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Summary

This thesis deals with epidemiological and environmental complex systems; their
evolution and potentialities are analysed by means of qualitative analysis and optimal
control techniques.

In the �rst part of the thesis we analyse a controlled SIR epidemiological model,
focusing on four di�erent control policies: prophylactic vaccination, isolation, non-
selective culling and reduction of transmission controls. We thoroughly investigate
the problem of minimizing the epidemic duration both with theoretical and numeri-
cal tools. In particular, for each policy, we prove the existence of an optimal control
and we prove that the optimal strategy is to apply the control at the maximum
rate until the eradication of the disease, possibly delaying the control action some
amount of time. To complete the analytical study, we perform an extensive numerical
study, exploring the solution of the time-optimal control problem on a wide range of
parameter settings describing di�erent epidemiological conditions, di�erent possible
control e�orts and di�erent numbers of initially introduced infected individuals in
the population. The numerical simulations show that using the maximum control for
the entire epidemic duration may not be the optimal strategy (even in unconstrained
conditions) and that minimizing the epidemic duration does not always imply mini-
mizing the total infectious burden, and vice versa.

The subsequent parts of the thesis focus on network models.
The second part deals with a network of dynamical systems devised to simulate

the spread of an epidemic in highly populated cities. We model the city structure
by identifying the nodes of the graph with the neighbourhoods of the city, and us-
ing directed weighted edges to represent the fraction of people moving from one
neighbourhood to another due to their daily routine activities. The evolution of the
disease inside each neighbourhood is described by the generalized model by Capasso
and Serio in order to take into account psychological e�ects that can arise if a sig-
ni�cant part of the neighbourhood is infected. The non-linear incidence term of this
model is a generic unspeci�ed function characterized by some meaningful properties.
The equations of the model are obtained starting from the Capasso-Serio model and
taking into account the in�uence of the infected individuals that come from other
districts. We de�ne the basic reproduction number for our epidemiological network
and perform an analytical study for two particular network and parameters con�g-
urations, in order to analyse the stability of the disease free equilibrium. We prove
that in an homogeneous (with respect to the epidemiological parameters) network
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the mobility of people is irrelevant, while in a slightly heterogeneous network it could
be an essential ingredient in avoiding an epidemic.

In the third part of the thesis we study an environmental network devised to
simulate an heterogeneous territory distributed in several landscape units, that are
regions whose borders are identi�ed by natural or anthropic barriers. The state of
each landscape unit is described by the percentage of high quality green areas and by
the bio-energy; they depend on several environmental parameters. Each landscape
unit is represented by a node of the graph, while the interaction between them is
simulated using weighted directed arcs, that mimic the capability of transmission
of bio-energy. The interaction between landscape units has the same mathematical
structure as the electrical coupling in neural networks. The equilibria of the isolated
landscape unit and their stability properties are analysed in terms of two bifurcation
parameters. In order to study the equilibria of the environmental network a proper
reduced model is considered. Its equilibria and their stability properties are analysed
by means of four bifurcation parameters, with the aim of obtaining information about
the robustness of the environmental system under strong perturbations due to human
land uses impact or to natural events.
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Riassunto

Questa tesi tratta sistemi complessi in ambito epidemiologico ed ambientale, uti-
lizzando tecniche di controllo ottimo e analisi qualitativa dei sistemi dinamici per
fornire indicazioni sull'evoluzione dei sistemi.

Nella prima parte della tesi viene studiato un problema di controllo ottimo di tipo
time-optimal applicato a modelli epidemiologici di tipo SIR, considerando quattro
possibili politiche di controllo dell'epidemia: vaccinazione, isolamento, abbattimento
non selettivo e interventi per la riduzione della trasmissione dell'infezione. L'obiettivo
dello studio è determinare per ogni politica la strategia (cioè la funzione) di controllo
che minimizza il tempo di eradicazione della malattia. Sfruttando la teoria di Pon-
tryagin, viene dimostrata l'esistenza di una soluzione del problema di controllo a
tempo ottimo per le quattro politiche di controllo dell'epidemia. Inoltre, si dimostra
che il controllo ottimo è di tipo bang-bang, ossia la strategia ottimale che minimizza la
durata dell'epidemia può essere l'applicazione della politica di controllo all'insorgere
dell'infezione, oppure l'intervento ritardato di una certa quantità di tempo, che può
essere anche consistente. Dai risultati ottenuti, si può osservare che, in varie con�g-
urazioni dei parametri, applicare il controllo al massimo delle sue potenzialità per
l'intera durata dell'epidemia può allungarne il decorso e che in alcuni casi la strategia
che minimizza la durata di un'infezione non corrisponde a quella che minimizza il
numero di individui che vengono infettati, e viceversa.

Il resto della tesi riguarda lo studio di modelli su network.
Nella seconda parte della tesi viene considerato un modello epidemiologico de�nito

su grafo, costruito per simulare la di�usione di un'epidemia all'interno di una città
densamente popolata. I nodi del grafo rappresentano i quartieri della città, mentre
gli archi diretti e pesati descrivono la frazione di popolazione di un dato quartiere
che giornalmente si sposta verso un altro quartiere per motivi di studio o di lavoro.
La dinamica di infezione all'interno di ciascun quartiere è descritta da un modello
epidemiologico di tipo SIR generalizzato proposto da Capasso e Serio nel 1973, in
modo da poter includere nel modello la risposta psicologica della popolazione ad
un forte aumento del numero degli infetti. Per analizzare la di�usione dell'epidemia
viene de�nito il numero riproduttivo di base speci�co di questo modello epidemi-
ologico su grafo: se il suo valore supera la soglia critica 1 allora si avrà di�usione
dell'epidemia, in caso contrario si estinguerà monotonicamente. In questa tesi sono
stati considerati due particolari tipi di modelli epidemiologici de�niti su grafo: il caso
di network omogeneo (in cui ogni nodo presenta gli stessi parametri epidemiologici)
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e un particolare caso di network eterogeneo. Nel primo caso si osserva che, indipen-
dentemente dalla geometria del grafo, esiste una soglia critica al di sopra della quale
si ha di�usione della malattia, mentre al di sotto si ha estinzione monotona. Nel
secondo caso invece la di�usione dell'epidemia è fortemente in�uenzata dai �ussi di
persone tra i quartieri.

Nella terza parte della tesi è stato analizzato un sistema complesso de�nito su un
grafo, messo a punto per descrivere l'evoluzione di un sistema ambientale. Il sistema
ambientale viene suddiviso in unità territoriali, che sono porzioni di territorio i cui
con�ni sono delimitati da barriere naturali o antropiche. Ogni nodo del grafo rappre-
senta un'unità territoriale, il cui stato è descritto dalla percentuale di aree verdi di
buona qualità e dal valore di bio-energia, mentre la loro dinamica dipende da alcuni
parametri territoriali. L'interazione tra le unità territoriali è modellizzata tramite un
arco diretto e pesato in cui il peso descrive la facilità di scambio di bio-energia tra le
diverse unità, e viene descritto analiticamente mediante un termine di accoppiamento
di tipo �elettrico�, analogo a quello usato nel campo delle reti neurali. L'obiettivo
dello studio è determinare gli equilibri del sistema complesso e la loro stabilità, per
valutare la �resistenza� di un equilibrio del sistema a forti perturbazioni dovute a
eventi naturali o all'intervento umano. Inizialmente sono stati individuati e studiati
gli equilibri della singola unità territoriale al variare di due parametri. Per lo studio
del sistema complesso si è dimostrato che non sono presenti attrattori periodici o
caotici, ma il sistema tende sempre ad un equilibrio. Successivamente, per lo studio
degli equilibri, è stato costruito un opportuno modello ridotto. Su questo modello
ridotto è stata condotta un'analisi teorica degli equilibri e della loro stabilità al variare
di quattro parametri del sistema. Successivamente i risultati dell'analisi qualitativa
e�ettuata sono stati testati su un esempio reale, relativo ad un sistema ambientale
nella provincia nord di Torino.
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Introduction

Mathematical modelling has become an important tool for predicting the evolution
of real systems in di�erent �elds: biological and chemical systems, disease trans-
mission [71], landscape ecology [73], neural networks, social phenomena, Internet,
technological and transportation infrastructures [12]. These models are created with
the aim of both understanding the essential underlying mechanisms and calibrating
the response to these dynamics in order to control or improve them.

There is an astonishing number and variety of models and explanations for the
spread and cause of epidemic outbreaks [3, 4, 8, 26, 30, 45, 47, 71]. The reason is
that epidemiological models are useful experimental tools for building and testing
theories, assessing quantitative conjectures, answering speci�c questions, determining
sensitivities to changes in parameter values, and estimating key parameters in a �eld
where data on human-to-human contacts are rare, often incomplete and complicated
by many factors not of direct interest. Moreover, they allow to do �experiments� in a
�eld where real experiments are impossible or unethical. Understanding the transmis-
sion characteristics of infectious diseases in communities, regions, and countries can
lead to better approaches to decrease their spreading. Mathematical models are used
in comparing, planning, evaluating, and optimizing various detection, prevention,
therapy, and control programs [46].

In the �rst part of the thesis we model outbreaks of infectious diseases in domestic
animals considering a controlled SIR epidemiological model. The emergence and re-
emergence of infectious diseases represent a major threat to public health and may
cause heavy economic and social losses. Recent epidemics of Ebola in West Africa
and MERS-CoV in South Korea highlighted once again the requirement for strong
public health interventions for fast disease eradication [32, 61]. Also outbreaks of
infectious diseases in domestic animals may cause signi�cant consequences for both
the sustainability of the livestock industry and the costs associated to disease surveil-
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lance, control, and eradication. Moreover, the economic burdens imposed by livestock
diseases exceed the agricultural compartment, by a�ecting also commerce, tourism,
and even human health in the infected areas. Consequently, minimizing the time pe-
riod needed for outbreaks eradication in the a�ected areas represents a public health
priority. In our study, in order to minimize outbreaks eradication, we focus on four
di�erent control policies: prophylactic vaccination, isolation, non-selective culling and
reduction of transmission controls. The evolution of the epidemic described by a SIR
model, even if uncontrolled, is well known: in some amount of time the disease will
disappear. Obviously, we are not interested in modifying the evolution of the dy-
namical system. Instead, we are interested in minimizing the eradication time. In
this thesis, we prove that for each policy the optimal strategy that minimizes the
epidemic duration is to apply the control at the maximum rate until the eradication
of the disease, possibly delaying the control action some amount of time. This type of
control is called bang-bang control with at most one switch from no control to max-
imum rate control. This result is obtained by applying the Pontryagin's Maximum
Principle (PMP), which is a classical result from optimal control theory that provides
a necessary condition that must be satis�ed by an optimal solution. We observe that
this result is in contrast with previous �ndings on the unconstrained problems of
minimizing the total infectious burden over an outbreak, where the optimal strategy
is to use the maximal control for the entire epidemic. Then, the critical consequence
of our results is that, in a wide range of epidemiological circumstances, it may be
impossible to minimize the total infectious burden while minimizing the epidemic
duration, and vice versa.
To complete the analytical study, we perform an extensive numerical study with
a simple ad-hoc numerical method, exploring the solution of the optimal control
problem on a wide range of parameter settings describing di�erent epidemiological
conditions, di�erent possible control e�orts and di�erent number of initially intro-
duced infected individuals in the population. The numerical simulations show that
in some cases the optimal control can be delayed also when the control reproduction
number is lower than one and that the optimal implementation of the control can
even occur after the peak of infection has been reached. Our results are especially
important for livestock diseases where the minimization of outbreaks duration is a
priority due to sanitary restrictions imposed to farms during ongoing epidemics, such
as animal movements and export bans, that cause a huge economic impact.

In the second part of the thesis we consider a human-to-human disease which is
supposed to spread in a highly populated city and which is modelled by means of an
epidemic network model. As said before, there is a huge amount of epidemic models.
In this part of the thesis, we choose the generalized model by Capasso and Serio,
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which combines simplicity to �exibility � since the incidence function must satisfy
some constraints, but is not speci�ed � and also a smidgen of realism, taking into ac-
count psychological e�ects that can arise if a signi�cant part of the city is infected. We
want to introduce and quantify spatial e�et, focusing on the impact of daily-routine
human mobility and heterogeneity of epidemiological parameters on the occurrence
of an epidemic outbreak. Metapopulation models are commonly used to describe
the dynamics of an epidemic in heterogeneous environment [5, 57]. We choose to
partition the city into neighbourhoods, containing many hundreds or thousands of
people. This seems reasonable, if we want to focus on daily-routine human mobility.
Moreover, this scale allows tu collect enough data both for the neighbourhoods pa-
rameters and for the mobility data, which can be obtained from road tra�c studies
and public transportation companies. Mathematically, we model the city structure
by identifying the nodes of a graph with the neighbourhoods of the city, and using
directed weighted edges to represent the fraction of people moving from one neigh-
bourhood to another due to their daily routine activities. Then, the equations of the
model are obtained starting from the Capasso-Serio model and taking into account
the in�uence of the infected individuals that come from other districts.
We de�ne the basic reproduction number for our epidemiological network and per-
form an analytical study for two particular network and parameters con�gurations,
in order to analyse the stability of the disease free equilibrium, and hence the poten-
tial outbreak of the disease. First we consider an homogeneous (with respect to the
epidemiological parameters) network and prove that, in this framework, mobility of
people between neighbourhoods is irrelevant. Then we consider a slightly heteroge-
neous network, where a node of the network has di�erent epidemiological parameters
from other nodes. This latter case might represent di�erent behaviours of the popu-
lation in di�erent neighbourhoods, due to di�erent social status or wealth; it could
also model a vector-di�usion disease, such as dengue fever, where mosquitoes are con-
sidered as a background and humans act like vectors between localized mosquitoes
populations [85]. In case of slightly heterogeneous network, we prove that human
mobility might be an essential ingredient in avoiding, or facilitating, the epidemic
outbreak.

Another recent �eld of application of mathematical modelling is the Landscape
Ecology, which focuses on the problem of a quantitative evaluation of an environ-
ment, aiming at managing and planning the territory through government, conserva-
tion and protection of landscapes. In this context, in the third part of the thesis we
investigate an environmental network devised to simulate an heterogeneous territory
distributed in several landscape units, that are regions whose borders are identi�ed
by natural or anthropic barriers. Our purpose is to study the long term evolution of
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the system in order to achieve informations about the robustness of the environment
under strong perturbations due to human land uses impact and to natural events. To
do this, we construct a network of dynamical systems that describes the evolution
in time and in space of an environmental system and we determine the equilibria
and their stability properties. We describe the state of each landscape unit by the
percentage of high quality green areas and by the bio-energy value; they depend on
several environmental parameters, such as solar exposure, relative humidity or pres-
ence of built-up areas. The territory is partitioned in several landscape units, which
are considered as nodes of the graph underlying the environmental network. Then,
the interaction between landscape units is described by a coupling linear term that
has the same mathematical structure as the electrical coupling in neural networks.
Moreover, all the coupling information are contained in the weight matrix relevant
to the graph underlying the environmental network.
First, we perform a stability analysis of the isolated landscape unit by means of two
bifurcation parameters, detecting general conditions for the number of equilibria,
for their existence and stability. Then, in order to study the equilibria of the com-
plex network, a proper reduced model is considered. Its equilibria and their stability
properties are analysed; their dynamics are completely determined in terms of four
bifurcation parameters. We also show some numerical tests relevant to an environ-
mental system of the northern side of the Turin Province (Italy). The obtained results
are compared with those of the simpli�ed system and of the isolated landscape unit,
in order to underline how the coupling between the ecological sectors may modify
the scenarios, thanks to the exchange of bio-energy, and also underlying how the
simpli�ed system is able to give information about the asymptotic behaviour of the
network model, in accordance with the stability analysis performed.

The �nal pages of this thesis present the publications coauthored by the candidate
and the list of presented talks and posters.
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Preliminaries

This Chapter introduces some basic concepts on Pontryagin's theory and network of
dynamical systems that are used in this thesis.

First we present the theory of the Pontryagin's Maximum Principle (PMP), which
is a classical result in Optimal Control theory. For this argument, we follow the
notation of the notes [22]. Then, we introduce the general concept of graph and
the de�nition of network of dynamical systems (or complex system), following the
notation used in the review article by Boccaletti et al.[12].

1.1 Pontryagin’s theory

After more than three hundred years of evolution, optimal control theory has been
formulated as an extension of the calculus of variations. The Pontryagin's Maximum
Principle (PMP) [78] is a classical result in Optimal Control theory which provides
a necessary condition that must be satis�ed by a solution to be optimal. There are
various versions of PMP for problem statements of varying generality, depending con
the considered constraints such as conditions at the boundary or path constraints.
We present a version that is suitable for the types of problems discussed in this
thesis; for more general versions see [11, 22, 36]. We want to remark that however,
despite the PMP being a fundamental tool, optimal control theory is by no means
complete, especially when it comes to the question whether an optimal control exists
for a given problem.

Let [t0, tf ] ⊂ R and u : [t0, tf ] → U be a piecewise continuous function, where
U is a bounded subset of Rm. Suppose that x : [t0, tf ] → Rn is the solution of the
autonomous system of ordinary di�erential equations
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ẋ(t) = F (x(t),u(t)); x(t0) = x0,

where F : Rn×U → Rn is continuous in the variable u and continuously di�erentiable
on Rn.

We will denote u(t) the control applied at time t and x(t) the system trajectory (or
state, or response) corresponding to control u and initial condition x0. Notice that
in order to de�ne a system trajectory a corresponding control and initial condition
must be speci�ed.

Given function ` : Rn × U → R that is continuous on U and continuously di�er-
entiable on Rn we de�ne the cost functional

J(x,u, t0, tf ) =

∫ tf

t0

`(x(t),u(t))dt.

Roughly speaking, the goal is then to �nd a control u that minimizes J , along
with the corresponding x, t0 and tf . There are di�erent variations of this problem
depending on the speci�c constraints placed on t0, tf , x(t0) and x(tf ).

In our speci�c framework, the initial time t0 and the initial condition x(t0) are
given, while the terminal time tf is free. We require also that the �nal condition
x(tf ) belongs to a certain smooth manifold Xf (target set) of dimension nf ≤ n.

Before stating the Pontryagin's Maximum Principle, some notation is needed.

De�nition 1.1 (The extended problem). For a given control u and the corre-
sponding trajectory x we de�ne the dynamic cost variable

c(t) =

∫ t

t0

`(x(τ),u(τ))dτ.

Then we can consider the extended trajectory x̃(t)T = (c(t),x(t)T)T and the ex-
tended system F̃ (x,u)T = (`(x,u), F (x,u)T)T. Then we have to �nd a control u
and a �nal time tf such that the (n+ 1)-dimensional solution of

˙̃x(t) = F̃ (x(t),u(t)), x̃(t0) =

(
0
x0

)
,

terminates at (
c(tf )
xf

)
,

where xf ∈ Xf and c(tf ) taking the least possible value.
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The following result gives a necessary condition for a control to be optimal. This
of course does not guarantee the existence of the optimal control, but if it exists
then it belongs to the class of functions that satis�es the Pontryagin's Maximum
Principle. Su�cient conditions and existence results are more di�cult to obtain and
are typically more case-speci�c [22].

Theorem 1.2 (Pontryagin's Maximum Principle for autonomous problems
with free terminal time and terminal target set).
Consider the optimal control problem

minimize: J(u, tf ) =

∫ tf

t0

`(x(t),u(t))dt

subject to: ẋ(t) = F (x(t),u(t)), t ≥ 0;

x(t0) = x0, x(tf ) ∈ Xf

u : [t0, tf ]→ U piecewise continuous,

with �xed initial time t0 and free terminal time tf and where the target set Xf is
a smooth manifold of dimension nf ≤ n. Let ` and F be continuous in (x,u) and
have continuous �rst partial derivatives with respect to x, for all (x,u) ∈ Rn × Rm.
Suppose that u∗ and t∗f are minimizer for the problem and let x̃∗ denote the optimal
extended trajectory. Then, there exists a piecewise continuously di�erentiable vector
function (called adjoint variable) λ̃∗ = (λ0, λ1, . . . , λn)T 6= (0, 0, . . . , 0)T such that

˙̃λ∗(t) = −∇x̃H(x∗(t),u∗(t), λ̃∗(t)),

where
H(x,u, λ̃) = λ̃TF̃ (x,u).

Moreover:

i) for each t0 ≤ t ≤ t∗f , the function H(x∗(t),w, λ̃∗(t)) attains a minimum on U at
w = u∗(t):

H(x∗(t),u∗(t), λ̃∗(t)) ≤ H(x∗(t),w, λ̃∗(t)), ∀w ∈ U

ii) for each t0 ≤ t ≤ tf :

λ∗0(t) = const. ≥ 0

H(x∗(t),u∗(t), λ̃∗(t)) = 0
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iii) at the optimal �nal time λ∗(t∗f ) is orthogonal to the tangent plane of Xf at x
∗(t∗f ),

T (x∗(t∗f )):

λ∗(t∗f )
Td = 0, ∀d ∈ T (x∗(t∗f )).

Note that if λ0(tf ) = 0, then the necessary conditions of optimality become inde-
pendent on the cost functional. This is called the abnormal case. On the contrary,
if λ0(tf ) > 0, then this is known as the normal case and it is common practice to
normalize the adjoint vector λ̃ by taking λ0(t) = 1, t0 ≤ t ≤ tf .

1.2 Networks of dynamical systems and graph theory

Many systems in nature and in technology can be seen as a large number of highly
interconnected dynamical units. Typical examples include large communication sys-
tems (the Internet, the telephone network, the World Wide Web), transportation
infrastructures (rail-road and airline routes), biological systems (gene and protein
interaction networks, neural networks), and a variety of social interaction structures.
A possible approach to capture the global properties of such systems is to model
them as graphs whose nodes represent the dynamical units (for instance the neu-
rons in the brain or the individuals in a social system) and the links stand for the
interactions between the units. Of course, this is a very strong approximation, since
it means translating the interaction between two dynamical units, which is usually
depending on time, space and many more other details, into simple numbers: the
existence or not and the magnitude of a link between the two corresponding nodes.
Nevertheless, in many cases of practical interest, such an approximation provides a
simple but still very informative representation of the entire system.

Then, to de�ne a network of dynamical system we need some rigorous de�nitions
of graph theory.

Directed and undirected graphs

A directed graph G = (V ,L) consists of two sets: a nonempty set V = {1, 2, . . . ,M}
and L, that is a set of ordered pairs of elements of V . The elements of the �rst set
are the nodes of the graph, while the elements of L are its links. The couple (i, j),
that represents a link from node i to node j, is denoted by i → j. In our de�nition
we do not allow multiple edges (couples of nodes connected by more than one link).
Two nodes are adjacent if there exist a link between them.

It is often useful to consider a matricial representation of a graph. A graph G
can be completely described by giving the adjacency (or connectivity) matrix A, a
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M ×M square matrix whose entry aij (i, j = 1, . . . ,M) is equal to 1 when the link
i→ j exists, and zero otherwise.

Two important quantities in directed graphs are the out-degree of the node i

kouti =
M∑
j=1

aij,

that represents the number of out-going links from node i, and the in-degree

kini =
M∑
j=1

aji,

which analogously represents the number of in-going links to node i.
We further note that an undirected graph can be seen as a directed graph where

the adjacency matrix is symmetric.

Weighted graphs

Typically, pair of nodes of a real network are connected with di�erent intensity. Then
it is convenient to describe them using a directed weighted graph G = (V ,L,W) con-
sisting of three sets: the sets of nodes V and and links L, as in the simple directed
graph, and the set of weights W that are real numbers, one for each link. In this
context, instead of being described by the adjacency matrix, G is completely deter-
mined by the weights matrix W whose entry wij is the weight related to the link
i→ j and, of course, wij = 0 if there is no link between the two nodes. For weighted
graphs we allow wii to be di�erent from zero.

The corresponding quantities of in and out-degrees are the out-strength of node i

souti =
M∑
j=1

wij,

and the in-strength of node i

sini =
M∑
j=1

wji.

Networks of dynamical systems

A network of dynamical systems is a system of ordinary di�erential equations that
describes the evolution in time of M units (individuals, cities, neurons, ...) that
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interact and in�uence each other. Each unit is represented by a node of the graph,
whose state at time t is represented by a vector x(t) ∈ Rd, while the links (that
we suppose without loss of generality directed and weighted) mimic the interaction
between di�erent parts. The network of dynamical systems will then be represented
by a system of dM ordinary di�erential equations:{

ẋi = Fi(xi) +Hi(x1, . . . ,xM ;W )

i = 1, . . . ,M,

where ẋi = Fi(xi) are the vector dynamics of the node i when isolated from the oth-
ers, whereas the term Hi describes the interaction of the i-th unit with the others
and, thus,Hi depends on all the state variables of the system and on the magnitude
of the pairwise interactions, that are described by the elements of the weights matrix
W .



Part I

Time-optimal control problem applied to

SIR model





2

Introduction

The emergence and re-emergence of infectious diseases represent a major threat to
public health and may cause heavy economic and social losses. Recent epidemics
of Ebola in West Africa and MERS-CoV in South Korea highlighted once again the
requirement for strong public health interventions for fast disease eradication [32, 61].

In a similar way, outbreaks of infectious diseases in domestic animals may cause
signi�cant consequences for both the sustainability of the livestock industry and the
costs associated to disease surveillance, control, and eradication. Moreover, the eco-
nomic burdens imposed by livestock diseases exceed the agricultural compartment,
by a�ecting also commerce, tourism, and even human health in the infected areas.
Consequently, minimizing the time period needed for outbreaks eradication in the
a�ected areas represents a public health priority.

There exist several examples of livestock epidemics causing huge sanitary and eco-
nomic impacts, such as the 1996 epidemic of classical swine fever in The Netherlands
[68], the 2001 epidemic of foot-and-mouth in the UK [28], and the 2015 epidemic of
high pathogenic avian in�uenza in Midwestern USA [52]. From the epidemiological
point of view, the main indicators generally used to describe the severity of these
infection events in livestock are: (i) the total number of infected animals and farms
during an epidemic, and (ii) the duration of the epidemic. The rationale behind
these indicators is based on the evidence that epidemic surveillance and control costs
are directly related to spatial and temporal extension of the epidemic events [50].
Furthermore, the e�ect of the epidemic duration on the socio-economic burdens as-
sociated to livestock diseases is larger than in human diseases. This is due to the
sanitary restrictions imposed to farms in infected areas during ongoing outbreaks,
such as animal movement and export bans. Moreover, the block or the restriction of
farm activities can go over the time of infection, carrying on until the disease-free
status is formally regained [51]. Examples of costly restrictions for the livestock in-
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dustry include: the export ban of UK cattle because of the 1996 bovine spongiform
encephalopathy epidemic [40] and the export ban of poultry and poultry related
products in Hong Kong, Laos, Thailand, and The Netherlands due to outbreaks of
highly pathogenic avian in�uenza [60, 74, 75].

By using a stochastic modelling framework for classical swine fever in The Nether-
lands pig farms, Mangen et al. [66] showed that the increase of the epidemic duration
a�ects the sanitary costs associated to disease outbreaks more than a proportional
growth in the number of infected farms. This prediction followed from the observa-
tion that longer epidemics are more widespread, involving a larger number of animals
slaughtered. The estimate of the epidemic duration appears almost invariably in the
simulation outputs of data-driven mathematical models developed to evaluate the
e�ectiveness and the e�ciency of surveillance and control policies for several in-
fections in livestock, such as foot-and-mouth disease [80], classical swine fever [33],
bovine tuberculosis [81], and avian in�uenza [64]. However, few attempts have been
made to address the problem of minimizing the epidemic duration from a theoretical
point of view by using optimal control theory. To our knowledge, the only example
of analytic characterization of the control function in a time-optimal framework is
due to Jiang [55], who focused on the analysis of isolation strategies in a subsystem
of the model proposed in Zhang et al. [90] to describe SARS spread. On the other
hand, the optimal control theory has been widely applied to solve the problem of
minimizing the total number of infected individuals (or the total infectious burden)
in basic SIR (Susceptible-Infected-Recovered) epidemic models by means of di�erent
control policies, such as: the implementation of emergency prophylactic vaccination
plans, the isolation of infected individuals, the reduction of disease transmission
through the limitation of contacts between individuals, and non-selective culling
[1, 2, 9, 17, 44, 69, 88].

Prophylactic vaccination consists in the vaccination of susceptible individuals; its
goal is to prevent the development of diseases. Isolation consists in the quarantine of
infected individuals. As regards livestock diseases, in SIR models isolation is math-
ematically equivalent to removal of infected individuals through test-and-cull proce-
dures. Non-selective culling consists in the slaughtering of both infected and healthy
individuals and it is usually implemented in wildlife and livestock when no other op-
tions are available (e.g. no diagnostic tests available, lack of time or resources). The
rationale for culling healthy individuals resides in the positive relationship between
the rate at which individuals become infected and the abundance of susceptible in-
dividuals. Among humans, the reduction of transmission can be obtained through
information campaigns or emergency movement bans (e.g. school closures, �ight lim-
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itations), while in livestock it can be obtained by imposing limitations on animal,
vehicle, and personnel movements among farms.

Those cited studies solved the optimal control problem for the minimization of the
infectious burden in unconstrained conditions (i.e. without costs of control or resource
limitations). They showed that the optimal strategy always relies in the adoption of
the maximum control for the entire epidemic. In this context, maximum control is
intended as the implementation of the control policy at its maximum available rate.

In this Part1 of the thesis we consider a controlled SIR epidemiological model,
focusing on four di�erent control policies: prophylactic vaccination, isolation, non-
selective culling or reduction of transmission controls. We thoroughly investigate the
problem of minimizing the epidemic duration both with theoretical and numerical
tools. In particular, for each policy, we investigate the optimal control strategy that
minimizes the epidemic duration, proving that the optimal strategy is to apply the
control at the maximum rate until the eradication of the disease, possibly delay-
ing the control action some amount of time. To complete the analytical study, we
perform an extensive numerical study, exploring the solution of the optimal control
problem on a wide range of parameter settings describing di�erent epidemiological
conditions, di�erent possible control e�orts and di�erent number of initially intro-
duced infected individuals in the population. The numerical simulations show that
the optimal control can be delayed also when the control reproduction number is
lower than one and that the optimal implementation of the control can even occur
after the peak of infection has been reached. Consequently, our results lead to the
conclusion that: (i) using the maximum control for the entire epidemic duration may
not be the optimal strategy (even in unconstrained conditions); and (ii) minimizing
the epidemic duration does not always imply minimizing the total infectious burden,
and vice versa.

This Part is organized as follows. In Section 3.1 the basic assumptions and the
equations of the time-optimal epidemiological control model are presented. In Sec-
tions 3.2 and 3.3 we present theoretical results regarding the particular type of ad-
missible controls and the proof of the existence of a solution for the optimal control
problem, respectively. In Section 3.4 we describe the numerical method; results of the
simulations and proofs of the optimal control strategy for the choosen policies are
included in Sections 3.5 and 3.6. Finally, in Chapter 4 we include some concluding
remarks and work perspectives.

1 Most of the contents of this Part appears on arXiv:1706.04447 [math.OC], revised version submitted to
Mathematical Biosciences in April 2017 [13]
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Theoretical and numerical study

3.1 Optimal control problem: general setting

We describe the evolution of the infection in a host population with a standard
deterministic SIR model. The classical theoretical papers on epidemic models by
Kermack and McKendrick [58, 59] have had a major in�uence in the development
of mathematical models and they are still relevant in many situations. In particular,
the authors introduced a simple deterministic model, the SIR model, where the
population is divided into three compartments:

• the susceptibles (S), i.e. the class of individuals who can catch the disease and
become infective,
• the infectives (I) who have the disease and can transmit it to other susceptible
individuals,
• the removed class (R) which includes the individuals who do not catch or transmit
the disease any more, such as dead or recovered (thus immunized) individuals.

Their evolution in time is described by the di�erential system of equations:
Ṡ = −βSI
İ = βSI − µI
Ṙ = µI,

(3.1)

where β is the transmission rate of the infection and µ represents the loss rate of
infected individuals through both mortality and recovery. The SIR model ignores
almost every detail of a real epidemic, such as incubation, demographic and social
structure of the population and spatial distribution of the individuals. Conversely, it
assumes that the population is uniformly mixed, namely that each individual has the
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same probability to get in contact with another one. The interaction term between
susceptible and infected individuals is therefore a mass action term proportional to a
constant parameter, β. The model neglects also birth and natural death phenomena,
since the time scale progress of the epidemic is considered much more shorter than
lifetime, leading to a constant population in time. If we supplement the model with
a set of initial conditions

S(0) = S0 ≥ 0 I(0) = I0 ≥ 0 R(0) = 0, (3.2)

one can prove that the Cauchy problem (3.1)-(3.2) has a unique solution, which is a
global solution on R+ and always positive. The dynamical system admits an in�nite
number of equilibrium points [71], which are characterized by the I component equal
to zero; their stability depends on the value of the S component: the equilibrium is
stable if S < µ/β, unstable otherwise.

It is easy to prove that the total population N(t) = S(t) + I(t) + R(t) is con-
stant in time, since from (3.1) Ṅ = 0. Therefore, we can focus on the dynamics of
susceptibles and infected individuals only, and then obtain the removed ones from
R(t) = N − S(t)− I(t).

We will then consider the following system of two ordinary di�erential equations
(ODEs): {

Ṡ = f1(S, I) = −βSI
İ = f2(S, I) = βSI − µI

. (3.3)

If we denote by x(t) = (S(t), I(t))T the column vector that describes the state of the
system at time t, we can rewrite system (3.3) in the more compact form ẋ = f(x).

In our analysis, we consider four di�erent control policies, namely: vaccination,
isolation, culling, and reduction of transmission. We denote the generic control policy
rate applied at time t by u(t), which is assumed to be a piecewise continuous function
that takes values in a positive bounded set U = [0, umax]. We apply the di�erent
policies separately by adding a linear term in the control variable u(t) to model
(3.3), namely considering the general system

ẋ(t) = f(x(t)) + u(t)g(x(t)), (3.4)

where the function g depends on the chosen control policy. Speci�cally, we de�ne a
general linear term policy

gl(x) =

(
−α1S
−α2I

)
(3.5)
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which is a linear function of S and I that allows to model

Vaccination α1 = 1, α2 = 0 : gv(x) =

(
−S
0

)
(3.6)

Isolation α1 = 0, α2 = 1 : gi(x) =

(
0
−I

)
(3.7)

Culling α1 = 1, α2 = 1 : gc(x) =

(
−S
−I

)
(3.8)

and, in addition, we consider the nonlinear term policy

Reduction of transmission gr(x) =

(
βSI
−βSI

)
. (3.9)

We de�ne the basic reproduction number for model (3.3) as R0 = βS(0)/µ, which
represents the average number of secondary infections produced by a single infected
individual in a completely susceptible population in the absence of control [3]. In
addition, for each policy we will de�ne the control reproduction number RC that
represents the average number of secondary infections produced by a single infected
individual in a completely susceptible population with control measures in place [19].
From this de�nition, it follows that, when RC < 1, control measures applied at the
beginning of the epidemic are able to immediately reduce the number of the infected
individuals (i.e. İ(0) < 0).

3.1.1 Eradication time

The target will be the minimization of the eradication time of the infection.

De�nition 3.1 (Eradication Time). The eradication time T of the controlled SIR
problem (3.4) is the �rst time at which the number of infected individuals reaches the
threshold ε from above, where ε < 1 is a �xed positive constant.

Existence of the eradication time in problem (3.4) is guaranteed by the following
results.

Remark 1. If we consider non-negative initial data S(0) and I(0), then the solution
of the di�erential system (3.4) is non-negative at each time t > 0.

Proof. Indeed, for all the chosen policies, the I axis is a trajectory for the system;
the S axis is also a trajectory (for vaccination and culling policies) or is a set of
stationary points (for isolation and reduction of transmission policies).

ut
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Remark 2. For each k > 0 the set Qk = {S ≥ 0, I ≥ 0, S + I ≤ k} is a positively
invariant trapping region.

Proof. Using results of Remark 1 it is su�cient to prove that for S, I > 0 the vector
�eld evaluated on the boundary line S+I = k points towards the internal part of the
region Qk [41]; it is straightforward for each policy since the scalar product of the
vector �eld f(x) and the outward pointing normal vector of the boundary n̂ = (1, 1)T

is negative in all cases.
ut

Corollary 3.2. Given an initial condition x0 = (S(0), I(0)) ∈ R2
+, let x(t) =

(S(t), I(t)) be the solution of (3.4). Then I(t) → 0 as t → +∞ for all control
policies.

Proof. By Remark 2 we know that the set QN0 , where N0 = S(0)+I(0), is a trapping
region. Moreover, in this region the function Ṡ(t) has a constant negative sign, so
there cannot be periodic trajectories and all orbits must converge to a stationary
point x̄ ∈ QN0 . It is easy to prove that the number of infected individuals of a
stationary point is always zero. In fact, for the vaccination and culling policies, the
only stationary point is x̄ = (0, 0), while for isolation and reduction of transmission
policies the stationary points are all those of the S axis.

ut

We will chose initial conditions of infected individuals I(0) strictly greater than
ε. As a consequence, T being the �rst time at which the variable I reaches ε, it holds
that İ(T ) < 0.

We can then write the optimal control problem [78] where the goal is:

minimize: J(u) =

∫ T

0

1dt (Eradication time)

subject to: ẋ(t) = f(x(t)) + u(t)g(x(t)), t ≥ 0; (3.10)

x(0) = x0, x(T ) ∈ C = {(S, I) : I = ε}
u : [0,+∞)→ U = [0, umax] piecewise continuous,

where g is de�ned by the chosen control policy.
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3.2 Admissible control strategies

Given the optimal control problem (3.10) with f, g ∈ C∞(R2), we apply the Pontrya-
gin's Maximum Principle (see Section 1.1) in order to �nd a characterization of the
optimal control strategy.

Theorem 3.3 (Pontryagin's Maximum Principle for linear time-optimal
control problem). Suppose that u∗(t) is a minimizer for the optimal control problem
(3.10) and let x∗(t) = (S∗(t), I∗(t))T and T ∗ denote the optimal solution of problem
(3.4) and the optimal eradication time, respectively. Then, there exists a piecewise C1

vector function λ∗(t) = (λ∗S(t), λ∗I(t))
T 6= 0 such that

λ̇∗(t) = −∇xH(x∗(t), u∗(t),λ∗(t))T,

where the Hamiltonian is de�ned as H(x, u,λ) = 1 + λT(f(x) + ug(x)), and:

i) the function h(w) = H(x∗(t), w,λ∗(t)) attains its minimum on U at w = u∗(t):

H(x∗(t), u∗(t),λ∗(t)) ≤ H(x∗(t), w,λ∗(t)), ∀w ∈ U

for every t ∈ [0, T ∗];
ii) the Hamiltonian is constant equal to zero along the optimal solution:

H(x∗(t), u∗(t),λ∗(t)) = 0;

iii) the following transversality condition holds: λ∗S(T ∗) = 0.

Moreover, because the Hamiltonian is linear in the control variable, the value of u∗(t)
is determined by the sign of the switching function ψ(x,λ) = λTg(x) for all the time
instants t at which ψ(x∗(t),λ∗(t)) does not vanish:

u∗(t) =

{
0 if ψ(x∗(t),λ∗(t)) > 0

umax if ψ(x∗(t),λ∗(t)) < 0.

Proof. This formulation of the Theorem derives from the more general PMP given
in Theorem 1.2. We omit the superscript ∗ for the optimal quantities, in order to
simplify the notation.

We only take into account normal case, therefore λ0(t) = 1 for each t ≥ 0 and
H(x, u,λ) = λ0`+ λTF (x,u) = 1 + λT(f(x) + ug(x)).

We prove that condition iii) of Theorem 1.2 results in a simple condition over
λS(T ). As stated at the end of Chapter 3, the target set for our problem is de�ned
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as Xf = C = {(S, I) : I = ε}, which can be equivalently seen as the hypersurface
χ(S, I) = 0, with χ(S, I) = I − ε. Then the tangent set is

T (x(T )) = {d ∈ R2 : ∇xχ(x(T ))d = 0},

namely T (x(T )) = {(d1, d2) ∈ R2 : d2 = 0}.
Then the transversal condition of Theorem 1.2 λ(T )Td = 0 simply results in

λS(T ) = 0.

Finally, we prove the last observation. Suppose that condition i) of the Theorem
holds, then

h(u(t)) ≤ h(w)

λT(f(x) + u(t)g(x)) ≤ λT(f(x) + wg(x))

u(t)λTg(x) ≤ wλTg(x).

If λTg(x) is positive, then condition i) reduces to u(t) ≤ w, ∀w ∈ U and therefore
u(t) = 0. On the contrary, if λTg(x) is negative, condition i) implies that the control
assumes the maximum possible value, that is u(t) = umax.

ut

Using this result, what we will prove in Sections 3.5-3.6 can be summarized in the
following Theorem.

Theorem 3.2.1. For each considered control policy the optimal control for problem
(3.10) is bang-bang. The optimal strategy consists either in a constant control u∗(t) ≡
umax or in a delayed control 0 → umax with a single switching time τ ∗s , namely
u∗(t) = 0 for t ∈ [0, τ ∗s ) and u∗(t) = umax for t ∈ (τ ∗s , T

∗]. In addition, if the optimal
control is delayed, three di�erent behaviors are allowed, depending on the position of
the switching time τ ∗s compared to the peak of infection, leading to the four di�erent
types of admissible optimal control sketched in Fig. 3.1.

We will denote the set of such admissible optimal controls by

A =

{
u :[0,+∞)→ {0, umax} piecewise constant with at most

one jump from 0 to umax , lim
t→+∞

u(t) = umax
}
. (3.11)

We point out that, although mathematically accurate, in practical application
a constant control u(t) = umax for t → +∞ is unrealistic. On the contrary, we
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Fig. 3.1. Schematization of the four types of admissible optimal control and legend of the plot colors
that will be used throughout the thesis. White (panel a) denotes a constant control at its maximum value.
Di�erent shades of gray denote delayed controls applied at the switching time τ∗s . We distinguish three
di�erent behaviors, depending on the position of τ∗s with respect to the infectious dynamics: the switch
occurs before the peak of the infection (panel b, light gray), in correspondence of the peak (panel c, gray)
or after the peak of infection (panel d, dark gray).

reasonably expect that the considered control policies will be suspended after the
complete eradication of the disease. However, this fact does not a�ect the e�ciency
of our study, since we will focus on the actual epidemic evolution only, from its onset
to the eradication.

3.3 Existence of an optimal control

To prove the existence of an optimal control we strongly rely on the particular form of
the admissible controls proved in Theorem 3.2.1. Our idea is to identify each bang-
bang function u(t) ∈ A with a real parameter. Since the delayed optimal control
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function is not de�ned at the switching time instant, for our purpose and especially
for numerical simulations we �x by convention u∗(τ ∗s ) = umax. Then, we can generalize
the idea of switching time, de�ned as the zero of the switching function ψ, introducing
the starting intervention time

τ =

{
0 in case of constant maximum control

τs in case of delayed control
(3.12)

which represents the �rst time instant at which the control u(t) ∈ A assumes the
value umax. Since a delayed control can be characterized by its switching time τs, we
can then identify each admissible optimal control in A, constant or delayed, by the
value of τ and write it in the more general form:

u(t; τ) =

{
0 0 < t < τ

umax τ ≤ t < +∞.
(3.13)

Therefore, the functional to be minimized J(u) can be seen as the function

J : [0,+∞)→ [0,+∞) (3.14)

τ → T

that links the starting intervention time τ ≥ 0 to the eradication time T of the
problem

ẋ(t) = f(x(t)) + u(t; τ)g(x(t)), t ≥ 0;

x(0) = x0, x(T ) ∈ C = {(S, I) : I = ε}.
(3.15)

In the next Theorem we prove that J always admits at least a minimum value,
therefore an optimal control u∗ is identi�ed by a starting intervention time such that
τ ∗ = argmin J .

Theorem 3.3.1. There exists an optimal solution of the optimal control problem
(3.10).

Proof. By de�nition, there exists an optimal solution of (3.10) if the functional J(u),
which gives the eradication time of the controlled SIR problem (3.4) as a function
of the control, has (at least) a minimum point u∗ on the set of admissible controls.
For each policy Theorem 3.2.1 holds, namely the set of admissible controls is A
given in (3.11). As stated before, we can see J as a function that links the starting
intervention time τ (3.12) to the eradication time T (see (3.14)). Since the starting
intervention time cannot be larger than the eradication time of the uncontrolled
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epidemic Tunc, then the domain of the function J is restricted to the interval [0, τmax],
where τmax = Tunc. We prove that J admits at least a minimum point τ ∗ by proving
that it is a continuous function on the compact interval [0, τmax].

First we prove that J is a continuous function in 0, namely that

lim
h→0+

J(h) = J(0).

We observe that by de�nition J(0) is the eradication time T0(= Tτ=0) of the solution
x(t) of the controlled problem{

ẋ(t) = f(x(t)) + umaxg(x(t)), t ≥ 0

x(0) = x0, x(T0) ∈ C = {(S, I) : I = ε}
,

while J(h) is the eradication time Th of the solution

y(t) =

{
y1(t) 0 ≤ t < h

y2(t) t ≥ h
,

where y1 is the solution of the uncontrolled problem{
ẏ1(t) = f(y1(t)), 0 ≤ t ≤ h

y1(0) = x0

,

and y2 is the solution of{
ẏ2(t) = f(y2(t)) + umaxg(y2(t)), t ≥ h

y2(h) = y1(h), y2(Th) ∈ C
.

By the Continuous Dependence on Initial Conditions Theorem, for a generic t ≥ h
it holds:

||y(t)− x(t)||∞ ≤ eL(t−h)||y(h)− x(h)||∞
≤ eL(t−h)||y(h)− x0||+ ||x0 − x(h)||∞
≤ eL(t−h)(cy + cx)h,

where the last inequality follows from the Mean Value Theorem. This is true in
particular for t = Th: ||y(Th) − x(Th)||∞ ≤ c̃ h. Let us consider only the infected
component of the two solutions: Ix(t) and Iy(t). Then |Iy(Th)− Ix(Th)| ≤ c̃ h, which
leads to |Ix(T0)− Ix(Th)| ≤ c̃h, since Iy(Th) = ε = Ix(T0). This is equivalent to
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lim
h→0+

Ix(Th) = Ix(T0).

Ix(t) being a continuous positive function that is strictly monotone in a neighbor-
hood of T0, it is invertible and therefore we can state that limh→0+ Th = T0, namely
limh→0+ J(h) = J(0). The proof of the continuity of J in a generic starting interven-
tion time τ follows from the continuity in 0, using translation arguments. ut

3.4 Numerical method

In optimal control, many methods have been proposed in recent years. Several pow-
erful, yet time-expensive, direct methods based on nonlinear programming can be
found, such as NUDOCCCS [20] or MUSCOD [29]. On the other hand, the indirect
methods based on PMP, such as shooting methods [56], are both fast and accurate,
but tend to su�er from great sensitivity to the initialization.

More speci�cally, several numerical methods for the optimal solution of both min-
imum time and bang-bang control problems can be found in literature. Such tech-
niques are mainly based on shooting methods [56, 62, 67], smooth regularizations of
the control function [83], or pseudospectral methods [82]. However, since our prob-
lem is characterized by the particular class of optimal controls A in (3.11), for our
numerical simulations we will use a simpler ad hoc numerical scheme that turns out
to be much faster and accurate. The method strongly relies on the idea of identifying
each bang-bang function u(t) ∈ A with a real parameter that has been formulated
in Section 3.3.

Indeed, the numerical solution is computed by evaluating the function J(τ) over
a suitable interval and looking for its minimum values. More speci�cally, we �x a
uniform mesh {τi, i = 1, . . . ,M} over the interval [0, τmax], where as stated be-
fore τmax = Tunc is the eradication time of the uncontrolled epidemic. Then for
each mesh point we consider the related control function u(t; τi) de�ned in (3.13)
and numerically integrate the Cauchy problem (3.15) using the Crank-Nicholson
method with uniform time steps {tk, k = 1, . . . , N}, obtaining the numerical solu-

tion x
(i)
k = (S

(i)
k , I

(i)
k )T, k = 1, . . . , N . Then, we set the eradication time Ti rele-

vant to the mesh point τi as the �rst time step tk̄ at which the computed solution

I
(i)

k̄
≤ ε. Finally, we take the minimum over the set of computed eradication times

Tj = min{Ti, i = 1, . . . ,M} as the optimal eradication time, and set the correspond-
ing τj as the optimal starting intervention time. Since the minimum is not necessarily
unique, if there are more switching times τi1 , . . . , τir for which the eradication time
is the same minimum value Tmin, we choose by convention the smallest starting in-
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tervention time as the optimal one.

In the following sections we investigate the four di�erent control policies con-
sidered. For each policy we will present theoretical and numerical results. In our
numerical simulations, we set ε = 0.5, as in [44]. Then, through a sensitivity analy-
sis, we explore the solutions of optimal control problems (3.6)�(3.9) on a wide range
of parameter settings describing di�erent epidemiological conditions (represented by
R0 = βS(0)/µ), di�erent possible control e�orts (represented by umax), and a di�er-
ent number of initially introduced infected individuals in the population (represented
by I(0)).

3.5 Linear term policies

We consider SIR model (3.3) with the general linear term control, denoted by ul(t),
obtaining an optimal control problem as the one de�ned in (3.10), with gl(x) as in
(3.5).

Theorem 3.5.1. If u∗l is the optimal control strategy for the linear term control
problem, then u∗l is a bang-bang control with at most one switching time τ ∗s from no
control to maximum control.

Proof. Throughout all the proofs we omit the superscript ∗ for the optimal quantities,
in order to simplify the notation.

Let x(t) = (S(t), I(t))T denote the optimal solution for the control problem with
linear term policy, suitable to model vaccination, isolation or culling for proper val-
ues of parameters α1 and α2; ul(t) be the control term, λ(t) = (λS(t), λI(t))

T the
corresponding adjoint variables and T the optimal eradication time. By the Pontrya-
gin's Minimum Principle, the Hamiltonian function, the switching function and its
derivative are respectively:

H(x,λ, ul) = 1− (βSI + α1ulS)λS + (βSI − µI − α2ulI)λI (3.16)

ψ(x,λ) = −α1SλS − α2IλI , ψ̇(x,λ) = βSI(α1λI − α2λS), (3.17)

and the adjoint variables satisfy the following system of ODEs:{
λ̇S = (λS − λI)βI + α1ulλS

λ̇I = (λS − λI)βS + µλI + α2ulλI .
(3.18)

The sketch of the proof is as follows.
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(i) First we prove that the control is non-singular, namely that the function ψ
vanishes only in isolated points. Suppose in fact that ψ vanishes in an open interval
B. Then also all the derivatives vanish there and in particular ψ = ψ̇ = 0 in B, which
yields by some algebra λS = λI = 0 by (3.17), since S, I > 0 when S(0), I(0) > 0
(see Remark 1). This is in contradiction with Theorem 3.3, as the adjoint variables
λS and λI cannot vanish simultaneously by construction, therefore ψ vanishes only
in isolated points. As a consequence, the control is a piecewise constant function
ul(t) that can assume only two values: 0 and umax. The switching times are de�ned
as the time instants at which the function ψ(t) changes its sign and, consequently,
the function ul(t) changes its value. Therefore two types of switch can occur: either
the value of ul(t) is 0 in a left-neighbourhood of the switching time and is umax in
a right-neighbourhood, and we denote it by 0 → umax, or the converse, which is
denoted by umax → 0.

(ii) Next we show that the optimal control in a left-neighbourhood of the erad-
ication time T must be equal to umax. By condition 3 of Theorem 3.3 ψ(T ) =
−α2I(T )λI(T ) and ψ̇(T ) = α1βS(T )I(T )λI(T ). The sign of the function ψ in the
left-neighbourhood of T will then be determined by the sign of λI(T ). Substituting
λS(T ) = 0 in (3.16) and by condition 2 of Theorem 3.3 we get λI(T ) = −İ(T )−1,
which is positive, since İ(T ) < 0. As a consequence, ψ(T ) ≤ 0 and ψ̇(T ) ≥ 0. Since
they cannot vanish simultaneously, as α1 and α2 are not simultaneously zero, ψ is
negative in a left-neighbourhood of T .

(iii) Now we prove that there can be at most one switching time, relevant to
the switch 0 → umax. Let τs be a generic switching time, namely ψ(τs) = 0. Then
−α1S(τs)λS(τs) = α2I(τs)λI(τs) by (3.17). Suppose α2 6= 0, then at the switching
time λI = −α1SλS

α2I
. Substituting this relation in (3.16) and by condition 2 of Theorem

3.3, we can write λS, and therefore λI and ψ̇, as functions ofQ(t) = βI(t)+α1

α2
(βS(t)−

µ), which is a decreasing function since Q̇(t) < 0:

λS(τs) = (Q(τs)S(τs))
−1, λI(τs) = −α1

α2

(Q(τs)I(τs))
−1, ψ̇ = − β

Q

(
α2

1

α2

S + α2I

)
.

In particular, we can see that the sign of ψ̇ is opposite to the sign of Q. Suppose that
there are multiple switching times τ

(j)
s , j = 1, . . . , n. We have already proved that

ul(T ) = umax, so at the last switching time ψ̇(τ
(n)
s ) < 0 must hold, thus Q(τ

(n)
s ) > 0.

Since Q is a decreasing function, this means that Q is positive in the interval [0, τ
(n)
s ],

and it implies that all the switching times τ
(j)
s are from no control (positive values of

ψ) to maximum control (negative values of ψ). This is not possible, therefore there
can be at most a unique switch from no control to the maximum control rate umax,
namely ψ̇(τs) < 0.
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Now suppose α2 = 0. We still prove that there can be at most one switching time,
relevant to the switch 0 → umax and that, in addition, the switch can only occur
before the peak time. Let τs be a generic switching time, namely ψ(τs) = 0. Then
λS(τs) = 0 by (3.17) and, analogously to what happens at the eradication time T ,
λI(τs) = −İ(τs)

−1. Thus, the sign of ψ̇(τs) is opposite to the sign of İ(τs), which
is positive (respectively, negative) before (resp. after) the peak time of the infection
tp. The only possible change in sign of the function ψ after the peak is then from
negative to positive, which is not admissible, since we proved that ψ is negative in a
left-neighbourhood of T . Thus the switch can only occur before the peak and, being
ψ̇(τs) always negative, it must be unique. Moreover, since ψ changes its sign from
positive to negative values, the control switches from 0 to the maximum rate umax.

ut

We proceed now to analyse the peculiarities of each policy involved in the general
formulation.

3.5.1 Vaccination

We consider the vaccination control, denoted by uv(t) in the optimal control problem
(3.10), with gv(x) as in (3.6). The control reproduction number for vaccination is
de�ned as Rv

C = R0 = βS(0)/µ.
For this policy, it is easy to prove that there exists a unique time instant tp

(possibly 0) at which the function İ changes sign. In particular, İ(t) > 0 for t < tp
and İ(t) < 0 for t > tp. We call tp the peak time, because it represents the time at
which the number of infected individuals reaches its maximum. Therefore, in addition
to the general results of Theorem 3.5.1, it is possible to prove the following.

Theorem 3.5.2. The switch of the optimal control u∗v can occur only before the peak
of the infection. Moreover, if R0 < 1 or umaxv > µ, the optimal control is the constant
control u∗v(t) ≡ umaxv .

Proof. The sketch of the proof is as follows.
(i) The position of the switch with respect to the peak of infection follows from

the proof of Theorem 3.5.1, point (iii) (case α2 = 0).
(ii) By de�nition of the basic reproduction number, we know that if R0 < 1 then

the number of infected individual is monotonically decreasing in time, namely the
peak of the infection is tp = 0. As we already proved that there cannot be a switch
for t > tp, in this case the optimal control must be uv(t) ≡ umaxv .

Suppose that R0 > 1 and that the optimal control is delayed with switch 0→ umaxv

at time τs > 0. Then we prove that the relation µ > umaxv must hold.
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First we prove that, under those hypotheses, the function ψ has a minimum point
mψ in (τs, T ) at which λI(mψ) < λS(mψ), as sketched in Fig. 3.2. The function ψ
vanishes at τs (by de�nition) and at T (by the transversality condition), while it is
strictly negative between the two points, therefore it must have at least a minimum
point. Since ψ is a C1 function, in such points ψ̇ = 0 and thus also λI = 0, by (3.17).
Substituting this latter value in the second derivative of the switching function and
recalling the de�nition of ψ in (3.17) we obtain

ψ̈ = βSI(βSλS − βIλI − umaxλI) = β2S2IλS = −β2SIψ.

Then ψ̈ is positive and we can state that ψ has only an extremal point in that interval,
and more speci�cally that it is a minimum point, which we denote by mψ. Moreover,
since λI(mψ) = 0 and λS(mψ) > 0, it is straightforward that λI(mψ) < λS(mψ).

Similarly, we prove that the function λS has a unique maximumMλS in the interval
[τs, T ] at which λI(MλS) > λS(MλS), as sketched in Fig. 3.2. In fact, it vanishes at τs
(since ψ(τs) = 0) and at T (for the transversality condition) and it is strictly positive
between the two points, since ψ < 0. On the interval [τs, T ], being u(t) = umaxv ,
λS is a C1 function, therefore its maximum and minimum points are characterized
by λ̇S = 0, namely λS = βIλI/(βI + umaxv ) from (3.18). Substituting this value in
(3.16) and recalling that H = 0 we obtain that in the extremal points λI = 1/(µI).
Substituting those values in the second derivative of λS we obtain:

λ̈S = λS[(βI + umaxv )2 − µβI]− λIβI(βI + umaxv ) = −β2I/(βI + umaxv ),

which is negative and therefore in the interval (τs, T ) the function λS has a unique
maximum point, which we denote by MλS . Moreover

λS(MλS) = βI(MλS)λI(MλS)/(βI(MλS) + umaxv ) < λI(MλS).

Evaluating λ̇S at the point mψ, by (3.18) we obtain

λ̇S(mψ) = (βI(mψ) + umaxv )λS(mψ) > 0,

therefore mψ < MλS . Being λI(mψ) < λS(mψ) and λI(MλS) > λS(MλS), there must
exist a point σ ∈ (mψ,MλS) such that λS(σ) = λI(σ) and λ̇I(σ) > λ̇S(σ), as sketched
in Fig. 3.2. This last inequality reduces to µλI(σ) > umaxv λS(σ), therefore µ > umaxv is
a necessary condition for having a positive switching time. In conclusion, if umaxv > µ
the optimal control is the constant control uv(t) ≡ umaxv .

ut
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Time

τs mψ σ MλS
T

λS

λI

ψ

Fig. 3.2. Optimal vaccination problem with delayed control. Schematization of the switching function ψ(t)
and of the adjoint variables λS(t), λI(t) on the interval [τs, T ].

The numerical analyses on the time-optimal vaccination problem are illustrated
in Fig. 3.3. In Fig. 3.3(a), we show the results of the simulations performed in the
parameter space [umaxv , R0(β)]. As explained in the color codes in Fig. 3.1, the light
gray and white regions in Fig. 3.3(a) represent the combinations of parameters [umaxv ,
R0(β)] for which the time-optimal vaccination problem selects for delayed and con-
stant control, respectively. As highlighted by the analytic results, Fig. 3.3(a) displays
that the switching time always occurs before the peak of infection and that higher
vaccination e�orts always select for a constant control. Fig. 3.3(b) shows the opti-
mal starting intervention time (τ ∗), the eradication time for the optimal vaccination
strategy (T ∗, solid curve), and the eradication time for the constant vaccination
(Tτ=0, dashed curve) as functions of the maximum e�ort, umaxv . In Fig. 3.3(b), we no-
tice that the optimal starting intervention time undergoes a discontinuous transition
from delayed to constant control for increasing values of umaxv . Then, small changes
in umaxv can cause an abrupt change in the starting point of the optimal vaccination
campaign. On the other hand, Fig. 3.3(b) shows that, when delaying the onset of vac-
cination is optimal, the di�erences in the �nal time of the epidemic between optimal
control and constant control (i.e. variation in the objective function) is marginal.
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Fig. 3.3. Numerical analysis of the optimal vaccination problem. (a) Di�erent colors represent di�erent
optimal control types obtained by varying umaxv (that ranges from 0 to µ) and R0(β). Color meanings are
speci�ed in Fig. 3.1. (b) Plot of the optimal starting intervention time τ∗, the optimal eradication time
T ∗, and the eradication time Tτ=0 as functions of umaxv , with R0(β) = 3. Other parameters: S(0) = 2000,
µ = 5, I(0) = 1, ε = 0.5.
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3.5.2 Isolation

We consider SIR model (3.3) with isolation control, denoted by ui(t), obtaining an
optimal control problem as the one de�ned in (3.10), with gi(x) as in (3.7). The
control reproduction number for isolation is de�ned as Ri

C = βS(0)/(µ+ umaxi ).
The numerical analyses on the time-optimal isolation problem are illustrated in

Fig. 3.4. In Fig. 3.4(a), we show the results of the simulations performed in the
parameter space [umaxi , R0(β)]. Conversely to vaccination, our results show that the
time-optimal isolation problem can select for delayed strategies also for high values
of maximum e�ort, umaxi . Moreover, the switching time for the optimal isolation
strategy can occur after the peak of infection (see the dark gray region in Fig. 3.4(a)).
In Fig. 3.4(b), we show that the isolation problem selects for optimal delayed control
in a wide range of parameter settings also when the number of infected individuals
�rstly introduced in the population increases (i.e. I(0) > 1). Fig. 3.4(c) displays
the optimal starting intervention time (τ ∗), the �nal time for the optimal isolation
strategy (T ∗, solid curve), and the �nal time for the constant isolation (Tτ=0, dashed
curve) as functions of the maximum e�ort, umaxi . As in the vaccination problem, the
optimal starting intervention time for isolation undergoes a �catastrophic� transition
from delayed to constant control for increasing values of maximum e�ort. Fig. 3.4(c)
shows that delayed control can be optimal also when RC < 1, i.e. when an prompt
intervention at t = 0 could have implied an immediate decline in the number of
infected individuals In addition, when delaying the onset of isolation is optimal, the
di�erences in the �nal time of the epidemic between optimal control and constant
control can be signi�cant. Fig. 3.4(d) shows the number of susceptible individuals at
the end of the epidemic for the optimal isolation strategy (S(T ∗), solid curve) and
the constant isolation (S(Tτ=0), dashed curve) as functions of the maximum e�ort,
umaxi . Similarly to the switching time, S(T ∗) exhibits a discontinuous increase at the
boundary between delayed and constant control.
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Fig. 3.4. Numerical analysis of the optimal isolation problem. Di�erent colors represent di�erent optimal control types obtained by varying:
(a) umaxi and R0(β); (b) I(0) and R0(β). Color meanings are speci�ed in Fig. 3.1. (c) Plot of the optimal starting intervention time τ∗, the
optimal eradication time T ∗, and the eradication time Tτ=0 as functions of umaxi , with R0(β) = 2. (d) Number of susceptible individuals
at the end of the epidemic obtained using the optimal control, S(T ∗), and the constant control u(t) = umaxi , S(Tτ=0), as functions of
umaxi , with R0(β) = 2. In panel (b) umaxi = 1. In panels (c)-(d) is also highlighted the value of umaxi for which RiC = 1 (in gray). Other
parameter values as in Fig. 3.3.
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3.5.3 Culling

We consider the culling control, denoted by uc(t), in the optimal control problem
de�ned in (3.10), with gc(x) as in (3.8). The control reproduction number for culling
is de�ned as Rc

C = βS(0)/(µ+ umaxc ).
The numerical analyses on the time-optimal culling problem are illustrated in Fig.

3.5. In Fig. 3.5(a), we show the results of the simulations performed in the parameter
space [umaxc , R0(β)]. We display that, when R0 is low, delayed control is selected
for small values of culling e�ort (umaxc ), while, when R0 is high, delayed control is
selected for intermediate values of umaxc . In addition, in the aforementioned cases, the
starting of the optimal culling generally occurs before the peak of infection (light gray
region in Fig. 3.5(a)). However, we can notice that there exists a small region in the
parameter space [umaxc , R0(β)] where the starting of the optimal strategy can occur
after the peak of infection (see the dark gray region in the box). Fig. 3.5(b) shows the
optimal starting intervention time (τ ∗), the �nal time for the optimal culling strategy
(T ∗, solid curve), and the �nal time for the constant culling (Tτ=0, dashed curve)
as functions of the maximum e�ort, umaxc . Also in this case the optimal starting
intervention time undergoes a �catastrophic� transition from delayed to constant
control for increasing values of umaxc and, when delaying the onset of culling is optimal,
the di�erences in the �nal time between optimal control and constant control is
marginal, analogously to the case of vaccination.

3.6 Reduction of transmission policy

We consider SIR model (3.3) with reduction of transmission control, denoted by
ur(t), obtaining an optimal control problem as the one de�ned in (3.10), with gr(x)
as in (3.9) and 0 < umaxr ≤ 1. The control reproduction number for reduction of
transmission is de�ned as Rr

C = β(1−umaxr )/µ. Despite the nonlinearity of this kind
of policy, it is possible to �nd the same type of optimal strategy of the linear term
policies.

Theorem 3.6.1. If u∗r is the optimal control strategy for the reduction of transmis-
sion problem, then u∗r is a bang-bang control with at most one switching time τ ∗s from
no control to maximum control.

Proof. Let x(t) = (S(t), I(t))T denote the optimal solution for the reduction of the
transmission control problem, with control term ur(t), λ(t) = (λS(t), λI(t))

T the
corresponding adjoint variables and T the optimal eradication time. By the Pontrya-
gin's Minimum Principle, the Hamiltonian function, the switching function and its



36 3 Theoretical and numerical study

u
max
c

0 1 2 3 4 5 6 7 8 9 10

2

4

6

8

10

12

14

16

18

20

22

R0(β)

 (a)

4

2

3

0.01            0.15

u
max

c

0 0.5 1 1.5 2 2.5 3

T
im

e

0

0.5

1

1.5

2

2.5

3

T
∗

Tτ=0

τ
∗

 (b)

Fig. 3.5. Numerical analysis of the optimal culling problem. (a) Di�erent colors represent di�erent optimal
control types obtained by varying umaxc and R0(β). Color meanings are speci�ed in Fig. 3.1. (b) Plot of the
optimal starting intervention time τ∗, the optimal eradication time T ∗, and the eradication time Tτ=0 as
functions of umaxc , with R0(β) = 3. Other Parameter values as in Fig. 3.3.
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derivative are respectively:

H(x,λ, ur) = 1 + (λI − λS)β(1− ur)SI − µIλI (3.19)

ψ(x,λ) = (λS − λI)βSI, ψ̇(x,λ) = −µβSIλS, (3.20)

and the adjoint variables satisfy the following system of ODEs:{
λ̇S = (λS − λI)β(1− ur)I
λ̇I = (λS − λI)β(1− ur)S + µλI .

For the proof of the Theorem, �rst we show that the control is non-singular,
namely that the function ψ vanishes only in isolated points. Suppose that ψ vanishes
in an open interval B. Then ψ = ψ̇ = 0 in B, namely λS = λI = 0 (see (3.20)),
which is in contradiction with the statement of the Theorem 3.3. Therefore, ψ can
vanish only in isolated points. Substituting λS(T ) = 0 (the transversality condition)
in (3.19) and by condition 2 of Theorem 3.3 we get λI(T ) = −İ(T )−1, which is
positive, being İ(T ) < 0. As a consequence, ψ(T ) < 0 by (3.20).

Let τs be a generic switching time, namely ψ(τs) = 0. Then λS(τs) = λI(τs) by
(3.20) and, by equation (3.19), they are both equal to (µI(τs))

−1. Substituting this
value in (3.20) we obtain ψ̇(τs) = −βS(τs), which is negative. Therefore, since the
sign of the derivative of ψ is constant at every switching time τs, there can be at
most a unique switch from no control (positive values of ψ) to the maximum rate of
control umaxr (negative values of ψ). ut
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Fig. 3.6. Numerical analysis of the optimal reduction of transmission problem. Di�erent colors represent di�erent optimal control types
obtained by varying: (a) umaxr and R0(β); (b) I(0) and R0(β). Color meanings are speci�ed in Fig. 3.1. (c) Plot of the optimal starting
intervention time τ∗, the optimal eradication time T ∗, and the eradication time Tτ=0 as functions of umaxr , with R0(β) = 2. (d) Number
of susceptible individuals at the end of the epidemic obtained using the optimal control, S(T ∗), and the constant control u(t) = umaxr ,
S(Tτ=0), as functions of u

max
i , with R0(β) = 2. In panel (b) umaxr = 0.9. In panels (c)-(d) is also highlighted the value of umaxr for which

RrC=1 (in gray). Other parameter values as in Fig. 3.3.
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The numerical analyses on the time-optimal reduction of transmission problem
are illustrated in Fig. 3.6. In Fig. 3.6(a), we show the results of the simulations per-
formed in the parameter space [umaxr , R0(β)]. We display that, when delayed control
is selected, the starting of the optimal reduction of transmission generally occurs
after the peak of infection (dark gray region in Fig. 3.6(a)). In Fig. 3.6(b), we show
that the reduction of transmission problem selects for optimal delayed control in
a wide range of parameter settings also when the number of infected individuals
�rstly introduced in the population increases (i.e. I(0) > 1). Fig. 3.6(c) shows the
optimal starting intervention time (τ ∗), the �nal time for the optimal reduction of
transmission strategy (T ∗, solid curve), and the �nal time for the constant reduc-
tion of transmission (Tτ=0, dashed curve) as functions of the maximum e�ort, umaxr .
Similarly to the isolation problem, we �nd that: (i) delayed control for reduction of
transmission can be optimal also whenRC < 1; and (ii) when delaying the starting of
reduction of transmission is optimal, the di�erences in the �nal time of the epidemic
between optimal control and constant control can be signi�cant. Fig. 3.6(d) shows
the number of susceptible individuals at the end of the epidemic for the optimal
reduction of transmission strategy (S(T ∗), solid curve) and the constant reduction
of transmission (S(Tτ=0), dashed curve) as functions of the maximum e�ort, umaxr .
Similarly to the isolation problem, S(T ∗) exhibits a discontinuous increase at the
boundary between delayed and constant control.
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Discussion and conclusions

In this Part of the thesis, we investigated the problem of minimizing the epidemic
duration by using di�erent control policies. Speci�cally, we characterized analyti-
cally the time-optimal control strategies for prophylactic vaccination, isolation, non-
selective culling, and reduction of transmission by using a family of simple SIR models
in an optimal control framework [78]. Our analyses led to the non-trivial result that,
even in the unconstrained optimal control problem (i.e. without costs of control or
resource limitations (sensu [44]) ), using the maximal e�ort for the entire epidemic
period may not be the optimal strategy to minimize the epidemic duration. In ad-
dition, we found that, when applying the maximal e�ort for the entire epidemic is
sub-optimal, then a delayed control represents the optimal strategy in all the cases
investigated. We even found that the optimal amount of delay applied to the control
may be su�ciently large to postpone the beginning of the intervention after the peak
of the infection (see Fig. 3.1 and dark gray regions in Figs. 3.4(a), 3.5(a), and 3.6(a)).
In addition, we showed that the delayed control may represent the optimal strategy
for minimizing the epidemic duration even when a prompt intervention could imme-
diately reduce the number of infected individuals (i.e. reduce RC below 1, see Figs.
3.4(c) and 3.6(c)).

The biological explanation for the optimality of delayed controls relies on the
remark that, at the beginning of the epidemic, the infection process can be more
e�cient in depleting the reservoir of susceptibles (which represents the mechanism
leading to epidemic extinctions) than the applied control. In other words, reducing
via external interventions the number of individuals involved in the infection process
at the beginning of the outbreak (especially the infected ones) may lead to slower
epidemic dynamics, which implies longer times for the epidemic to go extinct. Two
evidences support this explanation: (1) delayed control is generally optimal when the
e�ectiveness of the control is low (i.e. low umax); and (2) isolation and reduction of
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transmission policies (which do not reduce directly the number of susceptibles) tend
to select for delayed control in wider ranges of parameter settings than vaccination
and culling.

Our results di�er from those previously obtained for the time-optimal problem in
speci�c epidemic contexts. By analysing a subsystem of an epidemic model describing
SARS spread, Jiang [55] proved that, according to Pontryagin's Minimum Principle,
maximizing the isolation e�ort for the entire epidemic period would reduce epidemics
in minimum time. Similarly, by numerically testing scenarios in an SIR model where
the control always reduces the disease reproduction number below 1, Iacoviello &
Liuzzi [53] showed that maximizing the combined vaccination and isolation e�orts
for the entire epidemic period eradicates epidemics in minimum time.

Our results substantially di�er also from those obtained minimizing the total
number of infected (or the infectious burden) in SIR epidemic models. By character-
izing optimal controls according to Pontryagin's Maximum Principle, di�erent works
showed that the unconstrained problems for isolation [44, 88], vaccination [44, 69],
and culling [17] only support the trivial solution of applying the maximal e�ort for
the entire epidemic. Then, from our results it follows that the infectious burden may
not be minimized while minimizing the epidemic duration in simple SIR models.

Minimizing the infectious burden in the optimal control problem for isolation and
reduction of transmission is equivalent to maximize the �nal number of susceptibles,
S(T ). Some examples of the tension between minimizing the epidemic duration and
the infectious burden can be observed in Figs. 3.4 and 3.6. In particular, Figs. 3.4(c)
and 3.6(c) display the eradication time, T , and Figs. 3.4(d) and 3.6(d) display the
number of susceptible individuals at the end of the epidemic, S(T ), as functions of
umax for both the time-optimal control and the constant control (corresponding to
the optimal solution for the unconstrained problem of infectious burden minimiza-
tion). From these �gures, we notice that the di�erent objective functions provide
similar results when the control e�orts are su�ciently large to rapidly lead the epi-
demic to extinction (high umax), while they provide substantially di�erent results in
the case of less e�cient strategies (low umax). Speci�cally, the time-optimal control
strategy performs poorly in minimizing the infectious burden at the boundary be-
tween delayed and constant control (see Figs. 3.4(d) and 3.6(d)), while the infectious
burden minimization strategy performs poorly in minimizing the epidemic duration
for slightly higher values of RC (see the peak of Tτ=0 in Figs. 3.4(c) and 3.6(c)).

Moreover, we �nd that small changes in the control parameter umax can cause
large changes in the shape of the optimal strategies. An analogous result was found
by Hansen & Day [44] investigating the problem of minimizing the infectious burden
through isolation in a SIR framework with limited resources. Hansen & Day [44] also
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found that a �catastrophic� shift in the shape of the isolation strategy corresponds to
an abrupt variation in the objective function (i.e. the infectious burden). Conversely,
here we �nd that �catastrophic� shifts in the shape of the control strategies correspond
to continuous variations in the objective functions (i.e. the �nal time of epidemics).

We believe our �ndings can be useful in throwing light on overlooked results ob-
tained with more complex models developed in speci�c epidemiological contexts. For
instance, Roche et al. [80] investigated the performances of di�erent spatially explicit
models for the spread of foot-and-mouth disease in the UK farms, considering di�er-
ent control scenarios. Among other scenarios, they compared the e�ect of suppressive
vaccination strategies started at 7 and 14 days after the outbreak beginning. They
found that, in two out of the four models investigated, the medians and/or the 95th

percentiles of the epidemic duration decreased when the control is delayed by 7 days
[80, see models `IS+' and `NL' in table 4 therein]. On the other hand, they found
that the number of infected farms always increases when the vaccination is delayed
[see table 4 in 80]. In a similar way, by investigating the e�ectiveness of combined
culling and movement restriction to control classical swine fever in Switzerland pig
farms, Dürr et al. [33] found that delaying the starting of the control from 6 to 16
days after the outbreak beginning reduced the median outbreak duration in three
out of the eight analysed scenarios [see �gure 4 in 33].

Previous works have already shown that delayed control might represent an op-
timal strategy in some epidemiological applications. For instance, Handel et al. [42]
and Hansen & Day [43] showed that delaying the controls may be optimal in pre-
venting the re-emergence of the epidemic or the emergence of resistant epidemics.
Bolzoni et al. [17] showed that the delayed control may be optimal in wildlife diseases
where the host population growth is density-dependent.

The numerical analyses performed here under the assumption of constant control
highlighted that increasing the control e�orts may lead to a substantial increase of
the eradication time. This is especially true in the case of isolation and reduction
of transmission, where the eradication time may increase from two- to �ve-fold with
respect to the �do-nothing� alternative (see Figs. 3.4(c) and 3.6(c)). Similar negative
e�ects of constant e�orts on disease control have also been highlighted when the
target of the intervention was the reduction of the number of infected individuals
[15, 16, 23, 79]. All these counter-intuitive �ndings suggest that the implementation
of simple time-dependent strategies may crucially improve the control of infectious
diseases.
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4.1 Perspectives

Other aspects of diseases control implementation that were not included in the
present thesis � such as combined controls [44], the costs of control [9], resources
limitation [44], and availability of surveillance information [14] � can play a signif-
icant role in shaping the optimal strategy. These aspects are essential in de�ning
optimal protocols of intervention for diseases eradication. However, thanks to the
generality of the model formulation, we believe our results can be used as a bench-
mark for future investigations.

We plan to thoroughly investigate combined controls, namely the application of
two or more policies at the same SIR model. We proved that in this case the ad-
missible controls are multidimensional bang-bang controls, for which the existence
of an optimal solution can be proved, analogously to what is done inthis thesis for
the single policy. However, a numerical scheme that follows the one we used in this
thesis is too expensive, and a shooting method (as in [56, 62, 67]) is preferable. This
method consists in searching for the zero of a certain shooting function, typically via
quasi-Newton methods. The main advantages of this approach lie in the accuracy
and low numerical complexity. Also, the dimension of the system of di�erential or-
dinary equations that must be solved is 2d, where d is the state dimension, which
is quite low for this kind of problems. Yet, particular care must be taken in using
this method: depending on the arbitrary value that initializes the method (which
originates the method name �shooting�), the algorithm might not converge at all, or
might converge to local minima of the functional, which can assume higher values
than the true global minimum.

To overcome this problem, the numerical scheme must provide for a preliminary
application of, as an example, a Hamilton-Jacobi-Bellman scheme [25] that allows to
select an initializing value for the shooting method that will lead to global minimum.
The HJB approach is based on the dynamic programming principle [10]. It consists in
considering the functional to be minimized J(u,x0) as a function of the initial state
x0 only (T (x) = J(x,u∗)) and write it as a solution of a �rst-order non-linear partial
di�erential equation. Once an approximation of the value function T evaluated at the
proper x0 is obtained, one can easily obtain both the optimal control u∗ in feedback
form and, by direct integration, the optimal trajectory x(t) that starts from x0. The
method itself is greatly advantageous because it is able to reach the global minimum
of the cost functional, even if the problem is not convex. The HJB approach allows
also to have a global overview of the reachable sets i.e. the sets of starting points from
which it is possible to reach the target. Beside all the advantages listed above, the
HJB approach su�ers from the well known �curse of dimensionality�, so in general
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it is restricted to problems in low dimension (d ≤ 3). Moreover, it is much more
expensive than the shooting method. The idea is then to solve the problem via the
HJB method on a coarse grid, to have in short time a �rst approximation of the value
function and the structure of the optimal trajectory. Then, we use this information
to initialize the PMP shooting method and compute a precise approximation of the
global minimum.

We plan also to investigate the case of limited resources (which introduces a further
variable for each control used, as in [44]) and the case of linear costs added to the

time-optimal request (which modi�es the cost functional J(u) =
∫ T

0
[1 + Pu(t)]dt,

as in [17]). In both cases we obtain bang-bang controls along with in�nite order
singular arcs, so the strategy used in this thesis to prove the existence of the optimal
control cannot longer be applied and particular care must be used with the numerical
solutions that are obtained with a combined method �HJB-shooting�.





Part II

Capasso-Serio epidemic model applied to a

network





5

Introduction

There is an astonishing number and variety of models and explanations for the spread
and cause of epidemic outbreaks [3, 4, 8, 26, 30, 45, 47, 71]. The reason is that
epidemiological models and computer simulations are useful experimental tools for
building and testing theories, assessing quantitative conjectures, answering speci�c
questions, determining sensitivities to changes in parameter values, and estimating
key parameters in a �eld where data on human-to-human contacts are rare, often
incomplete and complicated by many factors not of direct interest. Moreover, they
allow to do �experiments� in a �eld where real experiments are impossible or uneth-
ical.

Understanding the transmission characteristics of infectious diseases in communi-
ties, regions, and countries can lead to better approaches to decrease their spreading.
Mathematical models are used in comparing, planning, evaluating, and optimizing
various detection, prevention, therapy, and control programs [46].

Another reason for this huge variety is that di�erent diseases require di�erent
models and also, for the same disease, one can construct several models that takes
into account di�erent aspects of the underlying mechanisms.

Dependence of modelling conclusions on assumptions made is seldom straightfor-
ward. Some conclusions may depend very sensitively on parameter values or, more
insidiously, on hypothesis implicit in the type of model chosen, for instance on the
way in which it represents units of the population and contacts between them. Clearly
good models must be realistic, but this does not mean the inclusion of all possible
e�ects, but rather the incorporation of what appears to be the major components.
For this reasons it is important, in the �rst stage, to keep models clear and simple
as far as possible.
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One of the simplest deterministic mathematical tool is the SIR model proposed
by Kermack and McKendrick in 1927 [58, 59]. As we saw in Section 3.1, it is a
three-compartment model that ignores almost every detail of a real epidemic, such
as incubation, demographic and social structure of the population and spatial distri-
bution of the individuals. It also neglects birth and natural death phenomena, since
the time scale epidemic progress is considered much shorter than lifetime. Despite
of these strong simpli�cations, this model is widely used since it is able to pose im-
portant questions with regard to the underlying mechanisms and possible ways of
controlling the spread of a disease.

In the SIR model, the interaction term between susceptible and infected individ-
uals is a mass action term proportional to a constant parameter, βSI. Using this
type of interaction term we are implicitly assuming that the contact rate β increases
linearly with the total population size N [46]. Naively, it might seem plausible that
the population density and hence the contact rate would increase with population
size, but the daily contact patterns of people are often similar in large and small
communities, cities, and regions. Indeed, for human diseases the contact rate seems
to be only very weakly dependent on the population size. This strongly suggests that
standard incidence term, corresponding to an interaction term β

N
SI, is more realistic

for human diseases than the simple mass action incidence. This result is consistent
with the concept that people are infected through their daily encounters and the pat-
terns of daily encounters are largely independent of community size within a given
country.

Even considering an SIR model with standard incidence term, the interaction
term is a linearly increasing function of the number of infected individuals. This
might be true for a small number of infectives, but appears quite unrealistic if the
epidemic has infected a signi�cant part of the population. Indeed, in this case some
psychological e�ects become considerable and cannot be neglected. Capasso and
Serio [21] in 1978 proposed a much more realistic model which involves a non-linear
bounded interaction term of the form g(I)S; here the dependence on the number
of infectives occurs via a non-linear bounded map g. This adjustment allows the
possibility of introducing such a psychological e�ects: for I su�ciently high, g can
be a decreasing function, since due to the presence of a very large number of infected
individuals the population may tend to reduce the number of contacts per unit of
time. Mathematically the modi�ed model proposed by Capasso and Serio (hereafter
named the CS model), obtained as a modi�cation of the SIR model (3.1), appears
as:
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Ṡ = −g(I)S

N

İ =
g(I)S

N
− µI

Ṙ = µI,

(5.1)

where µ is again the loss rate of infected individuals. We highlight the total population
N = S + I + R (that is constant, as in the SIR model) in order to suggest the use
of the standard incidence rather than mass action law to model the infection term.
Even though the total population is constant in time, and therefore the variable R
can be obtained by the dynamics of S(t) and I(t), we do not reduce system (5.1) to
a system of two equations, as we did in Section 3.1, because we want to use these
epidemic models to create a network of dynamical systems that takes into account
the three compartments.

In order to assure positivity, global existence and uniqueness of the solution of
system (5.1), supplemented by a set of initial conditions as in (3.2), we will assume
that the function g : R+ → R satis�es the following conditions:

i) ∀x ∈ R+ : g(x) ≥ 0
ii) g(0) = 0
iii) ∃c ∈ R+ \ {0} s.t. ∀x ∈ R+ : g(x) ≤ c
iv) the derivative of g exists and is bounded on any compact interval of R+, with

g′(0) > 0
v) ∀x ∈ R+ : g(x) ≤ g′(0)x.

It is easy to show that in the CS model, analogously to what happens in the
SIR model, there exist an in�nite number of equilibria that are located on the S-
axis, which are unstable if their value is greater than µ/g′(0) and stable otherwise.
Moreover, in a similar way we can de�ne the basic reproduction number

R(CS)
0 =

g′(0)S0

Nµ
. (5.2)

Also in this case, if its value is greater than 1 then the epidemic will spread among
the population, otherwise the number of infectives will tend monotonically to zero.

While the temporal development of diseases and epidemics is widely investigated,
the geographic spread of epidemics is less well understood and much less well stud-
ied. One of the main issues is how to include and quantify spatial e�ects. There are
mainly two possible approaches: a continuous spatial distribution can be used [7], or
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a discrete one that leads to a network of dynamical systems. In the �rst approach the
variables of the system � such as the number of susceptible, infected and removed
individuals in case of SIR and CS model � are functions of a space variable x (typi-
cally a 2-dimensional vector) as well as time; the spatial dispersal of the population is
then modelled adding a di�usion term to each equation [70], converting the problem
into a system of partial di�erential equations. This type of approach may not be
always appropriate. Consider as an example a human speci�c disease that is spread
by human-to-human contact in the context of a large country with a small number
of potentially large cities, a very sparse or even non-existent rural population and a
good transportation system. Then the movements from one city to another are fast,
and the (eventual) propagation of an epidemic takes place only at the destination
location. In this setting, travel of individuals between discrete geographical regions
(cities) must play a relevant role in the spreading of the disease. This is a typical ex-
ample of the discrete approach where a network structure is added to the system: its
nodes determine the geometry of the system, representing the cities, and the disease
can spread among the links that mimic the transportation system. The state at time
t of each node will be described by its own compartments variables, leading to a num-
ber of ordinary di�erential equations linear in the number of nodes. Therefore the
main disadvantage of this approach is the high dimensionality of the resulting model.

This Part of the thesis deals with a network of dynamical systems devised to sim-
ulate the spread of an epidemic in highly populated cities. Following the approach
used in the paper by Stolerman et al. [85], in Section 6.1 we model the city struc-
ture by identifying the nodes of the graph with the neighbourhoods of the city, and
using directed weighted edges to represent the fraction of people moving from one
neighbourhood to another due to their daily routine activities. While in [85] the SIR
model is used to describe the evolution of the disease inside each neighbourhood, we
choose the generalized model by Capasso and Serio (5.1) in order to use a more real-
istic and �exible model that can take into account psychological e�ects that can arise
if a signi�cant part of the district is infected. Therefore, to each node we associate
three ordinary di�erential equations that describe the evolution of the susceptible,
infected and removed population that live in the neighbourhood. The equations that
describe the dynamics of the compartments are obtained starting from the CS model
(5.1) and taking into account the in�uence of the infected individuals that come
from other districts. Then, in Section 6.2 we de�ne the basic reproduction number
for our epidemiological network. In Chapter 7 is performed the analytical study of
the basic reproduction number for two particular network and parameters con�gu-
rations, in order to analyse the stability of the disease free equilibrium, focusing on
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the dependence upon geometry and heterogeneity of the infection rates of di�erent
neighbourhoods. More precisely, we will prove that in a homogeneous (with respect
to the epidemiological parameters) network the mobility of people is irrelevant, while
in a slightly heterogeneous network it could be an essential ingredient in avoiding an
epidemic. Finally, Chapter 8 includes some concluding remarks and comments.
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The Capasso-Serio epidemic model on a network

In this Chapter we consider a network of dynamical systems that simulates the spread
of an epidemic inside a highly populated city. We model the city structure and the
human daily routine mobility using a weighted directed network where each node
represents a neighbourhood of the city and the weight of a generic directed link
i → j reproduces the fraction of resident population of neighbourhood i that daily
moves to node j. The evolution of the disease within each node is described by the
Capasso-Serio model [21].

We are interested in determining whether an epidemic outbreak can be expected
or not, depending on the parameters of the model. For this purpose, in Section 6.2
we de�ne a proper basic reproduction number for our epidemic network model.

6.1 The model

We assume that the city has M ≥ 2 neighbourhoods and thus we denote the set
of the nodes of the network as V = {1, 2, . . . ,M}. The vertex i is connected to the
vertex j with a directed link if there is a fraction of resident of i that travels to j daily,
as an example for work purposes. We observe that the graph is directed, since there
may generally be residential districts that are not signi�cant employment centres.
We summarize the geometry of the network with the weighted adjacency matrix Φ
de�ned as:

ΦM×M =


φ11 φ12 · · · φ1M

φ21 φ22 · · · φ2M
...

...
. . .

...
φM1 φM2 · · · φMM

 ,
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whose entries φij ∈ [0, 1] are the fraction of resident population daily going from i
to j. They can be measured using data from road tra�c studies and public trans-
portation companies. We assume that the time scale of the epidemic is su�ciently
small such that we can, with a good approximation, consider the population of each
district and the fractions of resident moving to others neighbourhoods as constants.
Moreover, the out-strength of each node needs to be constant:

M∑
k=1

φik = 1 ∀i ∈ V . (6.1)

We assume that the evolution of the epidemic in an isolated district is governed
by the di�erential equations of the Capasso-Serio model (5.1). Therefore, we divide
each district population in three compartments: susceptible, infected or removed
individuals. Then, the state of every vertex i ∈ V at time t is described by the
variables Si(t), Ii(t) and Ri(t). Moreover, we assume that each district i ∈ V has its
own non-linear incidence function gi that satis�es conditions i)-v) given in Chapter
5. On the contrary, we suppose that the loss rate of infected individuals µ > 0 is
constant in every neighbourhood of the city.

As stated before, the total resident population of the i-th district is constant in
time and is given by

Ni = Si(t) + Ii(t) +Ri(t), ∀i ∈ V . (6.2)

We remark that we are interested in introducing human mobility in this epidemic
network model. Therefore, the number of people living in a given district is not the
number of people that is present in the district during the day. To obtain this latter
quantity, we have to take into account the value φkiNk that represents the population
of the vertex k that every day moves to vertex i. So, the present population of the
vertex i is given by the individuals that come from all other districts plus φiiNi,
which represents the population that lives and works in the same district i. So we
can de�ne the present population as

Np
i =

M∑
k=1

φkiNk. (6.3)

We use this quantity as normalizing factor for the equations of our modi�ed CS
model (5.1).

To de�ne the equations that describe the dynamics of the susceptible individuals
of a district we have to recall that they move and spread to all other neighbourhoods.
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Therefore, we have to take into account what happens to the fraction of susceptibles
of the i-th district that daily move to district j, whose amount is φijSi. In node j
they get in contact with the total number of infected individuals that are present
during the day, namely

Ipj =
M∑
k=1

φkjIk.

Since in the CS model the interaction term between susceptibles and infected indi-
viduals that are present in node j is described by the proper incidence function gj,
we can conclude that the dynamics of infection of the fraction of susceptibles of the
i-th district that daily move to district j is given by

−gj(Ipj )
φijSi
Np
j

.

Summing up all the possible destinations of the susceptibles, namely summing over all
the neighbourhoods, we obtain the di�erential equation that describes the evolution
of the susceptible population of node i:

Ṡi(t) = −
M∑
j=1

gj

(
M∑
k=1

φkjIk

)
φijSi
Np
j

The dynamics of the infected of node i will contain an analogous gain term from
the susceptible population of that district and a loss term due to the mortality,
recovery or isolation that is given by −µIi. This term is much simpler than the
previous one, since the loss rate µ is constant over the network. Clearly, this loss
term becomes a gain term in the removed equations. Therefore the dynamics of the
i-th node can be written as:

Ṡi = −
M∑
j=1

gj

(
M∑
k=1

φkjIk

)
φijSi
Np
j

(6.4a)

İi =
M∑
j=1

gj

(
M∑
k=1

φkjIk

)
φijSi
Np
j

− µIi (6.4b)

Ṙi = µIi (6.4c)

We observe that, since the resident population (6.2) is constant, the number of
removed individuals can be obtained by

Ri(t) = Ni − Si(t)− Ii(t),
and therefore we can focus on the dynamics of the susceptible and infected population
only.
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6.2 The basic reproduction number

In this Section we de�ne the basic reproduction numberR0 of this particular epidemic
network model. We recall that, by de�nition,R0 is the number of secondary infections
produced by a single infected individual who is introduced in a wholly susceptible
population. If, as a mean value, more than one secondary infection is produced,
obviously an epidemic occurs and this clari�es the importance of this parameter of
the model.

To de�ne the basic reproduction number typically one uses the de�nition and
consider an infected unit inside a wholly susceptible population. In our case care
must be taken. In fact, to insert an infected individual inside the population, we
have to select a neighbourhood to whom he belongs, �xing as an example Ii(0) = 1
and Ij(0) = 0 in the other districts. Starting from that con�guration, the number of
secondary infections will strongly depend on the selected neighbourhood i, so this is
not a good de�nition.

In order to establish R0 for our epidemic network model, we begin by introducing
vector notation that takes into account the state of each vertex at time t. Thus we
de�ne

S(t) = (S1(t), S2(t), . . . , SM(t))T, I(t) = (I1(t), I2(t), . . . , IM(t))T.

For the purpose of de�ning the basic reproduction number we consider the disease
free status of the system given by S∗ = (N1, N2, . . . , NM)T and I∗ = (0, 0, . . . , 0)T,
which turns out to be an equilibrium for the system. We are interested in determining
if a little perturbation in the number of infected individuals will cause the spread of
the disease or won't a�ect the situation.

In this context, we say that the disease spreads if there exist at least one node i
where Ii(t) > Ii(0) for some t > 0.

First we de�ne the perturbation vectors ∆S(t) = S(t)−S∗ and ∆I(t) = I(t)−I∗.
Their dynamics come from the di�erential equation (6.4b) and in particular they are
given by: 

d∆Si
dt

= −
m∑
j=1

gj

(
M∑
k=1

φkj∆Ik

)
φij(∆Si +Ni)

Np
j

d∆Ii
dt

=
N∑
j=1

gj

(
M∑
k=1

φkj∆Ik

)
φij(∆Si +Ni)

Np
j

− µ∆Ii

i = 1, . . . ,M

(6.5)
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We consider the complete system of 2M equations (6.5) and we linearise it around the
origin (that corresponds to the disease free equilibrium). Some simple calculations
lead to the Jacobian matrix of the system evaluated at ∆S = 0, ∆I = 0 that can be
written as a block matrix

J(0, 0) =

(
0M×M −µK
0M×M µ(K − IM×M)

)
,

where

K =
1

µ



M∑
j=1

φ2
1j

N1

Np
j

g′j(0)
M∑
j=1

φ1jφ2j
N1

Np
j

g′j(0) · · ·
M∑
j=1

φ1jφMj
N1

Np
j

g′j(0)

M∑
j=1

φ2jφ1j
N2

Np
j

g′j(0)
M∑
j=1

φ2
2j

N2

Np
j

g′j(0) · · ·
M∑
j=1

φ2jφMj
N2

Np
j

g′j(0)

...
...

. . .
...

M∑
j=1

φMjφ1j
NM

Np
j

g′j(0)
M∑
j=1

φMjφ2j
NM

Np
j

g′j(0) · · ·
M∑
j=1

φ2
Mj

NM

Np
j

g′j(0)


(6.6)

Therefore the linearised system is given by
d∆S

dt
= −µK∆I

d∆I

dt
= µ(K − I)∆I.

(6.7)

Let us focus on the infective equations. Using a uniform time mesh with time-step
∆t we obtain the discrete equations:

∆I(tn+1) = [I + µ(K − I)∆t]∆I(tn). (6.8)

Now if we �x the time-step ∆t = 1/µ in (6.8) we obtain ∆I(tn+1) = K∆I(tn) and
remembering that I∗ = 0 we end up with

I(tn+1) = KI(tn).

Therefore, using some simple iterative arguments, we obtain the following result.
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Proposition 6.1. Let (V ,ΦM×M ; {gj}j∈V , µ) be the Capasso-Serio epidemic network
model de�ned by the set of nodes V, the weighted adjacency matrix Φ and the set of
non-linear incidence functions {gj}j∈V , one for each node. Then, by considering a
uniform time mesh with time step ∆t = µ and K as in (6.6), we have that

I(tn) = KnI(0) (6.9)

describes the discrete dynamics of the infected individuals of the system linearised
around the disease free equilibrium (S∗i , I

∗
i ) = (Ni, 0), i ∈ V.

We can than observe that if the norm of the matrix K is greater than one then
the norm of I will tend to in�nity, and consequently the infection will spread among
the population. On the contrary, if ||K|| < 1 the number of infected individuals will
tend monotonically to 0. Therefore the matrix K, or a function of that matrix, is a
suitable candidate for the role of R0.

We follow the work by Diekmann et al. [31] and de�ne the basic reproduction
number using the norm of the matrix K.

De�nition 6.2. The basic reproduction number R0 for the Capasso-Serio epidemic
network model (V ,ΦM×M ; {gj}j∈V , µ) is de�ned to be

R0 = lim
n→∞

||Kn||
1
n , (6.10)

namely the spectral radius ρ(K), where K is the matrix given in (6.6) and || · || is the
matrix norm induced by the vector norm || · ||1.

Remark 1. The construction ofR0 that is performed in this Section seems to depend
on the chosen value of the time-step ∆t: indeed, di�erent values of ∆t lead to di�erent
matrices in the discrete dynamics (6.9), whose spectral radius is used to de�ne the
basic reproduction number. However, we prove that R0 = ρ(K) is a suitable choice
for the basic reproduction number of the Capasso-Serio epidemic network model,
regardless the chosen value of the time-step used to obtain the discrete dynamics.
More precisely, we investigate the stability of the disease free equilibrium using the
�rst Lyapunov criterion and prove that it is asymptotically stable if and only if
ρ(K) < 1.

Let us consider the second equation of the linearised system (6.7). It is a linear
autonomous system, so it is well known that its solution ∆I(t) tends asymptotically
to zero if and only if for all eigenvalues λA of the matrix A = µ(K− I), Re(λA) < 0.
There is a one-to-one correspondence between the eigenvalues of A and those of K;
more precisely if λA is an eigenvalue of A, then λK = 1 + λA/µ is the corresponding
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eigenvalue of K. Therefore, the condition Re(λA) < 0 can be read as Re(λK) < 1 in
terms of K-eigenvalues.
Now we prove that the asymptotic stability of the disease free equilibrium, namely
Re(λK) < 1, is equivalent to ρ(K) < 1. Thanks to the Perron-Frobenius Theorem
[49] we know that the spectral radius ρ(K) is one of the (real) eigenvalues of K, being
K a non-negative matrix. So, if Re(λK) < 1 by hypothesis, then it is straightforward
that ρ(K) < 1. On the contrary, if ρ(K) < 1, then for each eigenvalue λK:

Re(λK) ≤ |λK| ≤ ρ(K) < 1.





7

The analytical study

Let us consider a Capasso-Serio epidemic network model (V ,ΦM×M ; {gj}j∈V , µ),
where the functions {gj} and µ de�ne the epidemiological parameters of the model,
while V and Φ de�ne the underlying network. We model the epidemic dynamics by
using the set of equations (6.4). Our purpose is to �nd some conditions under which
the epidemic occurs. In the previous Chapter we proved that the epidemic occurs
if and only if R0 > 1, where R0 is the basic reproduction number de�ned for this
speci�c model in De�nition 6.2.

Unfortunately, since it implies the calculation of the maximum eigenvalue of a
M ×M matrix which contains a large number of parameters (precisely M2 + 2M + 1
that take into account the elements of the weighted adjacency matrix, the present
population numbers Np

j for all j ∈ V , the derivatives at the origin of gj for all j ∈ V ,
and �nally the parameter µ), this is not a simple task. In particular, a general theory
encompassing all possible network models will be di�cult to develop. Therefore, as in
paper [85], we will present results for a small but signi�cant class of network models.

De�nition 7.1.We de�ne a strictly homogeneous epidemic network model as the
Capasso-Serio epidemic network model where all the nodes have the same incidence
function gj(I) = g(I) for all j ∈ V.

De�nition 7.2.We de�ne a homogeneous epidemic network model as the Capasso-
Serio epidemic network model where the incidence function of each node has the
same derivative at the origin, namely g′j(0) = g′0 for all j ∈ V. We de�ne as hetero-
geneous epidemic network models the Capasso-Serio epidemic network model that do
not satisfy that condition.

Instinctively, if we want to model a city where all the neighbourhoods have the
same �epidemiological properties�, it is natural to think about a strictly homogeneous
epidemic network. This is the case of epidemics driven by human-to-human contact,
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where local variation in human behaviours might be neglected, leading to a strictly
homogeneous epidemic network model with respect to the rates of infection. How-
ever, we will see that the same basic reproduction number and the same stability
results holds for a wider class of models, that is what we call homogeneous epidemic
network models class. On the contrary, heterogeneous epidemic network models can
be used to model vector-driven epidemics; as an example, in dengue fever di�erent
rates of infections are related to variations in mosquito densities among the city
neighbourhoods.

Making this distinction between homogeneous and heterogeneous epidemic net-
work allows us to distinguish the roles played by epidemic and movement parameters.

7.1 Homogeneous epidemic network models

The following theorem shows that when the Capasso-Serio epidemic network model
is homogeneous, namely all the vertices have incidence functions gj, j ∈ V such that
their derivatives at the origin coincide, then the basic reproduction number is simply
Rhom

0 = g′0/µ. This implies that the infection will spread if g′0 > µ, independently of
the geometry of the network, the human �uxes between di�erent districts, the type
of non-linearity of the incidence function, nor the number of susceptible individuals.

We observe that this result does not even need the network to be connected. This
is a further proof of the fact that the value of the basic reproduction number can tell
if the disease will spread through the city, but not where.

Theorem 7.3. Let (V ,ΦM×M ; {gj}j∈V , µ) be a Capasso-Serio epidemic network
model whose dynamics are described by the di�erential system (6.4). Suppose that
the epidemic network is homogeneous, namely that g′j(0) = g′0 for all j ∈ V. Then
the basic reproduction number is Rhom

0 = g′0/µ, therefore the epidemic will spread if
and only if g′0 > µ.

Proof. It is easy to see that in this case the matrix K is given by

K =
g′0
µ
C,

where
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C =



M∑
j=1

φ2
1j

N1

Np
j

M∑
j=1

φ1jφ2j
N1

Np
j

· · ·
M∑
j=1

φ1jφMj
N1

Np
j

M∑
j=1

φ2jφ1j
N2

Np
j

M∑
j=1

φ2
2j

N2

Np
j

· · ·
M∑
j=1

φ2jφMj
N2

Np
j

...
...

. . .
...

M∑
j=1

φMjφ1j
NM

Np
j

M∑
j=1

φMjφ2j
NM

Np
j

· · ·
M∑
j=1

φ2
Mj

NM

Np
j



. (7.1)

We prove that the spectral radius of the matrix C is ρ(C) = 1. This leads to the

thesis, since the spectral radius of K is ρ(K) =
g′0
µ
ρ(C) and therefore ρ(K) =

g′0
µ
. To

determine the spectral radius of C we use the following Lemma (see Lemma 8.1.21
in [49]).

Lemma 7.4. Let A = (aij) be a squared n×n non-negative matrix. If all the column
sums are equal to c, then ρ(A) = ||A||, where

||A|| = max
r=1,...,n

n∑
s=1

asr =
n∑
s=1

as1 = c

is the matrix norm induced by the vector norm || · ||1.

Since each element of matrix C is given by the sum of non-negative quantities,
the matrix itself is non-negative. Moreover, the sum of the elements of the generic
column r is:

n∑
s=1

Csr =
n∑
s=1

M∑
j=1

φsjφrj
Ns

Np
j

=
M∑
j=1

φrj
Np
j

n∑
s=1

φsjNs︸ ︷︷ ︸
Np
j

=
M∑
j=1

φrj︸ ︷︷ ︸
out-strength

= 1,

where we have used de�nition (6.3) and property (6.1).
ut
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7.2 Heterogeneous fully connected epidemic network

models with constant fluxes

Starting from an homogeneous epidemic network, we want to introduce an inhomo-
geneity in the rates of infection by modifying the incidence function of one of the
nodes. The crucial question is whether this perturbation can qualitatively change the
stability of the disease free equilibrium; in other words, we want to test the robust-
ness of an homogeneous network. We focus on the simplest network structure: a fully
connected network where the resident population and the �uxes between the nodes
are constant. We do this choice in order to simplify the study and, more important,
to focus on the modi�cation of the incidence terms.

Let us consider a Capasso-Serio epidemic network model (V ,ΦM×M ; {gj}j∈V , µ)
where the resident population of each node is constant: Ni = Nres > 0 for all i ∈ V .
We assume that the network is fully connected and that the fractions of move-
ments between any two nodes is a positive constant φ0. Then the components of the
weighted adjacency matrix Φ are de�ned by

φij =

{
φ0 if i 6= j

1− (M − 1)φ0 if i = j,
(7.2)

where 0 < φ0 ≤ 1
M−1

, so the weighted adjacency matrix has nonnegative entries, and
the value of φii is chosen to satisfy the conservation of the out-strength of each node
(6.1).

We arbitrarily choose a node that will have a di�erent non-linear incidence func-
tion. Without loss of generality, suppose that

gj(I) = g(I), j = 1, 3, 4, . . . ,M, g2(I) = h(I), (7.3)

where both g and h are incidence functions that satisfy conditions i)-v) of Chapter
5. We will prove that the spreading results will depend on the derivative only, as
in the homogeneous case. More speci�cally, we will be interested only in the values
g′(0) and h′(0). Let us de�ne the ratio between the two as

ζ =
h′(0)

g′(0)
. (7.4)

Theorem 7.5. Let (V ,ΦM×M ; {gj}j∈V , µ) be a Capasso-Serio epidemic network
model whose dynamics are described by the di�erential system (6.4). Suppose that
the resident population at the nodes are equal, Ni = Nres > 0 for all i ∈ V, and that
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the weighted adjacency matrix Φ is de�ned as in (7.2). Moreover, suppose that each
node has the same incidence function g, except the second one, as stated in (7.3).
Under these conditions we can obtain conditions guaranteeing the stability of the dis-
ease free equilibrium. More precisely, suppose that g and µ are given such that the
disease in the homogeneous case does not spread, namely Rhom

0 = g′0/µ < 1. Then,
considering the ratio ζ de�ned in (7.4) we can state that:

• the disease free equilibrium is stable if

ζ <
1

Rhom
0

;

• the disease free equilibrium is unstable if

ζ > ζcrit = 1 +
1−Rhom

0

Rhom
0

M ;

• if 1

Rhom
0

< ζ < ζcrit the stability depends upon the value φ0; more speci�cally, the

disease free equilibrium is stable if φ0 ∈ I, where

I =

(
1

M
− φ̃0, min

{
1

M
+ φ̃0,

1

M − 1

})
and

φ̃0 =
1

M

√
Rhom

0 ζ +Rhom
0 (M − 1)−M

Rhom
0 (Rhom

0 Mζ −Mζ + ζ − 1)
,

otherwise it is unstable.

Proof.

7.2.1 Conditions for stability

We want to �nd conditions on the parameters of the model such that all the eigen-
values of the matrix K relevant to our system are within the unit circle, so that
ρ(K) = R0 < 1.

We recall that the components of matrix K are given by:

Krs =
1

µ

M∑
j=1

φrjφsj
Nr

Np
j

g′j(0). (7.5)
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Moreover, we observe that under our hypothesis:

Np
j =

M∑
k=1

φkjNk = Nres

M∑
k=1

φkj = Nres,

since the weighted adjacency matrix in this case is symmetric and holds (6.1). Sub-
stituting this value in (7.5) and recalling that Nr = Nres for all r ∈ V we obtain

Krs =
1

µ

M∑
j=1

φrjφsjg
′
j(0).

Using proper values of the weights φij given in (7.2) and the hypothesis on the
incidence functions (7.3) we obtain, after some simple but lengthy calculations, that
the matrix K for our heterogeneous fully connected epidemic network models with
constant �uxesis given by

Khet = P +D,

where

P =
g′0
µ



p q p · · · · · · p
q p q · · · · · · q
p q p · · · · · · p
...

...
...

. . .
...

...
...

...
...

... p p
p q p · · · p p


, D =

g′0
µ



d1 0 0 · · · · · · 0
0 d2 0 · · · · · · 0
0 0 d1 0 · · · 0
...

... 0
. . . . . .

...
...

...
...

. . . . . . 0
0 0 0 · · · 0 d1


,

given the constant values

p = φ0

[
2− (M + 1)φ0 + φ0ζ

]
q = φ0

[
1− φ0 +

(
1− (M − 1)φ0

)
ζ
]

d1 = (Mφ0 − 1)2 (7.6)

d2 = (Mφ0 − 1)
[
2φ0 +

(
Mφ0 − 2φ0 − 1

)
ζ
]
.

Using the diagonal expansion method [24] we can write the characteristic poly-
nomial that gives the eigenvalues λ of K. More speci�cally, we have to calculate the
determinant |P +D′|, where D′ = D− λI. Let us consider a generic subset θ ⊂ V of
the vertex set and denote by θ̄ the complement of θ in V . Given an M ×M matrix
A we denote by A(θ) the submatrix obtained by deleting all rows and columns not
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indexed by θ. Using the diagonale expansion method, the characteristic polynomial
can be expanded as a summation over all possible submatrices:

|P +D′| =
∑
θ⊂V

|P(θ)||D′(θ̄)|.

It is easy to see that P has rank two, therefore all its submatrices bigger than 2× 2
have determinant zero. The only subsets θ such that |P(θ)| 6= 0 are the empty
set ∅, the singleton sets {k} for each k ∈ V , the two-elements sets {2, k} for k =
1, 3, 4, . . . ,M . Therefore we can simplify

|P +D′| = |P(∅)||D′(V)|+
∑
k∈V

|P({k})||D′({k})|+
∑
k∈V

|P({2, k})||D′({2, k})|.

Again, some simple and lengthy calculations bring to

|P +D′| = (Rhom
0 d1 − λ)M−2

(
λ2 −Rhom

0 (d1 + d2 + pM)λ (7.7)

+ (Rhom
0 )2

(
d1d2 + p(M − 1)d2 + pd1 + (M − 1)(p2 − q2)

))
.

Clearly, Rhom
0 d1 = Rhom

0 (Mφ0 − 1)2 is an eigenvalue of the matrix K, with
molteplicity M − 2 and therefore the �rst condition in order to have stability is

Rhom
0 (Mφ0 − 1)2 < 1. (7.8)

Indeed, since 0 < φ0 ≤ 1
M−1

and Rhom
0 < 1 by hypothesis, (7.8) turns out to be a

trivial condition that is always satis�ed.
In order to study the remaining eigenvalues we use Jury conditions [71], which

allow us to force the eigenvalues module inside the unit circle without explicitly
calculating them.

The Jury conditions that assure that the roots of a second order polynomial
P (λ) = λ2 + a1λ+ a0 lay inside the unit circle are the following:

P (1) = 1 + a1 + a0 > 0, P (−1) = 1− a1 + a0 > 0, P (0) = a0 < 1. (7.9)

In our case, substituting proper value of the constants given in (7.6), the coe�cient
of the polynomial given in (7.7) become

a0 = (Rhom
0 )2ζ(Mφ0 − 1)2

a1 = −Rhom
0 (1 +Mφ2

0 + ζM2φ2
0 − ζMφ2

0 − 2ζMφ0 − 2φ0 + 2ζφ0 + ζ).
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If we use this constants to evaluate the Jury conditions given in (7.9) we obtain

P (1) = 1 +Rhom
0

[
ζ(Rhom

0 (Mφ0 − 1)2 − (M − 1)φ0(Mφ0 − 2)− 1) + φ0(2−Mφ0)− 1
]

P (−1) = 1 +Rhom
0

[
ζ(Rhom

0 (Mφ0 − 1)2 − (M − 1)φ0(Mφ0 − 2) + 1)− φ0(2−Mφ0) + 1
]

And therefore the three conditions that we want to hold are:

1 +Rhom
0 [ζ(Rhom

0 (Mφ0 − 1)2 − (M − 1)φ0(Mφ0 − 2)− 1) + φ0(2−Mφ0)− 1] > 0
(7.10)

1 +Rhom
0 [ζ(Rhom

0 (Mφ0 − 1)2 − (M − 1)φ0(Mφ0 − 2) + 1)− φ0(2−Mφ0) + 1] > 0
(7.11)

(Rhom
0 )2ζ(Mφ0 − 1)2 < 1.

(7.12)

We prove that condition (7.11) is always satis�ed, thanks to our hypothesis. We
prove that the term contained in square brackets is positive. Clearly Rhom

0 (Mφ0 −
1)2 > 0. The remaining of the coe�cient of ζ is a second order polynomial in the
variable φ0 with negative discriminant, therefore always positive. Let us focus on the
remaining of the sum, supposing M ≥ 3:

1− 2φ0 +M(φ0)2 ≥ 1− 2

M − 1
+M(φ0)2 > 0,

thanks to the range of acceptable values of φ0. Whereas, if M = 2, then 1 − 2φ0 +
M(φ0)2 is again a second order polynomial with negative discriminant, thus always
positive.

Therefore, in order to assure stability of the disease free equilibrium, we have to
verify conditions (7.10) and (7.12).

7.2.2 The case ζ < 1/Rhom
0

We prove that conditions (7.10) and (7.12) are true if ζ < 1/Rhom
0 . This threshold

comes from the study of the weakly connected network where φ0 is very small. Indeed,
in this case we can neglect second order terms φ2

0 and the conditions for stability,
rephrased to highlight the variable ζ, become

ζ <
1

(Rhom
0 )2 − 2M(Rhom

0 )2φ0

ζ <
(1−Rhom

0 ) + 2φ0Rhom
0

Rhom
0 ((1−Rhom

0 )(1− 2Mφ0) + 2φ0)
.
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In the limit φ0 → 0, these conditions become ζ < 1/(Rhom
0 )2 and ζ < 1/Rhom

0 , respec-
tively. Since Rhom

0 < 1, the latter condition is more restrictive, so we can conclude

that ζ =
1

Rhom
0

is a threshold for the stability of a weakly connected network.

Now we prove that under this threshold the disease free equilibrium is always
stable, no matter the value of φ0 ∈ (0, (M − 1)−1]. If ζ < 1/Rhom

0 , then condition
(7.12) is always veri�ed since

Rhom
0 ζ(Mφ0 − 1)2 < Rhom

0 (Mφ0 − 1)2 < 1.

Let us consider condition (7.10). Since we want to use the hypothesis ζ < 1/Rhom
0 ,

we evaluate the sign of the coe�cient of parameter ζ. It can be seen as a second order
polynomial in the variable φ0:

α(φ0) = M(Rhom
0 M −M + 1)φ2

0 − 2(Rhom
0 M −M + 1)φ0 +Rhom

0 − 1.

Its reduced discriminant is given by Rhom
0 M −M + 1, which is also the coe�cient

of the second order term. If it is negative, then α(φ0) < 0 for every admissible value
of φ0. If it is equal to zero, then the polynomial reduces to α(φ0) = Rhom

0 − 1 < 0.
On the contrary, if it is positive, it is easy to see that the polynomial is negative
between its two roots φ

(−)
0 and φ

(+)
0 that contains the admissibility range of φ0:

(0, (M − 1)−1] ⊂ (φ
(−)
0 , φ

(+)
0 ). As a consequence, the coe�cient α(φ0) is negative for

each value of Rhom
0 < 1, M ≥ 2 and 0 < φ0 ≤ (M − 1)−1.

Therefore, for condition (7.10) holds:

1 +Rhom
0 α(φ0)ζ +Rhom

0 φ0(2−Mφ0)−Rhom
0

> 1 + α(φ0) +Rhom
0 φ0(2−Mφ0)−Rhom

0

= (Rhom
0 M −M + 1−Rhom

0 )(Mφ2
0 − 2φ0).

The �rst factor is always negative, since it can be decomposed in (M −1)(Rhom
0 −1),

and also the latter factor is negative, since for M ≥ 2 it holds 1/(M − 1) ≤ 2/M .
As a result, all Jury conditions are satis�ed and therefore the disease free equilib-

rium is stable, whenever ζ < 1/Rhom
0 .

7.2.3 The case ζ > 1/Rhom
0

Suppose now that ζ > 1/Rhom
0 . We want to determine values of the parameters for

which conditions (7.10) and (7.12) hold. Rephrasing condition (7.10) we obtain as
usual a second order polynomial in the variable φ0:
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p(φ0) = MRhom
0 (Rhom

0 Mζ −Mζ + ζ − 1)φ2
0 − 2Rhom

0 (Rhom
0 Mζ −Mζ + ζ − 1)φ0

+ (Rhom
0 ζ − 1)(Rhom

0 − 1) > 0.

Since the constant term (Rhom
0 ζ−1)(Rhom

0 −1) is negative, if the discriminant of the
polynomial is also negative, then condition (7.10) can't be satis�ed. So we look for
conditions on the parameters for which the discriminant has positive value, which
turn out to be 1/Rhom

0 < ζ < ζcrit and, if (M − 1)/M < Rhom
0 < 1, also ζ > ζ̄, where

ζcrit = 1 +M
1−Rhom

0

Rhom
0

, ζ̄ =
1

Rhom
0 M −M + 1

. (7.13)

In the latter case, the polynomial p(φ0) is a parabola opening to the top; some simple
calculations prove that the interval (0, (M − 1)−1] is contained within the zeroes of
the parabola, therefore p(φ0) is negative for each admissible value of φ0. So the only
possible range of stability for the disease free equilibrium is 1/Rhom

0 < ζ < ζcrit,
where p(φ0) is a parabola opening on the bottom. Its zeroes are

φ± =
1

M
± 1

M

√
Rhom

0 ζ +Rhom
0 (M − 1)−M

Rhom
0 (Rhom

0 Mζ −Mζ + ζ − 1)
. (7.14)

By Descartes' rule of sign, we easily prove that both zeroes of the polynomial are
positive. Depending on the values of the parameters, φ+ can be greater or less than
(M−1)−1, so the values of φ0 for which condition (7.10) is satis�ed are those belonging
to

I =

(
φ−0 , min

{
φ+

0 ,
1

M − 1

})
. (7.15)

Summing up these results, condition (7.10) is satis�ed if

ζ ∈
(

1

Rhom
0

, ζcrit
)
, φ0 ∈ I,

where ζcrit and I are de�ned in (7.13) and (7.15). For these values of the parameters
we verify condition (7.12), by proving that

sup
ζ∈(1/Rhom0 , ζcrit)

sup
φ0∈I

ζ(Mφ0 − 1)2 <
1

(Rhom
0 )2

.

It is easy to prove that (Mφ0 − 1)2 attains its maximum value in φ−0 , which is the
radicand of (7.14). Then we have to prove that
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sup
ζ∈(1/Rhom0 , ζcrit)

ζ
Rhom

0 ζ +Rhom
0 (M − 1)−M

(Rhom
0 M −M + 1)ζ − 1︸ ︷︷ ︸

f(ζ)

<
1

Rhom
0

.

By a simple analysis of the rational function f(ζ) we �nd that it is de�ned and
monotonically decreasing in the whole domain

(
1/Rhom

0 , ζcrit
)
. At its border the

value of the function is

f

(
1

Rhom
0

)
= 1, f(ζcrit) = 0

And therefore the supremum of f(ζ), which is also a maximum, is the constant
value 1. From our hypothesis, the resulting condition 1 < Rhom

0 is straightforward.
Therefore, whenever condition (7.10) is satis�ed, then also condition (7.12) holds,
and with that stability of the disease free equilibrium is achieved.

ut
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Discussion and conclusions

In this Part of the thesis we have proposed a network of dynamical systems that
simulates the spread of a human-to-human disease in a highly populated city. The
population of the city has been divided in three compartments: susceptibles, infected
and removed individuals. Their dynamics are described by a Capasso-Serio model,
with non-linear incidence function, which is a model that is able to take into account
psychological e�ects that derives from the spread of an epidemic. We have supposed
that the city is divided in several neighbourhoods and we have allowed each of them
to have di�erent incidence function, namely di�erent epidemiological parameters. We
have described the topology of the city using a weighted directed graph where each
node represents a neighbourhood and the intensity of the directed links represents
the fraction of people moving from one neighbourhood to another due to their daily
routine activities. Therefore, in describing the dynamics of the resident population
of district i, we took into account that: (i) there is a fraction of susceptibles of node i
that spends most of its time in the other districts; (ii) the fraction of susceptibles of
node i that during the day stays in node j might be infected by an infective individual
that is present in district j, which can come from another district k. Therefore, the
dynamics of the susceptibles of node i is in�uenced by infected individuals of all
other nodes.

We have looked for a suitable de�nition of the basic reproduction number for our
epidemiological network model; such a de�nition had to respect the classical threshold
role: if the value of the basic reproduction number is greater than one, then the
infection will spread among the population, otherwise it will die out monotonically.

Then we have considered two particular epidemiological network model, focusing
on epidemiological parameters. First we have considered an homogeneous epidemic
network, where each neighbourhood had the same derivative calculated at the origin
of the non-linear incidence term g′j(0) = g′0, for all j ∈ V . We have proved that the
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conditions that determine the spread of the disease only concern the epidemiologi-
cal parameters of the model, while are independent of the geometry of the system.
Then, in order to test the robustness of the homogeneous epidemic network, we have
considered a slightly heterogeneous epidemic network by modifying the derivative
of the non-linear incidence function of a single district: g′j(0) = g′0, for all j 6= 2,
g′2(0) = ζg′0. We have taken as geometry of the system the simple as possible: we
have considered that the �ux of individuals between two di�erent nodes is constant.
We have proved that, if the factor ζ is su�ciently high, then the epidemic can spread
for some values of the other epidemiological and geometrical parameters. Moreover,
if ζ overcomes a critical value, then the epidemic will always spread, independently
of the other parameters of the model.

Therefore, we proved that if the epidemiological parameters are heterogeneous,
the geometry of the system (intended as the movement rates set-up) becomes crucial
in determining if the epidemic will spread: indeed, even in a simple fully connected
network with identical weights, the value of the constant movement rate may condi-
tion the evolution of the disease. Moreover, we remark that we found same condition
for the spread of the epidemic in slightly heterogeneous systems as the one found in
[85], even if the SIR model is not a particular case of the Capasso-Serio model, since
it does not satisfy condition iii) on the non-linear incidence function (see Chapter
5). The main reason is that the study is performed linearising the dynamics of the
complex network around the origin. The linearised models obtained both starting
from SIR epidemic model and from CS epidemic model coincide, provided the iden-
ti�cation of βj and g

′
j(0).

In our opinion, future perspectives and developments may involve the modi�-
cation of the underlying epidemiological model that describes the evolution of the
disease within the single node, as an example SEIR or SIRS models [46]. Further-
more, in order to make the introduction of the psychological e�ects more realistic,
we can introduce the dependence on the number of infected individuals of district i
and j in the movement coe�cients relevant to those districts: if the epidemic over-
whelm one of the two nodes, we expect a change in the behaviour of both resident
populations. A peculiarity of this model is that the movement rates of susceptible
and infected individuals coincide. This can be the case of diseases that induce mild
symptoms such as cold, whereas, if the disease is more limiting, di�erent movement
rates for susceptible and infected individuals are more accurate. Therefore, a possible
improvement of the model is the introduction of an additional parameter c ≤ 1: if φij
is the movement rate of susceptible individuals from node i to node j, then cφij will
represent the movement rate of the corresponding infected individuals. We observe



8 Discussion and conclusions 77

that in the limit case c = 1 we recover the model that is here presented, while if its
value tends toward zero we are describing a disease that induces severe symptoms.

As further development of the model, we can add a control (such as vaccination
or isolation) that can be applied at di�erent rates in each neighbourhood and look
for the optimal solution that eradicates the disease in minimum time, possibly with
resources or cost constraints.

We expect that these improvements of the model lead to a more detailed and
realistic description of the di�usion of the epidemic through the districts. Although
the used model is quite simple, we found a rich behaviour in the epidemic spread.
We hope that the introduction of psychological e�ects and the study of an optimal
control might help in planning e�cient control strategies.





Part III

A network landscape model: stability

analysis and numerical tests
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Introduction

The problem of understanding the governing principles of ecosystems can be even
found in a paper by Lotka [65] in 1922. But it is at the beginning of this century
that the problem of a quantitative evaluation of an environmental system has been
posed within the so-called discipline of Landscape Ecology. In fact, the European
Landscape Convention of 2000 has encouraged all the European countries to de�ne
their landscape objectives on the ground of management and planning of territory
through government, conservation and protection of landscapes. On this subject it
is now possible to �nd a large bibliography (see amongst others [54, 63, 73] and the
bibliography therein).

Landscape Ecology may be considered an interdisciplinary �eld of research involv-
ing at the same time empirical testing and mathematical modelling. In this context
an environmental system [37] is considered as a spatially extended heterogeneous sys-
tem that can be distributed in several Landscape Units (LU), that are sections of the
territory whose borders are identi�ed by natural or anthropic barriers (roads, speed-
ways, railways, building, industrial infrastructures, rivers, hill ridges, ...) exchanging
�ows of materials and bio-energy. Moreover, each LU is formed by di�erent biotopes,
each characterized by an uniform land cover of vegetation. From a quantitative point
of view each LU, often called ecological sector, is characterized by a synthetic index
of ecological system functionality, that we will call bio-energy, and by its capability of
transmitting such an energy to the neighbouring sectors. Such a characterization of
an environmental system has been considered in the book [34] where a quantitative
evaluation of its ecological state has been proposed by the so-called ecological graph
which, through the computation of suitable indicators (see [35, 39]) determinable by
the Geographic Information System (GIS) [72], �xes the values of bio-energy pro-
duction and �ux to the neighbours. On the other hand, the ecological graph may
be considered a static picture of the ecological state of the system, whereas natural
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ecosystems stand in a meta-stable equilibrium which can be modi�ed later in time
in a signi�cant way under strong perturbations due to human land uses impact or
to natural events [76, 86]. For this reason, simulation by mathematical models may
be an useful and reliable tool for the information about environment trend towards
possible future scenarios, presenting even bifurcation phenomena, for some critical
values of environmental indicators [77, 87].

A �rst attempt in this direction has been proposed in papers [38, 39] where a
mathematical model represented by a set of ODEs has been derived. In particular,
the main idea of these papers, as well as that of the present one, consists in consid-
ering that the equilibrium solutions of the equations correspond to possible di�erent
scenarios reachable by the environmental system under investigation. Moreover, the
stability analysis derived in [38] has pointed out that bifurcations may arise for some
critical values of the parameters, as for instance for the connectivity index which
takes into account the level of bio-energy exchanges between the various LUs present
in the territory.

More in details, paper [39] assumes as state variables, for the whole environmental
system, a generalized form of bio-energy (indicated with the symbolM) and the total
surface of green areas (indicated with V ) presenting high ecological quality. In order
to obtain a more detailed description of the ecological state of the environment, in the
last part of paper [38] another model is proposed where the state variables (the same
of paper [39]) are de�ned at the level of each LU. In these papers the connectivity
index (considered as the control parameter of the dynamical system) is included in
the model as a coe�cient of the equations and the variableM is de�ned as a product
of the so-called Biological Territorial Capacity (BTC) by a parameter accounting for
some morphological and physical property of the biotopes belonging to each LU.

In this Part1 of the thesis we propose a new model called Network Landscape
Model (NLM) where the state variables are again de�ned for each LU. This model
di�ers substantially from that of paper [38]. First of all, while the high ecological
quality areas of each LU V is maintained, the state variable M is replaced by the
BTC of each LU (indicated with B), that is a synthetic index that assesses the �ux
of energy that an ecological sector needs to dissipate in order to maintain its meta-
stable ecological state. Such a choice, in our opinion, seems to be reasonable since
BTC, contrary to M , is a measurable bio-energy. The second di�erence is that the
morphological and physical properties of biotopes are included in the model as co-
e�cients of the equations and not as factors of the state variable M . But the main
novelty consists in adding to the model equations a new term accounting for connec-

1 Most of the contents of this Part appeared on Communications in Nonlinear Science and Numerical

Simulation, 48 (2017), pp. 569�584[18]
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tivity, which represents the coupling between the LUs. Such a term is borrowed from
electrical synapses linking neurons, more speci�cally from the so called electrically
coupling networks [12]. These novelties have been introduced with the aim of a better
calibration of the model, suggested by the study cases presented in paper [38] and in
the master degree thesis [27]. We are interested in �nding the equilibria of the NLM,
in order to study the long term evolution of the environmental system, and in their
asymptotic stability, in order to evaluate its robustness under strong perturbations
due to human land uses impact or to natural events.

This Part is organized as follows. In Chapter 10 we present the Network Landscape
Model as a network of dynamical systems, each of them having the same qualitative
structure, that we call Single LU Model (SLM); the last model represents the case
of an environmental system where the LUs are not connected and are completely
isolated from each other. In Chapter 11 we perform a theoretical and numerical
analysis of the equilibria and of their stability. In particular, in Section 11.1 we
perform a stability analysis of the SLM in terms of two bifurcation parameters,
detecting general conditions for the number of equilibria, for their existence and
stability. In Section 11.2 we consider the network of LUs, composed by n LUs coupled
through a di�usive term proportional to the di�erence between the bio-energies of
each LU. We investigate the asymptotic behaviours of the network (in terms of
equilibria and their stability) by means of a proper simpli�ed system, whose dynamics
is completely determined in terms of two additional bifurcation parameters. Then,
in Section 11.3, we show some numerical tests relevant to a network of LUs in an
environmental system of the northern side of the Turin Province (Italy), characterized
by �ve LUs where rather compact built-up territorial patches interact with natural
reserve areas. The results are compared with those of the simpli�ed system and of
the single LU model, in order to underline how the coupling between the LUs may
modify the scenarios, thanks to the exchange of bio-energy, and how the simpli�ed
system is able to give information about the asymptotic behaviour of the network
model, in accordance with the stability analysis performed. Some concluding remarks
are reported in Chapter 12.
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The network landscape model

As discussed in the Introduction of this Part and according to the previous papers
[38, 39], the environmental system is described as a landscape of n LUs. Then it is
possible to represent it as a network of dynamical systems (see Section 1.2), composed
by n nodes, whose ecological state at time t is described by vector state variables
xi(t) ∈ R2, i = 1, . . . , n, interacting pairwise through a set of links, that encode
the network topology. We suppose that each LU, when isolated from the others,
has its own dynamics described by a system of two di�erential equations of type
ẋi = Fi(xi). Considering the network landscape, the dynamics of each LU is a�ected
by the neighbouring LUs; this can be modelled by adding an interaction term in the
single LU model. Then, the evolution of the whole network can be modelled by a
system of 2n di�erential equations, given by{

ẋi = Fi(xi) +Hi(x1, . . . ,xn;W )

i = 1, . . . , n,
(10.1)

where the function Fi describes the dynamics of the i-th LU in the same way as in
the single landscape model, whereas the termHi describes the interaction of the i-th
LU with the other LUs, and, thus, Hi depends on all LUs state variables and on
the topology of the system depicted by the weight matrix W . In order to complete
the network landscape model, we have to specify the variables that describe the
ecological state xi, the functions Fi and the interaction terms Hi and W .

Let us start by describing the ecological state variables and the single node dynam-
ics Fi. Each LU is formed by mi biotopes, i = 1, . . . n. Each biotope is characterized
by its bio-energy or more precisely by its BTC index [54]. Such an index will be indi-
cated in what follows by Bji, j = 1, . . . ,mi, and assumes values in the range [0, Bmax],
with Bmax = 6.5 Mcal/(m2 ·year). The BTC is a synthetic function which, by taking
into account ecosystem metabolism through biomass information, gross primary pro-
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duction and respiration, assesses the �ux of energy that an ecological system needs
to dissipate in order to maintain its meta-stable ecological state. As an example,
industrial or mineral extraction sites have BTC index equal to 0 Mcal/(m2 · year),
olive groves BTC index is 1.8 Mcal/(m2 · year), while the BTC of a coniferous forest
is 6.4 Mcal/(m2 · year) (information about how the BTC index is calculated and val-
ues for di�erent types of vegetation can be found in [39, 54]). Moreover, the biotopes
having a vegetation with a BTC index greater than 2.5 will be considered hereinafter
those of high ecological quality. The total value of BTC of each LU in Mcal/year is
given by

Bi(t) =

mi∑
j=1

Bjisji,

where sji is the area of the j-th biotope belonging to the i-th LU of total area

Si =

mi∑
j=1

sji.

Let us assume as state variables the total BTC Bi of each LU and the sum Vi
of all the areas of the biotopes of high ecological quality. Then the equations of the
SLM for the i-th LU read as

Ḃi(t) = aiBi(t)

(
1− Bi(t)

Bmax
i

)
− `i

(
1− Vi(t)

Si

)
Bi(t) (10.2)

V̇i(t) = diVi(t)

(
1− Vi(t)

Si

)
Bi(t)

Bmax
i

− hiUiVi(t), (10.3)

where
Bmax
i = Bmax Si

is the value of the BTC produced by a LU having all the biotopes with a BTC index
equal to Bmax.

Equations (10.2) and (10.3) have the same mathematical structure of those pro-
posed in [38] but with coe�cients having a di�erent meaning, as already discussed in
Chapter 9. In fact, the parameters `i ∈ [0, 1] are here de�ned as the ratio between the
areas of the impermeable barriers present in the LUs and Si, and the parameters ai
take into account the capability of the i-th LU to produce an increment of bio-energy.
In particular, the latter are assumed to depend essentially on the solar exposure of
the biotopes, and can be computed by the formula proposed in paper [39]:

ai :=
w1S

SES
i + w2S

W
i + w3S

NE
i

Si
≤ 1,
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where the ws are suitable weights and SSESi , SWi , S
NE
i are the soil surfaces with

exposure to south-east-south, west and north-east, respectively.
Another novelty relies on the coe�cients di of Eqs. (10.3) which are here considered

as dependent on solar exposure, relative humidity and ecotonal length (this last
quantity is the length of the borders between biotopes). In fact, it is reasonable that
the increasing of green areas of high ecological quality depends on the bio-energy
produced in the LU, taking into account as well particular features of the biotopes.
The coe�cients are de�ned as

di =
1

3
(ai + khui + keci ) ≤ 1, khui =

w4S
h
i + w5S

s
i

Si
, keci = 1− Pi

/ mi∑
j=1

Pji,

where khui and keci stand for the indices of relative humidity and ecotonal length,
Shi and Ssi being, respectively, the areas of soil characterized by humidity and sub-
humidity; moreover Pji is the length of the j-th biotope perimeter, and Pi that of
the i-th LU.

The last two parameters hi and Ui, already considered in paper [38] and appearing
in Eq. (10.3), take into account the presence of built-up areas inside the LU that
causes impact to the �ow of bio-energy. The parameter hi is given by the ratio
between the sum of the perimeters of the built-up areas and the total perimeter of
the LU, whereas Ui is de�ned as the ratio between the sum of the built-up areas
and the total area Si of the LU. Therefore, these parameters can be considered as
a measure of the dispersion and of the intensity of constructions inside the LU,
respectively. According to its de�nition, the parameter hi can assume values greater
than one (such values mean that construction dispersion in the LU is signi�cantly
remarkable); conversely Ui ranges in [0, 1].

It is convenient to normalize Eqs. (10.2)-(10.3) by dividing the former by Bmax
i

and the latter by Si. By introducing the normalized variables bi = Bi/B
max
i and

vi = Vi/Si, the equations for the i-th LU result in:{
ḃi = F

(1)
i (bi, vi) = aibi(1− bi)− `i(1− vi)bi

v̇i = F
(2)
i (bi, vi) = divi(1− vi)bi − hiUivi.

(10.4)

Equations (10.4) de�ne the Single Landscape Model (SLM) proposed here. From now
on, we will refer to them as SLM equations. They have the form ẋi = Fi(xi) with
xi = (bi(t), vi(t))

T. Although vi is strictly related to bi, their combination is able to
characterize more precisely the type of territory and its ecological quality, since the
bi variable is able to represent only a mean value of the total (normalized) bio-energy
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allocated inside a single LU. On the other hand, the informations that we extract
from vi help in improving the picture of the landscape unit.

Let us now de�ne the interaction term Hi in (10.1). The coupling between the
i-th LU and its k neighbors can be modeled by a linear interaction term proportional
to the di�erence between the bio-energies of the i-th and k-th LU, a�ecting only the
equation for the bio-energies themselves. Therefore

Hi(x1,x2, . . . ,xn) =

∑k∈Ii cki [bk(t)− bi(t)]
0


where the set Ii collects all the indices of the LUs adjacent to the i-th one. The
term Hi has the same mathematical structure as the electric coupling in neural
networks [12].

Summing up, we can then write the 2n equations of the network of LUs as
ḃi(t) = aibi(t)[1− bi(t)]− `i[1− vi(t)]bi(t) +

∑
k∈Ii

cki [bk(t)− bi(t)]

v̇i(t) = divi(t)[1− vi(t)]bi(t)− hiUivi(t)
i = 1, . . . n.

(10.5)

Equations (10.5) de�ne the Network Landscape Model (NLM) proposed in this thesis
and we will refer to them as NLM equations.
The coe�cients cki in the expression of Hi are the connectivity indices between
the k-th and the i-th LUs and represent the elements of the weight matrix W that
de�nes the topology of the considered networks of dynamical systems. They can be
computed (see [38]) by the formula

cki =
Hki

Lki
, Hki =

s∑
r=1

Lrkip
r, Lki =

s∑
r=1

Lrki,

where Lki is the length of the border between the two LUs, which is divided into s
parts, each of length Lrki with a permeability index pr ∈ [0, 1], with 0 for impermeable
and 1 for completely permeable.

In order to study the dynamics of the NLM, Eqs. (10.5) must be equipped with
the initial data

bi(0) = bi0, vi(0) = vi0

that can be obtained directly from the GIS of the territory under investigation.
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Theoretical and numerical study

In this Chapter we investigate the dynamics of the isolated landscape unit (SLM)
(10.4) by studying in Section 11.1 its equilibria and their stability properties. In Sec-
tion 11.2 we investigate the dynamics of the network landscape models (NLM) (10.5)
by means of a proper simpli�ed system, whose dynamics are completely determined
in terms of two additional bifurcation parameters. Lastly, in Section 11.3 we show
some numerical tests relevant to a network of LUs in an environmental system of the
northern side of Turin Province (Italy).

11.1 Equilibria and stability properties: the case of a

single LU

In this Section we investigate the single node dynamics by studying the equilibria of
the SLM equations (10.4) and their stability in terms of two bifurcation parameters.
In order to simplify the notation, we omit the LU index i.

First of all, we notice that the square Q = [0, 1] × [0, 1] in the (b, v) plane is an
invariant region for the SLM equations (10.4) and this guarantees the consistency of
the model with the assumption that the normalized variables b, v are meaningful only
if they range between 0 and 1. An important property of the SLM (10.4) is its cooper-
ative structure [84], namely it can be put in the form ẋ = F (x), where x = (b, v) and
F is a cooperative vector �eld, meaning that ∂F (k)/∂xj ≥ 0 for k = 1, 2 and j 6= k.
As a consequence, since the dynamics is con�ned in the compact set Q, the long time
behavior is severely limited: there will be at least one stable equilibrium, there are
no periodic orbits and trajectories will always converge (eventually monotonically)
to a stable equilibrium [48, 84].
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By setting the right hand sides of the SLM equations (10.4) equal to zero, we
compute the equilibrium solutions of the model. Simple calculations lead to four
equilibria given by

E0 = (0, 0), E1 = (b1, 0) = (1− α, 0),

E±∗ = (b±∗ , v
±
∗ ) =

(
b±∗ , 1−

r

b±∗

)
=

(
1±
√

1− 4αr

2
, 1− 1∓

√
1− 4αr

2α

)
, (11.1)

where
α = `/a, r = hU/d.

Let us comment that the equilibrium E0 corresponds to a scenario where the
system tends to gradually loose its ecological quality and presents a strong landscape
fragmentation. The second equilibrium E1 represents a scenario with no high quality
vegetation, but with some production of bio-energy: such scenarios are typical of
territories where agricultural production is predominant. Finally, the coexistence
equilibria E±∗ show a good level of bio-energy production in presence of a certain
amount of high ecological quality (green) areas.

Since b and v are normalized variables, these equilibria are signi�cant only if
their components are between 0 and 1. In particular, it is easy to see that the �rst
equilibrium E0 is admissible for every choice of the parameters, while E1 lies in Q
if and only if α < 1, namely low presence of impermeable barriers (small values
of `), together with a good solar exposure (large values of a). The admissibility of
the coexistence equilibria E±∗ depends on both r and α (see Fig. 11.1); standard
calculations allow us to prove that

E+
∗ ∈ Q i� r ≤

{
1− α when α < 1/2

1/(4α) when α ≥ 1/2
; E−∗ ∈ Q i�

{
α ≥ 1/2

1− α ≤ r ≤ 1/(4α)
.

(11.2)

Remark 2. The ecological meaning of the parameters allows us to characterize the
quality of a territory in terms of α and r. More precisely, low presence of construc-
tions (small values of h and U) together with good environmental parameters (large
values of d) yield small value of the parameter r; low presence of impermeable barri-
ers (low values of `) and high capability to increment the bio-energy (high values of
a) lead to small values of parameter α. Therefore, we expect small values of α and r
to be related to fertile areas, while high values of both parameters represent highly
built-up areas or desert zones. Indeed, for high values of α and r the only feasible
equilibrium is E0 that will be globally attractive, owing to the cooperative structure
of the SLM (10.4).
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The coexistence equilibria E±∗ = (b±∗ , v
±
∗ ) are related to territories with a certain

amount of high ecological quality areas and a good production of bio-energy, while
E1 = (b1, 0) represents lower quality territories with predominance of agricultural
production. By simple calculations, it is possible to show that the corresponding
equilibrium values b±∗ of the bio-energy are always greater than the equilibrium value
b1, in accordance with the ecological meaning of the equilibria.
The coexistence equilibria E±∗ are admissible when r is su�ciently small, with thresh-
old decreasing with α; in other words, unfavorable parameters ` and a must be bal-
anced by proper favorable values of h, U and d to get the coexistence of the high
ecological quality areas and a good production of bio-energy. In addition, when α
and r are both small enough (highest quality territory) the equilibrium state E−∗ ,
less valuable than E+

∗ , is not present.

Proposition 1.

(i) E0 is locally asymptotically stable if and only if α > 1;
(ii) E1 is locally asymptotically stable if and only if r > 1− α;
(iii) E+

∗ is locally asymptotically stable, while E−∗ is a saddle (when they are admissi-
ble).

Proof. In order to study the local stability of the equilibria we evaluate the Jacobian
matrix of SLM equations (10.4)

J =

(
a[(1− 2b)− α(1− v)] aαb

dv(1− v) d[b(1− 2v)− r]

)
at each equilibrium.
(i) It is easy to see that J(E0) is a diagonal matrix, whose eigenvalues are λ1 =
a(1− α) and λ2 = −rd, and then both are negative i� α > 1.
(ii) The Jacobian matrix evaluated at E1 is an upper triangular matrix, whose
eigenvalues are λ1 = a(α − 1) and λ2 = d(1− α − r). The �rst eigenvalue is always
negative when E1 is admissible (i.e. α < 1), while the second one is negative if and
only if r > 1− α.
(iii) The Jacobian matrix evaluated at the coexistence equilibria can be written in
the compact form

J(E±∗ ) =

(
−ab±∗ aαb±∗

dv±∗ (1− v±∗ ) −db±∗ v±∗

)
. (11.3)

The determinant of J(E±∗ ), by simple calculations, results:

det(J(E±∗ )) = adv±∗ b
±
∗ (b±∗ − α(1− v±∗ )) = ±adv±∗ b±∗

√
1− 4αr.
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Fig. 11.1. Existence and stability regions of the equilibria given in (11.1) of the SLM (10.4) in the parameter
plane (α, r). Stable (resp. unstable) equilibria are denoted by “s” (resp. “u”); CP denotes the cusp point.

We notice that the square root is well de�ned, thanks to the admissibility conditions
(11.2) for the coexistence equilibria since 1− α < 1/(4α) for α < 1/2. The determi-
nant of J(E−∗ ) turns out to be always negative and therefore E−∗ is a saddle point,
whenever it is admissible. The determinant of J(E+

∗ ) is instead always positive. As
regards the sign of the trace of J(E±∗ ), the diagonal elements of the matrix (11.3)
are both negative, therefore trJ(E+

∗ ) < 0.
ut

The results about existence and stability of equilibrium states are summarized in
Fig. 11.1. In the parameter space (α, r) the lines r = 1−α, α = 1 and the hyperbola
r = 1/(4α) divide the �rst quadrant in �ve regions, which are qualitatively di�erent
either for the number of equilibria or for their stability. In three of these regions,
labeled by 1 , 2 and 3 , there exists a single locally stable equilibrium that will be
always globally asymptotically stable, in accordance with the theory of cooperative
systems [84]. In the two remaining regions 4 and 5 , the bistability occurs. In both
regions, the stable manifold of the saddle E−∗ plays the role of separatrix between
the basins of attraction of the stable equilibria, while the unstable manifolds provide
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Fig. 11.2. Bifurcation diagrams: equilibrium values of bio-energy beq versus α for di�erent values of r.
Solid curves represent stable equilibria, dashed curves represent unstable equilibria.

heteroclinic orbits connecting E−∗ with them. As a consequence, the system can evolve
towards a �good� equilibrium (E+

∗ ) or a �poor� equilibrium (E0 or E1) equilibrium
depending on the initial state. Moreover, when considering interventions in these
regions, a parameter change can drive an initial situation either to extinction, or to
the absence of high quality green areas only, or to the best coexistence of bio-energy
and high quality green areas, depending on the parameter values.

All the boundary curves between these �ve regions are stationary bifurcation
curves. In particular, on the vertical line α = 1 the system shows transcritical bi-
furcation points involving the equilibria E1 and E0. This is also the case of the line
r = 1− α, which involves transcritical bifurcations between the equilibrium E1 and
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a coexistence one (E+
∗ or E−∗ , depending on the parameter values), while the curve

r = 1/(4α) is a saddle-node bifurcation curve involving the equilibria E+
∗ , E

−
∗ . In ad-

dition, these last two bifurcation curves intersect at the critical point CP = (1/2, 1/2)
in the parameter space, where the three equilibrium states E1, E

+
∗ , E

−
∗ coincide. At

this point, the two bifurcation curves share a common tangent; then CP is a math-
ematical cusp in the (α, r) plane. All these results indicate the presence of a cusp
singularity, according to Whitney's theory [6], for the equilibrium surface in the space
(α, r, b).

The bifurcation process is described also in Fig. 11.2, where the values of b at
equilibria are reported versus α for di�erent values of r. With reference also to
Fig. 11.1, we can see in detail in Fig. 11.2 how the equilibrium states collide and
disappear. The four panels can be obtained by slicing the diagram in Fig. 11.1 with
lines r = const.

When r is su�ciently small (Fig. 11.2(a)), by varying α we can pass from region 3 ,
characterized by the best ecological parameters and where E+

∗ is the only attractor,
to the region 4 , where the system is bistable with both E+

∗ and E1 being attractors,

then to the region 5 , where bistability is between E+
∗ and E0, and �nally to the

region 1 , where E0 is the only attractor. By increasing r (Fig. 11.2(b)) towards

1/2, varying α we pass from regions 3 to 4 by a transcritical bifurcation between

E1 and E−∗ , then from 4 to 2 by the saddle-node bifurcation involving E±∗ , and

�nally from regions 2 to 1 by transcritical bifurcation between E1 and E0. When
r = 1/2, the vertex of the parabola, representing the saddle-node bifurcation point,
lies on the line r = 1− α and we have coincidence of E±∗ and E1 (cusp point). For r
above 1/2, bistability is no more feasible and the equilibrium E+

∗ interacts with E1

by transcritical bifurcation as long as r < 1 (Fig. 11.2(c)) and by increasing α we
cross regions 3 , 2 and 1 . Finally for r > 1, there is only a transcritical bifurcation

between E1 and E0 when we pass from region 2 to region 1 .

11.2 A preliminary analysis of network dynamics

In this Section we consider the NLM (10.5) and investigate the e�ect of the cou-
pling between the LUs. Typically, networks of dynamical systems may present rich
behaviors, such as synchronization, periodic solutions, chaos [12]. The NLM (10.5)
is however a system of 2n di�erential equations of cooperative type [84], since it
can be easily proved that its Jacobian matrix has nonnegative o�-diagonal entries
in the compact invariant hypercube [0, 1]2n. Therefore, under mild restrictions [48],
it is possible to show that the trajectory of almost every initial state converges to
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an equilibrium in the compact hypercube and that there are no attracting periodic
orbits other than equilibria, because every attractor contains a stable equilibrium.

The analytical study of equilibria for the NLM equations (10.5) is substantially
impracticable; we can only easily verify that the null state is an equilibrium point
and using the �rst Lyapunov criterion, we can investigate its stability. The Jacobian
of NLM (10.5), when evaluated at the null state, is a block diagonal matrix of order
2n, with two blocks of order n. One block is a diagonal matrix with negative en-
tries −hiUi, corresponding to the partial derivatives of the terms on the r.h.s of the
equations for the high quality green areas vi with respect to vi. The other block is
symmetric with the o�-diagonal entries equal to cji and diagonal elements ai−ci−`i.
Thanks to the localization Gershgorin theorem [89], the eigenvalues relevant to this
block are bounded from below by ai−2ci− `i and from above by ai− `i = ai(1−αi).
Then, if ai − `i < 0 ∀ i, namely if the parameter α in each LU is greater than 1,
the null equilibrium state is locally asymptotically stable. This scenario refers to the
case in which all LUs belong to regions 1 or 5 (Fig. 11.1), the only ones where E0

is stable for the SLM. Moreover, if there exists an index i such that ci < (ai − `i)/2,
then the null equilibrium state is unstable.

To proceed further and get indications about the network asymptotic behavior, we
follow a simpli�ed strategy which involves a planar system of ODEs, with the aim of
understanding how the connectivity among LUs quantitatively modi�es equilibrium
states with respect to those of the single LUs.

In Subsection 11.2.1 we detail the construction of this simpli�ed model, then in
Subsection 11.2.2 we study its equilibria and their asymptotic stability in terms of
two bifurcation parameters, and �nally we complete the analysis by characterizing
in Subsection 11.2.3 the stability regions in di�erent parameter planes.

11.2.1 The simplified system

Let (b̄i, v̄i), i = 1, . . . , n be an equilibrium point for the NLM (10.5); then, the r.h.s.
of NLM equations (10.5) evaluated at this point is zero, namely

aib̄i[1− b̄i]− `i[1− v̄i]b̄i − cib̄i + Īi = 0

div̄i[1− v̄i]b̄i − hiUiv̄i = 0

i = 1, . . . n,

where the coupling terms have been rewritten in terms of the in-strength of each
node and a set of constants that depends both on the topology of the network and
on the bio-energy equilibrium values:
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ci =
∑
k∈Ii

cki, Īi =
∑
k∈Ii

ckib̄k. (11.4)

We remark that the dependence of the i-th LU on the neighboring LUs is incor-
porated in the term Īi, ranging from 0 to ci, which is a proper unknown constant at
equilibrium for each subsystem relevant to the single LU. In order to get information
about the equilibria (b̄i, v̄i), i = 1, . . . , n, and their stability, we consider the simpli�ed
assumption that the landscape network is composed by n − 1 LUs at equilibrium,
playing the role of a background, and we connect an additional LU to it (labeled
by i). For a landscape network, it is reasonable to expect that the n− 1 LUs of the
background will not be a�ected by this insertion. This intuitive assumption deserves
however further investigation, that will be matter of future work. Then, the i-th LU
will relax to equilibrium according to the dynamics given by the system{

ḃi(t) = aibi(t)[1− bi(t)]− `i[1− vi(t)]bi(t)− cibi(t) + Ii

v̇i(t) = divi(t)[1− vi(t)]bi(t)− hiUivi(t)

where we have replaced Īi with an additional generic parameter, let's say Ii, constant
but a priori unknown, dependent on the (unknown) equilibrium values of the bio-
energies of the other LUs of the background.

We omit the LU index i in order to simplify the notation, and then consider the
simpli�ed system{

ḃ(t) = ab(t)[1− b(t)]− `[1− v(t)]b(t)− cb(t) + I

v̇(t) = dv(t)[1− v(t)]b(t)− hUv(t)
(11.5)

for a generic value of the parameter I, with 0 ≤ I ≤ c. First we observe that, as
for the SLM (10.4), Q = [0, 1]2 is an invariant set for the simpli�ed model and that
system (11.5) has a cooperative structure too, therefore there are no periodic orbits,
and the trajectories will converge, eventually monotonically, to an equilibrium.

11.2.2 Equilibria and their asymptotic stability

Simple calculations lead to equilibrium (the subscript N stands for �network�)

E1N = (b1N , 0) =

(
a− c− `+

√
(a− c− `)2 + 4aI

2a
, 0

)
(11.6)

which characterizes agricultural areas, and to two coexistence equilibria
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E±∗N =
(
b±∗N , v

±
∗N

)
=

(
a− c±

√
(a− c)2 + 4a(I − aαr)

2a
, 1− r

b±∗N

)
. (11.7)

We notice that the expression of the �rst component of E1N is found as the positive
root of a second order polynomial. The other root is negative for 0 < I ≤ c; when
I = 0 the positive root reduces to 0 if a− c− ` < 0, otherwise the negative root does
it. It follows that, only when I = 0, the simpli�ed system (11.5) admits also the null
equilibrium state E0N = (0, 0).

As for the single LU model, since b and v are normalized variables, these equi-
libria are signi�cant only if their components are between 0 and 1. As regards the
equilibrium E1N , it is easy to see that it is well de�ned since the radicand is always
positive and also that its �rst component is positive. In fact, the condition b1N ≤ 1 is
equivalent to I ≤ c+ `, which is true by the hypothesis on the parameter I (I ≤ c).
Therefore, the equilibrium E1N always belongs to Q = [0, 1]× [0, 1].

To determine the parameter values for which E−∗N is admissible we have to impose
�ve conditions: the radicand must be nonnegative and the equilibrium components
b−∗N , v

−
∗N must range from 0 to 1. By some calculations, we obtain

E−∗N ∈ Q⇐⇒

{
(a− c)2 + 4a(I − aαr) ≥ 0

r ≤ b−∗N ≤ 1
⇐⇒


a(1− r − α) < c ≤ a(1− 2r)

f(c) ≤ I ≤ g(c)

r < 1/2

(11.8)
where

f(c) = a

(
αr − (a− c)2

4a2

)
, g(c) = r[a(r + α− 1) + c]. (11.9)

The last condition in (11.8) is due to the fact that c must be a positive parameter.
Moreover, we can �nd a suitable c only if a(1− r − α) < a(1− 2r), namely r < α.

Similarly, the admissibility conditions of the equilibrium E+
∗N are given by{

(a− c)2 + 4a(I − aαr) ≥ 0

r ≤ b+
∗N ≤ 1

(11.10)

which admits solutions only if r < 1. After some calculation we obtain

E+
∗N ∈ Q⇐⇒


c ≥ a(1− 2r)

I ≥ g(c)

r < 1

∨


c < a(1− 2r)

I ≥ f(c)

r < 1/2.
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Remark 3. It can be noticed that a necessary condition for the admissibility of
both E+

∗N and E−∗N is r < 1, namely hU < d, which means that both intensity and
dispersion of built-up areas must be su�ciently low. This fact is in accordance with
the comments in Remark 2 for the single LU model. As in the single case, standard
calculations show that the bio-energy value of the coexistence equilibrium E+

∗N is
always greater than the bio-energy value of E1N , namely b+

∗N > b1N .

Proposition 2.

(i) E0N , admissible for I = 0, is locally asymptotically stable if and only if a−c−` <
0.

(ii) E1N is locally asymptotically stable if and only if

{
c > a(1− r − α)

0 < I < g(c).

(ii) E+
∗N is locally asymptotically stable, while E−∗N is a saddle (when they are admis-

sible).

Proof. In order to study the local stability we evaluate the Jacobian matrix of the
simpli�ed system (11.5)

J =

(
a[(1− 2b)− α(1− v)]− c `b

dv(1− v) d[b(1− 2v)− r]

)
at each equilibrium and determine the sign of its eigenvalues.
(i) The Jacobian matrix evaluated at E0N is a diagonal matrix with eigenvalues
λ1 = a− c− ` and λ2 = −dr.
(ii) The Jacobian matrix evaluated at E1N is an upper triangular matrix, whose
eigenvalues are λ1 = a(1−α− 2b1N )− c and λ2 = d(b1N − r). By simple calculations
we �nd that the �rst eigenvalue is always negative, while the second one is negative
if and only if b1N < r. Such condition, by some algebra, expresses the thesis.
(iii) The Jacobian matrix evaluated at the coexistence equilibria can be written in
the compact form

J(E±∗N ) =

(
a(1− αr/b±∗N − 2b±∗N )− c `b±∗N

dv±∗N (1− v±∗N ) d(r − b±∗N )

)
.

The determinant, by simple calculations, results to be:

det(J(E±∗N )) = d(a− c− 2ab±∗N )(r − b±∗N ).

The last term of this product is always negative, due to the admissibility conditions
(11.8) and (11.10). Moreover, after some calculations, the second term of the product,
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(a− c− 2ab±∗N ), can be reduced to ∓
√

(a− c)2 + 4a(I − aαr). Therefore the sign of
the determinant is constant, in particular J(E−∗N ) is negative (and therefore E−∗N is a
saddle), while J(E+

∗N ) is positive. To determine the stability of E+
∗N we have to study

the sign of the trace of J(E+
∗N ), which can be written as:

tr(J(E+
∗N )) = a(1− αr/b±∗N − 2b±∗N )− c+ d(r − b±∗N )

= −aαr/b±∗N + d(r − b±∗N )−
√

(a− c)2 + 4a(I − aαr)

which is negative, since all its addends are negative, and then the thesis holds. ut

Remark 4. The case I = 0 for the simpli�ed system (11.5) is strictly related to the
null equilibrium of the whole network, discussed at the beginning of this Section.
In fact, I = 0 can be obtained only if the background is at the null state and it is
remarkable that the stability condition for E0N is analogous to the ones found for
the stability of the null equilibrium state for the network.

11.2.3 Stability regions

The stability analysis of the system (11.5) turns out to depend also on the additional
parameters c and I, besides r and α. The representation of the behaviors of the
system in terms of equilibria and their stability is then much more complicated
and it is schematized in Fig. 11.3. In the parameters plane (α, r) (panel (a)) we

identify six di�erent regions, which present di�erent scenarios. Regions A - E are
represented in panels (b)-(f) in the parameters plane (c, I), respectively, while region

F is not further detailed since only the equilibrium E1N is admissible and it is locally
asymptotically stable (and also globally stable, according to the theory of cooperative
systems which holds for system (11.5)). In each panel (b)-(f) di�erent tonalities
represent di�erent number of admissible equilibria or di�erent stability properties.
In particular, white regions denote sets of non admissible parameter values, since
admissibility requires I ≤ c; in the light gray regions there exists only the equilibrium
E1N and it is locally (and globally) asymptotically stable; in the gray regions there
exist the equilibria E1N (unstable) and E+

∗N (asymptotically stable); in the dark
gray regions there exist the equilibrium E1N (locally asymptotically stable) and both
coexistence equilibria E+

∗N (locally asymptotically stable) and E−∗N (unstable).

Remark 5. If we analyze the e�ect of the coupling on the position of the equilibria,
we �nd that if the constant input I is su�ciently high, then the bio-energy at equi-
librium of the simpli�ed model (11.5) is greater than the corresponding value of the
single LU, in fact

b1N > b1 ⇐⇒ I > c(1− α) = cb1. (11.11)
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This is also the case of the equilibrium E+
∗N , whenever it is admissible, in fact by

some algebra we get

b+
∗N > b+

∗ , v+
∗N > v+

∗ ⇐⇒ I > cb+
∗ . (11.12)

On the contrary, the bio-energy and the fraction of high quality areas of the equilib-
rium E−∗N , whenever it is admissible, are greater than their respective values of the
isolated LU if I is su�ciently small, namely

b−∗N > b−∗ , v−∗N > v−∗ ⇐⇒ I < min

{
cb−∗N ,

ac− c2

2a

}
.

The coupling can also force the system to tend to a di�erent equilibrium type. It can
be seen that

b1N > b+
∗ ⇐⇒ I > b+

∗ (c+ `)− `r, (11.13)

namely that the bio-energy b1N of the simpli�ed model is greater than the bio-energy
b+
∗ of the single LU if I is su�ciently high.

A �rst consequence of this analysis is that the sectors that belong to region F
in the (α, r) plane (see Fig. 11.3(a)) can evolve only towards the equilibrium E1N

regardless of the values of c and I, while in the single LU model they can reach either
the equilibrium E0 or the equilibrium E1 (see Fig. 11.1), depending on the initial
data.

As it can be seen in Figs. 11.3(b)-11.3(f), in all the other regions A - E the
number and the stability of equilibria do not depend only on α and r. Nevertheless, for
regions A , B , D and E we can still �nd conditions on the parameter c for which
the system admits only one stable equilibrium, regardless of I. More speci�cally, it
is possible to �nd a threshold c̃, that depends on the region, below which either
E1N or E+

∗N are locally asymptotically stable. Therefore in this case, given the set
of parameters and since c is a geometric parameter that can be calculated from
the connectivity indices with formula (11.4), we can a priori determine to which
equilibrium the system will tend, without knowing I. As an example, let us consider
region A of Fig. 11.3(a). For these values of α and r the isolated system only
admits a stable equilibrium, namely E+

∗ (see Fig. 11.1). For the simpli�ed model
(11.5), as it can be seen by Fig. 11.3(b) and due to the previous considerations, if
c < c̃ = a(1− r−α) then the trajectory tends to the coexistence equilibrium E+

∗N , of
the same type of the isolated case. On the contrary, if c > c̃, either the equilibrium
E1N or E+

∗N could be locally asymptotically stable, depending on the value of I.

Similar comments hold for the other regions, except for region C , where for each
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c both equilibria E1N and E+
∗N can be stable, depending on I. Moreover, as can be

seen in Figs. 11.3(c), 11.3(d), 11.3(e), there are bistability regions (dark gray color)
in which the estimated I does not determine univocally the attractor of the system.

11.3 Application to a case study in Northern Italy

We consider an environmental system located in the northern side of the Turin
Province (Italy). We focus in particular on �ve LUs of this region where rather
compact built-up territorial patches interact with natural reserve areas. Table 11.1
provides the initial data and the values of the parameters (indicators) that identify
the di�erent ecological sectors of the territory under investigation; Table 11.2 contains
the geometric parameters that characterize the borders of the LUs. The data have
been obtained from the GIS measurements in the master degree thesis [27], where a
territory of 24 LUs centered around the municipality of Cirié (Turin) has been taken
into account. For the purposes of the present paper, which is mainly devoted to show
the e�ects of connectivity between di�erent patches of a territory, we have selected
only 5 sectors which better �t our aims since the remaining other 19 sectors, not here
examined, are generally not well connected to the �ve LUs we have chosen. The data
of Table 11.1 can be commented in order to better characterize each LU, in the sense
that the numerical values of the indicators highlight immediately some peculiarities
of each LU. In fact, LU18 and LU20 present a good production of BTC (b0) together
with a rather high value of solar exposure (a). Conversely, LU19 has a low value of high
ecological quality green area (v0) and a strong intensity of construction (U) which of
course implies high presence of barriers (high value of `). A peculiarity characterizing
LU20 is a low value of construction which conversely is strongly dispersed (h = 2.2).
By examining also Table 11.2 it comes out the peculiarity of the connection between
LU17 and LU19 which present a connectivity index equal to zero: this is not surprising,
since these two sectors are completely divided by two contiguous cities.

On the basis of these data we can know a �priori� how many stable equilibria
are present in each (isolated) LU, as represented in Fig. 11.4(a) by the points which
locate the sectors in the proper region of the (α, r) plane. The positions of sectors
LU18 and LU1 in the (α, r) plane are quite close to each other, and their dynamical
behaviors are expected to be very similar.

The network composed by the �ve LUs, modeled by the NLM equations (10.5),
is characterized by the weight matrix
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LU Si Pi bi0 vi0 ai `i di hi Ui αi = `i/ai ri = hiUi/di

1 19156648 25248 0.19 0.30 0.39 0.05 0.35 1.83 0.09 0.128 0.471

17 6369795 12599 0.13 0.26 0.32 0.11 0.26 1.58 0.21 0.344 1.276

18 69754645 60482 0.34 0.31 0.44 0.04 0.40 1.97 0.07 0.091 0.345

19 4589299 18604 0.17 0.13 0.31 0.32 0.28 1.88 0.61 1.032 4.096

20 42953048 38826 0.45 0.30 0.51 0.05 0.26 2.20 0.09 0.098 0.761

Table 11.1. Data of the landscapes in the considered environmental system.

Interacting LUs Hki Lki cki = Hki/Lki

1− 17 3017 7543 0.4

1− 18 3664 9543 0.38

17− 18 5429 8671 0.63

17− 19 0 5421 0

18− 19 3352 8953 0.37

18− 20 5390 10780 0.5

19− 20 1553 3106 0.5

Table 11.2. Geometric parameters and connectivity indices that describe the interaction between the LUs.

C =


0 c17,1 c18,1 0 0
c1,17 0 c18,17 c19,17 0
c1,18 c17,18 0 c19,18 c20,18

0 c17,19 c18,19 0 c20,19

0 0 c18,20 c19,20 0


where cki = cik are the connectivity indices that describe how the LUs interact to
each other; their numerical values, for the network under consideration, follow from
the geometric parameters reported in Table 11.2.

In Figs. 11.4 we present the trend to equilibrium of each LU when the initial data
are the ones reported in Table 11.1. More precisely, we compare the time evolution of
the state variables (b, v) of each LU under investigation when it is connected (black
solid lines, solutions to the NLM equations (10.5)) or isolated (gray dashed lines,
solutions to SLM equations (10.4)), with parameters and initial conditions given in
Tables 11.1 and 11.2. These �gures show the e�ect of the coupling in the network
model and its ability to modify or not the asymptotic behaviours of the single LU.
As we can see, there are situations in which the network drives a sector towards a
better scenario, characterized by higher level of green areas and bio-energy, but this
is not the rule. More precisely, LU17, when connected to the others, evolves towards
the same qualitative (single) scenario of predominant agricultural production, with
however a slight improvement in the level of bio-energy; both LU1 and LU18 as a
part of the network evolves towards the same kind of scenario, that is good quality
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of bio-energy in presence of a certain amount of high quality areas, but the values of
the components of the network equilibrium point relevant to LU1 and LU18 are both
worse than the corresponding values in the single LU model. In sectors LU19 and LU20
there is a more evident di�erence in the asymptotic behaviours, since the network
causes a change of the attractor: in the single model, LU19 tends to gradually loose its
ecological quality in presence of a strong landscape fragmentation, while it evolves
towards the agricultural scenario when connected to the other sectors, improving
its quality; on the contrary, LU20 gets worse in the network, in terms of bio-energy
and percentage of high quality areas, evolving towards the agricultural scenario when
instead would reach the high quality equilibrium in absence of the network. We point
out that in this case study the null state is not reached by the network, even if it
could be locally stable; in other words, such environmental system takes advantage
of the coupling. As a further remark, we can see in Fig. 11.4(e) for LU19 that the time
evolution of the state variable v in the single LU model is almost indistinguishable
from that in the network model. A possible explanation is that since r19 is rather
large (see Table 11.1), the di�erential equation for the variable v19 in both SLM
(10.4) and NLM (10.5) has a dominant term that does not contain the variable b19

(that is the variable in�uenced by the connected LUs):

v′19(t) = d19[v19(t)(1− v19(t))b19(t)− r19v19(t)] ≈ −d19r19v19(t),

and then the same exponential decrease can be expected for the single LU model
and for the network system. This comment also applies to the v variable relevant to
LU17 (see Fig. 11.4(c)). Summing up, the interactions within the network improve
the dynamics of LUs 17 and 19 and, at the same time, deteriorate the dynamics of
LUs 1, 18 and 20.

In Fig. 11.5 we compare the trajectories in the phase subspace (b, v) obtained
by integrating the SLM equations (10.4) (dashed gray lines), the NLM equations
(10.5) (black solid lines) and also that of the simpli�ed model (11.5) (gray solid
lines). The value of I (one for each LU) used in the simpli�ed model has been
numerically evaluated a posteriori, according to (11.4), from the NLM simulation
when the network has reached its equilibrium (with parameters and initial data
given in Tables 11.1 and 11.2). It is remarkable that the simpli�ed and the network
models evolve towards the same equilibrium states in each LU, as expected; relaxation
to equilibrium for the simpli�ed model is instead di�erent with respect to the one
prescribed by the NML equations, since the simpli�ed model describes essentially
the dynamics of each LU when inserted in a network at equilibrium (background),
thus under particular assumptions on the relaxation times. The relation between the
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trend-to-equilibrium dynamics of the simpli�ed and NLM systems deserves however
further investigation, that will be matter of future work.

As an additional test of validity of our simpli�cation, we have numerically checked
the expression (11.6) and (11.7) of the equilibrium states for the parameter values
of Tables 11.1 and 11.2. To do this we have integrated the NLM equations (10.5)
and, as already discussed, each LU reaches a steady state (Fig. 11.5). Then we have
computed the value of I in system (11.5) of the simpli�ed model at the network
equilibrium, and we have obtained a value for the equilibria (11.6) and (11.7) for
each LU. The obtained values turn out to be in agreement with the equilibrium
values obtained integrating the NLM equations (10.5), with an error of order 10−8

due to numerical approximations.
The behavior of the NLM can be explained on the basis of the analysis performed

in Section 11.2 for the simpli�ed system (11.5). In Figure 11.6(a) the position of each
LU in the (α, r) plane for our case study is shown. In particular, sectors LU17 and

LU19 belong to region F in the (α, r) plane. This fact explains a priori the change of
equilibrium type to which LU19 converges: the trajectory tends to E0 in the single LU
model and to E1N in the coupled system, as can be seen in Fig. 11.5(d). Also sector

LU17 belongs to region F and it tends to the equilibrium denoting an agricultural
scenario both in the single LU model and in the network case. Moreover, from the
simulations we observe that the value b1N of the bio-energy at the equilibrium for
LU17 in the coupled case is greater than b1 of the isolated one. This is in agreement
with the condition (11.11) where I = I17 is estimated a posteriori using the simulation
outcomes and formula (11.4), and turns out to be greater than cb1.

The other sectors, instead, belong to region A and, as it can be seen in Fig.
11.6(b), the connectivity values c1, c18 and c20 (dashed lines) are greater than the
respective thresholds c̃, so we have to compute I1, I18 and I20 using the simula-
tion outcomes and formula (11.4) to determine the stable equilibrium. We �nd that
parameters of sectors LU1 and LU18 lie in the gray region, so they evolve to the co-
existence equilibrium E+

∗N , while the parameters of LU20 are in the light gray region,
therefore the trajectories tend to E1N . This is in agreement with the network simula-
tions reported in Fig. 11.5 and more speci�cally it explains the change of equilibrium
type of LU20.

Thanks to the theoretical study of the simpli�ed model (11.5) and in particular
to the Remark 5, we can justify the decrease in the bio-energy at the equilibrium
from the single LU model to the network one, observed for sectors LU1, LU18 and
LU20. In fact, the computed values of I in such cases are smaller than the respective
thresholds in conditions (11.12) and (11.13).
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Fig. 11.4. Panel (a): Black points indicate the position in the (α, r) plane of the �ve considered LUs
belonging to the northern Turin Province, whose parameters are reported in Table 11.1. The LUs belong to
regions 1 , 2 , 3 in which there is only one stable equilibrium of the single LU model, namely E0, E1, E

+
∗

respectively. Panels (b)-(f): time evolution of the solutions b(t) and v(t) of the SLM equations (10.4) (dashed
lines) and for the NLM equations (10.5) (solid lines) for the LUs 1, 17, 18, 19 and 20. LU1, LU17, LU18 evolve
towards the same kind of scenario in the two cases; LU19, LU20 reach di�erent scenarios when connected in
the network.
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Discussion and Conclusions

We have proposed a model for an environmental system, distributed in several sectors
(LUs) as an ecological network, using as state variables the production of bio-energy
and the percentage of high ecological quality areas in each sector. The LUs are
coupled to each other by a linear interaction term proportional to the di�erence
between the bio-energies and constitute a network of dynamical systems. First we
have considered the single LU model and analyzed its evolution towards a stable
equilibrium state. Then we have focused our attention on the network model. Our
analysis has shown that the interaction between the LUs can lead each ecological
sector both to a better or to a worse ecological scenario, with respect to the single LU
model, depending on the values of the state variables of the nearest LUs. In fact, the
case study has shown clearly that LU1 and LU18 commute to a worse situation when
they are connected in the network. On the contrary, LU17 improves its bio-energy
value. In addition, LU19 and LU20 present even a change of equilibrium state passing
from an attractor to another one: these behaviors can be interpreted as examples of
di�erent kinds of resilience of landscape systems under the e�ect of environmental
stress.

The simpli�ed system, representing the situation of a single LU added to a network
at the equilibrium (background), has proved to be an useful tool of investigation of
the network. For instance, the simpli�ed model univocally determines the asymptotic
behavior of sectors LU17 and LU19, regardless of the initial conditions.

In our opinion future perspectives and developments may involve the modi�cation
of the connectivity term in order to better detail the interaction. In particular, we
plan to consider time-dependent connectivity parameters cij(t) that depend on the
bio-energy �ux through the boundaries, similarly to what has been proposed in paper
[38] where the connectivity index is de�ned in a di�erent way.
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Furthermore, another modi�cation to the model could take into account a coupling
term also in the di�erential equations relevant to the vi variables. More speci�cally, a
loss term on the i-th LU depending on the extension of the low ecological quality areas
of its neighbors (namely proportional to 1 − vk(t), for k ∈ Ii) could be considered.
This term should describe the negative impact of the low quality areas of the LUs
surrounding the i-th itself. Conversely, also a gain term, accounting for an increase in
the quality of the ecological sector, can be introduced, in order to take into account
the pollination phenomena that eventually may arise thanks to the presence of high
quality areas in the nearby LUs.

We expect that these improvements of the model lead to a more detailed and
realistic description of the phenomena characterizing an environmental system, even
if the analysis developed in this paper shows that a simple linear coupling term is
able to reproduce some relevant aspects of such an interaction. Therefore, these new
models can be employed to aid the management and the decision process in de�ning
planning strategies by the prediction of possible future scenarios of the environment
and to help in preventing incidental risks of the territory.
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