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1 Introduction

1.1 General description of the problem

The name “Diophantine equation” derives from Diophantus of Alexandria (about A.D. 250), au-

thor of a series of books called Arithmetica, who was the first mathematician to study solution

of equations involving only integers numbers. One of the first problems was to know how well a

real number can be approximated by rational numbers. We can talk in this case of Diophantine

approximation.

We define a Diophantine inequality |P(n)| < η , η ∈ R+, as an inequality for a real general-

ized polynomial P in r integer variables n = (n1, . . . ,nr); however, in our research, we focus only

on sums of monomials of r different variables.

Let ω ∈ R; the aim is to approximate ω with F(x,k,λ ) where

F(x,k,λλλ ) = F(x) = F(x1, . . . ,xr,k1, . . . ,kr,λ1, . . . ,λr) = λ1xk1
1 + · · ·+λrxkr

r (1.1)

with

• x = (x1, . . . ,xr) where x1, . . . ,xr are integer variables,

• k = (k1, . . . ,kr) with ki ∈ R+ fixed real exponents,

• λλλ = (λ1, . . . ,λr) with λi ∈ R∗ fixed real constants.

In our dissertation k = (k1, . . . ,kr) will have at most one non integer component. More pre-

cisely, k1 . . . ,kr−1, will be fixed positive integers, while kr > 1 will be a real parameter. One of our

goals will be to prove non-trivial results in as wide a range for kr as possible. Moreover we will

only look for solutions in prime variables which we denote by x = p = (p1, . . . , pr).

The exact value of ω may be not reachable in general for obvious reasons but our goal is

to prove that ∀ω ∈ R and ∀η > 0 fixed, there exist infinitely many solutions of the Diophantine

inequality

|F(p)−ω|< η (1.2)

1
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with some conditions on the coefficients λ j. In fact, some further hypothesis is necessary:

• on signs: otherwise it would be impossible to approximate all real numbers.

• at least on one ratio λi/λ j: in fact, if all coefficients λ j and all exponents k j were integers,

then F would only take on integral values and it would be impossible to approximate non

integers; more generally, if all exponents were integers and all the coefficients λ j were

rational, the values of F would all be multiple of some fixed rational number and, again, it

would be impossible to approximate other real numbers.

The difficulties of the problem depend both on the number of variables r and on the exponents

k j. We call “density” of the function F the quantity

ρ = ρ(F) =
1
k1

+ · · ·+ 1
kr
, (1.3)

in agreement with the definition of density in typical additive problems with integers.

The “smaller” is ρ the harder the problem. For small value of the density the goal is to prove

that |F(p)−ω| < η has infinitely many solutions for some fixed η > 0, but if ρ is larger we can

prove stronger results taking η as a small negative power of M(p,k) := (max j(pk1
1 , . . . , pkr

r )), say

η = (M(p,k))−ψ(k), (1.4)

where k is the parameter referred to above and ψ(k) > 0. The number of variables r also plays

a role in determining whether a problem is easy or difficult: having more variables complicates

the computations but it is possible to apply the Cauchy-Schwartz and the Hölder inequalities in

several different ways and thus make the problem “easier”.

In these kinds of problems it is enough to prove that there is at least one solution of inequality

(1.2) with pk j
j ∈ [δXn,Xn] for j = 1, . . . ,r, where δ is a small positive constant and Xn is a suitable

sequence with lim
n→+∞

Xn =+∞. Actually X (we are dropping the useless suffix n), will be related to

the convergents of the continued fraction of the ratio λi/λ j, that we supposed to be irrational, and

we can define all parameters in terms of X . In other words, as we supposed that λi/λ j is irrational,

there exist infinitely many solutions of the inequality∣∣∣∣ λi

λ j
− a

q

∣∣∣∣< 1
q2

with a∈Z, q∈N and (a,q) = 1. We will take some fixed positive power of the denominator q > 0

as a sequence of X that therefore tends to infinity.
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1.2 Main known results

Many recent results are known with various types of assumptions and conclusions. The first ap-

proach to deal with these kinds of problems is due to Davenport & Heilbronn in 1946 (see [10]):

their technique is a variant of the circle method as we will explain later in the next section. In their

problem k = (2,2,2,2,2) and all the five variables are integers numbers.

Following the Davenport & Heilbronn variant, many authors faced similar problems where

variables were prime numbers: Vaughan in 1974 (see [44]) dealt with a ternary linear form, k =

(1,1,1) while Brüdern, Cook & Perelli in [5] dealt with a binary linear form in prime arguments

with k = (1,1) in 1997. Cook & Fox in [7] dealt with a ternary form with primes squared, k =

(2,2,2), that was improved in term of approximation by Harman in 2004 (see [22]). Furthermore,

Cook in [6] gave a deeper description of general the problem with r primes p1, . . . , pr and this

work was improved by Cook & Harman in 2006 (see [8]).

Some authors dealt with the number of exceptional real numbers ω that cannot be well ap-

proximated with (1.1). In detail, we call a well-spaced set V a set of positive reals where there is

a c > 0 such that u,v ∈ V , u 6= v ⇒ |u− v| > c. The idea is to study the set E(V ,X ,δ ) that

denotes the number of ω ∈ V with ω ≤ X such that the inequality

|F(p)−ω|< ω
−δ

has no solutions in primes p1, . . . , pr.

There are some differences between the results quoted above and our purpose: in our case the

value of η does depend on the primes p j and it will be actually a negative power of the maximum

of the p j, see (1.4), while in the papers quoted above η is a small negative power of ω and the

assumption that the coefficients λ j are all positive is not a restriction. Moreover k j is the same

positive integer for all j. Nevertheless the assumptions that λ1/λ2, say, must be irrational is still

the heart of the matter and it is necessary, if one wants to approximate to all real numbers and not

only some proper subset; in fact we remark that if all λi/λ j were rational F(p) would be multiple

of some fixed, positive real number, if all k j are integers, as we pointed out above.

Vaughan in [44] followed another approach, that is the same we are using in our dissertation:

dealing with a ternary linear form in prime arguments with k = (1,1,1) and assuming some more

suitable conditions on the λ j, he proved that there are infinitely many solutions of the problem (1.2)

when η is defined as in (1.4); in his case ψ(k) = ψ = 1
10 . Such result was improved by Baker &

Harman in [2] with ψ = 1
6 , later by Harman in [21] with ψ = 1

5 and finally by Matomäki in [34]

with ψ = 2
9 . Baker & Harman [2] also proved that under the generalized Riemann hypothesis it is

possible to reach ψ = 1
4 .
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Piatetski-Shapiro in [39] was the first to approach a Diophantine problem, analogue of the

Waring-Goldbach problem, in which a non-integral exponent appears. Later Tolev in [42] im-

proved the results of Piatetski-Shapiro on the ternary problem with all λ j = 1 and all the exponents

k j equal to a rational constant k /∈ N.

Languasco & Zaccagnini in [29] and [30] dealt with ternary problems with different powers

k j, one of them depending on a real parameter k, that is, k = (1,2,k) and k = (1,1,k), respectively.

The idea is to get the best approximation reaching the widest range of values for k whereby the

inequality holds. In both cases, the choice of the values of the different parameters, and hence

the range for k and the value of ψ(k), depends on the solution of an optimization problem; see

in particular Sections 2.3 and 3.3. A result of this dissertation is the improvement of the ternary

problem in [30] as one can see in Chapter 4 and [15]. The case k = (1,1,1) has not been treated

here since, as described above, has already been dealt with by several authors; in fact for integral

values of the exponents, stronger estimates are available for the exponential sums we will define

in the next sections.

Languasco & Zaccagnini also dealt with a quaternary form, k= (1,2,2,2) in [28] with a prime

and 3 squares of primes obtaining ψ = 1
18 ; this was improved by Liu & Sun in [33] with ψ = 1

16

using the Harman technique and recently refined by Wang & Yao in [48] with ψ = 1
14 using a

better estimation on the minor arc due to Harman [22] and Harman & Kumchev [23]. Another

result of this dissertation is the generalization such a quaternary problem as one can see in Chapter

2 and [13].

Recently Mu in [36] dealt with a problem in five variables with four squares of primes and

a k-th integer power of a prime, k ≥ 3; in this case k = (2,2,2,2,k). Ge & Li in [16] used a

quaternary form with different integer powers k j. Mu & Lü dealt also with a quaternary problem

in [37] with two square of primes, a cube of a prime and a k-th power of a prime with k ≥ 3

integer: k = (2,2,3,k). Finally, as we will show in this dissertation in Chapter 4, the results of

the ternary problem [30] is improved by Languasco, Zaccagnini & the author of this dissertation

in [15] widening the k-range to k ∈ (1,3] and giving a stronger bound for the approximation in the

common range, combining Harman’s technique on the minor arc with the L4-norm of the relevant

Weyl sum over primes Sk.

Another approach in Diophantine approximation considers a real analogue of the Goldbach-

Linnik problem, i.e. adding to the polynomial a combination of primes and s powers of 2, where

s is a fixed integer:

λ1 pk1
1 + · · ·+λr pkr

r +µ12m1 + · · ·+µs2ms .
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The first result on this matter is due to Linnik himself in [31] and [32] but for more recent

results proved on the topic we cite Parsell [38], Languasco & Zaccagnini [27], Languasco &

Settimi [26], Wang [47]. The approach is similar to the one without powers of two and the heart

of the matter is again the assumption that some ratio between two of the λ j must be irrational.

We remark that the presence of the powers of 2 does not change the density of the problem.

Some authors have faced similar problems with primes and almost-prime1 numbers (see Har-

man [20] and Yang [50]) or the special prime numbers: see Dimitrov [11] and Tolev [43], where a

special prime number is a prime p that satisfy that p+2 has at most n prime factors where n varies

according to the different papers.

1.3 The Circle Method

The Circle Method is an idea developed by Hardy & Ramanujan [18] in investigations on the

partition function and later applied in additive problems like the Waring Problem and the Goldbach

Conjecture. Actually various problems in additive number theory motivated the development of

the Circle Method and many problems were solved with this method by Hardy & Littlewood in

the beginning of the XX century; the standard reference for this method is Vaughan, [46].

In general a typical additive problem has the following nature:

Given s ≥ 2 subsets of N, A1, . . . ,As, not necessarily distinct and a positive integer n, deter-

mine how many solutions has the equation

n = a1 + · · ·+as

where a j ∈ A j for j = 1, . . . ,s.

Sometimes for large values of n is sufficient to show that such an equation has at least one

solution. Nevertheless, even for large n, there can be arithmetic conditions that force some restric-

tion in the choice of n: for instance, in the binary Goldbach problem n must be even otherwise the

conjecture is usually false: it is not possible to write an odd number as a sum of two primes be-

cause every prime greater than 2 is odd; on the other hand in ternary Goldbach problem n must be

odd. In the Waring problem - solved by D. Hilbert in 1909 in ”Beweis für die Darstellbarkeit der

ganzen Zahlen durch eine feste Anzahl n-ter Potenzen (Waringsches Problem)” - all the subsets

A1, . . . ,As are equal to the k-th powers of the natural numbers and the goal is to represent every

natural number n as a sum of at most s k-th powers.

1Pr is an almost-prime number is it is an integer number with at most r prime factor
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In order to study these problems we start by the original Hardy, Littlewood & Ramanujan

ideas: we assume that A1 = A2 = · · ·An = A is an infinite set and we define a generating function

fA(z) :=
+∞

∑
n=0

a(n)zn an =

 1 if n ∈ A

0 otherwise.

f is a power series with radius of convergence 1. Now, setting rs(n) the number of ways of writing

n as the sum of s elements of A,

rs(n) := |{(a1, . . . ,as) ∈ As : n = a1 + · · ·+as}|

we have

f s(z) =
+∞

∑
n=0

rs(n)nzn.

Consequently,

rs(n) =
1

2πi

∮
γ

fA(z)s

zn+1 dz

where γ is the circle whose center is at the origin and radius is ρ < 1.

Vinogradov in the 1930’s introduced some simplifications using finite sums instead of infinite

sums: the problem we considered since the beginning is interesting only if A is an infinite set,

otherwise we could enumerate the different values of a1 + . . .+as in a finite numbers of steps. If

we define AN = {a∈ A : a≤N}, AN is a finite set for every N and the AN is an increasing sequence

of subsets of A. For each N it is possible to consider the truncated generating function for every

AN without any singularities and without any problem of convergence.

Also with Vinogradov’s approach the problem can be transformed in a complex analysis prob-

lem where the circle is replaced by the interval [0,1].

The idea of the Circle Method is to split the interval [0,1] into disjoint pieces called major

arcs and minor arcs: on the major arcs we will find the main term of the contribution bounded

away from zero; they are the union of suitable neighborhoods of rational numbers with “small”

denominators. The minor arcs are the complement of the major arcs and we should prove that

their contribution is smaller than the major arcs.

The Circle Method was used to attack problems involving prime numbers so it needs several

results concerning analytic number theory. For those reason we will use the exponential sums

defined in Appendix B and their weighted version as basic tools also for the problems we will

discuss in the next Chapters.

More details on the Circle Method, it is possible to consult the classical literature; this section

is adapted from Davenport [9] and Miller & Takloo-Bighash [35].
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1.4 The Davenport-Heilbronn variant

A variant of the classical circle method was introduced by Davenport & Heilbronn in 1946 (see

[10]) in order to attack Diophantine problems; in particular it permits the investigation of some

given type of inequalities as (1.2). The integration on a circle, or equivalently on the interval [0,1],

is now replaced by integration on the whole real line. The problem we are dealing with is not to

count the exact hits like in Goldbach or Waring’s problems but to find how close it is possible to

be at any real number ω as described in section 1.1.

For this purpose we need a measure of “proximity” that can be chosen in many ways: in these

Diophantine problems there is only one major arc, which is a suitable neighborhood of 0. The most

natural way is to choose the characteristic function χ[−η ,η ] of the interval [−η ,η ]. Nevertheless,

as we will see later, we need a function whose essential feature is that the rate of the decay at

infinity of its inverse Fourier transform is O
(
|α|−1

)
. We want to point out that since we are

considering only even functions, it makes no difference to speak of Fourier transform or inverse

Fourier transform. To keep the same notation of the references in bibliography we will call Kη

the function and K̂η its Fourier transform. In this case K̂η(α) = χ[−η ,η ](α) is not suitable as its

inverse Fourier transform behaves at infinity like |α|−1.

We need a continuous function as K̂η(α) (see Fig.1.4), so we introduce

K̂η(α) := max(0,η−|α|) where η > 0

whose inverse Fourier transform is

Kη(α) =

(
sin(παη)

πα

)2

for α 6= 0 and, by continuity, Kη(0) = η2. It vanishes at infinity like α−2 and it is trivial to prove

that

Kη(α)�min(η2, |α|−2). (1.5)

Figure 1.1: Graph of function K̂η(α)
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1.5 L2-norm estimation approach

First of all, we need to define an exponential sum related to the primes, similarly to the Goldbach

problem: for k ≥ 1, let

Sk(α) = ∑
δX≤pk≤X

log p e(pk
α). (1.6)

where δ is a small, fixed positive constant; the choice of starting from δX instead of 1 or 2

is needed for technical reasons but it does not alter the final result. δ may also depend on the

coefficients λ j.

We will approximate the exponential sum Sk with both the corresponding exponential sum

with the coefficient log p replaced by its average 1 and the exponential integral:

Uk(α) = ∑
δX≤nk≤X

e(nk
α) (1.7)

Tk(α) =
∫ X

1
k

(δX)
1
k

e(αtk)dt. (1.8)

The reader can find in Appendix B some details on the bounds for the exponential sums and

integrals Sk(α), Uk(α) and Tk(α).

The original works of Davenport & Heillbronn in [10] and later Vaughan in [44] and [45]

approximate directly the difference |Sk(α)−Tk(α)| and estimate it in a trivial way with O(1). The

idea of Brüdern, Cook & Perelli in [5] and Languasco & Zaccagnini in [30], is to improve these

estimations taking the L2-norm of |Sk(α)−Tk(α)| leading to significantly better conditions and to

have a wider major arc (we will define the major arc for our problems in Section 1.6 similarly to

the definition of major arcs for the Goldbach problem) compared to the original DH approach.

In fact, setting the generalized version of the Selberg integral

Jk(X ,h) =
∫ 2X

X

(
θ((x+h)

1
k )−θ(x

1
k )− ((x+h)

1
k − x

1
k )
)2

dx,

where θ(x) = ∑
p≤x

log p is the first Chebyshev function, Gallagher’s Lemma (Lemma 1 of [12])

allows us to connect the mean-square average of Sk−Uk to the Selberg integral Jk, instead of

using a point-wise bound (see [5]). We will have then Lemmas B.11 and B.12 that allow us to get

a proper bound for the quantity ∫ Y

−Y
|Sk(α)−Uk(α)|2dα

for 0 < Y < 1
2 .
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The Davenport & Heilbronn method is related to the maximum of the quantity θ(x)−x, while

Brüdern, Cook & Perelli and Languasco & Zaccagnini are related to the variance of θ(x)− x:

as we know that the behavior of such a function is better when we take the average, we gain

something in terms of width of the major arc.

1.6 Setting the problem

We decompose R into subsets such that R=M ∪ m ∪ t where M is the major arc, m is the minor

arc and t is the trivial arc. In contrast to Goldbach problem the major arc is a small interval centered

in 0 that becomes smaller as our parameter X increases. Moreover in Goldbach the number of the

arcs increases as the parameter considered grows while in our problems we have only 3 or 4 arcs.

We expect to have on M the main term with the right order of magnitude without any special

hypothesis on the coefficients λ j. It is necessary to prove that the contributions of the trivial arc

and the minor arc are small compared to the major arc: the contribution of the trivial arc will not

be a problem because we will prove its contribution is “tiny” with respect to the main term because

of the Fourier transform property. The real problem is on the minor arc where we will need the full

force of the hypothesis on the λ j and the theory of continued fractions. There is another difference

to the Goldbach problem: we will be able to prove that the terms on the minor arc and on the

trivial arc are a little-o of the main term only on a suitable sequence where the exponential sums

are small taking advantage of the fact that the ratio λi/λ j is irrational.

Sometimes it may happen that for matters of choice of the parameters we have a gap between

the end of the major arc and the beginning of the minor arc. This kind of intermediate arc can

be filled, depending on the case, with standard estimates such as those that have been used for

instance by Liu & Sun in [33] and by Languasco, Zaccagnini & the author of this dissertation in

[15] (see Chapter 4).

N (X) will always denote the number of solutions of our inequality and we expect that a lower

bound for N (X) is ηXρ−1, where ρ is the density of the problem defined in (1.3). This is a reason

why the smaller is the density the more difficult is the problem. For the same reason every problem

presented in this dissertation has got a density greater than 1.

In general, we expect that a Diophantine problem, once that the necessary conditions have

been discussed, is soluble ∀η > 0 fixed, as soon as ρ > 1; it is just because today’s techniques are

not strong enough that we need more restrictive conditions, that is, to take larger values of ρ . For

the same reason, any numerical simulation about the theorems that will be enunciated suggests

that less restrictive conditions may be taken or that the density may be reduced.
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Another clue suggesting that we may take less restrictive conditions is that the term pk
4 is

always irrational if k is not integer and one might argue that the hypothesis of irrationality might

become redundant. Though pk is uniformly distributed (mod 1) it is not of any help as we are

approximating any real number and not within an equivalence class. Today’s techniques do not

allow us to have better estimates on all R than those in the Appendix B.

One thing that allows us to have better estimates is to increase the number r of variables as it

happens for the Goldbach ternary case, which, unlike the binary case, has been solved. In fact,

having more variables complicates the computations, but on the other hand with more variables

it is possible to apply the Cauchy-Schwartz and the Hölder inequalities in several different ways

getting better results. For instance, this fact can be seen clearly in Section 4.5 where the Hölder

inequality is used in three different ways depending on the specific needs.

Remark: from now on, anytime we use the Vinogradov symbol� or� we drop the depen-

dence of the approximation from the constants λ j,δ and k. Furthermore ε stands for a sufficiently

small positive number whose value could vary depending on the occurrences. We use the notation

f = ∞(g) for g = o ( f ).

1.7 Results

Theorem 1.1 ([13], Theorem 1). Assume that 1 < k < 14/5, λ1,λ2,λ3 and λ4 be non-zero real

numbers, not all of the same sign, that λ1/λ2 is irrational and let ω be a real number. The

inequality ∣∣λ1 p1 +λ2 p2
2 +λ3 p2

3 +λ4 pk
4−ω

∣∣≤ (M(p,k))−ψ(k)+ε

has infinitely many solutions in prime variables p1, p2, p3, p4 for any ε > 0, where

ψ(k) = min
(

1
14

,
14−5k

28k

)
.

The first problem we are dealing with in Chapter 2 is a quaternary problem that can be seen

as a generalization of Languasco & Zaccagnini [28], Liu & Sun [33] and Wang & Yao [48]. In

particular we recover [48] for k = 2 obtaining the same result (neglecting the log powers) but we

also enlarged the k-range reaching k = 14
5 − ε .

Theorem 1.2 ([14], Theorem 1). Assume that 1 < k < 7/6, λ1,λ2,λ3 and λ4 be non-zero real

numbers, not all of the same sign, that λ1/λ2 is irrational and let ω be a real number. The

inequality ∣∣λ1 p2
1 +λ2 p2

2 +λ3 p2
3 +λ4 pk

4−ω
∣∣≤ (M(p,k))−

7−6k
14k +ε
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has infinitely many solutions in prime variables p1, p2, p3, p4 for any ε > 0.

The second quaternary problem outlined in Chapter 3 has a lower density and it leads to a

narrower range for k. It is very similar to Harman’s ternary work in [22], but the addition of a

variable makes it possible to raise the density and then to get infinitely many solutions for k < 7/6.

Theorem 1.3 ([15], Theorem 1). Assume that 1 < k≤ 3, λ1, λ2 and λ3 are non-zero real numbers,

not all of the same sign, that λ1/λ2 is irrational and let ω be a real number. The inequality

|λ1 p1 +λ2 p2 +λ3 pk
3−ω| ≤

(
M(p,k)

)−ψ(k)+ε

has infinitely many solutions in prime variables p1, p2, p3 for any ε > 0, where

ψ(k) =



(3−2k)/(6k) if 1 < k ≤ 6
5 ,

1/12 if 6
5 < k ≤ 2,

(3− k)/(6k) if 2 < k < 3,

1/24 if k = 3.

(1.9)

As we remarked above, for integer values of k stronger estimates are available for exponential

sums (see Appendix B) and they allow us to prove Theorem 1.3 with ψ(3) = 1
24 .

Problems in Theorem 1.1 and Theorem 1.3 have the same density but as we will see we can

reach a wider range for k in Theorem 1.3. This fact can be explained noting that it is easier to

handle the distribution of one prime than the distribution of the sum of two squares of primes

although the density is the same. Theorem 1.3 is also a refining of a result of [30] which was only

proved to hold for 1 < k < 4/3. We point out that in the common range 1 < k < 4/3 we have a

stronger bound (see Chapter 4 here and [15]).

All three theorems involve a Diophantine approximation with a real k-th power of one of the

primes.



2 One prime, two squares of primes and

one k-th power of prime

The first problem is a generalization of Languasco & Zaccagnini [28], Liu & Sun [33] and Wang

& Yao [48] who found the best approximation for k = 2 with ψ = 1
14 .

We want to investigate the following problem: let k > 1 be a real number and assume that

λ1,λ2,λ3,λ4 are non-zero real numbers, not all of the same sign and with the ratio λ1/λ2 irrational.

Let ω be a real number. We would like to find a range for k where

|F(p1, p2, p3, p4,1,2,2,k,λ1,λ2,λ3,λ4)−ω|= |λ1 p1 +λ2 p2
2 +λ3 p2

3 +λ4 pk
4−ω| ≤ η (2.1)

has infinitely many solutions in prime variables p1, p2, p3, p4 for some η → 0 a small negative

power of the largest prime as in (1.4).

We will prove the following:

Theorem 2.1. Assume that 1 < k < 14/5, λ1,λ2,λ3 and λ4 be non-zero real numbers, not all of

the same sign, that λ1/λ2 is irrational and let ω be a real number. The inequality

∣∣λ1 p1 +λ2 p2
2 +λ3 p2

3 +λ4 pk
4−ω

∣∣≤ (M(p,k))−ψ(k)+ε

has infinitely many solutions in prime variables p1, p2, p3, p4 for any ε > 0, where

ψ(k) = min
(

1
14

,
14−5k

28k

)
.

Let

P(X) = {(p1, p2, p3, p4) : δX < p1 < X , δX < p2
2, p2

3 < X , δX < pk
4 < X}

and let us define

I (η ,ω,X) =
∫
X

S1(λ1α)S2(λ2α)S2(λ3α)Sk(λ4α)Kη(α)e(−ωα)dα

where X is a measurable subset of R.

12
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From the definitions of S j(α) and performing the Fourier transform for Kη(α), we get

I (η ,ω,R) = ∑
(p1,...,p4)∈P(X)

log p1 log p2 log p3 log p4 max(0,η−|F(p1, p2, p3, p4,1,2,2,k)−ω|)

≤ η(logX)4N (X),

where N (X) denotes the number of solutions of the inequality (2.1) with (p1, p2, p3, p4)∈P(X).

In other words I (η ,ω,R) provides a lower bound for the quantity we are interested in and there-

fore for the proof of the theorem it is sufficient to prove that I (η ,ω,R)> 0 on a suitable sequence

of values of X with limit infinity.

We now decompose R into subsets such that R=M ∪ m ∪ t where M is the major arc, m is

the minor arc and t is the trivial arc. The decomposition is the following:

M=

[
−P

X
,

P
X

]
m=

[
P
X
,R
]
∪
[
−R,−P

X

]
t= R\(M∪m)

so that

I (η ,ω,R) = I (η ,ω,M)+I (η ,ω,m)+I (η ,ω, t).

The parameters P = P(X)> 1 and R = R(X)> 1/η are chosen later (see (2.7) and (2.10)) as

well as η = η(X), that, as we explained before, will be a small negative power of M(p,k) (and so

of X , see (2.26)).

It is necessary to prove that I (η ,ω,m) and I (η ,ω, t) are both o(I (η ,ω,M)). As we will

see, in this first case we are dealing with, we do not have any gap between the major arc and the

minor arc.

2.1 The major arc

Let us start from the major arc and the computation of the main term. We replace all Sk defined

in (1.6) with the corresponding Tk defined in (1.8). This replacing brings up some errors that we

must estimate by means of Lemma B.11, the Cauchy-Schwarz and the Hölder inequalities.

We write

I (η ,ω,M) =
∫
M

S1(λ1α)S2(λ2α)S2(λ3α)Sk(λ4α)Kη(α)e(−ωα)dα

=
∫
M

T1(λ1α)T2(λ2α)T2(λ3α)Tk(λ4α)Kη(α)e(−ωα)dα

+
∫
M
(S1(λ1α)−T1(λ1α))T2(λ2α)T2(λ3α)Tk(λ4α)Kη(α)e(−ωα)dα
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+
∫
M

S1(λ1α)(S2(λ2α)−T2(λ2α))T2(λ3α)Tk(λ4α)Kη(α)e(−ωα)dα

+
∫
M

S1(λ1α)S2(λ2α)(S2(λ3α)−T2(λ3α))Tk(λ4α)Kη(α)e(−ωα)dα

+
∫
M

S1(λ1α)S2(λ2α)S2(λ3α)(Sk(λ4α)−Tk(λ4α))Kη(α)e(−ωα)dα

=J1 + J2 + J3 + J4 + J5, (2.2)

say.

J1: Main Term

As the reader might expect the main term is given by the summand J1.

Let H(α) = T1(λ1α)T2(λ2α)T2(λ3α)Tk(λ4α)Kη(α)e(−ωα) so that

J1 =
∫
R

H(α)dα +O

(∫ +∞

P/X
|H(α)|dα

)
.

Using inequalities (1.5) and Theorem B.1,∫ +∞

P/X
|H(α)|dα �X−

1
2 X−

1
2 X

1
k−1

η
2
∫ +∞

P/X

dα

α4

�X
1
k +1

η
2P−3 = o

(
X

1
k +1

η
2
)

provided that P→+∞.

Let D = [δX ,X ]× [(δX)
1
2 ,X

1
2 ]2× [(δX)

1
k ,X

1
k ]; we have∫

R
H(α)dα =

∫
· · ·
∫

D

∫
R

e((λ1t1 +λ2t2
2 +λ3t2

3 +λ4tk
4−ω)α)Kη(α)dα dt1dt2dt3dt4

=
∫
· · ·
∫

D
max(0,η−|λ1t1 +λ2t2

2 +λ3t2
3 +λ4tk

4−ω)|)dt1dt2dt3dt4.

Apart from trivial changes of sign, there are essentially three cases as in [28]:

1. λ1 > 0, λ2 > 0, λ3 > 0, λ4 < 0

2. λ1 > 0, λ2 > 0, λ3 < 0, λ4 < 0

3. λ1 > 0, λ2 < 0, λ3 < 0, λ4 < 0.

We deal with the second case, the other ones being similar. We warn the reader that here it

may be necessary to adjust the value of δ in order to guarantee the necessary set inclusions. Let

us perform the following change of variables: u1 = t1− ω

λ1
(in order to make the dependence on ω

disappear), u2 = t2
2 , u3 = t2

3 , u4 = tk
4 so that the set D becomes essentially [δX ,X ]4 and let us define
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D′ = [δX ,(1− δ )X ]4 for large X . The Jacobian determinant of the change of variables above is
1
4k

u−
1
2

2 u−
1
2

3 u
1
k−1
4 . Then

∫
R

H(α)dα �
∫
· · ·
∫

D′
max(0,η−|λ1u1 +λ2u2 +λ3u3 +λ4u4)|)

du1du2du3du4

u
1
2
2 u

1
2
3 u

1− 1
k

4

�X
1
k−2

∫
· · ·
∫

D′
max(0,η−|λ1u1 +λ2u2 +λ3u3 +λ4u4)|)du1du2du3du4.

Apart from sign, the computation is essentially symmetrical with respect to the coefficients λ j:

we assume, as we may, that |λ4| ≥max(λ1,λ2,λ3), the other cases being similar.

Now, for j = 1,2,3 let a j =
4|λ4|
|λ j|

, b j =
3
2

a j and D j = [a jδX ,b jδX ]; if u j ∈D j for j = 1,2,3

then

λ1u1 +λ2u2 +λ3u3 ∈ [2|λ4|δX ,8|λ4|δX ]

so that, for every choice of (u1,u2,u3) the interval

[a,b] =
[

1
|λ4|

(−η +(λ1u1 +λ2u2 +λ3u3)) ,
1
|λ4|

(η +(λ1u1 +λ2u2 +λ3u3))

]
is contained in [δX ,(1− δ )X ]. In other words, for u4 ∈ [a,b] the values of λ1u1 +λ2u2 +λ3u3 +

λ4u4 cover the whole interval [−η ,η ]. Hence for any (u1,u2,u3) ∈D1×D2×D3 we have∫ (1−δ )X

δX
max(0,η−|λ1u1 +λ2u2 +λ3u3 +λ4u4|)du4

≥ |λ4|−1
∫

η

−η

max(0,η−|u|)du� η
2.

Finally,∫
R

H(α)dα � η
2X

1
k−2

∫∫∫
D1×D2×D3

du1du2du3� η
2X

1
k−2X3 = η

2X
1
k +1.

It means that the lower bound for J1 is η2X
1
k +1, as expected.

Bound for J2

We expect the main term to have the dominant asymptotic behavior, then we shall prove that all

the remaining terms of the sum (2.2) are o
(

η2X
1
k +1
)

.

Retrieving (1.5) and using the triangle inequality,

J2 =
∫
M
(S1(λ1α)−T1(λ1α))T2(λ2α)T2(λ3α)Tk(λ4α)Kη(α)e(−ωα)dα

�η
2
∫
M
|S1(λ1α)−T1(λ1α)||T2(λ2α)||T2(λ3α)||Tk(λ4α)|dα

�η
2
∫
M
|S1(λ1α)−U1(λ1α)||T2(λ2α)||T2(λ3α)||Tk(λ4α)|dα



2.1. The major arc 16

+η
2
∫
M
|U1(λ1α)−T1(λ1α)||T2(λ2α)||T2(λ3α)||Tk(λ4α)|dα

=η
2(A2 +B2),

say, where U1(λ1α) is given by (1.7).

Using the Cauchy-Schwarz inequality and remembering the definition of M,

A2�
(∫ P/X

−P/X
|S1(λ1α)−U1(λ1α)|2dα

) 1
2
(∫ P/X

−P/X
|T2(λ2α)|2|T2(λ3α)|2|Tk(λ4α)|2dα

) 1
2

;

then using Lemma B.11 and Lemma B.12,∫ P/X

−P/X
|S1(λ1α)−U1(λ1α)|2dα �P2

X2 J1

(
X ,

X
2P

)
�X exp

(
−c1

(
logX

log logX

) 1
3
)
� X

(logX)A

for any fixed A > 0 and X1− 5
6+ε ≤ X

P ≤ X (conditions of Lemma B.12).

Let us point out that in the estimation above we have neglected the two terms

X2/k−2 log2 X
P/X

+P2/X

of Lemma B.11. This can be explained by the fact that the hypotheses of Lemma B.12 must be

met and therefore these terms become negligible.

The first condition on P (with k = 1) is then the following:

X
P
≥ X

1
6+ε ⇒ P≤ X

5
6−ε . (2.3)

Let us complete the estimate for A2:

A2�
(

X
(logX)A

) 1
2
(∫ 1/X

0
|T2(λ2α)|2|T2(λ3α)|2|Tk(λ4α)|2dα

+
∫ P/X

1/X
|T2(λ2α)|2|T2(λ3α)|2|Tk(λ4α)|2dα

) 1
2

.

Remembering Theorem B.1,

A2�
(

X
(logX)A

) 1
2
(∫ 1/X

0
(X

1
2 )2(X

1
2 )2(X

1
k )2dα +

∫ P/X

1/X

(X−
1
2 )2(X−

1
2 )2(X

1
k−1)2

α6 dα

) 1
2

�
(

X
(logX)A

) 1
2
(∫ 1/X

0
X2+ 2

k dα +
∫ P/X

1/X

X
2
k−4

α6 dα

) 1
2

�
(

X
(logX)A

) 1
2
(

X1+ 2
k +X

2
k−4 ·

(
1
X

)−5
) 1

2

�
(

X
(logX)A

) 1
2 (

X
2
k +1
) 1

2
=

X
1
2

(logX)
A
2

X
1
2+

1
k =

X1+ 1
k

(logX)
A
2
= o(X1+ 1

k )
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for all A > 0.

Now we need an estimation for B2: noting that

1+ |α|X �


1 if |α| ≤ 1

X

|α|X if |α| ≥ 1
X ,

in this case we use Theorem B.2,

B2 =
∫
M
|U1(λ1α)−T1(λ1α)||T2(λ2α)||T2(λ3α)||Tk(λ4α)|dα

�
∫ 1/X

0
|T2(λ2α)||T2(λ3α)||Tk(λ4α)|dα +X

∫ P/X

1/X
α|T2(λ2α)||T2(λ3α)||Tk(λ4α)|dα

�
∫ 1/X

0
X

1
2 X

1
2 X

1
k dα +X X−

1
2 X−

1
2 X

1
k−1

∫ P/X

1/X

α

α3 dα

�X
1
k = o

(
X

1
k +1
)
.

Bound for J4

The computations on J3 are similar to and simpler than the corresponding one on J4, so we will

skip them. Using the triangle inequality and (1.5),

J4 =
∫
M

S1(λ1α)S2(λ2α)(S2(λ3α)−T2(λ3α))Tk(λ4α)Kη(α)e(−ωα)dα

�η
2
∫
M
|S1(λ1α)||S2(λ2α)||S2(λ3α)−T2(λ3α)||Tk(λ4α)|dα

≤η
2
∫
M
|S1(λ1α)||S2(λ2α)||S2(λ3α)−U2(λ3α)||Tk(λ4α)|dα

+η
2
∫
M
|S1(λ1α)||S2(λ2α)||U2(λ3α)−T2(λ3α)||Tk(λ4α)|dα

=η
2(A4 +B4),

say. Using the trivial inequality |S2(α)| � X
1
2 , Theorem B.1 and then the Cauchy-Schwarz in-

equality,

A4�X
1
2 X

1
k

∫
M
|S1(λ1α)||S2(λ3α)−U2(λ3α)|dα

�X
1
2 X

1
k

(∫
M
|S1(λ1α)|2dα

) 1
2
(∫

M
|S2(λ3α)−U2(λ3α)|2dα

) 1
2

.

Using Theorem B.3 and Lemmas B.11-B.12, for any fixed A,

A4� X
1
2+

1
k (X logX)

1
2 (logX)−

A
2 = X1+ 1

k (logX)
1
2−

A
2 = o

(
X

1
k +1
)

as long as A > 1.
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As for A2 we used in the estimation above Lemma B.11 that has two more terms, but also in

this case these terms are negligible if we want to meet the hypothesis of Lemma B.12: in fact it

requires that

X1− 5
12+ε ≤ X

P
≤ X

and this is consistent with the choice we will make in (2.4).

Again using Theorem B.2,

B4 =
∫
M
|S1(λ1α)||S2(λ2α)||U2(λ3α)−T2(λ3α)||Tk(λ4α)|dα

�
∫ 1/X

0
|S1(λ1α)||S2(λ2α)||Tk(λ4α)|dα +X

∫ P/X

1/X
α|S1(λ1α)||S2(λ2α)||Tk(λ4α)|dα.

Remembering that |α| ≤ P
X on M and using the Cauchy inequality, trivial bounds, Theorem

B.3 and Lemma B.4, we have

B4�X X
1
2 X

1
k

1
X
+X X

1
k

(∫ P/X

1/X
|S1(α)|2dα

) 1
2
(∫ P/X

1/X
α

2|S2(α)|2dα

) 1
2

�X
1
2+

1
k +X1+ 1

k (X logX)
1
2

(∫ P/X

1/X
α

4dα

) 1
4
(∫ P/X

1/X
|S2(α)|4dα

) 1
4

�X
1
2+

1
k +X

3
2+

1
k (logX)

1
2

(
P
X

) 5
4

X
1
4 (logX)

1
2 = X

1
2+

1
k P

5
4 logX .

We assume

P≤ X
2
5−ε , (2.4)

so that P
5
4 = o(X

1
2 / logX) which, with the upper bound for B4 here above, ensures that

B4 = o(X1+1/k).

Bound for J5

In order to provide an estimation for J5, we use (1.5),

J5�η
2
∫
M
|S1(λ1α)||S2(λ2α)||S2(λ3α)||Sk(λ4α)−Tk(λ4α)|dα

and then the arithmetic-geometric inequality (ab≤ a2 +b2):

J5�η
2

3

∑
j=2

(∫
M
|S1(λ1α)||S2(λ jα)|2|Sk(λ4α)−Tk(λ4α)|dα

)
.

The two terms may be estimated in the same way and produce the same upper bound. We

show the details of the bound only for the case j = 2:

η
2
∫
M
|S1(λ1α)||S2(λ2α)|2|Sk(λ4α)−Tk(λ4α)|dα
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�η
2
∫
M
|S1(λ1α)||S2(λ2α)|2|Sk(λ4α)−Uk(λ4α)|dα

+η
2
∫
M
|S1(λ1α)||S2(λ2α)|2|Uk(λ4α)−Tk(λ4α)|dα

=η
2(A5 +B5),

say. Using trivial estimates,

A5� X
∫
M
|S2(λ2α)|2|Sk(λ4α)−Uk(λ4α)|dα

then using the Cauchy–Schwarz inequality, for any fixed A > 2, by Lemmas B.4, B.11 and B.12

we have

A5�X
(∫

M
|S2(λ2α)|4dα

) 1
2
(∫

M
|Sk(λ4α)−Uk(λ4α)|2dα

) 1
2

�X X
1
2 logX

P
X

Jk

(
X ,

X
P

) 1
2

�A X1+ 1
k (logX)1− A

2 = o
(

X
1
k +1
)

provided that X
P ≥ X1− 5

6k+ε (condition of Lemma B.12), that is,

(logX)A�A P≤ X
5
6k−ε . (2.5)

Now we turn to B5, using Theorem B.2:

B5�
∫ 1/X

0
|S1(λ1α)||S2(λ2α)|2dα +X

∫ P/X

1/X
α|S1(λ1α)||S2(λ2α)|2dα.

Using trivial estimates and Lemma B.4

B5�
1
X
(X ·X)+X

P
X

(∫ P/X

1/X
|S1(λ1α)|2dα ·

∫ P/X

1/X
|S2(λ2α)|4dα

) 1
2

�X +P(X logX ·X log2 X)
1
2

=X +PX(logX)
3
2 .

The case j = 3 can be estimated in the same way, then we need

P = o
(

X
1
k−ε

)
,

and, summing up with (2.5),

P≤ X
5
6k−ε . (2.6)

Collecting all the bounds for P, that is, (2.3), (2.4), (2.6) we can take

P≤min
(

X
2
5−ε ,X

5
6k−ε

)
. (2.7)

In fact, if we consider (2.4) and (2.6), we should choose the most restrictive condition between

the two: if k ≤ 25
12 , P = X

2
5−ε , otherwise, if 25

12 < k < 8
3 , P = X

5
6k−ε .
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2.2 Trivial arc

By the arithmetic-geometric mean inequality and the trivial bound for Sk(λ4α), we see that

|I (η ,ω, t)| �
∫ +∞

R
|S1(λ1α)S2(λ2α)S2(λ3α)Sk(λ4α)Kη(α)|dα

�X
1
k

3

∑
j=2

∫ +∞

R
|S1(λ1α)| |S2(λ jα)|2Kη(α)dα.

The two terms may be estimated in the same way and produce the same upper bound. We

show the details of the bound only for the case j = 2:

X
1
k

∫ +∞

R
|S1(λ1α)| |S2(λ jα)|2Kη(α)dα

�X
1
k

(∫ +∞

R
|S1(λ1α)|2Kη(α)dα

) 1
2
(∫ +∞

R
|S2(λ2α)|4Kη(α)dα

) 1
2

�X
1
k

(∫ +∞

R

|S1(λ1α)|2

α2 dα

) 1
2
(∫ +∞

R

|S2(λ2α)|4

α2 dα

) 1
2

= X
1
k C

1
2
1 C

1
2
2 ,

say. Using the PNT and the periodicity of S1(α), we have

C1 =
∫ +∞

R

|S1(λ1α)|2

α2 dα �
∫ +∞

λ1R

|S1(α)|2

α2 dα

� ∑
n≥|λ1|R

1
(n−1)2

∫ n

n−1
|S1(α)|2dα � X logX

R
. (2.8)

Now using Lemma B.4,

C2 =
∫ +∞

R

|S2(λ2α)|4

α2 dα �
∫ +∞

λ1R

|S2(α)|4

α2 dα

� ∑
n≥|λ1|R

1
(n−1)2

∫ n

n−1
|S2(α)|4dα � X log2 X

R
. (2.9)

Collecting (2.8) and (2.9),

|I (η ,ω, t)| � X
1
k

(
X logX

R

) 1
2
(

X log2 X
R

) 1
2

� X1+ 1
k (logX)

3
2

R
.

Hence, remembering that |I (η ,ω, t)| must be o
(

η2X
1
k +1
)

, i.e. little-o of the main term, the

choice

R =
log2 X

η2 (2.10)

is admissible1.

1We could also take R = log
3
2 +ε X
η2 but (2.10) is sufficient for our purpose.
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2.3 The minor arc

In [29] Lemma 2.3 it is proven that the measure of the set where |S1(λ1α)| 12 and |S2(λ2α)| are

both large for α ∈ m is small, exploiting the fact that the ratio λ1/λ2 is irrational. The idea is to

reach the widest k-range, assuming k as a parameter from which all other parameters depend and

adjusting all them retrospectively.

In this section we have chosen to leave the parameters free. We will call (1,d) the k-range

and a(k), b(k), c(k) the parameters that will determine the choices of η and the link between the

choice of X and the convergent of the fraction λ1/λ2. This choice reflects the work procedure

followed to find the values of the parameters a posteriori and may help the reader to understand

the choice. The following lemma is not true for each parameter choice, but only for a subset of

them where the optimum values are chosen. The parameters are:

d =
8
3
,

1
a(k)

= max
(

5
9
,
4+3k

9k

)
, b(k) = max

(
2
9
,
3k−2

9k

)
, c(k) = min

(
1
18

,
8−3k

18k

)
.

(2.11)

Now, following the lines of Lemma 2.3 of [29], we have

Lemma 2.2. Let 1 < k < d. Assume that λ1/λ2 is irrational and let X = qa(k), where q is the

denominator of a convergent of the continued fraction for λ1/λ2. Let

V (α) = min(|S1(λ1α)|, |S2(λ2α)|2).

Then

sup
α∈m

V (α)� X1− b(k)
2 +ε .

Proof. Let α ∈ m and Q = Xb(k) ≤ P. By rational approximation Dirichlet’s theorem (Theorem

A.3), there exist integers ai,qi with 1≤ qi ≤ X
Q and (ai,qi) = 1, such that

|λiαqi−ai| ≤
Q
X

for i = 1,2. We remark that a1a2 6= 0, for otherwise we would have α ∈M. Now suppose that

qi ≤ Q for i = 1,2. In this case we get

a2q1
λ1

λ2
−a1q2 = (λ1αq1−a1)

a2

λ2α
− (λ2αq2−a2)

a1

λ2α

and hence ∣∣∣∣a2q1
λ1

λ2
−a1q2

∣∣∣∣≤ 2
(

1+
∣∣∣∣λ1

λ2

∣∣∣∣) Q2

X
<

1
2q

(2.12)
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for sufficiently large X . In fact, the last inequality is true due to the choice of the parameters in

(2.11): being q < Q, we need

Q3 < X ⇒ X3b(k) < X ⇒ 3b(k)< 1,

and this is always true: max
(2

3 ,
3k−2

3k

)
< 1.

Then, from the law of best approximation (Theorem A.4)

X
1

a(k) = q≤ |a2q1|

so, recalling the definition of m, we obtain

|a2q1| � q1q2R≤ Q2R≤ X
1

a(k)−ε (2.13)

which is absurd2 if η = X−c(k) and R = log2 X
η2 . Hence either q1 > Q or q2 > Q.

Assuming that q1 > Q and using Lemma B.13:

V (α)≤ |S1(λ1α)| � sup
Q<q1<

X
Q

(
X
√

q1
+
√

Xq1 +X
4
5

)
log4 X � X1− b(k)

2 +ε . (2.14)

Assuming that q2 > Q and using Lemma B.14:

V (α)≤ |S2(λ2α)|2� X1+2ε sup
Q<q2<

X
Q

(
1
q2

+
1

X
1
4
+

q2

X

) 1
2

� X1− b(k)
2 +ε . (2.15)

Again, both inequalities in (2.14) and (2.15) are true due to the appropriate choice of the

parameters in (2.11), and this completes the proof of the Lemma.

If we want that the last inequalities in both (2.12) and (2.13) are true, we need the following

conditions on a(k), b(k) and c(k):

2b(k)−1≤− 1
a(k)

(2.16)

2b(k)+2c(k)≤ 1
a(k)

. (2.17)

Now let

X1 =

{
α ∈

[
P
X
,R
]

: |S1(λ1α)| ≤ |S2(λ2α)|2
}

X2 =

{
α ∈

[
P
X
,R
]

: |S1(λ1α)| ≥ |S2(λ2α)|2
}

so that
[ P

X ,R
]
= X1∪X2 and

|I (η ,ω,m)| �
(∫

X1

+
∫

X2

)
|S1(λ1α)||S2(λ2α)||S2(λ3α)||Sk(λ4α)|Kη(α)dα.

2The choice of the parameters in (2.11) is made in order to get a contradiction.
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If α ∈X1, we have |S1(λ1α)| ≤ |S2(λ2α)|2, then

|I (η ,ω,X1)| �
∫

X1

|S1(λ1α)||S2(λ2α)||S2(λ3α)||Sk(λ4α)|Kη(α)dα

�(max |S1(λ1α)|)
1
2

(∫
X1

|S1(λ1α)|2Kη(α)dα)

)1/4

3

∏
i=2

(∫
X1

|S2(λiα)|4Kη(α)dα)

)1/4(∫
X1

|Sk(λ4α)|4Kη(α)|dα)

)1/4

�X
1
2−

b(k)
4 +ε(ηX logX)

1
4 (ηX log2 X)

1
4 (ηX log2 X)

1
4

(
ηXε max(X

2
k ,X

4
k−1)

) 1
4

=ηX
5
4−

b(k)
4 +ε max(X

1
2k ,X

1
k−

1
4 )

using Lemma B.10.

In this case |I (η ,ω,m)|= o
(

X1+ 1
k−ε

)
only if

η = ∞

(
max(X

1
4−

1
2k−

b(k)
4 +ε ,X−

b(k)
4 )
)

then we can add the following condition on c(k):

−c(k)≥max
(

1
4
− 1

2k
− b(k)

4
,−b(k)

4

)
.

It is clear that for 1 < k < 2, η is a negative power of X independently from the value of k as

b(k)> 0. The we have the following most restrictive condition for k ≥ 2:

−c(k)≥ 1
4
− 1

2k
− b(k)

4
.

If α ∈X2, we have |S1(λ1α)| ≥ |S2(λ2α)|2, then

|I (η ,ω,X2)| �
∫

X2

|S1(λ1α)||S2(λ2α)||S2(λ3α)||Sk(λ4α)|Kη(α)dα

�max |S2(λ2α)|
(∫

X2

|S1(λ1α)|2Kη(α)dα)

)1/2

(∫
X2

|S2(λ3α)|4Kη(α)dα)

)1/4(∫
X2

|Sk(λ4α)|4Kη(α)dα)

)1/4

�X
1
2−

b(k)
4 +ε(ηX logX)

1
2 (ηX log2 X)

1
4

(
ηXε max(X

2
k ,X

4
k−1)

) 1
4

=ηX
5
4−

b(k)
4 +2ε max(X

1
2k ,X

1
k−

1
4 ).

As in the previous case |I (η ,ω,m)|= o
(

X1+ 1
k−ε

)
only if

η = ∞

(
max(X

1
4−

1
2k−

b(k)
4 +ε ,X−

b(k)
4 )
)

(2.18)

then we can add the following condition on c(k):

−c(k)≥max
(

1
4
− 1

2k
− b(k)

4
,−b(k)

4

)
.
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essentially the same condition we got for α ∈X1.

Collecting (2.16), (2.17) and (2.18) we get d = 8
3 , the maximum value we can have for k. This

is justified as follows: neglecting the log-powers and recalling the choice of P(X) in (2.7) and

R(X) in (2.10), we must maximize k subject to the constraints:

a(k)≥ 1

0≤ b(k)≤min
(2

5 ,
5
6k

)
c(k)> 0

2b(k)−1≤− 1
a(k)

2b(k)+2c(k)≤ 1
a(k)

−c(k)≥max
(

1
4 −

1
2k −

b(k)
4 ,−b(k)

4

)
which is a linear optimization problem in the variables 1

k , 1
a(k) , b(k), c(k). The solution of this

problem is

1
a(k)

= max
(

5
9
,
4+3k

9k

)
, b(k) = max

(
2
9
,
3k−2

9k

)
, c(k) = min

(
1

18
,
8−3k

18k

)
,

for k < 8
3 .

2.4 The minor arc using the Harman technique

We start again from the idea that the measure of the set where |S1(λ1α)| 12 and |S2(λ2α)| are

both large for α ∈ m is suitably bounded, if the ratio λ1/λ2 is irrational. We now state some

considerations about Lemmas B.13 and B.14 that allow us to introduce two more corollaries to

those Lemmas.

By B.13, S1(α)�
(

X√
q +
√

Xq+X
4
5

)
log4 X , then it is easy to check out that:

• if q≤ X
2
5 the main term is X1+εq−

1
2

• if X
2
5 ≤ q≤ X

3
5 , the main term is X

4
5+ε

• if q≥ X
3
5 , the main term is X

1
2+εq

1
2 .

By B.14, S2(α)�ε X
1
2+ε

(
1
q +

1

X
1
4
+ q

X

) 1
4
, then it is easy to check out that:

• if q≤ X
1
4 the main term is X

1
2+εq−

1
4

• if X
1
4 ≤ q≤ X

3
4 , the main term is X

7
16+ε

• if q≥ X
3
4 , the main term is X

1
4+εq

1
4 .
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From the considerations above and by the fact that, as we will see later, we will need an

estimate for low values of q we need corollaries B.15 and B.16. Let us now split m into subsets

m1, m2 and m∗ =m\(m1∪m2), where

m1 = {α ∈m : |S1(λ1α)| ≤ X1−t+ε}

m2 = {α ∈m : |S2(λ2α)| ≤ X
1
2−u+ε}

remembering that Corollaries B.15 and B.16 hold respectively for 0 ≤ t ≤ 1
5 and 0 ≤ u ≤ 1

16 . We

make again the choice to follow the work procedure leaving the parameters t and u free.

Using the Hölder inequalities, Lemma B.10 and the definition of m1 we obtain

|I (η ,ω,m1)| �
∫
m1

|S1(λ1α)||S2(λ2α)||S2(λ3α)||Sk(λ4α)|Kη(α)dα

�
(

max
α∈m1
|S1(λ1α)|

) 1
2
(∫

m1

|S1(λ1α)|2Kη(α)dα)

)1/4

3

∏
i=2

(∫
m1

|S2(λiα)|4Kη(α)dα)

)1/4(∫
m1

|Sk(λ4α)|4Kη(α)dα)

)1/4

�X
1
2−

t
2+ε(ηX logX)

1
4 (ηX log2 X)

1
2

(
ηXε max(X

2
k ,X

4
k−1)

) 1
4

=ηX
1
2−

t
2+

3
4+ε max(X

1
2k ,X

1
k−

1
4 ). (2.19)

by Corollaries B.15 and B.16.

Using the Hölder inequalities, Lemma B.10 and the definition of m2 we obtain

|I (η ,ω,m2)| �
∫
m2

|S1(λ1α)||S2(λ2α)||S2(λ3α)||Sk(λ4α)|Kη(α)dα

�max
α∈m2
|S2(λ2α)|

(∫
m2

|S1(λ1α)|2Kη(α)dα)

)1/2

(∫
m2

|S2(λ3α)|4Kη(α)dα)

)1/4(∫
m2

|Sk(λ4α)|4Kη(α)dα)

)1/4

�X
1
2−u+ε(ηX logX)

1
2 (ηX log2 X)

1
4

(
ηXε max(X

2
k ,X

4
k−1)

) 1
4

=ηX
1
2−u+ 3

4+ε max(X
1
2k ,X

1
k−

1
4 ). (2.20)

Both (2.19) and (2.20) must be o
(

η2X1+ 1
k

)
, consequently, as t > 0 and u > 0, it is clear that

for 1 < k < 2, η is a negative power of X independently from the value of k. Then we have the

following conditions for k ≥ 2:

η = ∞

(
X

1
4−

t
2−

1
2k+ε

)
η = ∞

(
X

1
4−u− 1

2k+ε

)
.
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It remains to discuss the set m∗ in which the following bounds hold simultaneously

|S1(λ1α)|> X1−t+ε , |S2(λ2α)|> X
1
2−u+ε ,

P
X

= min
(

X−
3
5 ,X

5
6k−1

)
< |α| ≤ log2 X

η2 .

Following the dyadic dissection argument shown by Harman in [22] we divide m∗ into disjoint

sets E(Z1,Z2,y) in which, for α ∈ E(Z1,Z2,y), we have

Z1 < |S1(λ1α)| ≤ 2Z1, Z2 < |S2(λ2α)| ≤ 2Z2, y < |α| ≤ 2y

where Z1 = 2k1X1−t+ε , Z2 = 2k2X
1
2−u+ε and y = 2k3X−

3
5−ε for some non-negative integers k1,k2

and k3.

It follows that the disjoint sets are, at most,� log3 X . Let us define A a shorthand for the sets

E(Z1,Z2,y); we have the following result about the Lebesgue measure of A following the same

lines of Lemma 6 in [36].

In the following Lemma, it is crucial that both the integers a1 and a2 appearing in (2.21) below

do not vanish: in fact, if a1 = 0, say, then q1 = 1 and |α| is so small that it can not belong to m∗.

In order to use the Harman technique then, we are forced to be far from the major arc in which we

would have a1a2 = 0. As we will see later, after setting the parameters t and u, we will not have a

gap between the major and the minor arc, so it will not be necessary to introduce an intermediate

arc.

Lemma 2.3. We have

µ(A )� yX2+4u+2t+3εZ−2
1 Z−4

2

where µ(·) denotes the Lebesgue measure.

Proof. If α ∈ A , by Corollaries B.15 and B.16 there are coprime integers (a1,q1) and (a2,q2)

such that

1≤ q1�

(
X1+ε/2

Z1

)2

, |q1λ1α−a1| �

(
X

1
2+ε/2

Z1

)2

1≤ q2�

(
X

1
2+ε/4

Z2

)4

, |q2λ2α−a2| � X−1

(
X

1
2+ε/4

Z2

)4

. (2.21)

We remark that a1a2 6= 0 otherwise we would have α ∈M. In fact, if a1 = 0 recalling the

definitions of Z1 and (2.21), we get

α � q−1
1

(
X

1
2+ε/2

Z1

)2

� X
X2−2t+ε

= X−1+2t−ε ; (2.22)



2.4. The minor arc using the Harman technique 27

otherwise, if a2 = 0 recalling the definitions of Z2 and (2.21), we get

|α| � q−1
2 X−1

(
X

1
2+ε/4

Z2

)4

� X
X2−4u+3ε

= X−1+4u−3ε .

It means that, on the minor arc

|α| �max
(
X−1+2t−ε ,X−1+4u−3ε

)
.

We wonder now if there is a gap between the end of the major arc and the beginning of the

minor arc, i.e. if

X−1+2t−ε <
P
X

= min
(

X−
3
5 ,X

5
6k−1

)
or X−1+4u−3ε <

P
X

= min
(

X−
3
5 ,X

5
6k−1

)
. (2.23)

This possibility can be evaluated only afterwards, after finding the parameters t and u and the

maximum value for k. Both with the results that we get in this section (2.27), and with those we

will get in (2.29) in which we improve the estimate, we can state that there will be no gap between

the two arcs.

Now, we can further split m∗ into sets I(Z1,Z2,y,Q1,Q2) where Q j ≤ q j ≤ 2Q j on each set.

Note that ai and qi are uniquely determined by α . In the opposite direction, for a given quadruple

a1, q1, a2, q2 the inequalities (2.21) define an interval of α of length

µ(I)�min

Q−1
1

(
X

1
2+ε/2

Z1

)2

,Q−1
2 X−1

(
X

1
2+ε/4

Z2

)4
 .

Taking the geometric mean (min(a,b)≤
√

a
√

b) we can write

µ(I)� Q−
1
2

1 Q−
1
2

2 X−
1
2

(
X

1
2+ε/2

Z1

)(
X

1
2+ε/4

Z2

)2

� X1+ε

Q
1
2
1 Q

1
2
2 Z1Z2

2

. (2.24)

Now we need a lower bound for Q
1
2
1 Q

1
2
2 : by (2.21)∣∣∣∣a2q1

λ1

λ2
−a1q2

∣∣∣∣= ∣∣∣∣ a2

λ2α
(q1λ1α−a1)−

a1

λ2α
(q2λ2α−a2)

∣∣∣∣
� q2|q1λ1α−a1|+q1|q2λ2α−a2|

� Q2

(
X

1
2+ε/2

Z1

)2

+Q1X−1

(
X

1
2+ε/4

Z2

)4

.

Remembering that Q1�
(

X1+ε/2

Z1

)2
, Q2�

(
X

1
2 +ε/4

Z2

)4

, Z1� X1−t+ε , Z2� X
1
2−u+ε ,

∣∣∣∣a2q1
λ1

λ2
−a1q2

∣∣∣∣�
(

X
1
2+ε/4

X
1
2−u+ε

)4(
X

1
2+ε/2

X1−t+ε

)2

+

(
X1+ε/2

X1−t+ε

)2

X−1

(
X

1
2+ε/4

X
1
2−u+ε

)4
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� X2+εX1+ε

X2−4u+4εX2−2t+2ε
� X−1+4u+2t−4ε . (2.25)

We recall that q = X1−4u−2t is a denominator of a convergent of λ1/λ2. Hence by (2.25)

Legendre’s law of best approximation (see Appendix A.4) implies that |a2q1| ≥ q and by the same

token, for any pair α , α ′ having distinct associated products a2q1 (see [49], Lemma 2),

|a2(α)q1(α)−a2(α
′)q1(α

′)| ≥ q;

thus, by the pigeon-hole principle, there is at most one value of a2q1 in the interval [rq,(r+1)q) for

any positive integer r. Hence a2q1 determines a2 and q1 to within Xε possibilities (see the upper

bound for the divisor function in Appendix, Theorem A.8) and consequently also a2q1 determines

a1 and q2 to within Xε possibilities from (2.25).

Hence we got a lower bound for q1q2, remembering that in our shorthand Q j ≤ q j ≤ 2Q j:

q1q2 = a2q1
q2

a2
� rq
|α|
� rqy−1

for the quadruple under consideration. As a consequence we obtain from (2.24), that the total

length of the interval I(Z1,Z2,y,Q1,Q2) with a2q1 ∈ [rq,(r+1)q) does not exceed

µ(I)� X1+2εZ−1
1 Z−2

2 r−
1
2 q−

1
2 y

1
2 .

Now we need a bound for r: inside the interval [rq,(r + 1)q), rq ≤ |a2q1| and, in turn from

(2.21), a2� q2|α|, then

rq� q1q2|α| �

(
X1+ε/2

Z1

)2(
X

1
2+ε/4

Z2

)4

y� yX4+2εZ−2
1 Z−4

2

⇒ r� q−1yX4+2εZ−2
1 Z−4

2 .

Now, we sum on every interval to get an upper bound for the measure of A :

µ(A )� X1+2εZ−1
1 Z−2

2 q−
1
2 y

1
2 ∑

1≤r�q−1yX4+2ε Z−2
1 Z−4

2

r−
1
2

By standard estimation we obtain

∑
1≤r�q−1yX4+2ε Z−2

1 Z−4
2

r−
1
2 � (q−1yX4+2εZ−2

1 Z−4
2 )

1
2

then

µ(A )� yX3+3εZ−2
1 Z−4

2 q−1� yX3+3εZ−2
1 Z−4

2 X−1+4u+2t � yX2+4u+2t+3εZ−2
1 Z−4

2 .

This concludes the proof of Lemma 2.3.



2.4. The minor arc using the Harman technique 29

Using Lemma 2.3 we finally are able to get a bound for I (η ,ω,A ):

I (η ,ω,A ) =
∫

A
|S1(λ1α)||S2(λ2α)||S2(λ3α)||Sk(λ4α)|Kη(α)dα

�
(∫

A
|S1(λ1α)S2(λ2α)|2Kη(α)dα

) 1
2
(∫

A
|S2(λ3α)|4Kη(α)dα

) 1
4

(∫
A
|Sk(λ4α)|4Kη(α)dα

) 1
4

�
(

min
(

η
2,

1
y2

)) 1
2 (
(Z1Z2)

2
µ(A )

) 1
2
(
ηX log2 X

) 1
4
(

ηXε max(X
2
k ,X

4
k−1)

) 1
4

�
(

min
(

η
2,

1
y2

)) 1
2

Z1Z2(yX2+4u+2t+4εZ−2
1 Z−4

2 )
1
2 η

1
2 X

1
4+2ε max(X

1
2k ,X

1
k−

1
4 )

�
(

min
(

η
2,

1
y2

)) 1
2

y
1
2 Z−1

2 X1+2u+t+2ε
η

1
2 X

1
4+2ε max(X

1
2k ,X

1
k−

1
4 )

�
(

min
(

η
2,

1
y2

)) 1
2

y
1
2 X

1
2+3u+t+2ε

η
1
2 X

1
4+2ε max(X

1
2k ,X

1
k−

1
4 )

�ηX
3
4+3u+t+4ε max(X

1
2k ,X

1
k−

1
4 ).

Remark: if η < 1
y , y

1
2 η

3
2 < η ; if η > 1

y , y−
1
2 η

1
2 < η .

Again, (2.26) must be o
(

X1+ 1
k−ε

)
and even in this case, if 1 < k < 2, η is a negative power

of X independently from the value of k. The last condition on η is:

η = ∞

(
X−

1
4−

1
2k+3u+t+ε

)
. (2.26)

Collecting all the conditions (2.19), (2.20), (2.26) and the condition given by corollaries B.15

and B.16, we get the following linear optimization system: setting x = 1
k and let w be the exponent

of η we would like to optimize,

x≤ 1; w≥ 0; t ≤ 1
5 ; u≤ 1

16

−w≥ 1
4 −

x
2 −

t
2

−w≥ 1
4 −

x
2 −u

−w≥−1
4 −

x
2 +3u+ t.

Solving the system, it turns out that

u =
1
16

t =
1
8

(2.27)

(and consequently X = q2) are the optimal values; the maximum k-range is
(
1, 8

3

)
. In this case we

do not get any improvement using Harman technique for the range of k, as the conditions (2.19),

(2.20) are more restrictive than (2.26).
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However, if we consider the value of c(k) in (2.11) and the condition on η by specifying the

parameters t and u in (2.19) and (2.20) we can notice an improvement in estimation:

η = ∞

(
max

(
X−

1
16+ε ,X

3k−8
16k +ε

))
then

ψ(k) = min
(

1
16

,
8−3k

16k

)
> min

(
1

18
,
8−3k

18k

)
.

2.5 Further improvements

We tried to improve the estimations on (2.19) and (2.20) using the bounds of Bourgain [3], Theo-

rem 10, and Hölder inequalities in a different way, but we could not get any better estimation. In

fact, by Bourgain, Theorem 10, ∫ 1

0
|S2(α)|6dα � X2+ε

but we could reach the same result using trivial estimation for S2(α) (see (B.1)) and (B.4):∫ 1

0
|S2(α)|6dα � X ·X log2 X .

This fact does not surprise us because Bourgain himself states that Theorem 10 of [3] improves

Hua’s Lemma only for greater powers of S2(α).

In a recent work of Wang & Yao [48] concerning a prime a three square of primes, the authors

shows that it is possible for the special case k = 2 reach the exponent − 1
14 for η .

In their paper they make use of a new estimation formula firstly introduced by Harman ([22],

sections 8 and 9), where the exponent 7/16 in the estimation of S2(α) is improved to 3/7. The

idea is to use ρ(m) as a characteristic function for the set of primes, in place of logn or Λ(n), that

satisfy:

ρ(m)�


1 if m is prime

0 otherwise

and

∑
m≤T

ρ(m)� T
logX

for X
1
4 ≤ T ≤ X

1
2 .

This approach leads to the construction of two functions, using Buchstab’s identity, that can be

used as a function and do not change the treatment of the major arc. Wang and Yao in their work
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proved [Lemma 1,[48]], following the proof of Lemma 1 in [23] where g(α) is the exponential

sum defined with the characteristic function above:

g(α) = ∑
m∈T

ρ(m)e(αm2)

where T =
[

1
3 X

1
2 , 2

3 X
1
2

)
.

The estimation in our notation is:

S2(α)� X
3
7+ε +X

1
2+ε

(
1
q
+

q
X

) 1
4

(2.28)

and in this situation we can replace Corollary B.16 with the following:

Corollary 2.4. Suppose that X
1
2 ≥ Z ≥ X

1
2−

1
14+ε and |S2(λ2α)| > Z. Then there are coprime

integers (a,q) = 1 satisfying

1≤ q≤

(
X

1
2+ε

Z

)4

, |qλ2α−a| � X−1

(
X

1
2+ε

Z

)4

.

The proof follows the same steps of Corollary B.16 but it will use the estimation (2.28). Using

such corollary (2.19) and (2.20) can be improved choosing

u =
1
14

t =
1
7

(2.29)

in place of u = 1
16 and t = 1

8 and after a linear optimization we get a wider k-range and we can

improve the approximation: the maximum k-range became
(
1, 14

5

)
and the exponent of η can be

replaced with

ψ(k) = min
(

1
14

,
14−5k

28k

)
> min

(
1
16

,
8−3k

16k

)
.

Corollary 2.4 does not affect Lemma 2.3 as the Harman technique on the arc m∗ can be used

with X = q
7
3 in place of X = q2. However, after the new parameter choices in (2.29) and the new

k-range, we may wonder whether a gap has been created between the major and the minor arc.

Also in this case, there is no need to introduce an intermediate arc because from (2.23),

X−1+ 2
7+2ε <

P
X

= min
(

X−
3
5 ,X

5
6k−1

)
for every choice of k in

(
1, 14

5

)
.

Finally, not only the range for k can be enlarged, but also that for the value of k between 1 and
8
3 we have a better estimation.

Using the work of Kumchev [25] it is also possible to replace the exponents 4 in the right side

of both inequalities of Corollary 2.4 with 2, but it does not lead to an improvement on the range

of k because one still requires Z ≥ X3/7.
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Wang & Yao in [48] have also shown that assuming the hypothesis in k = 2 that both λ1/λ2

and λ1/λ3 are irrational and algebraic, managed to get ψ(2) = 3/40. This is due to the fact those

assumptions enable them to use the functions constructed in Harman and Kumchev [24].

These techniques could also be applied to our case and may be the beginning of further inves-

tigations.



3 Three squares of primes and one k-th

power of prime

The second problem studied is very similar to the first with the only difference of having three

squares of primes and a k-th power. This little change lowers the density of the problem making it

slightly more complicated: let k > 1 be a real number and assume that λ1,λ2,λ3,λ4 are non-zero

real numbers, not all of the same sign and with the ratio λ1/λ2 irrational. Let ω be a real number.

We would like to find a range for k where

|F(p1, p2, p3, p4,2,2,2,k,λ1,λ2,λ3,λ4)−ω|= |λ1 p2
1 +λ2 p2

2 +λ3 p2
3 +λ4 pk

4−ω| ≤ η (3.1)

has infinitely many solutions in prime variables p1, p2, p3, p4 for some η → 0 as a small negative

power of the largest prime, as in (1.4).

We will prove the following:

Theorem 3.1. Assume that 1 < k < 7/6, λ1,λ2,λ3 and λ4 be non-zero real numbers, not all of the

same sign, that λ1/λ2 is irrational and let ω be a real number. The inequality∣∣λ1 p2
1 +λ2 p2

2 +λ3 p2
3 +λ4 pk

4−ω
∣∣≤ (M(p,k))−

7−6k
14k +ε

has infinitely many solutions in prime variables p1, p2, p3, p4 for any ε > 0.

Let

P(X) = {(p1, p2, p3, p4) : δX < p2
1, p2

2, p2
3 < X , δX < pk

4 < X}

and let us define

I (η ,ω,X) =
∫
X

S2(λ1α)S2(λ2α)S2(λ3α)Sk(λ4α)Kη(α)e(−ωα)dα

where X is a measurable subset of R.

From the definitions of the S j(λiα) and performing the Fourier transform for Kη(α), we get

I (η ,ω,R) = ∑
(p1,...,p4)∈P(X)

log p1 log p2 log p3 log p4 max(0,η−|F(p1, p2, p3, p4,2,2,2,k)−ω|)

33
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≤ η(logX)4N (X),

where N (X) actually denotes the number of solutions of the inequality (3.1) with (p1 p2 p3 p4) ∈

P(X). In other words I (η ,ω,R) provides a lower bound for the quantity we are interested in,

therefore for the proof of the theorem it is sufficient to prove that I (η ,ω,R) > 0 on a suitable

sequence of values of X with limit infinity.

As in the first problem, we decompose R into subsets such that R =M ∪ m ∪ t where M is

the major arc, m is the minor arc and t is the trivial arc. The decomposition is the following:

M=

[
−P

X
,

P
X

]
m=

[
P
X
,R
]
∪
[
−R,−P

X

]
t= R\(M∪m)

so that

I (η ,ω,R) = I (η ,ω,M)+I (η ,ω,m)+I (η ,ω, t).

The parameters P = P(X)> 1 and R = R(X)> 1/η are chosen later (see (3.7) and (3.10)) as

well as η = η(X), that, as we explained before, we will take a small negative power of M(p,k)

(and so of X , see (3.23)).

It is necessary to prove that I (η ,ω,m) and I (η ,ω, t) are both o(I (η ,ω,M)). As we will

see, also in this second case we are dealing with, we do not have any gap between the major arc

and the minor arc.

3.1 The major arc

Let us start from the major arc and the computation of the main term. We replace all Sn defined

in (1.6) with the corresponding Tn defined in (1.8). This replacing brings up some errors that we

must estimate by means of Lemma B.11, the Cauchy-Schwarz and the Hölder inequalities.

We have

I (η ,ω,M) =
∫
M

S2(λ1α)S2(λ2α)S2(λ3α)Sk(λ4α)Kη(α)e(−ωα)dα

=
∫
M

T2(λ1α)T2(λ2α)T2(λ3α)Tk(λ4α)Kη(α)e(−ωα)dα

+
∫
M
(S2(λ1α)−T2(λ1α))T2(λ2α)T2(λ3α)Tk(λ4α)Kη(α)e(−ωα)dα

+
∫
M

S2(λ1α)(S2(λ2α)−T2(λ2α))T2(λ3α)Tk(λ4α)Kη(α)e(−ωα)dα

+
∫
M

S2(λ1α)S2(λ2α)(S2(λ3α)−T2(λ3α))Tk(λ4α)Kη(α)e(−ωα)dα

+
∫
M

S2(λ1α)S2(λ2α)S2(λ3α)(Sk(λ4α)−Tk(λ4α))Kη(α)e(−ωα)dα
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=J1 + J2 + J3 + J4 + J5, (3.2)

say.

J1: Main Term

As the reader might expect the main term is given by the summand J1.

Let H(α) = T2(λ1α)T2(λ2α)T2(λ3α)Tk(λ4α)Kη(α)e(−ωα) so that

J1 =
∫
R

H(α)dα +O

(∫ +∞

P/X
|H(α)|dα

)
.

Using the inequality (1.5) and the Theorem (B.1),∫ +∞

P/X
|H(α)|dα �X−

1
2 X−

1
2 X−

1
2 X

1
k−1

η
2
∫ +∞

P/X

dα

α4

�X
1
k−

5
2 η

2 X3

P3 = X
1
k +

1
2 η

2P−3 = o
(

X
1
k +

1
2 η

2
)

provided that P→+∞.

Let D = [(δX)
1
2 ,X

1
2 ]3× [(δX)

1
k ,X

1
k ]; we have∫

R
H(α)dα =

∫
· · ·
∫

D

∫
R

e((λ1t2
1 +λ2t2

2 +λ3t2
3 +λ4tk

4−ω)α)Kη(α)dα dt1dt2dt3dt4

=
∫
· · ·
∫

D
max(0,η−|λ1t2

1 +λ2t2
2 +λ3t2

3 +λ4tk
4−ω)|)dt1dt2dt3dt4.

Apart from trivial changes of sign, there are essentially three cases as in [28]:

1. λ1 > 0, λ2 > 0, λ3 > 0, λ4 < 0

2. λ1 > 0, λ2 > 0, λ3 < 0, λ4 < 0

3. λ1 > 0, λ2 < 0, λ3 < 0, λ4 < 0.

We deal with the second case, the other ones being similar (we warn the reader that here it

may be necessary to adjust the value of δ in order to guarantee the necessary set inclusions): let us

perform the following change of variables: u1 = t2
1 − ω

λ1
(in order to make ω disappear), u2 = t2

2 ,

u3 = t2
3 , u4 = tk

4 . The set D becomes essentially [δX ,X ]4 and let us define D′ = [δX ,(1−δ )X ]4 for

large X . The Jacobian determinant of the change of variables above is
1
4k

u−
1
2

1 u−
1
2

2 u−
1
2

3 u
1
k−1
4 . Then

∫
R

H(α)dα �
∫
· · ·
∫

D′
max(0,η−|λ1u1 +λ2u2 +λ3u3 +λ4u4)|)

du1du2du3du4

u
1
2
1 u

1
2
2 u

1
2
3 u

1− 1
k

4

�X
1
k−

5
2

∫
· · ·
∫

D′
max(0,η−|λ1u1 +λ2u2 +λ3u3 +λ4u4)|)du1du2du3du4.
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Apart from sign, the computation is essentially symmetrical with respect to the coefficients

λ j: we assume, as we may, that |λ4| ≥ max(λ1,λ2,λ3), the other cases being similar. Now, for

j = 1,2,3 let a j =
4|λ4|
|λ j|

, b j =
3
2

a j and D j = [a jδX ,b jδX ]; if u j ∈D j for j = 1,2,3 then

λ1u1 +λ2u2 +λ3u3 ∈ [2|λ4|δX ,8|λ4|δX ]

so that, for every choice of (u1,u2,u3) the interval

[a,b] =
[

1
|λ4|

(−η +(λ1u1 +λ2u2 +λ3u3)) ,
1
|λ4|

(η +(λ1u1 +λ2u2 +λ3u3))

]
is contained in [δX ,(1− δ )X ]. In other words, for u4 ∈ [a,b] the values of λ1u1 +λ2u2 +λ3u3 +

λ4u4 cover the whole interval [−η ,η ]. Hence for any (u1,u2,u3) ∈D1×D2×D3 we have∫ (1−δ )X

δX
max(0,η−|λ1u1 +λ2u2 +λ3u3 +λ4u4|)du4

≥ |λ4|−1
∫

η

−η

max(0,η−|u|)du� η
2.

Finally,∫
R

H(α)dα � η
2X

1
k−

5
2

∫∫∫
D1×D2×D3

du1du2du3� η
2X

1
k−2X3 = η

2X
1
k +

1
2 .

It means that the lower bound for J1 is η2X
1
k +

1
2 , as expected.

Bound for J2

We expect the main term to have the dominant asymptotic behavior, then we shall prove that all

the remaining terms of the sum (3.2) are o
(

η2X
1
k +

1
2

)
.

Retrieving (1.5) and using the triangle inequality,

J2 =
∫
M
(S2(λ1α)−T2(λ1α))T2(λ2α)T2(λ3α)Tk(λ4α)Kη(α)e(−ωα)dα

�η
2
∫
M
|S2(λ1α)−T2(λ1α)||T2(λ2α)||T2(λ3α)||Tk(λ4α)|dα

�η
2
∫
M
|S2(λ1α)−U2(λ1α)||T2(λ2α)||T2(λ3α)||Tk(λ4α)|dα

+η
2
∫
M
|U2(λ1α)−T2(λ1α)||T2(λ2α)||T2(λ3α)||Tk(λ4α)|dα

=η
2(A2 +B2),

say. Using the Cauchy-Schwartz inequality and remembering the definition of M,

A2�
(∫ P/X

−P/X
|S2(λ1α)−U2(λ1α)|2dα

) 1
2
(∫ P/X

−P/X
|T2(λ2α)|2|T2(λ3α)|2|Tk(λ4α)|2dα

) 1
2

;
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then using Lemma B.11 and Lemma B.12,∫ P/X

−P/X
|S2(λ1α)−U2(λ1α)|2dα �P2

X2 J2

(
X ,

X
2P

)
�exp

(
−c1

(
logX

log logX

) 1
3
)
� 1

(logX)A

for any fixed A > 0 and X1− 5
12+ε ≤ X

P ≤ X (conditions of Lemma B.12).

Also in this case, in the estimation above we have neglected the two terms

X2/k−2 log2 X
P/X

+P2/X

of Lemma B.11 as these terms become negligible in order to meet the hypotheses of Lemma B.12.

The first condition on P (with k = 2) is then the following:

X
P
≥ X

7
12+ε ⇒ P≤ X

5
12−ε . (3.3)

Let us complete the estimate for A2:

A2�
(

1
(logX)A

) 1
2
(∫ 1/X

0
|T2(λ2α)|2|T2(λ3α)|2|Tk(λ4α)|2dα

+
∫ P/X

1/X
|T2(λ2α)|2|T2(λ3α)|2|Tk(λ4α)|2dα

) 1
2

.

Remembering Theorem B.1,

A2�
(

1
(logX)A

) 1
2
(∫ 1/X

0
(X

1
2 )2(X

1
2 )2(X

1
k )2dα

+
∫ P/X

1/X

(X−
1
2 )2(X−

1
2 )2(X

1
k−1)2

α6 dα

) 1
2

�
(

1
(logX)A

) 1
2
(∫ 1/X

0
X2+ 2

k dα +
∫ P/X

1/X

X
2
k−4

α6 dα

) 1
2

�
(

1
(logX)A

) 1
2
(

X1+ 2
k +X

2
k−4 ·

(
1
X

)−5
) 1

2

�
(

1
(logX)A

) 1
2 (

X
2
k +1
) 1

2
=

1

(logX)
A
2

X
1
2+

1
k =

X
1
2+

1
k

(logX)
A
2
= o(X

1
2+

1
k )

for all A > 0.

Now we need an estimation for B2: noting that

1+ |α|X �

 1 if |α| ≤ 1
X

|α|X if |α| ≥ 1
X ,
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in this case we use the Theorem B.2,

B2 =
∫
M
|U2(λ1α)−T2(λ1α)||T2(λ2α)||T2(λ3α)||Tk(λ4α)|dα

�
∫ 1/X

0
|T2(λ2α)||T2(λ3α)||Tk(λ4α)|dα

+X
∫ P/X

1/X
α|T2(λ2α)||T2(λ3α)||Tk(λ4α)|dα

�
∫ 1/X

0
X

1
2 X

1
2 X

1
k dα +X X−

1
2 X−

1
2 X

1
k−1

∫ P/X

1/X

α

α3 dα

�X
1
k = o

(
X

1
k +

1
2

)
.

Bound for J4

The computations on J3 are similar and simpler than the corresponding one on J4, so we will skip

them. Using the triangle inequality and (1.5),

J4 =
∫
M

S2(λ1α)S2(λ2α)(S2(λ3α)−T2(λ3α))Tk(λ4α)Kη(α)e(−ωα)dα

�η
2
∫
M
|S2(λ1α)||S2(λ2α)||S2(λ3α)−T2(λ3α)||Tk(λ4α)|dα

≤η
2
∫
M
|S2(λ1α)||S2(λ2α)||S2(λ3α)−U2(λ3α)||Tk(λ4α)|dα

+η
2
∫
M
|S2(λ1α)||S2(λ2α)||U2(λ3α)−T2(λ3α)||Tk(λ4α)|dα

=η
2(A4 +B4),

say. Using Theorem B.1 and the Hölder inequality,

A4�X
1
k

∫
M
|S2(λ1α)||S2(λ2α)||S2(λ3α)−U2(λ3α)|dα

�X
1
k

(∫
M
|S2(λ1α)|4dα

) 1
4
(∫

M
|S2(λ2α)|4dα

) 1
4
(∫

M
|S2(λ3α)−U2(λ3α)|2dα

) 1
2

.

Using Lemmas B.4-B.11-B.12, for any fixed A,

A4� X
1
k (X log2 X)

1
2 (logX)−

A
2 = X

1
2+

1
k (logX)1− A

2 = o
(

X
1
k +

1
2

)
as long as A > 2.

As for A2 we used in the estimation above Lemma B.11 that has two more terms, but also in

this case these terms are negligible if we want to meet the hypothesis of Lemma B.12: in fact it

requires that

X1− 5
12+ε ≤ X

P
≤ X

and this is consistent with the choice we will make in (3.4).
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Again using Theorem B.2,

B4 =
∫
M
|S2(λ1α)||S2(λ2α)||U2(λ3α)−T2(λ3α)||Tk(λ4α)|dα

�
∫ 1/X

0
|S2(λ1α)||S2(λ2α)||Tk(λ4α)|dα

+X
∫ P/X

1/X
α|S2(λ1α)||S2(λ2α)||Tk(λ4α)|dα.

Remembering that |α| ≤ P
X on M and using the Hölder inequality, trivial bounds and Lemma

B.4 we have

B4�X
1
2 X

1
2 X

1
k

1
X
+X X

1
k

(∫ P/X

1/X
α

2
) 1

2
(∫ P/X

1/X
|S2(α)|4dα

) 1
4
(∫ P/X

1/X
|S2(α)|4dα

) 1
4

�X
1
k +X1+ 1

k
(
X log2 X

) 1
2

(∫ P/X

1/X
α

2dα

) 1
2

�X
1
k +X

3
2+

1
k logX

(
P
X

) 3
2

= X
1
k P

3
2 logX .

We assume

P≤ X
1
3−ε , (3.4)

so that P
3
2 = o(X

1
2 / logX) which, with the upper bound for B4 here above, ensures that

B4 = o(X1/2+1/k).

Bound for J5

In order to provide an estimation for J5, we use (1.5),

J5�η
2
∫
M
|S2(λ1α)||S2(λ2α)||S2(λ3α)||Sk(λ4α)−Tk(λ4α)|dα

and then the arithmetic-geometric inequality:

J5�η
2

3

∑
j=1

(∫
M
|S2(λ jα)|3|Sk(λ4α)−Tk(λ4α)|dα

)
.

The three terms may be estimated in the same way and produce the same upper bound. We

show the details of the bound only for the case j = 1:

η
2
∫
M
|S2(λ1α)|3|Sk(λ4α)−Tk(λ4α)|dα

�η
2
∫
M
|S2(λ1α)|3|Sk(λ4α)−Uk(λ4α)|dα

+η
2
∫
M
|S2(λ1α)|3|Uk(λ4α)−Tk(λ4α)|dα
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=η
2(A5 +B5),

say. Using trivial estimates,

A5� X
1
2

∫
M
|S2(λ1α)|2|Sk(λ4α)−Uk(λ4α)|dα

then using the Cauchy-Schwartz inequality, for any fixed A > 2, by Lemmas B.4, B.11 and B.12

we have

A5�X
1
2

(∫
M
|S2(λ1α)|4dα

) 1
2
(∫

M
|Sk(λ4α)−Uk(λ4α)|2dα

) 1
2

�X
1
2 X

1
2 logX

P
X

Jk

(
X ,

X
P

) 1
2

�A X
1
2+

1
k (logX)1− A

2 = o
(

X
1
2+

1
k

)
provided that X

P ≥ X1− 5
6k+ε (condition of Lemma B.12), that is,

(logX)A�A P≤ X
5
6k−ε . (3.5)

Now we turn to B5, using Theorem B.2:

B5�
∫ 1/X

0
|S2(λ1α)|3dα +X

∫ P/X

1/X
α|S2(λ1α)|3dα.

Using trivial estimates and Lemma B.4,

B5�X
3
2

1
X
+X ·X

1
2

(∫ P/X

1/X
α

2dα ·
∫ P/X

1/X
|S2(λ1α)|4dα

) 1
2

�X
1
2 +X

3
2 (P/X)

3
2 X

1
2 logX = X

1
2 +P

3
2 X

1
2 logX .

The case j = 2 and j = 3 can be estimated in the same way. We need

P = o
(

X
2
3k−ε

)
.

Summing up with (3.5),

P≤ X
2
3k−ε . (3.6)

Collecting all the bounds for P, that is, (3.3), (3.4), (3.6) we can take

P≤ X
1
3−ε . (3.7)

In fact, if we consider (3.4), (3.5) and (3.6) we should choose the most restrictive condition

among the three but as we expect that the value of k is smaller than 2, (3.4) is the most restrictive:
2
3k ≤

5
6k and 1

3 ≥
2
3k only if k ≥ 2.
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3.2 Trivial arc

By the arithmetic-geometric mean inequality and the trivial bound for S2(λ1α), we see that

|I (η ,ω, t)| �
∫ +∞

R
|S2(λ1α)S2(λ2α)S2(λ3α)Sk(λ4α)Kη(α)|dα

�X
1
2

3

∑
j=1

∫ +∞

R
|S2(λ jα)|2|Sk(λ4α)|Kη(α)dα.

The three terms may be estimated in the same way and produce the same upper bound. We

show the details of the bound only for the case j = 1:

X
1
2

∫ +∞

R
|S2(λ jα)|2|Sk(λ4α)|Kη(α)dα

�X
1
2

(∫ +∞

R
|S2(λ1α)|4Kη(α)dα

) 1
2
(∫ +∞

R
|Sk(λ4α)|2Kη(α)dα

) 1
2

�X
1
2

(∫ +∞

R

|S2(λ1α)|4

α2 dα

) 1
2
(∫ +∞

R

|Sk(λ4α)|2

α2 dα

) 1
2

= X
1
2 C

1
2
1 C

1
2
2 ,

say. Using Lemma B.4, we have

C1 =
∫ +∞

R

|S2(λ2α)|4

α2 dα �
∫ +∞

λ1R

|S2(α)|4

α2 dα

� ∑
n≥|λ1|R

1
(n−1)2

∫ n

n−1
|S2(α)|4dα � X log2 X

R
. (3.8)

Now using Lemma B.6,

C2 =
∫ +∞

R

|Sk(λ4α)|4

α2 dα �
∫ +∞

λ4R

|Sk(α)|2

α2 dα

� ∑
n≥|λ4|R

1
(n−1)2

∫ n

n−1
|Sk(α)|2dα � X

1
k log3 X

R
. (3.9)

Collecting (3.8) and (3.9),

|I (η ,ω, t)| � X
1
2

(
X log2 X

R

) 1
2
(

X
1
k log3 X

R

) 1
2

� X1+ 1
2k (logX)

5
2

R
.

Hence, remembering that |I (η ,ω, t)| must be o
(

η2X
1
k +1
)

, i.e. little-o of the main term, the

choice

R =
X

1
2−

1
2k log3 X
η2 (3.10)

is admissible.
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3.3 The minor arc

The measure of the set where |S2(λ1α)| and |S2(λ2α)| are both large for α ∈m is suitably bounded,

exploiting the fact that the ratio λ1/λ2 is irrational. The idea is to reach the widest k-range assum-

ing k as a parameter from which all other parameters depend and adjusting all them retrospectively.

Also in this section we have chosen to leave the parameters free then we proceed as we did

in Chapter 2. The following lemma is not true for each parameter choice, but only for a subset of

them where the optimum values are chosen. The parameters are:

d =
8
7
,

1
a(k)

=
k+4

9k
, b(k) =

4k−2
9k

, c(k) =
8−7k

18k
. (3.11)

Now, following the lines of Lemma 2.3 of [29], we have

Lemma 3.2. Let 1 < k < d. Assume that λ1/λ2 is irrational and let X = qa(k), where q is the

denominator of a convergent of the continued fraction for λ1/λ2. Let

V (α) = min(|S1(λ1α)|, |S2(λ2α)|).

Then

sup
α∈m

V (α)� X1− b(k)
2 +ε .

Proof. Let α ∈m and Q = Xb(k) ≤ P. By rational approximation Dirichlet’s (Theorem A.3), there

exist integers ai,qi with 1≤ qi ≤ X
Q and (ai,qi) = 1, such that

|λiαqi−ai| ≤
Q
X

for i = 1,2. We remark that a1a2 6= 0, for otherwise we would have α ∈M. Now suppose that

qi ≤ Q for i = 1,2. In this case we get

a2q1
λ1

λ2
−a1q2 = (λ1αq1−a1)

a2

λ2α
− (λ2αq2−a2)

a1

λ2α

and hence ∣∣∣∣a2q1
λ1

λ2
−a1q2

∣∣∣∣≤ 2
(

1+
∣∣∣∣λ1

λ2

∣∣∣∣) Q2

X
<

1
2q

(3.12)

for sufficiently large X . In fact, the last inequality is true due to the choice of the parameters in

(3.11): being q < Q, we need

Q3 < X ⇒ X3b(k) < X ⇒ 3b(k)< 1,

this is always true: 4k−2
9k < 1 ⇔ 4k−2 < 9k ⇔ k >−2

5 .
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Then, from the law of best approximation (Theorem A.4)

X
1

a(k) = q≤ |a2q1|

so, recalling the definition of m, we obtain

|a2q1| � q1q2R≤ Q2R≤ X
1

a(k)−ε (3.13)

which is absurd1 if η = X−c(k) and R = log2 X
η2 . Hence either q1 > Q or q2 > Q.

If η = X−c(k) and R = log2 X
η2 , hence either q1 > Q or q2 > Q.

Assuming that qi > Q and using Lemma B.14:

V (α)≤ |S2(λiα)|2� X1+2ε sup
Q<qi<

X
Q

(
1
qi
+

1

X
1
4
+

qi

X

) 1
2

� X1− b(k)
2 +ε . (3.14)

The inequality for i = 1,2 in (3.14) is true due to the appropriate choice of the parameters in

(3.11), and this completes the proof of the Lemma.

If we want that the last inequalities in both (3.12) and (3.13) are true, we need the following

conditions on a(k), b(k) and c(k):

2b(k)−1≤− 1
a(k)

(3.15)

2b(k)+2c(k)≤ 1
a(k)

. (3.16)

Now let

X1 =

{
α ∈

[
P
X
,R
]

: |S2(λ1α)| ≤ |S2(λ2α)|
}

X2 =

{
α ∈

[
P
X
,R
]

: |S2(λ1α)| ≥ |S2(λ2α)|
}

so that
[ P

X ,R
]
= X1∪X2 and

|I (η ,ω,m)| �
(∫

X1

+
∫

X2

)
|S2(λ1α)||S2(λ2α)||S2(λ3α)||Sk(λ4α)|Kη(α)dα

If α ∈X1, we have |S2(λ1α)| ≤ |S2(λ2α)|, then

|I (η ,ω,X1)| �
∫

X1

|S2(λ1α)||S2(λ2α)||S2(λ3α)||Sk(λ4α)|Kη(α)dα

�
(

max
α∈X1

|S2(λ1α)|
)(∫

X1

|S2(λ2α)|4Kη(α)dα)

)1/4

(∫
X1

|S2(λ3α)|4Kη(α)dα)

)1/4(∫
X1

|Sk(λ4α)|2Kη(α)dα)

)1/2

1In this Chapter too, the choice of the parameters in (3.11) is made in order to get a contradiction.
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�X
1
2−

b
4+ε(ηX log2 X)

1
4 (ηX log2 X)

1
4

(
ηX

1
k log3 X

) 1
2

=X1− b
4+

1
2k+ε

η log2 X

In this case |I (η ,ω,m)|= o
(

X
1
2+

1
k−ε

)
only if

η = ∞

(
X

1
2−

1
2k−

b(k)
4 +ε

)
then we can add the following condition on c(k):

−c(k)≥ 1
2
− 1

2k
− b(k)

4
(3.17)

The other case with α ∈X2 is totally similar.

Collecting (3.15), (3.16) and (3.17) we get d = 8/7 the maximum value we can have for k.

This is justified as follows: neglecting the log-powers and recalling the choice of P(X) in (3.7)

and R(X) in (3.10),we have to maximize k subject to the constraints:

a(k)≥ 1

0≤ b(k)≤ 1
3

c(k)> 0

2b(k)−1≤− 1
a(k)

2b(k)+2c(k)≤ 1
a(k)

−c(k)≥ 1
2 −

1
2k −

b(k)
4

which is a linear optimization problem in the variables 1
k , 1

a(k) , b(k), c(k). The solution of this

problem is

1
a(k)

=
k+4

9k
, b(k) =

4k−2
9k

, c(k) =
8−7k

18k
,

for k < 8
7 .

3.4 The minor arc using the Harman technique

We start again from the idea that the measure of the set where |S2(λ1α)| 12 and |S2(λ2α)| are both

large for α ∈ m is suitably bounded, if the ratio λ1/λ2 is irrational. In this case we need only

Corollary B.16. Let us split m into subsets m1, m2 and m∗ =m\(m1∪m2) where

mi = {α ∈m : |S2(λiα)| ≤ X
1
2−u+ε}

remembering that Corollary B.16 holds for 0≤ u≤ 1
16 . In this case we leave only the parameter u

free.
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Using the Hölder inequalities and the definition of mi we obtain

|I (η ,ω,mi)| �
∫
mi

|S2(λ1α)||S2(λ2α)||S2(λ3α)||Sk(λ4α)|Kη(α)dα

�max |S2(λ1α)|
(∫

mi

|S2(λ2α)|4Kη(α)dα)

)1/4

(∫
mi

|S2(λ3α)|4Kη(α)dα)

)1/4(∫
mi

|Sk(λ4α)|2Kη(α)dα)

)1/2

�X
1
2−u+ε(ηX log2 X)

1
4 (ηX log2 X)

1
4

(
ηX

1
k log3 X

) 1
2

=ηX1−u+ 1
2k+ε log

5
2 X . (3.18)

by Corollary B.16.

The bound (3.18) must be o
(

η2X
1
2+

1
k

)
, consequently we have the following condition:

η = ∞

(
X

1
2−

1
2k−u+ε

)
.

It remains to discuss the set m∗ in which the following bounds hold simultaneously

|S2(λiα)|> X
1
2−u+ε ,

P
X

= X−
2
3 < |α| ≤ log2 X

η2 .

Following the dyadic dissection argument shown by Harman in [22] we divide m∗ into disjoint

sets E(Z1,Z2,y) in which, for α ∈ E(Z1,Z2,y), we have

Z1 < |S2(λ1α)| ≤ 2Z1, Z2 < |S2(λ2α)| ≤ 2Z2, y < |α| ≤ 2y

where Zi = 2kiX
1
2−u+ε for i = 1,2, and y = 2k3X−

2
3−ε for some non-negative integers k1,k2,k3.

It follows that the disjoint sets are, at most,� log3 X . Let us define A a shorthand for the sets

E(Z1,Z2,y); we have the following result about the Lebesgue measure of A following the same

lines of Lemma 6 in [36].

In the following Lemma, it is crucial that both the integers a1 and a2 appearing in (2.21) below

do not vanish: in fact, if a1 = 0, say, then q1 = 1 and |α| is so small that it can not belong to m∗.

In order to use the Harman technique then, we are forced to be far from the major arc in which we

would have a1a2 = 0. As we will see later, after setting the parameter u, we will not have a gap

between the major and the minor arc, so it will not be necessary to introduce an intermediate arc.

Lemma 3.3. We have

µ(A )� yX2+8u+3εZ−4
1 Z−4

2

where µ(·) denotes the Lebesgue measure.
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Proof. If α ∈A , by Corollary B.16 there are coprime integers (a1,q1) and (a2,q2) such that

1≤ q2�

(
X

1
2+ε/4

Z2

)4

, |q2λ2α−a2| � X−1

(
X

1
2+ε/4

Z2

)4

(3.19)

We remark that a1a2 6= 0 otherwise we would have α ∈M. In fact, if ai = 0 recalling the

definitions of Z1 and (3.19), we get

|α| � q−1
2 X−1

(
X

1
2+ε/4

Z2

)4

� X
X2−4u+3ε

= X−1+4u−3ε .

It means that, on the minor arc

|α| � X−1+4u−3ε .

We wonder now if there is a gap between the end of the major arc and the beginning of the

minor arc: from Corollary B.16 we are sure that u ≤ 1
16 ; furthermore, from the previous lower

bound for α , we need to check whether P
X is greater than it:

X−1+4u−3ε <
P
X

= X−
2
3 ⇒ u <

1
12

.

It is clear that we can choose any parameter u with the condition given by Corollary B.16

without leaving any gap from the two arcs.

Now, we can further split m∗ into sets I(Z1,Z2,y,Q1,Q2) where Q j ≤ q j ≤ 2Q j on each set.

Note that ai and qi are uniquely determined by α . In the opposite direction, for a given quadruple

a1, q1, a2, q2 the inequalities (3.19) define an interval of α of length

µ(I)�min

Q−1
1 X−1

(
X

1
2+ε/4

Z1

)4

,Q−1
2 X−1

(
X

1
2+ε/4

Z2

)4
 .

Taking the geometric mean (min(a,b)≤
√

a
√

b) we can write

µ(I)� Q−
1
2

1 Q−
1
2

2 X−1

(
X

1
2+ε/4

Z1

)2(
X

1
2+ε/4

Z2

)2

� X1+ε

Q
1
2
1 Q

1
2
2 Z2

1Z2
2

. (3.20)

Now we need a lower bound for Q
1
2
1 Q

1
2
2 : by (3.19)∣∣∣∣a2q1

λ1

λ2
−a1q2

∣∣∣∣= ∣∣∣∣ a2

λ2α
(q1λ1α−a1)−

a1

λ2α
(q2λ2α−a2)

∣∣∣∣
� q2|q1λ1α−a1|+q1|q2λ2α−a2|

� Q2X−1

(
X

1
2+ε/4

Z1

)4

+Q1X−1

(
X

1
2+ε/4

Z2

)4

. (3.21)
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Remembering that Qi�
(

X
1
2 +ε/4

Zi

)4

, Zi� X
1
2−u+ε ,

∣∣∣∣a2q1
λ1

λ2
−a1q2

∣∣∣∣�
(

X
1
2+ε/4

X
1
2−u+ε

)4

X−1

(
X

1
2+ε/4

X
1
2−u+ε

)4

� X3+2ε

X4−8u+8ε
� X−1+8u−6ε . (3.22)

We recall that q = X1−8u is a denominator of a convergent of λ1/λ2. Hence by (3.22) Legen-

dre’s law of best approximation (see Appendix A.4) implies that |a2q1| ≥ q and by the same token,

for any pair α , α ′ having distinct associated products a2q1 (see [49], Lemma 2),

|a2(α)q1(α)−a2(α
′)q1(α

′)| ≥ q;

thus, by the pigeon-hole principle, there is at most one value of a2q1 in the interval [rq,(r+1)q) for

any positive integer r. Hence a2q1 determines a2 and q1 to within Xε possibilities (see the upper

bound for the divisor function in Appendix, Theorem A.8) and consequently also a2q1 determines

a1 and q2 to within Xε possibilities from (3.22).

Hence we got a lower bound for q1q2, remembering that in our shorthand Q j ≤ q j ≤ 2Q j:

q1q2 = a2q1
q2

a2
� rq
|α|
� rqy−1

for the quadruple under consideration. As a consequence we obtain from (3.20), that the total

length of the interval I(Z1,Z2,y,Q1,Q2) with a2q1 ∈ [rq,(r+1)q) does not exceed

µ(I)� X1+2εZ−2
1 Z−2

2 r−
1
2 q−

1
2 y

1
2 .

Now we need a bound for r: inside the interval [rq,(r + 1)q), rq ≤ |a2q1| and, in turn from

(3.19), a2� q2|α|, then

rq� q1q2|α| �

(
X

1
2+ε/4

Z1

)4(
X

1
2+ε/4

Z2

)4

y� yX4+2εZ−4
1 Z−4

2

⇒ r� q−1yX4+2εZ−4
1 Z−4

2 .

Now, we sum on every interval to get an upper bound for the measure of A :

µ(A )� X1+2εZ−2
1 Z−2

2 q−
1
2 y

1
2 ∑

1≤r�q−1yX4+2ε Z−4
1 Z−4

2

r−
1
2 .

By standard estimation we obtain

∑
1≤r�q−1yX4+2ε Z−4

1 Z−4
2

r−
1
2 � (q−1yX4+2εZ−4

1 Z−4
2 )

1
2

then

µ(A )� yX3+3εZ−4
1 Z−4

2 q−1� yX3+3εZ−4
1 Z−4

2 X−1+8u� yX2+8u+3εZ−4
1 Z−4

2 .

This concludes the proof of Lemma 3.3.
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Using Lemma 3.3 we finally are able to get a bound for I (η ,ω,A ):

I (η ,ω,A ) =
∫

m∗
|S2(λ1α)||S2(λ2α)||S2(λ3α)||Sk(λ4α)|Kη(α)dα

�
(∫

A
|S2(λ1α)S2(λ2α)|4Kη(α)dα

) 1
4
(∫

A
|S2(λ3α)|4Kη(α)dα

) 1
4

(∫
A
|Sk(λ4α)|2Kη(α)dα

) 1
2

�
(

min
(

η
2,

1
y2

)) 1
4 (
(Z1Z2)

4
µ(A )

) 1
4
(
ηX log2 X

) 1
4
(

ηX
1
k log3 X

) 1
2

�
(

min
(

η
2,

1
y2

)) 1
4

Z1Z2(yX2+8u+4εZ−4
1 Z−4

2 )
1
4 η

3
4 X

1
4+

1
2k+ε

�
(

min
(

η
2,

1
y2

)) 1
4

y
1
4 η

3
4 X

3
4+2u+ 1

2k+ε

�ηX
3
4+u+ 1

2k+ε

and this must be o
(

X1+ 1
k−ε

)
.

The condition on η is

η = ∞

(
X

1
4−

1
2k+2u+ε

)
. (3.23)

Collecting all the conditions (3.18), (3.23) and the condition given by Corollary B.16, we get

the following linear optimization system: setting x = 1
k and let w be the exponent of η we would

like to optimize, 
x≤ 1; w≥ 0; u≤ 1

16

−w≥ 1
4 −

x
2 −u

−w≥−1
4 −

x
2 +2u.

Solving the system, it turns out that u = 1
16 (and consequently X = q2) are the optimal values;

the maximum k-range is
(
1, 8

7

)
and even in this second case we do not get any improvement using

Harman technique if we stop on the range of k, as the condition (3.18), is more restrictive than

(3.23). However, if we consider the value of c(k) in (3.11) and the condition on η by specifying

the parameter u in (3.18) we can notice again an improvement in estimation:

η = ∞

(
X

7k−8
16k +ε

)
then

ψ(k) =
8−7k

16k
>

8−7k
18k

.
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3.5 Further improvements

In this case the mean value of |Sk(α)|4 does not give us any improvement. Nevertheless using the

same argument of Chapter 2, the bound on S2(α) showed in (2.28) and Corollary 2.4, we are able

to replace 8/7 with 7/6.

The proof follows the same steps of Corollary B.16 but it will use the estimation (2.28). Using

such corollary, (3.18) can be improved choosing u = 1
14 in place of u = 1

16 and after a linear

optimization we get a wider k-range and we can improve the approximation: the maximum k-

range became
(
1, 7

6

)
and the exponent of η can be replaced with

ψ(k) =
7−6k

14k
.

Also in this case, Corollary 2.4 does not affect Lemma 3.3 as the Harman technique on the arc

m∗ can be used with X = q
7
3 in place of X = q2. Moreover the condition (3.21) assures us that we

will not have a gap between the major and the minor arc.



4 Two primes and one k-th power of a

prime

4.1 Introduction

The last problem of this dissertation deals with an improvement of the result contained in Lan-

guasco & Zaccagnini [30]. Such improvements are contained in [15], due to Languasco, Zacca-

gnini and the author of this dissertation, and they are shown in this Chapter.

The problem tackled in [30] had r = 3, k1 = k2 = 1, k3 = k ∈ (1,4/3):

|F(p1, p2, p3,1,1,k)−ω|= |λ1 p1 +λ2 p2 +λ3 pk
3−ω| ≤ η .

Assuming that λ1/λ2 is irrational and that the coefficients λ j are not all of the same sign,

Languasco and Zaccagnini proved that one can take η =
(
M(p,k)

)−φ(k)+ε for any fixed ε > 0,

where φ(k) = (4−3k)/(10k). Our purpose in this dissertation is to improve on this result both in

the admissible range for k and in the exponent, replacing φ(k) by a larger value in the common

range. More precisely, we prove the following Theorem.

Theorem 4.1. Assume that 1 < k≤ 3, λ1, λ2 and λ3 are non-zero real numbers, not all of the same

sign, that λ1/λ2 is irrational and let ω be a real number. The inequality

|λ1 p1 +λ2 p2 +λ3 pk
3−ω| ≤

(
M(p,k)

)−ψ(k)+ε (4.1)

has infinitely many solutions in prime variables p1, p2, p3 for any ε > 0, where

ψ(k) =



(3−2k)/(6k) if 1 < k ≤ 6
5 ,

1/12 if 6
5 < k ≤ 2,

(3− k)/(6k) if 2 < k < 3,

1/24 if k = 3.

50
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We point out that in the common range 1 < k < 4/3 we have ψ(k)> φ(k).

We also remark that the strong bounds for the exponential sum Sk, defined in (1.7), that recently

became available for integral k (see Bourgain [3] and Bourgain, Demeter & Guth [4]) are not useful

in our problem. Our improvement is due to the use of the Harman technique on the minor arc and

to the fourth-power average for the exponential sum Sk.

4.2 Outline of the proof

In order to prove that (4.1) has infinitely many solutions, it is sufficient to construct an increasing

sequence Xn that tends to infinity such that (4.1) has at least one solution with M(p,k) ∈ [δXn,Xn],

with a fixed δ > 0 which depends only on the choice of λ1, λ2 and λ3. Let q be a denominator of a

convergent to λ1/λ2 and let Xn = X (dropping the suffix n) run through the sequence X = q3. The

main quantities we will use are again Sk with Tk and Uk. We will use the bounds of Theorem B.1

and Theorem B.2 as well. We need Kη as a continuous function we will use to detect the solutions

of (4.1).

Let now

P(X) = {(p1, p2, p3) : δX < p1, p2 ≤ X , δX < pk
3 ≤ X}

and

I (η ,ω,X) =
∫
X

S1(λ1α)S1(λ2α)Sk(λ3α)Kη(α)e(−ωα)dα,

where X is a measurable subset of R. From (1.7) and using the Fourier transform of Kη(α), we

get

I (η ,ω,R) = ∑
(p1,p2,p3)∈P(X)

log p1 log p2 log p3 max
(
0;η−|λ1 p1 +λ2 p2 +λ3 pk

3−ω|
)

≤ η(logX)3N (X),

where N (X) actually denotes the number of solutions of the inequality (4.1) with (p1, p2, p3) ∈

P(X). In other words I (η ,ω,R) provides a lower bound for the quantity we are interested in;

therefore it is sufficient to prove that I (η ,ω,R)> 0.

In this problem we need to introduce the intermediate arc: we now decompose R into subsets

such that R=M ∪ M∗ ∪ m ∪ t where M is the major arc, M∗ is the intermediate arc (which is

non-empty only for some values of k, see section 4.6), m is the minor arc and t is the trivial arc.

The decomposition is the following: if 1 < k < 5/2 we consider

M= [−P/X ,P/X ], M∗ = Ø,

m= [P/X ,R]∪ [−R,−P/X ], t= R\ (M∪M∗∪m), (4.2)
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while, for 5/2≤ k ≤ 3, we set

M= [−P/X ,P/X ] , M∗ = [P/X ,X−3/5]∪ [−X−3/5,−P/X ],

m= [X−3/5,R]∪ [−R,−X−3/5], t= R\ (M∪M∗∪m), (4.3)

where the parameters P = P(X) > 1 and R = R(X) > 1/η are chosen later (see (4.4) and (4.5))

as well as η = η(X), that, as we explained before, we will take as a small negative power of

M(p,k) (and so of X). We have to distinguish two cases in the previous decomposition of the real

line because eq. (4.12) implies that we are able to apply Harman technique only if |α| � X−2/3,

then we are forced to choose as minor arc, an interval that may leave a gap the major arc for

some values of k, see also section 4.6. We remark that, after the choice in (4.4), the inequality

P/X < X−3/5 holds for k > 25/12. However, as we will see later in section 4.6, we need to

introduce the intermediate arc only for k > 5/2.

The constraints on η are in (4.7), (4.9) and (4.10), according to the value of k. In any case,

we have I (η ,ω,R) = I (η ,ω,M)+I (η ,ω,M∗)+I (η ,ω,m)+I (η ,ω, t). We expect that

M provides the main term with the right order of magnitude without any special hypothesis on

the coefficients λ j. It is necessary to prove that I (η ,ω,M∗), I (η ,ω,m) and I (η ,ω, t) are

o
(
I (η ,ω,M)

)
.

4.3 The Major arc

We recall the definitions in (4.2) and (4.3). The major arc computation is the same as in [30]:

I (η ,ω,M) =
∫
M

S1(λ1α)S1(λ2α)Sk(λ3α)Kη(α)e(−ωα)dα

=
∫
M

T1(λ1α)T1(λ2α)Tk(λ3α)Kη(α)e(−ωα)dα

+
∫
M
(S1(λ1α)−T1(λ1α))T1(λ2α)Tk(λ3α)Kη(α)e(−ωα)dα

+
∫
M

S1(λ1α)(S1(λ2α)−T1(λ2α))Tk(λ3α)Kη(α)e(−ωα)dα

+
∫
M

S1(λ1α)S1(λ2α)(Sk(λ3α)−Tk(λ3α))Kη(α)e(−ωα)dα

= J1 + J2 + J3 + J4,

say.

Main Term: lower bound for J1

As the reader might expect the main term is given by the summand J1. Let

H(α) = T1(λ1α)T1(λ2α)Tk(λ3α)Kη(α)e(−ωα)
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so that

J1 =
∫
R

H(α)dα +O
(∫ +∞

P/X
|H(α)|dα

)
.

Using (1.5) and Theorem B.1, we get∫ +∞

P/X
|H(α)|dα � η

2X1/k−1
∫ +∞

P/X

dα

α3 � η
2 X1+1/k

P2 = o
(
η

2X1+1/k),
provided that P→+∞. Let now D = [δX ,X ]2× [(δX)1/k,X1/k]. We obtain∫

R
H(α)dα =

∫∫∫
D

∫
R

e((λ1t1 +λ2t2 +λ3tk
3−ω)α)Kη(α)dα dt1dt2dt3

=
∫∫∫

D
max(0;η−|λ1t1 +λ2t2 +λ3tk

3−ω)|) dt1dt2dt3.

Apart from trivial changes of sign, there are essentially two cases:

1. λ1 > 0, λ2 > 0, λ3 < 0

2. λ1 > 0, λ2 < 0, λ3 < 0.

After a suitable change of variables, letting D′ = [δX ,(1−δ )X ]3,∫
R

H(α)dα �
∫∫∫

D′
max(0;η−|λ1u1 +λ2u2 +λ3u3)|) u1/k−1

3 du1du2du3

� X1/k−1
∫∫∫

D′
max(0;η−|λ1u1 +λ2u2 +λ3u3)|) du1du2du3.

We deal with the first one. We warn the reader that here it may be necessary to adjust the

value of δ in order to guarantee the necessary set inclusions. Apart from sign, the computation

is essentially symmetrical with respect to the coefficients λ j: we assume, as we may, that |λ3| ≥

max(λ1,λ2), the other cases being similar. Now, for j = 1,2 let a j =
2δ |λ3|
|λ j|

, b j =
3
2

a j and

D j = [a jX ,b jX ]; if u j ∈D j for j = 1,2 then

λ1u1 +λ2u2 ∈ [4|λ3|δX ,6|λ3|δX ]

so that, for every choice of (u1,u2) the interval [a,b] with endpoints±η/|λ3|+(λ1u1+λ2u2)/|λ3|

is contained in [δX ,(1− δ )X ]. In other words, for u3 ∈ [a,b] the values of λ1u1 + λ2u2 + λ3u3

cover the whole interval [−η ,η ]. Hence for any (u1,u2) ∈D1×D2 we have∫ (1−δ )X

δX
max(0;η−|λ1u1 +λ2u2 +λ3u3|) du3 = |λ3|−1

∫
η

−η

max(0;η−|u|) du� η
2.

Summing up we get

J1� η
2X1/k−1

∫∫
D1×D2

du1du2� η
2X1/k−1X2 = η

2X1+1/k,

which is the expected lower bound.
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Bound for J2, J3 and J4

The computations for J2 and J3 are similar to and simpler than the corresponding one for J4;

moreover the most restrictive condition on P arises from J4; hence we will skip the computation

for both J2 and J3. Using the triangle inequality and (1.5),

J4� η
2
∫
M
|S1(λ1α)||S1(λ2α)||Sk(λ3α)−Tk(λ3α)|dα

≤ η
2
∫
M
|S1(λ1α)||S1(λ2α)||Sk(λ3α)−Uk(λ3α)|dα

+η
2
∫
M
|S1(λ1α)||S1(λ2α)||Uk(λ3α)−Tk(λ3α)|dα

= η
2(A4 +B4),

say, where Uk(λ3α) and Tk(λ3α) are defined in (1.7). Using the Cauchy-Schwarz inequality,

Lemmas B.11-B.12 and trivial bounds yields, for any fixed A > 0,

A4� X
(∫

M
|S1(λ1α)|2 dα

)1/2(∫
M
|Sk(λ3α)−Uk(λ3α)|2 dα

)1/2

� X1+1/k(logX)(1−A)/2 = o
(
X1+1/k)

as long as A > 1, provided that P≤ X5/(6k)−ε . Using again the Cauchy-Schwarz inequality, Theo-

rem B.2 and trivial bounds, we see that

B4�
∫ 1/X

0
|S1(λ1α)||S1(λ2α)|dα +X

∫ P/X

1/X
α|S1(λ1α)||S1(λ2α)|dα

� X +P
(∫ P/X

1/X
|S1(λ1α)|2 dα

∫ P/X

1/X
|S1(λ2α)|2 dα

)1/2
� PX logX .

Taking P = o
(
X1/k(logX)−1

)
we get η2B4 = o

(
η2X1+1/k

)
. We may therefore choose

P = X5/(6k)−ε . (4.4)

4.4 The trivial arc

We recall that the trivial arc is defined in (4.2) and (4.3). Using the Cauchy-Schwarz inequality

and the Theorem B.1, we see that

|I (η ,ω, t)| �
∫ +∞

R
|S1(λ1α)S1(λ2α)Sk(λ3α)|Kη(α)dα

� X1/k
(∫ +∞

R
|S1(λ1α)|2Kη(α)dα

)1/2(∫ +∞

R
|S1(λ2α)|2Kη(α)dα

)1/2

� X1/kC1/2
1 C1/2

2 ,
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say. Using the PNT and the periodicity of S1(α), for every j = 1,2 we have that

C j =
∫ +∞

R
|S1(λ jα)|2 dα

α2 �
∫ +∞

|λ j|R
|S1(α)|2 dα

α2 � ∑
n≥|λ j|R

1
(n−1)2

∫ n

n−1
|S1(α)|2 dα � X logX

|λ j|R
.

Hence, recalling that |I (η ,ω, t)| has to be o(η2X1+1/k), the choice

R = η
−2(logX)3/2 (4.5)

is admissible.

4.5 The minor arc

Here we use Harman’s technique as described in [21]. The minor arc is defined in (4.2) and

(4.3), according to the value of k. Using Lemma B.15 we now split m into subsets m1, m2 and

m∗ =m\ (m1∪m2) where

mi = {α ∈m : |S1(λiα)| ≤ X5/6+ε} for i = 1,2.

In order to obtain the optimization, we chose to split the range for k into two intervals in which to

take advantage of the L2-norm of Sk(α) in one case (Lemma B.7) and the L4-norm of Sk(α) in the

other one (Lemma B.10). The same choice will be made later in the discussion of the arc m∗. We

will see that it is not possible to split the minor arc in another way in order to get a better result.

Bounds on m1∪m2

Using Hölder’s inequality and Lemma B.6, for 1 < k ≤ 6/5 we obtain

|I (η ,ω,mi)| �
∫
mi

|S1(λ1α)||S1(λ2α)||Sk(λ3α)|Kη(α)dα

�
(

max
α∈mi
|S1(λ1α)|

)(∫
mi

|S1(λ2α)|2Kη(α)dα)
)1/2

×
(∫

mi

|Sk(λ3α)|2Kη(α)dα)
)1/2

� X5/6+ε(ηX logX)1/2(ηX1/k(logX)3)1/2

� ηX4/3+1/(2k)+ε . (4.6)

The estimate in (4.6) should be o(η2X1+1/k); hence this leads to the constraint

η = ∞(X1/3−1/(2k)+ε). (4.7)

Using Hölder’s inequality and Lemmas B.3 and B.10, for 6/5 < k < 3 we obtain

|I (η ,ω,mi)| �
∫
mi

|S1(λ1α)||S1(λ2α)||Sk(λ3α)|Kη(α)dα
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�
(

max
α∈mi
|S1(λ1α)|1/2

)(∫
mi

|S1(λ1α)|2Kη(α)dα)
)1/4

×
(∫

mi

|Sk(λ3α)|4Kη(α)dα)
)1/4(∫

mi

|S1(λ2α)|2Kη(α)dα)
)1/2

� X5/12+ε(ηX logX)1/4(η max(X2/k;X4/k−1))1/4(ηX logX)1/2

� η max
(
X7/6+1/(2k);X11/12+1/k)Xε . (4.8)

The estimate in (4.8) should be o(η2X1+1/k); hence this leads to

η = ∞
(
max(X1/6−1/(2k)+ε ;X−1/12+ε)

)
. (4.9)

If k = 3 we use Lemmas B.3 and Lemma B.5 with `= 3, thus getting

|I (η ,ω,mi)| �
∫
mi

|S1(λ1α)||S1(λ2α)||S3(λ3α)|Kη(α)dα

�
(

max
α∈mi
|S1(λ1α)|1/4

)(∫
mi

|S1(λ1α)|2Kη(α)dα)
)3/8

×
(∫

mi

|S3(λ3α)|8Kη(α)dα)
)1/8(∫

mi

|S1(λ2α)|2Kη(α)dα)
)1/2

� ηX31/24+ε .

This bound leads to the constraint

η = ∞
(
X−1/24+ε

)
, (4.10)

which justifies the last line of (1.9)

Bound on m∗

It remains to discuss the set m∗ where the following bounds hold simultaneously

|S1(λ1α)|> X5/6+ε , |S1(λ2α)|> X5/6+ε , T < |α| ≤ η
−2(logX)3/2 = R.

where T = P/X = X5/(6k)−1−ε by our choice in (4.4) if k < 5/2, and T = X−3/5 otherwise. Using a

dyadic dissection, we split m∗ into disjoint sets E(Z1,Z2,y) like in the previous Chapters in which,

for α ∈ E(Z1,Z2,y), we have

Zi < |S1(λiα)| ≤ 2Zi, y < |α| ≤ 2y,

where Zi = 2kiX5/6+ε and y = 2k3X5/(6k)−1−ε for some non-negative integers k1,k2,k3. The range

of α is given by (4.4) and (4.5).

It follows that the number of disjoint sets is, at most,� (logX)3. Let us write A as a shorthand

for the set E(Z1,Z2,y). We have the following result about the Lebesgue measure of A .



4.5. The minor arc 57

In the following Lemma, it is crucial that both the integers a1 and a2 appearing in (4.11) below

do not vanish: in fact, if a1 = 0, say, then q1 = 1 and |α| is so small that it can not belong to m∗.

In order to use the Harman technique then, we are forced to be far from the major arc in which

we would have a1a2 = 0. Notice that a1 = 0 or a2 = 0 implies that |α| � X−2/3 from (4.11),

which means that, on the minor arc, we are working on |α| � X−2/3 as showed in (4.12). In some

cases, for high values of k, there would be a gap between the major arc and the minor arc, because

P/X becomes smaller as k grows and it can become smaller than X−2/3; this is the reason why we

introduce the intermediate arc, when k exceeds a certain threshold, in Section 4.6. In any case, we

will show that we are able to control the contribution of such intermediate arc.

Lemma 4.2. We have that µ(A )� yX8/3+3εZ−2
1 Z−2

2 , where µ(·) denotes the Lebesgue measure.

Proof. If α ∈A , by Lemma B.15 there are coprime integers (a1,q1) and (a2,q2) such that

1≤ qi�
(X1+ε/2

Zi

)2
, |qiλiα−ai| �

(X1/2+ε/2

Zi

)2
. (4.11)

We remark that a1a2 6= 0 otherwise we would have α ∈M. In fact, if a1 = 0 or a2 = 0,

recalling the definitions of Zi and (4.11) we get

|α| � q−1
i

(X1/2+ε/2

Zi

)2
� X−2/3. (4.12)

Now, we can further split m∗ into sets I = I(Z1,Z2,y,Q1,Q2) where, on each set, Q j ≤ q j ≤

2Q j. Note that ai and qi are uniquely determined by α . In the opposite direction, for a given

quadruple a1, q1, a2, q2 the inequalities (4.11) define an interval of α of length

µ(I)�min
(

Q1

(X1/2+ε/2

Z1

)2
,Q2

(X1/2+ε/2

Z2

)2)
�Q−1/2

1 Q−1/2
2

(X1/2+ε/2

Z1

)(X1/2+ε/2

Z2

)
� X1+ε

Q1/2
1 Q1/2

2 Z1Z2

,

by taking the geometric mean.

Now we need a lower bound for Q1/2
1 Q1/2

2 : by (4.11) we obtain∣∣∣a2q1
λ1

λ2
−a1q2

∣∣∣= ∣∣∣ a2

λ2α
(q1λ1α−a1)−

a1

λ2α
(q2λ2α−a2)

∣∣∣
� q2|q1λ1α−a1|+q1|q2λ2α−a2|

� Q2

(X1/2+ε/2

Z1

)2
+Q1

(X1/2+ε/2

Z2

)2
.

Recalling that Qi� (X1+ε/2/Zi)
2, Zi� X5/6+ε ,∣∣∣a2q1

λ1

λ2
−a1q2

∣∣∣� (X1+ε/2

X5/6+ε

)2(X1/2+ε/2

X5/6+ε

)2
� X−1/3−2ε <

1
4q

. (4.13)
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We recall that q=X1/3 is a denominator of a convergent of λ1/λ2. Hence by (4.13) Legendre’s

law of best approximation (see Appendix A.4) implies that |a2q1| ≥ q and by the same token, for

any pair α , α ′ having distinct associated products a2q1 (see [49], Lemma 2),

|a2(α)q1(α)−a2(α
′)q1(α

′)| ≥ q;

thus, by the pigeon-hole principle, there is at most one value of a2q1 in the interval [rq,(r+1)q) for

any positive integer r. Hence a2q1 determines a2 and q1 to within Xε possibilities (see the upper

bound for the divisor function in Appendix, Theorem A.8) and consequently also a2q1 determines

a1 and q2 to within Xε possibilities from (4.13).

Hence we got a lower bound for q1q2, since, using Q j ≤ q j ≤ 2Q j, we get

q1q2 = a2q1
q2

a2
� rq
|α|
� rqy−1

for the quadruple under consideration.

As a consequence we obtain that the total length of the interval I(Z1,Z2,y,Q1,Q2), with a2q1 ∈

[rq,(r+1)q) does not exceed

µ(I)� XεX1+εZ−1
1 Z−1

2 r−1/2q−1/2y1/2.

Now we need a bound for r: since a2q1 ∈ [rq,(r+1),q), we have

rq≤ |a2q1| � q1q2|α| � y
(X1+ε/2

Z1

)2(X1+ε/2

Z2

)2
� yX4+2εZ−2

1 Z−2
2

and hence we get

r� q−1yX4+2εZ−2
1 Z−2

2 .

Next, we sum on every interval to get an upper bound for the measure of A : we get

µ(A )� X1+2εZ−1
1 Z−1

2 q−1/2y1/2
∑

1≤r�q−1yX4+2ε Z−2
1 Z−2

2

r−1/2.

By standard estimation we obtain

∑
1≤r�q−1yX4+2ε Z−2

1 Z−2
2

r−1/2� (q−1yX4+2εZ−2
1 Z−2

2 )1/2

and hence we can finally write

µ(A )� yX3+3εZ−2
1 Z−2

2 q−1� yX3+3εZ−2
1 Z−2

2 X−1/3� yX8/3+3εZ−2
1 Z−2

2 .

This proves the Lemma.
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4.6 The intermediate arc: 5/2≤ k ≤ 3

In section 4.5 we apply Harman’s technique to the minor arc, using Lemma B.15 as the starting

point. We remark that in the course of the proof of Lemma 4.2 it is crucial that both the integers

a1 and a2 appearing in (4.11) below do not vanish; in fact, if a1 = 0, say, then α is very small

(α � X−2/3) and, according to our definitions above, it belongs to M∪M∗.

For small k we do not need an intermediate arc, because the major arc is wide enough to rule

out the possibility that a1a2 = 0 for α ∈m. For larger values of k, the constraint (4.4) implies that

there is a gap between the major arc and the minor arc which we need to fill: see the definition in

(4.3). Using the intermediate arc M∗, we are able to cover more than needed.

Lemma 4.3. Let X−1� α � X−3/5. Then |S1(α)| � X1/2|α|−1/2(logX)4.

Proof. It follows immediately from Lemma B.13 by choosing q = b1/αc and a = 1.

Using (1.5), Lemma 4.3, the Cauchy-Schwarz inequality and (4.4) we get

I (η ,ω,M∗)� η
2
∫ X−3/5

P/X
|S1(λ1α)||S1(λ2α)||Sk(λ3α)|dα

� η
2X(logX)8

∫ X−3/5

P/X
|Sk(λ3α)| dα

α

� η
2X(logX)8

(∫ X−3/5

−X−3/5
|Sk(λ3α)|2 dα

)1/2(∫ X−3/5

P/X

dα

α2

)1/2

� η
2X(X1/k−3/5)1/2(X1−5/(6k))1/2Xε � η

2X6/5+1/(12k)+ε ,

where we also used Lemma B.6 with τ = X−3/5. The last estimate is o
(
η2X1+1/k

)
for every

5/2≤ k < 55/12.

4.7 Conclusion

Here we finally justify the choice of the function ψ in the statement of the main Theorem. Using

Lemmas B.6-B.10-4.2 we are now able to estimate I (η ,ω,A ) for 1 < k ≤ 3.

If 1 < k ≤ 6/5 we proceed as follows:

|I (η ,ω,A )| �
∫

A
|S1(λ1α)||S1(λ2α)||Sk(λ3α)|Kη(α)dα

�
(∫

A
|S1(λ1α)S1(λ2α)|2Kη(α)dα

)1/2(∫
A
|Sk(λ3α)|2Kη(α)dα

)1/2

�
(
min
(
η

2;y−2))1/2(
(Z1Z2)

2
µ(A )

)1/2(
ηX1/k+ε

)1/2

�
(
min
(
η

2;y−2))1/2Z1Z2
(
yX8/3Z−2

1 Z−2
2

)1/2
η

1/2X1/(2k)+ε
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� ηX4/3+1/(2k)+ε .

Hence we need η = ∞
(
X1/3−1/(2k)+ε

)
, which is the same condition we got in (4.7).

If 6/5 < k < 3,

|I (η ,ω,A )| �
∫

A
|S1(λ1α)||S1(λ2α)||Sk(λ3α)|Kη(α)dα

�
(∫

A
|S1(λ1α)S1(λ2α)|4/3Kη(α)dα

)3/4(∫
A
|Sk(λ3α)|4Kη(α)dα

)1/4

�
(
min
(
η

2;y−2))3/4(
(Z1Z2)

4/3
µ(A )

)3/4(
η max(X2/k;X4/k−1)Xε

)1/4

�
(
min
(
η

2;y−2))3/4Z1Z2
(
yX8/3Z−2

1 Z−2
2

)3/4
η

1/4 max(X1/(2k);X1/k−1/4)Xε

� ηZ−1/2
1 Z−1/2

2 X2+ε max(X1/(2k);X1/k−1/4)

� η max(X7/6+1/(2k);X11/12+1/k)Xε .

Hence we need η = ∞
(
max(X1/6−1/(2k)+ε ;X−1/12+ε)

)
, which is the same condition we got in

(4.9). If k = 3, using Lemmas B.5 with `= 3 and 4.2 we obtain

|I (η ,ω,A )| �
∫

A
|S1(λ1α)||S1(λ2α)||S3(λ3α)|Kη(α)dα

�
(∫

A
|S1(λ1α)S1(λ2α)|8/7Kη(α)dα

)7/8(∫
A
|S3(λ3α)|8Kη(α)dα

)1/8

� ηZ−3/4
1 Z−3/4

2 X7/3+5/24+ε � ηX31/24+ε .

This leads to the same constraint for η that we had in (4.10).



A Elementary results

A.1 Continued fractions

This thesis needs some important tools coming from continued fractions theory, in particular it

is closely linked to the Legendre law of best approximation: therefore we will give some basic

details of the theory of continued fractions.

A finite continued fraction is a representation of the n+1 variables a0,a1, . . . ,an

f (a0,a1, . . . ,an) := a0 +
1

a1 +
1

a2 +
· · ·

· · ·+ 1
an

.

There is a simpler form to represent a continued fraction using square brackets:

f (a0,a1, . . . ,an) = [a0,a1, . . . ,an].

A finite regular continued fraction [a0,a1, . . . ,an] is a repeated quotient with integers ai sat-

isfying ai > 0 and an > 1. Every rational number has got a unique representation with a regular

finite continued fraction (if we do not assume an > 1, the representation of a rational number by

continued fractions is actually not unique (see [19], section 10.5) but if two simple continued frac-

tions have the same value x = [a0, . . . ,an] = [b0, . . . ,bm] with m = n and an > 1, bm > 1 then the

fractions are identical.

If we take only a truncated representation we will get a convergent,
pm

qm
to the continued

fraction:

[a0] = a0 [a0,a1] =
a1a0 +1

a1
= a0 +

1
[a1]

[a0,a1,a2] =
a0a1a2 +a0 +a2

a1a2 +1
= a0 +

1
[a1,a2]

[a0,a1, . . . ,am] = a0 +
1

[a1,a2, . . . ,am]
=

pm

qm
∀m≤ n
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Two continued fractions are identical if they are formed by the same sequence of partial quo-

tients.

Theorem A.1 (see [19]). If x = [a0, . . . ,an] is a rational number, n > 1 and m > 0 then the differ-

ence ∣∣∣∣x− pm

qm

∣∣∣∣≤ 1
qmqm+1

<
1

q2
m

∀m≤ n−1

where xm = pm
qm

= [a0,a1, . . . ,am] is called a convergent of x for m < n−1.

The main interest of continued fractions lies in the representation of irrational numbers, so in

this case we need to talk about infinite continued fractions. The most important feature we will use

is the difference between the irrational number and its convergents. It is proven that every infinite

simple continued fraction is convergent and every irrational x can be represented by an infinite

continued fraction x = [a0,a1,a2, . . .]. Also in this case two simple infinite continued fractions

which have the same value are identical and every irrational can be expressed just in one way

using simple infinite continued fractions.

The results of the previous theorem hold also for infinite continued fractions and in this case we

can talk about best approximation with a rational number: pm
qm

is the fraction, among all fractions

whose denominator does not exceed qm, that provides the best approximation for the irrational

number x = [a0,a1, . . .]. Legendre’s law of best approximation states that the convergents to an

irrational number give a sequence of best approximations. In other words,

Theorem A.2. If x /∈Q, m > 1, 0 < q≤ qm and p
q 6=

pm
qm

,∣∣∣∣ pm

qm
− x
∣∣∣∣< ∣∣∣∣ p

q
− x
∣∣∣∣

or, equivalently,

|pm−qmx|< |p−qx|.

If x is an irrational number there is an infinity of fractions satisfying∣∣∣∣ p
q
− x
∣∣∣∣< 1

q2 . (A.1)

Dirichlet proved a more general statement:

Theorem A.3 (Dirichlet). For any real number x there exists integers Q≥ 1, a and q with (a,q)= 1

and 1≤ q≤ Q, such that ∣∣∣∣x− a
q

∣∣∣∣≤ 1
q(Q+1)

.
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It is also a fact that the simplest numbers in term of continued fractions like the golden ratio

φ = [1,1,1, . . .] are the worst in terms of approximation: in other words, it is not possible to

improve the approximation with a power of q greater than 2 in (A.1):

Theorem A.4. Any irrational x has an infinity of approximations which satisfy∣∣∣∣ p
q
− x
∣∣∣∣< 1

Aq2

where A =
√

5. If we take A >
√

5 the previous inequalities may have only a finite number of

solutions.

In particular for all algebraic numbers the best approximations is actually 1
q2 :

Theorem A.5 (Roth). Let x be a real algebraic number. For any ε > 0 and (p,q) = 1, the inequal-

ity ∣∣∣∣x− p
q

∣∣∣∣< 1
q2+ε

has only finitely many solutions in p and q.

This last theorem will give us a natural limit in the choice of the exponent of the denominator

of the continued fraction.

Dirichlet Theorem A.3 and the law of best approximation A.4 are both used in the study of the

minor arc in all three cases discussed in this dissertation. For instance, in Chapter 2, the Dirichet

theorem is used in Lemma 2.2 while the law best approximation is used in both Lemma 2.2 and

Lemma 2.3 in which Harman technique is applied.

A.2 Elementary tools

Abel’s partial summation formula

Theorem A.6 (Abel summation formula). Let an be a sequence of real or complex numbers and

φ : R+→ C a C 1 function. If we define

A(x) := ∑
n≤x

an,

then

∑
n≤x

anφ(n) = A(x)φ(x)−
∫ x

1
A(t)φ ′(t)dt.
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Euler summation formula

Theorem A.7 (Euler summation formula). Let f : (x,y]→ C be a derivable function.

∑
x<n≤y

f (n) =
∫ y

x
f (t)dt +

∫ y

x
{t} f ′(t)dt−{y} f (y)+{x} f (x)

where {x} denotes the fractional part of a real number x.

See Apostol [1] Theorem 3.1 for the proof.

Bound on the divisor function

Theorem A.8. Let d(n) denote the number of divisor of a given positive integer n:

d(n) := ∑
d|n

1 = |{d ∈ N∗ : d |n}| .

Then for large n, d(n)� nε , or, more precisely,

d(n)� exp
(

logn
log logn

)
.

See Apostol [1] Theorem 13.12 for the proof.

In this section we have presented some elementary results of analytic number theory that can

be found on classical literature such as Hardy-Wright [19] and Apostol [1]



B Exponential sums

Exponential sums are objects defined in the following way

S(χ, f ) := ∑
x∈χ

ρ(x)e( f (x)),

where χ is an arbitrary set, f is a function on χ , e(α) = exp(2πiα) and ρ(x) is a suitable weight.

In analytic number theory we are dealing with infinite sets like N or the set of the prime num-

bers that we can denote with the letter P, and it may be useful to deal with truncated exponential

sums:

S(N, f ) := ∑
x≤N

ρ(x)e( f (x)).

The definition of Uk(α) in (1.7) is a truncated exponential sum.

Sometimes it can be useful to treat weighted exponential sums when we are summing over

prime numbers:

S(X ,α) := ∑
p≤X

log pe(pα)

S′(X ,α) := ∑
n≤X

Λ(n)e(nα).

where

Λ(n) :=

 log p if n = pk

0 otherwise

is the von Mangoldt function. The first definition is used in the circle method and in a more

generalized version in (1.6), more suitable for our purpose (dropping the argument X):

Sk(α) = ∑
δX≤pk≤X

log p e(pk
α),

where k≥ 1 is a real parameter and δ is a small positive constant. We always use this last definition

in which the choice of starting from δX instead of 1 or 2 is needed for technical reasons but it does

not alter the final result.
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It is possible to use the weighted sum with both the logarithm or the von Mangoldt function as

weights; in the latter case the weights are exactly the coefficients of the logarithmic derivative of

the Riemann ζ function. It is well known that weighted exponential sums are extremely useful in

analytic number theory.

The weighted exponential sum over the prime numbers can be approximated with a sum with-

out weights or with the exponential integral:

Uk(α) = ∑
δX≤nk≤X

e(nk
α)

Tk(α) =
∫ X

1
k

(δX)
1
k

e(αtk)dt.

These definitions are those used in this dissertation and are already defined respectively in

(1.6)-(1.7)-(1.8).

Sometimes, we do not need to know the exact behavior of the exponential sum but it is im-

portant to have an upper bound; in all cases a trivial upper bound is the number of element of the

truncated set:

|Sk(α)| � X
1
k , |Uk(α)| � X

1
k , |Tk(α)| � X

1
k (B.1)

in which, in the estimation of |Sk(α)|, we used the Prime Number Theorem.

The estimations above are trivial estimates that often do not lead to satisfactory results. In this

dissertation, in order to be able to exploit the Cauchy-Schwartz and the Hölder inequalities, we

need estimates we need stronger bounds on the exponential sums such as Ln-norm estimations (in

almost all cases L2-norm or L4-norm). Moreover, we need sometimes to estimate the difference

between two of the objects defined above, sometimes also in L2-norm.

Theorem B.1. For k ≥ 1 we have

Tk(α)�k,δ X
1
k−1 min(X , |α|−1).

Proof. For all α ∈ R,

∫ X
1
k

(δX)
1
k

e(tk
α)dt�

∫ X
1
k

(δX)
1
k

dt� X
1
k .

Using an appropriate change of variables followed by an integration by parts we have

∫ X
1
k

(δX)
1
k

e(tk
α)dt =

∫ X

δX

1
k

s
1
k−1e(sα)ds =

[
1
k

s
1
k−1 e(sα)

α

]X

δX
+

k−1
k2

∫ X

δX

e(sα)

α
s

1
k−2ds

If |α|> X−1 it is easy to see that this is�k,δ X
1
k−1|α|−1.
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Theorem B.2.

|Tk(α)−Uk(α)| � 1+ |α|X .

It can be proved using Euler summation formula (Theorem A.7).

B.1 Mean-value of |S1(α)|2

Theorem B.3. ∫ 1

0
|S2

1(α)|dα � X logX .

Proof. ∫ 1

0
|S2

1(α)|dα =
∫ 1

0
S1(α)S1(−α)dα

=
∫ 1

0
∑

p≤X
log p · e(pα) ∑

q≤X
logq · e(−qα)dα

= ∑
p≤X

∑
q≤X

log p logq
∫ 1

0
e((p−q)α)dα.

If p = q the integral is 1, otherwise the integral is 0, therefore∫ 1

0
|S2

1(α)|dα = ∑
p≤X

log2 p = X logX +o(X logX)

using partial summation (Theorem A.6) and the Prime Number Theorem.

B.2 Mean-value of |S2(α)|4

Lemma B.4. ∫ 1

0
|S2(α)|4dα �ε X log2 X .

The proof is due to Rieger [40] p. 94 satz 3.

B.3 Mean-value of |S3(α)|4 and |S j(α)|2 j

Lemma B.5 (Hua’s Lemma). Let k ≥ 1 integer and 1≤ `≤ k; we have∫ 1

0
|Sk(α)|2`dα � X

2`−`
k +ε .

The proof of Hua’s Lemma can be found in [46] Lemma 2.5.
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B.4 Mean-value of |Sk(α)|2

Lemma B.6 ([42], Lemma 7). Let k > 1, τ > 0,∫
τ

−τ

|Sk(α)|2dα �max(τX1/k+ε ,X2/k−1+ε).

Proof. It comes directly from [42] Lemma 7, in fact, although in Tolev’s paper c ∈
(
1, 15

14

)
, the

Lemma is true for every c > 1. In our case we use the definition of Sk(α) in (1.6):∫
τ

−τ

|Sk(α)|2dα � ∑
δX<pk

1,p
k
2≤X

(log p1)(log p2)
∫

τ

−τ

e((pk
1− pk

2)α)dα

� log2 X ∑
δX<pk

1,p
k
2≤X

min
(

τ,
1

|pk
1− pk

2|

)

� log2 X ∑
δX<nk

1,n
k
2≤X

min
(

τ,
1

|nk
1−nk

2|

)
�Uτ log2 X +V log2 X ,

where

U = ∑
δX<nk

1,n
k
2≤X

|nk
1−nk

2|≤1/τ

1, V = ∑
δX<nk

1,n
k
2≤X

|nk
1−nk

2|>1/τ

1
|nk

1−nk
2|
.

We have

U �A (X1/k;k;1/τ)�
(

1
τ

X2/k−1 +X1/k
)

Xε

then

Uτ log2 X �
(

X2/k−1 + τX1/k
)

Xε .

On the other hand, using a dyadic argument on u = |nk
1−nk

2|−1, V ≤ ∑l Vl where

Vl = ∑
δX<nk

1,n
k
2≤X

l<|nk
1−nk

2|≤2l

1
u

and l takes the values
2i

τ
, i = 0,1,2, . . ., with l ≤ X . We have

Vl �
1
l ∑

δX<nk
1≤X

∑
δX<nk

2≤X
(nk

1+l)1/k≤n2≤(nk
1+2l)1/k

1.

For l ≥ 1
τ

and δX < n1 ≤ X it is easy to see that

(nk
1 +2l)

1
k − (nk

1 + l)
1
k > 1,
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hence

Vl �
1
l ∑

δX<nk
1≤X

(
(nk

1 +2l)1/k− (nk
1 + l)1/k

)
� X2/k−1

by the mean-value Theorem. Collecting all bounds we get∫
τ

−τ

|Sk(α)|2dα �
(

τX1/k +X2/k−1
)

Xε .

Lemma B.7 ([30], Lemma 5). Let λ ∈ R \ {0}, k > 1, 0 < η < 1, R > 1/η and 1 < P < X. We

have ∫ R

P/X
|Sk(λα)|2Kη(α)dα � ηX1/k(logX)3.

B.5 Mean-value of |Sk(α)|4

Lemma B.8 ([15], Lemma 3). Let ε > 0, k > 1 and γ > 0. Let further A (X1/k;k;γ) denote the

number of solutions of the inequalities

|nk
1 +nk

2−nk
3−nk

4|< γ, X1/k < n1,n2,n3,n4 ≤ 2X1/k.

Then

A (X1/k;k;γ)�
(
X2/k + γX4/k−1)Xε .

Proof. This is an immediate consequence of Theorem 2 of Robert & Sargos [41]; we just need to

choose M = X1/k, α = k and γ = δMk there.

Lemma B.9 ([15], Lemma 4). Let ε > 0, δ > 0, k > 1, n ∈ N and τ > 0. Then we have∫
τ

−τ

|Sk(α)|4 dα �
(
τX2/k +X4/k−1)Xε and

∫ n+1

n
|Sk(α)|4 dα �

(
X2/k +X4/k−1)Xε .

Proof. A direct computation gives∫
τ

−τ

|Sk(α)|4 dα = ∑
δX<pk

1,p
k
2,p

k
3,p

k
4≤X

(log p1) · · ·(log p4)
∫

τ

−τ

e((pk
1 + pk

2− pk
3− pk

4)α)dα

� (logX)4
∑

δX<pk
1,p

k
2,p

k
3,p

k
4≤X

min
(

τ;
1

|pk
1 + pk

2− pk
3− pk

4|

)
� (logX)4

∑
δX<nk

1,n
k
2,n

k
3,n

k
4≤X

min
(

τ;
1

|nk
1 +nk

2−nk
3−nk

4|

)
�Uτ(logX)4 +V (logX)4, (B.2)
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where

U := ∑
δX<nk

1,n
k
2,n

k
3,n

k
4≤X

|nk
1+nk

2−nk
3−nk

4|≤1/τ

1, and V := ∑
δX<nk

1,n
k
2,n

k
3,n

k
4≤X

|nk
1+nk

2−nk
3−nk

4|>1/τ

1
|nk

1 +nk
2−nk

3−nk
4|
,

say. Using Lemma B.8 on U we get

U �A (X1/k;k;1/τ)�
(

X2/k +
1
τ

X4/k−1
)

Xε .

Concerning V , by a dyadic argument we get

V � logX
(

max
1/τ<W�X

∑
δX<nk

1,n
k
2,n

k
3,n

k
4≤X

W<|nk
1+nk

2−nk
3−nk

4|≤2W

1
u

)
� logX max

1/τ<W�X

( 1
W

A (X1/k;k;2W )
)

� max
1/τ<W�X

( 1
W

(2WX4/k−1 +X2/k)
)

Xε � max
1/τ<W�X

(
X4/k−1 +

X2/k

W

)
Xε

� (τX2/k +X4/k−1)Xε . (B.3)

Combining (B.2)-(B.3), the first part of the Lemma follows. The second part can be proved in a

similar way.

Lemma B.10 ([15], Lemma 10). Let λ ∈R\{0}, ε > 0, k> 1, 0<η < 1 , R> 1/η and 1<P<X.

Then ∫ R

P/X
|Sk(λα)|4Kη(α)dα � η max(X2/k;X4/k−1)Xε .

Proof. Using (1.5) we obtain∫ R

P/X
|Sk(λα)|4Kη(α)dα � η

2
∫ 1/η

P/X
|Sk(λα)|4 dα +

∫ R

1/η

|Sk(λα)|4 dα

α2 = A+B, (B.4)

say. By Lemma B.9, we immediately get

A� η
2
∫ |λ |/η

−|λ |/η

|Sk(α)|4 dα � η max(X2/k;ηX4/k−1)Xε .

Moreover, again by Lemma B.9, we have that

B�λ

∫ +∞

|λ |/η

|Sk(α)|4 dα

α2 � ∑
n≥|λ |/η

1
(n−1)2

∫ n

n−1
|Sk(α)|4 dα

� η max(X2/k;X4/k−1)Xε . (B.5)

Combining (B.4)-(B.5) and using 0 < η < 1, the Lemma follows.
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B.6 Generalized Selberg integrals

Let us define the generalized version of the Selberg integral:

Jk(X ,h) =
∫ 2X

X

(
θ((x+h)

1
k )−θ(x

1
k )− ((x+h)

1
k − x

1
k )
)2

dx,

where θ(x) = ∑p≤x log p is the usual Chebyshev function.

Lemma B.11 ([29], Theorem 3.1). Let k ≥ 1 be a real number. For 0 < Y < 1
2 we have

∫ Y

−Y
|Sk(α)−Uk(α)|2dα �k

X
2
k−2 log2 X

Y
+Y 2X +Y 2Jk

(
X ,

1
2Y

)
.

Lemma B.12 ([29], Theorem 3.2). Let k ≥ 1 be a real number and ε be an arbitrarily small

positive constant. There exists a positive constant c1(ε), which does not depend on k, such that

Jk(X ,h)�k h2X
2
k−1 exp

(
−c1

(
logX

log logX

) 1
3
)

uniformly for X1− 5
6k+ε ≤ h≤ X.

B.7 The theorems of Vaughan and Ghosh

Lemma B.13 (Vaughan [46], Theorem 3.1). Let α be a real number and a,q be positive integers

satisfying (a,q) = 1 and
∣∣∣α− a

q

∣∣∣< 1
q2 . Then

S1(α)�
(

X
√

q
+
√

Xq+X
4
5

)
log4 X .

Lemma B.14 (Ghosh [17], Theorem 2). Let α be a real number and a,q be positive integers

satisfying (a,q) = 1 and
∣∣∣α− a

q

∣∣∣< 1
q2 . Let moreover ε > 0, then

S2(α)�ε X
1
2+ε

(
1
q
+

1

X
1
4
+

q
X

) 1
4

.

Corollary B.15. Let λ ∈R\{0}, X ≥ Z≥X4/5(logX)5 and |S1(λα)|> Z. Then there are coprime

integers (a,q) = 1 satisfying

1≤ q�
(X(logX)4

Z

)2
, |qλα−a| � X(logX)10

Z2 .

Proof. Let Q be a parameter that we will choose later. By Dirichlet’s theorem A.3 there exist

coprime integers (a,q) = 1 such that 1≤ q≤ Q and |qλα−a| � Q−1 ≤ q−1. The choice

Q =
Z2

X(logX)10
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allows us to prove the second part of the statement and to neglect some terms in the estimations of

|S1(λα)|. Using Lemma B.13, knowing that Z ≥ X4/5(logX)5 and |S1(λα)|> Z, we can rewrite

the bound for |S1(λα)| neglecting the term X4/5:

Z < |S1(λα)| � (Xq−1/2 +X1/2q1/2)(logX)4.

The condition q ≤ Q allows us to neglect the term X1/2q1/2 and deal with small values of q; in

fact, if q > X1/2 then we would have a contradiction

Z < |S1(λα)| � X1/2q1/2(logX)4 ≤ X1/2 Z
X1/2(logX)5 (logX)4 = o (Z) .

Then q≤min(X1/2,Q) = X1/2, since Z ≥ X4/5(logX)5 > X3/4(logX)5. Moreover, we can rewrite

the inequality on |S1(λα)| as

Z < |S1(λα)| � Xq−1/2(logX)4

and finally we get q1/2Z� X(logX)4, which completes the proof.

Corollary B.16. Let λ ∈ R\{0}, X
1
2 ≥ Z ≥ X

1
2−

1
16+ε and |S2(λα)|> Z. Then there are coprime

integers (a,q) = 1 satisfying

1≤ q≤

(
X

1
2+ε

Z

)4

, |qλα−a| � X−1

(
X

1
2+ε

Z

)4

.

Proof. Let Q be a parameter that we will choose later. By Dirichlet’s Theorem A.3 there exist

coprime integers (a,q) = 1 such 1≤ q≤ Q such that |qλα−a| � Q−1 ≤ q−1. The choice

Q = X
(

Z

X
1
2+ε

)4

allows us to prove the second part of the statement and to neglect some terms in the estimations

of |S2(λα)|. Using Lemma B.14, knowing that Z ≥ X
7
16+ε and |S2(λ1α)|> Z, we can rewrite the

bound for |S2(λα)| neglecting the term X
7
16+ε :

Z < |S2(λα)| � X
1
2+εq−

1
4 +X

1
4+ε/2q

1
4 .

The condition q ≤ Q allows us to neglect the term X
1
4+ε/2q

1
4 and deal with small value of q;

in fact, if q > X
1
2 then we would have a contradiction:

Z < |S2(λα)| � X
1
4+ε/2q

1
4 ≤ X

1
4+ε/2X

1
4

Z

X
1
2+ε

= o(Z).
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Then q≤min(X
1
2 ,Q) = X

1
2 , since Z ≥ X

7
16+ε > X

3
8+ε . Moreover we can rewrite the inequality

for |S2(λα)| as

Z < |S2(λα)| � X
1
2+εq−

1
4

and get

q
1
4 Z ≤ X

1
2+ε ⇒ q≤

(
X

1
2+ε

Z

)4

which proves the Lemma.
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