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Abstract 

 

Seismic design of standard structures is typically based on a force-based design approach. 

Over the years, this approach has proven to be robust and easy to apply by design engineers 

and – in combination with capacity design principles – it provided a good protection against 

premature structural failures. However, it is also known that the force-based design approach 

as it is implemented in the current generation of seismic design codes suffers from some 

shortcomings. One of these relates to the fact that the base shear is computed using a pre-

defined force reduction factor, which is constant for a certain type of structural system. As a 

result of this, for the same design input, structures of the same type but different geometry 

are subjected to different ductility demands and show therefore a different performance 

during an earthquake. The objective of this research is to present an approach for computing 

force reduction factors using simple analytical models. These analytical models describe the 

deformed shape at yield and ultimate displacement of the structure and only require input 

data that are available when starting the design process, such as geometry and general 

material properties. The displacement profiles are obtained from section dimensions and 

section ductility capacities that can be estimated at the beginning of the design process. The 

so computed displacement ductility is taken as proxy of the force reduction factor. Such 

analytical models allow to link global to local ductility demands and therefore to compute 

an estimate of the force ductility reduction factors for wall and frame structures. Finally, this 

research develops an approach for frame-wall structures as combination of results obtained 

for wall and frame systems. The proposed method is applied to a set of frame-wall structures 

and validated by means of nonlinear time history analyses. Obtained results show that the 

proposed method yields a more accurate seismic performance than the current code design 

approach. The presented work therefore contributes to the development of revised force-

based design guidelines for the next generation of seismic design codes. 

 

Keywords: frame-wall structures, ductility reduction factor, force-based seismic design, 

performance-based design, nonlinear analyses. 
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Sommario 

 

La progettazione sismica di strutture è tipicamente basato su un approccio progettuale basato 

sulle forze. Nel corso degli anni, questo approccio ha dimostrato di essere robusto e facile 

da applicare dai progettisti e, in combinazione con il principio di gerarchia delle resistenze, 

fornisce una buona protezione contro i meccanismi di collasso fragili. Tuttavia, è anche noto 

che l'approccio di progettazione in forze così come attuato nell’odierna generazione di 

normative soffre di alcune carenze. Uno di questi riguarda il fatto che il tagliante alla base è 

calcolato utilizzando un fattore di struttura predefinito, cioè costante per tipo di sistema 

strutturale. Di conseguenza, per lo stesso input di progettazione, strutture dello stesso tipo 

ma diversa geometria sono sottoposti ad una diversa domanda di duttilità e mostrano quindi 

una diversa prestazione durante un evento sismico. L'obiettivo di questo studio è quello di 

presentare un approccio per il calcolo fattori di struttura utilizzando modelli analitici 

semplici. Questi modelli analitici descrivono la deformata a snervamento e spostamento 

ultimo della struttura e richiedono solo dati di input disponibili all’inizio del processo di 

progettazione, quali dati geometrici e proprietà dei materiali. La deformata della struttura 

ottenuta dalle dimensioni delle sezioni e la capacità in termini di duttilità sezionale possono 

essere stimati all'inizio della progettazione. La duttilità è alla base della formulazione del 

fattore di struttura come proposto dai modelli analitici presentati. Tali modelli analitici 

permettono di collegare le duttilità sezionali alla duttilità strutturale e quindi calcolare una 

stima del fattore di struttura per struttura a pareti e a telaio. Infine, si sviluppa un approccio 

per strutture duali di tipo telaio-parete come combinazione di risultati ottenuti per i sistemi 

singoli. Il metodo proposto è applicato ad un insieme di strutture duali e validato con analisi 

dinamiche non lineari. Si dimostra che il metodo proposto produce una più accurata 

prestazione sismica rispetto all'approccio progettuale delle normative odierne. Il lavoro 

presentato contribuisce pertanto allo sviluppo di nuove linee guida per la progettazione 

sismica nella prossima generazione di normative. 

 

Parole chiave: strutture telaio-parete, fattore di struttura, progettazione sismica basata sulle 

forze, progettazione basata sulla prestazione, analisi non lineari. 
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𝑅𝑀  modification factor 
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𝑅𝑠  overstrength force reduction factor 

𝑆𝑎  spectral inelastic acceleration 
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𝑆𝑑  spectral inelastic displacement 
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𝑆𝑝  structural performance factor 
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1. Introduction 

 

1.1. Motivations 

Dual system structures, such as reinforced concrete (RC) frame-wall structures, are largely 

used as structural resisting systems to horizontal loads.  

Coupling two resisting systems allows overcoming structural deficiencies of single resisting 

systems and takes advantages by synergy. It is evidenced that frame structures are versatile 

and allow architectural flexibility, but they are deformable especially at low stories. On the 

other hand, wall system structures are very stiff at low stories but they impose rigid 

architectural constrains to openings and windows. 

Static behavior of frame-wall systems subjected to horizontal actions is well known thanks 

to early studies performed in 60’s and 70’s (Goodsir, 1985), for instance, the “shear-flexural 

cantilever model” (Rosman, 1974; Pozzati, 1977) shows accurate results regarding the 

distribution of horizontal load between two coupled systems, but this method presents the 

shortcoming to be valid for elastic analysis only. 

Nowadays, the Force-Based Design (FBD) approach is the standard method to design 

structures to seismic loads. Over the years, this approach has proven to be robust and easy 

to apply by design engineers and – in combination with capacity design principles – it 

provided a good protection against premature structural failures. This approach requires 

static analyses, which are easy to apply and fast to perform. Inelasticity behavior is based on 

the force reduction factor or behavior factor, which allows converting nonlinear behavior in 

a reduction of static forces to be applied in static analyses. 

Usually building codes define force reduction factors for various type of resisting system but 

they do not provide accurate force reduction factor for dual systems, with the exception of 

some particular cases. Furthermore, force reduction factors are constant for a certain type of 

structural system. As a result of this, for the same design input, structures of the same type 

but different geometry are subjected to different ductility demands and show therefore a 

different performance during an earthquake. 

Thanks to its simplicity and large diffusion among designers, Force-Based Design still 

remains the standard method to design structures under seismic actions. The advantage of 

defining a new refined method to provide accurate force reduction factors can update the 

method to become more effective and attain a more uniform performance. 
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1.2. Objectives 

The objective of this thesis is to present an approach for computing force reduction factors 

using simple analytical models. 

These analytical models describe the deflected shape at yield and ultimate displacement of 

the structure and only require input data that are available when starting the design process, 

such as geometry and general material properties. The so computed displacement ductility 

is taken as proxy of the force reduction factor. Such analytical models allow linking global 

to local ductility demands and therefore to compute an estimate of the force ductility 

reduction factors. 

The presented work therefore contributes to the development of revised Force-Based Design 

guidelines for the next generation of seismic design codes. 

 

1.3. Methodology 

An analytical method to estimate the ductility force reduction factor is proposed for wall and 

frame when considered single systems and then for frame-wall systems.  

Three levels of sectional ductility are investigated for both wall and frame structures and 

three combinations of the precedent sectional ductilities are investigated for frame-wall 

structures. 

Structures with a number of storeys ranged from 3 to 12 are considered in the present work. 

Therefore, low-rise and mid-rise buildings are investigated, but high-rise buildings are not 

studied in the present work. 

To validate the applicability of the proposed method, a database of 34 natural ground 

motions is selected and a total of 1020 nonlinear time history analyses (NLTHA) are 

computed for wall and frame systems and 5100 analyses for dual systems, respectively. 

 

1.4. Outline of the thesis 

This Thesis is composed of 6 Sections. 

The Section 2 introduces topics relevant for the study of force reduction factor. Section 2.1 

outlines main design methods, that are Force-Based Design (FBD), Direct Displacement-

Based Design (DDBD) and Hybrid Force/Displacement-based seismic Design (HFD) 

methods. The methods are briefly compared; advantages and shortcomings are evidenced. 

Section 2.2, 2.3 and 2.4 resume the definition of force reduction factor, the ductility 

reduction factor for single-degree of freedom (SDOF) system and the ductility reduction 

factor multi-degree of freedom (MDOF) system, respectively. A literature review of main 

contributions to the presented topic is reported. Section 2.5 introduces dual system 

structures. Section 2.6 briefly reports design standards of main international codes. Section 

2.7 introduces the “N2 method” to assess nonlinear structural performance. 
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The section 3 reports the proposed analytical models. Section 3.1 introduces the definition 

equivalent SDOF system. Section 3.2, 3.3 and 3.4 describe the analytical models for wall, 

frame and dual systems, respectively. 

The Section 4 reports the implemented numerical models. Section 4.1 introduces numerical 

models for wall, frame and dual systems; Section 4.2 describes the investigated structural 

systems and the numerical procedures to compute the ductility force reduction factor. An 

iterative procedure is implemented and applied to all analyses in order to find the ultimate 

capacity of the structures at each ground motions. 

The Section 5 shows the obtained results. In particular results of wall, frame and dual 

systems are reported in Section 5.1, 5.2 and 5.3, respectively. Numerical results are 

interpreted in detail and compared with analytical results provided by the proposed models. 

The section 6 develops two design cases to show the application of the proposed analytical 

design method for dual system step-by-step. Two RC frame-wall structures are designed 

following the proposed analytical method and compared with the same structures designed 

following Eurocode 8 (UNI EN 1998-1, 2013). 

The Section 7 reports main conclusions of the present work and future research outlook in 

Section 7.1 and 7.2, respectively. 
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2. State of the art 

 

This Section 2 introduces topics relevant for the study of force reduction factor. Section 2.1 

outlines main design methods, that are Force-Based Design (FBD), Direct Displacement-

Based Design (DDBD) and Hybrid Force/Displacement-based seismic Design (HFD) 

methods. Section 2.2, 2.3 and 2.4 resumes the definition of force reduction factor, the 

ductility reduction factor for single-degree of freedom (SDOF) system and the ductility 

reduction factor multi-degree of freedom (MDOF) system, respectively. Section 2.5 

introduces dual system structures. Section 2.6 briefly reports design standards of main 

international codes. Section 2.7 introduces the “N2 method” to assess nonlinear structural 

performance. 

 

2.1. Design methods 

The definition of force reduction factor, the ductility reduction factor for single-degree of 

freedom (SDOF) system and the ductility reduction factor multi-degree of freedom (MDOF) 

system are reported in Section 2.2, 2.3 and 2.4, respectively. 

 

2.1.1. Force-Based Design (FBD) method 

Pioneers of earthquake engineering were: Biot (1932), who introduced the formulation of 

what would later become known as the Response Spectrum Method (RSM); Housner (1959), 

who attempted to combine the response spectrum and the dissipation of seismic energy 

through plastic deformations, and Veletsos and Newmark (1960), who started to study the 

inelastic spectrum for the elastic-perfectly plastic structures. 

The first to be developed and conventional procedure for seismic design of buildings is the 

force-based design (FBD) method. The performance of structures is checked in two levels, 

one ultimate limit state (ULS) and one serviceability limit state (SLS), subjected to two 

seismic intensities, respectively. Furthermore, the capacity design principle avoids local 

mechanism of collapse and brittle failure of structural elements. 

The ULS is the performance level that guarantees the life safety of occupants and avoids 

complete collapse, but it allows the structure to damage. This limit state is associated with 

global collapse of the structure during a very strong earthquake. The resistance and energy-
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dissipation capacity to be assigned to the structure are related to the extent to which its non-

linear response is to be exploited. In other words, the elastic forces given by the response 

spectrum are divided by a force reduction factor or behavior factor representing the ductility 

capacity and the overstrength of the structure. Subsequently, the reduced forces are properly 

distributed along the height of the structure and elastic analyses are performed to determine 

the seismic response. Differently, the SLS corresponds to requirements governing normal 

use and durability state, so the structure has to be lightly damaged and inexpensively 

reparable after a low-intensity earthquake. This limit state is associated with frequent 

earthquakes and the structure responds elastically. The serviceability limit state is checked 

after the detailing of the structures. 

Current design practice implies that the structure is first designed at the ULS and then 

checked at SLS following national or international standards, for instance UNI EN 1998-1 

(2013) and DM 14/1/2008 (2008). The design spectrum at ULS is obtained by reducing the 

elastic spectrum with the reduction or behavior factor, given by design codes. A linear static 

analysis or an elastic dynamic analysis is then performed. Inelastic displacements are 

obtained from elastic displacements applying the “equal displacement rule”. At the SLS, 

maximum interstorey drift ratios are checked in order to the limit the damage. 

FBD is a robust method and easy to apply, furthermore it can be applied to any type of 

MDOF structure without the need of conversion of the multi-degree of freedom (MDOF) 

system into an equivalent single-degree of freedom (SDOF) system. It is noted that the FBD 

method is SDOF-free only concerning the application of the method but the force reduction 

factor on which it is based requires the definition of an equivalent SDOF system, as 

explained in Section 2.2. However, some shortcomings still remain in the method: (i) the 

force reduction factors are defined for different typologies of structural systems, but 

irrespectively of their geometry and ductility demand; (ii) the assumption of stiffness 

independent of strength is not valid (Priestley, 2003); (iii) the equal displacement rule is not 

always appropriate. 

 

2.1.2. Direct Displacement-Based Design (DDBD) method 

An alternative design method is the Direct Displacement-Based Design (DDBD) method, 

which is based on the concept of equivalent linearization (Priestley and Kowalsky, 2000; 

Priestley et al., 2007). A comprehensive description and comparison of various 

displacement-based seismic design methods may be found in Sullivan et al. (2003). This 

procedure uses the maximum interstorey drift ratio (IDR) for describing performance levels. 

Furthermore, the DDBD method replaces the MDOF structure by the equivalent linearized 

SDOF structure associated with the equivalent secant stiffness at the maximum displacement 

response. Inelastic displacement response spectrum is employed to determine the effective 

period of the SDOF system for the selected value of the target displacement and to compute 

the value of the effective damping. 

The fundamentals of DDBD are briefly summarized in the following. Given 𝑚𝑖 and ∆𝑖 the 

floor masses and storey displacements and ℎ𝑖 the storey height, the design displacement ∆𝑑, 

effective mass 𝑚𝑒 and effective height ℎ𝑒 are calculated as: 
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 ∆𝑑=
∑ 𝑚𝑖∆𝑖

2𝑛𝑠
𝑖=1

∑ 𝑚𝑖∆𝑖
𝑛𝑠
𝑖=1

 (1) 

 𝑚𝑒 =
∑ 𝑚𝑖∆𝑖
𝑛𝑠
𝑖=1

∑ ∆𝑑
𝑛𝑠
𝑖=1

 (2) 

 ℎ𝑒 =
∑ 𝑚𝑖∆𝑖ℎ𝑖
𝑛𝑠
𝑖=1

∑ ∆𝑑
𝑛𝑠
𝑖=1

 (3) 

In addition to ∆𝑑, the bilinear envelope of the SDOF system is characterized by defining the 

yield displacement from which the displacement ductility demand, 𝜇∆, is found. The 𝜇∆ is 

then used to determine the equivalent viscous damping ratio, 𝜁𝑒 , representing the elastic 

damping and the hysteretic energy absorbed by the structure during inelastic deformations. 

Once the equivalent viscous damping ratio 𝜁𝑒  is known, from the damping reduction factor, 

𝜂𝜁 given by Equation (4), the over-damped displacement spectrum is calculated and used to 

find the effective period of the structure, 𝑇𝑒, which corresponds to the period associated with 

the design displacement, ∆𝑑. 

 𝜂𝜁 = (
0.07

0.02 + 𝜁𝑒
)
0.5

 (4) 

From 𝑇𝑒 and 𝑚𝑒 the effective stiffness, 𝐾𝑒, of the structure and the design base shear force, 

𝑉𝑏, are derived: 

 𝐾𝑒 =
4𝜋2𝑚𝑒

𝑇𝑒
2  (5) 

 𝑉𝑏 = 𝐾𝑒∆𝑑 (6) 

As presented in Priestley et al. (2007), equations for calculating the equivalent viscous 

damping ratio, 𝜁𝑒 , for different structural types and materials are proposed. For instance, the 

𝜁𝑒  for reinforced concrete wall and frame are given respectively by Equations (7) and (8): 

 𝜁𝑒 = 0.05 + 0.444 (
𝜇∆ − 1

𝜇∆𝜋
) (7) 

 𝜁𝑒 = 0.05 + 0.565 (
𝜇∆ − 1

𝜇∆𝜋
) (8) 

The method is graphically explained in the following Figure 1. 
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Figure 1: Fundamentals of DDBD, from Priestley et al. (2007). 

 

Paulay (2002) and Sullivan et al. (2005, 2006) improved the DDBD in order to be applied 

to frame-wall structures. Furthermore, an innovative set of capacity design recommendations 

are developed to protect against undesirable plastic mechanisms by making allowance for 

the large higher mode forces that can develop in frame-wall structures. 

More recently, Paparo and Beyer (2015) proposed a DDBD method for mixed reinforced 

concrete wall and unreinforced masonry wall (RC-URM) structures. Authors’ objective is 

to develop two simple tools able to check the displacement profile of mixed RC-URM wall 

structures and to estimate the contribution of RC slabs to the overturning moment capacity 

of the dual system. Authors observed that the presence of RC walls provides a linear 

displacement profile over the height. The displacement shape of these mixed structures is 

estimated with the so-called “shear-flexure cantilever model”, which treats flexural walls 

and frames as flexural and shear cantilevers respectively (Rosman, 1974; Pozzati, 1977). 

This is one of the simplified models to describe the interaction between shear and flexure 

dominated systems which has been studied over the last 50 years and it is still used by many 

authors in recent studies (Miranda and Akkar, 2006; Miranda and Taghavi, 2005; Taghavi 

and Miranda, 2005). Another approach to distribute lateral load between interconnected 

shear walls and frames is the “component stiffness method” (MacLeod, 1972), based on the 

conversion of a multi-bay frame to a single bay frame (MacLeod, 1971). 

The DDBD method has some advantages: (i) displacement is the main parameter from the 

beginning of the design process, which allows the control of the damage; (ii) maximum 

interstorey drift ratio, used to describe performance levels, leads to a more uniform 

performance for structures; (iii) elastic design spectra are reduced through effective damping 

which depends on the displacement ductility demand. However, the introduction of an 
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equivalent SDOF systems occurs, which introduces a loss of modeling accuracy. 

Furthermore, the definition of the displacement design spectrum is required, which is not as 

familiar as the acceleration design spectrum. 

 

2.1.3. Hybrid Force/Displacement-based seismic Design (HFD) method  

A further seismic design method is explained in detail by Tzimas et al. (2013). It is called 

the Hybrid Force/Displacement-based seismic Design (HFD) method and it was developed 

for steel building frames. The HFD method adopts the performance-based seismic design 

philosophy. The starting point in the HFD method is the maximum allowable roof 

displacement of the MDOF structure computed through a new simple expression proposed 

by Karavasilis et al. (2008a,b,c), which takes into account structure properties and seismic 

excitation characteristics. Then, a new relation for the calculation of the behavior factor is 

proposed. 

In the following, fundamental steps of the HFD are described and for the sake of brevity, 

expressions for regular moment resisting frame (MRF) are presented only. At the beginning 

of the process local ductilities and geometrical and mechanical attributes are defined. 

Because the method is developed for steel buildings, authors suggest to obtain initial 

estimate of input variables by designing the steel frame only for strength requirements under 

a frequent occurred earthquake (SLS) by assuming elastic behavior, i.e., with elastic spectra, 

combined to capacity design rules. Through the use of some expressions, these initial inputs 

are transformed in roof displacement. The design target roof displacement, 𝑢𝑟𝑚𝑎𝑥(𝑑), is 

defined as the minimum value of the roof displacement due to maximum interstorey drift 

ratio, 𝑢𝑟𝑚𝑎𝑥(𝐼𝐷𝑅), and the roof displacement due to local ductility, 𝑢𝑟𝑚𝑎𝑥(𝜇). 

 𝑢𝑟𝑚𝑎𝑥(𝑑) = min{𝑢𝑟𝑚𝑎𝑥(𝐼𝐷𝑅), 𝑢𝑟𝑚𝑎𝑥(𝜇)} (9) 

where: 

 𝑢𝑟𝑚𝑎𝑥(𝐼𝐷𝑅) = 𝛽 ∙ 𝐼𝐷𝑅𝑚𝑎𝑥 ∙ 𝐻 (10) 

 𝑢𝑟𝑚𝑎𝑥(𝜇) = 𝜇 ∙ 𝑢𝑟𝑦 (11) 

 𝛽 = 1 − 0.19(𝑛𝑠 − 1)
0.54𝜌0.14𝛼−0.019 (12) 

 𝜇 = 1 + 1.35(𝜇𝜃 − 1)
0.86𝛼−0.019𝑛𝑠

−0.31 (13) 

where 𝐻 is the building height; 𝑛𝑠 the number of storeys; 𝜌 the column-to-beam stiffness 

ratio; 𝛼 the beam-to-column stiffness ratio; 𝑢𝑟𝑦 the yield roof displacement; 𝜇𝜃 the 

maximum local ductility, i.e., rotation ductility for beams/columns. The calculation of the 

design value of the roof displacement ductility and the corresponding behavior factor is 

given by: 
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 𝜇𝑑 =
𝑢𝑟𝑚𝑎𝑥(𝑑)

𝑢𝑟𝑦
 (14) 

 𝑓𝑜𝑟 𝜇𝑑 ≤ 5.8 𝑞 = 1 + 1.39(𝜇𝑑 − 1) (15) 

 𝑓𝑜𝑟 𝜇𝑑 > 5.8 𝑞 = 1 + 8.84(𝜇𝑑
0.32 − 1) (16) 

Equations (15) and (16) are empirical and obtained by analyses regression. The method is 

finally completed by an elastic modal analysis procedure with ULS spectrum reduced with 

the behavior factor 𝑞. 

This method tries to overcome the limit of both FBD and DDBD methods: (i) it avoids the 

use of an equivalent SDOF system as in DDBD method; (ii) displacements are input 

parameters; (iii) force reduction factor are more rational and adaptable than the ones in FBD 

method. The HFD has the disadvantage to need empirical expressions to provide the drift 

profile of the structure and the force reduction factor. These expressions may be available 

by Karavasilis et al. (2008a,b,c) for steel building frames, but similar expressions are needed 

for other kinds of system in order to apply HFD. 

 

2.2. Force reduction factor 

The value of the force reduction factor mainly depends on the ductility of the structure, on 

the strength reserves that normally exist in a structure, which is based mainly on its structural 

redundancy and on the overstrength of individual members, and on the damping of the 

structure; all these factors directly affect the energy dissipation capacity of a structure. An 

appropriate and general definition of the force reduction factor is suggested in the following 

form by ATC-19 (1995): 

 𝑅 = 𝑅𝜇𝑅𝑠𝑅𝜁 ≈ 𝑅𝜇𝑅𝑠 (17) 

where 𝑅𝜇 is the ductility-dependent component, 𝑅𝑠 the overstrength-dependent component, 

and 𝑅𝜁 the damping-dependent component of the force reduction factor, which usually is 

neglected by codes; the latter is of interest mainly in the case of structures with supplemental 

damping device. A separate factor relating to the structural redundancy only, 𝑅𝑟, is also 

introduced, but usually it is included in 𝑅𝑠. 

The ductility reduction factor for a SDOF system, 𝑅𝜇,𝑆𝐷𝑂𝐹, is defined as the ratio of the 

lateral yielding strength required to maintain the system elastic, 𝑉𝑏,𝑆𝐷𝑂𝐹(𝜇 = 1), to the 

lateral yielding strength required to maintain the displacement ductility demand less or equal 

to a target displacement ductility, 𝑉𝑏,𝑆𝐷𝑂𝐹(𝜇 = 𝜇
∗). 

 𝑅𝜇,𝑆𝐷𝑂𝐹 =
𝑉𝑏,𝑆𝐷𝑂𝐹(𝜇 = 1)

𝑉𝑏,𝑆𝐷𝑂𝐹(𝜇 = 𝜇∗)
 (18) 



Section 2: State of the art 

_________________________________________________________________________ 

11 

The ductility is defined as the ratio of an ultimate or failure quantity and a yield quantity. 

For a SDOF system, the top displacement ductility, 𝜇, is equal to interstorey drift ductility, 

𝜇𝐼𝐷𝑅, and storey displacement ductility, 𝜇∆. Let us recall that the story displacement is 

defined as the displacement difference between the storey 𝑖 and the bottom storey 𝑖 − 1; the 

interstorey drift is the storey displacement divided by the storey height, ℎ𝑠. 

 

𝜇𝐼𝐷𝑅 =
𝐼𝐷𝑅𝑢
𝐼𝐷𝑅𝑦

=

∆𝑢
ℎ𝑠
∆𝑦
ℎ𝑠

=
∆𝑢
∆𝑦
=
𝑑𝑢,𝑖 − 𝑑𝑢,𝑖−1
𝑑𝑦,𝑖 − 𝑑𝑦,𝑖−1

= 𝜇∆  
𝑆𝐷𝑂𝐹 𝑠𝑦𝑠𝑡𝑒𝑚
⇒          𝜇𝐼𝐷𝑅 = 𝜇∆

= 𝜇 =
𝑑𝑢
𝑑𝑦

 

(19) 

Generally, structures have a much more complex behavior than SDOF systems, and the force 

reduction factors have to be adapted in order to be valid for MDOF systems. Thus, the, 

𝑅𝜇,𝑆𝐷𝑂𝐹, needs to be modified for the design of MDOF structures, 𝑅𝜇,𝑀𝐷𝑂𝐹, multiplying it 

by the modification factor, 𝑅𝑀, that takes into account the amplification of the base shear 

due to higher mode effects: 

 𝑅𝜇,𝑀𝐷𝑂𝐹 = 𝑅𝑀𝑅𝜇,𝑆𝐷𝑂𝐹 (20) 

 𝑅𝜇,𝑀𝐷𝑂𝐹 =
𝑉𝑏,𝑆𝐷𝑂𝐹(𝜇 = 1)

𝑉𝑏,𝑀𝐷𝑂𝐹(𝜇 = 𝜇∗)
 (21) 

 𝑅𝑀 =
𝑉𝑏,𝑆𝐷𝑂𝐹(𝜇 = 𝜇

∗)

𝑉𝑏,𝑀𝐷𝑂𝐹(𝜇 = 𝜇∗)
 (22) 

The overstrength-dependent component, 𝑅𝑠, of the force reduction factor is not object of the 

present work and for the purpose of this study 𝑅𝑠 is evaluated by means of nonlinear analyses 

in design examples of Section 6. Detailed information about the overstrength can be found 

in Mwafy and Elnashai (2002), Elnashai and Mwafy (2002) and Aydemir M.E. and Aydemir 

C. (2016). 

 

2.3. Ductility reduction factor for SDOF systems 

A lot of research have been done in the past about the ductility reduction factor for SDOF 

systems and several expressions have been proposed. These studies concluded that the two 

parameters mainly governing the ductility reduction factor are the displacement ductility and 

the fundamental period of the system. A review and comparison of these works is presented 

in detail by Miranda and Bertero (1994). In this section, main studies that investigated force 

reduction factor for SDOF systems are reviewed. 

Newmark and Hall (1973) developed expressions for 𝑅𝜇,𝑆𝐷𝑂𝐹 based on elastic and inelastic 

response of El Centro ground motion. The parameters that control the reduction factor are 
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the fundamental period, the ductility and the properties of the ground motion spectra. The 

authors observed that: (i) in the long-period and medium-period spectral regions, an elastic 

and inelastic system have approximately the same maximum displacement, i.e. 𝑅𝜇,𝑆𝐷𝑂𝐹 ∝ 𝜇; 

(ii) in the extremely short-period region, an elastic and inelastic system have approximately 

the same force 𝑅𝜇,𝑆𝐷𝑂𝐹 ≅ 1; (iii) in the moderately low period region, the principles of 

conservation of energy can be valid, and 𝑅𝜇,𝑆𝐷𝑂𝐹 ∝ √2𝜇 − 1. 

Riddel and Newmark (1979) proposed force reduction factors for SDOF systems based on 

elastic and inelastic response of 10 ground motions recorded on rock and alluvium sites. 

Authors improved expressions of Newmark and Hall (1973) including more parameters such 

as the damping ratio, but expression became more complex. 

Lai and Biggs (1980) proposed more simplified expression for 𝑅𝜇,𝑆𝐷𝑂𝐹 based on elastic and 

inelastic response of 20 artificial ground motions whose elastic response spectra were 

compatible with the elastic design spectra of Newmark and Hall (1973). In this study, the 

parameters that control the reduction factor are the fundamental period, 𝑇, and the ductility, 

𝜇, only. Their proposed expression, given by Equation (23), is applicable to whole period 

range, but regression coefficients, 𝛼 and 𝛽, were defined in three period ranges and listed in 

Table 1. 

 𝑅𝜇,𝑆𝐷𝑂𝐹 = 𝛼 + 𝛽 log 𝑇 (23) 

 

Table 1: Parameters 𝛼 and 𝛽 in Lai and Biggs (1980). 

Period range Coefficient 𝝁 = 𝟐 𝝁 = 𝟑 𝝁 = 𝟒 𝝁 = 𝟓 

0.1 ≤ 𝑇 < 0.5 𝑠 
𝛼 1.6791 2.2296 2.6587 3.1107 

𝛽 0.3291 0.7296 1.0587 1.4307 

0.5 ≤ 𝑇 < 0.7 𝑠 
𝛼 2.0332 2.7722 3.3700 3.8336 

𝛽 1.5055 2.5320 3.4217 3.8323 

0.7 ≤ 𝑇 < 4.0 𝑠 
𝛼 1.8409 2.4823 2.9853 3.4180 

𝛽 0.2642 0.6605 0.9380 1.1493 

 

Expressions proposed by Newmark and Hall (1973), Riddel and Newmark (1979) and Lai 

and Biggs (1980) are compared in Figure 2. 



Section 2: State of the art 

_________________________________________________________________________ 

13 

(a) (b) (c) 

   

Figure 2: (a): Newmark and Hall (1973), (b): Riddel and Newmark (1979), (c): Lai and 

Biggs (1980); figures from Miranda and Bertero (1994). 

 

Riddel et al. (1989) introduced other simplifications to obtain two expressions to cover the 

period range of interest and regression coefficients, 𝑅∗ and 𝑇∗, listed in Table 2, referred to 

ductility only. 𝑅∗ is the ductility reduction factor for periods higher than the characteristic 

period 𝑇∗. The study is based on four sets of earthquake records computed for SDOF systems 

with an elasto-plastic hysteretic behavior. 

 
𝑓𝑜𝑟 0 ≤ 𝑇 ≤ 𝑇∗ 𝑅𝜇,𝑆𝐷𝑂𝐹 = 1 +

𝑅∗ − 1

𝑇∗
𝑇 (24) 

 𝑓𝑜𝑟 𝑇 > 𝑇∗ 𝑅𝜇,𝑆𝐷𝑂𝐹 = 𝑅
∗ (25) 

 

Table 2: Parameters 𝑅∗ and 𝑇∗ in Riddel et al. (1989). 

Parameter 𝝁 = 𝟐 𝝁 = 𝟑 𝝁 = 𝟒 𝝁 = 𝟓 𝝁 = 𝟔 𝝁 = 𝟕 𝝁 = 𝟖 

𝑹∗ 2.0 3.0 4.0 5.0 5.6 6.2 6.8 

𝑻∗ 0.1 0.2 0.3 0.4 0.4 0.4 0.4 

 

Hidalgo and Aria (1990) refined the previous work in order to obtain one nonlinear 

expression applicable in the whole period range. Parameters 𝑘 and 𝑇0 were reported to vary 

for different groups of ground motions. 

 
𝑅𝜇,𝑆𝐷𝑂𝐹 = 1 +

𝑇

𝑘𝑇0 +
𝑇

𝜇 − 1

 
(26) 

Expressions proposed by Riddel et al. (1989) and Hidalgo and Aria (1990) are reported in 

Figure 3. 
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Figure 3: (a): Riddel et al. (1989), (b): Hidalgo and Aria (1990); figures from Miranda 

and Bertero (1994). 

 

Nassar and Krawinkler (1991) proposed a regression expression based on the response of 

SDOF nonlinear systems subjected to 15 ground motions with 5% critical damping. The 

sensitivity to different natural periods, yield level, strain hardening ratio and inelastic 

material behavior was examined. Based on mean strength reduction factors, the following 

expression was proposed: 

 𝑅𝜇,𝑆𝐷𝑂𝐹 = (𝑐(𝜇 − 1) + 1)
1
𝑐  (27) 

where: 

 𝑐 =
𝑇1
𝑎

1 + 𝑇1
𝑎 +

𝑏

𝑇1
 (28) 

where: 𝑇1 is the fundamental period and parameters 𝑎 and 𝑏 are defined as a function of the 

rate 𝛼, i.e. the ratio of the post-yield stiffness and the initial stiffness of the system expressed 

in per cent. Parameters 𝑎 and 𝑏 are given by the following expressions: 
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𝑓𝑜𝑟 0.00 ≤ 𝛼 ≤ 0.02 

𝑎 = 1 + 0.5𝛼 (29) 

 𝑏 = 0.42 − 2.5𝛼 (30) 

 

𝑓𝑜𝑟 0.02 ≤ 𝛼 ≤ 0.10 

𝑎 = 1.0625 − 2.625𝛼 (31) 

 𝑏 = 0.39 − 𝛼 (32) 

 

𝑓𝑜𝑟 𝛼 > 0.10 

𝑎 = 0.80 (33) 

 𝑎 = 0.29 (34) 

Which are derived by interpolation of the values reported in Table 3. 

Table 3: Parameters 𝑎 and 𝑏 in Nassar and Krawinker (1991). 

𝜶 𝒂 𝒃 

0.00 1.00 0.42 

0.02 1.01 0.37 

0.10 0.80 0.29 

 

Vidic et al. (1994) studied the reduction factors for bilinear and stiffness degrading SDOF 

systems based on elastic and inelastic response of 20 recorded ground motion sets with 5% 

damping ratio. The parameters that control the reduction factor are the fundamental period, 

𝑇, the ductility, 𝜇, and the properties of the ground motion spectra. The simplified 

expressions consist in two linear segments inspired by the work of Riddel et al. (1989): 

 
𝑓𝑜𝑟 𝑇 ≤ 𝑇0 𝑅𝜇,𝑆𝐷𝑂𝐹 = 1 + (𝜇 − 1)

𝑇

𝑇0
 (35) 

 𝑓𝑜𝑟 𝑇 > 𝑇0 𝑅𝜇,𝑆𝐷𝑂𝐹 = 𝜇 (36) 

where 𝑇0 is defined as a function of the properties of the ground motion spectra: 

 𝑇0 = 0.65𝜇
0.3𝑇1 (37) 

 𝑇1 = 2𝜋
𝜑𝑒𝑣𝑉

𝜑𝑒𝑎𝐴
 (38) 

where 𝜑𝑒𝑣 and 𝜑𝑒𝑎 are amplification factors; 𝐴 and 𝑉 are the maximum ground acceleration 

and maximum ground velocity, respectively. 

Expressions proposed by Nassar and Krawinker (1991) and Vidic et al. (1994) are plotted in 

Figure 4. 
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Figure 4: (a): Nassar and Krawinker (1991), (b): Vidic et al. (1994); figures from 

Miranda and Bertero (1994). 

 

To the best of author’s knowledge, Elghadamsi and Mohraz (1987) firstly studied the effect 

of soil conditions on the force reduction factor for SDOF system, but the work of Miranda 

(1993) made an effort to consider 124 recorded ground motions on a wide range of soil 

conditions. Authors proposed three expressions for force reduction factor on rock, alluvium 

and soft soils sites respectively: 

 𝑅𝜇,𝑆𝐷𝑂𝐹 = 1 +
𝜇 − 1

𝛷
≥ 1 (39) 

where: 

 

𝑓𝑜𝑟 𝑟𝑜𝑐𝑘 𝑠𝑖𝑡𝑒𝑠 

𝛷 = 1 +
1

10𝑇 − 𝜇𝑇

−
1

2𝑇
exp [−

3

2
(ln 𝑇 −

3

5
)
2

] 

(40) 

 

𝑓𝑜𝑟 𝑎𝑙𝑙𝑙𝑢𝑣𝑖𝑢𝑚 𝑠𝑖𝑡𝑒𝑠 

𝛷 = 1 +
1

12𝑇 − 𝜇𝑇

−
2

5𝑇
exp [−2 (ln 𝑇 −

1

5
)
2

] 

(41) 

 
𝑓𝑜𝑟 𝑠𝑜𝑓𝑡 𝑠𝑜𝑖𝑙 𝑠𝑖𝑡𝑒𝑠 𝛷 = 1 +

𝑇𝑔

3𝑇
−
3𝑇𝑔

4𝑇
exp [−3(ln

𝑇

𝑇𝑔
−
1

4
)

2

] (42) 

where: 𝑇𝑔 is the predominant period of the ground motion. 

Expressions proposed Miranda (1993) are plotted in Figure 5. 
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Figure 5: Miranda (1993): (a): rock sites, (b): alluvium sites; (c): soft soil sites; figures 

from Miranda (1993) 

 

The influence of soil condition is assessed also by Watanabe and Kawashima (2002). 

Authors developed reduction factors for bilinear SDOF systems based on elastic and 

inelastic response of 70 recorded ground motion with 5% damping. Stiff, moderate and soft 

soils were evaluated. This study focuses on the effect of damping ratios. and provides quite 

close results than the ones proposed by Nassar and Krawinkler (1991) and Miranda and 

Bertero (1994), if damping ratios are assumed equal to 5%. 

Borzi and Elnashai (2000) proposed trilinear expressions of reduction factor for elastic 

perfectly-plastic and hysteretic hardening-softening models of SDOF systems based on 

elastic and inelastic response of 364 recorded ground motions. Authors concluded that 

hysteretic models examined only mildly influenced the inelastic acceleration spectra. 

Therefore the force reduction factor is not heavily influenced by the system global hysteretic 

behavior. 

An alternative method, based on the observed similarity between elastic displacement 

spectra and spectra of strength-reduction factors, is developed by Ordaz and Perez-Rocha 

(1998). Authors proposed a rule to estimate the ductility reduction factor which depends only 

on elastic displacement spectra and two empirically determined parameters, but a physical 

interpretation of the proposed rule is unknown to the authors. 

Vamvatsikos and Cornell (2006) introduced SPO2IDA, a software tool that is capable of 

recreating the seismic behaviour of SDOF systems with bilinear up to quadrilinear 

backbones. It provides a direct connection between the static pushover curve and the results 

of incremental dynamic analysis, a computer-intensive procedure that offers thorough 

demand and capacity prediction capability by using a series of nonlinear dynamic analyses 

under a suitably scaled suite of ground motion records. SPO2IDA, is a tool for performance-

based earthquake engineering that can estimate demands and limit-state capacities, strength 

reduction R-factors and inelastic displacement ratios for SDOF systems. 
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2.4. Ductility reduction factor for MDOF systems 

As shown in Section 2.3, several authors studied the force reduction factor for SDOF 

systems. In this section, main literature about the force reduction factor for MDOF systems 

is presented. 

To the author’s knowledge, the relationship between MDOF and SDOF system response was 

first studied by Veletsos and Vann (1971). The objective of their study was to identify the 

parameters which have a dominant influence on the response of MDOF elastoplastic 

systems. The systems considered were shear-building structures. This study concluded that 

for systems having two and three degrees of freedom, the relationship between the required 

yield deformation and the absolute maximum deformation of the associated linear system 

could be considered the same as that for a SDOF system with the same period. Instead, for 

systems having more than three degrees of freedom, the proposed design rules for SDOF 

systems were not sufficiently accurate and could lead to unconservative estimates of the 

required lateral yield resistance, and that errors tended to increase as the number of degrees 

of freedom increased. 

Nassar and Krawinkler (1991) studied three types of simplified MDOF models to estimate 

the modifications required to the inelastic strength demands obtained from bilinear SDOF 

systems in order to limit the story ductility demand in the first story of the MDOF systems 

to a prescribed value. The three types of MDOF models were “beam-hinge” frame in which 

plastic hinges could be formed in beams only; “column hinge” frame in which plastic hinges 

could be formed in columns only; “weak story” frame in which plastic hinges could be 

formed in columns of the first story only. The ductility demands in the MDOF models were 

compared to those of the SDOF systems when subjected to the same ground motions as those 

used for the SDOF systems. The study concluded that MDOF story ductility demands differ 

significantly from those of the corresponding SDOF systems and the failure mechanism 

strongly affect the force reduction factor. 

The amplification of base shear in MDOF systems respect to SDOF systems was explained 

by Chopra (1995). Buildings with 2, 5, 10, 20, 30 and 40 number of storeys, idealised as 

elastoplastic shear frames, were analysed. Base shear of these MDOF systems were 

compared with the base shear of their corresponding SDOF systems. In the linearly elastic 

range, natural period and damping ratio of the SDOF system were the same as the 

fundamental mode properties of the MDOF system. The mass of the corresponding SDOF 

system was the same as the total mass of the MDOF system. Both systems were elastoplastic 

with identical values for the yield base shear. Systems were subjected to El Centro ground 

motion. Author calculated the inverse of the modification factor, 𝑅𝑀, which is given by 

Equation (22): 

 
1

𝑅𝑀
=
𝑉𝑏,𝑀𝐷𝑂𝐹(𝜇 = 𝜇

∗)

𝑉𝑏,𝑆𝐷𝑂𝐹(𝜇 = 𝜇∗)
 (43) 

Results for the inverse of the modification factor given by (43) is shown in Figure 6. The 

author observed that: (i) MDOF system has larger base shear than the corresponding SDOF 

system; (ii) the modification factor decreases with the increasing of period and hence the 

number of storeys; (iii) the modification factor decreases with the allowable ductility. 
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Figure 6: Inverse of modification factor; figure from Chopra (1995). 

 

Moghaddam and Mohammadi (2001) studied the inelastic seismic response of MDOF shear-

building structures; in this study, 5, 10, 15 storey buildings were subjected to 21 recorded 

ground motion with 5% damping and the following correlation between the modification 

factor, 𝑅𝑀, and the number of storeys, 𝑛𝑠, was proposed. 

 𝑅𝑀 = 𝑛𝑠
−0.26 (44) 

Santa-Ana and Miranda (2000) and Santa-Ana (2004) proposed a method to evaluate force 

reduction factors which permits to estimate the strength demand of MDOF systems from 

strength demand of SDOF systems. The equivalent SDOF system has the same mass and 

fundamental period of the respective MDOF system. The study is based on the computation 

of modification factors for ten steel moment-resisting frame buildings undergoing different 

levels of inelastic deformation when subjected to 92 earthquake ground motions 

corresponding to firm and soft sites. The 𝑅𝑀 was evaluated by following this methodology: 

(i) MDOF system base shear, 𝑉𝑏,𝑀𝐷𝑂𝐹, was computed by scaling the intensity of the ground 

motion until the maximum storey displacement ductility ratio in the MDOF structure was 

equal to the maximum allowable ductility, 𝜇∗, within a 1% tolerance. The scaling factor was 

obtained by an iterative procedure; (ii) SDOF system base shear, 𝑉𝑏,𝑆𝐷𝑂𝐹, was computed by 

iteration on the lateral strength of the SDOF system when subjected to the same ground 

motion and same scale factor of the step (i) until the displacement ductility ratio in the 

MDOF structure was, within a 1% tolerance, equal to the maximum allowable ductility, 𝜇∗. 
Authors concluded that: (i) lateral strengths required to control maximum story ductilities in 

multi-storey buildings are typically larger than those of SDOF systems having periods of 

vibration equal to the fundamental period of the MDOF structures; (ii) mean ratios of MDOF 

to SDOF lateral strength demands increase with the number of stories; (iii) from a limited 

number of results it appears that ratios of MDOF to SDOF lateral strength demands are more 

affected by the number of stories than by the fundamental period of vibration; (iv) for the 
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site classes considered in this study, soil conditions have only a small effect on mean ratios 

of MDOF to SDOF lateral strength demands. 

Wang et al. (2013) studied the inelastic seismic response of 100 MDOF shear-building 

structures, on four ground type. In this study, lumped-mass shear-type MDOF systems were 

employed to investigate on the modification factor, 𝑅𝑀 . Equivalent SDOF system was 

modelled corresponding to each MDOF system, with same total mass and same fundamental 

period. Systems were subjected to five recorded ground motion with 5% damping. Authors 

drew the following conclusions: (i) the modification factor is mainly affected by the ductility 

ratio, 𝜇, and fundamental period, 𝑇, and it usually decreases with the increment of ductility 

ratio and fundamental period; (ii) the site conditions have small effects on the modification 

factor. The regression expression proposed by authors is given by: 

 𝑅𝑀 = (0.01𝜇
2 − 0.10𝜇 + 0.47)(0.75𝑇2 − 2.40𝑇 + 4.26) (45) 

Wang et al. (2014) continued the previous work to compare flexural-type building structures 

and shear-type building structures. Multi-mass column cantilever systems were employed to 

simulate flexure-type shear wall structures, while multi-mass series spring connection 

systems were used to simulate shear-type frame structures. Four earthquake records in hard 

soil site were selected to perform nonlinear dynamic time history analysis. Results are 

illustrated in Figure 7. Main conclusions drawn from this study were: (i) the seismic response 

in terms of structural displacement ductility, base shear and top displacement in flexural-

type structures are different from those in shear-type systems, due to different deformation 

mechanism; (ii) storey ductility and number of storeys have significant influence on ductility 

reduction factors; (iii) the ductility reduction factors of flexural-type structure are generally 

about 40% larger than those for shear-type structures. 

 

Figure 7: Ductility reduction factors for flexural-type and shear-type structures; figures 

from Wang et al. (2014). 

 

Gerami et al. (2015) studied the influence of higher mode effects on MDOF systems. They 

proposed modification factors performing 1764 nonlinear dynamic analysis of two-

dimensional steel frames with moment-resisting system. Systems were subjected to 14 



Section 2: State of the art 

_________________________________________________________________________ 

21 

recorded ground motion with 5% damping. Results showed that the 𝑅𝜇,𝑀𝐷𝑂𝐹 decreases with 

the period and contribution of higher modes. Therefore, neglecting these effects would lead 

to non-conservative design results, especially for high-rise buildings. In other words, if the 

structure is designed on the basis of code proposed reduction factor, 𝑅, for the flexible 

models with long period, the expected behavior is not realistic since during the earthquake, 

the demand base shear is greater than the code base shear due to higher mode effects. 

FEMA P695 (2009) describes a recommended methodology for a reliable quantification of 

structural system performance and response parameters for seismic design applications. This 

methodology consists of a framework for establishing seismic performance factors that 

involves the development of detailed system design information and probabilistic 

assessment of collapse risk. It utilizes nonlinear analysis techniques, and explicitly considers 

uncertainties in ground motion, modeling, design, and test data. The technical approach is a 

combination of traditional code concepts, advanced nonlinear dynamic analyses, and risk-

based assessment techniques. The procedure completely bypasses the SDOF approach and 

offers force reduction factors that are directly but quite expensively computed on the basis 

of MDOF structures. 

This FEMA P695 methodology provides a rational basis for establishing global seismic 

performance factors, including the force reduction factor and the overstrength factor of 

seismic resisting systems. Collapse assessment is performed using both nonlinear static and 

nonlinear dynamic analysis procedures. Nonlinear static analyses are used to help validate 

the behavior of nonlinear models and to provide statistical data on system overstrength and 

ductility capacity. Nonlinear dynamic analyses are used to assess median collapse capacities 

and collapse margin ratios. The trial value of the force reduction factor is evaluated in terms 

of the acceptability of a calculated collapse margin ratio, which is the ratio of the ground 

motion intensity that causes median collapse, to the Maximum Considered Earthquake 

(MCE) ground motion intensity defined by the building code. For collapse evaluation, 

ground motions are systematically scaled to increasing earthquake intensities until median 

collapse is established. If the collapse margin ratio is large enough to result in an acceptably 

small probability of collapse at the MCE, then the trial value of force reduction factor is 

acceptable. 

 

2.5. Dual system RC structures 

Dual system structures represent all structural system composed of two different resisting 

systems which collaborate to support gravity loads and seismic loads. The two coupled 

systems can be also different in materials, such as reinforced concrete and masonry systems 

or reinforced concrete and steel systems. In the present work, the considered dual system 

systems are RC frame-wall structures, but the proposed method is general and can be applied 

to other dual structures. A typical portrayal of wall system building, frame system building 

and frame-wall dual system building are shown in Figure 8 respectively. 
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Figure 8: (a): Wall system building, (b): Frame system building, (c): Frame-wall dual 

system building; figures from Arie, G. (2003). 

 

RC frame-wall structures, provide a good structural solution able to combine the stiffness 

and resistance of the walls and the versatility of the frame. Furthermore, coupling two 

resisting systems allows overcoming structural deficiencies of single resisting systems and 

takes advantages by synergy. It is evidenced that frame structures are versatile and allow 

architectural flexibility, but they are deformable especially at low stories. On the other hand, 

wall system structures are very stiff at low stories but they impose rigid architectural 

constrains to openings and windows. 

Static behavior of frame-wall systems subjected to horizontal actions is well known thanks 

to early studies performed in 60’s and 70’s (Goodsir, 1985). Among them, the “shear-

flexural cantilever model” (Rosman, 1974; Pozzati, 1977; Miranda and Akkar, 2006; 

Miranda and Taghavi, 2005; Taghavi and Miranda, 2005) shows accurate results regarding 

the distribution of horizontal loads between two coupled systems. However, this method 

presents the shortcoming to be valid for elastic analysis only, while the response of dual 

systems in the nonlinear field is necessary to perform an efficient and reliable seismic design. 

To the author’s knowledge, advanced studies on simplified and effective models to represent 

the dynamic behaviour of dual systems are not available. 

Usually building codes define force reduction factors for various type of resisting systems 

but they do not provide accurate force reduction factor for dual systems, with the exception 

of some particular cases. Furthermore, force reduction factors are constant for a certain type 

of structural system. As a result of this, for the same design input, structures of the same type 

but different geometry are subjected to different ductility demands and show therefore a 

different performance during an earthquake. 

 

2.6. Design codes 

The force-based design method as it is implemented in the current generation of seismic 

design codes suffers from some shortcomings. One of these relates to the fact that the base 

shear is computed using a pre-defined force reduction factor. Furthermore, the Force-Based 

Design approach is difficult to apply to dual structural systems for which only few codes 
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provide force reduction factors. In this section, design codes focused on reinforced concrete 

(RC) structures only are reported. 

To the author’s knowledge, the force reduction factor firstly appears in the SEAOC Blue 

Book (1959) in an attempt to unify the design approach providing minimum standards to 

structures. Before the Blue Book, the Uniform Building Code, UBC (ICBO, 1958), 

regulations calculated lateral force without considering structural system effects and the 

lateral force, 𝐹, was a constant percentage of total building weight, 𝑊, as shown in Equation 

(46). 

 𝐹 = 0.075W (46) 

The 1959 edition of the Blue Book introduced a force reduction factor called “𝐾 factor” to 

address different building type as well as redefining the “𝐶 factor”, which is a horizontal 

force factor depending on the fundamental period, 𝑇. Lateral base shear, 𝑉, was given by: 

 𝑉 = KCW (47) 

 𝐶 =
0.05

√𝑇
3  (48) 

The numerical coefficient based on basic structural system, 𝐾, was intended to modify the 

base shear using a number representing bonus characteristics of the structure in question and 

prescribed values are shown in Table 4. 

Table 4: Basic value of the “𝐾 factor”, SEAOC Blue Book (1959). 

Basic structural system 𝑲 

Bearing wall 1.33 

Building frame 1.00 

Dual 0.80 

Moment resisting frame 0.67 

 

After few decades of evolution of seismic codes, a briefly overview of main current design 

codes is presented. Eurocode 8 (UNI EN 1998-1, 2013) defines force reduction factor – 

called behavior factor – for reinforced concrete buildings to account for energy dissipation 

capacity as follows: 

 𝑞 = 𝑞0𝑘𝑤 ≥ 1.5 (49) 

Where 𝑞0 is the basic value of the behavior factor, depending on the type of the structural 

system and on its regularity in elevation; 𝑘𝑤 is the factor reflecting the prevailing failure 

mode in structural systems with walls (equal to 1 for frame and frame-equivalent dual 

systems). The design spectrum is obtained dividing the elastic spectrum ordinates by 𝑞. Basic 

value of the behavior factor for systems regular in elevation are given in the following Table 
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5; structures are distinguished for medium ductility class (DCM) and high ductility class 

(DCH) structures, respectively. 

Table 5: Basic value of the behavior factor, 𝑞0, for systems regular in elevation, UNI EN 

1998-1 (2013). 

Structural type DCM DCH 

Frame system, dual system, coupled wall system 3.0𝛼𝑢/𝛼1 4.5𝛼𝑢/𝛼1 
Uncoupled wall system 3.0 4.0𝛼𝑢/𝛼1 
Torsionally flexible system 2.0 3.0 

Inverted pendulum system 1.5 2.0 

 

The ratio 𝛼𝑢/𝛼1 represents the overall structural overstrength: 𝛼1 is the value by which the 

horizontal seismic design action is multiplied in order to reach the first flexural resistance in 

any member of the structure, while all other design actions remain constant; 𝛼𝑢 is the value 

by which the horizontal seismic design action is multiplied, in order to form plastic hinges 

in a number of sections sufficient for the development of the overall structural instability, 

while all other design actions remain constant. When the multiplication factor 𝛼𝑢/𝛼1 has not 

been evaluated through an explicit calculation, for buildings which are regular in plan the 

approximate values of 𝛼𝑢/𝛼1 reported in Table 6 may be used. 

Table 6: Basic value of 𝛼𝑢/𝛼1 for systems regular in plan, UNI EN 1998-1 (2013). 

Frames or frame-equivalent dual systems 𝜶𝒖/𝜶𝟏 

   One-storey buildings 1.1 

   Multistorey, one-bay frames 1.2 

   Multistorey, multi-bay frames or frame-equivalent dual structures 1.3 

Walls or wall-equivalent dual systems 𝜶𝒖/𝜶𝟏 

   Wall systems with only two uncoupled walls per horizontal direction 1.0 

   Other uncoupled wall systems 1.1 

   Wall-equivalent dual, or coupled wall systems 1.2 

 

Building irregularities are taken into account in the following ways: for buildings which are 

not regular in elevation, the value of 𝑞0 should be reduced by 20%; for buildings which are 

not regular in plan, the approximate value of 𝛼𝑢/𝛼1 that may be used is equal to the average 

of 1.0 and of the value given in the previous Table 6. 

The Italian Building Code (DM 14/1/2008, 2008) assumes the same definition and the same 

values of Eurocode 8 for the force reduction factor concerning RC structures. 

The American Society of Civil Engineers (ASCE) in the Minimum Design Loads for 

Buildings and Other Structures (ASCE/SEI 7-10, 2010) prescribes force reduction factors 

for several structural systems. Concerning dual system structures, reinforced concrete (RC) 

moment resisting frames (MRF) and steel frames coupled with shear walls systems are 

identified. In particular, the force reduction factors for frame-wall systems are shown in the 

following Table 7; ordinary, intermediate and special elements are expected to withstand 
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minimal, moderate and significant inelastic behaviour, therefore the stringency of the 

detailing requirements is related to the expected behaviour. 

Table 7: Basic value of the reduction factor for frame-wall systems, ASCE/SEI 7-10 (2010). 

Seismic force-resisting system 𝐑 

Special RC shear walls and special RC-MRF 7.0 

Special RC shear walls and intermediate RC-MRF 6.5 

Ordinary RC shear walls and special RC-MRF 6.0 

Ordinary RC shear walls and intermediate RC-MRF 5.5 

Ordinary RC shear walls and ordinary RC-MRF 4.5 

 

The seismic base shear, V, in a given direction shall be determined in accordance with the 

following equation: 

 𝑉 = 𝐶𝑠𝑊 (50) 

where 𝑊 is the effective seismic weight and 𝐶𝑠(𝑇) is the seismic response coefficient at the 

period 𝑇 that is given by: 

 

𝑓𝑜𝑟 𝑇 ≤ 𝑇𝐿 
𝐶𝑠(𝑇) =

𝑆𝐷𝑆(𝑇)

(
𝑅
𝐼𝑒
)
≤
𝑆𝐷1(𝑇)

𝑇 (
𝑅
𝐼𝑒
)

 (51) 

 

𝑓𝑜𝑟 𝑇 > 𝑇𝐿 
𝐶𝑠(𝑇) =

𝑆𝐷𝑆(𝑇)

(
𝑅
𝐼𝑒
)
≤
𝑆𝐷1(𝑇)𝑇𝐿

𝑇2 (
𝑅
𝐼𝑒
)

 (52) 

where 𝑆𝐷𝑆 is the design spectral response acceleration parameter at short periods; 𝑆𝐷1 is the 

design spectral response acceleration parameter at 1-second period; 𝑇𝐿 is the long-period 

transition period; 𝐼𝑒 is the importance factor. 

In Earthquake Actions Standard (NZS 1170.5, 2004) of New Zealand, the design response 

spectrum 𝐶𝑑(𝑇) at the period 𝑇 is obtained from the elastic design spectrum 𝐶(𝑇) by: 

 𝐶𝑑(𝑇) =
𝐶(𝑇)𝑆𝑝

𝑘𝑢
 (53) 

where 𝑆𝑝 is the structural performance factor, equal to 1.0 for a structural ductility factor of 

1 and equal to 0.7 for a structural ductility factor of 2 or more; 𝑘𝑢 is the reduction factor 

given by: 
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𝑓𝑜𝑟 𝑇 < 0.7 𝑘𝑢 = 1 +

(𝜇 − 1)𝑇

0.7
 (54) 

 𝑓𝑜𝑟 𝑇 ≥ 0.7 𝑘𝑢 = 𝜇 (55) 

where 𝜇 is the structural ductility. 

Japan Building Standard Law (BCJ, 2013) defines structural characteristic coefficients 𝐷𝑠, 

which are the reciprocal of force reduction factors, because 𝐷𝑠 multiply elastic forces in 

Japanese base shear expression. 

Canadian Build Code (NRCC, 2015) defines reduction factor as product of 𝑅𝑑, ductility-

related force modification factor reflecting the seismic energy dissipation capacity of 

structure, and 𝑅0, overstrength related force modification factor accounting for the 

dependable portion of reserve strength. 

It can be observed that the main international building codes approaching the seismic design 

with FBD method present similar definition of the reduction factor. 

 

2.7. N2 method 

In this Section, the “N2 method” (Fajfar, 2000) is briefly reported; it will be used to assess 

the performance of example structures designed in Section 6. 

The N2 method is a nonlinear method for the seismic analysis of structures which combines 

the pushover analysis of a MDOF system with the response spectrum analysis of an 

equivalent SDOF system. The method is formulated in the acceleration-displacement format, 

the so called acceleration-displacement response spectrum (ADRS), which enables the visual 

interpretation of the procedure and of the relations between the basic quantities controlling 

the seismic response. Generally, the results of the N2 method are reasonably accurate, 

provided that the structure oscillates predominantly in the first mode. 

Basically, starting from the acceleration spectrum in the conventional acceleration-period 

format, 𝑆𝑎𝑒-𝑇, the ADRS spectrum is obtained by replacing the period, 𝑇, in x-axis with the 

displacement spectrum, 𝑆𝑑𝑒, that, for an elastic SDOF system, is given by: 

 𝑆𝑑𝑒 =
𝑇2

4𝜋2
𝑆𝑎𝑒 (56) 

The inelastic ADRS response spectrum is obtained using Expression (35) and (36) proposed 

by Vidic et al. (1994), already introduced in Section 2.3; then the inelastic acceleration, 𝑆𝑑, 

and the inelastic displacement, 𝑆𝑑, become: 

 𝑆𝑎 =
𝑆𝑎𝑒
𝑅𝜇

 (57) 
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 𝑆𝑑 =
𝜇

𝑅𝜇
𝑆𝑑𝑒 =

𝜇

𝑅𝜇

𝑇2

4𝜋2
𝑆𝑎𝑒 = 𝜇

𝑇2

4𝜋2
𝑆𝑎 (58) 

The elastic ADRS spectrum (𝜇 = 1) and the inelastic ADRS spectrum for ductility 𝜇 equal 

to 2, 3 and 5 are obtained from the acceleration spectrum of Figure 59 in Section 6 and 

illustrated in Figure 9. In the N2 method the ADRS spectrum represent the seismic demand. 

 

Figure 9: Elastic and inelastic ADRS spectra. 

 

The second step of the method is to define the capacity curve of the structure which 

represents the seismic capacity. Performing a pushover analysis subjected to a load 

distribution proportional to the first mode deflection shape, the MDOF capacity curve in 𝑉𝑏-

𝑑𝑐 format is obtained, where 𝑉𝑏 is the base shear and 𝑑𝑐 the displacement of the control 

point, conventionally taken at the rooftop of the structure.  

To transform the MDOF curve to a SDOF curve, base shear, 𝑉𝑏, and control displacement, 

𝑑𝑐, are divided by the modal participation factor, 𝛤, given by: 

 𝛤 =
∑ 𝑚𝑖𝜙𝑖
𝑛𝑠
𝑖=1

∑ 𝑚𝑖𝜙𝑖
2𝑛𝑠

𝑖=1

 (59) 

 𝑉𝑏
∗ =

𝑉𝑏
𝛤

 (60) 

 𝑑𝑐
∗ =

𝑑𝑐
𝛤

 (61) 

where 𝑚𝑖 and 𝜙𝑖 are the mass and the first mode deflected shape ordinate for the i-th storey; 

𝑉𝑏
∗ and 𝑑𝑐

∗
 the base shear and the control displacement of the equivalent SDOF system, 

respectively. 

The elastic period of the idealised bilinear system, 𝑇∗, is expressed by: 
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 𝑇∗ = 2𝜋√
𝑚∗𝑑𝑦

∗

𝑉𝑏
∗  (62) 

where 𝑚∗ and 𝑑𝑦
∗
 are the equivalent mass and the yield displacement of the SDOF system, 

respectively. 

Moreover, the SDOF curve is bilinearised to be compared with the ADRS spectrum. The 

MDOF curve, the SDOF curve and the bilinearised SDOF curve of the Example 1 designed 

in Section 6.1.2 are shown in Figure 10, for instance. 

 

Figure 10: Bilinearization of SDOF curve of Example 1 designed applying the proposed 

method. 

 

Furthermore the values of the ultimate base shear, 𝑉𝑏,𝑢, and the base shear at first flexural 

resistance, 𝑉𝑏,1, are plotted in Figure 10. It is noted that the ratio 𝛼𝑢/𝛼1 is equal to the ratio 

𝑉𝑏,𝑢/𝑉𝑏,1: 

 𝑅𝑠 =
𝛼𝑢
𝛼1
=
𝑉𝑏,𝑢
𝑉𝑏,1

 (63) 

Finally, global performance evaluation is assessed comparing seismic demand and seismic 

capacity in terms of displacements. The performance assessment of the structure is given by 

the ratio 𝛾𝑑: 
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 𝛾𝑑 =
𝑑𝑐
∗

𝑑𝑑
∗ (64) 

where 𝑑𝑐
∗
 is the ultimate displacement of the bilinearised SDOF curve, which is the 

displacement capacity of the system, and 𝑑𝑑
∗
 is the inelastic displacement demand required 

by the ADRS spectrum. 

If the ratio 𝛾𝑑 is equal or larger than 1 then the structures is adequate to support the assigned 

seismic actions. The performance evaluation is graphically illustrated in Figure 11. 

 

Figure 11: Structural performance of Example 1 designed to the proposed method. 

 

Limitations and further considerations about N2 method are explained in detail in Fajfar 

(2000). 
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3. Analytical models 

 

This section 3 reports the proposed analytical models. Section 3.1 introduces the definition 

equivalent SDOF system. Section 3.2, 3.3 and 3.4 describe the analytical models for wall, 

frame and dual systems respectively. 

 

3.1. Equivalent SDOF system 

The proposed analytical method is based on the transformation of the structure from a multi-

degree of freedom (MDOF) system to an equivalent single-degree of freedom (SDOF) 

system. Floors are considered rigid diaphragm in this study, so the number of degrees of 

freedom is equal to the number of storeys, 𝑛𝑠. 

Current practice to obtain the properties of the equivalent SDOF system are explained in 

Chopra (2006) and they are implicitly based on the following assumptions: 

1. Equal elastic base shear between SDOF system, 𝑉𝑏,𝑆𝐷𝑂𝐹, and MDOF system, 

𝑉𝑏,𝑀𝐷𝑂𝐹. 

 𝑉𝑏,𝑆𝐷𝑂𝐹 = 𝑆𝑎(𝑇1)𝑚1
∗ ≡ 𝑉𝑏,𝑀𝐷𝑂𝐹 = 𝑆𝑎(𝑇1)𝛤1∑ 𝑚𝑖𝜙𝑖

𝑛𝑠

𝑖=1
 (65) 

2. Equal elastic base moment between SDOF system, 𝑀𝑏,𝑆𝐷𝑂𝐹, and MDOF system, 

𝑀𝑏,𝑀𝐷𝑂𝐹. 

 𝑀𝑏,𝑆𝐷𝑂𝐹 = 𝑆𝑎(𝑇1)𝑚1
∗ℎ1

∗ ≡ 𝑀𝑏,𝑀𝐷𝑂𝐹 = 𝑆𝑎(𝑇1)𝛤1∑ 𝑚𝑖𝜙𝑖
𝑛𝑠

𝑖=1
ℎ𝑖 (66) 

3. Equal energy between SDOF system, 𝐸𝑘,𝑆𝐷𝑂𝐹, and MDOF system, 𝐸𝑘,𝑀𝐷𝑂𝐹. 

 𝐸𝑘,𝑆𝐷𝑂𝐹 =
1

2
𝑚1

∗ (
𝑆𝑎(𝑇1)

𝜔1
∗
)

2

≡ 𝐸𝑘,𝑀𝐷𝑂𝐹 =
1

2
(
𝑆𝑎(𝑇1)𝛤1
𝜔1

)

2

∑ 𝑚𝑖𝜙𝑖
2

𝑛𝑠

𝑖=1
 (67) 

4. Equal fundamental period between SDOF system, 𝑇1
∗, and MDOF system, 𝑇1. 
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2𝜋

𝑇1
∗ = 𝜔1

∗ = √
𝑚1∗

𝑘1
∗ ≡ 𝜔1 =

2𝜋

𝑇1
 (68) 

5. Equal damping ratio between SDOF system, 𝜁1
∗, and MDOF system, 𝜁1. 

 𝜁1
∗ ≡ 𝜁1 = 0.05 (69) 

where 𝑆𝑎(𝑇1) is the pseudo-acceleration spectral ordinate evaluated at fundamental period 

𝑇1; 𝑚𝑖 and 𝜙𝑖 the mass and the first mode deflected shape ordinate for the i-th storey; ℎ𝑖 the 

distance between the i-th storey and the ground level; 𝑛𝑠 the number of storeys; 𝑚1
∗ and ℎ1

∗
 

mass and height of the first mode SDOF system. 

In the present work, only the equivalent SDOF system corresponding to the first mode is 

considered. To supply the fact that only one mode is taken into account, the equivalent mass 

of the SDOF system is defined equal to the total mass of the MDOF system. This assumption 

is adopted also by Chopra (2006) and Santa-Ana (2004) for the calculation of the 

modification factor, 𝑅𝑀. In this way, the SDOF system can approximate better the total base 

shear of MDOF system when regular building are considered. This assertion means that the 

equivalent mass of the first mode is dominant compared to the equivalent mass of other 

modes and it is sufficient to represent the response of the system accurately. Then, to supply 

the fact that the base shear related to the first mode is an underestimation of the total base 

shear (Chopra, 2006), the equivalent mass of the first mode is replaced by the total mass of 

the structure. Furthermore, the use of the total mass is consistent with building codes, which 

usually compute the base shear starting from the total weight of the structures (i.e., simplified 

linear static analysis). 

To derive the properties of a SDOF system defined in such way, previous assumption 3 need 

to be modified by replacing the hypothesis of equal energy with the hypothesis of equal 

mass, that means that Equation (67) is replaced by Eq. (70). 

 𝑚𝑆𝐷𝑂𝐹 = 𝑚
∗ = 𝑚1

∗ ≡ 𝑚𝑀𝐷𝑂𝐹 =∑ 𝑚𝑖
𝑛𝑠

𝑖=1
 (70) 

For the sake of simplicity, 𝑚1
∗ and ℎ1

∗
 are named 𝑚∗ and ℎ∗ in the following, because the 

equivalent SDOF system is always referring to the first mode SDOF system. From 

expression (65) and (66), the effective height of the equivalent SDOF system, ℎ∗, can be 

written as: 

 ℎ∗ = ℎ1
∗  =

∑ 𝑚𝑖𝜙𝑖ℎ𝑖
𝑛𝑠
𝑖=1

∑ 𝑚𝑖𝜙𝑖
𝑛𝑠
𝑖=1

 (71) 

Consequently, given the stiffness of the SDOF system, 𝑘∗: 
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 𝑘∗ =
4𝜋2𝑚∗

𝑇1
2  (72) 

the flexural stiffness, 𝐸𝐼, of the elastic cantilever beam can be derived as follows: 

 𝐸𝐼 =
𝑘∗ℎ𝑠

3

3
=
4𝜋2

3

𝑚∗ℎ𝑠
3

𝑇1
2  (73) 

A representation of the SDOF system is drawn in Figure 12. 

 

Figure 12: SDOF system. 

 

 

3.2. Analytical model for wall systems 

For the sake of simplicity, structures with uniform storey mass, 𝑚𝑠,𝑤, and uniform storey 

height, ℎ𝑠, are assumed for all storeys, 𝑛𝑠, but the method is still applicable for structures 

with different storey weights and different storey heights. It is noted that the model consists 

in one wall, which is representative of the wall system, so 𝑚𝑠,𝑤 is the storey mass supported 

by the considered wall in the wall structure. 

The building total height, 𝐻, is then equal to: 

 𝐻 = 𝐻𝑤 = 𝑛𝑠ℎ𝑠 (74) 

An analytical estimation of the fundamental period of a pure-flexural cantilever wall, 𝑇1,𝑤, 

can be found in Goel and Chopra (1998): 

 𝑇1,𝑤 =
2𝜋

3.516
√
𝑚𝑙,𝑤
𝐸𝐼𝑤,𝑦

𝐻2 (75) 

where 𝑚𝑙,𝑤 and 𝐸𝐼𝑤,𝑦 are the mass per unit height and the yield flexural stiffness of the wall, 

respectively, given as: 

 𝑚𝑙,𝑤 =
𝑚𝑠,𝑤
ℎ𝑠

 (76) 
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 𝐸𝐼𝑤,𝑦 =
𝑀𝑦,𝑤

𝜑𝑦,𝑤
 (77) 

where 𝑀𝑦,𝑤 and 𝜑𝑦,𝑤 are the yield moment and the yield curvature of the base section of the 

wall, respectively. The plastic hinge length, 𝐿𝑝,𝑤, is defined as suggested in Priestley et al. 

(2007): 

 𝐿𝑝,𝑤 = max{𝑘𝐿𝑠,𝑤 + 0.2𝑙𝑤 + 𝐿𝑠𝑝,𝑤; 2𝐿𝑠𝑝,𝑤} (78) 

where: 

 𝐿𝑠,𝑤 = ℎ𝐺 =
∑ 𝐹𝑖ℎ𝑖
𝑛𝑠
𝑖=1

∑ 𝐹𝑖
𝑛𝑠
𝑖=1

   
𝑠𝑒𝑟𝑖𝑒
⇒      

2𝑛𝑠 + 1

3𝑛𝑠
𝐻 (79) 

 𝐿𝑠𝑝,𝑤 = 0.022𝑓𝑦𝑑𝑏𝑙,𝑤 (80) 

 𝑘 = 0.2(
𝑓𝑢
𝑓𝑦
− 1) (81) 

where: 𝐿𝑠,𝑤 and 𝐿𝑠𝑝,𝑤 are the shear span length and the strain penetration length; 𝑓𝑦 and 𝑓𝑢 

are the mean steel yield strength and the mean steel tensile strength; 𝑑𝑏𝑙,𝑤 is the maximum 

diameter of rebars in the base section of the wall; 𝑙𝑤 is the section height, respectively. Plastic 

hinge is graphically shown in Figure 13(a). The shear span length is assumed in the case of 

an inverse triangular load of horizontal forces, 𝐹𝑖, applied at storey heights, ℎ𝑖, as shown in 

Figure 13(b). 

(a) (b) 

 
 

Figure 13: (a): Plastic hinge for walls, (b): Inverse triangular load of horizontal forces 

and wall displacement shape. 

 

The analytical model for wall system is based on equivalent SDOF system able to predict 

the ductility reduction factor of the MDOF system, 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑤, through a modification factor, 
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𝑅𝑀,𝑤, which approximates higher mode effects. The first step is to define the first-mode 

displacement shape, which is necessary to define the equivalent SDOF system. The elastic 

displacement shape for wall structure is estimated through the expression proposed by 

Priestley et al. (2007), by assuming an inverse triangular load of horizontal forces as shown 

in Figure 13(b): 

 𝜙𝑖,𝑤 =
3

2

ℎ𝑖
2

𝐻2
(1 −

ℎ𝑖
3𝐻
) (82) 

Where 𝜙𝑖,𝑤 is the first mode deflected shape ordinate for the i-th storey of the wall structure. 

Properties of the equivalent SDOF system for wall structure (𝑚𝑤
∗, ℎ𝑤

∗
, 𝑘𝑤

∗
) can be 

calculated from Equations (70), (71) and (72). 

The yield base shear, 𝑉𝑦,𝑤
∗, the failure base shear, 𝑉𝑢,𝑤

∗, the yield displacement, 𝑑𝑦,𝑤
∗
, of 

the equivalent SDOF system are respectively: 

 𝑉𝑦,𝑤
∗ =

𝑀𝑦,𝑤

ℎ𝑤
∗  (83) 

 𝑉𝑢,𝑤
∗ =

𝑀𝑢,𝑤

ℎ𝑤
∗  (84) 

 𝑑𝑦,𝑤
∗ =

𝑉𝑦,𝑤
∗

𝑘𝑤
∗  (85) 

where 𝑀𝑦,𝑤 and 𝑀𝑢,𝑤 is the yield and ultimate moment of the base section of the wall, 

respectively. The equivalent yield curvature, 𝜑𝑦,𝑤
∗, for the equivalent SDOF system can be 

derived from Equation (73) and (77): 

 𝜑𝑦,𝑤
∗ =

3𝑀𝑦,𝑤

𝑘𝑤
∗ℎ𝑤

∗3
 (86) 

In order to obtain the same sectional ductility, 𝜇𝜑,𝑤, of the wall section in the plastic hinge 

of the equivalent SDOF system, the ultimate curvature of the equivalent SDOF system, 

𝜑𝑢,𝑤
∗, is written as: 

 𝜑𝑢,𝑤
∗ = 𝜇𝜑,𝑤𝜑𝑦,𝑤

∗ =
𝜑𝑢,𝑤
𝜑𝑦,𝑤

𝜑𝑦,𝑤
∗ (87) 

where 𝜑𝑦,𝑤 and 𝜑𝑢,𝑤 are the yield and ultimate curvature of the base section of the wall, 

respectively. The plastic displacement, 𝑑𝑝,𝑤
∗
, ultimate displacement, 𝑑𝑢.𝑤

∗
, and 

displacement ductility, 𝜇𝑤
∗, for the equivalent SDOF system are then given by, respectively: 
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 𝑑𝑝,𝑤
∗ = (𝜑𝑢,𝑤

∗ − 𝜑𝑦,𝑤
∗)𝐿𝑝,𝑤ℎ𝑤

∗
 (88) 

 𝑑𝑢.𝑤
∗ = 𝑑𝑦,𝑤

∗ 𝑉𝑢,𝑤
∗

𝑉𝑦,𝑤
∗ = 𝑑𝑦,𝑤

∗𝑀𝑢,𝑤
𝑀𝑦,𝑤

+ 𝑑𝑝,𝑤
∗
 (89) 

 𝜇𝑤
∗ =

𝑑𝑢,𝑤
∗

𝑑𝑦,𝑤
∗ (90) 

Once the structural ductility, 𝜇𝑤
∗, is known, the force reduction factor for the equivalent 

SDOF system can be estimated with one of the method reviewed in Section 2. Among the 

others, the expression of Nassar and Krawinkler (1991) is chosen and the ductility reduction 

factor for the equivalent SDOF system for wall structure, 𝑅𝜇,𝑆𝐷𝑂𝐹,𝑤, is given by: 

 𝑅𝜇,𝑆𝐷𝑂𝐹,𝑤 = (𝑐𝑤(𝜇𝑤
∗ − 1) + 1)

1
𝑐𝑤 (91) 

 𝑐𝑤 =
𝑇1,𝑤

𝑎𝑤

1 + 𝑇1,𝑤
𝑎𝑤
+
𝑏𝑤
𝑇1,𝑤

 (92) 

where parameters, 𝑎𝑤 and 𝑏𝑤, are calculated with Equations (29)-(34). The post-yield 

stiffness, 𝛼𝑤, is also required in Equations (29)-(34), (91) and (92); for equivalent SDOF 

wall system 𝛼𝑤 is defined as: 

 𝛼𝑤 =
𝑉𝑢,𝑤

∗ − 𝑉𝑦,𝑤
∗

𝑑𝑢,𝑤
∗ − 𝑑𝑦,𝑤

∗

𝑑𝑦,𝑤
∗

𝑉𝑦,𝑤
∗  (93) 

Finally, the ductility reduction factor for MDOF system of wall structures, 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑤, is 

given by the following expression: 

 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑤 = 𝑅𝑀,𝑤𝑅𝜇,𝑆𝐷𝑂𝐹,𝑤 (94) 

where the modification factor 𝑅𝑀,𝑤 is introduced to take into account higher mode effects 

for wall structures. 

A method to assess higher mode effects for wall structures is proposed by Priestley et al. 

(2007), which defines the amplified base shear for walls: 

 𝑉𝑏,𝑀𝐷𝑂𝐹,𝑤 = 𝜙
0𝜔𝑣,𝑇𝑖𝑉𝑏,𝑆𝐷𝑂𝐹,𝑤 (95) 

 𝜔𝑣,𝑇𝑖 = 1 +
𝜇𝑤

∗

𝜙0
𝑐2,𝑇𝑤 (96) 
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 𝑐2,𝑇𝑤 = 0.067 + 0.4(𝑇1,𝑤 − 0.5)     {
≤ 1.150
≥ 0.067

 (97) 

where 𝜙0 is the overstrength factor relating the maximum feasible flexural strength to design 

strength; in this work 𝜙0 is equal to 1 because mean values of material properties are 

assumed instead of design ones. This method is validated for the following displacement 

ductility and fundamental period ranges, respectively: 1 ≤ 𝜇𝑤
∗ ≤ 7; 0.5 𝑠 ≤ 𝑇1,𝑤 ≤ 3.9 𝑠. 

From Equation (22) and Equation (95), the modification factor for wall structures, 𝑅𝑀,𝑤, is 

assumed equal to: 

 𝑅𝑀,𝑤 =
𝑉𝑏,𝑆𝐷𝑂𝐹,𝑤
𝑉𝑏,𝑀𝐷𝑂𝐹,𝑤

=
1

𝜙0𝜔𝑣,𝑇𝑖
 (98) 

The modification factor for wall structures, 𝑅𝑀,𝑤, as a function of the displacement ductility 

demand, 𝜇𝑤
∗, is plotted in Figure 14. 

 

Figure 14: Modification factor for wall structures, 𝑅𝑀,𝑤. 

 

 

3.3. Analytical model for frame systems 

As for wall systems, structures with uniform storey mass, 𝑚𝑠,𝑓, and uniform storey height, 

ℎ𝑠, are assumed for all storeys, 𝑛𝑠, but the method is still valid for structures with different 

storey weights and different storey heights. It is noted that the model consists in one column, 

which is representative of the frame system, so 𝑚𝑠,𝑓 is the storey mass supported by the 

considered column in the frame structure. 

An analytical estimation of the fundamental period of a pure-shear cantilever, 𝑇1,𝑓, can be 

found in Goel and Chopra (1998): 
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 𝑇1,𝑓 = 4√
𝑚𝑙,𝑓

𝑘𝐺𝐴𝑓,𝑦
𝐻 (99) 

where 𝑘 is the shape factor to account for non-uniform distribution of shear stresses, equal 

to 5/6 for rectangular sections and 𝑚𝑙,𝑓, 𝐺𝐴𝑓,𝑦 and 𝐸𝐼𝑓,𝑦 are the mass per unit height, the 

base column yield shear stiffness and the base column yield flexural stiffness of the shear 

cantilever, respectively, that are given by the following expressions: 

 𝑚𝑙,𝑓 =
𝑚𝑠,𝑓

ℎ𝑠
 (100) 

 𝐺𝐴𝑓,𝑦 =
12𝐸𝐼𝑓,𝑦

ℎ𝑠
2  (101) 

 𝐸𝐼𝑓,𝑦 =
𝑀𝑦,𝑓

𝜑𝑦,𝑓
 (102) 

where 𝑀𝑦,𝑓 and 𝜑𝑦,𝑓 are the yield moment and the yield curvature of the base column of the 

frame, respectively. The plastic hinge length, 𝐿𝑝,𝑓, is defined as suggested by Priestley et al. 

(2007): 

 𝐿𝑝,𝑓 = 0.08ℎ𝑠 + 𝐿𝑠𝑝,𝑓 (103) 

 𝐿𝑠𝑝,𝑓 = 0.022𝑓𝑦𝑑𝑏𝑙,𝑓 (104) 

where 𝐿𝑠𝑝,𝑓 is the strain penetration length; ℎ𝑠 is the storey height; 𝑑𝑏𝑙,𝑓 is the maximum 

diameter of rebars in the base columns of the frame, respectively. Plastic hinges are 

graphically shown in Figure 15(a). The case of inverse triangular load of horizontal forces, 

𝐹𝑖, applied at storey heights, ℎ𝑖, is shown in Figure 15(b). 
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(a) (b) 

 
 

Figure 15: (a): Plastic hinge for frame, (b): Inverse triangular load of horizontal forces 

and frame displacement shape. 

 

Similarly to wall system, the analytical model for frame system is based on equivalent SDOF 

system able to predict the ductility reduction factor of the MDOF system, 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑓, through 

a modification factor, 𝑅𝑀,𝑓, which approximates higher mode effects. In the case of frames, 

the elastic displacement shape for frame structures is estimated making use of the expression 

proposed by Priestley et al. (2007), by assuming an inverse triangular load of horizontal 

forces as in Figure 15(b): 

 𝜙𝑖,𝑓 =
4

3

ℎ𝑖
𝐻
(1 −

ℎ𝑖
4𝐻
) (105) 

Where 𝜙𝑖,𝑓 is the first mode deflected shape ordinate for the i-th storey of the frame structure. 

Properties of the equivalent SDOF system for wall structure, 𝑚𝑓
∗, ℎ𝑓

∗
, 𝑘𝑓

∗
, can be calculated 

from Equations (70), (71) and (72). The effective height of the equivalent SDOF, ℎ𝑓
∗
, is not 

a necessary parameter for the analytical procedure in the case of frames, because ℎ𝑓
∗
 is 

defined as the storey height, ℎ𝑠. In other words, frame structures are idealised as a two fixed-

end beam, which is the case of shear-frame systems, as illustrated in Figure 15(a), and it 

represents the first storey of the frame. 

The yield base shear, 𝑉𝑦,𝑓
∗, the failure base shear, 𝑉𝑢,𝑓

∗, the yield displacement, 𝑑𝑦,𝑓
∗
, of the 

equivalent SDOF system are respectively: 

 𝑉𝑦,𝑓
∗ =

𝑀𝑦,𝑓

ℎ𝑠/2
 (106) 

 𝑉𝑢,𝑓
∗ =

𝑀𝑢,𝑓

ℎ𝑠/2
 (107) 
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 𝑑𝑦,𝑓
∗ =

𝐹𝑦,𝑓
∗

𝑘𝑓
∗  (108) 

where 𝑀𝑦,𝑓 and 𝑀𝑢,𝑓 is the yield and ultimate moment of the base column of the frame, 

respectively. 

The yield displacement, 𝑑𝑦1,𝑓
∗
, and the plastic displacement, 𝑑𝑝1,𝑓

∗
, for the first-storey 

equivalent SDOF system are given by: 

 𝑑𝑦1,𝑓
∗ =

𝑉𝑦,𝑓
∗

12𝐸𝐼𝑓/ℎ𝑠
3 (109) 

 𝑑𝑝1,𝑓
∗ = (𝜑𝑢,𝑓 − 𝜑𝑦,𝑓)𝐿𝑝,𝑓ℎ𝑠 (110) 

where 𝜑𝑦,𝑓 and 𝜑𝑢,𝑓 are the yield and ultimate curvature of the base column of the frame, 

respectively. 

In order to obtain the same plastic displacement for the equivalent SDOF system, 𝑑𝑝,𝑓
∗
, the 

plastic displacement for the first-storey equivalent SDOF, 𝑑𝑝1,𝑓
∗
, is written as: 

 𝑑𝑝,𝑓
∗ =

𝑑𝑝1,𝑓
∗

𝑑𝑦1,𝑓
∗ 𝑑𝑦,𝑓

∗
 (111) 

The ultimate displacement, 𝑑𝑢.𝑓
∗
, and displacement ductility, 𝜇𝑓

∗, for the equivalent SDOF 

system are then given by, respectively: 

 𝑑𝑢,𝑓
∗ = 𝑑𝑦,𝑓

∗ 𝑉𝑢,𝑓
∗

𝑉𝑦,𝑓
∗ + 𝑑𝑝,𝑓

∗ = 𝑑𝑦,𝑓
∗𝑀𝑢,𝑓

𝑀𝑦,𝑓
+ 𝑑𝑝,𝑓

∗
 (112) 

 𝜇𝑓
∗ =

𝑑𝑢,𝑓
∗

𝑑𝑦,𝑓
∗ (113) 

Once the structural ductility, 𝜇𝑓
∗, is known, the force reduction factor for the equivalent 

SDOF system can be estimated using the expression of Nassar and Krawinkler (1991). The 

ductility reduction factor for the equivalent SDOF system for frame structures, 𝑅𝜇,𝑆𝐷𝑂𝐹,𝑓, is 

given by: 

 𝑅𝜇,𝑆𝐷𝑂𝐹,𝑓 = (𝑐𝑓(𝜇𝑓
∗ − 1) + 1)

1
𝑐𝑓 (114) 

 𝑐𝑓 =
𝑇1,𝑓

𝑎𝑓

1 + 𝑇1,𝑓
𝑎𝑓
+
𝑏𝑓

𝑇1,𝑓
 (115) 
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where parameters, 𝑎𝑓 and 𝑏𝑓, are calculated with Equations (29)-(34). The post-yield 

stiffness, 𝛼𝑓, is also required in Equations (29)-(34), (91) and (92); for equivalent SDOF 

frame system 𝛼𝑓 is defined as: 

 𝛼𝑓 =
𝑉𝑢,𝑓

∗ − 𝑉𝑦,𝑓
∗

𝑑𝑢,𝑓
∗ − 𝑑𝑦,𝑓

∗

𝑑𝑦,𝑓
∗

𝑉𝑦,𝑓
∗  (116) 

Finally, the ductility reduction factor for MDOF system of wall structures, 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑓, is 

given by the following expression: 

 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑓 = 𝑅𝑀,𝑓𝑅𝜇,𝑆𝐷𝑂𝐹,𝑓 (117) 

Where the modification factor, 𝑅𝑀,𝑓, is introduced to take into account higher mode effects 

for frame structures. 

A method to assess higher mode effects for wall structures is proposed by Priestley et al. 

(2007), which defines the amplified base shear for frames: 

 𝑉𝑏,𝑀𝐷𝑂𝐹,𝑓 = 𝜔𝑣,𝜇𝑉𝑏,𝑆𝐷𝑂𝐹,𝑓 (118) 

 𝜔𝑣,𝜇 = 𝜙
0 + 0.1𝜇𝑓

∗ (119) 

where 𝜙0 is the overstrength factor relating the maximum feasible flexural strength to design 

strength; in this work 𝜙0 is equal to 1 because mean values of material properties are 

assumed instead of design ones. 

Equation (119) is obtained from nonlinear time history analyses of RC frame structures 

designed according to the DDBD but it can be considered valid also for shear frames. The 

shear frame is still representative of a frame system even though it is designed according to 

capacity design rules because it shows anyway a dominant shear deformation shape, also 

due to the presence of a rigid floor. In other words, the floor is rigid and not necessarily the 

beams. 

From Equation (43) and Equation (95), the modification factor for wall structures, 𝑅𝑀,𝑓, is 

defined equal to: 

 𝑅𝑀,𝑓 =
𝑉𝑏,𝑆𝐷𝑂𝐹,𝑓

𝑉𝑏,𝑀𝐷𝑂𝐹,𝑓
=

1

𝜔𝑣,𝜇
 (120) 

The modification factor for wall structures, 𝑅𝑀,𝑓, is plotted as a function of the displacement 

ductility demand, 𝜇𝑓
∗, in Figure 14. 
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Figure 16: Modification factor for frame structures, 𝑅𝑀,𝑓. 

 

 

3.4. Analytical model for dual systems 

The formulation wants to be a pioneering approach to calculate the ductility reduction factor 

for dual systems, 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑑. Basically, the idea is that 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑑 depends on the ductility 

reduction factor of the single system which it is composed of, i.e. the wall system, 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑤, 

and the frame system, 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑓, and on their ductility demands, 𝜇𝑤
∗ and 𝜇𝑓

∗. This choice 

is decided because the analytical model for dual systems wants to be related to quantities 

already known from the analytical models of single systems. 

The ductility reduction factor for the dual system is defined empirically and two expressions, 

𝑅𝜇,𝑀𝐷𝑂𝐹,𝑑,1 and 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑑,2, are proposed. 

The first expression, 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑑,1, is a polynomial regression of results. This expression has 

no evidenced mechanical meaning, but it has been determined as the best fit to results and it 

is given by: 

 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑑,1 = 𝑎1
𝑅𝜇,𝑀𝐷𝑂𝐹,𝑤

𝑐1

𝜇𝑤∗
𝑏1

+ 𝑎2
𝑅𝜇,𝑀𝐷𝑂𝐹,𝑓

𝑐2

𝜇𝑓∗
𝑏2

 (121) 

The second expression, 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑑,2, is a simpler expression than Equation (121) and it is 

equal to: 

 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑑,2 = 𝑎1𝑅𝜇,𝑀𝐷𝑂𝐹,𝑤 + 𝑎2
𝑅𝜇,𝑀𝐷𝑂𝐹,𝑓

√𝜇𝑓
∗

 (122) 

More details about these expressions are given in Section 5.3.  
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4. Numerical analyses 

 

This Section 4 reports the implemented numerical models. Section 4.1 introduces numerical 

models and Section 4.2 the numerical procedures to compute the ductility force reduction 

factor. 

 

4.1. Numerical models 

The software used to perform numerical analyses of considered structural systems is the 

Open System for Earthquake Engineering Simulation (OpenSees, 2015). It is a open-source 

framework software for simulating the seismic response of structural and geotechnical 

systems. OpenSees has been developed as the computational platform for research in 

performance-based earthquake engineering at the Pacific Earthquake Engineering Research 

Center (PEER), that is a multi-institutional research and education center with headquarters 

at the University of California, Berkeley, USA (Mazzoni et al., 2007). Pre-processing and 

post-processing of data were conducted with the software Matlab (2013). 

 

4.1.1. Model for wall system 

The wall system is modelled as a flexural beam. As introduced in Section 3.2, the analytical 

model consists of one wall, which is representative of the wall system. Particularly, it 

consists of Euler-Bernoulli elastic beams with a bilinear moment-rotation hinge (or 

rotational spring) at each storey level, as shown in Figure 17. The rotational springs are 

placed only at storey level because it is ascertained that hinges usually develop at the base 

or due to the constrains imposed by rigid floors. The moment-rotation relationship is 

assumed bilinear for the sake of simplicity and to limit the time of computation. Masses are 

assigned to each floor level. 



Force-Based Seismic Design of Dual System Structures 

_________________________________________________________________________ 

44 

 

Figure 17: MDOF model of wall system. 

 

Properties of the Euler-Bernoulli elastic beams are the following: 

(i) Area, 𝐴𝑤, equal to the base section of the wall: 

 𝐴𝑤 = 𝑏𝑤ℎ𝑤 (123) 

where 𝑏𝑤 is wall width and ℎ𝑤 is wall length; 

(ii) Moment of inertia of the wall, 𝐼𝑤: 

 𝐼𝑤 =
𝑏𝑤ℎ𝑤

3

12
 (124) 

(iii) Equivalent Young modulus is defined at the yield moment of the wall, in order 

to assign the proper reduction of stiffness due to cracking: 

 𝐸𝑐,𝑤 = 𝐸𝑐
𝐸𝑐,𝑤𝐼𝑤,𝑦

𝐸𝑐𝐼𝑤
= 𝐸𝑐

𝑀𝑦,𝑤/𝜑𝑦,𝑤

𝐸𝑐𝐼𝑤
=
𝑀𝑦,𝑤

𝜑𝑦,𝑤𝐼𝑤
 (125) 

where the flexural stiffness of the wall, 𝐸𝑐,𝑤𝐼𝑤,𝑦, is equal to the ratio of the yield 

moment, 𝑀𝑦,𝑤, and the yield curvature, 𝜑𝑦,𝑤 (Priestley et al., 2007); the Young 

modulus of concrete in GPa, 𝐸𝑐, is given by (UNI EN 1992-1-1, 2004): 

 𝐸𝑐 = 22 (
𝑓𝑐
10
)
0.3

 (126) 

where 𝑓𝑐 is the concrete mean compressive strength in 𝑀𝑃𝑎. 

The moment-rotation spring is modelled as a zero-length element in OpenSees, based on the 

uniaxial bilinear material called “Steel01”. The plastic hinge needs to be modelled with an 

expedient because OpenSees does not provide rigid-elastic material. The assumed properties 

of the bilinear moment-rotation hinge are described in the following and illustrated in Figure 

18. 
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Figure 18: Bilinear moment-rotation hinge. 

 

The initial elastic tangent stiffness, 𝑘𝜃, is multiplied by big number, 𝑛𝑏𝑖𝑔 = 1000, to obtain 

an equivalent initial elastic tangent stiffness, 𝑘′𝜃, which is necessary to model a plastic hinge 

with a bilinear material as reported in Equation (127). In other words, the yield rotation, 

𝜃𝑦,𝑤, divided by 𝑛𝑏𝑖𝑔 becomes negligible, 𝜃′𝑦,𝑤 ≪ 1, as shown in Equation (128). 

Consequently, the ultimate rotation, 𝜃𝑢,𝑤, is assumed coincident to the plastic rotation, 𝜃𝑝,𝑤, 

given by Equation (129). 

 𝑘′𝜃 =
𝑀𝑦,𝑤

𝜃′𝑦,𝑤
=
𝑛𝑏𝑖𝑔𝑀𝑦,𝑤

𝜃𝑦,𝑤
= 𝑛𝑏𝑖𝑔𝑘𝜃 ≫ 1 (127) 

 𝜃′𝑦,𝑤 =
𝜃𝑦,𝑤

𝑛𝑏𝑖𝑔
≪ 1 (128) 

 𝜃𝑢,𝑤 = 𝜃𝑝,𝑤 + 𝜃′𝑦,𝑤
𝑀𝑢,𝑤
𝑀𝑦,𝑤

≈ 𝜃𝑝,𝑤 = (𝜑𝑢,𝑤 − 𝜑𝑦,𝑤)𝐿𝑝,𝑤 (129) 

where 𝑀𝑢,𝑤, 𝜑𝑢,𝑤 and 𝐿𝑝,𝑤 are the yield moment, the yield curvature and the plastic hinge 

length of the wall, as introduced in Section 3.2 for the equivalent SDOF system for wall. 

The hardening ratio, 𝑏′𝜃, which is defined as the ratio between post-yield tangent and initial 

elastic tangent, is then given by: 

 𝑏′𝜃 = 𝑏𝜃 =
𝑀𝑢,𝑤 −𝑀𝑦,𝑤

𝜃𝑢,𝑤 − 𝜃′𝑦,𝑤
∙
1

𝑘′𝜃
≈
𝑀𝑢,𝑤 −𝑀𝑦,𝑤

𝜃𝑝,𝑤
∙
1

𝑘′𝜃
 (130) 

The mechanical properties of the equivalent SDOF system for wall structures (Figure 19) 

defined in Section 3.1 are derived following the previous procedure as well. The SDOF 

model consists in a beam of height, ℎ𝑤
∗
, area, 𝐴𝑤, and mass, 𝑚𝑤

∗, placed on top. The 

moment of inertia, 𝐼𝑤
∗, is derived from the following expression: 
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 𝐼𝑤
∗ =

𝑘𝑤
∗ℎ𝑤

∗3

3𝐸𝑐,𝑤
 (131) 

Where the 𝑘𝑤
∗
 is the stiffness of the equivalent SDOF system as given by Equation (72). 

It is noted that the properties of the SDOF system, in particular the fundamental period and 

the first mode deflected shape, are calculated through a modal analysis – i.e., linear dynamic 

analysis – also performed in OpenSees. 

Properties of the bilinear moment-rotation hinge are calculate with Equations (127)-(130) 

by replacing 𝜑𝑦,𝑤 and 𝜑𝑢,𝑤 with 𝜑𝑦,𝑤
∗ and 𝜑𝑢,𝑤

∗, which are given by Equations (86) and 

(87). Properties of the equivalent SDOF system are already explained in detail in Section 

3.1. It is noted that the hinge of equivalent SDOF system has the same ductility than the wall 

section, as introduced by Equation (87). 

The elastic equivalent SDOF system for wall structures corresponds to the equivalent SDOF 

system model with an elastic rotational hinge at the base. 

 

Figure 19: SDOF model of wall system. 

 

 

4.1.2. Model for frame system 

The frame structure is modelled as a shear beam. As introduced in Section 3.3, the analytical 

model consists of one column, which is representative of the frame system. Particularly, it 

consists of Euler-Bernoulli elastic beams with a bilinear shear-displacement hinge or 

translational spring at each storey level, as shown in Figure 20. The translational springs are 

placed only at storey level because it is ascertained that hinges usually develop at the ends 

of columns due to the constrains imposed by rigid floors. The shear-displacement 

relationship is assumed bilinear for the sake of simplicity and to limit the time of 

computation. Masses are assigned to each floor level. 
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Figure 20: MDOF model of frame system. 

 

Beams are defined rigid by multiplying the Young modulus by 𝑛𝑏𝑖𝑔2 = 1𝑒07, in order to 

simulate a shear-type system. 

Properties of the Euler-Bernoulli elastic beam are the following: 

(i) Area, 𝐴𝑓, is equal to the base section of the frame: 

 𝐴𝑓 = 𝑛𝑐𝑏𝑐ℎ𝑐 (132) 

where 𝑛𝑐 is the number of storeys; 𝑏𝑐 and ℎ𝑐 are section width the section depth of the 

base column, respectively; 

(ii) Moment of inertia of the frame, 𝐼𝑓: 

 𝐼𝑓 =
𝑛𝑐𝑏𝑐ℎ𝑐

3

12
 (133) 

(iii) Equivalent Young modulus is defined at the yield moment of the column, in order 

to assign the proper reduction of stiffness due to cracking: 

 

𝐸′𝑐,𝑓 = 𝑛𝑏𝑖𝑔2𝐸𝑐,𝑓 = 𝑛𝑏𝑖𝑔2𝐸𝑐
𝐸𝑐,𝑓𝐼𝑓,𝑦

𝐸𝑐𝐼𝑓
= 𝑛𝑏𝑖𝑔2𝐸𝑐

𝑛𝑐𝑀𝑦,𝑓/𝜑𝑦,𝑓

𝐸𝑐𝐼𝑓

= 𝑛𝑏𝑖𝑔2
𝑛𝑐𝑀𝑦,𝑓

𝐼𝑓𝜑𝑦,𝑓
 

(134) 

where the flexural stiffness of the column, 𝐸𝑐,𝑓𝐼𝑓,𝑦, is equal to the ratio of the yield 

moment, 𝑀𝑦,𝑓, and the yield curvature, 𝜑𝑦,𝑓 (Priestley et al., 2007). 

The shear-displacement spring is modelled as a zero-length element in OpenSees, based on 

the uniaxial bilinear material “Steel01”. The assumed properties of the bilinear shear-

displacement hinge are the following and illustrated in Figure 21. 
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Figure 21: Bilinear shear-displacement hinge. 

 

The initial elastic tangent stiffness, 𝑘∆, the yield displacement, 𝑑𝑦,𝑓 , and the ultimate 

displacement, 𝑑𝑢,𝑓, are respectively defined as: 

 𝑘∆ =
12𝐸𝐼𝑓,𝑦

ℎ𝑠
3 =

12𝑛𝑐𝑀𝑦,𝑓/𝜑𝑦,𝑓

ℎ𝑠
3 =

12𝑛𝑐𝑀𝑦,𝑓

𝜑𝑦,𝑓ℎ𝑠
3  (135) 

 𝑑𝑦,𝑓 =
𝑉𝑦,𝑓

𝑘∆
=

𝑛𝑐𝑀𝑦,𝑓
ℎ𝑠/2
12𝐸𝐼𝑓,𝑦
ℎ𝑠
3 

=

𝑛𝑐𝑀𝑦,𝑓
ℎ𝑠/2

12𝑛𝑐𝑀𝑦,𝑓/𝜑𝑦,𝑓
ℎ𝑠
3 

=
𝜑𝑦,𝑓ℎ𝑠

2

6
 (136) 

 

𝑑𝑢,𝑓 = 𝑑𝑝,𝑓 + 𝑑𝑦,𝑓
𝑉𝑢,𝑓

𝑉𝑦,𝑓
= 𝑑𝑝,𝑓 + 𝑑𝑦,𝑓

𝑀𝑢,𝑓

𝑀𝑦,𝑓

= 2(𝜑𝑢,𝑓 − 𝜑𝑦,𝑓)𝐿𝑝,𝑓
ℎ𝑠
2
+ 𝑑𝑦,𝑓

𝑀𝑢,𝑓

𝑀𝑦,𝑓
 

(137) 

Where 𝑉𝑦,𝑓, 𝑉𝑢,𝑓, 𝑀𝑢,𝑓, 𝜑𝑢,𝑓 and 𝐿𝑝,𝑓 are the yield shear, the ultimate shear, the yield 

moment, the yield curvature and the plastic hinge length of the frame, respectively, as 

introduced in Section 3.3 for the equivalent SDOF system for wall. 

The hardening ratio, 𝑏∆, which is the ratio between post-yield tangent and initial elastic 

tangent, is then given by: 

 𝑏∆ =
𝑉𝑢,𝑓 − 𝑉𝑦,𝑓

𝑑𝑢 − 𝑑𝑦
∙
1

𝑘∆
 (138) 

The mechanical properties of the equivalent SDOF system for frame structures (Figure 22) 

defined in Section 3.3 are derived following the same procedure of wall structures. The 

SDOF model consists in a rigid beam of, length, ℎ𝑓
∗
, area, 𝐴𝑓, and mass, 𝑚𝑓

∗ placed on top. 

The initial elastic tangent, 𝑘𝑓
∗
, the yield displacement, 𝑑𝑦,𝑓

∗, and the yield displacement, 

𝑑𝑢,𝑓
∗
, are defined by Equations (72), (108)-(112). Properties of the equivalent SDOF system 
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are already explained in detail in Section 3.1. It is noted that the hinge of equivalent SDOF 

system has the same ductility than the column section, as introduced in Equation (111). 

The elastic equivalent SDOF system for frame structures corresponds to the equivalent 

SDOF system model with a linear elastic shear-displacement hinge at the base, which has 

initial elastic tangent stiffness, 𝑘𝑓
∗
. 

 

Figure 22: SDOF model of frame system. 

 

 

4.1.3. Model for dual system 

The dual system is modelled with coupling a flexural beam and a shear beam (Figure 23). 

The two systems are linked together by axial rigid trusses at each storey level. Truss length, 

𝑙𝑏, is conventional and taken equal to 1 meter. Stiffness and capacity of hinges are the sum 

of stiffness and capacity of elements of the structure to idealise. In other words, if the lateral 

resisting system of the considered structure is composed of 𝑛𝑤 walls and 𝑛𝑐 columns, the 

stiffness and capacity of hinges of flexural and shear beams are the sum of stiffness and 

capacity of hinges of the 𝑛𝑤 wall and 𝑛𝑐 columns, respectively. 

 

Figure 23: MDOF model of dual system. 

 

As will be explained in next Section 4.2, the dual system structure requires the definition of 

two equivalent SDOF systems, one equivalent to wall structure and one equivalent to frame 

structure, defined following the procedure reported in Section 4.1.1 and 4.1.2 and illustrated 

in Figure 24(a) and Figure 24(b), respectively. The equivalent mass of the two SDOF 

systems, 𝑚𝑑
∗, is equal to the sum of the masses of the flexural system, 𝑚𝑤

∗, and shear 
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system, 𝑚𝑓
∗, because the equivalent SDOF system wants to be representative of the dual 

structure, as given by (139). 

 𝑚𝑑
∗ = 𝑚𝑤

∗ +𝑚𝑓
∗ (139) 

The two equivalent SDOF systems, which are representative of the dual system, have the 

inelastic properties of the two single systems, in particular the rotational hinge for wall-

equivalent SDOF system and the shear hinge for frame-equivalent SDOF system. 

(a) (b) 

  

Figure 24: SDOF models of dual system, (a): wall-equivalent SDOF, (b): frame-

equivalent SDOF. 

 

 

4.2. Numerical procedure for ductility reduction factor computation 

In this section, considered structural systems, nonlinear dynamic analyses and ductility 

reduction factor for wall, frame and dual systems are reported. 

 

4.2.1. Considered structural systems 

A total of 21 series of analyses are computed in this work, in particular 3 series for wall 

systems, 3 for frame systems and 15 for dual systems, i.e., frame-wall systems. 

Each analysis consists in the evaluation of the ductility reduction factor for SDOF and 

MDOF system and the corresponding modification factor. Structures with a number of 

storeys, 𝑛𝑠, ranging from 3 to 12 is investigated for each group of sectional properties (Figure 

25); storey height, ℎ𝑠, is assumed equal to 3.00 𝑚. 



Section 4: Numerical analyses 

_________________________________________________________________________ 

51 

 

Figure 25: Numbers of storeys, 𝑛𝑠, investigated for each group of analyses. 

 

Material properties which are used in analyses, are: mean concrete compressive strength 

𝑓𝑐 = 38.0 𝑀𝑃𝑎; mean steel yield strength 𝑓𝑦,𝑠 = 550.0 𝑀𝑃𝑎; mean steel tensile strength 

𝑓𝑢,𝑠 = 632.5 𝑀𝑃𝑎; steel Young modulus 𝐸𝑠 = 200 𝐺𝑃𝑎; maximum diameter of rebars 

𝑑𝑏𝑙 = 20 𝑚𝑚. Structural RC member weight is assumed equal to 25.0 𝑘𝑁/𝑚3. 

Storey gravity loads in seismic combination, 𝑞𝐸, is equal to 7.8 𝑘𝑁/𝑚2 on a influence area 

of 25.0 𝑚2, which means a bay length, 𝑙𝑏, of 5.0 𝑚 and a storey span, 𝑖𝑏, of 5.0 𝑚; these 

loads are applied to all considered structures. All structures have the same beam section 

dimensions 𝑏𝑏 = 0.40 𝑚 and ℎ𝑏 = 0.40 𝑚. 

Concerning wall systems, three series of wall structures are considered and they are called 

“W1”, “W2” and “W3”, respectively. Each series is composed of 10 systems, with a number 

of storeys, 𝑛𝑠, ranging from 3 to 12 with a storey height ℎ𝑠 = 3.00 𝑚. They have the same 

section dimensions of the wall: section width 𝑏𝑤 = 0.30 𝑚 and section length 𝑙𝑤 = 2.10 𝑚. 

The main mechanical parameters of walls are reported in Table 8, in particular the difference 

between series is the sectional ductility, equal to 9.3, 11.7 and 14.0 for the three group, 

respectively. 

Table 8: Mechanical properties for wall systems. 

Properties W1 W2 W3 

Yield moment, 𝑀𝑦,𝑤 [𝐾𝑁𝑚] 3498.0 3498.0 3498.0 

Ultimate moment, 𝑀𝑢,𝑤 [𝐾𝑁𝑚] 4065.0 4065.0 4065.0 

Yield curvature, 𝜑𝑦,𝑤 [𝑚
−1] 0.0024 0.0024 0.0024 

Ultimate curvature, 𝜑𝑢,𝑤 [𝑚
−1] 0.0224 0.0280 0.0336 

Curvature ductility, 𝜇𝜑,𝑤 [−] 9.3 11.7 14.0 

 

Concerning frame systems, three series of frame structures are considered and they are called 

“F1”, “F2” and “F3”, respectively. Each series is composed of 10 systems, with a number of 

storeys, 𝑛𝑠, ranging from 3 to 12 with a storey height ℎ𝑠 = 3.00 𝑚. They have the same 

section dimensions of the base columns: section width 𝑏𝑐 = 0.40 𝑚 and section depth ℎ𝑐 =
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0.40 𝑚. The main mechanical parameters of frames are reported in Table 9, in particular the 

difference between series is the sectional ductility. It is noted that the values are assigned 

starting with the properties labelled “storey 12” as the top storey; i.e., if the considered 

structure is a 5 storey-height, the fifth storey has the properties labelled “storey 12” and the 

first storey has the properties labelled “storey 8”. This procedure is because sectional 

properties are calculated with the proper axial forced applied. 

Table 9: Mechanical properties for frame systems. 

Properties F1 F2 F3 

Yield moment, 𝑀𝑦,𝑓 [𝐾𝑁𝑚], storey 1 523.0 523.0 523.0 

Yield moment, 𝑀𝑦,𝑓 [𝐾𝑁𝑚], storey 2 514.0 514.0 514.0 

Yield moment, 𝑀𝑦,𝑓 [𝐾𝑁𝑚], storey 3 503.7 503.7 503.7 

Yield moment, 𝑀𝑦,𝑓 [𝐾𝑁𝑚], storey 4 494.3 494.3 494.3 

Yield moment, 𝑀𝑦,𝑓 [𝐾𝑁𝑚], storey 5 484.7 484.7 484.7 

Yield moment, 𝑀𝑦,𝑓 [𝐾𝑁𝑚], storey 6 471.5 471.5 471.5 

Yield moment, 𝑀𝑦,𝑓 [𝐾𝑁𝑚], storey 7 473.9 473.9 473.9 

Yield moment, 𝑀𝑦,𝑓 [𝐾𝑁𝑚], storey 8 465.5 465.5 465.5 

Yield moment, 𝑀𝑦,𝑓 [𝐾𝑁𝑚], storey 9 452.6 452.6 452.6 

Yield moment, 𝑀𝑦,𝑓 [𝐾𝑁𝑚], storey 10 440.0 440.0 440.0 

Yield moment, 𝑀𝑦,𝑓 [𝐾𝑁𝑚], storey 11 426.7 426.7 426.7 

Yield moment, 𝑀𝑦,𝑓 [𝐾𝑁𝑚], storey 12 405.4 405.4 405.4 

Ultimate moment, 𝑀𝑢,𝑓  [𝐾𝑁𝑚], storey 1 550.0 550.0 550.0 

Ultimate moment, 𝑀𝑢,𝑓  [𝐾𝑁𝑚], storey 2 549.9 549.9 549.9 

Ultimate moment, 𝑀𝑢,𝑓  [𝐾𝑁𝑚], storey 3 551.9 551.9 551.9 

Ultimate moment, 𝑀𝑢,𝑓  [𝐾𝑁𝑚], storey 4 551.4 551.4 551.4 

Ultimate moment, 𝑀𝑢,𝑓  [𝐾𝑁𝑚], storey 5 548.1 548.1 548.1 

Ultimate moment, 𝑀𝑢,𝑓  [𝐾𝑁𝑚], storey 6 541.3 541.3 541.3 

Ultimate moment, 𝑀𝑢,𝑓  [𝐾𝑁𝑚], storey 7 533.7 533.7 533.7 

Ultimate moment, 𝑀𝑢,𝑓  [𝐾𝑁𝑚], storey 8 526.3 526.3 526.3 

Ultimate moment, 𝑀𝑢,𝑓  [𝐾𝑁𝑚], storey 9 517.2 517.2 517.2 

Ultimate moment, 𝑀𝑢,𝑓  [𝐾𝑁𝑚], storey 10 504.9 504.9 504.9 

Ultimate moment, 𝑀𝑢,𝑓  [𝐾𝑁𝑚], storey 11 490.9 490.9 490.9 

Ultimate moment, 𝑀𝑢,𝑓  [𝐾𝑁𝑚], storey 12 475.0 475.0 475.0 

Yield curvature, 𝜑𝑦,𝑓 [𝑚
−1], storey 1 0.0254 0.0254 0.0254 

Yield curvature, 𝜑𝑦,𝑓 [𝑚
−1], storey 2 0.0246 0.0246 0.0246 

Yield curvature, 𝜑𝑦,𝑓 [𝑚
−1], storey 3 0.0236 0.0236 0.0236 

Yield curvature, 𝜑𝑦,𝑓 [𝑚
−1], storey 4 0.0226 0.0226 0.0226 

Yield curvature, 𝜑𝑦,𝑓 [𝑚
−1], storey 5 0.0214 0.0214 0.0214 

Yield curvature, 𝜑𝑦,𝑓 [𝑚
−1], storey 6 0.0198 0.0198 0.0198 

Yield curvature, 𝜑𝑦,𝑓 [𝑚
−1], storey 7 0.0186 0.0186 0.0186 

Yield curvature, 𝜑𝑦,𝑓 [𝑚
−1], storey 8 0.0176 0.0176 0.0176 

Yield curvature, 𝜑𝑦,𝑓 [𝑚
−1], storey 9 0.0168 0.0168 0.0168 

Yield curvature, 𝜑𝑦,𝑓 [𝑚
−1], storey 10 0.0164 0.0164 0.0164 
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Yield curvature, 𝜑𝑦,𝑓 [𝑚
−1], storey 11 0.0162 0.0162 0.0162 

Yield curvature, 𝜑𝑦,𝑓 [𝑚
−1], storey 12 0.0158 0.0158 0.0158 

Ultimate curvature, 𝜑𝑢,𝑓 [𝑚
−1], storey 1 0.0720 0.0540 0.0360 

Ultimate curvature, 𝜑𝑢,𝑓 [𝑚
−1], storey 2 0.0742 0.0557 0.0371 

Ultimate curvature, 𝜑𝑢,𝑓 [𝑚
−1], storey 3 0.0798 0.0599 0.0399 

Ultimate curvature, 𝜑𝑢,𝑓 [𝑚
−1], storey 4 0.0860 0.0645 0.0430 

Ultimate curvature, 𝜑𝑢,𝑓 [𝑚
−1], storey 5 0.0900 0.0675 0.0450 

Ultimate curvature, 𝜑𝑢,𝑓 [𝑚
−1], storey 6 0.0946 0.0709 0.0473 

Ultimate curvature, 𝜑𝑢,𝑓 [𝑚
−1], storey 7 0.0988 0.0741 0.0494 

Ultimate curvature, 𝜑𝑢,𝑓 [𝑚
−1], storey 8 0.1130 0.0848 0.0565 

Ultimate curvature, 𝜑𝑢,𝑓 [𝑚
−1], storey 9 0.1260 0.0945 0.0630 

Ultimate curvature, 𝜑𝑢,𝑓 [𝑚
−1], storey 10 0.1346 0.1010 0.0673 

Ultimate curvature, 𝜑𝑢,𝑓 [𝑚
−1], storey 11 0.1408 0.1056 0.0704 

Ultimate curvature, 𝜑𝑢,𝑓 [𝑚
−1], storey 13 0.1460 0.1095 0.0730 

Curvature ductility, 𝜇𝜑,𝑓 [−], storey 1 2.8 2.1 1.4 

Curvature ductility, 𝜇𝜑,𝑓 [−], storey 2 3.0 2.2 1.5 

Curvature ductility, 𝜇𝜑,𝑓 [−], storey 3 3.4 2.6 1.7 

Curvature ductility, 𝜇𝜑,𝑓 [−], storey 4 3.8 2.9 1.9 

Curvature ductility, 𝜇𝜑,𝑓 [−], storey 5 4.2 3.2 2.1 

Curvature ductility, 𝜇𝜑,𝑓 [−], storey 6 4.8 3.6 2.4 

Curvature ductility, 𝜇𝜑,𝑓 [−], storey 7 5.3 4.0 2.7 

Curvature ductility, 𝜇𝜑,𝑓 [−], storey 8 6.4 4.8 3.2 

Curvature ductility, 𝜇𝜑,𝑓 [−], storey 9 7.5 5.6 3.8 

Curvature ductility, 𝜇𝜑,𝑓 [−], storey 10 8.2 6.2 4.1 

Curvature ductility, 𝜇𝜑,𝑓 [−], storey 11 8.7 6.5 4.4 

Curvature ductility, 𝜇𝜑,𝑓 [−], storey 12 9.2 6.9 4.6 

 

Concerning dual systems, frame-wall structures are obtained with three combination of wall 

and frame systems, in particular the coupled systems labelled: “W1F1”, “W2F2” and 

“W3F3”, respectively, are obtained by combining the i-th wall with the i-th frame. 

Furthermore, for each of these three groups, 5 frame with different stiffness are considered: 

a single wall is coupled with a shear system which models a frame composed of 2, 5, 10, 15 

and 20 columns, respectively (in other words, a 1, 4, 9, 14 and 19 bays frame, respectively). 

Consequently, previous group labels are completed with the number of columns, 𝑛𝑐, for 

instance, “W1F1C2” means system W1F1 with a 2 columns shear frame (Table 10). Number 

of wall is 𝑛𝑤 = 1 for all groups. The portrayal of a dual system with 𝑛𝑠 = 4 and 𝑛𝑐 = 5, 

i.e., W1F1C5 or W2F2C5 or W3F3C5, is shown in Figure 26. 
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Table 10: Nomenclature of dual systems. 

 

Wall 

 

Frame 

Dual systems 

𝒏𝒄 = 𝟐 𝒏𝒄 = 𝟓 𝒏𝒄 = 𝟏𝟎 𝒏𝒄 = 𝟏𝟓 𝒏𝒄 = 𝟐𝟎 

W1 F1 W1F1C2 W1F1C5 W1F1C10 W1F1C15 W1F1C20 

W2 F2 W2F2C2 W2F2C5 W2F2C10 W2F2C15 W2F2C20 

W3 F3 W3F3C2 W3F3C5 W3F3C10 W3F3C15 W3F3C20 

 

 

Figure 26: Portrayal of dual system with 𝑛𝑠 = 4 and 𝑛𝑐 = 5, i.e., W1F1C5 or W2F2C5 

or W3F3C5. 

 

 

4.2.2. Nonlinear dynamic analyses 

Nonlinear Time History Analyses (NLTHA) are performed to calculate the ductility 

reduction factor. For each structure, a set of 34 natural ground motions. A total of 1020 

nonlinear time history analyses (NLTHA) were computed for wall and frame systems and 

5100 analyses for dual systems, respectively. 

Natural ground motions are taken from Karavasilis et al. (2007), which were selected from 

the PEER (2005) ground motion database, and reported in Table 11. The magnitude, 𝑀𝑤, 

the soil type (UNI EN 1998-1, 2013), and peak ground acceleration, 𝑃𝐺𝐴, of the Far-Fault 

ground motions considered are presented in Table 11, while their elastic acceleration spectra 

are portrayed in Figure 27. 

Concerning MDOF systems, Rayleigh damping matrix is assigned by considering a damping 

coefficient 𝜁 = 5% to the first two structural periods. The mass contribute is assigned to 

nodes with masses and the stiffness contribute is assigned to beams through the tangent 

stiffness matrix (Chopra, 2006). Concerning SDOF systems, a damping coefficient 𝜁 = 5% 

is assigned through the initial stiffness matrix. The analysis time step is defined as the 

minimum value between 𝑇1 20⁄ , the time step of the ground motion and 0.02 seconds. The 

Newmark method with constant average acceleration is used (𝛾 = 0.5 and 𝛽 = 0.25), which 

is unconditionally stable (Bathe, 1996). Further details about the solver of OpenSees are 

available in Mazzoni et al. (2007). 



Section 4: Numerical analyses 

_________________________________________________________________________ 

55 

Table 11: Characteristics of ground motions, Karavasilis et al. (2007). 

ID Event Station 
𝑴𝒘 𝑫 

[𝑲𝒎] 
Soil PGA 

[g] 

FF1 Landers 

1992/06/28 

Yermo Fire Station 7.2 24.9 C 0.25 

FF2 Loma Prieta 

1989/10/18 

Hollister City Hall 6.9 28.2 C 0.25 

FF3 Superstition 

Hills(B) 

1987/11/02 

Wildlife Liquef. Array 6.4 24.4 D 0.21 

FF4 Imperial Valley 

1979/10/15 

Delta 6.5 43.6 C 0.35 

FF5 Loma Prieta 

1989/10/18 

Hollister - South & Pine 6.9 28.8 D 0.37 

FF6 Northridge 

1994/01/17 

Canoga Park - Topanga Can 6.7 15.8 C 0.42 

FF7 Loma Prieta 

1989/10/22 

Hollister Diff. Array 6.9 25.8 D 0.28 

FF8 Irpinia, Italy 

1980/11/23 

Sturno 6.5 32.0 C 0.36 

FF9 Loma Prieta 

1989/10/18 

Golden Gate Bridge 6.9 85.1 B 0.23 

FF10 Northridge 

1994/01/10 

LA - Century City CC North 6.7 25.7 B 0.26 

FF11 Kobe 

1995/01/16 

Kakogawa 6.9 26.4 D 0.35 

FF12 Northridge 

1994/01/17 

Santa Monica City Hall 6.7 27.6 B 0.88 

FF13 Loma Prieta 

1989/10/18 

Gilroy Array #4 6.9 16.1 C 0.42 

FF14 Loma Prieta 

1989/10/21 

Coyote Lake Dam (SW Abut) 6.9 21.8 A 0.48 

FF15 Loma Prieta 

1989/10/24 

Sunnyvale - Colton Ave. 6.9 28.8 C 0.21 

FF16 Northridge 

1994/01/17 

Beverly Hills - 14145 Mulhol 6.7 19.6 B 0.52 

FF17 Northridge 

1994/01/22 

Castaic - Old Ridge Route 6.7 22.6 B 0.57 

FF18 Northridge 

1994/01/17 

Hollywood - Willoughby Ave 6.7 25.7 B 0.25 

FF19 Northridge 

1994/01/17 

LA - Wonderland Ave 6.7 22.7 A 0.17 

FF20 Landers 

1992/06/28 

Desert Hot Springs 7.2 23.2 A 0.17 

FF21 Northridge 

1994/01/17 

LA - N Faring Rd 6.7 23.9 C 0.27 

FF22 Northridge 

1994/01/17 

LA - Hollywood Stor FF 6.7 25.5 C 0.36 
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FF23 Loma Prieta 

1989/10/18 

APEEL 2 - Redwood City 6.9 47.9 D 0.27 

FF24 Coalinga 

1983/07/22 

Pleasant Valley P.P. - yard 5.8 17.4 D 0.60 

FF25 Northridge 

1994/01/17 

Stone Canyon 6.7 22.2 B 0.39 

FF26 Loma Prieta 

1989/10/18 

SF Intern. Airport 6.9 64.4 C 0.33 

FF27 Whittier 

Narrows 

1987/10/01 

Compton - Castlegate St 5.9 16.9 C 0.33 

FF28 Northridge 

1994/01/21 

Santa Susana Ground 6.7 19.3 B 0.29 

FF29 Northridge 

1994/01/24 

LA - Chalon Rd 6.7 23.7 B 0.23 

FF30 Whittier 

Narrows 

1987/10/04 

Inglewood-Union Oil 5.9 18.3 C 0.16 

FF31 Cape 

Mendocino 

1992/04/25 

Rio Dell Overpass – FF 7.1 18.5 B 0.55 

FF32 Coalinga 

1983/05/02 

Cantua Creek School 6.4 25.5 D 0.28 

FF33 Northridge 

1994/01/18 

Moorpark - Fire Station 6.7 28.0 D 0.29 

FF34 Northridge 

1994/01/22 

LA - S Grand Avenue 6.7 36.9 C 0.29 

 

 

Figure 27: Elastic acceleration spectra of natural ground motions. 
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4.2.3. Ductility reduction factor computation for wall system 

The procedure to calculate the reduction factor for wall systems is defined by the following 

steps and graphically shown in the flowchart of Figure 28; it is based on the works carried 

out by Santa-Ana (2004) and Wang et al. (2013). 

1. The properties of the equivalent SDOF system are defined in Section 4.1.1. 

2. The base shear of the MDOF system at the maximum target ductility capacity, 

𝑉𝑏,𝑀𝐷𝑂𝐹,𝑤(𝜇 = 𝜇𝑤 ≡ 𝜇𝑤
∗), is computed by scaling the intensity of the ground 

motion until the maximum rotation, 𝜃𝑢,𝑤,𝑖 = 𝜃𝑢,𝑤,𝑖,𝑚𝑎𝑥, in one of the 𝑛𝑠 hinges, is 

attained within a 5% tolerance. For this reason, the scaling factor is obtained using 

an iterative procedure. The target ductility for the MDOF system, 𝜇𝑤
∗, is defined as 

the displacement ductility evaluated at the effective modal height ℎ𝑤
∗; at each 

iteration 𝜇𝑤
∗ is calculated as the ratio of the ultimate displacement, 𝑑𝑢(ℎ1

∗), and the 

yield displacement, 𝑑𝑦(ℎ1
∗): 

 𝜇𝑤
∗ =

𝑑𝑢(ℎ1
∗)

𝑑𝑦(ℎ1
∗)

 (140) 

The yield displacement, 𝑑𝑦(ℎ1
∗), is obtained from a pushover analysis of the MDOF 

system subjected to an inverse triangular load distribution, which is representative of 

the first mode deflected shape. If the effective modal height is not a multiple of the 

story height, displacements are evaluated through linear interpolation between the 

displacement at the story above and the story below ℎ𝑤
∗
. 

3. The base shear of the SDOF system at the maximum target ductility capacity, 

𝑉𝑏,𝑆𝐷𝑂𝐹,𝑤(𝜇 = 𝜇𝑤
∗), is computed by iteration on the yield moment of the base hinge 

of the SDOF system, when subjected to the same ground motion and same scale 

factor of step 2, until the displacement ductility, 𝜇, of the SDOF structure is equal to 

the target ductility 𝜇𝑤
∗ within a 5% tolerance error. The yield displacement is 

identified as the top displacement corresponding to the yield moment at the base 

hinge. 

4. The base shear of the elastic SDOF system, 𝑉𝑏,𝑆𝐷𝑂𝐹,𝑤(𝜇 = 1), is computed for the 

elastic SDOF system when subjected to the same ground motion and same scale 

factor of step 2. 

5. The ductility reduction factor for the SDOF wall system, 𝑅𝜇,𝑆𝐷𝑂𝐹,𝑤, the ductility 

reduction factor for the MDOF wall system, 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑤, and the modification factor 

for wall system, 𝑅𝑀,𝑤, are straightforward calculated making use of Equations (18), 

(21) and (22), respectively. 
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Figure 28: Flowchart for the calculation of ductility reduction factor of wall and frame 

structures. 

 

 

4.2.4. Ductility reduction factor computation for frame system 

Similarly to wall systems, the procedure to calculate the reduction factor for frame systems 

is defined by the following steps and graphically shown in the flowchart of Figure 28. 

The procedure to calculate the reduction factor for frame systems is defined by the following 

steps. 

1. The properties of the equivalent SDOF system are defined in Section 4.1.2. 

The base shear of the MDOF system, 𝑉𝑏,𝑀𝐷𝑂𝐹,𝑓(𝜇 = 𝜇𝑓 ≡ 𝜇𝑓
∗), is computed by 

scaling the intensity of the ground motion until the maximum displacement, 𝑑𝑢,𝑓,𝑖 =

𝑑𝑢,𝑓,𝑖,𝑚𝑎𝑥, in one of the 𝑛𝑠 hinges, is attained within a 5% tolerance. For this reason, 

the scaling factor is obtained using an iterative procedure. The target ductility for the 

MDOF system, 𝜇𝑓
∗, is defined as the maximum interstorey drift ductility. The 



Section 4: Numerical analyses 

_________________________________________________________________________ 

59 

interstorey drift ductility at each iteration is calculated as the maximum ratio of the 

ultimate displacement, 𝑑𝑢,𝑓,𝑖, and the yield displacement, 𝑑𝑦,𝑓,𝑖, among the 𝑛𝑠 storeys 

divided by the storey height, ℎ𝑠. 

 𝜇𝑓
∗ = 𝑚𝑎𝑥(

𝑑𝑢,𝑓,𝑖 − 𝑑𝑢,𝑓,𝑖−1
ℎ𝑠

𝑑𝑦,𝑓,𝑖 − 𝑑𝑦,𝑓,𝑖−1
ℎ𝑠

) = 𝑚𝑎𝑥 (
𝑑𝑢,𝑓,𝑖 − 𝑑𝑢,𝑓,𝑖−1

𝑑𝑦,𝑓,𝑖 − 𝑑𝑦,𝑓,𝑖−1
) (141) 

The yield displacement for the i-th storey, 𝑑𝑦,𝑓,𝑖, is the analytical yield 

displacement given by: 

 𝑑𝑦,𝑓,𝑖 =

𝑀𝑦,𝑖
ℎ𝑠/2

12𝐸𝑐,𝑓𝐼𝑓,𝑦
ℎ𝑠
3

=
𝑀𝑦,𝑖ℎ𝑠

2

6𝐸𝑐,𝑓𝐼𝑓,𝑦
 (142) 

2. The base shear of the SDOF system at the maximum target ductility capacity, 

𝑉𝑏,𝑆𝐷𝑂𝐹,𝑓(𝜇 = 𝜇𝑓
∗), is computed by iteration on the yield moment of the hinges of 

the SDOF system, when subjected to the same ground motion and same scale factor 

of step 2, until the maximum storey displacement ductility, 𝜇 , of the SDOF structure 

is equal to the target ductility 𝜇𝑓
∗ within a 5% tolerance error. The yield displacement 

is identified as the top displacement which corresponding to the yield shear in the 

hinge. 

3. The base shear of the elastic SDOF system, 𝑉𝑏,𝑆𝐷𝑂𝐹,𝑓(𝜇 = 1), is computed for the 

elastic SDOF system when subjected to the same ground motion and same scale 

factor of step 2. 

4. The ductility reduction factor for the SDOF frame system, 𝑅𝜇,𝑆𝐷𝑂𝐹,𝑓, the ductility 

reduction factor for the MDOF frame system, 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑓, and the modification factor 

for frame system, 𝑅𝑀,𝑓, are straightforward calculated making use of Equations (18), 

(21) and (22), respectively. 

 

4.2.5. Ductility reduction factor computation for dual system 

The procedure to calculate the reduction factor for dual systems is defined by the following 

steps. 

1. The properties of the two equivalent SDOF systems are defined in Section 4.1.3. 

2. The base shear of the MDOF system at the maximum target ductility capacity, 

𝑉𝑏,𝑀𝐷𝑂𝐹,𝑑(𝜇 = 𝜇𝑤 ≡ 𝜇𝑤
∗) ≡ 𝑉𝑏,𝑀𝐷𝑂𝐹,𝑑(𝜇 = 𝜇𝑓 ≡ 𝜇𝑓

∗), is computed by scaling the 

intensity of the ground motion until the maximum rotation, 𝜃𝑢,𝑤,𝑖 = 𝜃𝑢,𝑤,𝑖,𝑚𝑎𝑥, in 

one of the 𝑛𝑠 hinges in of the wall, or until the maximum displacement, 𝑑𝑢,𝑓,𝑖 =

𝑑𝑢,𝑓,𝑖,𝑚𝑎𝑥, in one of the 𝑛𝑠 hinges of the frame, is attained within a 5% tolerance. For 
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this reason, the scaling factor is obtained using an iterative procedure. The target 

ductilities for the MDOF system, 𝜇𝑤
∗ and 𝜇𝑓

∗, are defined at Point 2 in Sections 4.1.1 

and 4.1.2, respectively. 

3. The base shear of the elastic wall-equivalent SDOF system, 𝑉𝑏,𝑆𝐷𝑂𝐹,𝑤,𝑑(𝜇 = 1), is 

computed for the elastic wall-equivalent SDOF system when subjected to the same 

ground motion and same scale factor of step 2. 

4. The base shear of the elastic frame-equivalent SDOF system, 𝑉𝑏,𝑆𝐷𝑂𝐹,𝑓,𝑑(𝜇 = 1), is 

computed for the elastic frame-equivalent SDOF system when subjected to the same 

ground motion and same scale factor of step 2. 

5. The ductility reduction factor for the wall-equivalent MDOF system, 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑤,𝑑, is 

straightforward calculated making use of Equation (21). 

6. The ductility reduction factor for the frame-equivalent MDOF system, 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑓,𝑑, 

is straightforward calculated making use of Equations (21). 

Following the proposed approach, the two ductility reduction factors are obtained, for wall-

equivalent and frame-equivalent systems respectively. This is due to the implemented 

concept of ductility, that is expressed as “global” ductility for wall systems and as “local” 

ductility for frame systems. Thus, the ductility reduction factor for dual system structures, 

𝑅𝜇,𝑀𝐷𝑂𝐹,𝑑, must be defined. 

In the present work, 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑑 is determined as the weighted average of 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑤,𝑑 and 

𝑅𝜇,𝑀𝐷𝑂𝐹,𝑓,𝑑 assuming as a weight parameter the energy dissipated by the different structural 

systems, as expressed in the following Equation (143). 

 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑑 =
𝑅𝜇,𝑀𝐷𝑂𝐹,𝑤,𝑑𝑢𝑤𝑣𝑤 + 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑓,𝑑𝑢𝑓𝑣𝑓

𝑢𝑤𝑣𝑤 + 𝑢𝑓𝑣𝑓
 (143) 

where: 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑤,𝑑, 𝑢𝑤 and 𝑣𝑤 are respectively the MDOF ductility reduction factor, the use 

rate and the base shear ratio for the wall-equivalent system; 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑓,𝑑, 𝑢𝑓 and 𝑣𝑓 are 

respectively the MDOF ductility reduction factor, the use rate and the base shear ratio for 

the frame-equivalent system. 

The use rates are defined as the ratio between the displacement demand and the displacement 

capacity of wall and frame systems, named 𝑢𝑤 and 𝑢𝑓, respectively. The 𝑢𝑤 is defined in 

Equation (144) as the ratio of the ultimate displacement demand, 𝑑𝑑,𝑤, and the ultimate 

displacement capacity, 𝑑𝑐,𝑤, of the wall system evaluated at the equivalent height ℎ𝑤
∗
. 

Because the use rate 𝑢𝑤 is a measure of the exploitation of the wall system, it can be 

equivalently expressed as the ratio of the rotational demand 𝜃𝑑,𝑤 and rotational capacity 𝜃𝑐,𝑤 

of the wall base hinge. 

 𝑢𝑤 =
𝑑𝑑,𝑤(ℎ𝑤

∗)

𝑑𝑐,𝑤(ℎ𝑤
∗)
=
𝜃𝑑,𝑤ℎ𝑤

∗

𝜃𝑐,𝑤ℎ𝑤
∗ =

𝜃𝑑,𝑤
𝜃𝑐,𝑤

 (144) 

The 𝑢𝑓 is defined in Equation (145) as the maximum ratio of the ultimate interstorey drift 

demand and the ultimate interstorey drift capacity of the frame system, where 𝑑𝑑,𝑓,𝑖 is the 
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ultimate displacement demand; 𝑑𝑐,𝑓,𝑖 is the ultimate displacement capacity; 𝑖 indicates the 

number of storeys where the shear-displacement hinges are located. 

 𝑢𝑓 = 𝑚𝑎𝑥(

𝑑𝑑,𝑓,𝑖 − 𝑑𝑑,𝑓,𝑖−1
ℎ𝑠

𝑑𝑐,𝑓,𝑖 − 𝑑𝑐,𝑓,𝑖−1
ℎ𝑠

) = 𝑚𝑎𝑥 (
𝑑𝑑,𝑓,𝑖 − 𝑑𝑑,𝑓,𝑖−1

𝑑𝑐,𝑓,𝑖 − 𝑑𝑐,𝑓,𝑖−1
) (145) 

The base shear ratios are define in Equations (146) and (147) as the ratio between the base 

shear of the wall or frame systems and the total base shear of the dual system; they are named 

𝑣𝑤 and 𝑣𝑓 respectively. 

 𝑣𝑤 =
𝑉𝑏,𝑀𝐷𝑂𝐹,𝑤,𝑑
𝑉𝑏,𝑀𝐷𝑂𝐹,𝑑

=
𝑉𝑏,𝑀𝐷𝑂𝐹,𝑤,𝑑

𝑉𝑏,𝑀𝐷𝑂𝐹,𝑤,𝑑 + 𝑉𝑏,𝑀𝐷𝑂𝐹,𝑓,𝑑
= 1 − 𝑣𝑓 (146) 

 𝑣𝑓 =
𝑉𝑏,𝑀𝐷𝑂𝐹,𝑓,𝑑

𝑉𝑏,𝑀𝐷𝑂𝐹,𝑑
=

𝑉𝑏,𝑀𝐷𝑂𝐹,𝑓,𝑑

𝑉𝑏,𝑀𝐷𝑂𝐹,𝑤,𝑑 + 𝑉𝑏,𝑀𝐷𝑂𝐹,𝑓,𝑑
= 1 − 𝑣𝑤 (147) 

The total base shear of the dual system, 𝑉𝑏,𝑀𝐷𝑂𝐹,𝑑, is the sum of the base shear of wall system, 

𝑉𝑏,𝑀𝐷𝑂𝐹,𝑤,𝑑, and frame system, 𝑉𝑏,𝑀𝐷𝑂𝐹,𝑓,𝑑, which composed the frame-wall structure: 

 𝑉𝑏,𝑀𝐷𝑂𝐹,𝑑 = 𝑉𝑏,𝑀𝐷𝑂𝐹,𝑤,𝑑 + 𝑉𝑏,𝑀𝐷𝑂𝐹,𝑓,𝑑 (148) 

Results are discussed in detail in Section 5. 

  



Force-Based Seismic Design of Dual System Structures 

_________________________________________________________________________ 

62 

 

  



Section 5: Results 

_________________________________________________________________________ 

63 

 

 

 

5. Results 

 

Results of wall, frame and dual systems are reported in Section 5.1, 5.2 and 5.3, respectively. 

Description of results will refer to low, medium and high number for storey, 𝑛𝑠, and it is 

noted that low, medium and high refer to the range of storeys in the present work (from 3 to 

12). Therefore low-rise and mid-rise structures are investigated, but high-rise buildings are 

not studied in the present work. 

 

5.1. Results for wall systems 

In this Section a detailed comparison of numerical results of Section 4 and analytical results 

of Section 3 are reported. 

Results of wall systems W1, W2 and W3 are illustrated in Figure 29-Figure 31 and also 

reported as numerical values in Table 12-Table 14, respectively. Numerical values are 

indicated with “OS” label in figures. 

Each Figure is composed of four plots. 

In Plot (a), the numerical ductility reduction factor for SDOF systems, 𝑅𝜇,𝑆𝐷𝑂𝐹,𝑤,𝑂𝑆, and 

MDOF systems, 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑤,𝑂𝑆, are compared to the analytical ductility reduction factor for 

SDOF systems, 𝑅𝜇,𝑆𝐷𝑂𝐹,𝑤, and MDOF systems, 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑤, respectively, as a function of the 

number of storeys, 𝑛𝑠. 

In Plot (b), the statistical dispersion of 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑤,𝑂𝑆 is shown. All analyses (100%) and 68% 

coverage of population are plotted as a function of the number of storeys, 𝑛𝑠. 

In Plot (c), the comparison between the numerical modification factor, 𝑅𝑀,𝑤,𝑂𝑆, and the 

analytical modification factor, 𝑅𝑀,𝑤, is illustrated as a function of the number of storeys, 𝑛𝑠. 

In Plot (d), the comparison between the numerical target ductility, 𝜇𝑤,𝑂𝑆
∗, and the analytical 

target ductility, 𝜇𝑤
∗, is shown as a function of the number of storeys, 𝑛𝑠. Let’s recall that the 

target ductility, 𝜇𝑤
∗, is the maximum displacement ductility at the effective height, ℎ𝑤

∗
, 

which can be exploited by the system. 
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(a) (b) 

  

(c) (d) 

  

Figure 29: Results for W1 wall system, (a, b): 𝑅𝜇,𝑆𝐷𝑂𝐹,𝑤, 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑤, (c): 𝑅𝑀,𝑤, (d): 𝜇𝑤
∗ 
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(a) (b) 

  

(c) (d) 

  

Figure 30: Results of W2 wall system, (a, b): 𝑅𝜇,𝑆𝐷𝑂𝐹,𝑤, 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑤, (c): 𝑅𝑀,𝑤, (d): 𝜇𝑤
∗ 
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(a) (b) 

  

(c) (d) 

  

Figure 31: Results of W3 wall system, (a, b): 𝑅𝜇,𝑆𝐷𝑂𝐹,𝑤, 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑤, (c): 𝑅𝑀,𝑤, (d): 𝜇𝑤
∗ 

 

 

Table 12: Results of W1 wall system. 

 

𝒏𝒔 
OpenSees Proposed analytical method 

𝑹𝝁,𝑺𝑫𝑶𝑭,𝒘 𝑹𝝁,𝑴𝑫𝑶𝑭,𝒘 𝑹𝑴,𝒘 𝝁𝒘
∗ 𝑹𝝁,𝑺𝑫𝑶𝑭,𝒘 𝑹𝝁,𝑴𝑫𝑶𝑭,𝒘 𝑹𝑴,𝒘 𝝁𝒘

∗ 

3 2.59 2.03 0.78 4.10 3.52 2.77 0.79 4.06 

4 2.86 2.08 0.72 3.66 3.70 2.65 0.72 3.55 

5 3.09 1.76 0.57 3.50 3.55 1.97 0.55 3.23 

6 2.88 1.37 0.47 3.27 3.33 1.48 0.44 3.02 

7 2.50 0.92 0.37 2.96 3.14 1.14 0.36 2.86 

8 2.19 0.76 0.35 2.54 2.98 0.90 0.30 2.74 

9 2.03 0.63 0.31 2.45 2.85 0.73 0.26 2.64 

10 1.71 0.49 0.29 2.16 2.74 0.69 0.25 2.57 

11 1.72 0.44 0.26 2.16 2.65 0.68 0.26 2.50 

12 1.67 0.39 0.23 2.05 2.57 0.67 0.26 2.45 
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Table 13: Results of W2 wall system. 

 

𝒏𝒔 
OpenSees Proposed analytical method 

𝑹𝝁,𝑺𝑫𝑶𝑭,𝒘 𝑹𝝁,𝑴𝑫𝑶𝑭,𝒘 𝑹𝑴,𝒘 𝝁𝒘
∗ 𝑹𝝁,𝑺𝑫𝑶𝑭,𝒘 𝑹𝝁,𝑴𝑫𝑶𝑭,𝒘 𝑹𝑴,𝒘 𝝁𝒘

∗ 

3 2.98 2.26 0.76 4.97 4.03 3.04 0.75 4.87 

4 3.38 2.22 0.66 4.41 4.39 2.98 0.68 4.22 

5 3.42 1.88 0.55 3.95 4.24 2.18 0.51 3.81 

6 3.37 1.44 0.43 3.86 3.97 1.60 0.40 3.53 

7 2.93 0.98 0.33 3.54 3.71 1.22 0.33 3.33 

8 2.51 0.79 0.32 3.02 3.50 0.95 0.27 3.18 

9 2.29 0.65 0.28 2.78 3.33 0.76 0.23 3.06 

10 1.87 0.48 0.26 2.47 3.19 0.72 0.23 2.96 

11 1.88 0.44 0.23 2.39 3.07 0.71 0.23 2.88 

12 1.92 0.40 0.21 2.40 2.98 0.70 0.24 2.81 

 

Table 14: Results ofW3 wall system. 

 

𝒏𝒔 
OpenSees Proposed analytical method 

𝑹𝝁,𝑺𝑫𝑶𝑭,𝒘 𝑹𝝁,𝑴𝑫𝑶𝑭,𝒘 𝑹𝑴,𝒘 𝝁𝒘
∗ 𝑹𝝁,𝑺𝑫𝑶𝑭,𝒘 𝑹𝝁,𝑴𝑫𝑶𝑭,𝒘 𝑹𝑴,𝒘 𝝁𝒘

∗ 

3 3.19 2.38 0.75 5.77 4.52 3.28 0.72 5.68 

4 3.93 2.32 0.59 5.13 5.07 3.28 0.65 4.89 

5 4.09 2.01 0.49 4.85 4.94 2.36 0.48 4.39 

6 3.82 1.42 0.37 4.33 4.62 1.72 0.37 4.05 

7 3.33 1.02 0.31 4.09 4.30 1.29 0.30 3.81 

8 2.85 0.81 0.29 3.51 4.03 0.99 0.25 3.62 

9 2.60 0.71 0.27 3.30 3.82 0.79 0.21 3.47 

10 2.13 0.51 0.24 2.85 3.64 0.75 0.21 3.35 

11 2.26 0.52 0.23 2.92 3.50 0.74 0.21 3.25 

12 2.03 0.43 0.21 2.75 3.38 0.73 0.22 3.17 

 

The following considerations concerning result mean values can be drawn: 

(i) It is evident that ductility reduction factors, 𝑅𝜇,𝑆𝐷𝑂𝐹,𝑤 and 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑤, modification 

factor, 𝑅𝑀,𝑤, and target ductility, 𝜇𝑤
∗, decreases with the number of storeys (Figure 

29-Figure 31), that can be explained as the loss of capability of the system to exploit 

the base sectional inelasticity and the importance of higher mode effects with the 

number of storeys. 

(ii) The ductility reduction factor for the equivalent SDOF systems, 𝑅𝜇,𝑆𝐷𝑂𝐹,𝑤, and the 

ductility reduction factor for the MDOF systems, 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑤, are overestimated by the 

proposed analytical model with errors of 40% and 33% on average, respectively 

(Figure 29a-Figure 31a). 𝑅𝜇,𝑆𝐷𝑂𝐹,𝑤 and 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑤 decrease with the number of storeys 

and they show a concave up trend, except to lower number of storeys. It is noted that 

for high number of storeys 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑤 is a value less than 1, which means that the 

system is not able to exploit the base sectional inelasticity and the structure should be 

designed elastically. Numerical models give values of 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑤 ranged from 2.0 to 

0.4; from 2.3 to 0.4 and from 2.4 and 0.4 for W1, W2 and W3, respectively. 
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(iii) The modification factor, 𝑅𝑀,𝑤, is well predicted by the proposed analytical model and 

it is underestimated with an error of 5% on average (Figure 29c-Figure 31c). 𝑅𝑀,𝑤 

decreases with the number of storeys, which means that the higher mode effects 

progressively increase the base shear in MDOF systems. Numerical models give 

values ranged from 0.8 to 0.2 for all group of walls, then 𝑅𝑀,𝑤 is lightly affected by 

the sectional ductility capacity of the wall but it is mainly controlled by 𝑛𝑠. 

(iv) The target ductility, 𝜇𝑤
∗, is well predicted by the proposed analytical model and it is 

overestimated with an error of 4% on average, (Figure 29d-Figure 31d). 𝜇𝑤
∗ decreases 

with the number of storeys that can be explained as the loss of capability of the system 

to exploit the base section ductility with the increasing of the number of storeys due to 

higher mode effects. Numerical models give values ranged from 4.1 to 2.5, from 4.9 

to 2.8 and from 5.7 and 3.2 for W1, W2 and W3, respectively. The increasing of 𝜇𝑤
∗ 

from W1 to W3 groups is obvious because the sectional ductility of the walls are 9.3, 

11.7 and 14.0 for W1, W2 and W3, respectively (Table 8 of Section 4.2.1). 

Furthermore, 𝜇𝑤
∗ decreases with the number of storeys, that is the system is less 

efficient to exploit the sectional ductility and to convert it in available capacity 

ductility, 𝜇𝑤
∗, with the increasing of 𝑛𝑠. 

(v) The dispersion of data is considerable when all analyses are considered, but a lower 

scatter is evidenced when 68% coverage of population is assumed (Figure 29b-Figure 

31b). 

It is evident from Figure 29a,c-Figure 31a,c that 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑤 and 𝑅𝑀,𝑤 are not significantly 

different among the groups of walls. 

It is to be noticed that some convergence problems occurred during the numerical analysis 

due to convergence failures in the numerical procedure to calculate the ductility reduction 

factors, in particular when the convergence errors exceeded the 5% tolerance on the search 

for the ground motion scale factor (MDOF system) or the target ductility (equivalent SDOF 

system), within 20 iterations. The percentage of successful analyses, which is the ratio of 

successful analyses number and the total analyses number, is equal to 92%. Analyses fail 

randomly varying the number of storeys and ground motions; so they do not show systematic 

bias due to certain patterns. 

The comparison of fundamental periods given by the numerical model, 𝑇1,𝑤,𝑂𝑆, and 

analytical model, 𝑇1,𝑤, given by Equation (75), is illustrated in Figure 32 and listed in Table 

15. The analytical fundamental periods underestimate the numerical ones of 14% on average. 

The numerical period is different from the analytical one because the analytical formula is 

exact for uniformly distributed mass along the height of the structure, instead considered 

numerical models are lumped mass systems. 
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Figure 32: Fundamental periods of wall systems. 

 

 

Table 15: Fundamental period [s] of wall systems. 

𝒏𝒔 OpenSees Analytical prediction Relative error 

3 0.4599 0.3441 -25% 

4 0.7660 0.6117 -20% 

5 1.1488 0.9557 -17% 

6 1.6082 1.3762 -14% 

7 2.1443 1.8732 -13% 

8 2.7572 2.4467 -11% 

9 3.4467 3.0965 -10% 

10 4.2131 3.8229 -9% 

11 5.0562 4.6257 -9% 

12 5.9762 5.5050 -8% 
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5.2. Results for frame systems 

In this Section a detailed comparison of numerical results of Section 4 and analytical results 

of Section 3 are reported. 

Results of frame systems F1, F2 and F3 are illustrated in Figure 33-Figure 35, respectively 

and also reported as numerical values in Table 16-Table 18, respectively. 

Each Figure is composed of four plots. 

In Plot (a), the numerical ductility reduction factor for SDOF systems, 𝑅𝜇,𝑆𝐷𝑂𝐹,𝑓,𝑂𝑆, and 

MDOF systems, 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑓,𝑂𝑆, are compared to the analytical ductility reduction factor for 

SDOF systems, 𝑅𝜇,𝑆𝐷𝑂𝐹,𝑓, and MDOF systems, 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑓, respectively, as a function of the 

number of storeys, 𝑛𝑠. 

In Plot (b), the statistical dispersion of 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑓,𝑂𝑆 is shown. All analyses (100%) and 68% 

coverage of population are plotted as a function of the number of storeys, 𝑛𝑠. 

In Plot (c), the comparison between the numerical modification factor, 𝑅𝑀,𝑓,𝑂𝑆, and the 

analytical modification factor, 𝑅𝑀,𝑓, is illustrated as a function of the number of storeys, 𝑛𝑠. 

In Plot (d), the comparison between the numerical target ductility, 𝜇𝑓,𝑂𝑆
∗, and the analytical 

target ductility, 𝜇𝑓
∗, is shown as a function of the number of storeys, 𝑛𝑠. Let’s recall that the 

target ductility, 𝜇𝑓
∗, is the maximum interstorey drift ductility which can be exploited by the 

system. 
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(a) (b) 

  

(c) (d) 

  

Figure 33: Results of F1 frame system, (a, b): 𝑅𝜇,𝑆𝐷𝑂𝐹,𝑓, 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑓, (c): 𝑅𝑀,𝑓, (d): 𝜇𝑓
∗ 
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(a) (b) 

  

(c) (d) 

  

Figure 34: Results of F2 frame system, (a, b): 𝑅𝜇,𝑆𝐷𝑂𝐹,𝑓, 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑓, (c): 𝑅𝑀,𝑓, (d): 𝜇𝑓
∗ 
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(a) (b) 

  

(c) (d) 

  

Figure 35: Results of F3 frame system, (a, b): 𝑅𝜇,𝑆𝐷𝑂𝐹,𝑓, 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑓, (c): 𝑅𝑀,𝑓, (d): 𝜇𝑓
∗ 

 

 

Table 16: Results of F1 frame system. 

 

𝒏𝒔 
OpenSees Proposed analytical method 

𝑹𝝁,𝑺𝑫𝑶𝑭,𝒇 𝑹𝝁,𝑴𝑫𝑶𝑭,𝒇 𝑹𝑴,𝒇 𝝁𝒇
∗ 𝑹𝝁,𝑺𝑫𝑶𝑭,𝒇 𝑹𝝁,𝑴𝑫𝑶𝑭,𝒇 𝑹𝑴,𝒇 𝝁𝒇

∗ 

3 8.82 5.61 0.64 8.08 7.88 4.35 0.55 8.10 

4 8.28 4.80 0.58 7.49 8.12 4.67 0.57 7.41 

5 7.58 4.97 0.66 6.37 7.29 4.46 0.61 6.36 

6 6.37 4.01 0.63 5.36 6.09 3.99 0.65 5.28 

7 5.54 3.43 0.62 4.92 5.54 3.75 0.68 4.79 

8 5.15 3.48 0.67 4.42 4.80 3.37 0.70 4.22 

9 5.39 3.02 0.56 4.32 4.27 3.09 0.72 3.82 

10 5.05 2.71 0.54 3.79 3.72 2.78 0.75 3.39 

11 4.18 2.10 0.50 3.48 3.24 2.49 0.77 3.01 

12 4.07 1.85 0.45 3.33 2.99 2.34 0.78 2.82 
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Table 17: Results of F2 frame system. 

 

𝒏𝒔 
OpenSees Proposed analytical method 

𝑹𝝁,𝑺𝑫𝑶𝑭,𝒇 𝑹𝝁,𝑴𝑫𝑶𝑭,𝒇 𝑹𝑴,𝒇 𝝁𝒇
∗ 𝑹𝝁,𝑺𝑫𝑶𝑭,𝒇 𝑹𝝁,𝑴𝑫𝑶𝑭,𝒇 𝑹𝑴,𝒇 𝝁𝒇

∗ 

3 5.74 4.05 0.71 6.08 6.05 3.76 0.62 6.12 

4 6.20 4.03 0.65 5.60 6.09 3.90 0.64 5.60 

5 6.02 4.09 0.68 4.77 5.39 3.64 0.68 4.81 

6 4.95 3.38 0.68 4.10 4.49 3.21 0.71 4.00 

7 4.40 2.60 0.59 3.73 4.09 3.00 0.73 3.64 

8 4.16 2.72 0.65 3.47 3.54 2.68 0.76 3.21 

9 4.20 2.66 0.63 3.45 3.16 2.45 0.78 2.90 

10 4.26 2.27 0.53 3.51 2.75 2.19 0.80 2.58 

11 3.33 1.69 0.51 2.86 2.40 1.95 0.81 2.29 

12 3.51 1.57 0.45 2.92 2.22 1.83 0.82 2.14 

 

Table 18: Results of F3 frame system. 

 

𝒏𝒔 
OpenSees Proposed analytical method 

𝑹𝝁,𝑺𝑫𝑶𝑭,𝒇 𝑹𝝁,𝑴𝑫𝑶𝑭,𝒇 𝑹𝑴,𝒇 𝝁𝒇
∗ 𝑹𝝁,𝑺𝑫𝑶𝑭,𝒇 𝑹𝝁,𝑴𝑫𝑶𝑭,𝒇 𝑹𝑴,𝒇 𝝁𝒇

∗ 

3 4.25 3.07 0.72 4.10 4.18 2.96 0.71 4.14 

4 3.88 2.84 0.73 3.83 4.07 2.95 0.73 3.79 

5 4.06 2.69 0.66 3.34 3.55 2.68 0.75 3.26 

6 3.54 2.50 0.71 2.93 2.94 2.31 0.79 2.72 

7 2.79 1.94 0.70 2.58 2.69 2.15 0.80 2.49 

8 2.92 1.85 0.63 2.56 2.33 1.91 0.82 2.19 

9 3.11 1.79 0.58 2.61 2.08 1.73 0.83 1.99 

10 2.73 1.56 0.57 2.41 1.82 1.55 0.85 1.76 

11 2.58 1.33 0.52 2.24 1.59 1.38 0.87 1.56 

12 2.30 1.11 0.48 2.12 1.47 1.29 0.87 1.45 

 

The following considerations concerning result mean values can be drawn: 

(i) It is evident that ductility reduction factors, 𝑅𝜇,𝑆𝐷𝑂𝐹,𝑓 and 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑓, and target 

ductility, 𝜇𝑓
∗, decreases with the number of storeys (Figure 33a,b,d-Figure 35a,b,d), 

that can be explained as the loss of capability of the system to exploit the sectional 

inelasticity. 

(ii) The ductility reduction factor for the equivalent SDOF systems, 𝑅𝜇,𝑆𝐷𝑂𝐹,𝑓, is 

underestimated by the proposed analytical model with an error of 16% on average. 

Instead, the ductility reduction factor for the MDOF systems, 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑓, is well 

predicted by the proposed analytical model and overestimated with an error of 2% 

on average (Figure 33a-Figure 35a). 𝑅𝜇,𝑆𝐷𝑂𝐹,𝑓 and 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑓 decrease with the 

number of storeys, and they show a linear trend. Numerical models give values of 

𝑅𝜇,𝑀𝐷𝑂𝐹,𝑓 ranged from 5.6 to 1.9, from 4.1 to 1.6 and from 3.1 and 1.1 for F1, F2 and 

F3, respectively. 

(iii) The modification factor, 𝑅𝑀,𝑓, is basically constant and lightly affected by both the 

sectional ductility capacity of the base column and the number of storeys. 𝑅𝑀,𝑓 is 
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overestimated by the proposed model with an error of 25% on average. (Figure 33c-

Figure 35c). Numerical models give values ranged from 0.7 to 0.4 for all group of 

frames. 

(iv) The target ductility, 𝜇𝑓
∗, is underestimated by the proposed model with an error of 

10% on average (Figure 33d-Figure 35d). 𝜇𝑓
∗ decreases with 𝑛𝑠 that can be explained 

as the loss of capability of the system to exploit the section ductility with the 

increasing of the number of storeys due to higher mode effects. Numerical models 

give values ranged from 8.1 to 3.3, from 6.1 to 2.9 and from 4.1 and 2.1 for F1, F2 

and F3, respectively. The decreasing of 𝜇𝑓
∗ from F1 to F3 groups is obvious because 

the sectional ductility of the base column decreases for F1, F2 and F3, respectively 

(Table 9 of Section 4.2.1). Furthermore, 𝜇𝑓
∗ decreases with the number of storeys, 

that is the system is less efficient to exploit the sectional ductility and to convert it in 

available capacity ductility, 𝜇𝑓
∗, with the increasing of 𝑛𝑠. 

(v) The dispersion of data is considerable when all analyses are considered, but a lower 

scatter is evidenced when 68% coverage of population is assumed (Figure 33b-Figure 

35b). 

It is evident from Figure 33a-Figure 35a that 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑓 is not significantly different among 

the groups of frames, differently from wall systems; instead from Figure 33c-Figure 35c it 

is noted that 𝑅𝑀,𝑓 is not significantly different among the groups of frames, as for wall 

systems. Furthermore, 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑓 is significantly higher than 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑤, especially at high 

the number of storeys, and 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑤 decreases rapidly than 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑓. 

It is to be noticed that some convergence problems occurred during the numerical analysis 

due to convergence failures in the numerical procedure to calculate the ductility reduction 

factors, in particular when the convergence errors exceeded the 5% tolerance on the search 

for the ground motion scale factor (MDOF system) or the target ductility (equivalent SDOF 

system), within 20 iterations. The percentage of successful analyses, which is the ratio of 

successful analyses number and the total analyses number, is equal to 76%. Analyses fail 

randomly varying the number of storeys and ground motions; so they do not show systematic 

bias due to certain patterns. 

The comparison of fundamental periods given by the numerical model, 𝑇1,𝑓,𝑂𝑆, and analytical 

model, 𝑇1,𝑤, given by Equation (99), is illustrated in Figure 36 and listed in Table 19. The 

analytical fundamental periods overestimate the numerical values of 11% on average. The 

numerical period is different from the analytical one because the analytical formula is exact 

for uniformly distributed mass along the height of the structure, instead considered numerical 

models are lumped mass systems. 
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Figure 36: Fundamental periods of frame systems. 

 

 

Table 19: Fundamental period [s] of frame systems. 

𝒏𝒔 OpenSees Analytical prediction Relative error 

3 0.5974 0.6313 +6% 

4 0.7628 0.8418 +10% 

5 0.9322 1.0522 +13% 

6 1.1082 1.2627 +14% 

7 1.2958 1.4731 +14% 

8 1.4914 1.6836 +13% 

9 1.6916 1.8940 +12% 

10 1.8942 2.1045 +11% 

11 2.0988 2.3149 +10% 

12 2.3042 2.5254 +10% 
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5.3. Results for dual systems 

In this Section a detailed comparison of numerical results of Section 4 and analytical results 

of Section 3 are reported. 

Results of dual systems are illustrated in Figure 38-Figure 52 and listed in Table 21-Table 

35. For the sake of brevity, the subscript “MDOF” is omitted from labels in figures, because 

they always refer to MDOF systems. Numerical values are indicated with “OS” label in 

figures. 

Each Figure is composed of six plots. 

In Plot (a), the numerical ductility reduction factor for dual system structures, 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑑,𝑂𝑆, 

and the relative ductility reduction factor for the wall-equivalent system, 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑤,𝑑,𝑂𝑆, and 

the ductility reduction factor for the frame-equivalent system, 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑓,𝑑,𝑂𝑆, are shown as a 

function of the number of storeys, 𝑛𝑠. 

In Plot (b), the comparison between the numerical ductility reduction factor for dual system 

structures, 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑑,𝑂𝑆, and the analytical ductility reduction factor for the wall and frame 

systems considered as single systems, 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑤 and 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑓, respectively, is illustrated. 

The dispersion of 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑑,𝑂𝑆 is also shown. All analyses (100%) and 68% coverage of 

population are plotted as a function of the number of storeys, 𝑛𝑠. 

In Plot (c) and Plot (d), the wall use rate, 𝑢𝑤, the frame use rate, 𝑢𝑓, and the wall base shear 

ratio, 𝑣𝑤 , the frame base shear ratio, 𝑣𝑓, are drawn, respectively, as a function of the number 

of storeys, 𝑛𝑠. 

In Plot (e), the target ductility of the wall, 𝜇𝑤,𝑑
∗, and the target ductility of the frame system, 

𝜇𝑓,𝑑
∗, in the dual systems are compared with the target ductility of the wall, 𝜇𝑤

∗, and the 

target ductility of the frame system, 𝜇𝑓
∗, when they are considered single systems, i.e., target 

ductilities given by the proposed analytical model for single systems. Target ductilities are 

plotted as a function of the number of storeys, 𝑛𝑠. 

In Plot (f), the comparison between the numerical ductility reduction factor for dual system 

structures, 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑑, and the analytical expressions, 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑑,1 and 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑑,2, given by 

Expression (149) and Expression (150), is shown as a function of the number of storeys, 𝑛𝑠. 

The first expression, 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑑,1, is a polynomial regression of results. This expression has 

been determined as the best fit of results and it is given by: 

 

𝑅𝜇,𝑀𝐷𝑂𝐹,𝑑,1 = 𝑎1
𝑅𝜇,𝑀𝐷𝑂𝐹,𝑤

𝑐1

𝜇𝑤∗
𝑏1

+ 𝑎2
𝑅𝜇,𝑀𝐷𝑂𝐹,𝑓

𝑐2

𝜇𝑓∗
𝑏2

= 0.76𝜇𝑤
∗0.36𝑅𝜇,𝑀𝐷𝑂𝐹,𝑤

0.38 + 0.99
𝑅𝜇,𝑀𝐷𝑂𝐹,𝑓

8.63

𝜇𝑓∗
6.89  

(149) 

The second expression, 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑑,2, is a simpler expression than Equation (121): 
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𝑅𝜇,𝑀𝐷𝑂𝐹,𝑑,2 = 𝑎1𝑅𝜇,𝑀𝐷𝑂𝐹,𝑤 + 𝑎2
𝑅𝜇,𝑀𝐷𝑂𝐹,𝑓

√𝜇𝑓∗

= 0.08𝑅𝜇,𝑀𝐷𝑂𝐹,𝑤 + 1.64
𝑅𝜇,𝑀𝐷𝑂𝐹,𝑓

√𝜇𝑓∗
 

(150) 

It is to be noticed that some convergence problems occurred during the numerical analysis 

due to convergence failures in the numerical procedure to calculate the ductility reduction 

factors, in particular when the convergence errors exceeded the 5% tolerance on the search 

for the ground motion scale factor (MDOF system) or the target ductility (equivalent SDOF 

systems), within 20 iterations. The percentage of successful analyses, which is the ratio of 

successful analyses number and the total analyses number, is equal to 73%. Analyses fail 

randomly varying the number of storeys and ground motions; so they do not show systematic 

bias due to certain patterns. 

Analyses prove that an estimation of the elastic fundamental period of a frame-wall structure, 

𝑇1,𝑑, can be taken as a linear combination of the elastic fundamental period of the wall 

system, 𝑇1,𝑤, and the frame system, 𝑇1,𝑓, which the dual system is composed of. 

 𝑇1,𝑑 = 0.1𝑇1,𝑤 + 0.7𝑇1,𝑓 (151) 

The comparison of fundamental periods given by the numerical model, 𝑇1,𝑑,𝑂𝑆, and by 

Equation (151), 𝑇1,𝑑, are illustrated in Figure 37 and listed in Table 20. The analytical 

fundamental periods underestimate the numerical values of 3% on average. It is noted that 

in Figure 37 five numerical sets of periods which refer to C2, C5, C10, C15 and C20 

OpenSees models are compared to the proposed analytical period of dual systems. 

 

Figure 37: Fundamental periods of dual systems. 
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Table 20: Fundamental period [s] of dual systems. 

 

𝒏𝒔 
OpenSees Analytical 

prediction C1 C5 C10 C15 C20 

3 0.4829 0.5029 0.5217 0.5334 0.5415 0.4763 

4 0.6741 0.6783 0.6923 0.7028 0.7106 0.6504 

5 0.8685 0.8572 0.8670 0.8754 0.8822 0.8321 

6 1.0687 1.0419 1.0463 1.0540 1.0585 1.0215 

7 1.2752 1.2344 1.2327 1.2390 1.2466 1.2185 

8 1.4936 1.4364 1.4305 1.4330 1.4412 1.4232 

9 1.7177 1.6448 1.6306 1.6357 1.6445 1.6355 

10 1.9508 1.8625 1.8429 1.8465 1.8562 1.8554 

11 2.1909 2.0763 2.0552 2.0508 2.0656 2.0830 

12 2.4422 2.2996 2.2688 2.2704 2.2717 2.3182 
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5.3.1. W1F1 group 

In this section, results of group W1F1 are discussed in detail; results are illustrated in Figure 

38-Figure 42 and also reported as numerical values in Table 21-Table 25. 

The following considerations concerning result mean values can be drawn: 

(i) The numerical ductility reduction factor for dual system structures, 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑑,𝑂𝑆, is 

a value intermediate between the ductility reduction factor for the wall-equivalent 

system, 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑤,𝑑,𝑂𝑆, and the ductility reduction factor for the frame-equivalent 

system, 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑓,𝑑,𝑂𝑆, (Figure 38a-Figure 42a). 

(ii) 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑤,𝑑,𝑂𝑆 is always lower than 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑓,𝑑,𝑂𝑆 (Figure 38a-Figure 42a) as well as 

the analytical ductility reduction factor for wall system, 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑤, is always lower 

than analytical ductility reduction factor for frame system, 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑓, (Figure 38b-

Figure 42b). 

(iii) The wall use rate, 𝑢𝑤,𝑂𝑆, is equal to 1 for all cases, it means that the wall is always 

the system to fail. The frame use rate, 𝑢𝑓,𝑂𝑆, is between 0.3 for number of storeys and 

almost 1 for high number of storeys (Figure 38c-Figure 42c). 

(iv) The wall base shear ratio, 𝑣𝑤,𝑂𝑆, remains nearly constant with the number of storeys 

but it decreases with the increasing of the number of columns, from C2 to C20. Wall 

base shear ratios have values ranged from 0.2 to 0.8, approximately (Figure 38d-

Figure 42d). Vice versa, the frame base shear ratio, 𝑣𝑓,𝑂𝑆, increases with the 

increasing of the number of columns, from C2 to C20. Base shear ratios have values 

ranged from 0.2 to 0.8, approximately and wall base shear ratio, 𝑣𝑤,𝑂𝑆, is higher than 

frame base shear ratio, 𝑣𝑓,𝑂𝑆, for W1F1C2 and W1F1C5. 

(v) The target ductility of the wall, 𝜇𝑤,𝑑,𝑂𝑆
∗, in the dual system is always lower than the 

target ductility of the wall, 𝜇𝑤
∗, when it is considered single system. Instead, the 

target ductility of the frame, 𝜇𝑓,𝑑,𝑂𝑆
∗, in the dual system is generally lower than the 

target ductility of the frame, 𝜇𝑓
∗, when it is considered single system, except to high 

number of storeys and in particular the W1F1C2 structures (Figure 38e-Figure 42e). 

(vi) Both analytical expressions, 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑑1 and 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑑2, show a good match with the 

numerical ductility reduction factor for dual system structures, 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑑,𝑂𝑆 (Figure 

38f-Figure 42f). 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

  

Figure 38: Results of W1F1C2 dual system, (a, b): 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑑, (c): use rates, (d): base 

shear ratios, (e): target ductilities, (f): analytical expressions. 
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(a) (b) 
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(e) (f) 

  

Figure 39: Results of W1F1C5 dual system, (a, b): 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑑, (c): use rates, (d): base 

shear ratios, (e): target ductilities, (f): analytical expressions. 
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(a) (b) 
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(e) (f) 

  

Figure 40: Results of W1F1C10 dual system, (a, b): 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑑, (c): use rates, (d): base 

shear ratios, (e): target ductilities, (f): analytical expressions. 
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(a) (b) 
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(e) (f) 

  

Figure 41: Results of W1F1C15 dual system, (a, b): 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑑, (c): use rates, (d): base 

shear ratios, (e): target ductilities, (f): analytical expressions. 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

  

Figure 42: Results of W1F1C20 dual system, (a, b): 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑑, (c): use rates, (d): base 

shear ratios, (e): target ductilities, (f): analytical expressions. 
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Table 21: Results of W1F1C2 dual system. 

𝒏𝒔 𝑹𝝁,𝒘,𝒅 𝑹𝝁,𝒇,𝒅 𝑹𝝁,𝒅 𝒖𝒘 𝒖𝒇 𝒗𝒘 𝒗𝒇 𝝁𝒘,𝒅
∗ 𝝁𝒇,𝒅

∗ 𝑹𝝁,𝒅,𝟏 𝑹𝝁,𝒅,𝟐 

3 2.41 3.11 2.48 1.0 0.4 0.7 0.3 3.84 3.45 1.92 2.61 

4 2.51 2.90 2.45 1.0 0.5 0.7 0.3 3.34 3.92 2.35 2.89 

5 2.77 3.39 2.83 1.0 0.5 0.7 0.3 2.97 4.33 2.70 2.93 

6 2.64 3.46 2.92 1.0 0.6 0.7 0.3 2.64 4.55 2.91 2.84 

7 2.47 3.15 2.64 1.0 0.6 0.7 0.3 2.42 4.65 2.97 2.78 

8 2.33 2.85 2.42 1.0 0.7 0.7 0.3 2.29 4.92 2.79 2.66 

9 2.28 2.70 2.32 1.0 0.8 0.7 0.3 2.14 4.69 2.58 2.55 

10 2.08 2.19 1.99 1.0 0.8 0.7 0.3 2.01 4.39 2.39 2.43 

11 1.93 2.24 1.98 1.0 0.9 0.7 0.3 1.92 4.51 2.19 2.31 

12 1.83 2.12 1.93 1.0 1.0 0.7 0.3 1.81 4.48 2.06 2.25 

 

Table 22: Results of W1F1C5 dual system. 

𝒏𝒔 𝑹𝝁,𝒘,𝒅 𝑹𝝁,𝒇,𝒅 𝑹𝝁,𝒅 𝒖𝒘 𝒖𝒇 𝒗𝒘 𝒗𝒇 𝝁𝒘,𝒅
∗ 𝝁𝒇,𝒅

∗ 𝑹𝝁,𝒅,𝟏 𝑹𝝁,𝒅,𝟐 

3 2.23 2.93 2.47 1.0 0.4 0.6 0.4 3.61 3.06 1.92 2.61 

4 2.32 2.93 2.46 1.0 0.4 0.5 0.5 3.03 3.03 2.35 2.89 

5 2.58 3.21 2.81 1.0 0.4 0.5 0.5 2.71 3.10 2.70 2.93 

6 2.46 3.12 2.71 1.0 0.5 0.5 0.5 2.46 3.32 2.91 2.84 

7 2.56 3.07 2.74 1.0 0.6 0.5 0.5 2.38 3.50 2.97 2.78 

8 2.34 2.84 2.47 1.0 0.6 0.5 0.5 2.18 3.46 2.79 2.66 

9 2.44 3.05 2.76 1.0 0.7 0.5 0.5 2.03 3.56 2.58 2.55 

10 2.15 2.68 2.41 1.0 0.8 0.5 0.5 1.95 3.43 2.39 2.43 

11 1.94 2.40 2.15 1.0 0.9 0.5 0.5 1.84 3.42 2.19 2.31 

12 1.86 2.32 2.09 1.0 1.0 0.5 0.5 1.75 3.48 2.06 2.25 

 

Table 23: Results of W1F1C10 dual system. 

𝒏𝒔 𝑹𝝁,𝒘,𝒅 𝑹𝝁,𝒇,𝒅 𝑹𝝁,𝒅 𝒖𝒘 𝒖𝒇 𝒗𝒘 𝒗𝒇 𝝁𝒘,𝒅
∗ 𝝁𝒇,𝒅

∗ 𝑹𝝁,𝒅,𝟏 𝑹𝝁,𝒅,𝟐 

3 1.97 2.44 2.04 1.0 0.3 0.4 0.6 3.34 2.49 1.92 2.61 

4 2.16 2.71 2.39 1.0 0.3 0.4 0.6 2.93 2.63 2.35 2.89 

5 2.32 3.01 2.67 1.0 0.4 0.4 0.6 2.60 2.92 2.70 2.93 

6 2.40 3.03 2.73 1.0 0.5 0.4 0.6 2.44 3.20 2.91 2.84 

7 2.51 3.02 2.70 1.0 0.6 0.4 0.6 2.32 3.23 2.97 2.78 

8 2.39 2.97 2.72 1.0 0.6 0.4 0.6 2.10 3.36 2.79 2.66 

9 2.42 2.93 2.72 1.0 0.7 0.4 0.6 2.02 3.49 2.58 2.55 

10 2.22 2.66 2.46 1.0 0.8 0.4 0.6 1.91 3.27 2.39 2.43 

11 1.98 2.50 2.33 1.0 0.9 0.4 0.6 1.81 3.22 2.19 2.31 

12 1.89 2.33 2.21 1.0 0.9 0.3 0.7 1.71 3.17 2.06 2.25 
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Table 24: Results of W1F1C15 dual system. 

𝒏𝒔 𝑹𝝁,𝒘,𝒅 𝑹𝝁,𝒇,𝒅 𝑹𝝁,𝒅 𝒖𝒘 𝒖𝒇 𝒗𝒘 𝒗𝒇 𝝁𝒘,𝒅
∗ 𝝁𝒇,𝒅

∗ 𝑹𝝁,𝒅,𝟏 𝑹𝝁,𝒅,𝟐 

3 1.84 2.37 1.96 1.0 0.3 0.4 0.6 3.30 2.39 1.92 2.61 

4 2.12 2.59 2.25 1.0 0.3 0.3 0.7 2.95 2.58 2.35 2.89 

5 2.30 3.09 2.77 1.0 0.4 0.3 0.7 2.61 2.88 2.70 2.93 

6 2.37 3.06 2.78 1.0 0.5 0.3 0.7 2.47 3.18 2.91 2.84 

7 2.46 3.01 2.79 1.0 0.6 0.3 0.7 2.28 3.25 2.97 2.78 

8 2.41 2.88 2.75 1.0 0.6 0.3 0.7 2.08 3.23 2.79 2.66 

9 2.36 2.93 2.72 1.0 0.7 0.3 0.7 2.00 3.44 2.58 2.55 

10 2.20 2.81 2.61 1.0 0.8 0.3 0.7 1.87 3.14 2.39 2.43 

11 1.93 2.45 2.29 1.0 0.8 0.3 0.7 1.79 3.16 2.19 2.31 

12 1.82 2.23 2.11 1.0 0.9 0.3 0.7 1.67 3.09 2.06 2.25 

 

Table 25: Results of W1F1C20 dual system. 

𝒏𝒔 𝑹𝝁,𝒘,𝒅 𝑹𝝁,𝒇,𝒅 𝑹𝝁,𝒅 𝒖𝒘 𝒖𝒇 𝒗𝒘 𝒗𝒇 𝝁𝒘,𝒅
∗ 𝝁𝒇,𝒅

∗ 𝑹𝝁,𝒅,𝟏 𝑹𝝁,𝒅,𝟐 

3 1.74 2.24 1.89 1.0 0.3 0.3 0.7 3.27 2.35 1.92 2.61 

4 2.02 2.43 2.17 1.0 0.3 0.3 0.7 2.92 2.50 2.35 2.89 

5 2.28 3.05 2.75 1.0 0.4 0.3 0.7 2.56 2.78 2.70 2.93 

6 2.35 2.92 2.75 1.0 0.5 0.3 0.7 2.42 3.03 2.91 2.84 

7 2.36 2.93 2.73 1.0 0.6 0.3 0.7 2.22 3.18 2.97 2.78 

8 2.28 2.81 2.63 1.0 0.6 0.3 0.7 2.07 3.14 2.79 2.66 

9 2.30 2.81 2.61 1.0 0.7 0.3 0.7 1.99 3.26 2.58 2.55 

10 2.17 2.67 2.57 1.0 0.8 0.3 0.7 1.85 3.10 2.39 2.43 

11 1.89 2.30 2.17 1.0 0.8 0.3 0.7 1.74 3.12 2.19 2.31 

12 1.81 2.23 2.12 1.0 0.9 0.2 0.8 1.67 3.08 2.06 2.25 
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5.3.2. W2F2 group 

In this section, results of group W2F2 are discussed in detail; results are illustrated in Figure 

43-Figure 47 and also reported in Table 26-Table 30. 

The following considerations concerning result mean values can be drawn: 

(i) The numerical ductility reduction factor for dual system structures, 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑑,𝑂𝑆, is 

a value intermediate between the ductility reduction factor for the wall-equivalent 

system, 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑤,𝑑,𝑂𝑆, and the ductility reduction factor for the frame-equivalent 

system, 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑓,𝑑,𝑂𝑆. 

(ii) 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑤,𝑑,𝑂𝑆 is always lower than 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑓,𝑑,𝑂𝑆 (Figure 43a-Figure 47a) as well as 

the analytical ductility reduction factor for wall system, 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑤, is always lower 

than analytical ductility reduction factor for frame system, 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑓, (Figure 43b-

Figure 47b). 

(iii) The wall use rate, 𝑢𝑤,𝑂𝑆, is equal to 1 for number of storeys lower than 7 and the 

frame use rate, 𝑢𝑓,𝑂𝑆, is equal to 1 for number of storeys higher than 7. It means that 

it is the wall to fail for low number of storeys systems and the frame is the system to 

fail for high number of storeys systems (Figure 43c-Figure 47c). 

(iv) The wall base shear ratio, 𝑣𝑤,𝑂𝑆, remains nearly constant with the number of storeys 

but it decreases with the increasing of the number of columns, from C2 to C20. Wall 

base shear ratios have values ranged from 0.2 to 0.8, approximately (Figure 38d-

Figure 42d). Vice versa, the frame base shear ratio, 𝑣𝑓,𝑂𝑆, increases with the 

increasing of the number of columns, from C2 to C20. Base shear ratios have values 

ranged from 0.2 to 0.8, approximately and wall base shear ratio, 𝑣𝑤,𝑂𝑆, is higher than 

frame base shear ratio, 𝑣𝑓,𝑂𝑆, for W2F2C2 and W2F2C5. 

(v) The target ductility of the wall, 𝜇𝑤,𝑑,𝑂𝑆
∗, in the dual system is always lower than the 

target ductility of the wall, 𝜇𝑤
∗, when it is considered single system. Instead, the 

target ductility of the frame, 𝜇𝑓,𝑑,𝑂𝑆
∗, in the dual system is generally lower than the 

target ductility of the frame, 𝜇𝑓
∗, when it is considered single system, only for 

systems with low number of storeys (Figure 43e-Figure 47e). 

(vi) Both analytical expressions, 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑑1 and 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑑2, show a good match with the 

numerical ductility reduction factor for dual system structures, 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑑,𝑂𝑆; in 

particular 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑑1 is capable to better fit the numerical curve shape at medium 

number of storeys (Figure 43f-Figure 47f). 
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Figure 43: Results of W2F2C2 dual system, (a, b): 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑑, (c): use rates, (d): base 

shear ratios, (e): target ductilities, (f): analytical expressions. 
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Figure 44: Results of W2F2C5 dual system, (a, b): 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑑, (c): use rates, (d): base 

shear ratios, (e): target ductilities, (f): analytical expressions. 
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Figure 45: Results of W2F2C10 dual system, (a, b): 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑑, (c): use rates, (d): base 

shear ratios, (e): target ductilities, (f): analytical expressions. 
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(a) (b) 
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Figure 46: Results of W2F2C15 dual system, (a, b): 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑑, (c): use rates, (d): base 

shear ratios, (e): target ductilities, (f): analytical expressions. 
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(a) (b) 
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Figure 47: Results of W2F2C20 dual system, (a, b): 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑑, (c): use rates, (d): base 

shear ratios, (e): target ductilities, (f): analytical expressions. 
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Table 26: Results of W2F2C2 dual system. 

𝒏𝒔 𝑹𝝁,𝒘,𝒅 𝑹𝝁,𝒇,𝒅 𝑹𝝁,𝒅 𝒖𝒘 𝒖𝒇 𝒗𝒘 𝒗𝒇 𝝁𝒘,𝒅
∗ 𝝁𝒇,𝒅

∗ 𝑹𝝁,𝒅,𝟏 𝑹𝝁,𝒅,𝟐 

3 2.64 3.37 2.87 1.0 0.6 0.7 0.3 4.67 4.09 2.36 2.61 

4 2.78 3.18 2.73 1.0 0.7 0.7 0.3 4.12 4.63 2.86 2.81 

5 3.12 3.82 3.32 1.0 0.8 0.7 0.3 3.65 5.30 3.06 2.78 

6 2.91 3.61 3.11 1.0 0.9 0.7 0.3 3.18 5.34 3.04 2.64 

7 2.66 3.41 2.93 1.0 1.0 0.7 0.3 2.82 5.38 2.97 2.57 

8 2.47 2.95 2.59 0.9 1.0 0.7 0.3 2.51 5.03 2.69 2.43 

9 2.38 2.79 2.54 0.8 1.0 0.7 0.3 2.15 4.56 2.43 2.32 

10 1.98 2.29 2.05 0.7 1.0 0.7 0.3 1.87 4.20 2.20 2.21 

11 1.72 2.09 1.88 0.6 1.0 0.7 0.3 1.59 3.94 2.00 2.09 

12 1.62 1.94 1.86 0.5 1.0 0.6 0.4 1.38 3.63 1.88 2.03 

 

Table 27: Results of W2F2C5 dual system. 

𝒏𝒔 𝑹𝝁,𝒘,𝒅 𝑹𝝁,𝒇,𝒅 𝑹𝝁,𝒅 𝒖𝒘 𝒖𝒇 𝒗𝒘 𝒗𝒇 𝝁𝒘,𝒅
∗ 𝝁𝒇,𝒅

∗ 𝑹𝝁,𝒅,𝟏 𝑹𝝁,𝒅,𝟐 

3 2.41 3.28 2.74 1.0 0.6 0.6 0.4 4.49 3.82 2.36 2.61 

4 2.61 3.10 2.70 1.0 0.6 0.6 0.4 3.82 3.84 2.86 2.81 

5 3.00 3.68 3.24 1.0 0.7 0.6 0.4 3.32 3.93 3.06 2.78 

6 2.85 3.61 3.22 1.0 0.8 0.5 0.5 3.06 4.09 3.04 2.64 

7 2.81 3.46 3.08 1.0 0.9 0.5 0.5 2.85 4.15 2.97 2.57 

8 2.60 3.05 2.80 1.0 1.0 0.5 0.5 2.53 3.85 2.69 2.43 

9 2.49 3.07 2.83 0.9 1.0 0.5 0.5 2.20 3.72 2.43 2.32 

10 2.16 2.60 2.46 0.7 1.0 0.5 0.5 1.89 3.35 2.20 2.21 

11 1.80 2.17 2.04 0.7 1.0 0.5 0.5 1.61 3.01 2.00 2.09 

12 1.59 1.97 1.85 0.6 1.0 0.5 0.5 1.38 2.87 1.88 2.03 

 

Table 28: Results of W2F2C10 dual system. 

𝒏𝒔 𝑹𝝁,𝒘,𝒅 𝑹𝝁,𝒇,𝒅 𝑹𝝁,𝒅 𝒖𝒘 𝒖𝒇 𝒗𝒘 𝒗𝒇 𝝁𝒘,𝒅
∗ 𝝁𝒇,𝒅

∗ 𝑹𝝁,𝒅,𝟏 𝑹𝝁,𝒅,𝟐 

3 2.21 2.87 2.44 1.0 0.5 0.5 0.5 4.19 3.17 2.36 2.61 

4 2.43 3.00 2.51 1.0 0.6 0.4 0.6 3.71 3.35 2.86 2.81 

5 2.82 3.63 3.24 1.0 0.7 0.4 0.6 3.28 3.56 3.06 2.78 

6 2.82 3.55 3.24 1.0 0.8 0.4 0.6 3.05 3.95 3.04 2.64 

7 2.78 3.30 3.01 1.0 0.9 0.4 0.6 2.77 3.86 2.97 2.57 

8 2.66 3.28 3.06 1.0 1.0 0.4 0.6 2.51 3.78 2.69 2.43 

9 2.51 3.15 2.93 0.9 1.0 0.4 0.6 2.20 3.62 2.43 2.32 

10 2.15 2.63 2.49 0.8 1.0 0.4 0.6 1.88 3.18 2.20 2.21 

11 1.79 2.24 2.12 0.7 1.0 0.3 0.7 1.60 2.92 2.00 2.09 

12 1.60 1.99 1.91 0.6 1.0 0.3 0.7 1.41 2.71 1.88 2.03 
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Table 29: Results of W2F2C15 dual system. 

𝒏𝒔 𝑹𝝁,𝒘,𝒅 𝑹𝝁,𝒇,𝒅 𝑹𝝁,𝒅 𝒖𝒘 𝒖𝒇 𝒗𝒘 𝒗𝒇 𝝁𝒘,𝒅
∗ 𝝁𝒇,𝒅

∗ 𝑹𝝁,𝒅,𝟏 𝑹𝝁,𝒅,𝟐 

3 2.09 2.87 2.44 1.0 0.5 0.4 0.6 4.15 3.02 2.36 2.61 

4 2.34 2.85 2.52 1.0 0.6 0.4 0.6 3.68 3.29 2.86 2.81 

5 2.75 3.35 3.06 1.0 0.7 0.3 0.7 3.22 3.48 3.06 2.78 

6 2.74 3.41 3.17 1.0 0.8 0.3 0.7 3.05 3.79 3.04 2.64 

7 2.75 3.43 3.21 1.0 0.9 0.3 0.7 2.74 3.77 2.97 2.57 

8 2.67 3.28 3.10 1.0 1.0 0.3 0.7 2.50 3.74 2.69 2.43 

9 2.47 3.16 2.96 0.9 1.0 0.3 0.7 2.19 3.60 2.43 2.32 

10 2.17 2.79 2.73 0.8 1.0 0.3 0.7 1.86 3.11 2.20 2.21 

11 1.77 2.19 2.10 0.7 1.0 0.3 0.7 1.60 2.85 2.00 2.09 

12 1.55 1.97 1.90 0.6 1.0 0.3 0.7 1.41 2.70 1.88 2.03 

 

Table 30: Results of W2F2C20 dual system. 

𝒏𝒔 𝑹𝝁,𝒘,𝒅 𝑹𝝁,𝒇,𝒅 𝑹𝝁,𝒅 𝒖𝒘 𝒖𝒇 𝒗𝒘 𝒗𝒇 𝝁𝒘,𝒅
∗ 𝝁𝒇,𝒅

∗ 𝑹𝝁,𝒅,𝟏 𝑹𝝁,𝒅,𝟐 

3 2.10 2.80 2.46 1.0 0.5 0.3 0.7 4.14 3.02 2.36 2.61 

4 2.33 3.08 2.70 1.0 0.6 0.3 0.7 3.66 3.18 2.86 2.81 

5 2.74 3.33 3.09 1.0 0.7 0.3 0.7 3.26 3.44 3.06 2.78 

6 2.74 3.44 3.23 1.0 0.8 0.3 0.7 3.04 3.76 3.04 2.64 

7 2.75 3.33 3.22 1.0 0.9 0.3 0.7 2.74 3.72 2.97 2.57 

8 2.69 3.36 3.20 1.0 1.0 0.3 0.7 2.50 3.64 2.69 2.43 

9 2.50 3.07 2.92 0.9 1.0 0.3 0.7 2.20 3.41 2.43 2.32 

10 2.17 2.70 2.66 0.8 1.0 0.2 0.8 1.89 3.09 2.20 2.21 

11 1.72 2.13 2.05 0.7 1.0 0.2 0.8 1.59 2.81 2.00 2.09 

12 1.53 1.97 1.92 0.6 1.0 0.2 0.8 1.41 2.70 1.88 2.03 
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5.3.3. W3F3 group 

In this section, results of group W3F3 are discussed in detail; results are illustrated in Figure 

48-Figure 52 and also reported in Table 31-Table 35. 

The following considerations concerning result mean values can be drawn: 

(i) The numerical ductility reduction factor for dual system structures, 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑑,𝑂𝑆, is 

a value intermediate between the ductility reduction factor for the wall-equivalent 

system, 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑤,𝑑,𝑂𝑆, and the ductility reduction factor for the frame-equivalent 

system, 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑓,𝑑,𝑂𝑆 (Figure 48a-Figure 52a). 

(ii) 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑤,𝑑,𝑂𝑆 is always lower than 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑓,𝑑,𝑂𝑆 (Figure 48a-Figure 52a) as well as 

the analytical ductility reduction factor for wall system, 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑤, is always lower 

than analytical ductility reduction factor for frame system, 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑓, except to low 

number of storeys (Figure 48b-Figure 52b). 

(iii) The frame use rate, 𝑢𝑓,𝑂𝑆, is equal to 1 for all cases (except to 𝑛𝑠 = 3 where it is very 

close to 1); this means that the frame is always the first system to fail. The wall use 

rate, 𝑢𝑤,𝑂𝑆, is between 0.2 for high number of storeys and almost 1 for low number 

of storeys (Figure 48c-Figure 52c).  

(iv) The wall base shear ratio, 𝑣𝑤,𝑂𝑆, remains nearly constant with the number of storeys 

but it decreases with the increasing of the number of columns, from C2 to C20. Base 

shear ratios have values ranged from 0.2 to 0.8, approximately (Figure 48d-Figure 

52d). Vice versa, the frame base shear ratio, 𝑣𝑓,𝑂𝑆, increases with the increasing of 

the number of columns, from C2 to C20. Base shear ratios have values ranged from 

0.2 to 0.8, approximately and wall base shear ratio, 𝑣𝑤,𝑂𝑆, is higher than frame base 

shear ratio, 𝑣𝑓,𝑂𝑆, for W3F3C2 and W3F3C5 at low number of storey only. 

(v) The target ductility of the wall, 𝜇𝑤,𝑑,𝑂𝑆
∗, in the dual system is lower than the target 

ductility of the wall, 𝜇𝑤
∗, when it is considered single system, except to very low 

number of storeys systems. Instead, the target ductility of the frame, 𝜇𝑓,𝑑,𝑂𝑆
∗, in the 

dual system is generally higher than the target ductility of the frame, 𝜇𝑓
∗, when it is 

considered single system, except to 𝑛𝑠 = 3 in for W3F3C10, W3F3C15 and 

W3F3C20 (Figure 48e-Figure 52e). 

(vi) Analytical expression 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑑1 shows a good match with the numerical ductility 

reduction factor for dual system structures, 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑑,𝑂𝑆; instead 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑑2 shows a 

worst agreement with the numerical curve shape, especially at low number of storeys 

(Figure 48f-Figure 52f). 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

  

Figure 48: Results of W3F3C2 dual system, (a, b): 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑑, (c): use rates, (d): base 

shear ratios, (e): target ductilities, (f): analytical expressions. 
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Figure 49: Results of W3F3C5 dual system, (a, b): 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑑, (c): use rates, (d): base 

shear ratios, (e): target ductilities, (f): analytical expressions. 
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(a) (b) 
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Figure 50: Results of W3F3C10 dual system, (a, b): 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑑, (c): use rates, (d): base 

shear ratios, (e): target ductilities, (f): analytical expressions. 
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Figure 51: Results of W3F3C15 dual system, (a, b): 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑑, (c): use rates, (d): base 

shear ratios, (e): target ductilities, (f): analytical expressions. 
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(a) (b) 
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(e) (f) 

  

Figure 52: Results of W3F3C20 dual system, (a, b): 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑑, (c): use rates, (d): base 

shear ratios, (e): target ductilities, (f): analytical expressions. 
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Table 31: Results of W3F3C2 dual system. 

𝒏𝒔 𝑹𝝁,𝒘,𝒅 𝑹𝝁,𝒇,𝒅 𝑹𝝁,𝒅 𝒖𝒘 𝒖𝒇 𝒗𝒘 𝒗𝒇 𝝁𝒘,𝒅
∗ 𝝁𝒇,𝒅

∗ 𝑹𝝁,𝒅,𝟏 𝑹𝝁,𝒅,𝟐 

3 2.70 3.87 3.08 0.9 1.0 0.7 0.3 5.19 4.57 2.92 2.53 

4 2.75 3.44 2.99 0.8 1.0 0.7 0.3 3.93 4.53 3.32 2.62 

5 2.85 3.83 3.33 0.7 1.0 0.7 0.3 3.00 4.45 3.19 2.51 

6 2.63 3.31 2.93 0.6 1.0 0.7 0.3 2.45 4.16 2.88 2.34 

7 2.33 2.79 2.52 0.5 1.0 0.7 0.3 1.94 3.85 2.67 2.25 

8 2.03 2.44 2.22 0.4 1.0 0.7 0.3 1.64 3.58 2.30 2.11 

9 1.92 2.39 2.19 0.4 1.0 0.7 0.3 1.43 3.36 2.03 2.00 

10 1.61 1.96 1.84 0.3 1.0 0.6 0.4 1.24 3.16 1.83 1.89 

11 1.36 1.65 1.55 0.3 1.0 0.6 0.4 1.09 2.76 1.67 1.79 

12 1.25 1.41 1.44 0.2 1.0 0.6 0.4 0.98 2.57 1.58 1.74 

 

Table 32: Results of W3F3C5 dual system. 

𝒏𝒔 𝑹𝝁,𝒘,𝒅 𝑹𝝁,𝒇,𝒅 𝑹𝝁,𝒅 𝒖𝒘 𝒖𝒇 𝒗𝒘 𝒗𝒇 𝝁𝒘,𝒅
∗ 𝝁𝒇,𝒅

∗ 𝑹𝝁,𝒅,𝟏 𝑹𝝁,𝒅,𝟐 

3 2.58 3.35 2.90 1.0 0.9 0.6 0.4 5.08 4.27 2.92 2.53 

4 2.77 3.53 3.14 0.9 1.0 0.6 0.4 4.21 4.35 3.32 2.62 

5 2.97 3.59 3.25 0.8 1.0 0.5 0.5 3.26 3.74 3.19 2.51 

6 2.58 3.06 2.95 0.7 1.0 0.5 0.5 2.50 3.38 2.88 2.34 

7 2.30 2.78 2.61 0.5 1.0 0.5 0.5 2.04 3.12 2.67 2.25 

8 2.07 2.49 2.40 0.5 1.0 0.5 0.5 1.75 2.87 2.30 2.11 

9 1.92 2.36 2.29 0.4 1.0 0.5 0.5 1.46 2.78 2.03 2.00 

10 1.68 2.03 1.95 0.4 1.0 0.4 0.6 1.28 2.56 1.83 1.89 

11 1.29 1.64 1.56 0.3 1.0 0.4 0.6 1.10 2.27 1.67 1.79 

12 1.21 1.46 1.51 0.3 1.0 0.4 0.6 0.98 2.13 1.58 1.74 

 

Table 33: Results of W3F3C10 dual system. 

𝒏𝒔 𝑹𝝁,𝒘,𝒅 𝑹𝝁,𝒇,𝒅 𝑹𝝁,𝒅 𝒖𝒘 𝒖𝒇 𝒗𝒘 𝒗𝒇 𝝁𝒘,𝒅
∗ 𝝁𝒇,𝒅

∗ 𝑹𝝁,𝒅,𝟏 𝑹𝝁,𝒅,𝟐 

3 2.33 3.16 2.71 1.0 0.9 0.5 0.5 5.01 3.83 2.92 2.53 

4 2.61 3.39 2.94 1.0 1.0 0.4 0.6 4.32 3.95 3.32 2.62 

5 2.80 3.47 3.28 0.8 1.0 0.4 0.6 3.28 3.58 3.19 2.51 

6 2.44 2.98 2.86 0.7 1.0 0.4 0.6 2.50 3.19 2.88 2.34 

7 2.26 2.83 2.71 0.6 1.0 0.4 0.6 2.08 3.00 2.67 2.25 

8 1.97 2.44 2.35 0.5 1.0 0.3 0.7 1.71 2.78 2.30 2.11 

9 1.83 2.32 2.24 0.4 1.0 0.3 0.7 1.46 2.65 2.03 2.00 

10 1.63 1.98 1.92 0.4 1.0 0.3 0.7 1.27 2.41 1.83 1.89 

11 1.27 1.56 1.51 0.4 1.0 0.3 0.7 1.10 2.18 1.67 1.79 

12 1.09 1.44 1.24 0.3 1.0 0.3 0.7 0.97 2.05 1.58 1.74 
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Table 34: Results of W3F3C15 dual system. 

𝒏𝒔 𝑹𝝁,𝒘,𝒅 𝑹𝝁,𝒇,𝒅 𝑹𝝁,𝒅 𝒖𝒘 𝒖𝒇 𝒗𝒘 𝒗𝒇 𝝁𝒘,𝒅
∗ 𝝁𝒇,𝒅

∗ 𝑹𝝁,𝒅,𝟏 𝑹𝝁,𝒅,𝟐 

3 2.30 3.13 2.82 1.0 0.9 0.4 0.6 4.94 3.60 2.92 2.53 

4 2.63 3.21 2.99 1.0 1.0 0.4 0.6 4.34 3.85 3.32 2.62 

5 2.76 3.39 3.23 0.8 1.0 0.3 0.7 3.27 3.59 3.19 2.51 

6 2.35 3.00 2.88 0.7 1.0 0.3 0.7 2.50 3.13 2.88 2.34 

7 2.21 2.80 2.70 0.6 1.0 0.3 0.7 2.08 2.96 2.67 2.25 

8 2.00 2.41 2.38 0.5 1.0 0.3 0.7 1.74 2.78 2.30 2.11 

9 1.76 2.24 2.16 0.5 1.0 0.3 0.7 1.46 2.57 2.03 2.00 

10 1.61 2.00 1.96 0.4 1.0 0.3 0.7 1.29 2.41 1.83 1.89 

11 1.27 1.57 1.54 0.4 1.0 0.3 0.8 1.10 2.19 1.67 1.79 

12 1.17 1.42 1.50 0.3 1.0 0.2 0.8 0.97 2.08 1.58 1.74 

 

Table 35: Results of W3F3C20 dual system. 

𝒏𝒔 𝑹𝝁,𝒘,𝒅 𝑹𝝁,𝒇,𝒅 𝑹𝝁,𝒅 𝒖𝒘 𝒖𝒇 𝒗𝒘 𝒗𝒇 𝝁𝒘,𝒅
∗ 𝝁𝒇,𝒅

∗ 𝑹𝝁,𝒅,𝟏 𝑹𝝁,𝒅,𝟐 

3 2.36 3.01 2.78 1.0 0.9 0.3 0.7 5.00 3.63 2.92 2.53 

4 2.57 3.14 2.93 1.0 1.0 0.3 0.7 4.35 3.77 3.32 2.62 

5 2.75 3.42 3.34 0.8 1.0 0.3 0.7 3.25 3.50 3.19 2.51 

6 2.39 2.96 2.91 0.7 1.0 0.3 0.7 2.51 3.12 2.88 2.34 

7 2.18 2.72 2.67 0.6 1.0 0.3 0.7 2.08 2.89 2.67 2.25 

8 1.97 2.37 2.35 0.5 1.0 0.2 0.8 1.74 2.72 2.30 2.11 

9 1.75 2.18 2.13 0.5 1.0 0.2 0.8 1.48 2.58 2.03 2.00 

10 1.55 1.86 1.83 0.4 1.0 0.2 0.8 1.27 2.39 1.83 1.89 

11 1.23 1.50 1.48 0.4 1.0 0.2 0.8 1.10 2.23 1.67 1.79 

12 1.04 1.40 1.33 0.3 1.0 0.2 0.8 0.98 2.10 1.58 1.74 
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5.3.4. General remarks on dual systems 

In this Section, general remarks on results of dual systems are discussed. 

In Figure 53(a,b,c) the numerical ductility reduction factors, 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑑,𝑂𝑆, corresponding to 

different number of columns , 𝑛𝑐, are shown for different groups of dual systems: W1F1, 

W2F2 and W3F3 respectively, as a function of the number of storeys, 𝑛𝑠. Instead, the 

numerical ductility reduction factors for all of the considered dual systems are shown 

together in Figure 53(d). 

In Figure 54(a,b,c) the numerical use ratio for single systems, 𝑢𝑤,𝑂𝑆 and 𝑢𝑓,𝑂𝑆, for different 

groups of dual systems W1F1, W2F2 and W3F3 are shown , respectively, as a function of 

the number of storeys, 𝑛𝑠. 

In Figure 55(a,b,c) the numerical target ductilities for wall and frame in the dual system, 

𝜇𝑤,𝑑,𝑂𝑆
∗ and 𝜇𝑓,𝑑,𝑂𝑆

∗, are compared with the analytical target ductilities for wall and frame 

when they are considered single systems, 𝜇𝑤
∗ and 𝜇𝑓

∗, for different groups of dual systems 

W1F1, W2F2 and W3F3, respectively, as a function of the number of storeys, 𝑛𝑠. 

In Figure 56(a,b,c) the analytical ductility reduction factor for single systems, 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑤 and 

𝑅𝜇,𝑀𝐷𝑂𝐹,𝑓, are compared to the numerical ductility reduction factors, 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑑,𝑂𝑆, of 

different groups of dual systems: W1F1, W2F2 and W3F3, respectively, as a function of the 

number of storeys, 𝑛𝑠. 

In Figure 57(a,b,c) the numerical normalised base shear for dual systems, 𝑣𝑏,𝑀𝐷𝑂𝐹,𝑑,𝑂𝑆, of 

different groups of dual systems, W1F1, W2F2 and W3F3, is shown, respectively, as a 

function of the number of storeys, 𝑛𝑠. 𝑣𝑏,𝑀𝐷𝑂𝐹,𝑑,𝑂𝑆 is given by: 

 𝑣𝑏,𝑀𝐷𝑂𝐹,𝑑,𝑂𝑆 =
𝑉𝑏,𝑀𝐷𝑂𝐹,𝑑,𝑂𝑆
𝑉𝑏,𝑀𝐷𝑂𝐹,𝑡𝑜𝑡,𝑂𝑆

=
𝑉𝑏,𝑀𝐷𝑂𝐹,𝑑,𝑂𝑆

𝑉𝑏,𝑀𝐷𝑂𝐹,𝑤,𝑂𝑆 + 𝑛𝑐𝑉𝑏,𝑀𝐷𝑂𝐹,𝑓,𝑂𝑆
 (152) 

where: 𝑉𝑏,𝑀𝐷𝑂𝐹,𝑤,𝑂𝑆 and 𝑉𝑏,𝑀𝐷𝑂𝐹,𝑓,𝑂𝑆 are the numerical base shears of wall and frame as 

single systems; 𝑉𝑏,𝑀𝐷𝑂𝐹,𝑑,𝑂𝑆 is the numerical base shear of dual systems; 𝑛𝑐, the number of 

columns. 

In Figure 58(a,b,c) the analytical ductility reduction factor for dual system, 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑑1, is 

compared to the numerical ductility reduction factors 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑑,𝑂𝑆 of different groups of 

dual systems: W1F1, W2F2 and W3F3, respectively, as a function of the number of storeys, 

𝑛𝑠. 

For the sake of brevity, the subscript “MDOF” is omitted from labels in figures, because 

they always refer to MDOF systems. Numerical values are indicated with “OS” label in 

figures. 
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(a) (b) 

  

(c) (d) 

 

 

Figure 53: Numerical ductility reduction factor of dual systems, (a): W1F1 group, (b): 

W2F2 group, (c): W3F3 group, (d): all groups. 

 

 



Force-Based Seismic Design of Dual System Structures 

_________________________________________________________________________ 

106 

(a) (b) 

  

(c) (d) 

 

 

Figure 54: Use ratios of dual systems, (a): W1F1 group, (b): W2F2 group, (c): W3F3 

group. 
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(a) (b) 

  

(c) (d) 

 

 

Figure 55: Target ductilities ratios of dual and single systems, (a): W1F1 group, (b): 

W2F2 group, (c): W3F3 group. 
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(a) (b) 

  

(c)  

 

 

Figure 56: Comparison of numerical results of dual systems and analytical expressions 

for single systems, (a): W1F1 group, (b): W2F2 group, (c): W3F3 group. 
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(a) (b) 

  

(c)  

 

 

Figure 57: Comparison of numerical base shears of dual systems and single systems, 

(a): W1F1 group, (b): W2F2 group, (c): W3F3 group.  
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(a) (b) 

  

(c)  

 

 

Figure 58: Comparison of numerical results and analytical expressions of dual 

systems, (a): W1F1 group, (b): W2F2 group, (c): W3F3 group.  

 

 

The following considerations concerning result mean values can be drawn: 

(i) The number of columns, 𝑛𝑐, lightly affects the ductility reduction factor and only in 

W2F2 group 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑑,𝑂𝑆 significantly increases as 𝑛𝑐 increases for medium number 

of storeys. The number of columns can be interpreted as the importance of frame 

system respect to the wall system; in other words, frame base shear ratio, 𝑣𝑓, 

increases with 𝑛𝑐 (Figure 53a,b,c). 

(ii) The numerical ductility reduction factor 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑑,𝑂𝑆 is higher at high number of 

storeys for W1F1 group, which is the group where the frame is more ductile and 

failure is reached in the wall, i.e., the wall use ratio, 𝑢𝑤,𝑂𝑆, is equal to 1, but also the 

frame shows a use rate, 𝑢𝑓,𝑂𝑆, close to 1 (Figure 53d and Figure 54a). Instead, the 

numerical ductility reduction factor 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑑,𝑂𝑆 is higher at low number of storeys 
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for W3F3 group, which is the group where the wall is more ductile and failure is 

reached in the frame, i.e., the frame use ratio, 𝑢𝑓,𝑂𝑆, is equal to 1, but also the wall 

shows a use rate, 𝑢𝑤,𝑂𝑆, close to 1 (Figure 53d and Figure 54c). Lastly, 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑑,𝑂𝑆 

is higher at medium number of storeys for W2F2 group, which is the group where 

the wall and frame reach an equilibrated failure and both systems are properly 

exploited, i.e., 𝑢𝑤,𝑂𝑆 and 𝑢𝑓,𝑂𝑆 are equal to 1 or very close to 1 (Figure 53d and Figure 

54b). 

(iii) The remarks described in Paragraph (ii) can be also explained by observing the target 

ductilities in Figure 55, in particular the ductility of frame in the dual system is 

relevant. The highest numerical ductility reduction factor, 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑑,𝑂𝑆, at high 

number of storeys for W1F1 group can be also explained by observing the target 

ductility of frame in the dual system, 𝜇𝑓,𝑑,𝑂𝑆
∗, which increases with the number of 

storeys, differently than the ductility of the frame when it is considered a single 

system, which decreases (Figure 55a). Instead, the highest numerical ductility 

reduction factor, 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑑,𝑂𝑆, at medium number of storeys for W2F2 mainly 

depends on the numerical target ductility of frame in the dual system, 𝜇𝑓,𝑑,𝑂𝑆
∗, which 

reaches the highest values for number of storeys ranged from 5 to 8 (Figure 55b). 

Lastly, the highest numerical ductility reduction factor, 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑑,𝑂𝑆, at low number 

of storeys for W3F3 are related to the numerical target ductility of both walls and 

frame in the dual system, 𝜇𝑤,𝑑,𝑂𝑆
∗ and 𝜇𝑓,𝑑,𝑂𝑆

∗, which decrease with the number of 

storeys and they reach the highest values for low number of storeys (Figure 55c). 

(iv) The ductility reduction factor, 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑑, takes as much advantage of synergy 

between single systems as the number of storeys increases (Figure 56). It is evident 

that 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑑 increases or at least decreases less than the ductility reduction factor 

of single systems, 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑤 and 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑓. Therefore, this trend suggests that the 

performance of dual systems is better for a medium number of storeys than a low 

number of storeys; in other words, low-rise buildings are not able to activate the 

synergy between walls and frame effectively. This behaviour can be also explained 

by the mutual support between systems: walls hold the frame at lower storeys, where 

frame is more deformable and wall stiffer, and the frame holds walls at higher 

storeys, where walls are more deformable and frame stiffer, due to their different 

opposite concavity of the first mode displacement shape. 

(v) Dual structures exploit more effectively the frame for a high number of storeys, then 

it is convenient to design the dual system with a ductile frame which can provide a 

higher ductility reduction factor (W1F1 group, Figure 56a). Instead, dual structures 

exploit more effectively the walls for a low number of storeys, then it is suitable to 

design the dual system with ductile walls, which can provide a higher ductility 

reduction factor (W3F3 group, Figure 56c). Lastly, dual structures exploit effectively 

both walls and frame for a medium number of storeys, then it is convenient to design 

the dual system with a balanced ductility between walls and frame, which can provide 

a higher ductility reduction factor thanks to their high mutual synergy (W2F2 group, 

Figure 56b). 

(vi) The numerical normalised base shears for dual systems, 𝑣𝑏,𝑀𝐷𝑂𝐹,𝑑,𝑂𝑆, are generally 

higher than the normalised sum of base shears for wall and frame when considered 

single systems, except to high number of storey of W3F3 group and for high number 
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of storeys of W2F2 group (Figure 57). Let’s recall that the group W3F3 couples a 

more ductile wall with a less ductile frame. Therefore, the frame seems to be the most 

important system when dual structures are designed, except to low-rise structures. In 

other words, the frame is the system that provides the reserve of ductility when the 

dual structure attains ultimate capacity during strong earthquakes. Moreover, this 

behaviour is associated to a low wall use rate, 𝑢𝑤,𝑂𝑆, in these cases (Figure 54) and 

it suggests that the best performance in terms of supported base shear is obtained 

when the wall is the first system to fail (𝑢𝑤,𝑂𝑆 = 1). 

(vii) The first proposed analytical expression for the ductility reduction factor for dual 

system – 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑑1, Equation (149) – approximates accurately numerical results in 

all cases and residual sum squares 𝑅𝑆𝑆1 among all 15 considered cases is equal to 

5.99. Instead, the second expression – 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑑2, Equation (150) – shows a worst 

agreement with the numerical values with a mean residual sum squares 𝑅𝑆𝑆2 equal 

to 18.68 (Figure 58). 𝑅𝑆𝑆 is the sum of the squares of residuals which are the 

deviations predicted from numerical values of data, given by following Equations 

(153) and (154). 

 𝑅𝑆𝑆1 =∑(𝑅𝜇,𝑀𝐷𝑂𝐹,𝑑,𝑂𝑆,𝑖 − 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑑1,𝑖)
2

𝑛

𝑖=1

 (153) 

 𝑅𝑆𝑆2 =∑(𝑅𝜇,𝑀𝐷𝑂𝐹,𝑑,𝑂𝑆,𝑖 − 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑑2,𝑖)
2

𝑛

𝑖=1

 (154) 

where 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑑,𝑂𝑆,𝑖 is the i-th value of the numerical ductility reduction factor for 

dual system; 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑑1,𝑖 and 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑑2,𝑖 is the analytical ductility reduction factor 

for dual system predicted by Equation (149) and Equation (150) respectively; 𝑛 is 

the total number of analyses equal to 150 (𝑛 = 3 groups ∙ 5 numbers of columns (𝑛𝑐) 

∙ 10 number of storeys (𝑛𝑠) = 150 analyses). Despite its more complex shape, 

𝑅𝜇,𝑀𝐷𝑂𝐹,𝑑1 expression given by Equation (149), is definitely more reliable and it is 

to be preferred when estimating the ductility reduction factor for dual systems 𝑅. 
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6. Design examples 

 

Two design examples are developed to show the application of the proposed analytical 

design method for dual system step-by-step in Section 6.1 and 6.2, respectively. 

Two RC frame-wall structures are designed following the method and compared with the 

same structures designed following UNI EN 1998-1 (2013) for medium ductility class 

(DCM). To perform numerical analyses the commercial FEM code Midas/Gen (2016) 

developed by MIDAS Information Technology Co., Ltd., is used. 

The performance of structures is assessed by means of N2 method that is a simplified method 

applicable to plane structures whose behaviour shows a dominant first mode (Fajfar, 2000). 

In this Section the N2 method is used as a tool to compare the performance of designed 

structures only. Further nonlinear time history analyses are necessary to better evaluate the 

performance of the structures designed following the proposed method and the Eurocode 8. 

Both examples are designed by considering the elastic acceleration spectrum shown in 

Figure 59, where 𝑆𝑎𝑒 is the elastic acceleration divided by 𝑔 = 9.806 𝑚/𝑠2 and 𝑇 is the 

vibration period in seconds. This spectrum is representative of the Italian seismic zone 

classified of high seismic risk. 

 

Figure 59: Elastic acceleration spectrum. 
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6.1. Example 1 

The structure considered in Example 1 is the RC frame-wall structure composed of two RC 

walls (𝑛𝑤 = 2) linked to a 7-bay frame, corresponding to a number of columns 𝑛𝑐 = 8; the 

number of storeys is 𝑛𝑠 = 5 and the storey height is ℎ𝑠 = 3.00 𝑚. A portrayal of the 

structure is reported in Figure 60. 

Material properties are the following: mean concrete compressive strength 𝑓𝑐 = 38.0 𝑀𝑃𝑎; 

mean steel yield strength 𝑓𝑦,𝑠 = 550.0 𝑀𝑃𝑎; mean steel tensile strength 𝑓𝑢,𝑠 = 632.5 𝑀𝑃𝑎; 

steel Young modulus 𝐸𝑠 = 200 𝐺𝑃𝑎; maximum diameter of walls and frame rebar 𝑑𝑏𝑙 =

𝑑𝑏𝑙,𝑤 = 𝑑𝑏𝑙,𝑓 = 20 𝑚𝑚. Structural RC member weight is assumed equal to 25.0 𝑘𝑁/𝑚3. 

Storey gravity loads in seismic combination, 𝑞𝐸, is equal to 7.8 𝑘𝑁/𝑚2 on a influence area 

of 25.0 𝑚2, which means a bay length, 𝑙𝑏, of 5.0 𝑚 and a storey span, 𝑖𝑏, of 5.0 𝑚; these 

floor and weight loads are applied to both walls and frames. 

Geometrical and mechanical properties of walls and columns are listed in Table 8 and Table 

37, where strength properties of sections are given for axial force due to gravity load in the 

seismic combination. Beam section dimensions are 𝑏𝑏 = 0.50 𝑚 and ℎ𝑏 = 0.40 𝑚. 

 

Figure 60: Portrayal of structure of Example 1. 

 

Table 36: Geometrical and mechanical properties of walls. 

Properties Walls 

Section width, 𝑏𝑤 [𝑚] 0.30 

Section length, 𝑙𝑤 [𝑚] 1.50 

Yield moment, 𝑀𝑦,𝑤 [𝐾𝑁𝑚] 1321 

Ultimate moment, 𝑀𝑢,𝑤 [𝐾𝑁𝑚] 1660 

Yield curvature, 𝜑𝑦,𝑤 [𝑚
−1] 0.00209 

Ultimate curvature, 𝜑𝑢,𝑤 [𝑚
−1] 0.01130 

Curvature ductility, 𝜇𝜑,𝑤 [−] 5.4067 

Storey mass, 𝑚𝑠,𝑤 [𝑘𝑔] 23330 
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Table 37: Geometrical and mechanical properties of base columns. 

Properties Columns 

Section width, 𝑏𝑐 [𝑚] 0.45 

Section length, ℎ𝑐 [𝑚] 0.45 

Yield moment, 𝑀𝑦,𝑓  [𝐾𝑁𝑚] 471 

Ultimate moment, 𝑀𝑢,𝑓 [𝐾𝑁𝑚] 508 

Yield curvature, 𝜑𝑦,𝑓 [𝑚
−1] 0.0109 

Ultimate curvature, 𝜑𝑢,𝑓 [𝑚
−1] 0.0191 

Curvature ductility, 𝜇𝜑,𝑓 [−] 1.7523 

Storey mass, 𝑚𝑠,𝑓 [𝑘𝑔] 23980 

 

6.1.1. Design of Example 1 applying the proposed analytical method 

The proposed analytical method for wall structures presented in Section 3.2 is shown step-

by-step in this Section. 

The building total height, 𝐻, is then equal to: 

 𝐻 = 𝐻𝑤 = 𝐻𝑓 = 𝑛𝑠ℎ𝑠 = 5 ∙ 3.00 = 15.00 𝑚 (155) 

The fundamental period of the wall system, 𝑇1,𝑤, is given by: 

 𝑇1,𝑤 =
2𝜋

3.516
√
𝑚𝑙,𝑤
𝐸𝐼𝑤,𝑦

𝐻2 =
2𝜋

3.516
√

7.7767

6.3206 ∙ 105
15.002 = 1.4104 𝑠 (156) 

where 𝑚𝑙,𝑤 and 𝐸𝐼𝑤,𝑦 are the mass per unit height and the yield flexural stiffness of the wall, 

respectively, given as: 

 𝑚𝑙,𝑤 =
𝑚𝑠,𝑤
ℎ𝑠

=
23330

3.00
= 7776.7

𝑘𝑔

𝑚
 (157) 

 𝐸𝐼𝑤,𝑦 =
𝑀𝑦,𝑤

𝜑𝑦,𝑤
=

1321

0.00209
= 6.3206 ∙ 105  

𝑘𝑁𝑚

𝑚
 (158) 

where: 𝑀𝑦,𝑤 and 𝜑𝑦,𝑤 are the yield moment and the yield curvature of the base section of 

the wall, respectively. The plastic hinge length, 𝐿𝑝,𝑤, is expressed as: 

 

𝐿𝑝,𝑤 = max{𝑘𝐿𝑠,𝑤 + 0.2𝑙𝑤 + 𝐿𝑠𝑝,𝑤;  2𝐿𝑠𝑝,𝑤}

= max{0.03 ∙ 11.00 + 0.2 ∙ 1.50 + 0.2420;  2 ∙ 0.2420}
= max{0.8720;  0.4840} = 0.8720 𝑚 

(159) 

where: 
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 𝐿𝑠,𝑤 = ℎ𝐺 =
∑ 𝐹𝑖ℎ𝑖
𝑛𝑠
𝑖=1

∑ 𝐹𝑖
𝑛𝑠
𝑖=1

   
𝑠𝑒𝑟𝑖𝑒
⇒      

2𝑛𝑠 + 1

3𝑛𝑠
𝐻 =

2 ∙ 5 + 1

3 ∙ 5
15.00 = 11.00 𝑚 (160) 

 𝐿𝑠𝑝,𝑤 = 0.022𝑓𝑦𝑑𝑏𝑙,𝑤 = 0.022 ∙ 550.0 ∙ 0.020 = 0.2420 𝑚 (161) 

 𝑘 = 0.2(
𝑓𝑢
𝑓𝑦
− 1) = 0.2 (

632.5

550.0
− 1) = 0.03 (162) 

where: 𝐿𝑠,𝑤 and 𝐿𝑠𝑝,𝑤 are the shear span length and the strain penetration length; 𝑓𝑦 and 𝑓𝑢 

are the mean steel yield strength and the mean steel tensile strength; 𝑑𝑏𝑙,𝑤 is the maximum 

diameter of rebars in the base section of the wall; 𝑙𝑤 is the section height, respectively. 

The displacement shape for wall structures is estimated through the following expression: 

 

𝜙𝑖,𝑤 =
3

2

ℎ𝑖
2

𝐻2
(1 −

ℎ𝑖
3𝐻
)

=

{
 
 
 
 
 

 
 
 
 
 
3

2

3.002

15.002
(1 −

3.00

3 ∙ 15.00
) = 0.056; 𝑖 = 1; ℎ𝑖 = 3.00 𝑚

3

2

6.002

15.002
(1 −

6.00

3 ∙ 15.00
) = 0.208; 𝑖 = 2; ℎ𝑖 = 6.00 𝑚

3

2

9.002

15.002
(1 −

9.00

3 ∙ 15.00
) = 0.432; 𝑖 = 3; ℎ𝑖 = 9.00 𝑚

 
3

2

12.002

15.002
(1 −

12.00

3 ∙ 15.00
) = 0.704; 𝑖 = 4; ℎ𝑖 = 12.00 𝑚

 
3

2

15.002

15.002
(1 −

15.00

3 ∙ 15.00
) = 1.000; 𝑖 = 5; ℎ𝑖 = 15.00 𝑚

 

(163) 

where 𝜙𝑖,𝑤 is the first mode deflected shape ordinate for the i-th storey of the wall structure. 

The mass, 𝑚𝑤
∗, the height, ℎ𝑤

∗
, and the stiffness, 𝑘𝑤

∗
, of the equivalent SDOF system are 

given by: 

 
𝑚𝑤

∗ =∑ 𝑚𝑖,𝑤
𝑛𝑠

𝑖=1
=∑ 𝑚𝑠,𝑤

𝑛𝑠

𝑖=1
= 𝑛𝑠𝑚𝑠,𝑤 = 5 ∙ 23330

= 116650 𝑘𝑔 

(164) 

 

ℎ𝑤
∗  =

∑ 𝑚𝑖,𝑤𝜙𝑖,𝑤ℎ𝑖
𝑛𝑠
𝑖=1

∑ 𝑚𝑖,𝑤𝜙𝑖,𝑤
𝑛𝑠
𝑖=1

=
∑ 𝑚𝑠,𝑤𝜙𝑖,𝑤ℎ𝑖
𝑛𝑠
𝑖=1

∑ 𝑚𝑠,𝑤𝜙𝑖,𝑤
𝑛𝑠
𝑖=1

=
∑ 𝜙𝑖,𝑤ℎ𝑖
𝑛𝑠
𝑖=1

∑ 𝜙𝑖,𝑤
𝑛𝑠
𝑖=1

=
0.056 ∙ 3.00 + 0.208 ∙ 6.00 + 0.432 ∙ 9.00 + 0.704 ∙ 12.00 + 1.000 ∙ 15.00

0.056 + 0.208 + 0.432 + 0.704 + 1.000
= 11.98 𝑚 

(165) 
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 𝑘𝑤
∗ =

4𝜋2𝑚𝑤
∗

𝑇1,𝑤
2 =

4𝜋2116650

1.41042
= 2315.2 

𝑘𝑁

𝑚
 (166) 

The yield base shear, 𝑉𝑦,𝑤
∗, the failure base shear, 𝑉𝑢,𝑤

∗, the yield displacement, 𝑑𝑦,𝑤
∗
, of 

the equivalent SDOF system are respectively: 

 𝑉𝑦,𝑤
∗ =

𝑀𝑦,𝑤

ℎ𝑤
∗ =

1321

11.98
= 110.27 𝑘𝑁 (167) 

 𝑉𝑢,𝑤
∗ =

𝑀𝑢,𝑤
ℎ𝑤

∗ =
1660

11.98
= 138.56 𝑘𝑁 (168) 

 𝑑𝑦,𝑤
∗ =

𝑉𝑦,𝑤
∗

𝑘𝑤
∗ =

110.27

2315.2
= 0.0476 𝑚 (169) 

where: 𝑀𝑦,𝑤 and 𝑀𝑢,𝑤 are the yield and the ultimate moment of the base section of the wall, 

respectively. The equivalent yield curvature, 𝜑𝑦,𝑤
∗, for the equivalent SDOF system is given 

by: 

 𝜑𝑦,𝑤
∗ =

3𝑀𝑦,𝑤

𝑘𝑤
∗ℎ𝑤

∗3
=

3 ∙ 1321

2315.2 ∙ 11.983
= 9.9557 ∙ 10−4 (170) 

In order to obtain the same sectional ductility, 𝜇𝜑,𝑤, of the wall section and the plastic hinge 

of the equivalent SDOF system, the ultimate curvature of the equivalent SDOF system, 

𝜑𝑢,𝑤
∗, is written as: 

 
𝜑𝑢,𝑤

∗ = 𝜇𝜑,𝑤𝜑𝑦,𝑤
∗ =

𝜑𝑢,𝑤
𝜑𝑦,𝑤

𝜑𝑦,𝑤
∗ =

0.01130

0.00209
9.9557 ∙ 10−4

= 5.3827 ∙ 10−3 

(171) 

where: 𝜑𝑦,𝑤 and 𝜑𝑢,𝑤 are the yield and ultimate curvature of the base section of the wall 

respectively. The plastic displacement, 𝑑𝑝,𝑤
∗
, ultimate displacement, 𝑑𝑢.𝑤

∗
, and 

displacement ductility, 𝜇𝑤
∗, for the equivalent SDOF system are then given by, respectively: 

 

𝑑𝑝,𝑤
∗ = (𝜑𝑢,𝑤

∗ − 𝜑𝑦,𝑤
∗)𝐿𝑝,𝑤ℎ𝑤

∗

= (5.3827 ∙ 10−3 − 9.9557 ∙ 10−4) ∙ 0.872 ∙ 11.98
= 0.0458 𝑚 

(172) 

 
𝑑𝑢.𝑤

∗ = 𝑑𝑦,𝑤
∗ 𝑉𝑢,𝑤

∗

𝑉𝑦,𝑤
∗ = 𝑑𝑦,𝑤

∗𝑀𝑢,𝑤
𝑀𝑦,𝑤

+ 𝑑𝑝,𝑤
∗ = 0.0476

1660

1321
+ 0.0458

= 0.1057 𝑚 

(173) 
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 𝜇𝑤
∗ =

𝑑𝑢,𝑤
∗

𝑑𝑦,𝑤
∗ =

0.1057

0.0476
= 2.2189 (174) 

Once the structural ductility, 𝜇𝑤
∗, is known, the force reduction factor for the equivalent 

SDOF system, 𝑅𝜇,𝑆𝐷𝑂𝐹,𝑤, can be estimated the expression of Nassar and Krawinkler (1991) 

presented in Section 2.3: 

 𝑅𝜇,𝑆𝐷𝑂𝐹,𝑤 = (𝑐𝑤(𝜇𝑤
∗ − 1) + 1)

1
𝑐𝑤 = (0.7740 ∙ (2.2189 − 1) + 1)

1
0.7740

= 2.3596 
(175) 

 𝑐𝑤 =
𝑇1,𝑤

𝑎𝑤

1 + 𝑇1,𝑤
𝑎𝑤
+
𝑏𝑤
𝑇1,𝑤

=
1.41040.80

1 + 1.41040.80
+
0.29

1.4104
= 0.7740 (176) 

where parameters, 𝑎𝑤 and 𝑏𝑤, are calculated with Equations (33) and (34): 

 𝑎𝑤 = 0.80 (177) 

 𝑏𝑤 = 0.29 (178) 

The post-yield stiffness for equivalent SDOF wall system, 𝛼𝑤, is defined as: 

 𝛼𝑤 =
𝐹𝑢,𝑤

∗ − 𝐹𝑦,𝑤
∗

𝑑𝑢,𝑤
∗ − 𝑑𝑦,𝑤

∗

𝑑𝑦,𝑤
∗

𝐹𝑦,𝑤
∗ =

138.56 − 110.27

0.1057 − 0.0476

0.0476

110.27
= 0.2105 (179) 

Finally, the ductility reduction factor for MDOF system of wall structures, 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑤, is 

given by the following expression: 

 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑤 = 𝑅𝑀,𝑤𝑅𝜇,𝑆𝐷𝑂𝐹,𝑤 = 0.5111 ∙ 2.3596 = 1.2059 (180) 

where the modification factor 𝑅𝑀,𝑤 is introduced to take into account higher mode effects 

for wall structures: 

 𝜔𝑣,𝑇𝑖 = 1 +
𝜇𝑤

∗

𝜙0
𝑐2,𝑇𝑤 = 1 +

2.2189

1
0.4311 = 1.9567 (181) 

 
𝑐2,𝑇𝑤 = 0.067 + 0.4(𝑇1,𝑤 − 0.5) = 0.067 + 0.4(1.4104 − 0.5)

= 0.4311     {
≤ 1.150
≥ 0.067

 
(182) 

where 𝜙0 is the overstrength factor relating the maximum feasible flexural strength to design 

strength; in this work 𝜙0 is equal to 1 because mean values of material properties are 

assumed instead of design ones. The modification factor for wall structures, 𝑅𝑀,𝑤, is equal 

to: 
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 𝑅𝑀,𝑤 =
𝑉𝑏,𝑆𝐷𝑂𝐹,𝑤
𝑉𝑏,𝑀𝐷𝑂𝐹,𝑤

=
1

𝜙0𝜔𝑣,𝑇𝑖
=

1

1 ∙ 1.9567
= 0.5111 (183) 

As for the wall system, the proposed analytical method for frame structures presented in 

Section 3.3 is shown step-by-step in this Section. 

The fundamental period of the frame system, 𝑇1,𝑓, is given by: 

 𝑇1,𝑓 = 4√
𝑚𝑙,𝑓

𝑘𝐺𝐴𝑓,𝑦
𝐻 = 4√

7.9933

5
6 ∙ 57615

15 = 0.7742 𝑠 (184) 

where: 𝑘 is the shape factor to account for nonuniform distribution of shear stresses, equal 

to 5/6 for rectangular sections and 𝑚𝑙,𝑓; 𝐺𝐴𝑓,𝑦 and 𝐸𝐼𝑓,𝑦 are the mass per unit height, the 

base column yield shear stiffness and the base column yield flexural stiffness of the shear 

cantilever, respectively, that are given by the following expressions: 

 𝑚𝑙,𝑓 =
𝑚𝑠,𝑓

ℎ𝑠
=
23980

3.00
= 7993.3

𝑘𝑔

𝑚
 (185) 

 𝐺𝐴𝑓,𝑦 =
12𝐸𝐼𝑓,𝑦

ℎ𝑠
2 =

12𝐸𝐼𝑓,𝑦

ℎ𝑠
2 =

12 ∙ 43211

3.002
= 57615

𝑘𝑁

𝑚2
 (186) 

 𝐸𝐼𝑓,𝑦 =
𝑀𝑦,𝑓

𝜑𝑦,𝑓
=

471

0.0109
= 43211

𝑘𝑁𝑚

𝑚
 (187) 

where: 𝑀𝑦,𝑓 and 𝜑𝑦,𝑓 are the yield moment and the yield curvature of the base column of the 

frame, respectively. The plastic hinge length, 𝐿𝑝,𝑓, is defined as: 

 𝐿𝑝,𝑓 = 0.08ℎ𝑠 + 𝐿𝑠𝑝,𝑓 = 0.08 ∙ 3.00 + 0.2420 = 0.4820 𝑚 (188) 

 𝐿𝑠𝑝,𝑓 = 0.022𝑓𝑦𝑑𝑏𝑙,𝑓 = 0.022 ∙ 550.0 ∙ 0.020 = 0.2420 𝑚 (189) 

where: 𝐿𝑠𝑝,𝑓 is the strain penetration length; ℎ𝑠 is the storey height; 𝑑𝑏𝑙,𝑓 is the maximum 

diameter of rebars in the base columns of the frame.  

The displacement shape for frame structures is estimated through the following expression: 
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𝜙𝑖,𝑓 =
4

3

ℎ𝑖
𝐻
(1 −

ℎ𝑖
4𝐻
)

=

{
 
 
 
 
 

 
 
 
 
 
4

3

3.00

15.00
(1 −

3.00

4 ∙ 15.00
) = 0.253; 𝑖 = 1; ℎ𝑖 = 3.00 𝑚

4

3

6.00

15.00
(1 −

6.00

4 ∙ 15.00
) = 0.480; 𝑖 = 2; ℎ𝑖 = 6.00 𝑚

4

3

9.00

15.00
(1 −

9.00

4 ∙ 15.00
) = 0.680; 𝑖 = 3; ℎ𝑖 = 9.00 𝑚

 
4

3

12.00

15.00
(1 −

12.00

4 ∙ 15.00
) = 0.853; 𝑖 = 4; ℎ𝑖 = 12.00 𝑚

 
4

3

15.00

15.00
(1 −

15.00

4 ∙ 15.00
) = 1.000; 𝑖 = 5; ℎ𝑖 = 15.00 𝑚

 

(190) 

where 𝜙𝑖,𝑓 is the first mode deflected shape ordinate for the i-th storey for the frame 

structure. 

The mass, 𝑚𝑓
∗, the height, ℎ𝑓

∗
, and the stiffness, 𝑘𝑤

∗
, of the equivalent SDOF system are 

given by, respectively: 

 
𝑚𝑓

∗ =∑ 𝑚𝑖,𝑓
𝑛𝑠

𝑖=1
=∑ 𝑚𝑠,𝑓

𝑛𝑠

𝑖=1
= 𝑛𝑠𝑚𝑠,𝑓 = 5 ∙ 23980

= 119900 𝑘𝑔 

(191) 

 

ℎ𝑓
∗  =

∑ 𝑚𝑖,𝑓𝜙𝑖,𝑓ℎ𝑖
𝑛𝑠
𝑖=1

∑ 𝑚𝑖,𝑓𝜙𝑖,𝑓
𝑛𝑠
𝑖=1

=
∑ 𝑚𝑠,𝑓𝜙𝑖,𝑓ℎ𝑖
𝑛𝑠
𝑖=1

∑ 𝑚𝑠,𝑓𝜙𝑖,𝑓
𝑛𝑠
𝑖=1

=
∑ 𝜙𝑖,𝑓ℎ𝑖
𝑛𝑠
𝑖=1

∑ 𝜙𝑖,𝑓
𝑛𝑠
𝑖=1

=
0.253 ∙ 3.00 + 0.480 ∙ 6.00 + 0.680 ∙ 9.00 + 0.853 ∙ 12.00 + 1.000 ∙ 15.00

0.253 + 0.480 + 0.680 + 0.853 + 1.000
= 10.71 𝑚 

(192) 

 𝑘𝑓
∗ =

4𝜋2𝑚𝑓
∗

𝑇1,𝑓
2 =

4𝜋2119900

0.77422
= 7897.7 

𝑘𝑁

𝑚
 (193) 

The yield base shear, 𝑉𝑦,𝑓
∗, the failure base shear, 𝑉𝑢,𝑓

∗, the yield displacement, 𝑑𝑦,𝑓
∗
, of the 

equivalent SDOF system are respectively: 

 𝑉𝑦,𝑓
∗ =

𝑀𝑦,𝑓

ℎ𝑠/2
=

471

3.00/2
= 314.00 𝑘𝑁 (194) 

 𝑉𝑢,𝑓
∗ =

𝑀𝑢,𝑓

ℎ𝑠/2
=

508

3.00/2
= 338.67 𝑘𝑁 (195) 

 𝑑𝑦,𝑓
∗ =

𝐹𝑦,𝑓
∗

𝑘𝑓
∗ =

314.00

7897.7
= 0.0398 𝑚 (196) 
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where: 𝑀𝑦,𝑓 and 𝑀𝑢,𝑓 are the yield and ultimate moment of the base column of the frame, 

respectively. 

The yield displacement, 𝑑𝑦1,𝑓
∗
, and the plastic displacement, 𝑑𝑝1,𝑓

∗
, for the first-storey 

equivalent SDOF system are given by: 

 𝑑𝑦1,𝑓
∗ =

𝑉𝑦,𝑓
∗

12𝐸𝐼𝑓/ℎ𝑠
3 =

314.00

12 ∙ 43211/3.003
= 0.0164 𝑚 (197) 

 
𝑑𝑝1,𝑓

∗ = (𝜑𝑢,𝑓 − 𝜑𝑦,𝑓)𝐿𝑝,𝑓ℎ𝑠 = (0.0191 − 0.0109) ∙ 0.4820 ∙ 3.00

= 0.0119 𝑚 
(198) 

where: 𝜑𝑢,𝑓 and 𝜑𝑢,𝑓 are the yield and ultimate curvature of the base column of the frame, 

respectively. 

In order to obtain the same plastic displacement for the equivalent SDOF system, 𝑑𝑝,𝑓
∗
, the 

plastic displacement for the first-storey equivalent SDOF, 𝑑𝑝1,𝑓
∗
, is written as: 

 𝑑𝑝,𝑓
∗ =

𝑑𝑝1,𝑓
∗

𝑑𝑦1,𝑓
∗ 𝑑𝑦,𝑓

∗ =
0.0119

0.0164
0.0398 = 0.0288 𝑚 (199) 

The ultimate displacement, 𝑑𝑢.𝑓
∗
, and displacement ductility, 𝜇𝑓

∗, for the equivalent SDOF 

system are then given by, respectively: 

 
𝑑𝑢.𝑓

∗ = 𝑑𝑦,𝑓
∗ 𝑉𝑢,𝑓

∗

𝑉𝑦,𝑓
∗ + 𝑑𝑝,𝑓

∗ = 𝑑𝑦,𝑓
∗𝑀𝑢,𝑓

𝑀𝑦,𝑓
+ 𝑑𝑝,𝑓

∗ = 0.0398
508

471
+ 0.0288

= 0.0717 𝑚 

(200) 

 𝜇𝑓
∗ =

𝑑𝑢,𝑓
∗

𝑑𝑦,𝑓
∗ =

0.0717

0.0398
= 1.8038 (201) 

Once the structural ductility, 𝜇𝑓
∗, is known, the force reduction factor for the equivalent 

SDOF system can be estimated using the expression of Nassar and Krawinkler (1991). The 

ductility reduction factor for the equivalent SDOF system for frame structures, 𝑅𝜇,𝑆𝐷𝑂𝐹,𝑓, is 

given by: 

 𝑅𝜇,𝑆𝐷𝑂𝐹,𝑓 = (𝑐𝑓(𝜇𝑓
∗ − 1) + 1)

1
𝑐𝑓 = (0.8261(1.8038 − 1) + 1)

1
0.8261

= 1.8523 
(202) 

 𝑐𝑓 =
𝑇1,𝑓

𝑎𝑓

1 + 𝑇1,𝑓
𝑎𝑓
+
𝑏𝑓

𝑇1,𝑓
=

0.77420.8059

1 + 0.77420.8059
+
0.2923

0.7742
= 0.8261 (203) 

where parameters, 𝑎𝑓 and 𝑏𝑓, are calculated with Equations (31) and (32).  
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 𝑎𝑓 = 1.0625 − 2.625𝛼𝑓 = 1.0625 − 2.625 ∙ 0.0977 = 0.8059 (204) 

 𝑏𝑓 = 0.39 − 𝛼𝑓 = 0.39 − 0.0977 = 0.2923 (205) 

The post-yield stiffness for equivalent SDOF frame system, 𝛼𝑓, is defined as: 

 𝛼𝑓 =
𝑉𝑢,𝑓

∗ − 𝑉𝑦,𝑓
∗

𝑑𝑢,𝑓
∗ − 𝑑𝑦,𝑓

∗

𝑑𝑦,𝑓
∗

𝐹𝑦,𝑓
∗ =

338.67 − 314.00

0.0717 − 0.0398

0.0398

314.00
= 0.0977 (206) 

Finally, the ductility reduction factor for MDOF system of wall structures, 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑓, is 

given by the following expression: 

 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑓 = 𝑅𝑀,𝑓𝑅𝜇,𝑆𝐷𝑂𝐹,𝑓 = 0.8472 ∙ 1.8523 = 1.5692 (207) 

where the modification factor, 𝑅𝑀,𝑓, is introduced to take into account higher mode effects 

for frame structures: 

 𝜔𝑣,𝜇 = 𝜙
0 + 0.1𝜇𝑓

∗ = 1 + 0.1 ∙ 1.8038 = 1.1804 (208) 

where 𝜙0 is the overstrength factor relating the maximum feasible flexural strength to design 

strength; in this work 𝜙0 is equal to 1 because mean values of material properties are 

assumed instead of design ones. The modification factor for wall structures, 𝑅𝑀,𝑓, is defined 

equal to: 

 𝑅𝑀,𝑓 =
𝑉𝑏,𝑆𝐷𝑂𝐹,𝑓

𝑉𝑏,𝑀𝐷𝑂𝐹,𝑓
=

1

𝜔𝑣,𝜇
=

1

1.1804
= 0.8472 (209) 

Finally, the proposed analytical expressions for dual structures presented in Section 3.4 are 

shown in this section. 

The expression of the ductility reduction factor of the dual system, 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑑,1, is equal to. 

 

𝑅𝜇,𝑀𝐷𝑂𝐹,𝑑,1 = 0.76𝜇𝑤
∗0.36𝑅𝜇,𝑀𝐷𝑂𝐹,𝑤

0.38 + 0.99
𝑅𝜇,𝑀𝐷𝑂𝐹,𝑓

8.63

𝜇𝑓∗
6.89

= 0.76 ∙ 2.21890.361.20590.38 + 0.99
1.56928.63

1.80386.89

= 1.9176 

(210) 

The fundamental period of the dual system, 𝑇1,𝑑, is given by: 

 𝑇1,𝑑 = 0.1𝑇1,𝑤 + 0.7𝑇1,𝑓 = 0.1 ∙ 1.4104 + 0.7 ∙ 0.7742 = 0.6830 𝑠 (211) 
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The structure of Example 1 is finally designed following UNI EN 1998-1 (2013) 

requirements and detailing. A modal response spectrum analysis is performed using a 

reduction factor, 𝑅, given by: 

 𝑅 = 𝑅𝜇𝑅𝑠 = 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑑,1𝑅𝑠 = 1.92 ∙ 2.34 = 4.49 (212) 

where 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑑,1 is the ductility reduction factor for dual systems calculated by Equation 

(121) and 𝑅𝑠 is the overstrength factor, expressed by: 

 𝑅𝑠 = 𝛼𝑢/𝛼1 = 2.34 (213) 

The ratio 𝛼𝑢/𝛼1 represents the overall structural overstrength: 𝛼1 is the value by which the 

horizontal seismic design action is multiplied in order to reach the first flexural resistance in 

any member of the structure, while all other design actions remain constant; 𝛼𝑢 is the value 

by which the horizontal seismic design action is multiplied, in order to form plastic hinges 

in a number of sections sufficient for the development of the overall structural instability, 

while all other design actions remain constant. 

The overstrength factor 𝑅𝑠 is not studied in the present work so, in order to assess the 

proposed procedure, the exact value of 𝑅𝑠 is assumed through an explicit calculation by 

nonlinear static analysis (pushover). The design has been iterative because 𝑅𝑠 was tentatively 

selected at each iteration and it was checked with pushover analysis after the design process 

until convergence was reached. 

 

6.1.2. Performance of Example 1 designed applying the proposed method 

Once the structure is designed following UNI EN 1998-1 (2013) requirements but with the 

proposed reduction factor, a nonlinear static analysis is executed to assess the performance 

of the structure through the N2-method (Fajfar, 2000) and to validate the proposed method. 

The N2 method is reported in Section 2.7. Reinforcement detailing of walls, base columns 

and beams are reported in Table 38, Table 39 and Table 40, respectively. Concrete cover is 

50 mm for walls and 60 mm for beams and columns, respectively. 

Table 38: Reinforcement of walls. 

End vertical reinforcement Vertical reinforcement 
Horizontal 

reinforcement 

𝑛 Ø [𝑚𝑚] 𝑠 [𝑚𝑚] Ø [𝑚𝑚] 𝑠 [𝑚𝑚] Ø [𝑚𝑚] 𝑠 [𝑚𝑚] 
8 20 100 12 300 10 90 
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Table 39: Reinforcement of base columns. 

Longitudinal reinforcement Stirrups 

𝑛 total Ø [𝑚𝑚] 𝑛 top/bottom 𝑛 Ø [𝑚𝑚] 𝑠 [𝑚𝑚] 
20 20 8 3 10 60 

 

Table 40: Reinforcement of beams. 

Top reinforcement Bottom reinforcement Stirrups 

𝑛 Ø [𝑚𝑚] 𝑛 Ø [𝑚𝑚] 𝑛 Ø [𝑚𝑚] 𝑠 [𝑚𝑚] 
7 20 4 20 2 10 80 

 

Nonlinear static analysis are performed using Midas Gen (2014) software and a concentrated 

plasticity model is considered. Midas Gen software allows checking hinge the capacity of 

hinges designed to Eurocode 8 (Fardis, 2009; Biskinis and Fardis, 2010a,b). 

The MDOF curve, the SDOF curve and the bilinearised SDOF curve of the Example 1 

designed to the proposed method are shown in Figure 10. 

 

Figure 61: Bilinearization of SDOF curve of Example 1 designed applying the proposed 

method. 

 

Furthermore the values of the ultimate base shear, 𝑉𝑏,𝑢, and the base shear at first flexural 

resistance, 𝑉𝑏,1, are plotted in Figure 10. It is noted that the ratio 𝛼𝑢/𝛼1 is equal to the ratio 

𝑉𝑏,𝑢/𝑉𝑏,1: 



Section 6: Design examples 

_________________________________________________________________________ 

125 

 𝑅𝑠 =
𝛼𝑢
𝛼1
=
𝑉𝑏,𝑢
𝑉𝑏,1

=
2263

965
= 2.34 (214) 

The performance evaluation is graphically illustrated in Figure 11. 

 

Figure 62: Structural performance of Example 1 designed applying the proposed 

method. 

 

The performance assessment of the structure is given by the ratio 𝛾𝑑: 

 𝛾𝑑 =
𝑑𝑐
∗

𝑑𝑑
∗ =

0.116

0.128
= 0.91 (215) 

The ratio 𝛾𝑑 slightly smaller than 1 means that the structure is lightly inadequate and it has 

a 9% deficiency in displacement capacity. It is noted that the proposed method is based on 

mean values given by numerical analyses so cases of slightly inadequate design can be also 

expected. Moreover, further statistical analyses are recommended to improve the reliability 

of the proposed method. 

The displacement ductility, 𝜇, and the ductility reduction factor, 𝑅𝜇, provided by the N2 

method are both equal to 2.23 (equal displacement region for 𝑇∗ > 𝑇𝑐), therefore the 

proposed ductility reduction factor 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑑,1 = 1.92 is close the 𝑅𝜇 provided by the N2 

method and with an error of 14%. 
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6.1.3. Design of Example 1 applying UNI EN 1998-1 (2013) 

To compare the proposed design method to UNI EN 1998-1 (2013) standard design method, 

the same structure of Example 1 is designed using the force reduction factor provided by the 

Eurocode 8: 

 𝑅 = 𝑞 = 𝑞0𝑘𝑤 = 3.0
𝛼𝑢
𝛼1
𝑘𝑤 = 3.0 ∙ 1.2 ∙ 1 = 3.6 ≥ 1.5 (216) 

where 𝑞0 = 3.0 for dual systems; 𝛼𝑢 𝛼1⁄ = 1.2 for regular wall-equivalent dual system; 𝑘𝑤 

is the factor reflecting the prevailing failure mode in structural systems with walls, as 

reported in Section 2.6. 

It is noted that the considered structure is classifiable as wall-equivalent dual structures 

because 77% of the total base shear given by the modal analysis is carried by the walls, so 

the 𝑘𝑤 factor is expressed as: 

 𝑘𝑤 =
1 + 𝛼0
3

=
1 + 10

3
= 3.67 ≤ 1   ⇒   𝑘𝑤 = 1 (217) 

Where 𝛼0 is the prevailing aspect ratio of the walls of the structural system, given by: 

 𝛼0 =
ℎ𝑤
𝑙𝑤
=
𝐻

𝑙𝑤
=
15.00

1.50
= 10 (218) 

Since the 𝑅 value provided by Eurocode 8 is 20% lower than that provided by the proposed 

analytical method, the structure requires higher resistance to support seismic actions. 

Consequently, section dimensions of walls and columns are increased: 𝑙𝑤, 𝑏𝑐 and ℎ𝑐 are 

assigned equal to 2.10 m, 0.50 m and 0.50 m, respectively. Reinforcement detailing of walls, 

base columns and beams are reported in Table 41, Table 42 and Table 43, respectively. 

Concrete cover is 50 mm for walls and 60 mm for beams and columns, respectively. 

Table 41: Reinforcement of walls. 

End vertical reinforcement Vertical reinforcement 
Horizontal 

reinforcement 

𝑛 Ø [𝑚𝑚] 𝑠 [𝑚𝑚] Ø [𝑚𝑚] 𝑠 [𝑚𝑚] Ø [𝑚𝑚] 𝑠 [𝑚𝑚] 
8 24 100 12 300 10 90 

 

Table 42: Reinforcement of base columns. 

Longitudinal reinforcement Stirrups 

𝑛 total Ø [𝑚𝑚] 𝑛 top/bottom 𝑛 Ø [𝑚𝑚] 𝑠 [𝑚𝑚] 
20 20 6 2 10 50 
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Table 43: Reinforcement of beams. 

Top reinforcement Bottom reinforcement Stirrups 

𝑛 Ø [𝑚𝑚] 𝑛 Ø [𝑚𝑚] 𝑛 Ø [𝑚𝑚] 𝑠 [𝑚𝑚] 
8 20 4 20 2 10 80 

 

6.1.4. Performances of Example 1 designed applying UNI EN 1998-1 (2013) 

The performance assessment of Example 1 designed using Eurocode 8 is performed using 

the N2 method as well .The MDOF curve, the SDOF curve and the bilinearised SDOF curve 

of the Example 1 designed to Eurocode 8 are shown in Figure 63. 

The overstrength factor 𝛼𝑢 𝛼1⁄ = 1.2 is very different from the actual structural overstrength 

𝑅𝑠 = 2857 1120⁄ = 2.34 obtained by the pushover analysis 

 

Figure 63: Bilinearization of SDOF curve of Example 1 designed applying Eurocode 8. 

 

The performance evaluation is graphically illustrated in Figure 64. 
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Figure 64: Structural performance of Example 1 designed applying Eurocode 8. 

 

The performance assessment is given by 𝛾𝑑 = 0.125 0.112⁄ = 1.12. The displacement 

ductility, 𝜇, and the ductility reduction factor, 𝑅𝜇, provided by the N2 method are both equal 

to 2.01 (equal displacement region for 𝑇∗ > 𝑇𝑐). 

Furthermore, the structure is classified as wall-equivalent dual structures because 77% of the 

total base shear given by the modal analysis is carried by the walls, but the nonlinear static 

analysis shows that only 46% of the total base shear at failure is carried by walls. Therefore 

the classification of dual systems is ambiguous, since it is based on the shear distribution at 

the elastic stage, which is totally different from the shear distribution at the plastic stage. 

In conclusion, Example 1 shows that the design performed using the ductility reduction 

factor provided by the proposed method is more accurate than the design performed using 

the ductility reduction factor provided by UNI EN 1998-1 (2013), which does not provide a 

clear definition of meaning about the terms which compose the reduction factor. In fact, 𝑞0 

and 𝛼𝑢 𝛼1⁄  do not correspond to the ductility reduction factor and overstrength, respectively. 

Moreover, Eurocode 8 application yields a stiffer and more resistant structure, with a 13% 

higher mean volume size of RC elements than the proposed method. The proposed method 

yields a lightly underdesigned structure, instead the UNI EN 1998-1 (2013) yields a lightly 

overdesigned structure and Example 1 shows that Eurocode 8 is more precautionary. 

Probably this event happens because the analytical method is based on mean numerical 

results and further statistical analyses are recommended to improve the reliability of the 

proposed method. 
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6.2. Example 2 

The structure considered in Example 2 is the RC frame-wall structure similar to Example 1 

but with a number of storeys 𝑛𝑐 = 10. A portrayal of the structure is reported in Figure 65. 

Material properties and applied loads are the same of Example 1. 

Geometrical and mechanical properties for walls and columns are listed in Table 44 and 

Table 45, resistance properties of sections are given for the applied seismic axial load. Beam 

section dimensions are 𝑏𝑏 = 0.50 𝑚 and ℎ𝑏 = 0.50 𝑚. 

 

Figure 65: Portrayal of structure of Example 2. 

 

Table 44: Geometrical and mechanical properties of walls. 

Properties Walls 

Section width, 𝑏𝑤 [𝑚] 0.30 

Section length, 𝑙𝑤 [𝑚] 2.10 

Yield moment, 𝑀𝑦,𝑤 [𝐾𝑁𝑚] 2937 

Ultimate moment, 𝑀𝑢,𝑤 [𝐾𝑁𝑚] 3670 

Yield curvature, 𝜑𝑦,𝑤 [𝑚
−1] 0.00149 

Ultimate curvature, 𝜑𝑢,𝑤 [𝑚
−1] 0.00793 

Curvature ductility, 𝜇𝜑,𝑤 [−] 5.3221 

Storey mass, 𝑚𝑠,𝑤 [𝑡𝑜𝑛] 24.70 

 



Force-Based Seismic Design of Dual System Structures 

_________________________________________________________________________ 

130 

Table 45: Geometrical and mechanical properties of base columns. 

Properties Columns 

Section width, 𝑏𝑐 [𝑚] 0.55 

Section length, ℎ𝑐 [𝑚] 0.55 

Yield moment, 𝑀𝑦,𝑓 [𝐾𝑁𝑚] 963 

Ultimate moment, 𝑀𝑢,𝑓  [𝐾𝑁𝑚] 996 

Yield curvature, 𝜑𝑦,𝑓 [𝑚
−1] 0.00982 

Ultimate curvature, 𝜑𝑢,𝑓 [𝑚
−1] 0.01237 

Curvature ductility, 𝜇𝜑,𝑓 [−] 1.2597 

Storey mass, 𝑚𝑠,𝑓 [𝑡𝑜𝑛] 25.39 

 

6.2.1. Design of Example 2 applying the proposed analytical method 

The proposed analytical method is applied as in Section 6.1.1. For the sake of brevity, only 

results are reported. 

Concerning the wall system, the obtained parameters are: 𝑅𝜇,𝑆𝐷𝑂𝐹,𝑤 = 2.0543; 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑤 =

0.6275; 𝑅𝑀,𝑤 = 0.3054; 𝜇𝑤 = 1.9773; 𝑇1,𝑤 = 3.2870 𝑠. 

Then, concerning the frame system, the obtained parameters are: 𝑅𝜇,𝑆𝐷𝑂𝐹,𝑓 = 1.2929; 

𝑅𝜇,𝑀𝐷𝑂𝐹,𝑓 = 1.1457; 𝑅𝑀,𝑓 = 0.8862; 𝜇𝑓 = 1.2846; 𝑇1,f = 1.0576 𝑠. 

Finally, concerning the dual system, the obtained parameters are: 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑑,1 = 1.3839; 

𝑇1,𝑑 = 1.0690 𝑠. 

As for Example 1, the structure of Example 2 is designed applying UNI EN 1998-1 (2013) 

requirements and detailing. A modal response spectrum analysis is performed using a 

reduction factor, 𝑅, given by: 

 𝑅 = 𝑅𝜇𝑅𝑠 = 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑑,1𝑅𝑠 = 1.38 ∙ 2.25 = 3.11 (219) 

where 𝑅𝜇,𝑀𝐷𝑂𝐹,𝑑,1 is the ductility reduction factor for dual systems calculated by Equation 

(121) and 𝑅𝑠 is the overstrength factor given by Equation (213). 

 

6.2.2. Performance of Example 2 designed applying the proposed method 

Once the structure is designed following UNI EN 1998-1 (2013) requirements but with the 

proposed reduction factor, a nonlinear static analysis is executed to assess the performance 

of the structure through the N2-method (Fajfar, 2000) and to validate the proposed method. 

Reinforcement detailing of walls, base columns and beams are reported in Table 46, Table 

47 and Table 48, respectively. Concrete cover is 50 mm for walls and 60 mm for beams and 

columns, respectively. 
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Table 46: Reinforcement of walls. 

End vertical reinforcement Vertical reinforcement 
Horizontal 

reinforcement 

𝑛 Ø [𝑚𝑚] 𝑠 [𝑚𝑚] Ø [𝑚𝑚] 𝑠 [𝑚𝑚] Ø [𝑚𝑚] 𝑠 [𝑚𝑚] 
8 30 100 12 300 10 90 

 

Table 47: Reinforcement of base columns. 

Longitudinal reinforcement Stirrups 

𝑛 total Ø [𝑚𝑚] 𝑛 top=𝑛 bottom 𝑛 Ø [𝑚𝑚] 𝑠 [𝑚𝑚] 
26 24 8 3 10 50 

 

Table 48: Reinforcement of beams. 

Top reinforcement Bottom reinforcement Stirrups 

𝑛 Ø [𝑚𝑚] 𝑛 Ø [𝑚𝑚] 𝑛 Ø [𝑚𝑚] 𝑠 [𝑚𝑚] 
9 20 6 20 2 10 80 

 

The MDOF curve, the SDOF curve and the bilinearised SDOF curve of the Example 2 

designed to the proposed method are shown in Figure 66. 

 

Figure 66: Bilinearization of SDOF curve of Example 2 designed applying the proposed 

method. 

 

Furthermore the values of the ultimate base shear, 𝑉𝑏,𝑢, and the base shear at first flexural 

resistance, 𝑉𝑏,1, are plotted. It is noted that the ratio 𝛼𝑢/𝛼1 is equal to the ratio 𝑉𝑏,𝑢/𝑉𝑏,1: 
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 𝑅𝑠 =
𝛼𝑢
𝛼1
=
𝑉𝑏,𝑢
𝑉𝑏,1

=
4047

1800
= 2.25 (220) 

The performance evaluation is graphically illustrated in Figure 67.  

 

Figure 67: Structural performance of Example 2 designed applying the proposed 

method. 

 

The performance assessment of the structure is given by the ratio 𝛾𝑑: 

 𝛾𝑑 =
𝑑𝑐
∗

𝑑𝑑
∗ =

0.139

0.144
= 0.97 (221) 

The displacement ductility, 𝜇, and the ductility reduction factor, 𝑅𝜇, provided by the N2 

method are both equal to 2.43 (equal displacement region for 𝑇∗ > 𝑇𝑐). 

 

6.2.3. Design of Example 2 applying UNI EN 1998-1 (2013) 

To compare the proposed method to UNI EN 1998-1 (2013) standard, the same structure of 

Example 2 is designed using the force reduction factor, 𝑅, provided by the Eurocode 8, which 

is equal to 3.6 as for Example 1. 

Because of 𝑅 provided by Eurocode 8 is 16% higher than one provided by the proposed 

analytical method, the structure requires lower resistance to support seismic actions. 

Consequently, section dimensions of beams and columns cab be decreased: ℎ𝑏, 𝑏𝑐 and ℎ𝑐 
are assigned equal to 0.45 m, 0.50 m and 0.50 m, respectively. Reinforcement detailing of 
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walls, base columns and beams are reported in Table 49, Table 50 and Table 51, respectively. 

Concrete cover is 50 mm for walls and 60 mm for beams and columns, respectively. 

Table 49: Reinforcement of walls. 

End vertical reinforcement Vertical reinforcement 
Horizontal 

reinforcement 

𝑛 Ø [𝑚𝑚] 𝑠 [𝑚𝑚] Ø [𝑚𝑚] 𝑠 [𝑚𝑚] Ø [𝑚𝑚] 𝑠 [𝑚𝑚] 
8 30 100 12 300 10 90 

 

Table 50: Reinforcement of base columns. 

Longitudinal reinforcement Stirrups 

𝑛 total Ø [𝑚𝑚] 𝑛 top=𝑛 bottom 𝑛 Ø [𝑚𝑚] 𝑠 [𝑚𝑚] 
28 20 11 4 10 80 

 

Table 51: Reinforcement of beams. 

Top reinforcement Bottom reinforcement Stirrups 

𝑛 Ø [𝑚𝑚] 𝑛 Ø [𝑚𝑚] 𝑛 Ø [𝑚𝑚] 𝑠 [𝑚𝑚] 
9 20 5 20 2 10 80 

 

6.2.4. Performance of Example 2 designed applying UNI EN 1998-1 (2013) 

The MDOF curve, the SDOF curve and the bilinearised SDOF curve of the Example 2 

designed to Eurocode 8 are shown in Figure 68. 
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Figure 68: Bilinearization of SDOF curve of Example 2 designed applying Eurocode 8. 

 

The performance evaluation is graphically illustrated in Figure 69. 

 

Figure 69: Structural performance of Example 2 designed applying Eurocode 8. 

 

The performance assessment is given by 𝛾𝑑 = 0.124 0.154⁄ = 0.80. The displacement 

ductility, 𝜇, and the ductility reduction factor, 𝑅𝜇, provided by the N2 method are both equal 
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to 3.00 (equal displacement region for 𝑇∗ > 𝑇𝑐). The overstrength factor 𝛼𝑢 𝛼1⁄ = 1.2 is 

very different from the actual structural overstrength 𝑅𝑠 = 2917 1528⁄ = 1.91 obtained by 

the pushover analysis. 

Furthermore, the structure is classified as wall-equivalent dual structures because 76% of the 

total base shear given by the modal analysis is carried by the walls; in this case the nonlinear 

static analysis confirms the classification because 64% of the total base shear at failure is 

carried by walls. 

In conclusion, Example 2 shows that the design performed using the ductility reduction 

factor provided by the proposed method is more accurate than the design performed using 

the ductility reduction factor provided by UNI EN 1998-1 (2013). Moreover, Eurocode 8 

yields a less stiff and less resistant structure, with a 11% lower mean volume size of RC 

elements than the proposed method. The proposed method yields a well-designed structure, 

instead the UNI EN 1998-1 (2013) yields a significantly underdesigned structure. 

 

6.3. Conclusions on Example 1 and Example 2 

Results of the Example 1 and Example 2 are summarised in Table 52 and Table 53, 

respectively; the reduction factor, 𝑅, the ductility reduction factor, 𝑅𝜇, the overstrength 

factor, 𝑅𝑠, the performance ratio, 𝛾𝑑, and the total concrete volume of the resisting structures, 

𝑉𝑐, are listed with relative difference in per cent, respectively. 

Table 52: Results of Example 1. 

 

Design N2 method 

Proposed 

method 

Eurocode 

8 

Difference 

[%] 

Proposed 

method 

Eurocode 

8 

Difference 

[%] 

𝑹 4.49 3.60 -25% 2.23 2.00 -12% 

𝑹𝝁 1.92 3.00 +36% 2.23 2.00 -12% 

𝑹𝒔 2.34 1.20 -95% 1.00 1.00 0% 

𝜸𝒅 - - - 0.91 1.12 +19% 

𝑽𝒄 [𝒎
𝟑] 414 470 +12% - - - 

 

Table 53: Results of Example 2. 

 

Design N2 method 

Proposed 

method 

Eurocode 

8 

Difference 

[%] 

Proposed 

method 

Eurocode 

8 

Difference 

[%] 

𝑹 3.11 3.60 +14% 2.43 3.00 +19% 

𝑹𝝁 1.38 3.00 +54% 2.43 3.00 +19% 

𝑹𝒔 2.25 1.20 -88% 1.00 1.00 0% 

𝜸𝒅 - - - 0.97 0.80 -21% 

𝑽𝒄 [𝒎
𝟑] 557 497 -11% - - - 
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The following conclusion can be drawn: 

(i) Example 1 shows that Eurocode 8 provides a 25% smaller reduction factor 𝑅 than the 

proposed method, which yields stiffer and more resistant structure, with a 13% higher 

mean volume size of RC elements than the proposed method. Instead, Example 2 shows 

that Eurocode 8 provides a 14% larger reduction factor 𝑅 than the proposed method, 

which yields a less stiff and less resistant structure, with a 11% lower mean volume size 

of RC elements than the proposed method. This effect is due to the force reduction factor 

which is pre-defined and constant for a certain type of structural system. As a result of 

this, for the same design input, structures of the same type but different geometry are 

subjected to different ductility demands and show therefore a different performance 

during an earthquake. 

(ii) Structures of Example 1 and 2 designed applying the proposed method show a 

performance ratio 𝛾𝑑 equal to 0.91 and 0.97, respectively, therefore, a uniform 

performance is provided during an earthquake. Ratios 𝛾𝑑 slightly smaller than 1 mean 

that the structure have a light deficiency in displacement capacity, probably because the 

proposed method is based on mean values given by numerical analyses and cases of 

inadequate design can be also expected. Moreover, the proposed method is applied 

making use of mean material properties; the application of design material properties 

and a proper overstrength factor relating the maximum feasible flexural strength to 

design strength factor, 𝜙0, can adjust structural performance. Otherwise, a safety factor 

can be introduced to correct the ductility reduction factor performing a statistical 

analyses to calibrate the analytical model to be safe in all cases. 

(iii) Structures of Example 1 and 2 designed applying Eurocode 8 show a performance ratio 

𝛾𝑑 equal to 1.12 and 0.80, respectively, therefore the code application yields not uniform 

performance under seismic actions. 

(iv) The proposed method is more accurate than the design performed using the ductility 

reduction factor provided by UNI EN 1998-1 (2013), which does not provide a clear 

definition of meaning about the terms which compose the reduction factor. In fact, 𝑞0 

and 𝛼𝑢 𝛼1⁄  do not correspond to the ductility reduction factor and overstrength, 

respectively; Eurocode 8 provides 𝑞0 overestimated of 36% and 54% and 𝛼𝑢 𝛼1⁄  

underestimated of 95% and 88% for Example 1 and 2, respectively. 

(v) It is noted that the ductility reduction factor, 𝑅𝜇, provided by N2 method has a different 

meaning respect to the actual 𝑅𝜇 of the system, because the N2 method is developed to 

assess the nonlinear global displacement capacity of the structure. Furthermore, the split 

of the reduction factor, 𝑅, in the ductility term, 𝑅𝜇, and overstrength term, 𝑅𝑠, does not 

occur in the N2 formulation, which transforms the structure in a bilinear equivalent 

SDOF system without hardening (elastic-perfectly plastic force-displacement curve); in 

other words 𝑅𝑠 = 1 and 𝑅 = 𝑅𝜇. This evidence is proved by observing that 𝑅𝜇 given by 

N2 method is a value between 𝑅 and 𝑅𝜇 given by the proposed method. 

(vi) The N2 method confirms that a smaller value of 𝑅 provided by Eurocode 8 in Example 

1 (-25% compared to the analytical model) brings a smaller value of 𝑅𝜇 given by N2 

method (-12% compared to the analytical model). Vice versa in Example 2, a larger 

value of 𝑅 provided by Eurocode 8 (+14% compared to the analytical model) brings a 

larger value of 𝑅𝜇 given by N2 method (+19% compared to the analytical model). 
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(vii) In conclusion, the force reduction factor provided by Eurocode 8 and other international 

codes should be improved to obtain structures designed to uniform performance under 

seismic actions, in particular 𝑅𝜇 is more accurate if calculated as a function of input data 

available when starting the design process, such as geometry and general material 

properties. The proposed analytical method is based on this assumptions and further 

studies can allow refining the method and to extend it to other types of dual system. 
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7. Conclusions and outlook 

 

This Section reports the conclusions of the present work and the future research outlook in 

Section 7.1 and 7.2, respectively. 

 

7.1. Conclusions 

Nowadays, the Force-Based Design (FBD) method is the current standard method to design 

structures to seismic loads. This approach has proven to be robust and easy to apply by 

design engineers and – in combination with capacity design principles – it provides a good 

protection against premature structural failures. This FBD method requires static analyses, 

which are easy to apply and fast to perform. Inelasticity behavior is based on the force 

reduction factor or behavior factor, which allows converting nonlinear behavior in a 

reduction of static forces to be applied in static analyses. 

The force reduction factor mainly depends on the ductility of the structure and on the 

structural overstrength. The current generation of seismic design codes suffers from some 

shortcomings. One of these relates to the fact that the base shear is computed using a pre-

defined force reduction factor, which is constant for a certain type of structural system. As a 

result of this, for the same design input, structures of the same type but different geometry 

are subjected to different ductility demands and show therefore a different performance 

during an earthquake. 

Basically, the seismic demand is provided by the inelastic acceleration spectra obtained from 

the response of single-degree-of-freedom (SDOF) systems when a certain structural ductility 

is put into account. A lot of research have been done in the past about the ductility reduction 

factor for SDOF systems and several expressions have been proposed. These studies 

concluded that two parameters mainly governing the ductility reduction factor are the 

displacement ductility and the fundamental period of the system (Newmark and Hall, 1973; 

Miranda and Bertero, 1994) 

Instead, few literature is available about the ductility reduction factor for MDOF systems 

(Chopra, 1995). It is evidenced that MDOF system has larger base shear than the 

corresponding SDOF due to higher mode effects. Numerical procedures to evaluate the 

ductility force reduction factor for MDOF systems, in particular shear-type building, were 

developed by Santa-Ana and Miranda (2000), Santa-Ana (2004), Wang et al. (2013); aim of 



Force-Based Seismic Design of Dual System Structures 

_________________________________________________________________________ 

140 

these works was to investigate the correlation between SDOF and MDOF force reduction 

factor by introducing the modification factor, 𝑅𝑀. 

In the present work, an analytical method to estimate the ductility force reduction factor was 

proposed for wall and frame when considered single systems and then for dual systems, in 

particular frame-wall structures. Key points of the study are summarised in the following: 

(i) The MDOF wall system and the MDOF frame system were modelled as a flexural beam 

and a shear beam, respectively; MDOF dual system was modelled with coupling a 

flexural beam and a shear beam. 

(ii) Concerning wall and frame systems, the proposed analytical models described the 

deflected shape at yield and ultimate displacement of the structure and only input data 

that are available when starting the design process, such as geometry and general 

material properties, are required. The so computed displacement ductility was taken as 

proxy of the force reduction factor. Such analytical models allowed linking global to 

local ductility demands and therefore to compute an estimate of the force ductility 

reduction factors. These properties were used to define an equivalent SDOF system 

(Chopra, 2006) in order to calculate the ductility reduction factor. The modification 

factor was estimated by analytical expressions (Priestley et al., 2007), which take into 

account higher mode effects on the base shear. Once the modification factor was known, 

the ductility reduction factor for MDOF system was obtained from the ductility 

reduction factor for SDOF system. 

(iii) Combining the ductility reduction factor for wall and frame systems was possible to 

estimate the ductility reduction factor for dual system by introducing an empirical 

expression based on regression of numerical results. 

(iv) Three levels of sectional ductility were investigated for both wall and frame structures 

and three combinations of the precedent sectional ductilities were investigated for 

frame-wall structures. Structures with a number of storeys ranged from 3 to 12 were 

considered in the present work. Therefore, low-rise and mid-rise structures were 

investigated, but high-rise buildings were not studied in the present work. 

(v) To validate the applicability of the proposed method, a database of 34 natural ground 

motions was selected and a total of 1020 nonlinear time history analyses (NLTHA) were 

computed for wall and frame systems and 5100 NLTHA analyses for dual systems, 

respectively. An iterative procedure was implemented. 

Results of wall, frame and dual systems showed a good agreement between ductility 

reduction factor provided by analytical model and numerical analyses. Main conclusion are 

reported in the following: 

(i) Concerning wall systems, it was evident that ductility reduction factors for SDOF and 

MDOF systems, modification factor and target ductility decrease with the number of 

storeys, the loss of capability of the system to exploit the base sectional ductility 

capacity and the importance of higher mode effects with the number of storeys was 

highlighted. Finally, the proposed Expression (94) approximated accurately numerical 

results of ductility reduction factor for wall systems. 

(ii) Concerning frame systems, it was evident that ductility reduction factors for SDOF and 

MDOF systems and target ductility decrease with the number of storeys, as for wall 

systems; differently, the modification factor is basically constant and lightly affected by 
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both the sectional ductility capacity of the base column and the number of storeys. 

Finally, the proposed Expression (117) approximated accurately numerical results of 

ductility reduction factor for frame systems. 

(iii) Concerning dual systems, it was evident that the ductility reduction factor for dual 

system takes as much advantage of synergy between single systems as the number of 

storeys increases, therefore, low-rise buildings are not able to activate the synergy 

between walls and frame effectively. This behaviour was explained by the mutual 

support between systems: walls hold the frame at lower storeys, where frame is more 

deformable and wall stiffer, and the frame holds walls at higher storeys, where walls are 

more deformable and frame stiffer, due to their different opposite concavity of the first 

mode displacement shape. Therefore, the frame seems to be the most important system 

when dual structure is designed, except to low-rise structures. In other words, the frame 

is the system that provides the reserve of ductility when the dual structure attains 

ultimate capacity during strong earthquakes. Moreover, this observed behaviour was 

associated to a low use rate of the wall, and it suggested that the best performance in 

terms of supported base shear was obtained when the wall is the first system to fail. 

Finally the proposed empirical Expression (149) approximated accurately numerical 

results of ductility reduction factor for dual systems. 

The examples performed concluded that the force reduction factor provided by Eurocode 8 

should be improved to design structures with uniform performance under seismic actions. In 

particular, the force reduction factor would be more accurate if calculated as a function of 

input data available when starting the design process such as geometry and general material 

properties. The proposed analytical method was based on this assumptions and further 

studies can allow refining the proposed method and to extend it to other types of dual system. 

It was noted that the proposed method was based on mean values given by numerical 

analyses so cases of slightly inadequate design could be also expected. Moreover, further 

statistical analyses are recommended to improve the reliability of the proposed method. 

The presented work aims to contribute to the development of revised force-based design 

guidelines for the next generation of seismic design codes. 

 

7.2. Outlook 

On the basis of this study, several topics on which further research is needed can be defined, 

in particular the following areas of interest: 

(i) Additional analyses could be carried out in order to obtain more reliable expressions to 

estimate the ductility force reduction factor for dual system. Expression (149) is 

empirical and based on results of 5100 analyses, but an extension of range of number of 

storeys and sectional ductilities is recommended. 

(ii) Additional design examples could be computed to assess the reliability of the proposed 

method and provide a statistical comparison with the current building codes. Moreover, 

nonlinear time history analyses are computationally costly but more reliable than the 

simplified N2 method. This aspect will be object of the author’s next studies. 

(iii) Application of the methodology proposed by FEMA P695 (2009) to reliably quantify 

the building system performance. 
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(iv) A mechanical model for dual systems could be developed in order to obtain a similar 

tool to estimate the ductility reduction factor as introduced for wall and frame systems. 

Empirical Expression (149) is to be considered a pioneering and simple approach to 

provide ductility force reduction factor for dual systems. 

(v) As developed for ductility reduction factor, an analytical method to assess the 

overstrength factor for single and dual systems is suggested to complete the method and 

evaluate the force reduction factor in both its main terms, which are the ductility and the 

overstrength. 

(vi) The extension of proposed method to existing buildings, which are often inadequate 

with respect to the seismic performance required by modern codes, could be useful to 

assess seismic vulnerability of structures. The majority of them were designed without 

any earthquake resistance criterion and without adequate detailing, because they were 

built when codes required design for gravity loads only. Seismic upgrading is necessary 

to obtain safer structures, especially for public buildings that are strategic for social 

purposes. Therefore, a design method which is applicable to existing structures could 

lead to suitable retrofit solutions (Zerbin and Aprile, 2015). 

(vii) The extension of the procedure to systems of different material, such as steel and 

masonry structures, could be useful to update the current generation of building codes 

in order to obtain a more uniform design in term of performance. 
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