆t ≤ 1

v
n+1/2
a (cmax − 1 + α)− vn+1/2

r (cmax + β)
,

v
n+1/2
a

v
n+1/2
r

>
(cmax + β)

(cmax − 1 + α)
.

Note that when the above conditions on v
n+1/2
r and v

n+1/2
a are not satisfied,

no time step restriction occurs. These conditions are not restrictive since in

practice γn+1/2 � 1 and so v
n+1/2
a � 1 and v

n+1/2
r � 1. Thus, we have

Proposition 5.6.3. Under the time step restriction (6.26) the second step

in (6.15) preserves nonnegativity, namely fn+1
i (c) ≥ 0 if f

n+1/2
i (c) ≥ 0,

i = 1, . . . , N , c ∈ C.

Remark 9. In particular, in the case where the rates are defined by (2.16)
since

gn+1
i =

cmax∑
c=0

fn+1
i (c) =

cmax∑
c=0

f
n+1/2
i (c) = g

n+1/2
i ,

the previous arguments applies to the fully implicit evaluation of V n+1
a =

Va(f
n+1
i ;wi) and V n+1

r = Vr(f
n+1
i ;wi).
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Conservations and stability

Let us consider the conservation properties of the scheme with respect to
the variable w. Let us observe that from scheme (6.14) we get

N∑
i=0

fn+1
i (c) =

N∑
i=0

fni (c)−∆t
N∑
i=0

N[fn+1
i ] +

∆t

∆w

N∑
i=0

(
Fni+1/2 −F

n
i−1/2

)
.

(6.27)
Now since

N∑
i=0

(
Fni+1/2 −F

n
i−1/2

)
=

N−1∑
i=0

Fni+1/2 −
N∑
i=1

Fni−1/2 + FnN+1/2 −F
n
−1/2

= FnN+1/2 −F
n
−1/2,

by imposing no-flux boundary conditions, i.e.

FnN+1/2 = 0, Fn−1/2 = 0, (6.28)

we obtain that for all n ≥ 0 the following conservation equation for the
density of connections is satisfied

ρn+1(c) = ρn(c)−∆t

N∑
i=0

N[fn+1
i ]. (6.29)

Summing over c in the above equation yields the conservation of the total
number of agents

cmax∑
c=0

ρn+1(c) =

cmax∑
c=0

ρn(c). (6.30)

From this identity we have

Proposition 5.6.4. Under the time step restrictions (6.22) and (6.26), the
numerical scheme defined by (6.14) is stable in the discrete L1-norm.
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(a) t=0 (b) t=10

(c) t=50 (d) t=100

Figure 5.12: Test 4. Evolution of the solution of the Fokker-Planck model
(4.9), where the interaction are described by (5.8) with ∆(c) = d0c/cmax and
d0 = 1.01, in the time frame [0, T ] with T = 100. The choice of ∆(c) reflects
in the heterogeneous emergence of clusters with respect to the connectivity
level: for higher level of connectivity consensus is reached, instead for lower
levels of connectivity multiple opinion clusters are present. (Note: In order
to better show its evolution, we represent the solution as log(f(w, c, t) + ε),
with ε = 0.001.)
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Chapter 6

Kinetic models for collective
decision-making

6.1 Introduction

The fallibility of human judgement is evident in our everyday life, especially
regarding our self-evaluation ability. Several tests have been designed in
cognitive psychology and clinical research in order to find an experimental
evidence for this phenomenon, see [85, 86, 111, 112] and the references therein,
showing that subjects are in general overconfident about the correctness of
their belief. This lack in metacognition, i.e. the self-assessment of our own
knowledge skills, goes hand in hand with the grade of competence of each
subject.

The correlation between competence and metacognitive skills is somehow
double and might be summarized in the following sentence: “the same
knowledge that underlies the ability to produce correct judgement is also the
knowledge that underlies the ability to recognize correct judgement” [124].
Here the authors found a systematic bias of the most incompetent agents
on their metacognition than the most experts; behavior which is usually
known as Dunning-Kruger effect. In other words, incompetence not only
bring people to poor choices but also disable to recognize that these are
wrong or improvable. Further, the overconfidence of the novices emerges
together with the under-confidence of highly competent individuals which
tend to negatively estimate their skills.

This coupled deviation from an objective self-evaluation of personal abilities
has been recently investigated in [131], where authors asked how people deal
with individual differences in competence, in the context of a collective
perceptual decision-making task, developing a metric for estimating how
participants weight their partner’s opinion relative to their own. Empirical
experiments, replicated across three slightly different countries as Denmark,
Iran, and China, show how participants assigned nearly equal weights to
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each other’s opinions regardless of the real differences in their competence.
This equality bias, whereby people behave as if they are as good or as bad
as their partner, is particularly costly for a group when a competence gap
separates its members.

Drawing inspiration from these recent results, we propose a multi-agent
model which takes into account the influence of competence during the
formation of a collective decision [39, 146]. After the seminal models for
wealth/opinion exchange for a multi-agent system introduced in [59, 157, 164]
some recent works considered additional parameters to quantify the personal
knowledge or conviction [39, 81, 82, 146] or constrained versions of these
models [6, 11, 117]. For example, individuals with high conviction are
resistant to change opinion, and can play the role of leaders [11, 82]. In [125]
there exists a threshold conviction beyond of which one of the two choices
provided to the individuals prevails, spontaneously breaking the existing
symmetry of the initial set-up.

More precisely, we introduce a binary exchange mechanism for opinion
and competence deriving a kinetic equation of Boltzmann-type [6, 11, 39,
84, 145, 146, 164]. The binary collision terms for competence and opinion
describe different processes:

• the competence evolution depends on a social background in which
individuals grow and on the possibility for less competent agents to
learn from the more competent ones;

• the opinion dynamics depend by a competence based compromise
process which includes an equality bias effect and change of opinion
through self-thinking;

• agents are driven toward an a-priori correct choice in dependence on
their competence grade;

In order to derive a nonlinear equation of Boltzmann-type for the joint
evolution of competence and opinion in the limit of a large number of
interacting agents, we resort to the principles of classical kinetic theory
(we refer to the recent monograph [145] for an introduction to the subject).
Furthermore, to simplify the study of the asymptotic behavior of the model,
we obtain a Fokker-Planck approximation of the dynamic in the so-called
quasi-invariant scaling.

The rest of the chapter is organized as follows, in Section 6.2 we introduce
the binary interaction model for competence and opinion. We discuss the
competence-based interactions between agents formulating a definition of
collective optimal decision which is coherent with the experimental setting of
[131]. Then the equality bias function is introduced acting as a modification
of the effective competence into perceived competence. In Section 6.3 we
derive the Boltzmann-type model and study the evolution of the moments
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under some specific assumptions. The Fokker-Planck approximation is then
obtained in Section 6.4, and we derive the stationary marginal density of
the competence variable. Finally in Section 6.5 we present several numerical
experiments which show that the model is capable to describe correctly
the decision-making process based on agents’ competence and to include
the equality bias effects. The latter, as expected, drive the system towards
suboptimal decisions.

6.2 Modelling opinion and competence

In this section we discuss the modelling of opinion dynamics through binary
exchanges, the analogous of dyadic interaction in the reference experimental
literature [131, 18]. The mathematical approach follows several recent works
on alignment processes in socio-economical dynamics [39, 146, 164, 82, 145,
84, 87, 139, 138].

6.2.1 Evolution of competence

It is evident that one of the main factors playing a role is the social
background in which an individual grows and lives, then it is natural to
assume that competence is, in part, inherited from the environment. More-
over, we clearly have the possibility to improve specific competences during
interactions with more competent agents.

Similarly to the works [39, 146, 145] we describe the evolution of the
competence of an individual in terms of a scalar variable x ∈ X, where
X ⊂ R+. Let z ∈ R+ be the degree of competence achieved from the
background in each interaction; in what follows we will always suppose that
C(z) is a distribution with bounded mean∫

R+

C(z)dz = 1,

∫
R+

zC(z)dz = mB. (2.1)

We define the new amount of competence after a binary interaction between
two agents with competence x and x∗ as follows{

x′ = (1− λ(x))x+ λC(x)x∗ + λB(x)z + κx

x′∗ = (1− λ(x∗))x∗ + λC(x∗)x+ λB(x∗)z + κx∗,
(2.2)

where λ(·), λC(·) and λB(·) quantify the amounts of competence lost by
individual by the natural process of forgetfullness [146], the competence
gained thanks to the interaction with other agents and the expertise gained
from the background respectively. Moreover, κ is a zero-mean random
variable with finite second order moment σ2

κ, taking into account the possible
unpredictable changes of the competence process. A possible choice for λC(x)
is λC(x) = λCχ(x ≥ x̄), where χ(·) is the indicator function and x̄ ∈ X a
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minimum level of competence required to the agents for increasing their own
skills by interactions.

With the dynamics (2.2) we introduced a general process in which agents
respectively loose and gain competence interacting with the other agents
and with the background. It is reasonable then to assume that both the
processes of gain and loss, which are weighted by the coefficients λ, λC and
λB, are bounded by zero. Thus if λ ∈ [λ−, λ+], with λ− > 0 and λ+ < 1, and
λC(x), λB(x) ∈ [0, 1] the random part may be chosen to satisfy κ ≥ −1 + λ+.
For example, κ may be uniformly distributed in [−1 + λ+, 1− λ+].

Let g(x, t) be the density function of individuals with competence x ∈ X
at time t ≥ 0. Resorting to the standard Boltzmann-type setting, we refer
to [145] for an extensive treatment, it is possible to describe in weak form
the evolution of such density function as follows

d

dt

∫
X
ψ(x)g(x, t)dx =

〈∫
R+×X

(ψ(x′)− ψ(x))g(x, t)C(z)dxdz

〉
, (2.3)

where x′ is the post-interaction competence given in (2.2), the brackets < · >
indicate the expectation with respect to the random variable κ and ψ(·) is a
test function. By imposing ψ(x) = x we obtain an equation for the evolution
of the mean-competence mx(t)

d

dt
mx(t) =

1

2

(∫
X2

(λC(x)− λ(x))(x+ x∗)g(x, t)g(x∗, t)dxdx∗+∫
R+×X

λB(x)zg(x, t)C(z)dxdz

)
,

(2.4)

which, for λC(x) = λC , λB(x) = λB, λ(x) = λ, yields

d

dt
mx(t) = −(λ− λC)mx(t) + λBmB, (2.5)

whose solution is given by

mx(t) = mx(0)e−(λ−λC)t +
λBmB

λ− λC
(1− e−(λ−λC)t). (2.6)

Therefore if λ > λC we obtain the asymptotic exponential convergence of
the mean competence mx toward λBmB/(λ− λC). Note that, if we assume
λ = λB +λC we have that the average competence of the system tends to the
mean competence induced by the variable z ∈ R+. Finally we remark that,
compared to previous models where the notion of knowledge/convinction
has been introduced [39, 146], here we have a fully binary dynamics which
includes also the possibility to increase the agents’ competence as a result of
the interaction with the other agents.
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6.2.2 The dynamics of competence based decisions

Let us now consider a system of binary interacting agents, each of them
endowed with two quantities (w, x), representing their opinions concerning a
certain decision and the competence respectively. Let I = [−1, 1] be the set
of possible opinions for each interaction where the two extremal points ±1
represent two alternative decisions.

Two agents identified by the couples (x,w) and (x∗, w∗) modify their
opinions after interaction according to the following rules{
w′ = w − αSS(x)(w − wd)− αPP (x, x∗;w,w∗)(w − w∗) + ηD(x,w)

w′∗ = w∗ − αSS(x∗)(w∗ − wd)− αPP (x∗, x;w∗, w)(w∗ − w) + η∗D(x∗, w∗),

(2.7)
where w,w∗ ∈ I denote the pre-interaction opinions and w′, w′∗ the opinions
after the exchange of information between the two agents. The positive
function S(·) drives the agent toward the correct choice wd ∈ {−1, 1} with a
rate dependent on its competence level, representing an individual decision
making strength. For example, a possible choice for the function S(·) is
S(x) = const. > 0 if x > x̄ and S(x) = 0 elsewhere. In this case the agent
needs to achieve a competence threshold x̄ in order to perceive the correct
choice. Observe that in (2.7) we introduced an interaction function P (·, ·; ·, ·)
depending both on the competence and on the opinion of the pair of agents.
The nonnegative parameters αS , αP characterize the drift toward the target
opinion wd ∈ I and the interaction rate, respectively. The random variables
η, η∗ are centered and with the same distribution Θ with finite variance σ2.
The function D(·, ·) ≥ 0 represents the local relevance of the diffusion for a
given opinion and competence, whereas the evolutions of the competences
x, x∗ are given by (2.2).

In absence of diffusion η, η∗ = 0 and for a constant drift S(·) = S ≤ 1 we
have

|w′ − w′∗| ≤ |1− αSS − αP (P (x, x∗;w,w∗) + P (x∗, x;w∗, w))||w − w∗|.

Then the post-exchange decisions are still in the reference interval [−1, 1] if
we assume 0 ≤ P (·, ·; ·, ·) ≤ 1 and αS + 2αP ≤ 2. We can prove the following
result which identifies the condition on the noise term in order to ensure
that the post-interaction opinions do not leave the reference interval.

Proposition 6.2.1. We assume 0 < P (x, x∗;w,w∗) ≤ 1, S(·) = S ≤ 1 and

|η| < (1− αP + αS)d, |η∗| < (1− αP + αS)d, αP ≤ 1,

where

d = min
(x,w)∈X×I

{
(1− w)

D(x,w)
, D(x,w) 6= 0

}
.

Then the binary interaction rule (2.7) preserves the bounds being w′, w′∗ ∈
[−1, 1].
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Proof. The proof is analogous to those in [82, 6, 11], therefore we omit the
details.

The introduction of a drift term follows from the set-up of the two-
alternative forced choice tasks (TAFC) addressed in [30, 152]. The (TAFC)
task is a classic behavioral experiment: at each trial agents are called to
recognize a noisy visual stimulus choosing between two alternatives. The
individual decision-making involves in its mathematical description a drift
term representing the fact that an increasing experience/competence drives
the agent towards the correct decision.

The compromise function 0 ≤ P (·, ·; ·, ·) ≤ 1 depends on both the parti-
cles’ opinion and competence. As an example, a possible structure for the
interaction function is given by the following

P (w,w∗;x, x∗) = Q(w,w∗)R(x, x∗), (2.8)

where 0 ≤ Q(·, ·) ≤ 1 represents the positive compromise propensity and
0 ≤ R(·, ·) ≤ 1 is a function taking into account the competence of two
interacting agents.

Empirical experiments have been done in order to measure the impact of
competence on collective decision-making tasks [124, 131, 18]. In general,
the participants are organized in dyads which are called to make a decision
about a visual stimulus. Among others two opposite models taking into
account the influence of the competence, or sensitivity in the psychology
literature, might be considered. The first proposes that nothing except the
opinions is communicated between individuals, in case of disagreement we
randomly select an opinion which coincides with the decision of the studied
dyad. We will refer to this model as coin-flip model (CF). The second model
takes strongly into account the competence of individuals: the decisions are
communicated and in case of disagreement the opinion of the most competent
prevails and then coincides with the decision of the dyad. This second model
is called maximum competence model (MC).

The aforementioned models can be described in our mathematical setting
by considering a compromise propensity Q(w,w∗) = 1. Therefore the CF
model may be described by considering a Bernoulli process B(p), with typical
parameter p = 1/2. In other words, in the CF case, the competence does not
play any role in the decision process. We will consider an averaged version
of this model (aCF), which corresponds to RaCF (·, ·) = 1/2. The MC model,
in our setting, is obtained by the Heaviside-type function

RMC(x, x∗) =


1 x < x∗

1/2 x = x∗

0 x > x∗.

(2.9)
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Figure 2.1: Left: Heaviside-type competence-based interaction function
RMC(x, x∗) and two examples of its continuous version defined in (2.10)
obtained with c = 5 and c = 10. Right: equality bias function Φ(x)
of (2.13), the choice of coefficients a1, a2, a3, a4 has been done such that
xQ1 = 0.3, xQ2 = 0.4 and x̄ = 0.5.

In terms of the competence gap x−x∗ we can approximate the discontinuous
function (2.9) of the MC model with a smoothed continuous version (cMC)

RcMC(x, x∗) =
1

1 + ec(x−x∗)
, (2.10)

with c� 1. We depict in Figure 2.1, left plot, the behavior of the function
R(·, ·) for different choices of the constant c > 0. We can observe how in the
half-plane x > x∗ the most competent agent is scarcely influenced by the less
skilled one, while in the half-plane x < x∗ the situation is inverted and we
see how an agent with less competence is influenced by the more competent
one.

6.2.3 Dynamics of decisions under equality bias

On the basis of the decision process built in section 6.2.2, we modify
the microscopic model (2.7)–(2.8) in order to mathematically describe the
phenomenon called equality bias in collective decision–making communities.
Our set-up is inspired by some recent works of the experimental psychology
literature [131, 18] and the references therein. Their findings are consistent
with the well-known cognitive bias called Dunning-Kruger effect regarding a
misjudgment of personal competence of unskilled people, which overestimate
their own ability. At the same time the most skilled individuals tends to
underestimate their competence, implicitly believing that their knowledge is
accessible to everyone [124].

Let us consider an agents with competence x ∈ X. We introduce the
equality bias function

Φ : X 7→ X

x→ Φ(x)
(2.11)
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which measures the agent’s perceived level of competence. The choice of
the equality bias function Φ(·) is related to the subjective self-confidence in
making decisions and experimental results show it is strictly dependent on
the degree of competence of the interacting agents.

Following the mathematical setting introduced in Section 6.2.2 we modify
the function P (·, ·; ·, ·) as

P (Φ(x),Φ(x∗);w,w∗). (2.12)

In particular in the case (2.8) the competence based interaction function
modifies in R(Φ(x),Φ(x∗)) whose shape depends now on the perceived
competence. Therefore the equality bias emerges as a result of the binary
interactions of a multi-agent system with lack of metacognition. In agreement
with the experimental measurements of [124], and in order to exemplify the
action of the equality bias function, we depict in Figure 2.1 the function

Φ(x) = x

(
a1

x+ a2
+ a3 exp {−h(x− a4)2}

)
, (2.13)

with coefficients a1, a2, a3, a4 > 0. In the presented equality bias function
we fixed the value xd ∈ X, that measures the average competence of a
population: the agents with competence x > xd may be identified with the
most competent part of the system. Moreover, as experimentally suggested,
it exists a local maximum Q1 in x = xQ1 for the overestimation of the
competence of unskilled agents, together with the local minimum Q2 in
x = xQ2 . The asymptotic perceived competence depends on a1, whose speed
is weighted by a2. Therefore we choose the coefficients a2, a3, a4 in such a
way that Φ(xd) = xd and for x = xQ1 , x = xQ2 we find a local maximum and
minimum respectively. The coefficient h > 0 is a scaling parameter. In the
rest of the paper we will refer to the dynamics of decisions under the action
of the equality bias with (EB).

6.3 A Boltzmann model for opinion and compe-
tence

In this section we derive a kinetic model for opinion and competence
reflecting the behavior introduced in the binary interaction model for opinion
and competence in (2.2)–(2.7).

Let f = f(x,w, t) be the density of individuals with competence x ∈
X ⊂ R+ and opinion w ∈ I = [−1, 1] at time t ≥ 0. We derive the kinetic
description for the evolution of the density function f = f(x,w, t) through
classic methods of kinetic theory [145]. Let g(x, t) be the marginal density
of the competence variable x ∈ X

g(x, t) =

∫
I
f(x,w, t)dw, (3.1)
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and
∫
X g(x, t) = 1 for each t ≥ 0.

The evolution in time of the introduced density function is then given by
the integro-differential equation of the Boltzmann-type

∂

∂t
f(x,w, t) = Q(f, f)(x,w, t), (3.2)

where f(x, v, 0) = f0(x,w) and Q(·, ·) is defined as follows

Q(f, f)(x,w, t) =

∫
R+

∫
B2

∫
X×I

C(z)
(
′B

1

J
f(′x, ′w, t)f(′x∗,

′w∗, t)

−Bf(x,w, t)f(x∗, w∗, t)
)
dw∗dx∗dηdη∗dz,

(3.3)

indicating with (′w, ′w∗) the pre-interaction opinions given by (w,w∗) after
the interaction and (′x, ′x∗) the pre-interaction competences. The term
J = J(x,w;x∗, w∗) denotes as usual the Jacobian of the transformations
(w,w∗)→ (w′, w′∗), (x, x∗)→ (x′, x′∗) via (2.2) and (2.7). The kernels ′B,B
characterize the binary interaction and in the following will be considered of
the form

B
(x,x∗)→(x′,x′∗)
(w,w∗)→(w′,w′∗)

= βΘ(η)Θ(η∗)χ(|w′| ≤ 1)χ(|w′∗| ≤ 1)χ(x′ ∈ X)χ(x′∗ ∈ X),

(3.4)
where β > 0 is a scaling constant.

The presence of the Jacobian in the definition of the binary operator (1.3)
may be avoided by considering its weak formulation. Let us consider a test
function ψ(x,w), we get∫

X×I
Q(f, f)(x,w, t)ψ(x,w)dwdx

= β

〈∫
R+

∫
X2×I2

(ψ(x′, w′)− ψ(x,w))

f(x,w, t)f(x∗, w∗, t)C(z)dwdw∗dxdx∗dz

〉

=
β

2

〈∫
R+

∫
X2×I2

(ψ(x′, w′) + ψ(x′∗, w
′
∗)− ψ(x,w)− ψ(x∗, w∗))

f(x,w, t)f(x∗, w∗, t)C(z)dwdw∗dxdx∗dz

〉
,

(3.5)

where the brackets < · > denotes the expectation with respect to the random
variables η, η∗. The weak formulation of the initial value problem (3.2) for
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the initial density f0(x,w) is given for each t ≥ 0 by

∂

∂t

∫
X×I

ψ(x,w)f(x,w, t)dwdx

=
β

2

〈∫
R+

∫
X2×I2

(ψ(x′, w′) + ψ(x′∗, w
′
∗)− ψ(x,w)− ψ(x∗, w∗))

f(x,w, t)f(x∗, w∗, t)C(z)dwdw∗dxdx∗dz

〉
.

(3.6)

From the weak formulation in (3.6) we can derive the evolution of the
macroscopic quantities like the moments for the opinion which may be
obtained choosing as a test function ψ(x,w) = ψ(w) = 1, w, w2.

6.3.1 Collective decision and variance

It is straightforward to observe that setting ψ = 1 we obtain the conserva-
tion of the total number of agents. The mean opinion of the overall agents is
defined as

U(t) =

∫
X×I

wf(x,w, t)dwdx, (3.7)

which represents the collective decision of the system at time t, see [47, 93, 95].
The evolution of the collective decision is derived as marginal quantity from
equation (3.6) for ψ(x,w) = w

∂

∂t

∫
X×I

wf(x,w, t)dwdx = αSβ

∫
X×I

S(x)(wd − w)f(x,w, t)dwdx

+
αPβ

2

∫
X2×I2

(P (x, x∗;w,w∗)− P (x∗, x;w∗, w)) (w − w∗)

f(x,w, t)f(x∗, w∗, t)dwdw∗dxdx∗.

(3.8)

If the interaction function P (·, ·; ·, ·) is a symmetric function and S(x) = s ∈
[0, 1], equation (3.8) reduces to

d

dt
U(t) = αSβs (wd − U(t)) , (3.9)

whose solution at each t ≥ 0 is U(t) = wd + (U0 − wd) exp{−αSβst}, with
U0 = U(0) the initial collective decision. Therefore, in the limit t→ +∞, the
asymptotic collective decision converges exponentially toward wd ∈ {−1, 1},
i.e. U∞ = wd.

In the case of the aCF model P ≡ 1/2 and S(·) ≡ 0, the mean opinion of
the overall system is then conserved, which implies U(t) = U0 for all t ≥ 0.
Further if we consider a MC model, with interactions between agents based
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only on the competence variable and for S ≡ 0, from (3.8) we have

d

dt

∫
X×I

wf(x,w, t)dxdw =

αPβ

∫
X2×I2

RMC(x, x∗)(w∗ − w)f(x,w, t)f(x∗, w∗, t)dwdw∗dxdx∗

− αPβ

2

∫
X2×I2

(w∗ − w)f(x,w, t)f(x∗, w∗, t)dwdw∗dxdx∗,

(3.10)

being RMC(x, x∗) − RMC(x∗, x) = 2RMC(x, x∗) − 1 with RMC ≡ 0 in the
half space x > x∗, which leads to

d

dt

∫
X
u(x, t)dx =αPβ

∫
X

[
U+(x, t)− U−(x, t)

2

]
ρ(x, t)dx

+ αPβ

∫
X

[
ρ−(x, t)− ρ+(x, t)

2

]
u(x, t)dx

(3.11)

where u(x, t) =
∫
I wf(x,w, t)dw is the mean opinion relative to the compe-

tence level x ∈ X and

U+(x, t) =

∫
x<x∗

∫
I
w∗f(x∗, w∗, t)dw∗dx∗;

ρ+(x, t) =

∫
x<x∗

∫
I
f(x∗, w∗, t)dw∗dx∗.

(3.12)

In particular U+(x, t) and ρ+(x, t) indicate the average opinion and the
density of agents with competence greater than x ∈ X respectively. We
define also U−(x, t) = U(t)− U+(x, t) and ρ−(x, t) = 1− ρ+(x, t) for each
x ∈ X and t ≥ 0. Therefore, the variations of the mean opinion of agents
with fixed competence u(x, t) follow the choice of the most competent agents.

The second order moment for the opinion of the overall system is defined
as

E(t) =

∫
X×I

w2f(x,w, t)dwdx (3.13)
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and its evolution may be obtained from (3.6) with ψ(x,w) = w2

d

dt
E(t) = α2

Sβ

∫
X×I

S2(x)(w − wd)2f(x,w, t)dwdx

+
α2
Pβ

2

∫
X2×I2

[P 2(x, x∗;w,w∗) + P 2(x∗, x;w∗, w)](w − w∗)2

f(x,w, t)f(x∗, w∗, t)dwdw∗dxdx∗

− αPβ
∫
X2×I2

(w − w∗)[wP (x, x∗;w,w∗)− w∗P (x∗, x;w∗, w)]

f(x,w, t)f(x∗, w∗, t)dwdw∗dxdx∗

− 2αSβ

∫
X×I

S(x)w(w − wd)f(x,w, , t)dwdx

+ αSαPβ

∫
X2×I2

(w − w∗)[S(x)P (x, x∗;w,w∗)(w − wd)− S(x∗)

P (x∗, x;w∗, w)(w∗ − wd)]f(x,w, t)f(x∗, w∗, t)dwdw∗dxdx∗

+ αPβσ
2

∫
X×I

D2(x,w)f(x,w, t)dwdx.

(3.14)

In the simplified situation P (x, x∗;w,w∗) = p ∈ [0, 1], S(x) = s ∈ [0, 1],
αS = αP = α and in absence of diffusion, the equation (3.14) assumes the
following form

d

dt
E(t) = α2βs2

∫
X×I

(w − wd)2f(x,w, t)dwdx

− 2αβs

∫
X×I

(w2 − wwd)f(x,w, t)dwdx

+ αβp(αp− 1 + αs)

∫
X2×I2

(w − w∗)2f(x,w, t)f(x∗, w∗, t)dw∗dx∗dwdx.

(3.15)

Since under the same conditions U(t) is solution of equation (3.9) and
therefore converges for large time toward the correct choice wd, we obtain
that E(t) converges exponentially to w2

d if

α ≤ min
{

1,
2(s+ p)

(s+ p)2 + p2

}
, (3.16)

that is ∫
X×I

(w − wd)2f(x,w, t)dwdx = E(t)− w2
d, (3.17)

under the above assumptions, converges toward zero in the limit t→ +∞.
We showed that the steady state solution of the interacting system is the
Dirac delta δ(w − wd) centered in the decision wd ∈ {−1, 1}.
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6.4 Fokker-Planck approximation

In order to obtain analytic results on the large-time behavior from Boltzmann-
type models, a classical mathematical tool is given by the derivation of
approximated Fokker-Planck models through scaling techniques [6, 11, 14,
39, 91, 145, 146]. In what follows we apply this approach, also known as
quasi-invariant limit [145, 164], to the model derived in the latter section.

We introduce a scaling parameter ε > 0 and the following scaled quantities

λ→ ελ, λB → ελB, λC → ελC , σκ →
√
εσκ, (4.1)

where we assumed λB(x) = λB > 0, λC(x) = λC > 0 and λ(x) = λ > 0.
This corresponds to the situation where each interaction produces a small
variation of the competence. The same strategy may be applied to the binary
opinion model taking the interaction frequency β = 1/ε and rescaling the
interaction propensity α and the diffusion variance σ2 as follows

αS → εαS , αP → εαP , σ →
√
εσ. (4.2)

The scaled equation (3.6) reads

∂

∂t

∫
X×I

ψ(x,w)f(x,w, t)dwdx =

1

ε

〈∫
R+

∫
X2×I2

(ψ(x′, w′)− ψ(x,w))

f(x,w, t)f(x∗, w∗, t)C(z)dwdw∗dxdx∗dz

〉
.

(4.3)

Under the assumptions on the random variables involved in the binary
exchanges κ, η, η∗ we define the following mean quantities

< x′ − x > = −λx+ λCx∗ + λBz =: G(x, x∗, z),

< w′ − w > = −αSS(x)(w − wd)− αPP (x, x∗;w,w∗)(w − w∗)
=: HS(x,w) +HP (x, x∗;w,w∗),

< (x′ − x)2 > = G2(x, x∗, z) + σ2
κx

2,

< (w′ − w)2 > = (HS(x,w) +HP (x, x∗;w,w∗))
2 + σ2D2(x,w),

< (x′ − x)(w′ − w) > = G(x, x∗, z) (HS(x,w) +HP (x, x∗;w,w∗)) .
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Then, we have

< ψ(x′, w′)− ψ(x,w) >=

G(x, x∗, z)
∂ψ

∂x
(x,w) + (HS(x,w) +HP (x, x∗;w,w∗))

∂ψ

∂w
(x,w)

+
1

2

[
(G2(x, x∗, z) + σ2

κx
2)
∂2ψ

∂x2
(x,w) + ((HS(x,w) +HP (x, x∗;w,w∗))

2

+ σ2D2(x,w)
∂2ψ

∂w2
(x,w)) +G(x, x∗, z)(HS(x,w) +HP (x, x∗;w,w∗))

∂2ψ

∂x∂w
(x,w)

]
+ r(x, x∗;w,w∗),

(4.4)

where r(x, x∗;w,w∗) denotes the higher order terms of the Taylor expansion.
From the quasi-invariant scalings introduced in (4.1)-(4.2) by rescaling

G(x, x∗, z)→ εG(x, x∗, z),

HS(x,w)→ εHS(x,w),

HP (x, x∗;w,w∗)→ εHP (x, x∗;w,w∗),

(4.5)

equation (4.3) takes the form

∂

∂t

∫
X×I

ψ(x,w)f(x,w, t)dwdx =

∫
R+

∫
X2×I2

[
G(x, x∗, z)

∂ψ

∂x
(x,w)

+HS(x,w)
∂ψ

∂w
(x,w) +HP (x, x∗;w,w∗)

∂ψ

∂w
(x,w) +

σ2
κ

2
x2 ∂ψ

∂x2
(x,w)

+
σ2

2
D2(x,w)

∂2ψ

∂w2
(x,w)

]
f(x,w, t)f(x∗, w∗, t)C(z)dwdw∗dxdx∗dz

+ r(ε) +O(ε),

(4.6)

with

r(ε) =
1

2ε

∫
R+

∫
X2×I2

[
ε2
(
G2(x, x∗, z)

∂2ψ

∂x2
(x,w)

+ (HS(x,w) +HP (x, x∗;w,w∗))
2 ∂

2ψ

∂w2
(x,w)

+G(x, x∗, z)(HS(x,w) +HP (x, x∗;w,w∗))
∂2ψ

∂x∂w
(x,w)

)
+R(x, x∗;w,w∗)

]
f(x,w, t)f(x∗, w∗, t)C(z)dwdw∗dxdx∗dz.

(4.7)

By similar arguments to [146, 164] it can be shown that the term r(ε) defined
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in (4.7) decays to zero in the limit ε→ 0. Finally for ε→ 0 we obtain

∂

∂t

∫
X×I

ψ(x,w)f(x,w, t)dwdx =

∫
R+

∫
X2×I2

[
G(x, x∗, z)

∂ψ

∂x
(x,w)

+HS(x,w)
∂ψ

∂w
(x,w) +HP (x, x∗;w,w∗)

∂ψ

∂w
(x,w)

]
f(x,w, t)f(x∗, w∗, t)C(z)dwdw∗dxdx∗dz

+
σ2
κ

2

∫
X2×I2

x2 ∂ψ

∂x2
(x,w)f(x,w, t)dwdx

+
σ2

2

∫
X2×I2

D2(x,w)
∂2ψ

∂w2
(x,w)f(x,w, t)dwdx.

(4.8)

Integrating back by parts equation (4.8) we have the following nonlinear
Fokker-Planck equation

∂

∂t
f(x,w, t) =

∂

∂x
G[f ](x, t)f(x,w, t)

+
∂

∂w
H[f ]f(x,w, t) +

∂

∂w
K[f ]f(x,w, t)

+
σ2
κ

2

∂2

∂x2
(x2f(x,w, t)) +

σ2

2

∂2

∂w2
(D2(x,w)f(x,w, t)),

(4.9)

where

G[f ](x, t) =

∫
R+

∫
X×I

G(x, x∗, z)f(x∗, w∗, t)C(z)dw∗dx∗dz

= λx− λCmx − λBmB,

(4.10)

being mx(t) =
∫
X×I xf(x,w, t)dwdx, and where the functionals H[f ],K[f ]

are defined as follows

H[f ](x,w, t) =

∫
X×I

HP (x, x∗;w,w∗)f(x∗, w∗, t)dw∗dx∗

K[f ](wd) =

∫
X×I

HS(x,w)f(x,w, t)dwdx.

(4.11)

The Fokker-Planck equation (4.9) has been derived from (4.8) provided the
boundary terms produced by integration vanish [145]. In particular, we
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obtain the following conditions

G[f ](x, t)− σ2
κ

2
(x2f(x,w, t))

∣∣∣∣+∞
0

= 0,

x2f(x,w, t)

∣∣∣∣+∞
0

= 0,

(H[f ] +K[f ])f(x,w, t)− σ2

2

∂

∂w
(D2(x,w)f(x,w, t))

∣∣∣∣1
−1

= 0,

D2(x,w)f(x,w, t)

∣∣∣∣1
−1

= 0.

(4.12)

6.4.1 Stationary states for the marginal density

By direct integration of the Fokker-Planck equation (4.9) with respect to
the variable w we obtain

∂

∂t

∫
I
f(x,w, t)dw =

∂

∂x

∫
I
G[f ]f(x, t)f(x,w, t)dw +H[f ]f(x,w, t)

∣∣∣∣1
−1

+K[f ]f(x,w, t)

∣∣∣∣1
−1

+
σ2
κ

2

∂2

∂x2

(
x2

∫
I
f(x,w, t)dw

)
+
σ2

2

∂

∂w
D2(x,w)f(x,w, t)

∣∣∣∣1
−1

.

(4.13)

From the boundary conditions (4.12) equation (4.13) simplifies to

∂

∂t
g(x, t) =

∂

∂x
(λx− λCmx − λBmB)g(x, t) +

σ2
κ

2

∂2

∂x2
(x2g(x, t)), (4.14)

being g(x, t) the marginal density of the competence variable defined in (3.1).

Furthermore, in Section 6.2.1 we showed that for large time mx →
λBmB

λ− λC
and it is therefore possible to give the analytic formulation of the stationary
solution of (4.13). The solution of

∂

∂x

(
−λx+

λλB
λ− λC

mB

)
g∞(x) =

σ2
κ

2

∂2

∂x2
(x2g∞(x)) (4.15)

is given by

g∞(x) =
cλ,λB ,λC ,σ2

κ

x2+2λ/σ2
κ

exp
{
− 2

σ2
κx
· λλBmB

λ− λC
)
}
, (4.16)

where cλ,λB ,λC ,σ2
κ

is a constant chosen such that the total mass of g∞ is equal
to one.
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Unlike the usual method for determining the stationary density developed
in [39, 146], here the asymptotic competence has been derived from the
complete Fokker-Planck equation (4.9) after the integration of the opinion
variable, and under specific boundary conditions.

6.5 Numerics

In this section we propose several numerical tests for the Boltzmann-type
model introduced in the previous paragraphs which show the emergence
of suboptimal collective decisions under the hypothesis of equality bias
compared to aCF and cMC models. All the results presented have been
obtained through direct simulation Monte Carlo methods for the Boltzmann
equation (see [145, 144]).

The Fokker-Planck regime is obtained via the quasi-invariant scaling (4.1)–
(4.2) with ε = 0.01. The local diffusion function has been considered in the
case

D(x,w) = 1− w2 (5.1)

which multiplies in the binary collision model (2.7) for the opinion, a uniform
random variable with scaled variance σ2. The choice (5.1) implies that the
diffusion does not act on the agents with more extremal opinions. In the
competence dynamics we considered λ(x) = λ, λC(x) = λC and λB(x) = λB
and a uniform random variable κ with finite scaled variance σ2

κ. The variable
z is a uniform random variable in the interval [0, 1].

6.5.1 Test 1: collective decision under equality bias

In this test we compute the collective decisions emerging from the Boltzmann-
type model (3.2) with interaction function (2.8) and Q(w,w∗) = 1 and
R(x, x∗) defined in the reference cases aCF-cMC and EB. The binary in-
teraction terms defined in (2.2)–(2.7) have been considered for a choice of
constants coherent with the bounds described in Section 6.2. In this test we
considered a vanishing drift term S(x) = 0, for each x ∈ X.

We compare the emerging collective decisions in the aCF and cMC cases
considering the action of the equality bias function described in equation
(2.13). In this test we take into account the compromise behavior of two
strongly polarized populations with equal sizes (case A) and with different
sizes (case B). In both cases the group of competent agents is characterized
at t = 0 by opinions in the interval w ∈ [−1,−0.75], whereas the second
population, composed by the less competent agents, expresses opinions
w ∈ [0.75, 1]. In the case of populations with different size we considered an
initial distribution such that the number of competent agents is five time
larger then the number of the incompetent ones. In Figure 5.2 we exemplified
the initial configurations for the two tests: Test 1A and Test 1B. We chose the
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Figure 5.2: Left: Test 1A, initial configuration of the multi-agent system
with an equal size of competent and incompetent agents. Right: Test
1B, initial configuration of the multi-agent system with a different size of
competent and incompetent agents, in particular the number of competent
agents is five times smaller than the size of the incompetent agents.

parameters λC = λB = 10−2, λ = λC + λB and σ2
κ = 10−2 for the evolution

of the competence variable.

In Figure 5.4 we show the kinetic and particle solutions of the Test 1A for
a system of interacting agents in the aCF-cMC and EB1-EB2 models, where
the case of equality bias has been considered for two examples of equality
bias functions Φ1(x) and Φ2(x) of the type introduced in Section 6.2.3, see
equation (2.13), and whose behaviors are reported in Figure 5.3. Further
in Figure 5.3 we compare the stationary distribution for the competence
variable emerging form the Monte Carlo method and its analytic formulation
obtained in Section 6.4.1. In particular, in Figure 5.4 we can observe how
the emerging collective decisions of the EB1 and EB2 cases are significantly
shifted from the decision emerging in a model cMC.

In Figure 5.5 we show the stationary distributions of the opinion variable
in the four models of interactions both the Test 1A (left) and Test 1B (right).
We observe how the EB1-EB2 models in general defines a decision which is
suboptimal with respect to the competence based model cMC. Further in
presence of a strong overestimation of the opinions of the less skilled agents,
like in the EB2 model, we see how the emerging decision may perform worse
than an aCF model. In the case of the Test 1B we see how for asymmetric
populations the emerging decision may be deviated toward the positions
of the less competent agents, even in the cMC case. The same behavior is
highlighted in Figure 5.6 where we find the evolution of the mean opinion
of the multi-agent systems which leads to the formation of the collective
decisions.
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Figure 5.3: Test 1. Left: two examples of equality bias functions Φ(x) if the
form introduced in (2.13) and passing through x̄ = 0.5 with a1 = 0.9 and
scaling parameter h = 102. In the rest of the paper we will refer to them as
Φ1(x) and Φ2(x). Right: convergence of the Monte Carlo method toward
the analytic steady state for ε = 0.01.

6.5.2 Test 2: competence driven optimal decision

We consider here the action of the term driving the system to the correct
decision introduced in the opinion dynamics (2.7). In the described dynam-
ics we included a competence-dependent force with a rate given by S(·)
representing an increasing evidence in supporting the a-priori right choice
wd ∈ {−1, 1}. In particular, let us consider

S(x) =

{
min{1, x} x ≥ xd
0 x ≤ xd

(5.2)

and λC = λCχ(x ≥ xd). In the proposed set-up we intended to mimic the
fact that extremely low skilled people (x ≤ xd), in addition to make wrong
choices, have not the ability to realize the inaccuracy of their decision, a
phenomenon which follows from the Dunning-Kruger effect. In Figure 5.7
we report the evolution of the multi-agent system with the same initial
configuration as in Test 1B. The forcing term is characterized by (5.2) with
xd = 0.3, which drives the opinions of sufficiently competent agents toward
wd = −1. Here the equality bias functions Φ1(x) and Φ2(x), represented in
Figure 5.2, influence the speed of convergence of the opinions toward wd. We
compare in Figure 5.8 the convergences toward wd for the models aCF-cMC
and EB1-EB2. We consider the parameters λC = λB = 10−2, λ = λC + λB
and σ2

κ = 10−2 for the evolution of the competence variable.

6.5.3 Test 3: bounded confidence case

In the last test case we consider bounded confidence interactions [6, 14, 35].
Often we notice how more well-educated, more capable and more competent
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Figure 5.4: Test 1A: kinetic solution at different time steps in the aCF-
cMC and EB1-EB2 model cases, respectively form the first row. The choice
of constants in this test is: c = 10, λB = λC = 10−2, σ2

κ = 10−2 and
λ = λB + λC . The mean competence of the multi-agent system is x̄ = 0.5.
We see how the equality bias, through the equality bias functions Φ1(x) and
Φ2(x) presented in Figure 5.3, influences the opinion dynamics, driving the
collective decision toward suboptimal states with respect to the cMC model.

144



Chapter 6 Kinetic models for collective decision-making

-1 -0.5 0 0.5 1

Opinion

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

aCF

cMC

EB1

EB2

-1 -0.5 0 0.5 1

Opinion

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

aCF

cMC

EB1

EB2

Figure 5.5: Asymptotic distributions of the opinion variable for the mod-
els aCF-cMC-EB1-EB2 Left: Test 1A, case of initial configuration with
equal size of competent and incompetent agents. Right: Test1B, case of
asymmetric populations as in Figure 5.2. The choice of constants is c = 10,
λB = λC = 10−2, σ2

κ = 10−2 and λ = λB + λC , the equality bias functions
are sketched in Figure 5.3.

0 2 4 6 8 10

t

-1

-0.5

0

0.5

1

U

aCF

cMC

EB1

EB2

0 2 4 6 8 10

t

-1

-0.5

0

0.5

1

U

aCF

cMC

EB1

EB2

Figure 5.6: Collective decisions of the multi-agent system for the reference
models aCF-cMC-EB1-EB2 with the choice of parameters c = 10, λB =
λC = 10−2, σ2

κ = 10−2 and λ = λB + λC . Left: Test 1A. Right: Test1B.
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(g) EB1 t=1
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Figure 5.7: Test 2. Kinetic solution for the opinion dynamics with forcing
term with rate (5.2) at different time steps. The evolution of the competence
variable is given by λB = 10−2, λC(x) = λCχ(x ≥ xd) where λC = 10−2 and
xd = 0.3, λ = λB + λC , and σ2

κ = 10−2. We present the behavior of the
reference models aCF-cMC and EB1-EB2 under the action of the equality
bias functions Φ1(x),Φ2(x) for three time steps.
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Figure 5.8: Test 2. Convergence of the mean decision in the reference models
aCF-cMC and EB1-EB2 under the action of the forcing term with rate (5.2)
and xd = 0.3. The equality bias function Φ1(x), which has been sketched
in Figure 5.2, slows down the convergence speed of the collective decision
toward wd = −1.

people are also those best disposed to dialogue. Then competence is generally
associated to the predisposition to listen other people. The higher this quality,
greater is the ability to value other opinions. Vice versa, a person unwilling
to listen and dialogue is usually marked by a lower level of the described trait.
Therefore, it is natural to consider a bounded confidence model where the
threshold on the exchanges of opinions depends on the degree of competence.

In particular, we consider a compromise function P (x, x∗;w,w∗) with the
following form

P (x, x∗;w,w∗) = χ(|w − w∗| ≤ γ∆(x, x∗)), (5.3)

where ∆(x, x∗) is a competence-dependent function that ranges in the closed
interval [0, 1] taking into account the maximum distance under which the
interactions are allowed, and γ > 0 is a constant value. A possible choice of
for the function ∆(·, ·) is

∆(x, x∗) = RcMC(x, x∗), (5.4)

where the function R(·) has been defined in (2.10). We observe how for
the choice γ = 2 and ∆(x, x∗) = RMC the bounded confidence interaction
function reproduces the behavior of a maximum competence model.

In the biased case the bounded confidence model becomes

P (x, x∗;w,w∗) = χ(|w − w∗| ≤ γ∆(Φ(x),Φ(x∗))). (5.5)

We perform the numerical test in the case of absence of driving force, i.e.
S(·) = 0. In Figure 5.9 we report the initial configuration of the multi-
agent system for the test and the asymptotic density function of the opinion
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Figure 5.9: Test 3. Left: initial configuration of the multi-agent system,
we considered the case with three population. Right: asymptotic marginal
density for the opinion variable, we observe how the bounded confidence
interaction function introduced in (5.3), γ = 1/2, splits the system in two
populations for which the equality bias emerges separately as an action of
the equality bias function Φ2(x).

variable taking into account the bounded confidence interaction function
(5.3) and its biased version (5.5). We chose the parameters λC = λB = 10−3,
λ = λB + λC and σκ = 10−4 for the evolution of the competence variable,
the function ∆(x− x∗) is (5.4) with c = 102 and γ = 1/2.

In Figure 5.10 it is possible to observe how the evolution of opinion and
competence deeply changes under the effect of an equality bias function.
In particular we considered the equality bias function Φ2(x), x ∈ X with
the choice of parameter introduced in Figure 5.2. In Figure 5.9 (right plot)
we report the asymptotic marginal density for the opinion variable. The
system evolves towards two clusters, characterizing two subpopulations with
different decisions driven by the most competent agents. Finally, it is possible
to observe how the equality bias drives the system toward a suboptimal
collective decision for both populations where the influence of less competent
agents become more relevant.

6.6 Conclusion

We introduced kinetic models of multi-agent systems describing the decision-
making process. The models are obtained in the limit of a large number of
agents and weight the opinion of each agent through its competence. The
binary interaction dynamics involve both the agents’ opinion and competence,
so that less competent agents can learn during interactions from the more
competent ones. This lead to an optimal decision process where the results
is a direct consequence of the agents’ competence. The introduction of an
equality bias in the model is obtained by considering a suitable function
with a shape analogous to the one experimentally found in [124]. Numer-
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(c) (BC) t=100
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Figure 5.10: Test 3. Evolution of the multi-agent-system in the bounded
confidence case (BC), in the first row, and under the action of the equality bias
function Φ2(x) (BC-EB), in the second row. The evolution of the competence
variable is given by λC = λB = 10−3, λ = λB + λC and σκ = 10−4

ical results show that the presence of an equality bias leads the group to
suboptimal decisions and in some cases to the emergence of the opinion of
the less competent agents in the group. Finally, we point out that using the
approach in [6, 117, 11] the present modeling may also address the influence
of external forces (like the Press and the Media in general) affecting adversely
the individual competence.
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Chapter 7

Uncertainty quantification in
control problems for flocking
models

7.1 Introduction

The aggregate motion of a multi-agent system is frequently seen in the
real world. Common examples are represented by schools of fish, swarms
of bees and herds of sheep, each of them natural phenomena with impor-
tant applications in many fields such as biology, engineering and economy
[145]. As a consequence, the significance of new mathematical models, for
understanding and predicting these complex dynamics, is widely recognized.
Several heuristic rules of flocking have been introduced as alignment, sep-
aration and cohesion [154, 167]. Nowadays these mathematical problems,
and their constrained versions, are deeply studied both from the microscopic
viewpoint [4, 52, 138, 179] as well as their kinetic and mean-field approxima-
tions [6, 11, 71, 73, 76, 139]. We refer to [145] for a recent introduction on
the subject.

In an applicative framework a fundamental step for the study of such
models is represented by the introduction of stochastic parameters reflecting
the uncertainty due to wide range of phenomena, such as the weathers
influence during an experiment, temperature variations, or even human
errors. Therefore quantifying the influence of uncertainties on the main
dynamics is of paramount importance to build more realistic models and to
give better predictions of their behavior. In the modeling of self-organized
system, different ways to include random sources have been studied and
analyzed, see for example [2, 108, 160, 167, 178]. In this paper we focus on
the case where the uncertainty acts directly in the parameter characterizing
the interaction dynamics between the agents.

We present a numerical approach having roots in the numerical techniques
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for Uncertainty Quantification (UQ) and Model Predictive Control (MPC).
Among the most popular methods for UQ, the generalized polynomial chaos
(gPC) has recently received deepest attentions [176]. Jointly with Stochastic
Galerkin (SG) this class of numerical methods are usually applied in physical
and engineering problems, for which fast convergence is needed. Applications
of gPC-Galerkin schemes to flocking dynamics, and their controlled versions,
is almost unexplored in the actual state of art.

We give numerical evidence of threshold effects in the alignment dynamics
due to the random parameters. In particular the presence of a negative tail in
the distribution of the random inputs lead to the divergence of the expected
values for the system velocities. The use of a selective model predictive
control permits to steer the system towards the desired state even in such
unstable regimes.

The rest of the chapter is organized as follows. In Section 8.2 we intro-
duce briefly a Cucker-Smale dynamics with interaction function depending
on stochastic parameters and analyze the system behavior in the case of
uniform interactions. The gPC approach is then summarized in Section 7.3.
Subsequently, in Section 7.4 we consider the gPC scheme in a constrained
setting and derive a selective model predictive approximation of the system.
Next, in Section 7.5 we report several numerical experiments which illustrate
the different features of the numerical method. Extensions of the present
approach are finally discussed in Section 7.6.

7.2 Cucker-Smale dynamics with random inputs

We introduce a Cucker-Smale type [71] differential system depending
on a random variable θ ∈ Ω ⊆ R with a given distribution f(θ). Let
(xi, vi) ∈ R2d, d ≥ 1, evolving as follows

ẋi(θ, t) = vi(θ, t)

v̇i(θ, t) =
K(θ, t)

N

N∑
j=1

H(xi, xj)(vj(θ, t)− vi(θ, t))
(2.1)

where K is a time dependent random function characterizing the uncertainty
in the interaction rates and H(·, ·) is a symmetric function describing the
dependence of the alignment dynamics from the agents positions. In the
following we will always suppose location–based interaction to be determinis-
tic, in particular H(xi, xj) := H(

∫
Ω xif(θ)dθ,

∫
Ω xjf(θ)dθ). For simplicity of

notation we will maintain H(xi, xj). A classical choice of space dependent
interaction function is related to the distance between two agents

H(x, y) =
1

(ζ2 + |x− y|2)γ
, (2.2)
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where γ ≥ 0 and ζ > 0 are given parameters. Mathematical results concerning
the system behavior in the deterministic case (K ≡ 1) can be found in [71].
In particular unconditional alignment emerges for γ < 1/2. Let us observe
that, even for the model with random inputs (2.1), the mean velocity of the
system is conserved in time

V(θ, t) =
1

N

N∑
i=1

vi(θ, t),
d

dt
V(θ, t) = 0, (2.3)

since the symmetry of H implies

N∑
i,j=1

H(xi, xj)vj(θ, t) =
N∑

i,j=1

H(xi, xj)vi(θ, t).

Therefore for each t ≥ 0 we have V(θ, t) = V(θ, 0).

7.2.1 The uniform interaction case

To better understand the leading dynamics let us consider the simpler
uniform interaction case when H ≡ 1, leading to the following equation for
the velocities

v̇i(θ, t) =
K(θ, t)

N

N∑
j=1

(vj(θ, t)− vi(θ, t)) = K(θ, t)(V(θ, 0)− vi(θ, t)). (2.4)

The differential equation (2.4) admits an exact solution depending on the
random input θ. More precisely if the initial velocities are deterministically
known we have that

vi(θ, t) = V + (vi(0)− V) exp

{
−
∫ t

0
K(θ, s)ds

}
, (2.5)

where V = V(0) is the mean velocity of the system. In what follows we
analyze the evolution of (2.5) for different choices of K(θ, t) and of the
distribution of the random variable θ.

Example 1

Let us consider a random scattering rate written in terms of the following
decomposition

K(θ, t) = k(θ)h(t) (2.6)

where h(t) is a nonnegative function depending on t ∈ R+. The expected
velocity of the i-th agent is defined by

v̄i(t) = Eθ[vi(θ, t)] =

∫
Ω
vi(θ, t)f(θ)dθ (2.7)
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then each agent evolves its expected velocity according to

v̄i(t) =

∫
Ω

[
V + (vi(0)− V) exp

{
−k(θ)

∫ t

0
h(s)ds

}]
f(θ)dθ. (2.8)

For example, let us chose k(θ) = θ, where the random variable is normally
distributed, i.e. θ ∼ N (µ, σ2). Then, for each i = 1, . . . , N , we need to
evaluate the following integral

V +
vi(0)− V√

2πσ2

∫
R

exp

{
−θ
∫ t

0
h(s)ds

}
exp

{
−(θ − µ)2

2σ2

}
dθ. (2.9)

The explicit form is easily found through standard techniques and yields

v̄i(t) = V + (vi(0)− V) exp

{
−µ
∫ t

0
h(s)ds+

σ2

2

(∫ t

0
h(s)ds

)2
}
. (2.10)

From (2.10) we observe a threshold effect in the asymptotic convergence of
the mean velocity of each agent toward V. It is immediately seen that if∫ t

0
h(s)ds >

2µ

σ2
(2.11)

it follows that, for t→ +∞, the expected velocity v̄i diverges. In particular,
if h(s) ≡ 1 we have that the solution starts to diverge as soon as t > µ/σ2.
Note that, this threshold effect is essentially due to the negative tail of the
normal distribution. In fact, if we now consider a random variable taking
only nonnegative values, for example exponentially distributed θ ∼ Exp(λ)
for some positive parameter λ > 0, from equation (2.8) we obtain

v̄i(t) = V + (vi(0)− V)

∫ +∞

0
e−θtλe−λθdθ, (2.12)

which corresponds to

v̄i(t) = V + (vi(0)− V)
λ

t+ λ
, (2.13)

and therefore v̄i(t)→ V as t→∞. Then independently from the choice of
the rate λ > 0 we obtain for each agent convergences toward the average
initial velocity of the system. Finally, in case of a uniform random variable
θ ∼ U([a, b]) we obtain

v̄i(t) = V + (vi(0)− V)

∫ b

a

1

b− a
e−θtdθ (2.14)

that is

v̄i(t) = V +
vi(0)− V
b− a

(
e−at

t
− e−bt

t

)
, (2.15)

which implies the divergence of the system in time as soon as a ∈ R assumes
negative values.
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Example 2

Next we consider a random scattering rate with time-dependent distribution
function, that is

K(θ, t) = θ(t) (2.16)

with θ(t) ∼ f(θ, t). As an example we investigate the case of a normally
distributed random parameter with given mean and time dependent variance,
θ ∼ N (µ, σ2(t)). It is straightforward to rewrite θ as a translation of a
standard normal-distributed variable θ̃, that is

θ = µ+ σ(t)θ̃, (2.17)

where θ̃ ∼ N (0, 1). The expected velocities read

v̄i(t) = V+
(vi(0)− V)√

2π

∫
R

exp

{
−µt− θ̃

∫ t

0
σ(s)ds

}
exp

{
− θ̃

2

2

}
dθ̃, (2.18)

which correspond to

v̄i(t) = V + (vi(0)− V) exp

{
−µt+

1

2

(∫ t

0
σ(s)ds

)2
}
. (2.19)

Similarly to the case of a time independent normal variable a threshold effect
occurs for large times, i.e. the following condition on the variance of the
distribution (∫ t

0
σ(s)ds

)2

> 2µt (2.20)

implies the divergence of the system (2.4). As a consequence instability can
be avoided by assuming a variance decreasing sufficiently fast in time. The
simplest choice is represented by σ(t) = 1/tα for some α ∈ [1/2, 1). The
condition (2.20) becomes (

t1−α

1− α

)2

> 2µt. (2.21)

For example, if α = 1/2 the previous condition implies that the system
diverges for each µ < 2.

7.3 A gPC based numerical approach

In this section we approximate the Cucker-Smale model with random
inputs using a generalized polynomial chaos approach. For the sake of clarity
we first recall some basic facts concerning gPC approximations.
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7.3.1 Preliminaries on gPC approximations

Let (Ω,F , P ) be a probability space, that is a ordered triple with Ω any
set, F a σ−algebra and P : F → [0, 1] a probability measure on F , where
we define a random variable

θ : (Ω,F)→ (R,BR),

with BR the Borel set of R. Moreover let us consider S ⊂ Rd, d ≥ 1 and
[0, T ] ⊂ R certain spatial and temporal subsets. For the sake of simplicity
we focus on real valued functions depending on a single random input

g(x, θ, t) : S × Ω× T → Rd, g ∈ L2(Ω,F , P ). (3.1)

In any case it is possible to extend the set-up of the problem to a p−dimensional
vector of random variables θ = (θ1, . . . , θp), see [97]. Let us consider now the
linear space of polynomials of θ of degree up to M , namely PM (θ). From
classical results in approximation theory it is possible to represent the distri-
bution of random functions with orthogonal polynomials {Φk(θ)}Mk=0, i.e. an
orthogonal basis of L2(Ω,F , P )

Eθ[Φh(θ)Φk(θ)] = Eθ[Φh(θ)2]δhk

with δhk the Kronecker delta function. Assuming that the probability law
P (θ−1(B)),∀B ∈ BR, involved in the definition of the introduced function
g(x, θ, t) has finite second order moment, then the complete polynomial chaos
expansion of g is given by

g(x, θ, t) =
∑
m∈N

ĝm(x, t)Φm(θ). (3.2)

According to the Cameron-Martin theorem and to the Askey-scheme, results
that pave a connection between random variables and orthogonal polynomials
[45, 176, 177], we chose a set of polynomials which constitutes the optimal
basis with respect to the distribution of the introduced random variable in
agreement with Table 3.1.

Let us consider now a general formulation for a randomly perturbed
problem

D(x, t, θ; g) = f(x, t, θ) (3.3)

where we indicated with D a differential operator. In general the randomness
introduced in the problem by θ acts as a perturbation of D, of the function
g or occurs as uncertainty of the initial conditions. In this work we focus
on the first two aspects assuming that initial positions and velocities are
deterministically known.
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Table 3.1: The different gPC choices for the polynomial expansions.

Probability law of θ Expansion polynomials Support

Gaussian Hermite (−∞,+∞)
Uniform Legendre [a, b]

Beta Jacobi [a, b]
Gamma Laguerre [0,+∞)
Poisson Charlier N

The generalized polynomial chaos method approximate the solution g(x, θ, t)
of (3.3) with its Mth order polynomial chaos expansion and considers the
Galerkin projections of the introduced differential problem, that is

Eθ [D(x, t, θ; g) · Φh(θ)] = Eθ [f(x, θ, t) · Φh(θ)] , h = 0, 1, . . . ,M. (3.4)

Due to the Galerkin orthogonality between the linear space PM and the error
produced in the representation of g(x, θ, t) with a truncated series, from (3.4)
we obtain a set of M + 1 purely deterministic equations for the expansion
coefficients ĝm(x, t). These subproblems can be solved through classical
discretization techniques. From the numerical point of view through a gPC-
type method it is possible to achieve an exponential order of convergence to
the exact solution of the problem, unlike Monte Carlo techniques for which
the order is O(1/

√
M) where M is the number of samples.

7.3.2 Approximation gPC of the alignment model

We apply the described gPC decomposition to the solution of the non-
homogeneous differential equation vi(θ, t) in (2.5) and to the stochastic
scattering rate K(θ, t), i.e.

vMi (θ, t) =

M∑
m=0

v̂i,m(t)Φm(θ), KM (θ, t) =
M∑
l=0

K̂l(t)Φl(θ) (3.5)

where

v̂i,m(t) = Eθ [vi(θ, t)Φm(θ)] K̂l(t) = Eθ [K(θ, t)Φl(θ)] . (3.6)

We obtain the following polynomial chaos expansion

d

dt

M∑
m=0

v̂i,mΦm(θ) =
1

N

N∑
j=1

H(xi, xj)

M∑
l,m=0

K̂l(t)(v̂j,m − v̂i,m)Φl(θ)Φm(θ).
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Multiplying the above expression by an orthogonal element of the basis Φh(θ)
and integrating with respect to the distribution of θ

Eθ

[
M∑
m=0

d

dt
v̂i,mΦm(θ)Φh(θ)

]

= Eθ

 1

N

N∑
j=1

H(xi, xj)
M∑

l,m=0

K̂l(t)(v̂j,m − v̂i,m)Φl(θ)Φm(θ)Φh(θ)


we find an explicit system of ODEs

d

dt
v̂i,h(t) =

1

‖Φh‖2N

N∑
j=1

H(xi, xj)
M∑
m=0

(v̂j,m − v̂i,m)
M∑
l=0

K̂l(t)elmh

=
1

N

N∑
j=1

H(xi, xj)

M∑
m=0

(v̂j,m − v̂i,m)K̂mh(t),

(3.7)

where elmh = Eθ[Φl(θ)Φm(θ)Φh(θ)] and

K̂mh(t) =
1

‖Φh‖2
M∑
l=0

K̂l(t)elmh.

We recall that the gPC numerical approach preserves the mean velocity of
the alignment model (2.4). In fact, from (3.7) follows

N∑
i=1

d

dt
v̂i,h(t) =

1

N

N∑
j,i=1

H(xi, xj)
M∑
m=0

K̂mh(t)v̂j,m

− 1

N

N∑
j,i=1

H(xi, xj)
M∑
m=0

K̂mh(t)v̂i,m = 0,

(3.8)

thanks to the symmetry of H. More generally it can be shown that if

1

N

N∑
i=1

vi(θ, t) = V,

where V is time-independent, then its gPC decomposition is also mean-
preserving since

1

N

N∑
i=1

M∑
m=0

Eθ [vi(θ, t)Φm(θ)] Φm(θ) =
M∑
m=0

Eθ

[
1

N

N∑
i=1

vi(θ, t)Φm(θ)

]
Φm(θ)

= V
M∑
m=0

Eθ [1 · Φm(θ)] Φm(θ) = V.
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Remark 10. The gPC approximation (3.7) can be derived equivalently
without expanding the kernel function K(θ, t). In this way one obtains

d

dt
v̂i,h(t) =

1

N

N∑
j=1

H(xi, xj)

M∑
m=0

(v̂j,m − v̂i,m)K̂mh (3.9)

where now

K̂mh(t) =
1

‖Φh‖2
Eθ[K(θ, t)ΦmΦh].

Note that, since in general N � M , the overall computational cost is
O(MN2).

7.4 Selective control of the gPC approximation

In order stabilize the gPC approximation of the Cucker-Smale type model
(2.1) with random inputs, we introduce an additional term which acts as
control of the approximated dynamics. More specifically we modify the
approximation of the alignment model (2.1) by introducing a control term
ûh to the hth component of its gPC approximation

d

dt
v̂i,h(t) =

1

N

N∑
j=1

H(xi, xj)

M∑
m=0

K̂mh(t)(v̂j,m(t)− v̂i,m(t)) + ûhQ(v̂i,h).

(4.1)

The control ûh is a solution of

ûh = arg min
ûh∈Ub

[
1

2

∫ T

0

1

N

N∑
i=1

(v̂i,h(t)− v̂d,h)2dt+
ν

2

∫ T

0
ûh(t)2dt

]
, (4.2)

where we assume to have, for each h = 1, . . . ,M , a bounded control ûh
having value in a admissible set Ub ⊂ Rd, for example in the one-dimensional
case we consider ûh ∈ [uh,L, uh,R]. Parameter ν > 0 is a regularization term
and (v̂d,0, v̂d,1, . . . , v̂d,M ) are the desired values for the gPC coefficients. For
example

v̂d,h = Eθ[vdΦh(θ)] = vdE[Φh(θ)] =

{
vd h = 0

0 h = 1, . . . ,M,
(4.3)

where vd is a desired velocity.
Moreover the controller action is weighted by a bounded function,

Q : Rd → Rd.

Due to the dependence of the controller effect from the single agent velocity,
we refer to this approach as selective control, see [71].
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In order to tackle numerically the above problem, whose direct solution
is prohibitively expansive for large numbers of individuals, we make use
of model predictive control (MPC) techniques, also referred to as receding
horizon strategy or instantaneous control [135]. These techniques has been
used in [6, 7, 11] in the case of deterministic alignment systems.

7.4.1 Selective model predictive control

Let us split the time interval [0, T ] in Ñ time intervals of length ∆t with
tn = n∆t with n = 0, . . . , Ñ − 1. The basic idea of the model predictive
control approach, is to consider a piecewise constant control

ûh(t) =

Ñ−1∑
n=0

ˆ̄unh χ[tn,tn+1](t).

In this way is possible to determine the value of the control ûnh ∈ Rd, solving
for a state ¯̂vi,h the (reduced) optimization problem

d

dt
v̂i,h(t) =

1

N

N∑
j=1

H(xi, xj)
M∑
m=0

K̂mh(t)(v̂j,m(t)− v̂i,m(t)) + ûhQ(v̂i,h(t))

v̂i,h(tn) = ¯̂vi,h,

ûnh = arg min
ûh∈Ub

∫ tn+1

tn

1

N

N∑
i=1

(
1

2
(v̂i,h(t)− v̂d,h)2 +

ν

2
ûh(t)2

)
ds,

(4.4)
Given the control ûnh on the time interval [tn, tn+1], we let evolve v̂i,h according
to the dynamics

d

dt
v̂i,h =

1

N

N∑
j=1

H(xi, xj)
M∑
m=0

K̂mh(t)(v̂j,m(t)− v̂i,m(t)) + ûnhQ(v̂ni,h(t))

(4.5)

in order to obtain the new state ¯̂vi,h = v̂i,h(tn+1). We again solve (4.4) to
obtain ûn+1

h with the modified initial data and we repeat this procedure until

we reach Ñ∆t = T.

The reduced optimization problem implies a reduction of the complexity
of the initial problem since it depends only on the single real–valued variable
ûnh. On the other hand the price to pay is that in general the solution of the
problem is suboptimal respect to the full one (4.1)-(4.2).

The quadratic cost and a suitable discretization of (4.5) allow an explicit
representation of ûnh in terms of ¯̂vi,h and v̂n+1

i,h , as a feedback controlled system
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as follows

v̂n+1
i,h = v̂ni,h +

∆t

N

N∑
j=1

Hn
ij

M∑
m=0

K̂n
mh(v̂nj,m − v̂ni,m) + ∆tûnhQ

n
i,h,

v̂ni,h = ¯̂vi,h,

ûnh = −∆t

νN

N∑
i=1

(v̂n+1
i,h − v̂d,h)Qni,h,

(4.6)

where Hn
ij ≡ H(xni , x

n
j ) and Qni,h ≡ Q(v̂ni,h). Note that since the feedback

control ûnh in (4.6) depends on the velocities at time n+ 1, the constrained
interaction at time n is implicitly defined. The feedback controlled system
in the discretized form results

v̂n+1
i,h = v̂ni,h +

∆t

N

N∑
j=1

Hn
ij

M∑
m=0

K̂n
mh(v̂nj,m − v̂ni,m)− ∆t2

νN

N∑
j=1

(v̂n+1
j,h − v̂d,h)Qnj,hQ

n
i,h,

v̂ni,h = ¯̂vi,h.

Again the action of the control is substituted by an implicit term representing
the relaxation toward the desired component of the velocity v̂d,h, and it can
be inverted in a fully explicit system.

Considering the scaling for the regularization parameter ν = κ∆t, the
previous scheme is a consistent discretization of the following continuos
system

d

dt
v̂i,h(t) =

1

N

N∑
j=1

H(xi, xj)

M∑
m=0

K̂mh(t)(v̂j,m(t)− v̂i,m(t))

+
1

κN

N∑
j=1

(v̂d,h − v̂j,h(t))Q(v̂j,h(t))Q(v̂i,h(t)).

(4.7)

Now the control is explicitly embedded in the dynamics of the hth component
of the gPC approximation as a feedback term, and the parameter κ > 0
determines its strength.

7.4.2 Choice of the selective control

For the specific choice of weight function Q(·) ≡ 1 we refer in general to
non selective control. Note that in this case the action of the control is not
strong enough to control the velocity of each agent, indeed in this case we
are able only to control the mean velocity of the system. In fact the control
term is reduced to

1

κ
(v̂d,h − V̂h), (4.8)
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where V̂h is the h−th coefficient of the expansion of V, that is

V̂h =
1

N

N∑
j=1

v̂j,h(t).

Then, only the projections of the mean velocity are steered toward the
respective components of the target velocity, i.e. as soon as κ→ 0 it follows
that V̂h = v̂d,h. Therefore, the choice of the selective function Q(·) is of
paramount importance to ensure the action of the control on the single agent.

In principle one can address directly the control problem on the original
system (2.1) as

ẋi(θ, t) = vi(θ, t)

v̇i(θ, t) =
K(θ, t)

N

N∑
j=1

H(xi, xj)(vj(θ, t)− vi(θ, t)) + uQ(vi(θ, t)),
(4.9)

where the control term u is solution of

u = arg min
u∈Ub

[
1

2

∫ T

0

1

N

N∑
i=1

(vi(θ, t)− vd)2dt+
ν

2

∫ T

0
u(t)2dt

]
, (4.10)

Here vd ∈ Rd is a target velocity, ν > 0 a regularization parameter and
Ub the set of admissible control. Similarly to previous subsection, through
the approach presented in [6, 7, 11], we can derive the time-continuos MPC
formulation which explicitly embed the control term in the dynamics as
follows

ẋi(θ, t) = vi(θ, t)

v̇i(θ, t) =
K(θ, t)

N

N∑
j=1

H(xi, xj)(vj(θ, t)− vi(θ, t))

+
1

κN

N∑
j=1

(vd − vj(θ, t))Q(vj(t, θ))Q(vi(t, θ)).

(4.11)

Now the gPC approximation of (4.11) can be obtained as in Section 7.3 and
leads to the set of ODEs

d

dt
v̂i,h(t) =

1

N

N∑
j=1

H(xi, xj)
M∑
m=0

K̂mh(t)(v̂j,m(t)− v̂i,m(t))

+
1

κN

N∑
j=1

Rh(vMi , v
M
j ),

(4.12)
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where

Rh(vMi , v
M
j ) =

1

‖Φh‖2
Eθ
[
(vd − vMj )Q

(
vMi (θ, t)

)
Q
(
vMj (θ, t)

)
Φh(θ)

]
.

(4.13)
In general systems (4.12) and (4.7), without further assumptions on the
selective function Q(·), are not equivalent. In addition to the non selective
case, there exist at least one choice of selective control that makes the two
approaches totally interchangeable. In fact, taking

Q(vi) =
vd − vi√

1
N

∑N
j=1(vd − vj)2

, (4.14)

and Q(vi) ≡ 0 if vj = vd, ∀j = 1, . . . , N , we have that Q(·) is bounded and
the control term in (4.12) takes the following form

1

κN

N∑
j=1

Rh =
1

κ||Φh||2
Eθ
[
(vd − vMi (θ, t))Φh(θ)

]
=

1

κ
(v̂d,h − v̂i,h) . (4.15)

Similarly the control term in (4.7) reduces to

1

κN

N∑
j=1

(v̂d,h − v̂j,h(t))Q(v̂j,h(t))Q(v̂i,h(t)) =
1

κ
(v̂d,h − v̂i,h) , (4.16)

and therefore system (4.12) coincides with (4.7). Note that as κ→ 0 both
systems are driven towards the controlled state v̂i,h = v̂d,h which implies a
strong control over each single agent.

In Figure 4.1 we summarize the two equivalent approaches. In the case of
non selective control and of selective function given by (4.14) the constrained
gPC system can be obtained from our initial unconstrained model (2.1)
through two different but equivalent methods. The first approximates the
solution of the Cucker-Smale type model via the gPC projection and then
introduces a control on the coefficients of the decomposition through a MPC
approach in order to steer each component to (v̂d,0, v̂d,1, . . . , v̂d,M ). Whereas
the second method considers a constrained Cucker-Smale problem (4.9),
introduces its continuous MPC approximation and then computes the gPC
expansion of the resulting system of constrained differential equations.

Remark 11. We remark that the choice of Q(·) stated in (4.14), for which
the two approaches sketched in Figure 4.1 are identical, is equivalent to
consider the constrained dynamics (4.9), modified as follows

ẋi(θ, t) = vi(θ, t)

v̇i(θ, t) =
K(θ, t)

N

N∑
j=1

H(xi, xj)(vj(θ, t)− vi(θ, t)) + ui,
(4.17)
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Model

Control Problem

MPC

gPC

gPC

Control Problem

MPC

Constrained
gPC System

Figure 4.1: Sketch of the two numerical approaches to solve the control
problem with uncertainty, combining MPC and gPC. In both cases, of non
selective control, i.e. Q(·) ≡ 1, and of selective control with Q(·) defined in
(4.14) the two approaches are equivalent.

where the control term, ui for each agent i = 1, . . . , N , is given by the
minimization of the following functional

J(v1, . . . , vN ;u1, . . . , uN ) =
1

2

∫ T

0

1

N

N∑
i=1

[
(vi(θ, t)− vd)2 +

ν

2
ui(t)

2
]
dt.

(4.18)

Since the functional is strictly convex, applying the (MPC) procedure on a
single time interval for the discretized dynamics of (4.17)-(4.18), we obtain
ui in terms of feedback control

ui =
1

κ
(vd − vi), i = 1, . . . , N. (4.19)

Thus the same considerations on the equivalence of the approaches hold.

7.5 Numerical tests

We present some numerical experiments of the behavior of the flocking
model in the case of a Hermite polynomial chaos expansion. This choice
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Figure 5.2: Error convergence for increasing number of polynomials in the
gPC decomposition approximation. Left: convergence of the mean error at
two fixed times T = 1 and T = 5. Right: convergence of the variance error. In
both cases we considered a random time-independent scattering K(θ, t) = θ,
where the random variable θ is normally distributed N(2, 1/2). The system
of ODEs is solved through a 4th order Runge-Kutta with ∆t = 10−5.

corresponds to the assumption of a normal distribution for the stochastic
parameter in the Cucker-Smale type equation (2.1) and in its constrained
behavior (4.7). Numerical results show that the introduced selective control
with the weight function (4.14) is capable to drive the velocity to a desired
state even in case of a dynamics dependent on a normally distributed random
input, with fixed or time-dependent variance. In the uniform interaction
case, since the effect of agents’ positions do not influence the alignment we
report only the results of the agents’ velocities.

7.5.1 Unconstrained case

In Figures 5.2 and 5.3 we present numerical results for the convergence of
the error using the gPC scheme described in equation (3.7) for H ≡ 1 and
solved through a 4th order Runge-Kutta method. In particular Figure 5.2
shows the behavior of the error with respect to increasing terms of the gPC
decomposition. Here we considered the average in time of the error for the
mean and the variance at time t > 0 in the L1 norm

Ev̄(t) =
1

N

N∑
i=1

∣∣∣∣ v̄i(t)− v̄Mi (t)

v̄i(t)

∣∣∣∣ Eσ̄2(t) =
1

N

N∑
i=1

∣∣∣∣∣ σ̄2
i (t)− σ̄

2,M
i (t)

σ̄2
i (t)

∣∣∣∣∣ ,
(5.1)

where
σ̄2
i (t) = Eθ

[
(vi(θ, t)− v̄i(t))2

]
(5.2)

with vi(θ, t) and v̄i(t) defined in (2.5) and (2.7). Observe that if the scattering
rateK(θ, t) is of the from described in (2.6) with h(·) ≡ 1 and k(θ) ∼ N (µ, σ2)
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Figure 5.3: Evolution of the variance-error Eσ̄2(t) defined in equation (5.1) for
the gPC decomposition for the unconstrained model (2.4) with K(θ, t) = θ ∼
N (2, 1/2) over the time interval [0, T ] with T = 5 and time step ∆t = 10−5.

than, in addition to the explicit evolution for the expected velocity as in
(2.8), we can obtain the exact version for the evolution of the variance of the
ith agent

σ̄2
i (t) = (vi(0)− V)2

(
exp{−2µt+ 2σ2t2} − exp{−2µt+ σ2t2}

)
. (5.3)

In (5.1) we indicated with σ̄2,M
i (t) the approximated variance

σ̄2,M
i (t) =

M∑
h=0

v̂2
i,h(t)Eθ[Φh(θ)2]− v̂2

i,0(t). (5.4)

It is easily seen how the error decays spectrally for increasing value of
M , however the method is not capable to go above a certain accuracy
and therefore for large M a threshold effect is observed. This can be
explained by the large integration interval we have considered in the numerical
computation, and by the well-known loss of accuracy of gPC for large
times [97]. In the case of the error of the variance, Figure 5.3, the gPC
approximation exhibits a slower convergence with respect to the convergence
of the mean. Next in Figure 5.4 we see how for large times the solution
of the differential equation (2.4) diverges and the numerical approximation
is capable to describe accurately its behavior only through an increasing
number of Hermite polynomials.

7.5.2 Constrained uniform interaction case

In Figure 5.5 we show different scenarios for the uniform interaction
dynamics with constraints. In the first row we represents the solution for
N = 10 agents, whose dynamics is described by equation (4.7) with vd = 1,
different values of κ originate different controls on the average of the system,
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Figure 5.4: Left: 6th order Hermite gPC decomposition solved through a 4th
order Runge-Kutta. Right: 10th order Hermite gPC decomposition solved
through a 4th order Runge-Kutta. In both cases the final time considered is
T = 6, with time step ∆t = 10−2.

which however do not prevent the system to diverge. In the second row we
show the action of selective control (4.14). It is evident that, with this choice,
we are able to control the system also in the case with higher variance.

Observe that the numerical results are coherent with the explicit solution
of the controlled equation. Let us consider the time-independent scattering
rateK(θ, t) = θ ∼ N (µ, σ2), then from the equation

d

dt
vi(θ, t) = θ(V − vi(θ, t)) +

1

κ
(vd − vi(θ, t)) (5.5)

we can compute the exact solution given vi(θ, 0) = vi(0)

vi(θ, t) =
κVθ + vd
κθ + 1

+

(
vi(0)− κVθ + vd

κθ + 1

)
exp

{
−
(
θ +

1

κ

)
t

}
. (5.6)

The asymptotic behavior of the expected value of (5.6) can be studied
similarly to what we did in Section 7.2.1. In other words in order to prevent
the divergence of the leading term of the controlled expected exact solution
we might study

exp

{
−
(
µ+

1

κ

)
t+

σ2t2

2

}
, (5.7)

which diverge if

t >
2

σ2

(
µ+

1

κ

)
. (5.8)

Then for each fixed time we could select a regularization parameter κ > 0
so as to avoid the divergence of (5.6). Moreover we can observe that in the
limit κ→ 0 the introduced selective control is capable to correctly drive the
system (5.5) for each t > 0.
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Figure 5.5: Evolution of the uniform interaction alignment model (4.7) with
N = 10 agents, at t = 0 distributed around V = 2 with unitary variance,
depending on a normal random parameter. Left column: θ ∼ N (2, 1). Right
column θ ∼ N (2, 0.5). The control term shows its ability to steer the system
towards desired velocity vd = 1, with different intensities κ = 1 and κ = 0.1,
when κ =∞ the control has no influence. First row shows the action of the
control acting just on the average velocity, Q ≡ 1. Second row shows the
action of selective control with Q(·) as in (4.14).

In Figure 5.6 we consider the system with random time-dependent scat-
tering rate θ ∼ N (µ, σ2(t)). The dynamics shows how, for the choice of
time dependent variance described in Remark 7.2.1, that is σ(t) = 1/tα with
α = 1/2, the convergence depends from the mean value of the random input.
In particular numerical experiments highlight the threshold effect for µ = 2
which we derived in Section 8.2. In the second figure we show that the action
of the selective control (4.14), with desired velocity vd = V, is capable to
stabilize the system and drive the velocities towards the desired state.

7.5.3 Constrained space dependent case

Next let us consider the full space non homogeneous constrained problem
(2.1) with the interaction function defined in (2.2). In this case we assume
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Figure 5.6: Solution of the uniform interaction case with time dependent ran-
dom parameter θ distributed accordingly to a normal distributionN (µ, σ2(t)),
with a time-dependent standard deviation σ(t) = 1/tα, and α = 1/2. Left:
we see the threshold for different values of µ, i.e. for µ < 2 the system
diverges. Right: solution of the constrained model with κ = 0.1, observe that
we are able to steer the system to the desired velocity vd = V , i.e. the initial
mean velocity of the system, using the selective control described in (4.14).

that K(θ) = θ with θ ∼ N (µ, σ2). In Figure 5.7 and 5.8 we consider a
system of N = 100 agents with Gaussian initial position with zero mean
and with variance 2 and Gaussian initial velocities clustered around ±5 with
variance 1/10. The numerical results for (3.7) have been performed through
a 10th order gPC expansion. The dynamics has been observed in the time
interval [0, 5] with ∆t = 10−2. In Figure 5.8 we see how the selective control
is capable to drive the velocity of each agent to the desired state vd. In fact
in case of no control, see Figure 5.7, we have that the velocities of the system
naturally diverges.

7.6 Conclusions

We proposed a general approach for the numerical approximation of flock-
ing models with random inputs through gPC. The method is constructed
in two steps. First the random Cucker-Smale system is solved by gPC. The
presence of uncertainty in the interaction terms, which is a natural assump-
tion in this kind of problems, leads to threshold effects in the asymptotic
behavior of the system. Next a constrained gPC approximation is intro-
duced and approximated though a selective model predictive control strategy.
Relations under which the introduction of the gPC approximation and the
model predictive control commute are also derived. The numerical examples
illustrates that the assumption of positivity of the mean value of the random
input is not sufficient for the alignment of the system but that a suitable

171



UQ in control problems for flocking models Chapter 7

choice of the selective control is capable to stabilize the system towards the
desired state. Extension of this technique to the case of a large number of
interacting agents through mean-field and Boltzmann approximations are
actually under study.
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Figure 5.7: Numerical solution of (4.7), with γ = 0.05 < 1/2, ζ = 0.01,
through a 10th order gPC Hermite decomposition (3.7) with κ = ∞ with
time step ∆t = 10−2. The random input is normally distributed θ ∼ N (2, 1).
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Figure 5.8: Numerical solution of (4.7), with γ = 0.05 < 1/2, ζ = 0.01,
through a 6th-order gPC Hermite decomposition for the selective control
(3.7) with time step ∆t = 10−2. Here we considered a normally distributed
random input θ ∼ N (2, 1), the desired velocity is vd = 0 and the control
parameter is κ = 1.
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Chapter 8

Mean–field equations
dependent on random inputs

8.1 Introduction

In the real world, the aggregate motion of a finite system of interacting
agents may be affected by different kind of randomness, like perturbed
boundary values, as well as unintelligible microscopic interactions. These
strongly non-linear effects may strongly influence the agents’ dynamics
introducing threshold effects which potentially destroy an emerging pattern
[13]. Thus, the introduction of uncertainty in mathematical modeling of
these real world phenomena seems to be unavoidable for applications.

Among a rather extensive literature on alignment models for interacting
systems, the Cucker-Smale model gained in the scientific research a special
place thanks to its simplicity and mathematical elegance both. Without
pretending to review the whole literature some references are [52, 53, 71, 139].

We will consider different ways to introduce random effects on the dynamics,
in particular we concentrate to the case of uncertain initial value with a
system of agents evolving through a deterministic model, as well as the case
of stochastic interaction rules. These situations make the introduced models
more realistic, miming the fact we can model these collective dynamics not by
considering universal physical laws but making use of external data available
from experiments. This is even more evident in many problems in socio-
economic sciences where the interaction rules are based on observations and
empirical evidence. Therefore, we can have at most statistical information
of the modeling parameters. In order to fully understand simulation results
and to produce effective predictions it is essential to incorporate uncertainty
propagating in the dynamics from the beginning of the modeling.

In particular, in this chapter we focus on the construction of a novel
numerical methods for the positivity preservation of statistical quantities
of randomly perturbed equations of the collective behavior. The proposed
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method conserves the property of fast convergence with respect to the random
inputs.

8.2 Microscopic alignment dynamics with random
inputs

In this section we introduce the main properties of an alignment model.
First we discuss some results in the deterministic setting already presented in
several works [52, 53], then we concentrates on the introduction of stochastic
quantities.

8.2.1 Property of the deterministic Cucker–Smale model

In a deterministic setting we are interested in studying the dynamics
of N ∈ N agents whose trajectories are given in the phase space by the
Cuker-Smale second order system of differential equations. Hence, for each
i = 1, . . . , N we consider the following system fo ODEs

ẋi(t) = vi(t)

v̇i(t) =
1

N

N∑
j=1

H(xi, xj)(vj(t)− vi(t)),
(2.1)

with initial locations and velocities xi(0) = xi,0, vi(0) = vi,0. In (2.1) we
introduced the interaction function between the agents i, j ∈ {1, . . . , N}
indicated by H(·, ·) which depends on the agents’ location. The classic
space dependent interaction function acts on the space gaps between agents
|xi − xj |, where the metric defined by | · | is Euclidean and whose expression
is given by

H(xi, xj , θ) =
K

(1 + |xi, xj |2)γ
. (2.2)

We observe that being (2.2) a symmetric function, hence it is defined a
symmetric adjacency matrix {aij}, i, j = 1, . . . , N

aij =
H(xi, xj)

N
. (2.3)

A possible variant of the Cucker–Smale model has been described in [139]
where the symmetry the introduced model is broken by considering an align-
ment based on the relative influence. Non-symmetric dynamics define more
sophisticated models where the ith agent may interact with the jth agent
but not vice versa, for example leader-follower models as well as limited
perception models [9, 53, 66, 141]
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In a deterministic setting, different regimes are described by the introduced
model, depending on the choice of K, γ. In particular the following theorem
holds

Theorem 8.2.1. Assume that one of the following conditions holds

i) γ < 1/2

ii) γ ≥ 1/2 and[(
1

2γ

) 1
2γ−1

−
(

1

2γ

) 2γ
2γ−1

](
K2

8N2Λ(v0)

) 1
2γ−1

> 2Γ(x0) + 1, (2.4)

where

Γ(x) =
1

2

∑
i 6=j
|xi − x2

j |, Λ(v) =
1

2

∑
i 6=j
|vi − vj |2. (2.5)

Then there exists a constant B0 such that Γ(x(t)) ≤ B0 for all t ∈ R+ while
Λ(v(t)) converges toward zero as t→ +∞, and the vectors xi − xj tend to a
limit vector x̂ij, for all i, j ≤ N .

We highlight that the result has been improved in the case γ = 1/2 for
any initial data in [52]. Therefore in the case γ ≤ 1/2 we will refer to
unconditional alignment (or flocking) given that the velocities alignment does
not depend on initial configuration of the system or on dimensionality. In
this case all the agents of the population have the same velocity, they form
a group with fixed mutual distances with a spatial profile which depends
on the initial condition. If γ > 1/2 flocking may be expected under the
condition of equation (2.4).

8.2.2 Cucker–Smale model dependent on random input

In what follows we will denote with (Ω,F , P ) the probability space where
we define the random variable θ : (Ω,F)→ (R,BR), where F a σ−algebra
and BR the Borel set of R. We will also assume that θ ∈ Ω is endowed with
known distribution function g(θ) ∈ P(Ω).

The CS may be affected by stochasticity in several way. In the following
we enumerate possible stochastic dynamics depending on a single random
input θ ∈ Ω:

a) Random perturbation of the initial data, i.e. for all i = 1, . . . , N

xi(θ, 0) = x0
i (θ), vi(θ, 0) = v0

i (θ), (2.6)

177



Mean–field equations dependent on random inputs Chapter 8

with known interaction function H(xi, xj). Therefore the dynamics is
written for all i = 1, . . . , N as

ẋi(θ, t) = vi(θ, t), xi(θ, 0) = x0
i (θ), vi(θ, 0) = v0

i (θ),

v̇i(θ, t) =
1

N

N∑
j=1

H(xi(θ, t), xj(θ))(vj(θ, t)− vi(θ, t)),
(2.7)

b) Random strength of interactions

H(xi, xj , θ) =
K(θ)

(1 + |xi(θ, t)− xj(θ, t)|2)γ
, (2.8)

with xi(θ, 0) = x0
i , xj(θ, 0) = x0

j and γ > 0 a given constants. A further
simplification may be done by considering an interaction depending on
the expected locations x̄i,j = Eθ[xi,j(θ, t)]. In this simplified situation
we may rewrite the interaction function in (2.8) as

H(x̄i, x̄j , θ) = K(θ)Hdet(x̄i, x̄j), (2.9)

with

Hdet(x̄i, x̄j) = Hdet(|x̄i − x̄j |) :=
1

(1 + |x̄i − x̄j |2)γ
. (2.10)

c) Random alignment parameter

H(xi, xj , θ) =
K

(1 + |xi − xj |2)γ(θ)
, (2.11)

with K > 0 is a constant, and the initial locations and velocities of
the dynamics xi(θ, 0) = x0

i and xj(θ, 0) = x0
j are given. Again, a

simplification may be done by considering an interaction depending on
the expected locations x̄i,j = Eθ[xi,j(θ, t)] in equation (2.11).

In the cases described by (b)− (c) the Cucker–Smale model assumes the form
ẋi(θ, t) = vi(θ, t), xi(θ, 0) = x0

i , vi(θ, 0) = v0
i ,

v̇i(θ, t) =
1

N

N∑
j=1

H(xi, xj , θ)(vj(θ, t)− vi(θ, t)),
(2.12)

where x0
i , x

0
j are given and the interaction function H(xi, xj , θ) is of the type

described in (2.8) and (2.11). We can prove the following result

Lemma 8.2.2. Let us consider the stochastic Cucker–Smale model (a) −
(b)− (c), then the mean velocity of the system is conserved in time

V(θ, t) =
1

N

N∑
i=1

vi(θ, t),
d

dt
V(θ, t) = 0. (2.13)
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Proof. We show the result in the setting of (b)− (c). From (2.12) we have

N∑
i=1

N∑
j=1

H(xi, xj , θ)vj(θ, t) =
N∑
i=1

N∑
j=1

H(xi, xj , θ)vi(θ, t), (2.14)

and therefore V(θ, t) = V(θ, 0), for all t ≥ 0. Similar considerations hold true
in the case (a).

In the non homogeneous case we can prove the following result for the
evolution of the system of agents whose proof is reminiscent of well established
results in the literature [52, 139].

Proposition 8.2.3. Let (Ω,F , P ) be a probability space and let us consider
the evolution of the stochastic Cucker–Smale model in case of random strength
as described in (2.8), i.e.ẋi(θ, t) = vi(θ, t), i = 1, . . . , N

v̇i(θ, t) =
1

N

∑N
j=1

K(θ)

(1 + |xi(θ, t)− xj(θ, t)|2)γ
(vj(θ, t)− vi(θ, t)),

(2.15)
subject to deterministic initial conditions xi(θ, 0) = x0

i , vi(θ, 0) = v0
i for all

i = 1, . . . , N . The support of the velocities exponentially collapse for large
time for each θ ∈ Ω provided K(θ) ≥ 0.

Proof. We considered deterministic initial conditions, therefore we can fix
the positive radii Rx0 > 0 and Rv0 > 0 such that all the initial positions and
velocities lie inside the discs B(x,Rx0) and B(0, Rv0) respectively. For each
θ ∈ Ω the solutions of the system are C1([0,∞),R2d), we define then for each
t ∈ [0,∞)

Rv(θ, t) := max
i=1,...,N

|vi(θ, t)|. (2.16)

Fix θ ∈ Ω, over each time interval (tk, tk+1) we can chose the index i such
that Rv(θ, t) = |vi(θ, t)| for all t ∈ (tk, tk+1). Therefore, form an explicit
calculation we have

d

dt
Rv(θ, t)2 =− 2

N

∑
j 6=i

[(vi(θ, t)− vj(θ, t))vi(θ, t)]

· K(θ)

(1 + (|xi(θ, t)− xj(θ, t)|2)γ
.

(2.17)

Being (vi(θ, t)− vj(θ, t))vi(θ, t) ≥ 0, thanks to the choice of the index i, and
H(xi, xj , θ) ≥ 0, we have that Rv(θ, t) is non-increasing and then for all
θ ∈ Ω and all t ≥ 0 Rv(θ, t) ≤ Rv0.

From the evolution of the position variable we have for all θ ∈ Ω and t ≥ 0

|xi(θ, t)− x0
i | ≤ 2Rv0 +Rv0t, (2.18)

179



Mean–field equations dependent on random inputs Chapter 8

thus

H(xi(θ, t), xj(θ, t), θ) ≥
K(θ)

(1 + 4R2
0(1 + t2))γ

, (2.19)

with R0 = min(Rx0 , R
v
0). Now, from (2.17) we have

d

dt
Rv(θ, t)2 ≤ − 2K(θ)

N(1 + 4R0(1 + t2))γ

∑
j 6=i

(vi(θ, t)− vj(θ, t))vi(θ, t)

= − 2K(θ)

(1 + 4R0(1 + t2))γ
Rv(θ, t)2.

(2.20)

From the Gronwall’s lemma we have for each θ ∈ Ω and all t ≥ 0

Rv(θ, t) ≤ Rv0 exp

(
−1

2

∫ f

0
f(s)ds

)
, (2.21)

then, being

lim
t→+∞

t2γf(t) =

(
1

R2
0

)γ
, (2.22)

we have that the function f(t) is not integrable asymptotically for γ ≥ 1/2
and

lim
t→+∞

∫ t

0
f(s)ds = +∞, (2.23)

from which we conclude.

Following a similar argument of [52] it is also possible in the hypotheses of
Proposition 8.2.3 to prove that there exists Rx1 > 0 such that for all θ ∈ Ω
and t ≥ 0

|xi(θ, t)− x0
i | ≤ Rx1 , i = 1, . . . , N. (2.24)

This implies that xi(θ, t) ∈ B(x, R̄x) with R̄x = Rx1 +Rx0 .

Remark 12. In the simplified situation

H(xi, xj , θ) = K(θ)Hdet(x̄i, x̄j)

what has been proved in Proposition 8.2.3 still holds true, in fact

|xi(θ, t)− xj(θ, t)| ≤ 2Rx0 + 2Rv0 (2.25)

and we have∣∣∣∣∫
Ω

(xi(θ, t)− xi(θ, t))g(θ)dθ

∣∣∣∣ = |x̄i − x̄j | ≤ 2Rx0 + 2Rv0. (2.26)

Therefore for all t ≥ 0, θ ∈ Ω and i, j = 1, . . . , N

Hdet(|x̄i − x̄j |) ≥
1

(1 + 4R2
0(1 + t2))γ

. (2.27)
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Let us consider the evolution of the system (2.12) with interaction function
described in the case (c) with deterministic initial conditions

H(x̄i, x̄jθ) =
K

(1 + |x̄i − x̄j |2)γ(θ)
. (2.28)

We study the behavior of the system of agents in a neighborhood of the
deterministic value γ0 ≤ 1/2 for which unconditional alignment does emerge.
In other words we linearize the function H(·, ·, ·) as follows

H(x̄i, x̄j , θ) = H(x̄i, x̄j , γ0) +
∂H

∂γ
(x̄i, x̄j , γ̃)(γ(θ)− γ0), (2.29)

with

γ̃ = λγ0 + (1− λ)γ(θ), λ ∈ [0, 1]. (2.30)

Then (2.29) corresponds to

H(x̄i, x̄j , θ) =H(x̄i, x̄j |, γ0)

− K log(1 + |x̄i − x̄j |2)

(1 + |x̄i − x̄j |2)γ̃
(γ(θ)− γ0) +O(γ2),

(2.31)

Therefore, in a neightbourhood of γ0 the function H(·, ·, ·) may be approxi-
mated as follows

H(x̄i, x̄j , θ) ≈H(x̄i, x̄j , γ0)

− log(1 + |x̄i − x̄j |2)H(x̄i, x̄j , γ0)(γ(θ)− γ0).
(2.32)

Hence, in this case the dynamics (2.12) may be formulated as follows

ẋi(θ, t) = vi(θ, t),

v̇i(θ, t) =
1

N

N∑
j=1

H(x̄i, x̄j , γ0)(vj(θ, t)− vi(θ, t))

− 1

N

N∑
j=1

H(x̄i, x̄j , γ0) log(1 + |x̄i − x̄j |2)

(γ(θ)− γ0)(vj(θ, t)− vi(θ, t)).

(2.33)

Proposition 8.2.4. Let (Ω,F , P ) be a probability space and let us consider
the evolution of (2.12) with interaction as in (2.28). In a neighborhood of
γ0 ≤ 1/2, the asymptotic convergence of the velocities is therefore guaranteed
if

γ(θ) < γ0 +
1

log(1 + R̄x)
, (2.34)

for all θ ∈ Ω, where R̄x depends only on the initial particles’ locations.
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Proof. In a neighborhood of γ0 ≤ 1/2 the dynamics may be linearized as in
(2.33), from which we obtain the condition

γ(θ) < γ0 +
1

log(1 + |x̄i − x̄j |)
, (2.35)

for all i, j = 1, . . . , N . Thanks to what we have shown we know that there
exists R̄x such that |x̄i − x̄j | ≤ R̄x, i 6= j, for all t ≥ 0 form which we have

log(1 + |x̄i − x̄j |) ≤ log(1 + R̄x). (2.36)

Thus the condition (2.35) assumes the following form

γ(θ) < γ0 +
1

log(1 + R̄x)
, (2.37)

for all θ ∈ Ω.

Remark 13. The evolution of the expected locations and velocities may be
obtained from (2.33) by direct integration of the random variable, which gives

x̄i(t) = v̄i(t),

v̄i(t) =
1

N

N∑
j=1

H(|x̄i − x̄j |, γ0)(v̄j(θ, t)− v̄i(θ, t))

− 1

N

N∑
j=1

H(|x̄i − x̄j |, γ0) log(1 + |x̄i − x̄j |2)

·
∫

Ω(γ(θ)− γ0)(vj(θ, t)− vi(θ, t))dw(θ),

(2.38)

and the support of the expected velocities collapses if the condition (2.37) is
satisfied.

8.3 Mean-field limit of stochastic models

In what follows we sketch a formal way to obtain the mean-field limit of
the Cucker–Smale model dependent from a random quantity.

Let us consider first the case (a) in Section 8.2. Here the stochasticity affects
the initial values of the problem whereas the coefficients of the interaction
are supposed to be deterministic. In this case for each fixed θ ∈ Ω we define
the empirical distribution density associated to a solution of (2.7) as follows

fN (x, v, θ, t) =
1

N

N∑
i=1

δ(x− xi(θ, t))δ(v − vi(θ, t)), (3.1)
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with δ the Dirac delta distribution. We observe how for each t ≥ 0 and
ω ∈ Ω the empirical measure define a probability measure in P(R2d). We
assume that for each t ≥ 0 and θ ∈ Ω the particles (xi(θ, t), vi(θ, t))

N
i=1 ∈

S̄ ⊂ R2d × R2d remain in a fixed compact domain. For the Cucker–Smale
model the hypothesis is fulfilled by considering, for example, a compactly
supported initial distribution f(x, v, θ, 0). In such a way, thanks to the
Prohorov’s theorem we have that the sequence fN (x, v, θ, t) is weakly-*-
relatively-compact and there exists a subsequence (fNk(x, v, θ, t))k and a
function f : R→ P(R2d) such that

fNk →k→+∞ f, weak*-convergence in P(R2d), (3.2)

pointwise in time and almost surely with respect to θ ∈ Ω. Therefore,
in a similar fashion of [53] we may obtain the mean-field version of the
Cucker–Smale model of flocking in the hypothesis (a) which corresponds to

∂tf(x, v, θ, t) + v · ∇xf(x, v, θ, t) = ∇v · [H[f ](x, v, θ, t)f(x, v, θ, t)], (3.3)

where

H[f ](x, v, θ, t) =

∫
R2d

K

(1 + |x− y|2)β
(v − w)f(y, w, θ, t)dydw, (3.4)

and f(x, v, θ, 0) = f0(x, v, θ).

We derive the mesoscopic level of description in the cases (b) and (c)
making use of BBGKY hierarchy in statistical mechanics [63, 109]. Let us
define the N−particle density function

f (N) = f (N)(x1, v1, . . . , xN , vN , θ, t), (3.5)

whose evolution, tanks to the mass conservation, is described in the terms of
the Liouville equation

∂tf
(N) +

N∑
i=1

vi · ∇xif (N) = − 1

N

N∑
i=1

∇vi ·

 N∑
j=1

H(xi, xj , θ)(vj − vi)f (N)

 .

(3.6)
Further, we define the marginal distribution

f (1)(x1, v1, θ, t) =

∫
R2d(N−1)

f (N)(x1, v1, x2,...,N , v2,...,N , θ, t)dx2,...,Ndv2,...,N ,

(3.7)
where

(x2,...,N , v2,...,N ) = (x2, v2, . . . , xN , vN ). (3.8)
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By direct integration of (3.6) against dx2,...,N , dv2,...,N the transport term
corresponds to∫

R2d(N−1)

N∑
i=1

vi∇xif (N)dx2,...,Ndv2,...,N = v1∇x1f (1)(x1, v1, θ, t). (3.9)

For what it may concern the last term of (3.6), thanks to the interchange-
ability of the particles we have

1

N

N∑
i=1

∫
R2d(N−1)

N∑
j=1

∇viH(xi, xj , θ)(vj − vi)f (N)dx2,...,Ndv2,...,N =

1

N

∫
R2d(N−1)

N∑
j=2

∇v1H(x1, xj , θ)(vj − v1)f (N)dx2,...,Ndv2,...,N ,

(3.10)

By taking a closer look to this term we can observe how, thanks to the
symmetry of the problem for all 2 ≤ j, k ≤ N , j 6= k we have∫

R2d(N−1)

H(x1, xj , θ)(vj − v1)f (N)dx2,...,Ndv2,...,N =∫
R2d(N−1)

H(x1, xk, θ)(vk − v1)f (N)dx2,...,Ndv2,...,N .

(3.11)

Therefore (3.10) corresponds to

N − 1

N

∫
R2d(N−1)

H(x1, x2, θ)(v2 − v1)f (N)dx2,...,Ndv2,...,N . (3.12)

Similarly to f (1)(x1, v1, θ, t), let us define then the marginal density function
f (2)(x1, v1, x2, v2, θ, t) as

f (2)(x1, v1, x2, v2, θ, t) =

∫
R2d(N−2)

f (N)dx3,...,Ndv3,...,N . (3.13)

We can then reformulate (3.12) as

N − 1

N
∇v1

∫
R2d

H(x1, x2, θ)(v2 − v1)f (2)dx2dv2. (3.14)

Finally, the integration of (3.6) against dx2,...,N , dv2,...,N gives

∂tf
(1)(x1, v1, θ, t) + v1 · ∇x1f (1) =

− N − 1

N

∫
R2d

H(x1, x2, θ, t)(v2 − v1)f (2)dx2dv2.
(3.15)

Now, we define

f(x1, v1, θ, t) = lim
N→+∞

f (1)(x1, v1, θ, t),

f̃(x1, v1, x2, v2, θ, t) = lim
N→+∞

f (2)(x1, v1, x2, v2, θ, t),
(3.16)
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and we make the usual ansatz for the propagation of chaos

f̃(x1, v1, x2, v2, θ, t) = f(x1, v1, θ, t)f(x2, v2, θ, t). (3.17)

From (3.15) we have

∂tf(x, v, θ, t) + v · ∇xf(x, v, θ, t) = ∇v [H[f ](x, v, θ, t)f(x, v, θ, t)] , (3.18)

where

H[f ](x, v, θ, t) =

∫
R2d

H(x, y, θ)(v − w)f(y, w, θ, t)dwdy, (3.19)

and the definition of H(x, y, θ) depends on special case introduced in Section
8.2.

We highlight how, for the simplified formulations for the N agent micro-
scopic system obtained by considering for all i, j = 1, . . . , N the interaction
H(x̄i, x̄j , θ), we cannot consider standard techniques in order to derive the
mean-field equation. The mean–field formulation which may be derived is
unknown in the actual state of the art.

8.4 Numerics

In this section we make use of the Stochastic Galerkin (SG) numerical
methods for differential problem focussing on the alignment model introduced
in the latter section. In particular we will apply a numerical technique called
generalized polynomial chaos (gPC) developed in recent years based on SG
[13, 77, 97, 176, 177]. For this reason in the following we refer to these
methods as gPC-SG.

Further, we propose a novel approach for the derived mean–field equations
of the latter section of this chapter having roots in the mean–field Monte Carlo
methods developed in [8, 9] where the particle dynamics is now computed
through SG-gPC scheme.

8.4.1 gPC approximation

We consider a basis of the polynomial space PM given by the set of M
orthogonal polynomials {Φk(θ)}Mk=0. We approximate the position and the
velocity of the ith agent as follows

xi(θ, t) ≈ xMi =

M∑
k=0

x̂i,k(t)Φk(θ), vi(θ, t) ≈ vMi =

M∑
k=0

v̂i,kΦk(θ), (4.1)

where
x̂i,k = Eθ[xi(θ, t)Φk(θ)], v̂i,k = Eθ[vi(θ, t)Φk(θ)]. (4.2)
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From (2.15) we obtain the following chaos expansion for (xMi , v
M
i )

d

dt

M∑
k=0

x̂i,k(t)Φk(θ) =
M∑
k=0

v̂i,k(t)Φk(θ),

d

dt

M∑
k=0

v̂i,k(t)Φk(θ) =
1

N

N∑
j=1

M∑
r=0

H(xi(θ, t), xj(θ, t), θ)(v̂i,r(t)− v̂j,r)Φr(θ)

Upon multiplying (8.4.1) by the orthogonal polynomial Φh(θ) for each h =
0, . . . ,M and integrating with respect to the random variable, thanks to
the orthogonality, we obtain the following set of equations for each agent
i = 1, . . . , N 

d

dt
x̂i,h(t) = v̂i,h(t),

d

dt
v̂i,h(t) =

1

N

N∑
j=1

M∑
r=0

eijrh(v̂j,r(t)− v̂i,r(t))
(4.3)

where

eijrh =
1

‖Φh(θ)‖2

∫
Ω

K(θ)

(1 + |xMi − xMj |2)γ
Φr(θ)Φh(θ)dg(θ), (4.4)

define a time-dependent matrix E =
[
eijrh

]
r,h=0,...,M

Remark 14. Numerically we observe how equation (4.4) induces a high
computational cost, forcing to estimate an integral for each time step. In
the simplified situation H(xi, xj , θ) = K(θ)Hdet(x̄i, x̄j) the dynamics in (4.3)
assumes the form

d

dt
x̂i,h(t) = v̂i,h(t),

d

dt
v̂i,h(t) =

1

N

N∑
j=1

Hdet(x̄i, x̄j)
M∑
r=0

erh(v̂j,r(t)− v̂i,r(t)),
(4.5)

with

erh =
1

‖Φh‖2

∫
Ω
K(θ)Φr(θ)Φh(θ)dg(θ). (4.6)

From (4.6) the square matrix E = {erh}r,h=0,...,M may be precomputed before
the dynamics, dramatically decreasing the computational efforts.

8.4.2 MC–gPC methods for mean-field equations

In Section 8.3 we formally derived the mesoscopic description of a system
of agents of the introduced stochastic alignment dynamics. In what follows
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we propose a novel computational methods for mean–field equations capable
to efficiently approximate statistical quantities of the system and to conserve
their positivity.

We remark how the statistical quantities of the mean–field equations may
be derived from their gPC decomposition (MF–gPC), in fact we may obtain
with standard passages

∂tf̂h(x, v, t) + v · ∇xf̂h(x, v, t) = ∇v

[
M∑
r=0

Hrh(x, v, t)f̂r(x, v, t)

]
, (4.7)

with

Hrh =
1

‖Φh‖2

∫
R2d

∫
Ω
H(x, y, θ)Φh(θ)Φr(θ)dg(θ)dθ(v − w)f̂r(y, w, t)dwdy

and fM (x, v, θ, t) ≈
∑M

k=0 f̂k(x, v, t)Φk(θ). Similarly to classical spectral
methods, the solution of (4.7) is not positive in each polynomial space and
the necessary positivity of statistical quantities cannot be guaranteed. This
fact represents a serious drawback for the description of transport phenomena
in collective behavior. In fact, the main motivation of these models is to give
real science approximation, further, at the actual state of the art, steady
state solutions are often determined through energy inequalities [22, 50, 148],
generating entropy schemes [148].

In order to overcome these difficulties, in what follows, we propose an
effective numerical methods for the solution of mean–field equations of the
collective behavior dependent on random parameters having roots in the
mean-field Monte Carlo algorithm (MF–MC) proposed in [8, 9]. We will refer
to the resulting numerical scheme as MC–gPC. In Figure 4.1 we represent
through a scheme the approach to MF equations depending on a random
input. In particular the right branch of the scheme introduce the MC-gPC
algorithm which allow to preserve the positivity of macroscopic statistical
quantities like mean and variance.

Recall that the main advantage of deriving numerical scheme at the meso-
scopic level relies in its computational cost. In fact, in a purely particle
setting nonlocal nonlinear mean-field equations are extremely expensive with
an overall cost of O(M2N2). We can reduce this cost by using a Monte
Carlo evaluation of the summation term as described in Algorithm 8.4.1.
The overall cost of a MC-gPC is in fact O(M2SN), where S ≤ N .

Algorithm 8.4.1 (MC-gPC for MF stochastic equations).

1. Consider N samples (xi(θ, t), vi(θ, t)) with i = 1, . . . , N computed from
the distribution f(x, v, θ, t), initial deterministic distribution f0(x, v),
and S ≤ N ;
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MF equation

MF–gPC

Deterministic solver

Approximation
statistical quantities

MF–MC

MC–gPC

Reconstruction
statistical quantities

Figure 4.1: In this graph we sketch the two possible approach to numerical
solution of MF equation depending on a random input. On the left, we
first project through SG techniques the MF equation, a deterministic solver
solves the coupled system of equations in order to post-process the statistical
quantities of interest. On the right, we propose an alternative method relying
on the MF–MC algorithm: the MF equation is formulated at the particle
level, gPC–SG scheme determine the spectrally accurate evolution of the
at the micro level we can reconstruct statistical informations like mean and
variance.

2. for n = 0 to T − 1

for i = 1 to N

a) sample S particles j1, . . . , jS uniformly without repetition among
all particles;

b) perform gPC-SG up to order M ≥ 0 over the set of S ≤ N
particles: we need to compute the dynamics for (x̂js,h, v̂js,h) where
s = 1, . . . , S and h = 0, . . . ,M .

c) compute the velocity change

v̂n+1
i,h = v̂i,h +

∆t

S

S∑
s=1

M∑
r=0

eijsrh (v̂js,r − v̂i,r)

end for

3. Reconstruction Eθ[f(x, v, θ, n∆t)].

end for
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The overall cost of the introduced algorithm reduces to O(M2SN), of
course in the case S = N we obtain the original cost for the explicit Euler for
an N particle system. Observe that the introduced method is still spectrally
accurate with respect to the random variable θ ∈ Ω.

8.4.3 Applications

In this section we present some numerical experiments for the behavior
of alignment models dependent of a random input. We first show how a
random alignment model of the Cucker–Smale type evolves both in the case
of random strength of interaction and in the case of stochastic alignment
parameter, namely the cases (b)− (c) described in Section 8.2. Hence, we
will the MCgPC numerical strategy for mean–field equations. In particular
we will show how the method is spectrally accurate for the random quantities
and preserves the positivity of the mean distribution.

Test 1: The particle case

In Figure 4.2 we present the evolution of a population of four flocks with
centers in (−1, 1), (1, 1), (1,−1), (−1,−1), radius 1/2 and velocities given by
the outbound normal unit vector. The interaction strength K(θ) is here
supposed to be dependent on a random input θ ∼ U([−1, 1]), in particular
we considered K(θ) = (θ + 1)/10 ≥ 0.

We solved the approximating gPC system by considering an expansion of
order M = 10 with Legendre polynomials. The time-integration has been
performed through a RK4 method with fixed time step ∆t = 10−2. We can
observe how, the velocities of each agent of the system are aligned for large
times.

In Figure 4.3 we consider two concentric flocks with radial incoming
velocities with unit modulus. Here the interaction is again of the type
H(xi, xj , θ) = K(θ)Hdet(x̄i, x̄j) with K(θ) = (θ + 2) and θ with normal
distribution θ ∼ N(0, 1). We solved the approximating gPC system by
considering an expansion of the order M = 10 with Hermite polynomials.
The time-integration has been performed through a RK4 method with fixed
time step ∆t = 10−2. The presence of negative tails in the distribution of θ
forces the mean velocities of the system diverge in finite time. In this case
a selective control mechanism capable to drive the velocities toward a de-
sired state has been developed in the last chapter of the present thesis, see [13].

In Figure 4.4 we present the evolution the stochastic CS model of the type
(c), i.e. the case of stochastic alignment parameter γ(θ). We considered
here the evolution of the randomly perturbed system in a neighborhood of
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Figure 4.2: Evolution of the stochastic CS model with random strength
K(θ) = (θ + 1)/10, where θ ∼ U([−1, 1]). The space-dependent interactions
between agents are weighted by Hdet(x̄i, x̄j), where γ = 0.1. The model has
been approximated by a 10th order gPC-SG coupled system, solved through
RK4 with ∆t = 10−2.
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(d) t = 0.8

-5 -4 -3 -2 -1 0 1 2 3 4 5

x1

-5

-4

-3

-2

-1

0

1

2

3

4

5

x
2

(e) t = 0.9
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Figure 4.3: Evolution of the stochastic CS model with random strength
K(θ) = θ + 2, where θ ∼ N(0, 1). The space-dependent interactions between
agents are weighted by Hdet(x̄i, x̄j), where γ = 0.3. The model has been
approximated by a 10th order gPC-SG coupled system, solved through RK4
with ∆t = 10−2.
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γ0 ≤ 1/2. In particular γ(θ) is of the form

γ(θ) = γ0 + εθ, θ ∼ U([−1, 1]).

Hence, the gPC-SG system of equations has been derived by considering
Legendre polynomials up to order M = 10. We can observe how the system
aligns its velocities.

Test 2: The mean–field case

We show in this section the effectivity of the MC–gPC method for large
systems of agents. We consider first the uniform interaction case, i.e.
H(x, y, θ) = K(θ). In Figure 4.5 we compare the behavior of the estimated
mean density Eθ[f(x, v, θ, t)] obtained through the MC–gPC algorithm with
the one of a standard deterministic solver for the coupled gPC system of
deterministic equations

∂tf̂h(v, t) =
1

‖Φh‖2
∇v

[
M∑
r=0

erhf̂r(v, t)

]
, (4.8)

In Figure 4.5 we compare the evolution of Eθ[f(v, θ, t)] computed through
MF − gPC and MC–gPC with initial density function f0(v) of the form

f0(v) = β[exp{−c(v − 2)2}+ exp{−c(v + 2)2}], c = 20

where β is a normalization constant. we study the convergence of the
temperature of the second order moment of the system approximated by a MC–
gPC method, with respect to the variable θ ∼ U([−1, 1]), K(θ) = 2 + θ > 0.
For the computation we consideredN = 106 particles computing the evolution
over the time interval [0, 1] with time step ∆t = 10−2, the MC–gPC method
considered an increasing number of interacting particles S = 10, 102, 104.

In Figure 4.6 we report the evolution over [0, 30] of a 2D mean–field non
homogeneous Cucker–Smale over the domain [−4, 4] with random interaction
H(x, y, θ) model through MC–gPC. At the microscopic level in particular we
considered H(xi, xj , θ) = Hdet(x̄i, x̄j)K(θ), K(θ) = θ+2 with θ ∼ U([−1, 1]).
The reconstruction step of the mean density for position and velocity has
been done through a 100 × 100 grid both in space and velocity. We can
observe how the velocities of the system are aligned in finite time.
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Figure 4.4: Evolution of the stochastic CS model with random exponent
γ(θ), where γ0 = 1/2, ε = 0.01 and θ ∼ U([−1, 1]). The space-dependent
interactions between agents are weighted by Hdet(x̄i, x̄j). The model has
been approximated by a 10th order gPC-SG system, solved through RK4
with ∆t = 10−2.
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Figure 4.5: Left: we compare the MC–gPC method for the computation of
the mean distribution of the homogeneous MF equation, K(θ) = θ + 2, θ ∼
U([−1, 1]), with a deterministic solver of the system of equations (4.8). The
MF-gPC is solved through a Lax–Friedrichs scheme with N = 2001 gridpoints.
Right: relative error for the second order moment for increasing dimension
of the polynomial space M = 0, . . . , 10. The three curves correspond to
MCgPC for an increasing number of interacting particles at each time step,
namely S = 10, 102, 106
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(a) t = 0 (b) t = 10

(c) t = 20 (d) t = 30

Figure 4.6: Evolution of the 2D Cucker–Smale type model at the mesoscopic
level with H(xi, xj , θ) = Hdet(x̄i, x̄j)K(θ), K(θ) = θ+2, θ ∼ U([−1, 1]). The
MC–gPC algorithm has been implemented with S = 10 in the mean–field
part and M = 5 for the gPC.
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Appendix A

The Boltzmann equation

The equation that we are going to introduce has been developed by Ludwig
Boltzmann in 1872 and it is based on the physical model of a perfect diluite
gas of a large but fixed number of particles (N > 1023), whose dynamics are
regulated in terms of classical Newtonian mechanics. Each particle has its
own position and velocity moving of linear motion before a collision with
another particle. A fundamental assumption of this model is dictated by the
nature of possible collisions, which are assumed to be binary. The collisions
between two particles obey to physical conservation laws of momentum and
energy. The Boltzmann equation may be derived by considering the Grad
limit, see [57, 96, 99, 155] for rigorous computations. Without intending to
review the whole literature, some introductory references on the argument
are also [56, 169, 170]. In the following we will introduce the physical model
proposed by Boltzmann and then we will give some analytic excerpts for
the existence of solutions of the related Cauchy problem for the Boltzmann
equation in the space homogeneous case.

A.1 Physical model

Let D be an open, limited and regular subset of R3. For each t ≥ 0 let
f(x, v, t) be a function depending on x ∈ D, v ∈ R3. Therefore we define the
Boltzmann equation as follows

∂f(x, v, t)

∂t
+ v · ∇xf(x, v, t) = Q(f, f)

f(x, v, 0) = f0(x, v).
(1.1)

The function f : D × R3 × [0,+∞)→ R+ is a probability density function
in the phase space, i.e. for each time t ≥ 0 we have∫

D×R3

f(x, v, t)dxdv = 1. (1.2)
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In (1.1) we introduced the so-called collision operator

Q(f, f)(x, v, t) =

∫
R3×S2

[f(x, v∗, t)f(x,w∗, t)− f(x, v, t)f(x,w, t)]

B

(
|v − w|, v − w

|v − w|
· σ
)
dσdw,

(1.3)

where v∗, w∗ are the post-collisional velocities given by the transformation

v∗ = v + [(w − v) · σ] · σ
w∗ = w + [(w − v) · σ] · σ

(1.4)

and with S2 = {σ ∈ R3 : |σ| = 1} the unit sphere. In equation (1.3) the
object B(·, ·) is known as collision kernel and the variation of the density
function f(·, ·, ·) is uniquely determined by binary collision of the particles,
induced by specific potential functions φ(·). Let us restrict our analysis to
the case where no external forces influence the dynamics, we further suppose
that the center of mass of the system evolves linearly and that the center of
mass coincides with the origin of the axes. We consider potentials depending
on the inter-particle distance ρ =

√
x2 + y2 which define a purely repulsive

force, i.e. we have

φ(ρ) = − c

ρs−1
, s ∈ R, s > 2. (1.5)

Through classic mechanics techniques we can define an explicit form for the
collision kernel [98, 126]. In the case (1.5) we may rewrite the collision kernel
as

B(z, x) = const.zλb(x), (1.6)

with b(·) an angular collision kernel that will be specified later on, and

λ =
s− 5

s− 1
. Potential may in fact be classified in relation of the exponential

s ∈ R, s > 2 as follows

i) Coloumb potentials: s = 2

ii) Soft potentials: s < 5

iii) Maxwell potentials: s = 5

iv) Hard potentials: s > 5.

It is straightforward to observe how in the Maxwell case, i.e. s = 5, the
collision kernel B(z, x) simplifies to

B(z, x) = const.b(x), (1.7)
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A.2 The space homogeneous case

Although the first proof of existence and uniqueness of solution for the
Boltzmann equation dates back to Carleman [49], it has been object of active
research of the last decades. Any detailed list of contribution would be
incomplete, among other a particular relevance assumed the Italian and
French school of kinetic theory, see for example the works of Cercignani,
Desvillettes, Lions, Pulvirenti, Toscani, Villani. A rather strong result has
been obtained more recently in [103, 104] for what it may concern existence,
uniqueness of global classical solutions, further they proved that the solution
of the complete Boltzmann equation are always well-behaved.

In the following we restrict to a simplified version of the Boltzmann equation
usually known as spatially homogeneous Boltzmann equation for Maxwell
molecules, describing a rarefied gas with spatial homogeneous particles driven
by a Maxwell potential

∂f(v, t)

∂t
=

∫
R3×S2

[f(v∗, t)f(w∗, t)− f(v, t)f(w, t)]

b

(
v − w
|v − w|

· σ
)
u(dσ)dw,

f(v, 0) = f0(v), v ∈ R3, t ≥ 0,

(2.1)

where u(dσ) = U(dσ)/4π with U(dσ) the Riemann’s measure of the sphere
S2. The angular collision kernel is a general even function b : [−1, 1]→ R+,
defined in terms of elliptic integrals and not integrable in x = 0.

The usual approach for studying the analytically equation (2.1) relyes on
the introduction of some hypotheses on the nature of b(·), here we present
some of them:

i) Grad cutoff:
∫ 1
−1 b(x)dx < +∞,

ii) Weak cutoff:
∫ 1
−1 |x|b(x)dx < +∞,

iii) Very weak cutoff:
∫ 1
−1 |x|

2b(x)dx < +∞

Let us assume the Grad cutoff and impose for all v 6= w∫
S2

b

(
v − w
|v − w|

· σ
)
u(dσ) = 1,

it is possible to show that this latter condition corresponds to impose∫ 1

0
b(x)dx = 1.
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Therefore, we can interpret b(·) as a probability density function and the
collision operator Q(·, ·) in (2.1) may be written as

Q(f, f) =

∫
R3×S2

f(v∗, t)f(w∗, t)b

(
v − w
|v − w|

· σ
)
u(dσ)dw − f(v, t) (2.2)

Further, the collision operatore in (2.2) defines a probability density function
[169] and equation (2.1) can now be written as

∂f(v, t)

∂t
= Q∗(f, f)(v, t)− f(v, t). (2.3)

It is possible to show the following result

Theorem A.2.1. Let us consider the case of spatial homogeneous Boltzmann
equation for Maxwell molecules with the initial distribution f0(x, v) = f0(v),
we assume also the Grad cutoff. For each t > 0 an unique function f(v, t)
almost surely exists such that

i) the function v 7−→ f(v, t) is a probability density

ii) f(v, t) is solution of (2.1) for every t ≥ 0 and a.s. in v ∈ R3.

Moreover if

∫
R
|v|2f0(v)dv < +∞ then momentum and energy are conserved,

i.e. ∫
R3

vf(v, t)dv =

∫
R3

vf0(v)dv, ∀t > 0, (Momentum)∫
R3

|v|2f(v, t)dv =

∫
R3

|v|2f0(v)dv, ∀t > 0. (Energy)

Proof. Let us define for each t ≥ 0 and v ∈ R3 the function g(v, t) = etf(v, t),
therefore equation (2.3) corresponds to

∂g(v, t)

∂t
= e−tQ∗(g, g)(v, t)

g(v, 0) = f0.
(2.4)

Further, we define for each t ≥ 0 a time-dependent function τ(·) through the
Cauchy problem {

τ ′ = e−t

τ(0) = 0,
(2.5)

and a function h(v, τ(t)) = g(v, t). Explicit solution of (2.5) is τ(t) = 1−e−t,
τ ∈ [0, 1]. Hence, equation (2.4) may be rewritten in terms of h(·, ·) as follows

∂h(v, τ)

∂τ
= Q∗ (h, h) (v, τ)

h̃(v, 0) = f̃0(v).
(2.6)
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Now we observe that the map

τ 7−→ (v 7−→ h(v, τ))

is analytic in the interval (−δ, δ), δ > 0, with respect to the Fréchet derivative.
Then h(·, ·) may be written in terms of the sum

h(v, τ) =
+∞∑
n=0

τnAn(v), (2.7)

where An(v) have to be determined. In what follows we determine explicitly
An(v) for each n ≥ 0: for n = 0

A0(v) = f0(v) (2.8)

and for n > 0, from the definition of h(·, ·) in equation (2.7) we have

+∞∑
n=1

nτn−1An(v) =Q∗

+∞∑
i=0

τ iAi,
+∞∑
j=0

τ iAj


=

+∞∑
i,j=0

τ i+jQ∗(Ai, Aj),

=
+∞∑
k=0

k∑
j=0

τkQ∗(Ak−j , Aj)

=
+∞∑
k=0

τk

 k∑
j=0

Q∗(Ak−j , Aj)

 ,

and we obtain

+∞∑
k=0

(k + 1)τkAk+1 =

+∞∑
k=0

τk

 k∑
j=0

Q∗(Ak−j , Aj)

 ,

which gives

Ak+1 =
1

k + 1

k∑
j=0

Q∗(Ak−j , Aj). (2.9)

The term A0 defines a probability density function as well as A1 = Q∗(f0, f0),
hence by induction Ak+1 is a probability density for all k ∈ N and the density
solution of (2.3) may be written as

f(v, t) =
+∞∑
n=0

e−t(1− e−t)nAn(v). (2.10)
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For all t ≥ 0 the series (2.10) almost surely converges with respect the
variable v ∈ R3 and the function

v 7−→ f(v, t)

defines a density.
In order to prove the conservation of momentum and energy we write (2.3)

in weak form, for each test function φ ∈ Cb(R3) we have

d

dt

∫
R3

φ(v)f(v, t)dv =

∫
R3

φ(v)Q∗(f, f)(v, t)dv −
∫
R3

φ(v)f(v, t)dv. (2.11)

Being Tσ : (v, w) → (v∗, w∗) a linear operator with det(Jac(Tσ)) = 1 and
Tσ ◦ Tσ = 1, see [56, 79] we have∫

R3

φ(v)Q∗(f, f)(v, t)dv =∫
S2

[∫
R6

φ(v∗)f(v)f(w)dvdw

]
b

(
v − w
|v − w|

· σ
)
u(dσ) =∫

S2

[∫
R6

φ(w∗)f(w)f(v)dwdv

]
b

(
v − w
|v − w|

· σ
)
u(dσ).

(2.12)

Since

v∗ + w∗ = v + w,

|v∗|2 + |w∗|2 = |v|2 + |w|2,
(2.13)

it is a simple computation to verify that first and second order moments are
conserved, in fact if φ(v) = v∫

R3

vQ∗(f, f)(v, t)dv =

1

2

∫
S2

[(v∗ + w∗)f(v, t)f(w, t)]b

(
v − w
|v − w|

· σ
)
u(dσ)dw =

1

2

[∫
R3

vf(v, t)dv +

∫
R3

wf(w, t)dw

] (2.14)

and similarly for φ(v) = v2 we have∫
R3

|v|2Q∗(f, f)(v, t)dv =

1

2

∫
S2

[(|v∗|2 + |w∗|2)f(v, t)f(w, t)]b

(
v − w
|v − w|

· σ
)
u(dσ)dw =

1

2

[∫
R3

|v|2f(v, t)dv +

∫
R3

|w|2f(w, t)dw

] (2.15)
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We defined in the poof of the latter result the so-called Wild’s sum, let us
formalize this object in the following definition.

Definition A.2.1 (Wild’s sum). If the density function f(v, t) is solution
of the space homogeneous Boltzmann equation for Maxwell molecules (2.3),
then it can be written as

f(v, t) = e−t
∞∑
n=0

(1− e−t)n−1An−1(v), (2.16)

where

Ak =


f0(v), k = 0,

1

k

k−1∑
j=0

Q∗(Ak−1−j , Aj)(v) k = 1, 2, . . . ,
(2.17)

and

Q∗(p, q) =

∫
R3×S2

p(v∗)q(w∗)b

(
v − w
|v − w|

· σ
)
u(dσ)dw. (2.18)

A further structural property for the Wild’s sum is described by the next
result.

Proposition A.2.2. Under the same hypotheses of Theorem A.2.1 we have∫
R3

vAn(v)dv =

∫
R3

vf0(v)dv,∫
R3

|v|2An(v)dv =

∫
R3

|v|2f0(v)dv

(2.19)

Proof. By induction.

A.3 The Boltzmann equation for measures

In order to give the Boltzmann equation for measures we must extend
the definition of Q∗(·, ·) by introducing a new collision operator, denoted by
Q∗[·, ·], and depending on measures. We observe first that a general collision
operator in weak form reads∫

R3

φ(v)Q∗(p, q)(v)dv =

∫
R3×R3×S2

φ(v∗)p(v)q(w)b

(
v − w
|v − w|

σ

)
u(dσ)dvdw,

(3.1)
where the terms p(v)dv = µ and q(w)dw = ν are probability measures. In
the spatial homogeneous case with Maxwell potential we may write equation
(2.3) in weak form as

d

dt

∫
R3

f(v, t)φ(v)dv =

∫
R3

φ(v)Q∗(f, f)(v)dv −
∫
R3

f(v, t)φ(v)dv, (3.2)
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and in terms of measures we have

d

dt

∫
R3

φ(v)µ(dv, t) =

∫
R3×R3×S2

φ(v∗)b

(
v − w
|v − w|

· σ
)
µ(dv, t)µ(dw, t)u(dσ)

−
∫
R3

φ(v)µ(dv, t)

(3.3)

Definition A.3.1. We define weak solution of the Boltzmann equation for
measures (3.3) with initial datum the probability measure µ0 the family of
probability measures {µ(·, t)}t≥0 over

(
R3,BR3

)
such that:

i) µ(·, 0) = µ0(·)

ii) t 7−→
∫
R3 φ(v)µ(dv, t) ∈ C0 ([0,+∞)) ∩ C1 ([0,+∞)) for each test func-

tion φ.

iii) the space homogeneous Boltzmann equation for measures (3.3) is satis-
fied for each test function φ and t ≥ 0.

Now we must investigate the convergence in distribution of the operator
Q∗[µ, ν](dv).

Definition A.3.2. We define Q∗[µ, ν] as the weak limit

Q∗[µ, ν](dv) = w− lim
n→+∞

Q∗(pn, qn)(v)dv, (3.4)

where pn, qn are approximating densities such that pn ⇀ p, qn ⇀ q.

In the following we prove that such limit exists and that it does not depend
by the considered approximating sequence. Let µn, νn be the measures
induced by the densities pn and qn respectively, that is µn = pndv and
νn = qndw.

For each n ≥ 0, the the formulation of the collision operator Q∗(pn, qn) in
weak form reads∫

R3

φ(v)Q∗(pn, qn)dv =∫
R3×R3

(∫
S2

φ(v∗)b

(
v − w
|v − w|

· σ
)
u(dσ)

)
pn(v)qn(w)dvdw.

(3.5)

In particular, let us consider for all (v, w) ∈ R3 × R3, v 6= w∫
S2

φ(v∗)b

(
v − w
|v − w|

· σ
)
u(dσ),

which can be extended as follows

Hφ(v, w) =


∫
S2

φ(v∗)b

(
v − w
|v − w|

· σ
)
u(dσ) if v 6= w

φ(v) if v = w.
(3.6)
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We observe that Hφ(v, w) defines a bounded and continuous function and
we have∫

R3

φ(v)Q∗(pn, qn)(v)dv =

∫
R3×R3

Hφ(v, w) pn(v)qn(w)dvdw︸ ︷︷ ︸
µn⊗νn(dvdw)

. (3.7)

Further, if

µn = pn dv ⇒ µ

νn = qn dw ⇒ ν,

we have µn⊗ νn ⇒ µ⊗ ν. Thanks to the Lévy’s Continuity Theorem, see for
example [120], we have that µn converges in distribution toward µ if and only
if µ̂n(ξ)→ µ̂(ξ) a.s., where µ̂(ξ) is the Fourier transform of the probability
measure µ. We can prove now for each test function φ the a.s. convergence∫

R3×R3

Hφ(v, w)pn(v)qn(w)dvdw →
∫
R3×R3

Hφ(v, w)µ⊗ ν(dvdw). (3.8)

Observe that Q∗(pn, qn) is a bounded operator, hence the following limit
exists for each ξ ∈ R

lim
n→∞

∫
R3

eiξvQ∗(pn, qn)(v)dv = A(ξ). (3.9)

In order to meet the hypotheses of the Lévy’s Theorem we prove that A(ξ)
is continuous in ξ = 0. We consider a sequence ξk → 0 and we show that
A(ξk)→ A(0). If ξk → 0 it follows that

φk(v) = eiξkv
k→+∞−−−−−→ 1

and we have∫
R3×R3

Hφk(v, w)µ(dv)ν(dw)
k→+∞−−−−−→

∫
R3×R3

H1(v, w)µ(dv)ν(dw), (3.10)

begin |Hφk | ≤ 1, and Hφk(v, w)→ H1(v, w) from the definition of Hφ, which
completes the proof.

Let us investigate more in details the Fourier transform of the operator
introduced in the Definition A.3.1

Q̂[µ, ν](ξ) =

∫
R3×R3×S2

eiξv
∗
b

(
v − w
|v − w|

· σ
)
µ(dv)ν(dw)u(dσ). (3.11)

Thanks to the definition of post-collisional velocity v∗ introduced in (1.4) we
have that

eiξv
∗

= eiξ[v+((w−v)·σ)·σ] (3.12)
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and we obtain

Q̂[µ, ν](ξ) =

∫
R3×R3

(∫
S2

eiξveiξσ[(w−v)·σ]b

(
v − w
|v − w|

· σ
)
u(dσ)

)
µ(dv)ν(dw),

(3.13)
where the integral over S2 can be written, for each fixed ξ 6= 0, v, w ∈ R3

and v 6= w, as ∫
S2

e
iξσ
|ξ|

[(w−v)·σ]
|w−v| |ξ||w−v|b

(
v − w
|v − w|

· σ
)
u(dσ), (3.14)

also known as Bobylev’s trick. Define then the unit vectors τ and ω as follows

τ =
ξ

|ξ|
ω =

v − w
|v − w|

. (3.15)

The integral in equation (3.14) assumes the form∫
S2

ei(τ ·σ)(ω·σ)|ξ||v−w|b (ω · σ)u(dσ).

Let us consider now a rotation of σ along the z−axis, hence∫
S2

ei(τ ·σ)(ω·σ)|ξ||v−w|b (ω · σ)u(dσ) =

∫
S2

ei(ω·σ)(τ ·σ)|ξ||w−v|b(τ · σ)u(dσ)

and we obtain∫
S2

e
i
(
v−w
|v−w| ·σ

)(
ξ
|ξ| ·σ

)
|ξ| |v−w|

b

(
ξ

|ξ|
· σ
)
u(dσ) =

∫
S2

ei((v−w)·σ)ξ·σb

(
ξ

|ξ|
· σ
)
u(dσ).

From equation (3.13) we have

Q̂[µ, ν](ξ) =

∫
R3×R3×S2

eiξveiξσ[w−v]·σb

(
v − w
|v − w|

· σ
)
µ(dv)ν(dw)u(dσ)

=

∫
R3×R3×S2

eiξveiξσ[(w−v)·σ]b

(
ξ

|ξ|
· σ
)
µ(dv)ν(dw)u(dσ)

=

∫
S2

[∫
R3×R3

eiξv−i(ξ·σ)(v·σ)ei(ξ·σ)(w·σ)µ(dv)ν(dw)

]
b

(
ξ · σ
|ξ|

)
u(dσ)

(3.16)

and thanks to the Fubini’s Theorem we obtain∫
R3

ei[ξ−(ξ·σ)·σ]·vµ(dv) = µ̂ (ξ − (ξ · σ) · σ) . (3.17)

Finally, the Fourier transform of the collisional operator for a couple of
measures (µ, ν) can be rewritten as follows

Q̂[µ, ν](ξ) =

∫
S2

µ̂(ξ − (ξ · σ)σ)ν̂((ξ · σ)σ)b

(
ξ · σ
|ξ|

)
u(dσ). (3.18)

This latter expression is known as Bobylev’s formula.
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Example 3. Let us consider

σ̂ = (sinϕ cos θ, sinϕ sin θ, cosϕ), ϕ ∈ [0, π], θ ∈ [0, 2π]. (3.19)

The object σ̂ may be written in terms of the orthonormal basis of R3:{
â, b̂,

ξ

|ξ|

}
as

σ̂ = sinϕ cos θ â+ sinϕ sin θ b̂+ cosϕ
ξ

|ξ|
. (3.20)

Then the (3.18) corresponds to

Q̂[µ, ν](ξ) =

∫ 2π

0

∫ π

0
µ̂ (ξ − σ̂(ϕ, θ)|ξ| cosϕ)

ν̂(σ̂(ϕ, θ)|ξ| cosϕ)b(cosϕ)
sinϕdϕdθ

4π
,

(3.21)

and assuming that the measures µ, ν are of the radial type, that is µ̂(ξ) =
η̂(|ξ|), and ν̂(ξ) = ξ̂(|ξ|), where η, ξ are probability measures over (R,B(R)),
we have

Q[µ, ν](ξ) =

∫ π

0
η̂(|ξ| sinϕ)ξ(|ξ| cosϕ)

b

2
(cosϕ) sinϕdϕ. (3.22)
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cana, 19 (2003), pp. 971–1018.

[55] J. A. Carrillo, L. Pareschi, and M. Zanella, Monte Carlo–
stochastic Galerkin algorithms for mean–field models, In progress,
(2017).

213



Bibliography

[56] C. Cercignani, The Boltzmann Equation and its Applications, vol. 67
of Applied Mathematical Sciences, Springer, 1988.

[57] C. Cercignani, R. Illner, and M. Pulvirenti, The mathematical
theory of diluite gases, vol. 106 of Applied Mathematical Sciences,
Springer – Verlag New York, 1994.

[58] C. Chainais-Hillairet, A. Jüngel, and S. Schuchnigg, Entropy-
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