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The concept of constraint is ubiquitous, and we have concrete examples of

it in everyday life. We can think of a constraint as a condition that limits our

ability to make decisions.

Consider, for example, the finite number of hours in a day, which places a limit

on the number of activities we may decide to do, or the power limit of our homes

which prevents us from turning on all our electrical appliances at the same time.

The list of examples could go on but, we assume that at this point the reader of

this thesis might have come up with other examples based on personal experiences.

A decision problem that bases its formulation on constraints is called Constraint

Satisfaction Problem (CSP). In this scenario, constraints represent some functional

relationships between the problem variables and other parameters satisfying certain

physical phenomenon and certain resource limitations. Solving a CSP consists of

making a series of decisions such that all constraints are satisfied.

Basically, every day we face and solve CSPs without even realising it and

without the need to use sophisticated algorithms or particularly powerful computers.

However, the situation becomes more complicated when the problems to solve

become bigger, i.e., the number of decisions to be taken increases.

Many problems in the field of Artificial Intelligence (AI) can be classified as

CSPs; and it was in the AI area that the first solving techniques for CSPs were

1



2 1.1. Motivation

developed. In particular, the first solvers employed logic programming for problem

modelling, i.e., a declarative approach. Formulating problems in a declarative

way in terms of constraints is natural to the user because it only requires stating

what must be satisfied without having to say how it must be satisfied. This

way of addressing CSPs led to the birth of the programming paradigm known

as Constraint Logic Programming (CLP) [108]. Later, the declarative approach for

constraint modelling was also extended to imperative programming languages, and

the corresponding paradigm was called Constraint Programming (CP) [164].

Furthermore, for many problems it is not sufficient to find a solution that satis-

fies the constraints, but among all the feasible solutions it is necessary to find the

best one. The definition of the best solution may depend on several factors, but in

general it is that solution which minimises the quantities representing costs and/or

maximises those representing profits. These problems, in order to be distinguished

from basic CSPs, are identified as Constraint Optimization Problems (COPs).

Constraint solving techniques, also known as constraint reasoning algorithms,

can be divided into two distinct and orthogonal strategies: inference (also known

as constraint propagation) and search. Both of these two strategies, which will be

discussed in more detail in Chapter 2, are important in the resolution of CSPs and

COPs, and in fact, are very often combined to achieve the best performance overall.

The computational complexity of CSPs and COPs, in their general form, is

NP-hard. This makes it very important to have algorithms that are effective in

practice, for example by taking advantage of tractable cases of such problems, by ex-

ploiting constraints to reduce the search space, or by adopting intelligent heuristics.

Consequently, the development of new effective inference and/or search algo-

rithms is of great importance to allow progress in the field.

1.1 Motivation

Constraint Satisfaction Problems and Constraint Optimization Problems are ubiq-

uitous in many applications in engineering and industry. A list (by far not exhaus-

tive) of application domains of CP (and thus of CLP) includes: resource allocation,

product configuration, network problems, bioinformatics, automated planning and

scheduling, temporal reasoning and vehicle routing.

Despite of this categorisation, it is therefore normal for a lot of real-world appli-

cations to belong to more than one application domain due to their characteristics.

In the research presented in this thesis we will focus on temporal reasoning and

vehicle route planning as they arise in many applications used every day.

Vehicle route planning is a process that involves planning the route from one

location to another and generally involves creating routes for vehicles to reach a

group of customers at a minimal cost. The problems in this area are very often

related to supply chain optimisation. The movement of goods and people plays a



1. Introduction 3

central role in the costs sustained by companies around the world and even small

improvements can lead to enormous cost savings and thus higher profits. Of all

the problems falling into this category, the one formulated first is the Traveling

Salesperson Problem (TSP).

Traveling Salesperson Problem

Given a weighted graph the TSP requires to compute the minimum cost cycle that

visits each vertex exactly once. The name Traveling Salesperson Problem comes

from the problem’s most famous formulation: “A salesman has to visit a set of

cities, each of which must be visited only once, and he wants to minimize the length

of the tour”. The TSP is one of the best-known problems in computer science and

its applications go beyond vehicle route planning. Some of the general applications

of the TSP include: genome sequencing [52, 97, 26, 2], drilling problems [98,

142], aiming telescopes [182], x-ray crystallography [38], data clustering [144, 130],

pattern-cutting [141], order-picking problem in warehouses [169], and many others.

Due to its wide notoriety some special cases of the TSP have been studied

in the literature over the years; special cases relate to the fact that additional

assumptions are imposed on the available data. A well-known special case is the

Euclidean Traveling Salesperson Problem (ETSP). In the ETSP each node of

the weighted graph is identified by its coordinate on the plane and the Euclidean

distance is used as cost function. Although more information is available in the

ETSP than in the general TSP, it maintains the same complexity (NP-hard)

as the more general case [81].

The ETSP maintains an important number of applications and indeed many

benchmarks for the TSP, see for example the TSPLIB [172], relate precisely to it.

Despite its widespread diffusion, no specialized constraint propagation algo-

rithms for solving ETSP in CP has ever been proposed so far. The usual way

to tackle Euclidean TSPs is to compute the distance matrix and address the

problem as a general TSP, without using any of the additional information available

in this case (e.g., node coordinates and geometrical concepts like: straight line

segments, angles, etc.).

Qualitative temporal reasoning

The concept of time is ubiquitous, and the explicit representation and reasoning of

time is a major problem in many areas of AI. Human perception and understanding

of the real world deeply embody the concept of time. Everything appears related

due to its temporal relation. Events occur temporally in relation to one another.

When the constraints of a problem concern the temporal relations between events,

the problem is identified as temporal CSPs. Temporal CSPs have been studied

extensively because of their importance in applications such as: natural language
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processing [187], scheduling [156], planning [5], database theory [123], medical

diagnosis [155], circuit design [193], archaeology [95, 118], and genetics [28]. There

are two approaches for temporal reasoning: a quantitative one and a qualitative

one. Qualitative temporal relations allow for representing time associated with

events or facts in a somewhat indefinite manner. As an example, consider the

sentence “Alice had breakfast and then met Bob”, there is no reference to what

time the two actions occurred (“had breakfast”, “met Bob”) or how long they

lasted, the only information provided is the order in which the actions took place.

Quantitative temporal relations allow for representing more information about

events, for example in the sentence “Alice took the bus at 9.30 a.m., then met

Bob at 9.45 a.m.” we know precisely that the time it took Alice to reach Bob

was 15 minutes.

Qualitative temporal reasoning is an area that has greatly benefited from CP

techniques since James F. Allen proposed an algebra, in 1983, that later became

known as Allen’s Interval Algebra (IA) [6]. IA is a qualitative, interval-based

algebra, where time is interpreted as a continuous line. Later, an extension of the

IA was proposed and called Branching Interval Algebra (BA) [168]. The BA, as

the name suggests, is a tree-like extension of the linear formalism because time

is no longer seen as a straight line but rather as a tree, which can branch in the

future, but its branches, once created, can never merge. So, BA introduces the

concept of alternative or choice to reason about alternative futures. BA also has

many potential applications in different areas of AI; for example, in planning with

alternatives [143, 152, 197], in which different plans have to be taken into account

in the design phase, or in the automatic generation of narratives [176] and in the

formal verification of parallel programs [179].

Unfortunately, the consistency problem of BA is NP-hard, as in the linear

case. In the linear case, we know every tractable fragment of the full algebra [124],

while in the branching case the entire landscape of tractable fragments is still

unknown. Unlike the linear case, however, there has not been much effort to

discover potentially tractable fragments. Therefore, identifying tractable fragments

is particularly important to efficiently solve the problems expressed in BA. In fact,

tractable fragments of an algebra can be used as heuristics in search algorithms

to improve their efficiency.

1.2 Contribution

The main contributions of this thesis are:

• We present the first attempt, to the best of our knowledge, to exploit the

geometric information in order to achieve a stronger constraint propagation

in CP when solving ETSPs.
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• We show that the inference performed by the algorithms we developed for

the ETSP is not subsumed by that of state-of-the-art algorithms in CP for

solving the TSP.

• We study the computational complexity of some of the newly introduced

constraint propagation algorithms and show how machine learning techniques

can be combined with CP techniques to increase overall solving performance.

• We developed algorithms to study BA fragments in order to assess their

tractability (or prove that they are intractable). In particular, our research fo-

cused on four interesting fragments named: BAconvex, BApoint, BAlin, BAHorn.

• We propose an enhanced version of a search algorithm for the full BA that

takes advantage from tractable fragments to improve its computational per-

formance.

• We experimentally evaluated and showed that the proposed search algorithm

can be used to effectively solve problems expressed in BA.

1.3 Publications

This thesis is based on several peer-reviewed publications:

• Alessandro Bertagnon and Marco Gavanelli. “Improved Filtering for the

Euclidean Traveling Salesperson Problem in CLP(FD)”. in: The Thirty-

Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-

Second Innovative Applications of Artificial Intelligence Conference, IAAI

2020, The Tenth AAAI Symposium on Educational Advances in Artificial

Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020. AAAI

Press, 2020, pp. 1412–1419 Scopus: 2-s2.0-85092671488

• Elena Bellodi, Alessandro Bertagnon, Marco Gavanelli, and Riccardo Zese.

“Improving the Efficiency of Euclidean TSP Solving in Constraint Program-

ming by Predicting Effective Nocrossing Constraints”. In: Joint Proceedings

of the 8th Italian Workshop on Planning and Scheduling and the 27th Interna-

tional Workshop on Experimental Evaluation of Algorithms for Solving Prob-

lems with Combinatorial Explosion co-located with AIxIA 2020, Online Event,

November 25-27, 2020. Ed. by Riccardo De Benedictis et al. Vol. 2745. CEUR

Workshop Proceedings. CEUR-WS.org, 2020 Scopus: 2-s2.0-85096984335

• Elena Bellodi, Alessandro Bertagnon, Marco Gavanelli, and Riccardo Zese.

“Improving the Efficiency of Euclidean TSP Solving in Constraint Program-

ming by Predicting Effective Nocrossing Constraints”. In: AIxIA 2020 -

Advances in Artificial Intelligence - XIXth International Conference of the
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Italian Association for Artificial Intelligence, Virtual Event, November 25-27,

2020, Revised Selected Papers. Ed. by Matteo Baldoni and Stefania Bandini.

Vol. 12414. Lecture Notes in Computer Science. Springer, 2020, pp. 318–334

Scopus: 2-s2.0-85111397068

• Alessandro Bertagnon. “Constraint Programming Algorithms for Route Plan-

ning Exploiting Geometrical Information”. In: Proceedings 36th Interna-

tional Conference on Logic Programming (Technical Communications), ICLP

Technical Communications 2020, (Technical Communications) UNICAL, Rende

(CS), Italy, 18-24th September 2020. Ed. by Francesco Ricca et al. Vol. 325.

EPTCS. 2020, pp. 286–295 Scopus: 2-s2.0-85092617425

• Alessandro Bertagnon, Marco Gavanelli, Alessandro Passantino, Guido Scia-

vicco, and Stefano Trevisani. “The Horn Fragment of Branching Algebra”.

In: Proc. of the 27th International Symposium on Temporal Representation

and Reasoning. Vol. 178. LIPIcs. 2020, 5:1–5:16 Scopus: 2-s2.0-85091655245

• Alessandro Bertagnon, Marco Gavanelli, Guido Sciavicco, and Stefano Tre-

visani. “On (Maximal, Tractable) Fragments of the Branching Algebra”.

In: Proceedings of the 35th Italian Conference on Computational Logic -

CILC 2020, Rende, Italy, October 13-15, 2020. Ed. by Francesco Calimeri,

Simona Perri, and Ester Zumpano. Vol. 2710. CEUR Workshop Proceedings.

CEUR-WS.org, 2020, pp. 113–126 Scopus: 2-s2.0-85095837937

• Alessandro Bertagnon, Marco Gavanelli, Alessandro Passantino, Guido Scia-

vicco, and Stefano Trevisani. “Branching interval algebra: An almost com-

plete picture”. In: Information and Computation 281 (2021), p. 104809. issn:

0890-5401 Scopus: 2-s2.0-85118261560

1.4 Outline

The content of this thesis is organized as follows. Chapter 2 provides background

information on Constraint (Logic) Programming. Chapter 3 presents the Euclidean

Traveling Salesperson Problem, introduce inference algorithms based on geometri-

cal information and then propose a way to improve the overall solving performance

using machine learning techniques. Chapter 4 presents interval and branching

algebras for qualitative temporal reasoning, introduce new expressive but tractable

fragments of the branching algebra and shows how to use them to improve the

performance of a search algorithm. Finally, we conclude our work in Chapter 5.
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Constraint Programming (CP) is a programming paradigm used to model and

solve CSPs, which is a well-known class of problems in the field of Artificial

Intelligence (AI) and Operations Research. Simplifying, a CSP is a representation

of a problem which consist of: a set of variables, each variable has associated a set

of possible values that it can assume, and a number of relations, called constraints,

that restrict the set of values that different variables can assume simultaneously.

A CSP is considered solved when each variable has associated a value, from its

set of possible values, that satisfies all the constraints. The concept of constraint

was first introduced in Logic Programming (LP), leading to the birth of Constraint

Logic Programming (CLP) [109]. Although the declarative approach for constraint

modelling was later extended to imperative programming languages, CLP still

maintains considerable importance in the resolution of CSPs. This chapter is

intended to provide a brief introduction to terminology and symbols of CP and

7
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CLP that will be frequently mentioned in this thesis. For more details, many

excellent books are available, such as [104, 190, 58, 15, 80, 178].

2.1 Constraint Satisfaction (Optimization) Prob-

lems

2.1.1 Definitions

Definition 2.1.1. (Constraint Satisfaction Problem) A Constraint Satisfaction

Problem (CSP) is a triple P = 〈X ,D, C〉 where X is a set of n decision variables

{x1, x2, . . . , xn}, D is a set of domains {D1, D2, . . . , Dn} and C a set of constraints

{c1, c2, . . . , cm}. Each domain Di consist in a set of all possible values that can be

assigned to the variable xi. Each constraint ci consists of a pair 〈Ri, Si〉 where Ri

is a relation between the variables Si participating in the constraint. The set Si is

called the scope of Ri. Ri results in a subset of the cartesian product of the domain

of the variables in Si.

A decision variable xi ∈ X is fixed, or instantiated or assigned, by its domain

Di, if |Di| = 1. To represent different sets of domains (implicitly) referred to the

same set of decision variables, we will use the notation D1, . . . ,Dj. This will be

useful to represent how the set of domains D in a CSP varies as a result of the

change of one or more variable domains Di ∈ D. To represent the domain of the

decision variable xi, indicating which set of domains Dj we are referring to, we

write Dj(xi). A set of domains Di is said to be stronger than a set of domains Dj ,

written Di ⊑ Dj , if Di(xk) ⊆ Dj(xk) for all xk ∈ X .

A problem state is defined by an instantiation of a subset of its variables. An

instantiation of a set of variables {x1, . . . , xk} is defined as a k-tuple (0 < k ≤ n)

of ordered pairs I = (〈x1, a1〉, . . . , 〈xk, ak〉) where each pair 〈x, a〉 is an assignment

of the value a to the variable x where a ∈ D(x). We also use the notation I =

(x1 = a1, . . . , xk = ak) or I = (a1, . . . , ak). An instantiation, for a CSP P, is called

complete if it assigns a value to each variable in X and consistent (or feasible) if

it satisfies all the constraints C of P. An instantiation which is complete and

consistent is also called a solution of P. CSPs for which at least one solution

exists are called consistent (or satisfiable), while instances that do not have any

solutions are called inconsistent (or unsatisfiable).

Different types of CSPs are distinguished according to the type of domains

assumed by their variables. In the following, we will focus only on finite discrete

domains, which are the ones of interest in this thesis. A CSP P is a finite discrete

CSP if all decision variables in P have discrete and finite domains.

If a constraint involves only one decision variable, the size of its scope is 1,

the constraint is called a unary constraint (e.g., xi 6= 3). Whereas if a constraint
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involves two variables, the size of its scope is 2, it is called a binary constraint (e.g.,

xi + xj > 0). If all the constraints of a CSP are unary or binary, the CSP is called

binary CSP. A binary CSP can be represented by a constraint graph: the vertices

of the graph correspond to the decision variables and each constraint is represented

by an edge connecting the involved variables. If the arity of the constraints is not

limited, so p-ary constraints are present in the CSP, then a hypergraph is required

to represent the CSP with a hyperarc for each p-ary constraint connecting the

p vertices involved. A constraint that involves an arbitrary subset of variables

is called a global constraint.

Unless otherwise specified, for a CSP it is assumed that all solutions are equally

good. For some applications, however, some solutions are better than others. The

task in such problems is to find optimal solution(s), where optimality is defined in

terms of some application-specific functions. To identify which solution is “better”

than the others, a function f (called cost function or optimization function or

objective function) is used which associates a numerical value with each solution.

The value assumed by the function should be minimised if it is a cost or maximised

if it is a profit. To be distinguished from CSPs, these problems are called Constraint

Optimization Problems.

Definition 2.1.2. (Constraint Optimization Problem) A Constraint Optimization

Problem (COP) is a pair 〈P, f〉 where P = 〈X ,D, C〉 is a CSP and f a function

f : D(x1) × · · · × D(xn) → R which associates a value to every solution of the

problem. A solution s of P is also an optimal solution of the minimization (resp.

maximization) problem if and only if there is no solution s′ such that f(s′) < f(s)

(resp. f(s) < f(s′)).

If all domains Di are finite, then the finite search space containing all possible

instantiation for a CSP or COP is Ω =⋊⋉i Di where ⋊⋉ is the join operator of

relational algebra. The search space Ω could, at least theoretically, be enumerated

and every n-tuple could be tested to check if it actually represents a solution, but

this strategy, however, turns out to be too poorly performing due to the large

size assumed by Ω even for problems with a small number of decision variables

(and/or small domains).

To improve solving performance two distinct and orthogonal strategies can

be used: search and inference (also known as constraint propagation). Search

(systematically) explores Ω in order to find the solution of the CSP, eliminating

infeasible subspaces whenever they are detected. Inference techniques instead take

advantage of constraint propagation to eliminate large subspaces of Ω that do not

contain feasible instantiations according to the constraints. When solving a CSP,

the classic way to proceed is to alternate between these two strategies.

Algorithms for solving CSPs are also divided according to their ability to find

solutions into: complete algorithms and incomplete algorithms. An algorithm is
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said to be complete if it guarantees to find a solution if one exists; it can also

be used to prove that a CSP has no solution or to find the optimal solution of

a COP. Incomplete algorithms, on the other hand, cannot guarantee that they

find the optimal solution and if they do not find a solution it is not necessarily

the case that the problem has no solution.

2.1.2 Search

The backtracking search algorithm is the fundamental complete search method for

exploring the search space. The simplest backtrack search algorithm constructs

the solution of the problem by incrementally choosing values for variables until

it reaches a dead-end, i.e., a non-complete instantiation that cannot be further

extended in a consistent manner while still satisfying the constraints of the problem.

The backtracking search is often based on a representation of the search space

Ω as a tree, which is called search tree. Backtracking search is nothing more than a

depth-first exploration of the search tree that is generated as the search proceeds.

In the search tree the root node (level 0) is the empty set of assignments while

a node at level j is a set of assignments {x1 = a1, . . . , xj = aj}. At each node of

the search tree a variable not yet assigned is selected and the branches exiting that

node represent all possible ways of extending the current instantiation.

The method used to extend a node of the search tree is called a branching

strategy and several alternatives have been proposed and examined in the literature.

If, after choosing a branch for the variable, a constraint check fails, another

branch is selected following the branching strategy. If there are no more branches

available for the current variable, the assignment cannot be extended and, a dead-

end occurs.

When a dead-end is reached, the algorithm undoes the last choice made by

discarding the current assignment (backtrack) and attempts a different choice. The

whole subtree rooted where the dead-end occurred is skipped (pruned). Usually,

the procedure is iterated in a systematic way ensuring that every possible solution

is considered at some point.

Backtracking search is more efficient than the trivial enumeration of all possible

instantiation of the search space Ω because at each step it is checked whether

the constraints are satisfied instead of waiting for the generation of a complete

instantiation (candidate solution).

Basic backtracking search backtracks chronologically to the last choice, and this

can lead to thrashing [39]. Thrashing is the repeated exploration of subtrees that

cause the overall search tree to fail, differing only by assignments to variables not

responsible for the failure. Since there are an exponential number of such subtrees,

thrashing has a non-negligible cost in the running time of the backtracking algo-

rithm. Thrashing can be limited by inference techniques, which will be discussed

in more detail later, or by using methods that somehow “remember” the reason for
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the failure. Alternatives to the chronological backtrack that have been presented

in the literature over the years include: dependency-directed backtracking [188],

backjumping [82], intelligent backtracking [45].

Also noteworthy is the method proposed by Stallman and Sussman based on

nogoods [188]. Nogoods are nothing more than new constraints that the search

algorithm is able to add whenever a failure occurs. Nogoods have the task of

“describing” the failure and preventing it from occurring again for the same as-

signments of values to variables. The recorded nogoods constraints can also be

checked and propagated during inference to reduce the search space. Managing the

discovering, recording, updating and deletion of nogoods is a non-trivial problem

that has been addressed in various works [115, 89, 56, 57, 78, 161, 183].

Branching Strategies and Heuristics for Backtracking Algorithms

As described above, backtracking search algorithms, during the exploration of the

search space, must make several choices when it comes to extending a node (and

thus an instantiation). The usual way to extend a node p = {x1 = a1, . . . , xj = aj}

which is a set of assignments, is by selecting a variable xi and a value ai ∈ Di and

adding a branch to a new node p∪{xi = ai}. This is one of the possible strategies,

but other strategies have been proposed in the literature; in fact, each node p =

{b1, . . . , bj} of the search tree is a set of so-called branching constraints where bi,

1 ≤ i ≤ j is the branching constraint at level i in the search tree. Extending a

node p consist of adding branches p ∪ {b1
j+1}, . . . , p ∪ {bk

j+1}, for some branching

constraint bi
j+1 where 1 ≤ i ≤ k. In order to guarantee the completeness of the

algorithm it is necessary that all branching constraints of a node are exhaustive.

If we also want to ensure that no repeated solutions are explored, then branching

constraints must also be mutually exclusive.

Commonly, the branching constraints are unary constraints as is the case of

the three most popular branching strategies: enumeration, binary choice points

and domain splitting.

In the enumeration strategy a variable is assigned in turn to each value in

its domain, so a branch is generated for each value in its domain. In the binary

choice point strategy for each value ai in the domain of a variable xi two branches

are generated respectively with constraints xi = ai and xi 6= ai. In the domain

splitting strategy, as the name suggest, the variable is not assigned, while in each

branch the possible choices for its value are reduced (e.g., xi ≤ k in one branch

and xi > k in the other).

When dealing with unary branching constraints, the variable ordering heuristics,

which is used to select the next variable to branch, and the value ordering heuristics,

which determines the order in which branches will be explored, are of fundamental

importance. Various works in the literature show that these two heuristics play a

crucial role in the efficient resolution of CSPs [90, 100, 86, 20].
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A variable or value ordering is optimal if the search visits the fewest number

of nodes over all possible orderings when finding one solution or showing that a

solution does not exist. It is important to note that identifying an optimal variable

or value ordering is at least as difficult as proving that the CSP has a solution

[131], so all ordering heuristics have no formal guarantees.

The ordering heuristics that offer the best performance are those that have

been specifically designed for a certain application, but there are also application-

independent heuristics that we will briefly illustrate. A noteworthy case are heuris-

tics that can adapt to the problem [147] or that are learned from previous experience

in solving other instances of the same problem [67]. The search with chronological

backtracking algorithm is sketched in Algorithm 1.

Algorithm 1 A simple implementation of the chronological backtracking algo-
rithm. This implementation is based on a depth-first exploration of the search
space. The function select-unassigned-variable implements the Variable
Ordering Heuristics while the function select-domain-value implements the
Value Ordering Heuristics. The consistent function checks for the consistency of
the current instantiation with the new assignment.

Require: P is a CSP.
1: function search-backtracking(P)
2: I ← () ⊲ Current instantiation
3: return backtrack(P, I)

4: function backtrack(P, I)
5: if I is complete then
6: return I ⊲ Solution found
7: xi ← select-unassigned-variable(P, I)
8: for each ai ← select-domain-value(xi) do
9: if consistent(I, 〈xi = ai〉) then

10: I ′ ← I ∪ {xi = ai}
11: R← backtrack(P, I ′)
12: if R 6= fail then
13: return R
14: return fail ⊲ No solution

Variable Ordering Heuristics The variable ordering heuristic is used to select

the next variable to be branched on during the search. Most of the application-

independent variable ordering heuristics presented and studied in the literature are

based on the size of the domains of unassigned variables. Some examples of variable

ordering heuristic are: select first the variable with the smallest (largest) domain

size [93], select first the variable involved in the largest number of constraints [83],

select first the variable with the smallest (largest) value in the domain.
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Value Ordering Heuristics When the variable ordering heuristic chooses the

next variable to be branched on, the task of the value ordering heuristic is to

choose the order in which the branches should be explored. Some examples of value

ordering heuristic are: select value in increasing (decreasing) order, select first the

value that maximizes the sum (product) of the remaining domain sizes [91, 79, 83].

Branch and Bound for Constraint Optimization Problems

Search algorithms can also be used to solve Constraint Optimization Problems. For

the sake of simplicity, we will refer in the following to minimization problems, but

same reasoning applies, with some modifications, to maximisation problems.

The naivest way of solving a COP would be to use the backtracking algorithm

but instead of stopping at the first solution found continue the search for all possible

solutions. Whenever a solution is found it can be compared with the best solution

found so far and if it is better assigned as the new best. Better performance can

be achieved if the cost function is exploited during the search, and this is exactly

what is done by the branch-and-bound algorithm.

The branch-and-bound algorithm is the basic algorithm that extends the back-

tracking search for solving COPs. During the search, the branch-and-bound algo-

rithm keeps the best solution found, and its cost, and each time a non-complete

instantiation is proved to be more expensive than the current best solution, it

backtracks, avoiding further refinements and thus reducing the search space.

Recalling that in a COP we denote with f the function that associates to each

instantiation I of the variables of the problem a numerical value (see Section 2.1.1);

we will write f(I) to indicate that the function f is computed on I. Furthermore,

for simplicity, we can assume that if the instantiation I is not complete, the function

f returns a lower bound of the cost of I; that is, a value always less than or equal

f(Ic) where Ic is an instantiation that extends and completes the instantiation I.

For example, given a non-complete instantiation I, if the result of f(I) is

already higher than the cost of the best solution found so far, the instantiation I

can be aborted, and the algorithm performs a backtrack.

A sketch of the implementation of the branch-and-bound algorithm as an ex-

tension of the chronological backtracking algorithm is proposed in Algorithm 2.

2.1.3 Inference

Inference, which in the context of constraint programming is called constraint

propagation, removes from the domains of variables those values that are not part

of any solution (this action is also referred as domain filtering), eliminating large

subspaces of the search space Ω. Constraint propagation is therefore an excel-

lent method for reducing the thrashing behaviour of the backtracking algorithm

introduced in the previous section.
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Algorithm 2 A simple implementation of the branch-and-bound optimization algo-
rithm, for a minimization problem, based on chronological backtracking algorithm.

Require: 〈P, f〉 is a COP.
1: function search-branch-and-bound(〈P, f〉)
2: U ← +∞ ⊲ Current upper bound (global variable)
3: I∗ ← () ⊲ Best solution found so far (global variable)
4: branch-and-bound(〈P, f〉, (), U)
5: return I∗

6: function branch-and-bound(〈P, f〉, I, U)
7: if I is complete then
8: if f(I) < U then
9: U ← f(I)

10: I∗ ← I
11: else if f(I) < U then
12: xi ← select-unassigned-variable(P, I)
13: for each ai ← select-domain-value(xi) do
14: if consistent(I, 〈xi = ai〉) then
15: I ′ ← I ∪ {xi = ai}
16: branch-and-bound(P, I ′, U)

Constraint propagation can be alternated with the search phase, and/or it can

be performed as an initial processing step, before the search begins. The level of

local consistency achieved through constraint propagation can vary from 1 to n, but

usually a higher level of consistency corresponds to a higher computational cost.

Node consistency Node consistency states that a single variable xi is node

consistent if all values in its domain Di satisfy its unary constraints 〈Ri, {xi}〉.

In other words, the variable xi with domain Di is node consistent if and only if

Di ⊆ Ri. If a variable is not node consistent, it can be made so by computing: Di ←

Di∩Ri. Node consistency consists of a simple reduction of domains, once the node

consistency algorithm is executed all unary constraints are satisfied. For example,

given a variable xi with domain Di = {1, 2, 3, 4, 5} and constraint xi 6 3, node

consistency restricts the domain to Di = {1, 2, 3} and the constraint is satisfied.

Arc Consistency Arc consistency states that a variable xi is arc consistent with

respect to another variable xj if for every value in the current domain Di there is

a value in the domain Dj that satisfies the binary constraints 〈Rij, {xi, xj}〉. A set

{xi, xj} is arc consistent if and only if xi is arc consistent relative to xj and xj is

arc consistent relative to xi. We consider the arcs 〈i, j〉 and 〈j, i〉 separately. In

relational algebra an arc 〈i, j〉 is arc consistent if and only if Di ⊂ πi(Rij ⋊⋉ Dj)

where π is the projection operator. The arc 〈i, j〉 can be made arc consistent by

updating the domain of the variable xi: Di ← Di∩πi(Rij ⋊⋉ Dj). Similar reasoning
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can be applied to the arc 〈j, i〉. For example, consider the binary constraint xi < xj

where the variables xi and xj have domain Di = Dj = {1, 2, 3}. For the value {3}

in di there is no value in dj that can satisfy the constraint and therefore the value

{3} can be removed from Di. The same reasoning can be applied for the value

{1} in Dj so it can be removed.

If during the consistency check all the arcs are already arc consistent then the

CSP is arc consistent otherwise if one domain is changed the algorithm needs to

recheck all constraints whose variables have experienced a domain change.

The most widely used arc consistency algorithm is AC-3 presented by Mack-

worth in 1977 [140]. Assuming we have a CSP with n decision variables, each with

domain size no greater than d and with a number m of binary constraints, the

worst-case running time of the AC-3 algorithm is O(md3).

Path consistency and k-consistency Path consistency [149] considers triplets

of variables. A set of two variables {xi, xj} is path consistent with respect to a

third variable xm if, for each assignment consistent with the binary constraints

〈Rij , {xi, xj}〉 , there exists an assignment for xm that satisfies the binary con-

straints 〈Rim, {xi, xm}〉 and 〈Rmj, {xm, xj}〉. A path of length two from node i

through node m to node j is path consistent if and only if Rij ⊂ πij(Rim ⋊⋉ Dm ⋊⋉
Rmj) and can be made path consistent by computing: Rij ← Rij∩πij(Rim ⋊⋉ Dm ⋊⋉
Rmj). A set of three variables {xi, xj , xm} is path consistent if and only if for any

permutation of (i, j, m), Rij is path consistent relative to xm.

Further levels of consistency fall under the concept of k-consistency introduced

by Freuder in 1978 [76]. Note that within this concept 1-consistency is equivalent

to node consistency, 2-consistency to arc consistency and 3-consistency to path

consistency. k-consistency requires that given consistent values for any k − 1

variables, there exists a value for any k-th variable, such that all k values are

consistent. The k-consistency is not sufficient to guarantee the satisfiability of a

CSP if it has more than k variables.

Higher consistency levels can generally do more propagation, but are also more

computationally expensive, so arc consistency is often the most widely used method

because it has the best compromise between the propagation performed and the

computational cost.

Generalized Arc Consistency (GAC) The consistency algorithms mentioned

so far only refer to unary or binary constraints; in case some of the CSP constraints

are p-ary (p > 2), as in the case of global constraints, it is possible to generalize

the concept of arc consistency.

A constraint 〈RSj
, Sj〉, where Sj = {x1, . . . , xk}, is Generalized Arc Consistent if

and only if for each variable xi ∈ Sj , for each value a ∈ Di there exists an assignment

of the remaining n− 1 variables x1, ..., xi−1, xi+1, ..., xk such that the constraint is
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satisfied [148]. Each p-ary constraint is represented as an hyperarc connecting the

vertices representing the variables in Sj. Given a directional hyperarc 〈xi, Sj−〈xi〉〉

this is made generalized arc consistent by updating the domain Di according to

the following formula: Di ← Di ∩ πi(RSj
⋊⋉ (⋊⋉m∈Sj−〈xi〉 Dm)).

The computational complexity of enforcing Generalized Arc Consistency (GAC)

strongly depends on the constraint being implemented. Enforcing GAC in general

is an NP-complete problem; however, there are cases where particularly efficient

implementations manage to enforce the GAC with polynomial complexity: proba-

bly the most famous case is that of the alldifferent constraint [170].

Consistency levels are just a convenient way to indicate how “strong” the con-

straint propagation is. In practice, the goal is not to achieve a specific consistency

level but to implement constraints in such a way that that have a good trade-off

between performed propagation and computational cost.

2.2 Implementing Constraint Propagation

2.2.1 Propagators

In constraint programming systems the constraints expressing the existing relations

between the decision variables are implemented by means of so-called propagators.

In this section we will briefly present the structure of a propagator and the structure

of the propagation engine, i.e. the algorithm that coordinates the execution of the

various propagators in order to perform the constraint propagation.

The simplest way to represent a constraint may be through an extended def-

inition listing all possible assignments for the involved variables. In constraint

programming systems, constraints are rarely handled through an extended repre-

sentation, mainly for efficiency reasons. Representing all the possible assignments

of a constraint would require an exponential amount of memory in the number of

variables, and the possibility of exploiting particular structures would be lost.

Constraint programming systems implement each constraint by a collection

of propagators (also known as filter). The task of a propagator is to “observe”

the domains of the variables involved in the constraint and, as soon as a value

is removed from the domain of a variable, try to remove further values from the

domains of its variables. The algorithm used by a propagator is often referred as

filtering algorithm. In the following, we write p(Di) to indicate that the propagator

p is executed on the domain Di, we also write p(Di) to indicate that a propagator

p is executed on a set of domains Di. The input variables for a propagator are

the variables used to perform the computations (the variables used by the filtering

algorithm) while the output variables are the variables whose domain is modified

by the propagator. It is usual for input and output variables to coincide.



2. Constraint (Logic) Programming 17

Definition 2.2.1. (Propagators)

• A propagator must be contracting (or decreasing), in order to guarantee that

constraint propagation only removes values: ∀Di ∈ D, p(Di) ⊆ Di

• A set of monotonic propagators guarantee that the order in which propagators

are applied does not change the result: ∀Di, Dj ∈ D, Di ⊆ Dj ⇒ p(Di) ⊆

p(Dj).

• A propagator p is at fixpoint on a domain Di if and only if applying p to Di

gives no further propagation: p(Di) = Di

• A propagator p is idempotent if the result of a propagation is a fixpoint of p:

∀Di ∈ D, p(p(Di)) = p(Di)

• A propagator p is correct for a constraint c if and only if it does not remove

any assignment that is consistent with c.

• A propagator p is entailed by a set of domains Di, if all set of domains Dj

with Dj ⊑ Di are fixpoints of p.

To solve a CSP, a constraint programming system must implement both strate-

gies presented in the previous sections: search and constraint propagation. The

search, carried out by the module known as the search engine, is implemented via

a search procedure e.g., the backtracking search described in Section 2.1.2. The

propagation, instead, is carried out by the propagation engine represented by the

procedure propagate sketched in Algorithm 3. Note that the procedure presented

is straightforward, various optimizations are possible, the most common being early

detection of failures and entailments. The select-propagator procedure, which

is responsible for selecting the order of application of the propagators, will be

discussed in the following section.

2.2.2 Life Cycle of a Propagator

The life cycle of a propagator can be summarised in the following status: sub-

scripted, runnable, executed, suspended; and is illustrated in Figure 2.1.

Subscripted. When a propagator p is created, it subscribes to its input variables.

The subscription allows the propagation engine to run the propagator whenever

the domain of one of its variables changes.

How a domain changes is described by propagation events or just events. The

usual events defined in a constraint programming system are:

• fix(x): the variable x become fixed.

• minc(x): the minimum value in the domain of variable x changes.
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Algorithm 3 Sketch of a basic propagation engine for a constraint programming
system. In line 8 the set M is composed of the variables whose domain has changed
after the execution of the propagator p. In line 9, input(p′) represents the input
variables of the propagator p′.

Require: Pf set of propagators at fixpoint for Di.
Require: Pn set of propagators not known to be at fixpoint for Di.
Require: Di a set of domains.

1: function propagate(Pf , Pn, Di)
2: N ← Pn

3: P ← Pf ∪ Pn

4: while N 6= ∅ do
5: p← select-propagator(N)
6: N ← N − {p}
7: Dj ← p(Di) ⊲ Execute the propagator p
8: M ← {x ∈ X | Di(x) 6= Dj(x)} ⊲ M is the set of modified variables
9: N ← N ∪ {p′ ∈ P | input(p′) ∩M 6= ∅}

10: if p is idempotent then
11: N ← N − {p}

12: Di ← Dj

13: return Di

• maxc(x): the maximum value in the domain of variable x changes.

• any(x): the domain of the variable x changes.

Runnable. After the subscription the propagator waits in the runnable set until

it is selected by the propagation engine for the execution. The order in which

propagators are selected to be applied, is performed by the function select-

propagator in line 5 of Algorithm 3. Each system in this case uses its own

selection policy, but normally priority is given to propagators with less complexity

or resumed by events that provide more information (e.g. fix). Priorities can be

static or dynamic. The ECLiPSe constraint programming system [184], which will

be mentioned in the following, for example, supports 12 different priority levels.

Executed. A propagator that is selected for execution is said to be resumed,

awakened, or activated. The execution of p can have one of three possible outcomes.

In the first case the propagator p realizes that the constraint has no solution,

e.g., because a domain becomes empty as a result of deleting some values. In this

case the propagator is deallocated, and a failure is returned.

In the second case, the propagator finds that the constraint is entailed i.e., it

is satisfied whatever the values assumed by the variables among those remaining

in the domains. Also, in this case the propagator is deallocated.
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allocate and subscribe to p

add p to runnable set

execute p

add p to suspended set

delete p delete p and fail

entail fail

resume suspend

event

create

Figure 2.1: A sketch of the life cycle of a propagator p in a constraint programming
system.

In the third case, neither of the previous two cases has occurred and so the

propagator p at the end of the execution, when it reaches the fixpoint, is moved to

the set of suspended propagators waiting for an event to occur.

Suspended. A propagator that has reached the fixpoint waits in the suspended

set until the domains of the involved variables change. These domains change

triggers an event, and the propagator is moved to the runnable set (adding the

propagator p to the runnable set is called scheduling p).

2.3 Constraint Logic Programming

Constraint Logic Programming is the fusion of two declarative paradigms: con-

straint programming and logic programming. The term was coined by Jaffar

and Lassez in 1986 [108] when they provided a first schema and semantics for

CLP languages. In CLP it is possible to keep the logical formulation of the

problem separate from the solving algorithm, making the programming languages

used in this area much more expressive than other existing approaches for solving

constraint problems.
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2.3.1 Logic Programming

Logic programming is a declarative programming paradigm in which programs are

not made up of statements or functions, as in imperative or functional programming,

but are based on formal logic. A logic program consists of a set of rules written

in the form of clauses.

Definition 2.3.1. A literal is an atomic formula (atom) or its negation. Each

literal involves an n-ary predicate p, and has the form p(t1, . . . , tn) where ti is

called a term. A term is recursively defined and can be: a variable x, a constant c

or an n-ary function f applied to n terms: f(t1, . . . , tn).

A clause is an expression that has the form H :−B. H is called the head of the

clause while B = B1, . . . , Bm is called the body and is a conjunction of literals. A

clause is true when all its literals are true. The symbol :− is an implication from

the body B to the head H : if B is true, then H must be true. When a clause

does not have a body, it is called a fact and is written H :−�, where � denote the

empty sequence, or in the simplified form: H.

If we want to see a logic program from the perspective of classical imperative

programming, the head of a clause is the definition of a procedure (the predicate)

with its arguments (the terms) and the body is its code.

The execution of a logic program corresponds to asking for the truth value

for a certain statement :−G which is called the goal. Asking for the truth value

of G corresponds to asking whether there are assignments to variables in G such

that G is true given the clauses of the logic program (G = G1, . . . , Gn is a con-

junction of literals).

This is answered by repeatedly transforming the goal through a series of res-

olution steps, until: the empty goal is reached (success), the resolution cannot be

continued and the goal is not empty (failure) or the resolution continues indefinitely.

Each resolution step involves unifying a literal, that is part of the goal, with

the head of a clause.

Definition 2.3.2. (Substitution) Let V be a set of variables and let T be a set

of terms. A substitution is a function σ : V → T . Substitutions are traditionally

written as postfix operators. Given a term t, tσ is defined recursively as follows:

• if c is a constant, cσ = c;

• if x is a variable, xσ = σ(x);

• if f is a n-ary function, then f(t1, . . . , tn)σ = f(t1σ, . . . , tnσ).
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Definition 2.3.3. (Unification) Two or more literals can be unified if there exists

a substitution σ of terms for the variables of the literals that makes them (or more

precisely their instances) equal. The substitution σ is called unifying substitution

and is written:

[G1]σ = [G2]σ = · · · = [Gn]σ

In general, there can be several substitutions and we want to identify the most

general one, called most general unifier (mgu).

Let θ and σ be two substitutions, θ is said to be more general then σ (written

θ ≤ σ) if there exists a substitution η such that σ = θη.

Given two literals s and t the substitution θ is an mgu (most general unifier) if

θ is a unifier and for every unifier σ of s and t it holds that θ ≤ σ.

If the unification of the literal A that is part of a goal G = A, R is successful

with the clause H :−B, i.e. the most general substitution σ has been found, then

the current goal can be replaced by the new goal (B, R)σ. That is, we replace

A with the body of the clause, and we apply σ to the whole new goal. More

precisely, we can write:

G = A1, . . . , An H :−B1, . . . , Bm ∃σ : [Ai]σ = [H ]σ

G′ = [A1, . . . , Ai−1, B1, . . . , Bm, Ai+1, . . . , An]σ

A sequence of resolution steps is called a derivation. If a derivation ends with

success is called a refutation. The set of all derivations starting from a goal can be

represented as a tree, called derivation tree, with the root being the goal and the

leaves being the empty goal (success nodes) or failure nodes.

2.3.2 Adding Constraints to Logic Programming

Running a logic program can be considered as an exploration of the derivation

tree. Prolog, which is one of the best-known logic programming languages, uses

a depth-first exploration very similar to the backtracking algorithm described in

Section 2.1.2. It is therefore easy to identify a logic language as a good starting

point for modelling constraint satisfaction problems on finite domains.

Constraints are nothing more than relations that can be modelled, in logic

programming, by sets of facts where the predicate name corresponds to the name of

the constraint. Whether all the constraints must be satisfied can be implemented by

a clause whose body contains all the constraints predicates while the head contains

all the variables in the constraints predicates; asking for a goal that corresponds

to the head of the clause corresponds to asking for a solution for the CSP.

The execution engine of a logic program can find a solution of the CSP defined

in this way, but the fact that it bases the resolution exclusively on an exploration

of the derivation tree makes this resolution method particularly inefficient since in

CSPs the search space is often very large.
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The Constraint Logic Programming (CLP) paradigm involves extending the

logic execution engine with dedicated constraint solvers. Each constraint solver,

depending on the class of constraints it can handle, yields a constraint language, e.g.:

CLP(FD) for finite domains, CLP(R) for real domains, CLP(Bool) for Boolean do-

mains.

Finite domains are one of the fields in which CLP has been most successful.

Historically, the first CLP(FD) language was CHIP [60], developed since 1985.

While the original semantics for CLP were limited to solving constraint satis-

faction problems, modern languages provide optimisation mechanisms to solve

COPs as well.

Given a constraint language, a CLP clause is just a logic programming clause

except that its body contains in addition constraints of considered language. When

a resolution step is performed on a CLP clause it is no longer only necessary to

verify the existence of a mgu between the selected subgoal and the head of a clause,

but it is also necessary to verify the consistency of the current set of constraints

with the constraints in the body of the clause.

If in logic programming a state consists of a goal and a substitution, in CLP it

consists of a goal and a set of constraints called the constraint store.

Definition 2.3.4. (Resolution in CLP) Let 〈G, S〉 be a state where G = A, R is

the current goal and S is the current constraint store. Assume that we want to

replace A, then:

• If A is a constraint: A is added to S and the new state is 〈R, prop(S ∧ A)〉,

where prop(C) is the result of applying some constraint propagation algorithm

to the constraint store C.

• If A is a literal: if there is a clause H :−B with the same head predicate as

A, the constraint A = H is added to the constraint store and A is replaced

with B. The new status results accordingly 〈(B, R), S ∧ {A = H}〉.

A computation of a CLP is successful if there is a derivation from the initial

state 〈G, ∅〉 to the state 〈G′, S〉 where G′ is the empty goal and S is satisfiable.

If in any resolution step the consistency of the constraint store does not hold,

a failure occurs and a backtrack is performed. In this way the constraints are ex-

ploited for the early detection of failing, increasing the performance in CSPs solving.

Constraint Logic Programming Languages

The first CLP language to be developed was Prolog II in 1972 [49], a few years later

Jaffar and Lassez provided a first schema and semantics for CLP languages [108].

Since then, other CLP languages have been developed in particular: Prolog III in
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1990 [50], CHIP in 1988 for constraints on finite domains [60] and CLP(R) in 1992

with support for arithmetic constraints on floating point numbers [110].

More recently, hybrid solving techniques that combine constraint propagation

with linear programming (or mixed-integer programming) typical of operations re-

search have emerged. The CLP language ECLiPSe [184] falls within this type of ap-

proach, and this enabled it to be used also in modern industrial-scale applications.

ECLiPSe is a programming system, based on the Prolog logic programming

language, used to model CSPs and COPs in a declarative manner. In the same

declarative way, it also allows the development of new constraints and their related

filtering algorithms but also new customised heuristics to extend backtracking

search algorithm.

The fact that it is based on a declarative language, in addition to its overall

performance, makes it an excellent tool for designing and developing of solving

techniques, especially in the research field. The system is also distributed as open

source since 2006. For this reason, all the algorithms proposed in the following

chapters of this thesis have been implemented with it.
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The Traveling Salesperson Problem (TSP) is one of the best-known COP in

computer science. The Euclidean Traveling Salesperson Problem (ETSP) is a

special case in which each node is identified by its coordinates on the plane and

the Euclidean distance is used as cost function.

No specialized pruning algorithm have been proposed in CP for the Euclidean

TSP, and the usual way to tackle Euclidean TSPs is to compute the distance
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matrix and address the problem as a general TSP. It is worth noting that in

the Euclidean TSP more information is available than in the general TSP: the

coordinates of the points to be visited are known, and geometrical concepts (straight

line segments, angles, etc.) can be defined in the Euclidean plane. In this chapter

we present the first attempt (to the best of our knowledge) to exploit the geometric

information in order to achieve a stronger pruning in CP when solving Euclidean

TSPs. We address the pure Euclidean TSP (without side constraints) and propose

new constraints that efficiently reduce the search space. We show that the pruning

we introduced is not subsumed by that of important works in the area [27].

We also conducted a study on the performance of the newly introduced con-

straints and found that not all of them are equally useful. Hence, it is important

to define a way of classifying useful constraints. To do this, we use machine

learning approaches with the aim of only imposing those constraints that have

been classified as effective. We compare two classifiers based on Random Forest

and Neural Networks that are found to be effective.

3.1 Preliminaries

3.1.1 The Traveling Salesperson Problem (TSP)

Given a weighted graph the Traveling Salesperson Problem (TSP) requires to

compute the minimum cost cycle that visits each vertex exactly once. A cycle that

visits each vertex exactly once is often referred as Hamiltonian cycle or Hamiltonian

circuit. The name Traveling Salesperson Problem comes from the problem’s most

famous formulation: “A salesman has to visit a set of cities, each of which must

be visited only once, and he wants to minimize the length of the tour”.

History

The origin of the name of the problem and its formulation are not clear. To date, no

official documentation is known that contains the name of the creator, nor is there

any speculation about its first use [14]. Traces of the problem seem to go back to a

German handbook for street vendors from 1832, the problem was then addressed

mathematically by Willian Rowan Hamilton and Thomas Penyngton Kirkman later

in the same century. The first document to include the term is a 1949 publication by

Julia Robinson “On the Hamiltonian game (a traveling salesman problem)” [177],

but the contents indicate that she did not introduce the name of the problem.

The current formulation of the TSP appears to have been included in the

literature for the first time by Karl Menger during a mathematicians colloquium

in Vienna on February 5, 1930 [145]; later it was the cutting planes method

introduced in 1954 by George Dantzig, Delbert Ray Fulkerson and Selmer Martin

Johnson that provided the first significant result in solving the problem [19]. The
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cutting planes method was the first to model the problem as an Integer Linear

Programming (ILP) problem, a representation that is still used in the most efficient

solvers available today.

Despite its simple formulation the TSP is difficult to solve, the evidence of

which dates to 1972, when Richard M. Karp first showed that the problem belongs

to the NP-hard complexity class [114]. It was not until the 1990s that the team

of David K. Applegate, Robert E. Bixby, Vaclav Chvatak and Willian J. Cook

developed the Concorde solver [13]. Concorde, based on ILP technologies, is still

considered in practice to be the best algorithm for solving TSPs.

TSP solving strategies

Excluding the trivial computation of all permutations looking for the one with

the lower cost (complexity O(n!)), which becomes impractical even for very small

values of n, the TSP solving strategies presented in the literature are many.

A first classification can be made according to the type of solution generated;

solving strategy are thus divided into two classes: heuristic algorithms and ex-

act algorithms.

Heuristic algorithms are not always able to find the true optimal solution, but

they are nevertheless able to find good quality solutions in a reasonable time.

Heuristic algorithms are further divided into other subcategories: constructive

heuristics and improvement heuristics. A constructive heuristic iteratively updates

the solution (starting with an empty solution), each time trying to insert the most

promising element among all the admissible ones, until the solution is complete.

Most common constructive heuristics for the TSP are: Nearest Neighbor [121],

First Fit, First Fit Decreasing, Strongest Fit, Strongest Fit Decreasing, Cheapest

Insertion, Regret Insertion, Christofides algorithm [48].

Improvement heuristics, on the other hand, start from an admissible solution

of the problem and iteratively apply a series of partial modifications with the

aim of finding a better solution. The best-known improvement heuristics for

TSP are: 2-opt [53], 3-opt, k-opt, Lin-Kernighan [136], Tabu-Search, Simulated

Annealing [135], Genetic Algorithms [92, 40].

Exact algorithms, on the other hand, as the name suggests, can find the optimal

solution to the problem. Among the exact solving algorithms, as also mentioned

in Section 3.1.1, Concorde is still considered to be the most efficient one available

in most applications. Concorde is based on ILP techniques such as branch-and-cut

and is able to optimally solve even instances with tens of thousands of instances [13].

However, most of the algorithms developed for solving the TSP, including

Concorde, can only be used when the problem is in its original formulation, whereas

when the TSP has to be solved in problems that impose additional constraints, it

becomes necessary to adopt alternative solving techniques. Among the alternative
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approaches, CP based approaches, which will be presented in this thesis, are

certainly noteworthy, given their flexibility in handling variants of the problem.

3.1.2 Variations and special cases of TSP: The ETSP

Due to its wide notoriety, many variants of the TSP and some special cases have

been studied in the literature over the years; variants partially modify the problem

formulation, often introducing additional constraints, while the special cases relate

to the fact that additional assumptions are imposed on the available data.

The TSP with Multiple Visits (TSPM) relaxes the degree constraints of the

nodes, since each node in the graph no longer has to be visited exactly once, but

at least once [4]. The Clustered TSP introduces a partition of the nodes of the

graph V1, V2, . . . , Vk. The problem requires finding the minimal path in which the

nodes within each cluster are visited consecutively [99, 112]. The Ordered Cluster

TSP is a simplified version in which the clusters must be visited in order, i.e.,

all nodes in cluster V1 are visited first, followed by all nodes in cluster V2 and

so on [11]. The Generalized TSP (GTSP) implies, as in the previous cases, a

division of the nodes of the graph, but in this case, it is necessary to find the

minimum path that goes through exactly one node of each cluster [70, 126]. In the

Resource Constrained TSP (RCTSP) in each edge of the graph a requirement rij

is added in addition to the cost; solving the problem involves finding a minimum

cost tour in which the sum of the requirements does not exceed a given constant

R [157]. The Precedence Constrained TSP introduces precedence constraints of

type Bij = {(i, j)|i ∈ V, j ∈ V, i 6= j} which state that the node i must be

visited before node j, then is required to identify the minimum path that meets all

constraints [21]. In the TSP with Time Windows (TSPTW) every edge ei,j of the

graph is associated with a traversal time tij in addition to the cost. Each node has

an associated time window [ai, bi] representing the time frame during which the

service at node i must be executed. Also, each node has an associated duration

si, which represents the duration of the service to be performed at node i (with

ai ≤ bi and 0 ≤ si ≤ bi − ai). If node i is reached before time ai it is necessary

to wait until ai to perform the service [158, 17, 18].

Metric TSP and Euclidean TSP

With regard to special cases, the metric TSP and the Euclidean TSP are known in

the literature. Many benchmarks for the TSP, see for example the TSPLIB [172],

relate precisely to these cases. In the metric TSP (sometimes referred as delta-

TSP), the costs associated with each arc, and thus the distance between cities,

satisfy the triangle inequality: the direct route between two cities is never longer

than the route through an intermediate city. In the Euclidean TSP, the used

metric is the Euclidean distance: given two points Pi = (xi, yi) and Pj = (xj , yj)
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the Euclidean distance in R2 is calculated as
√

(xi − xj)2 + (yi − yj)2. Since the

Euclidean distance respects the triangular inequality, the Euclidean TSP is a special

case of the metric TSP. In the Euclidean TSP, more data is available on the problem;

in particular, the coordinates in the plane of the various cities to be visited are

known. The Euclidean variant of TSP has been shown to maintain the same

complexity (NP-hard) as the more general case [81].

In 1996 Sanjeev Arora showed that the Euclidean TSP admits a polynomial-

time approximation scheme (PTAS) [16]. A PTAS is an algorithm that, given an

instance of an optimization problem and fixed a parameter ε > 0, produces in

polynomial time a solution within a factor 1 + ε of the optimum. Note that the

computation time can still be an exponential function of 1
ǫ
. In the case of TSP

this corresponds to saying that the algorithm would be able to find in polynomial

time a path of length at most (1 + ε)L∗, with L∗ length of the optimal path.

The PTAS algorithm developed by Arora has a spatial and temporal complexity

of O(n2d(log n)O((
√

d
ε

)d−1)) in Rd (which reduces to O(n(log n)O((
√

d
ε

)d−1)) in Rd if

a quad-tree is used [181]).

3.1.3 Notation and definitions

Let G = (V, E, w) be a weighted graph, where V is a set of nodes (|V | = n),

E is a set of edges, and w : E 7→ R+. A path in G is a sequence pvs0
−vsk

=

vs0
es0,s1

vs1
. . . esk−1,sk

vsk
such that:

(i) vs0
, vs1

, . . . , vsk
∈ V and are all distinct, and

(ii) es0,s1
, es1,s2

, . . . , esk−1,sk
∈ E.

Since a path is uniquely identified by the sequence of its nodes (or of its edges)

in the proper order, we will often write paths as sequences of nodes to simplify

the notation. The length of a path p is the sum of the weights of its edges:

L(p) =
∑k−1

i=0 w(esi,si+1
). A circuit c is a sequence obtained by appending esk,s0

to a path pvs0
−vsk

.

In the Euclidean case, let P = {P1, . . . , Pn} be a set of points, where Pi =

(xi, yi). The graph associated with P is GP = (P, EP , wP), where EP = {ei,j ≡

(Pi, Pj) | Pi, Pj ∈ P, i 6= j} and w(Pi, Pj) = d(Pi, Pj), where d is the Euclidean dis-

tance.

We use PiPj to denote the segment in the plane with the extremes Pi and

Pj . Since in the Euclidean case every edge of a graph corresponds to a segment

in the plane between the corresponding endpoints, we will often confuse the edge

ei,j with the corresponding segment PiPj. Also, we will sometimes confuse the

index i ∈ V with the corresponding point Pi in the plane. We denote with
←−→
PiPj

the (infinite straight) line passing through points Pi and Pj, and with ∠PiPjPk
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the counterclockwise angle formed by the segments PiPj and PjPk with vertex

in Pj from Pi to Pk.

A crossing in a path p is defined as a common point Pq /∈ P that is shared

by two (or more) edges of p or a commmon point Pr ∈ P that is shared by

three (or more) edges of p.

3.1.4 Integer linear programming representation

Although this thesis covers TSP resolution in the CP domain, here we briefly

describe the ILP representation of the problem and its constraints.

When w(ei,j) = w(ej,i) ∀(i, j) | i ∈ V, j ∈ V i 6= j the TSP is called

symmetric, while the case in which the cost of an arc depends instead on the

direction of travel then it is called asymmetric TSP (ATSP). Depending on whether

the problem is symmetric or asymmetric, its representation is different. The

Eculidean TSP is symmetric.

A symmetric TSP formulation can be described as follows:

xij =

{
1, if edge ei,j is in the solution
0, otherwise

z = Minimize
∑

i>j

w(ei,j)xij i, j = 1, . . . , n (3.1)

s.t.
∑

j

xij = 2 i = 1, . . . , n; i 6= j; xij ≡ xji (3.2)

∑

i,j∈S

xij ≤ |S| − 1 ∀S ⊂ V : 3 ≤ |S| ≤ |V | − 3 (3.3)

xij ∈ {0, 1} ∀i, j ∈ V, i 6= j

Equation (3.1) is the objective function; we want to minimize the cost of the

tour.

The constraint (3.2) is called degree constraint and assure that, in the solution,

the degree of each node is equal to two.

Let S be a subset of the set of nodes V , under the condition S have at least three

elements. The constraints (3.3) enforce that there must be at least one incident

arc in a node of S and in a node of V \ S thus ensuring that all nodes will belong

to the same cycle, and not disjoint tours that only collectively cover all cities. We

often refer to constraints (3.3) as subtour elimination constraints. Given a set of

n elements the number of possible subsets is equal to 2n, it follows that there

are an exponential number of subtour elimination constraints with respect to the

cardinality of V (note that the subtour elimination constraint is not imposed on

subsets with a number of elements less than 3 or greater than |V | − 3; in general,

however, the number of constraints remains exponential).
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3.1.5 Modelling the TSP in Constraint Programming

In the CP literature, three main representations have been devised for defining

variables in the Hamiltonian circuit problem and the TSP: the permutation rep-

resentation, the successor representation, and the set variable representation [27].

The last was also extended to the graph representation [61, 68, 69].

In the permutation representation, n variables P osi are introduced P os =

(P os1, P os2, . . . , P osn) each with initial domain V ; variable P osi represents the

i-th node that is visited. For example, if n = 5 and P os = (3, 5, 4, 2, 1) the cor-

responding tour will be (3, 5, 4, 2, 1, 3). The constraint model for the permutation

representation includes an alldifferent(P os) constraint [170] on the P os array

of variables, that ensure that each node is visited only once.

The set variable representation is based on a set variable Set which represents

the edges that form the tour [88, 163]. For the set domain representation, the most

natural representation, which is also used in [27], is the definition “cardinality

+ subset” which requires: that Set has cardinality n and that there is a lower

bound L(Set) representing all mandatory edges (edges that are certainly part of

the solution), and an upper bound U(Set) representing all possible edges (edges

that might be part of the solution).

In the successor representation, n variables Next i are defined Next = (Next1,

Next2, . . . , Nextn); variable Nexti represents the node that follows node i in the

circuit, and its initial domain is {1, . . . , n} \ {i}. For example, if n = 5 and

Next = (3, 5, 4, 2, 1) the corresponding tour will be (1, 3, 4, 2, 5, 1).

The constraint model of the successor representation includes, as in the per-

mutation representation, an alldifferent(Next) constraint on the Next array of

variables, but in this case the alldifferent(Next) constraint ensures that each

node has exactly one incoming edge (degree constraints). The constraint model for

the successor representation also includes a circuit(Next) [22, 46, 117] constraint

(sometimes called nocycle) that avoids subtours, i.e., cycles of length less than

n (subtour elimination constraints).

In some cases, the constraint model includes, as redundant representation, also

a set of Prev variables: Previ represents the node that precedes node i in the

circuit. Often, constraint models include redundant representations to obtain

additional pruning.

Both the alldifferent and the circuit constraints are already implemented

in most constraint logic programming systems. Hereafter, unless otherwise speci-

fied, we refer always to the successor representation.
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3.2 Solving the TSP in Constraint Programming

As already introduced, the travelling salesman problem is probably one of the

best known and most treated COP in the scientific literature. Many approaches

proposed for its resolution have been published over time, even if we refer only

to Constraint Programming. Usually, when it comes to exploit the objective

function to prune the search space, CP formulations are not as effective as Integer

Programming models, but they are more flexible in dealing with side constraints.

In an effort to combine the advantages of CP and ILP approaches the development

of hybrid techniques comes as a matter of course.

Various works propose to use relaxations of the TSP to prune suboptimal

branches; the classical relaxations of the TSP are the assignment problem and

the one-tree relaxation. Caseau and Laburthe [46] propose a simple and effective

rule for the circuit constraint (called nocycle), and also propose to filter values

based on the objective function. For this purpose, they apply the assignment-

based and the spanning tree relaxation. The rule consists in finding a path of

mandatory edges of length at most n − 1 and removing the edge between the

two endpoints of the path.

Kaya and Hooker [117] propose a new filtering rule based on separator graph,

able to remove nonhamiltonian edges, for the circuit constraint.

Francis and Stuckey consider various propagation algorithm for circuit and

provide for each explanation in the context of a lazy clause generation solver [75].

Fages and Lorca [68] show how properties of the reduced graphs (obtained by

introducing a node for each Strongly Connected Components (SCC) of the original

graphs) associated to Asymmetric TSPs can be used to improve the Minimum

Spanning Tree (MST) relaxation.

Pesant et al. [158] address the TSP with Time Windows (TSPTW) and exploit

the circuit constraint together with the MST relaxation. Focacci et al. [74, 73]

propose reduced costs filtering to optimization constraints, and in particular use

the assignment problem and the minimum spanning forest relaxation.

The groundbreaking work in this area is that by Benchimol et al. [27]: it is

the first in which a CP model was able to solve large TSP instances. In their

work, they use a variety of techniques. They propose an implementation of the

weighted circuit constraint that includes the Held and Karp [101] scheme, iterates

a Lagrangian relaxation to obtain a high-quality one-tree, and uses it to remove

edges similarly to reduced costs filtering. It also identifies as mandatory those

edges that, if removed, would increase the current lower bound over the quality

of the incumbent solution. To find quickly a solution, they first run the Lin-

Kernighan-Helsgaun algorithm [136, 102]. In the experiments with asymmetric

TSPs, they also use additive bounding [71] to combine both the 1-tree and the

assignment problem relaxations.
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pj−kpi−l

Q

Figure 3.1: A self-crossing circuit. Theorem 3.3.1 suggests that instead of taking PiPj

and PkPl, a shorter tour chooses the dotted edges PiPk and PjPl

In [69], the authors further improve by casting the problem in CP(Graph) and

by means of improved search heuristics (i.e., Last Conflict heuristic).

Isoart and Régin [107] design a propagator based on the search of k-cutsets.

The combination of this constraint with the Weighted Circuit Constraint (WCC)

constraint has resulted in a significant reduction in the computation time.

3.3 Avoiding crossings

Among the geometric information that can be exploited to solve Euclidean TSPs,

a well-known result in the literature is that the optimal solution of a metric TSP

(thus, also of a Euclidean TSP) in the plane cannot include two edges that cross

each other (see Figure 3.1).

Theorem 3.3.1 (Flood [72]). Let c∗ be an optimal tour of a metric TSP. Then,

for each ei,j, ek,l ∈ c∗ such that {i, j, k, l} are all different and not all aligned, the

segments PiPj ∩ PkPl = ∅.

Proof. By contradiction, suppose that the optimal tour c∗ contains two segments

ei,j , ek,l such that {i, j, k, l} are all different and PiPj ∩ PkPl = {Q}.

Without loss of generality, let c∗ = Piei,jPjpj−kPkek,lPlpl−iPi. Consider now the

tour c† = Piei,kPkpk−jPjej,lPlpl−iPi, where pk−j is the path pj−k reversed.

The difference L(c∗)−L(c†) = w(ei,j) + w(ek,l)−w(ei,k)−w(ej,l) = (d(Pi, Q) +

d(Q, Pj)) + (d(Pk, Q) + d(Q, Pl)) − d(Pi, Pk) − d(Pj, Pl) ≥ 0 applying the triangle

inequality to the triangles (Pi, Pk, Q) and (Pj, Pl, Q).

Considering that the points (Pi, Pk, Q) and (Pj, Pl, Q) are not aligned, the

inequality becomes strict, so L(c†) < L(c∗), that contradicts the fact that c∗ is

optimal.
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3.3.1 Introducing nocrossing constraint

From Theorem 3.3.1 follows that during the search for an optimal TSP it is

possible to avoid those Hamiltonian paths that include crossing edges (properties

like this are usually referenced as dominance rule [113]). For this reason, the first

constraint that is proposed is the nocrossing constraint, which imposes that a pair

of segments in the TSP should not cross each other. In the successor representation,

it is defined as follows:

nocrossing(i, Next i, j, Nextj) =

=
{
(ni, nj) ∈ D(Nexti)×D(Nextj)|

(
PiPni

∩ PjPnj

)
⊂ {Pi, Pj}

}
1.

(3.4)

The nocrossing constraint presented in Equation 3.4 assures that segments

PiPNexti
and PjPNextj

do not cross each other.

The nocrossing constraint is a binary constraint, i.e., it involves exactly two

variables, since i and j are ground values when the constraint is imposed. It is also

a redundant (or implied) constraint as its inclusion in the model does not change

the set of solutions. Assuming that the problem being considered is a graph with

n nodes, we would normally need to introduce (n(n − 1))/2 constraints, one for

each pair of nodes in the graph. The constraint can be implemented thorough

a pair of propagators: one propagator removes values from the domain of Nexti

based on the values in the domain of Nextj , while the other propagator propagates

changes on the other way.

The nocrossing constraint propagator could be implemented naively, for ex-

ample using the table constraint [198, 36, 84, 128, 116] or the propia library [127].

A table constraint consists of a table (usually a list of tuples) of values that the

involved variables must, or must not, assume. However, these implementations

would be inefficient, due to the fact the constraint wakes up most of the time

without being able to propagate. In addition, with the table constraint one should

initially compute large tables, containing, for all pairs of edges in the graph, if

they cross or not.

A naive propagator also tends to wake up every time a value is removed from

the domain of Nexti and would remove inconsistent values from the domain of

Nextj. Propagating such constraint, with a naive propagator, would have the usual

cost of arc consistency propagation for a single constraint of O(d2) (if d is the size

of the domains) in each activation of the constraint.

From the definition of arc consistency and Equation 3.4, a value v can be

removed from D(Nextj) only if PjPv intersects all possible segments originating

1We assume that the successor representation includes the alldifferent(Next) constraint,
so the variables Nexti and Nextj cannot assume the same value. The only type of intersection
allowed at this point is on one of the extremes i.e. Nexti = j or Nextj = i.



3. The Euclidean Traveling Salesperson Problem 35

from Pi. A necessary condition for this is that all segments originating from Pi lie

on the same half-plane with respect to the line
←−→
PiPj .

Theorem 3.3.2. Let o, u ∈ D(Nexti) such that Po and Pu do not lie on the line l

passing through Pi and Pj and are in different half-planes with respect to the line

l. Then, any value k ∈ D(Nextj) such that Pk 6∈ l is arc consistent with respect to

the constraint nocrossing(i, Nexti, j, k).

Proof. By contradiction, suppose there exists k ∈ D(Nextj) that is inconsistent

with the constraint nocrossing(i, Nexti, j, k). Since it is inconsistent, the segment

PjPk must cross all the segments PiPz such that z ∈ D(Nexti), so in particular

it crosses both PiPo and PiPu. But the intersection Io ≡ PiPo ∩ PjPk lies on a

different half-plane from the one that hosts Iu ≡ PiPu ∩ PjPk, so Pk lies in both

half-planes, meaning that Pk ∈ l: absurd.

Theorem 3.3.2 does not cover the case in which one of the points Po, Pu lies

on the line
←−→
PiPj. The following proposition deals with the cases where three

points are aligned.

Proposition 3.3.3. Given a graph G whose nodes do not lie all on the same line;

let a, b and c be three nodes of G such that Pc ∈ PaPb. Then, segment PaPb is not

in the optimal TSP.

Proof. The proof is similar to that of Theorem 3.3.1 as this proposition is no more

than a special case. Let Pc be the point that lies on segment PaPb, by contradiction

suppose that segment PaPb appears in the optimal TSP.

The optimal TSP c∗ contains two points: one immediately preceding Pc which

we will denote by Pc′ and one immediately following which we will denote by Pc′′ .

Let c∗ = Paea,bPbpb−c′ Pc′ ec′ ,cPcec,c′′ Pc′′ pc′′−a.

Now, point Pc must be on segment Pc′ Pc′′ , if the points were not aligned it

would be better to take segments Pc′ Pc′′ , PaPc and PcPb.

Consider now the tour c† = Paea,c′ Pc′ pc′−bPbeb,cPcec,c′′ Pc′′ pc′′−a. The difference

c∗−c† = w(ea,b)+w(ec
′
,c)−w(ea,c

′ )−w(eb,c). At the beginning, we assumed that Pc

is a point on segment PaPb, so we can rewrite w(ea,b) as w(ea,c) + w(ec,b) obtaining

c∗ − c† = w(ea,c) + w(ec′ ,c) − w(ea,c′ ) = d(Pa, Pc) + d(Pc′ , Pc) − d(Pc′ , Pc) but for

triangular inequality this quantity is positive, contradicting the fact that segment

PaPb can be part of c∗.

Given Proposition 3.3.3, it is possible to remove from the domain of each

variable Nexta all the values b such that the segment PaPb contains another node

of the graph G. For the remainder of this thesis, we will assume that this pre-

processing step has been performed before the search begins; this assumption

simplifies the following discussion.
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Algorithm 4 nocrossing propagator

1: function nocrossing propagator(i, Nexti, j, Nextj)

2: Under ← select one element in D(Nexti) s.t. PUnder is under the line
←−→
PiPj

3: if there is no such element then
4: no crossing propagator phase 2(i, Nexti, j, Nextj)

5: else Over ← select one element in D(Nexti) s.t. POver is over the line
←−→
PiPj

6: if there is no such element then
7: no crossing propagator phase 2(i, Next i, j, Nextj)
8: else suspend waiting for either Over or Under to be removed from D(Nexti)

9: function nocrossing propagator phase 2(i, Next i, j, Nextj)
10: α← min{αx|x ∈ D(Nexti)}
11: Let xi

α the value in D(Nexti) corresponding to α

12: β ← max{βx|x ∈ D(Nexti)}
13: Let xi

β
the value in D(Nexti) corresponding to β

14: for all yj ∈ D(Nextj) s.t. αyj < α do

15: if βyj > β then
16: remove yj from D(Nextj)

17: if |D(Nexti)| > 1 ∧ |D(Nextj)| > 1 then
18: suspend waiting for either xi

α or xi
β

to be removed from D(Nexti)

Algorithm 4 sketches the algorithm of a propagator for the nocrossing con-

straint; it is awakened when the domain of variable Next i is reduced, and it

performs propagation to possibly reduce the domain of Nextj; to fully implement

the constraint, another symmetric propagator would be imposed on the reverse

direction (from Nextj to Nexti).

As long as the value j is contained in the domain of the variable Nexti, according

to Theorem 3.3.1, no propagation can take place because the point Pj lies on the

same straight line as the point Pi ; for this reason, the propagator for the variable

Nexti is added to the constraint store when the value j is removed from D(Nexti).

When added to the constraint store the propagator is suspended and waits for

all elements in the domain of Nextj to lie in the same half-plane with respect to
←−→
PiPj . To do so, one element Over ∈ D(Nextj) and one Under ∈ D(Nextj) that

lie, respectively, over and under the line
←−→
PiPj are selected. If one of them does

not exist, all possible segments originating from Pj lie on the same half-plane and

the control passes to the next phase; otherwise, the propagator suspends for one

of the two Over and Under elements to be removed from D(Nextj). This strategy

mimics, in a sense, the idea of watched literals proposed in SAT solvers [151] (and

currently used also in other solvers).

Checking if a point Pa lies in the half-plane under or over the line
←−→
PbPc amounts

to check the sign of the (projection on the z axis) of the cross product (Pa −

Pb) × (Pc − Pb).
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Exploiting the approach just illustrated, which relies on Theorem 3.3.2, permits

to significantly reduce the number of activations of the propagator.

When all segments in the domain of the variable Nexti lie on the same half-plane

with respect to the line
←−→
PiPj we should, for each element x ∈ D(Nextj), check if

the segment PjPx crosses all segments PiPy where y ∈ D(Nexti) i.e., all segments

exiting from the point Pi. Naively performing the crossing check would require a

number of operations equal to O(n2) each time the propagator wakes up (typically

an exponential number of times while exploring the search space).

In order to reduce the number of crossing check, it is possible to sort the

elements Px ∈ D(Nexti) from smallest to largest according to the ∠PiPjPx angle.

Since the points in the domain of the variable Nexti are ordered according to angles,

we have to check whether there is a point Pt in the domain of the variable Nextj so

that the angle ∠PiPjPt is smaller than the angle α = min{αx|x ∈ D(Nexti))}: if

such a point Pt exists, then the segment PjPt could intersect all segments originating

from Pi so we perform the crossing test; if it does not exist then there is no value

to be removed from the Nextj domain and we can suspend the propagator waiting

for the value corresponding to α to be removed.

This turns out to be a necessary condition for the arc consistency of the

nocrossing propagator and is further detailed in Theorem 3.3.4.

Theorem 3.3.4. For each k ∈ D(Nexti) ∪ D(Nextj), let αk = ∠PiPjPk. If all

the elements q ∈ D(Nexti) lie on the same half-plane with respect to the line
←−→
PiPj,

then a necessary condition for a segment PjPt originating from Pj and reaching an

element t ∈ D(Nextj) to cross all segments PiPq originating from Pi is that αt ≤ α,

where α = min{αq | q ∈ D(Nexti)}.

Proof. Consider a coordinate system centered into Pj , with the abscissa pointing

toward Pi and such that all the points in D(Nexti) have non-negative ordinate (see

Figure 3.2).

By contradiction, suppose that αt > α; we prove that there is a segment

originating from Pi that does not intersect with PjPt. Let z ∈ D(Nexti) such

that α = ∠PiPjPz.

In polar coordinates, the segment PiPz is seen from Pj with angles between 0

and α. All the points on the segment PjPt are seen under the angle αt. Since

αt > α, there is no intersection between PiPz and PjPt.

A vector representation was used to calculate the angles. Suppose we want

to compute the angle ∠PiPjPk. Given the coordinates of points Pi = (xi, yi),

Pj = (xj , yj) and Pk = (xk, yk), it is possible to determine the vectors u =

(u1, u2) = (xj − xi, yj − yi), v = (v1, v2) = (xk − xi, yk − yi). Note that both

vectors have their tails at point Pi as it must coincide with the vertex of the

angle we wish to calculate. Calculating the angle ∠PiPjPk now corresponds to
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Figure 3.2: An arrow from Px to Py means that y ∈ D(Nextx). Dashed lines are
plotted to show the angles.

calculating the angle between the two vectors u and v. In our implementation

we used the following Equation 3.5.

∠PiPjPk = atan2 (u× v, u · v) . (3.5)

where u · v is the dot product (see Eq. 3.6) and u × v is the cross product (see

Eq. 3.7).

u · v = u1v1 + u2v2 (3.6)

u× v = u1v2 − u2v1 (3.7)

The magnitude of the angle ∠PiPjPk is expressed in radians in the interval

(−π, π). We note that the function atan2 is a variation of the arctangent that can

be defined for all pairs of real values except the pair (0, 0) and is defined in terms

of the classical arctangent as given in Equation 3.8.

atan2(y, x) =





arctan( y
x
) if x > 0,

arctan( y
x
) + π if x < 0 and y ≥ 0,

arctan( y
x
)− π if x < 0 and y < 0,

+π
2

if x = 0 and y > 0,

−π
2

if x = 0 and y < 0,

undefined if x = 0 and y = 0

(3.8)

Since the condition of Theorem 3.3.4 is only necessary, if it is verified for a

particular point Pk it does not guarantee that the segment PjPk actually crosses

all segments that leave the node Nexti. A counterexample is shown in Figure 3.3.

It is therefore still necessary to perform a crossing test, which can be implemented

efficiently using the Faster Line Segment Intersection algorithm [12].



3. The Euclidean Traveling Salesperson Problem 39

b

PiPj

Pt

αt

Pz

α

b

b

b

b

bPk

Figure 3.3: The condition in Thm 3.3.4 is not sufficient: αt < α but PjPt does not
cross all segments exiting from Pi.

By taking advantage of geometric information, especially angles, we were able

to find an even more efficient method to check whether a crossing exists than

using the Faster Line Segment Intersection algorithm. Theorem 3.3.5 is a sufficient

condition for the existence of a crossing.

Theorem 3.3.5. For each k ∈ D(Nexti) ∪ D(Nextj), let βk = ∠PkPiPj. Assume

all the elements q ∈ D(Nexti) lie on the same half-plane with respect to the line
←−→
PiPj. Suppose there exists t ∈ D(Nextj) such that αt < α.

Then a sufficient condition for segment PjPt to cross all segments PiPq such

that q ∈ D(Nexti) is that βt > β, where β = max{βq | q ∈ D(Nexti)}.

Proof. By contradiction, suppose ∃k ∈ D(Nexti) such that PiPk does not intersect

PjPt (Figure 3.4). Since αt < α ≤ αk, Pk and Pi lie on different sides of the ray
−−→
PjPt.

In order not to have a crossing between PiPk and PjPt, both Pj and Pt must

lie on the same half-plane with respect to
−−→
PiPk. Since βj = 0, and all points in the

domain of Next i are above the x axis, βj < βk, thus to be on the same half-plane,

also βt < βk. But βt > β ≥ βk: contradiction.

Thanks to Theorems 3.3.4 and 3.3.5 we can get a better complexity compared to

the naive algorithm. Note that all angles can be pre-computed before starting the

search, which avoids the computation of trigonometric functions during the search.

It is also possible to pre-compute the elements in the (initial) domains of the two

variables, sorted according to their angle α, and then store them in a linked list. In

this way, the computation of the minimum in line 10 of Algorithm 4 is equivalent

to finding the first element in the linked list that belongs to D(Nexti); Assuming

that the domain membership is checked in constant time, the minimum on line 10

can be found in O(d) amortized time on one branch of the search tree. Get a linked

list with the elements in D(Nexti) ordered by their angle β: line 12 is also executed
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Figure 3.4: An arrow from Px to Py means that y ∈ D(Nextx). Dashed lines are
plotted to show the angles.

in O(d) amortized time on a branch of the search tree. The loop in lines 14 - 16

searches the linked list and stops as soon as an element is found with an angle

greater than or equal to α; assuming that the removal of a domain element takes

place in constant time, and since the comparison on line 15 takes a constant time,

the entire loop has O(d) complexity for each activation of the propagator of phase 2

(to be compared with the O(d2) of the naive propagator). Since the propagator is

activated when at least one element from D(Nexti) is removed, this propagator is

woken up at most O(d) times in a branch of the search tree, which gives phase 2 a

general complexity of O(d2) amortized time in one branch of the search tree.

3.3.2 Convex hull reasoning and clockwise constraint

A useful consequence of Theorem 3.3.1 is given in the following Corollary 3.3.6 and

is based on the concept of convex hull. The convex hull of a set of points in a

Euclidean space is the minimum convex set containing all the points. In the plane

it corresponds to a convex polygon, and it is completely defined by its vertices.

Corollary 3.3.6 (Deineko, van Dal, and Rote 1994 [59]). “Assuming that not

all cities lie on one line, an optimal tour has the property that the cities on the

boundary of the convex hull of the cities are visited in their cyclic order”.

Given a set of points P , we denote with H(P ) = 〈H0, H1, . . . , H|H(P )|−1〉 the

sequence of vertexes on the boundary of the convex hull in clockwise order. To

compute the convex hull H(P ), we used the widely known Andrew’s monotone

chain algorithm [10], with complexity O(n log n). The algorithm calculates the

upper and lower hull with a complexity of O(n) which are then combined to form

the convex hull. However, this requires that the points are first sorted with respect

to their x-coordinates, and also with respect to their y-coordinates in case of a tie,

hence the complexity already mentioned.
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Figure 3.5: The successor of a convex hull vertex cannot be another vertex on the
boundary of the convex hull except for the one that immediately follows it.

To simplify the exposition, the following pruning is presented in the context

of symmetry breaking constraints, although similar reasoning might be performed

also while not breaking symmetries.

In the successor representation, the same TSP can be represented by two

symmetrical solutions that differ just for the order (clockwise or counterclockwise)

in which the nodes are visited. One way to break this symmetry is to fix one

direction (e.g., clockwise); in such a case, the convex hull reasoning is an efficient

way to impose the clockwise order.

We devised three ways to exploit the information about the hull for propagation.

The simplest is to impose that the successor of a convex hull vertex cannot

be another vertex member of H(P ) except for the one that immediately follows

it, see Equation 3.9.

∀i ∈ [0, |H(P )| − 1], D(NextHi
) ∩ H(P ) ⊆ {H(i+1) mod |H(P )|} (3.9)

Equation 3.9 can be implemented as a unary constraint which in practice

is equivalent to reducing the initial domain of the variables, so no overhead is

produced during the search (see Figure 3.5).

The second way is reasoning on the angle formed by the incoming and the

outgoing arcs in hull vertexes: in order to visit nodes in a clockwise order, the

angle between the incoming edge and the outgoing edge of Hi cannot be positive

(it must be between −π and 0) or, stated otherwise, it must correspond to a right

turn (see Figure 3.6).

The easiest implementation consists of waiting until Nexth becomes ground;

when the arc outgoing from Ph is fixed, the value h is removed from the domain
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Figure 3.6: In order to visit nodes in a clockwise order, the angle between the incoming
edge and the outgoing edge of a convex hull vertex cannot be positive (it must be between
−π and 0).

of all other variables Nexti such that the angle ∠PiPhPNexth
would correspond

to a left turn.

If the constraint model also contains the Prev variables, the angle formed by

the outgoing edge and any reference direction must be smaller than the angle

that the incoming edge forms with the same reference direction. This produces a

propagator in the same spirit of the classical less-than propagator: simply compute

the minimum angle in D(Nexth) and remove from D(Prevh) the elements associated

with a smaller (or equal) angle (Algorithm 5). A symmetric propagator takes care

of the opposite direction (from Prevh to Nexth). Again, note that all angles are

pre-computed before search, and the search for the minimum takes O(d) amortized

time over one branch of the search tree.

Algorithm 5 clockwise angle propagator

Require: Ph to be on the boundary of the convex hull
1: function clockwise angle propagator(h, Next, Prev)
2: m← min{αv | v ∈ D(Nexth)}
3: D(Prevh)← D(Prevh) \ {i | αi ≤ m}
4: if Nexth and Prevh are not ground then
5: suspend until m is removed from D(Nexth)

The third way results from stating that any path starting from a convex hull

vertex cannot reach any other convex hull vertex except the one that directly follows

it. Put it more precisely, each vertex in a path originating from a point Hi cannot

reach any vertex in H except for H(i+1) mod |H(P )| (see Figure 3.7). The propagator is

imposed for each pair (Hi, H(i+1) mod |H(P )|). The implementation of this propagator

is inspired by the circuit constraint [46] but performs more powerful pruning
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Figure 3.7: Each path originating from a convex hull vertex cannot reach any convex
hull vertex except for the one immediately following it. Implementation is inspired by
the circuit constraint [46] but performs more powerful pruning.

thanks to the convex hull reasoning. If a partial path has been defined starting

from Hi up to a node j, and such path does not contain vertex H(i+1) mod |H(P )|,

then the variable Nextj cannot take any value in H(P ) except for H(i+1) mod |H(P )|

(Algorithm 6). If the partial path reaches the next vertex of the convex hull, the

constraint is entailed and exits the constraint store (line 3). In the propagator for

the circuit constraint [46], instead, from the domain of the variable Nextj only

the initial value (in our case, Hi) of the path is removed.

Algorithm 6 hull path propagator

Require: PEnd to be on the boundary of the convex hull.
1: function hull path propagator(Start, End,H(P ), Next)
2: if Start == End then
3: return true
4: if NextStart is ground then
5: hull path propagator(NextStart, End,H(P ), Next)
6: else
7: remove (H(P ) \ {End}) from D(NextStart)

8: suspend waiting for NextStart to become ground

Extension of the convex hull reasoning

Now that we have propagators that exploit the knowledge about the convex hull,

we wish to extend their applicability to the points within the hull as well.

One consequence of the absence of crossings is that the optimal TSP is a

simple polygon, which is a closed polygonal chain of line segments that do not
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cross each other, and it divides the plane into exactly two areas: an internal

and an external area.

Now imagine cutting the optimal TSP with two vertical lines (parallel to the

y axis): the stripe between the two lines will contain alternate internal and ex-

ternal areas. The borders (i.e., the parts of the circuit inside the stripe) will

be visited alternately from left to right (or clockwise) and from right to left (or

counterclockwise). To exploit this informal intuition for pruning, we provide the

following theorem:

Theorem 3.3.7. Suppose that (e.g., during search) a partial path ps−e has been

defined, starting in node s and ending in node e. Consider the polygon Q delimited

by such path and by the segment PsPe, and suppose that such polygon is a simple

polygon, i.e., no two edges intersect. Suppose that the partial path ps−e touches its

vertexes in clockwise order.

Let F ⊂ V be the set of nodes whose corresponding points lie in the interior of

polygon Q, I = F ∪ {s, e} and let H(I) = 〈HI
0 ≡ e, HI

1 , . . . , HI
k−1, H i

k ≡ s〉 be the

sequence of vertexes of its convex hull, in counterclockwise order.

Suppose that the convex hull H(I) does not intersect the path ps−e, except for

the endpoints Ps and Pe.

Then any non self-crossing tour containing the path ps−e reaches the vertexes

in H(I) in the order HI
0 , . . . HI

k .

Proof. By contradiction, suppose that a non self-crossing circuit c∗ ⊇ ps−e reaches

the vertexes of HI in an order different from their sequence order. W.l.o.g., suppose

that after vertex HI
j , the next vertex of HI reached by the tour c∗ is HI

j+2; i.e.,

vertex HI
j+1 is not reached in the order of HI . Let pHI

j
−HI

j+2
⊂ c∗ be the path

connecting HI
j and HI

j+2.

Consider the polygon R (dotted, in Fig. 3.8) delimited by:

(i) the path ps−e

(ii) the perimeter of the convex hull H(I) from Pe to HI
j

(iii) the path pHI
j

−HI
j+2

(iv) the perimeter of the convex hull H(I) from HI
j+2 to Ps.

Clearly, the point HI
j+1 lies in the interior of R. In order to reach it without

self-crossings, c∗ cannot pass through ps−e nor pHI
j

−HI
j+2

. On the other hand, c∗

cannot cross the boundary of the H(I) between Pe and HI
j (and from HI

j+2 to

Ps) because, by definition of convex hull, there are no vertexes to be visited that

are interior to polygon Q and that do not belong to H(I). So, c∗ cannot reach

HI
j+1.

If we find an internal hull H(I) (see Figure 3.8), we can then apply the previous

propagators (Algorithms 5 and 6) also to the vertexes of H(I), with the obvious
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Figure 3.8: From Theorem 3.3.7: the path ps−e is the current assignment. Polygon Q

is delimited by ps−e and the (dashed) segment PePs. I contains the points strictly inside
Q plus Ps and Pe; H(I) (grey in the picture) is its convex hull. Polygon R is delimited
by ps−e and the dotted segments.

care that if ps−e reaches points in clockwise order, then the vertexes of the H(I)

will be reached in counterclockwise order (and vice versa). We maintain all partial

paths during the search, and we compute a convex hull for each of these paths. In

this way, we are orthogonal to heuristics (we can use any search heuristic without

invalidating our propagation).

In the implementation, we applied the pruning on internal hulls only when the

polygon Q is convex. Checking the convexity amounts to check that each turn in

the path is on the same side (a right turn, on a clockwise path), it makes it easier

to find when a point is inside the polygon and also allows us to avoid checking

that H(I) does not intersect ps−e.

The time complexity of our implementation of the extended convex hull is

O(n2) to compute the points inside the polygon, then we use Andrew’s monotone

chain (O(n log n)) [10] to find the hull. We currently recompute H(I) from scratch

after each decision.

3.3.3 Experimental evaluation

To assess the effectiveness of the proposed algorithms, we devised experiments

based on randomly generated TSPs and structured instances.

All algorithms are implemented in the ECLiPSe CLP language [184]. All

constraint models are based on the successor representation described in the prelim-

inaries (with the circuit constraint and alldifferent [165] for improved pruning)
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with both Next and Prev variables, that are linked through the inverse constraint.

The basic model, named CLP(FD) in the following, beside the alldifferent,

circuit and inverse constraint, includes as symmetry breaking the constraint

Next1 < Prev1 as in Benchimol et al. [27].

The constraint model named GEOMETRIC includes the nocrossing constraint,

the removal of aligned points according to proposition 3.3.3, and the clockwise

constraint that implements the propagation described in Section 3.3.2, which in

this model also acts as a symmetry breaking constraint.

In order to show that the pruning we provide is not subsumed by that of state-

of-the-art techniques, we implemented in ECLiPSe, in the successor representation,

also the Held and Karp bound with pruning based on reduced and marginal costs,

as proposed by Benchimol et al. [27] (shown with BVHRRR in the following).

As the focus was on pruning and not on search strategies, we use the max-

regret [46] and the state-of-the-art LC FIRST MAX COST [69], based on Last Con-

flict [129]. As [27], we also experimented injecting the upper bound given by the

Lin-Kernighan-Helsgaun (LKH) (v. 2.0.7) algorithm.

All tests were run on ECLiPSe v. 7.0, build #48, with a time limit of 1800s

on Intel® Xeon® E5-2630 v3 CPUs running at 2.4GHz, using only one core and

with 1GB of reserved memory.

Random Instances

To generate realistic instances, we used the generator of the DIMACS challenge

[111], that provides instances in two classes: uniform and clustered. We randomly

generated instances from 20 to 50 nodes in steps of 2, in both classes. For each

size and class, we generated 30 instances. Uniform random generated instances

consist of integer coordinate points uniformly distributed in a square of 106 side.

Randomly generated instances consist of clusters of points, whose centers are uni-

formly distributed in a square of 106 side. Each point is then randomly associated

with a cluster center and two normally distributed variables, each of which is

then multiplied by 106/#nodes, rounded, and added to the corresponding integer

coordinate of the chosen center to obtain the coordinates of the point.

Figure 3.9 shows the geometric mean of the runtime of the four algorithms

varying the size of the instance and the search strategy. The addition of the

filtering on geometric properties roughly halves the runtime, both with respect

to the simple CLP(FD) and to the advanced pruning based on the Held and Karp

(BVHRRR). Cactus plots (Figure 3.10) show that, when the LKH bound is used,

the two search strategies perform in a quite similar way. In both graphs, the

mark distinguishes the various search strategies, solid (opposed to dotted) lines

represent usage (resp. not usage) of the BVHRRR pruning, while thick (resp. thin)

lines represent usage (or not usage) of GEOMETRIC filtering. The introduction of
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Figure 3.9: Experimental results on randomly-generated Euclidean TSP instances.
Average solving time of filtering algorithms varying the size of the instances and the
search strategies.
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Figure 3.10: Experimental results on randomly-generated Euclidean TSP instances.
Number of solved instances varying the solving time.

geometric filtering (represented with thick lines) allowed us to solve almost all the

instances within the given timeout.

Structured Instances

We considered all the instances taken from the TSPLIB, the Concorde website2

and the CITIES dataset3 up to 100 nodes. These sources provide various types of

2http://www.math.uwaterloo.ca/tsp/world/countries.html
3https://people.sc.fsu.edu/˜jburkardt/datasets/cities/cities.html

http://www.math.uwaterloo.ca/tsp/world/countries.html
https://people.sc.fsu.edu/~jburkardt/datasets/cities/cities.html
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instances, including Euclidean, represented as sets of points on the plane, and

geographic, represented as sets of points (with latitude and longitude) on the

surface of the earth. We selected all the Euclidean instances and also added

those geographical instances in which the cities to be visited lie on a limited

part of the geoid, so that the geographical distance can be approximated with

the Euclidean distance.

Table 3.1 reports the results; we omit the instances where no algorithm could

reach the optimal solution within the 1800 seconds time limit. Aside from simple

instances, the constraint models that contain geometric filtering are the ones that

optimally solve the instances in the shortest time. These results show the positive

interaction between the geometric filtering and that carried out by BVHRRR alone.

By analysing the instances that were not solved to optimality, we found that our

additional pruning is more effective during the proof of optimality, rather than

on finding good solutions.

Table 3.1: Comparing filtering algorithms on structured instances with time limit 1800s.
For each instance we report total solving time and number of explored nodes to reach
the optimal solution and prove its optimality.

lkh lcfirst lkh maxregret
BVHRRR Geo+BvH BVHRRR Geo+BvH

instance time nodes time nodes time nodes time nodes

uk12 0.04 12 0.05 12 0.04 0 0.04 0
burma14 0.06 14 0.07 14 0.05 0 0.07 0
ulysses16 0.07 16 0.09 16 0.07 0 0.08 0
ulysses22 0.12 22 0.15 22 0.12 0 0.16 0
wg22 0.14 22 0.18 22 0.13 0 0.17 0
bayg29 0.45 30 0.44 35 0.41 3 0.43 2
wi29 0.23 29 0.32 29 0.23 0 0.32 0
dj38 0.42 38 0.65 38 0.42 0 0.65 0
dantzig42 2.16 48 1.60 43 4.83 28 2.11 3
att48 3.21 66 2.38 55 8.02 36 3.10 10
uscap50 0.64 50 1.22 50 0.64 0 1.22 0
eil51 T/O - 523.92 1384 313.53 916 84.43 195
berlin52 0.86 52 1.67 52 0.84 0 1.52 0
kn57 8.53 180 5.67 120 8.24 38 5.14 18
wg59 1.13 59 1.92 59 1.35 1 1.80 0
st70 1411.63 3934 327.79 985 T/O - T/O -
eil76 72.56 227 33.20 156 160.09 230 31.80 26
rat99 T/O - T/O - T/O - 436.97 574
rd100 25.81 117 21.79 107 52.99 80 21.94 22
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3.4 Prediction of effective nocrossing constraints

In Section 3.3.1, to speed up the solving of Euclidean TSPs, we introduced the

nocrossing constraint that avoids, during search, solutions that include crossing

edges. As mentioned earlier, this constraint should be imposed for each pair of

nodes, which results in a quadratic number of constraints. Note that these con-

straints are only intended to make the solution more efficient, they are not required

for its correctness; in fact, they are redundant constraints, and it is well known in

the CP literature that redundant constraints can improve inference efficiency [77].

One question might be whether all of these constraints do an effective pruning

that reduces search space, or whether only some of them are really useful while

others do not perform significant pruning while introducing overhead. In brief, to

answer this question, we can say that in the experiments we tend to determine that

not all the nocrossing constraints are equally useful: by experimental analysis a

number of them offer a speed-up, whereas others solely introduce overhead. In the

following, we will discuss how we evaluated the performance of every constraint and

afterward the machine learning techniques we introduced to limit the overhead

and maintain high performance.

3.4.1 Combining Constraint Programming with Machine
Learning

There is a wide literature on approaches in which constraint programming is com-

bined with machine learning and data mining [34].

One of the main ideas is portfolio selection (see, e.g., the survey [122] and

references therein): given a set of algorithms (or solvers) that solve a same problem,

select the best one for solving a given instance. The approach is based on obtaining

data about the running time of the algorithms on a high number of instances.

Also, for each instance a number of features are computed, hopefully synthesiz-

ing those characteristics that make it easy or hard to solve.

After that, a classifier is learned trying to predict, given the set of features

of a new unseen instance, which of the available solvers will be the fastest for

that specific instance. Once a new instance is provided, the classifier chooses

the best solver.

Although less strictly related to this thesis, we cite other approaches to combine

machine learning and CP, including Empirical Model Learning [138, 137], trying

to learn some features of a physical system and including its input/output relation

as a new constraint, or approaches that try to learn single constraints or a whole

constraint model given examples from the user [37, 23]. There have also been

approaches where machine learning has been used to automate constraint design

decisions, based on the problem to be solved, in order to increase the performance

of constraint solvers [85].
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3.4.2 Performance evaluation of nocrossing constraints

To evaluate the performance of each constraint we collected data while solving

Euclidean TSP instances. In order to have a statistically significant number of

instances, we used randomly-generated ones from multiple TSP generators.

We generate instances from 3 different classes. The first class, named uniform,

is that of the random uniform Euclidean instances obtained by placing points

uniformly distributed in a 106 × 106 square. We used the generator of the DI-

MACS challenge [111]. The second set of instances consists of clustered instances.

Clustered instances have been generated through the R-package netgen [41] and its

function generateClusteredNetwork. The function generateClusteredNetwork

initially generates cluster centers by Latin Hypercube Sampling (LHS) to ensure

that the clusters are placed separately from each other. Then it distributes points

to the clusters according to a normal distribution that exploit the centers of the

clusters as the mean vector and the distance to the center of the nearest neighbour

cluster as the variance. The last type of generated instances is a combination of

the two above. Morphed instances are in fact obtained by combining two TSP

instances with the same number of nodes. Each morphed instance is generated by

applying a convex combination to the coordinates of node pairs. The morphed

instances were also obtained using the R-package netgen and in particular the

function morphInstances.

For each nocrossing constraint (propagator), in each instance, we measured 3

indicators:

• the number of times the constraint has been resumed (Nactivations);

• the number of values removed from the domains of the variables involved in

the constraint as result of domain filtering (Npruned);

• the number of failures (and therefore backtracks) resulting from domain

filtering.

The first two indicators were then combined to obtain a fourth one. This

fourth indicator denoted as RTIO was calculated as the ratio Npruned/Nactivations. A

constraint with a low RTIO wakes up many times without being able to prune values

from the domains of the involved variables, which leads to an undesirable computa-

tional overhead, while a constraint with a high RTIO can perform a much stronger

pruning compared to the number of activations and therefore it is worth imposing it.

Figures 3.11, 3.12 and 3.13 graphically show the number of value deletions, the

number of failures and the RTIO respectively, for a typical instance of Euclidean

TSP. In each figure, the darker the colour of the line, the higher the value of

the corresponding indicator. We created many of these figures in the hope of

finding a meaningful pattern that could help us identify useful or useless cases
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the rigid transformations of the entire point set such as rotations, axis symmetries

or even scales.

Because of this, we compute a number of features that try to synthesize some

additional information that is invariant with respect to these transformations. As

a guideline, we have selected some characteristics that reflect information used by

effective TSP solving algorithms, in the hope that they can also serve as a guideline

for the effectiveness of the nocrossing constraints and in addition we have included

features already widely used in the literature to characterise TSPs.

Inspired by works in the literature that attempt to characterise TSP instances

by calculating features [119, 160, 146, 106, 186], we decided to introduce features

concerning the whole instance rather than the single nocrossing constraint. In

particular, we focused on a subset of the features introduced by Hutter et al. [106]

which in turn built on the set previously introduced by Smith-Miles et al. [186].

With regard to the algorithms for solving TSPs, the one proposed by Held

and Karp [101] based on the spanning tree is particularly effective. The Minimum

Spanning Tree (MST) of the node set can be computed in polynomial time and

is a popular valid lower bound for the value of the optimal solution. One of the

properties we choose for a pair of points is whether the segment connecting them

belongs to a minimum spanning tree.

Another interesting property is the so-called necklace condition [64]. Suppose

to find a set of discs, each centered on one of the points to be visited, such that the

interiors of two discs do not intersect. Clearly, an optimal tour should enter and

exit each of the discs, so a valid lower bound is twice the sum of the radii of the

discs. From this observation, another interesting property could be the distance

of each node to the closest other node.

Finally, in Section 3.3.2 we also introduced constraints that performed pruning

based on the convex hull of the set of points; that pruning was also extended

to the case of interior hulls, after (during search) some of the segments in the

current path were already fixed.

Considering what has been introduced so far, we have identified the following 45

features for each nocrossing(i, Nexti, j, Nextj) constraint in the dataset. For each

instance, let Ni be the point corresponding to Pi with normalized coordinates, so

that the coordinates span in the [0,100] interval. Features marked with an asterisk

* are those proposed in [106, 186] as introduced previously.

• 1 - 3: Cost Matrix Statistics*: Mean (cavg), variation coefficient and skew

of costs computed between every pair of nodes (points) in the instance.

• 4 - 5: Distance: Euclidean distance d(Ni, Nj) between points Ni and Nj and

normalized version d(Ni, Nj)/cavg, where cavg is the average distance in the

cost matrix.
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• 6: Radius*: Mean distance from each node to the instance centroid C. Note

that the centroid of a set of points is that point which minimizes the sum of

squared Euclidean distances between itself and each point in the set.

• 7 - 10: Centroid Distance: Euclidean distance from the instance centroid

C to the two extremes Ni (d(C, Ni)) and Nj (d(C, Nj)) respectively and their

normalized versions d(C, Ni)/cavg, d(C, Nj)/cavg .

• 11 - 12: Levels: Level of points Pi and Pj. The idea is to distinguish the

points on the perimeter of the convex hull from the internal ones, and have a

numeric value suggesting how deep in the interior of the figure is each point.

The level of a point P is defined inductively with respect to the set P of all

the points: lev(P ) = levP(P ). The level of a point P with respect to a set

X is 1 if P belongs to the “exterior” of X (precisely, the perimeter HullX of

the convex hull of X ) and is defined inductively as 1 plus the level of P on

the “interior” set X \HullX otherwise:

levX (P ) =

{
1 if P ∈ HullX

1 + levX \HullX (P ) otherwise

• 13 - 15: Cluster Distance Features*: Mean, variation coefficient, skew of

the cluster distance calculated between every pair of nodes in the instance.

Cluster distance between a pair of nodes is defined as the minimum bottleneck

cost of any path between them in a MST where the bottleneck cost of a path

is defined as the largest cost along the path.

• 16 - 17: Nearest Neighbour Distance*: Standard deviation and coefficient

variation of the normalized nearest neighbour distances;

• 18 - 21: Neighbours Distance: Euclidean distance of the closest point

C(Ni) to Ni (d(C(Ni), Ni)) and Nj (d(C(Nj), Pj)) respectively, and normal-

ized versions d(C(Ni), Ni)/cavg, d(C(Nj), Nj)/cavg;

• 22: Neighbourhood size: Number of points contained in the circle having

as diameter the segment connecting points Pi and Pj;

• 23 - 26: Minimum spanning tree cost statistics*: Sum, mean, variation

coefficient and skew of the edge costs in a minimum spanning tree constructed

over all nodes in the instance.

• 27 - 28: Shortest Path in MST: Cost of the shortest path p between Ni

and Nj in a minimum spanning tree, and its normalized version

• 29 - 31: Minimum spanning tree node degree statistics*: Mean, vari-

ation coefficient and skew of node degrees in a minimum spanning tree con-

structed over all nodes in the instance.
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• 32 - 33: MST Degree: Degree in the minimum spanning tree of Pi and Pj

respectively;

• 34: Segment in MST (boolean value) Indicates whether the segment PiPj

belongs to a minimum spanning tree.

• 35 - 36: Segment crosses: Number of segments crossing the segment PiPj

and the version normalized, obtained dividing by the total number of arcs;

• 37 - 40: Crossings: Total number of crossings between edges exiting from Pi

(resp. Pj) and other edges, and their normalized versions obtained dividing

by the total number of arcs.

• 41 - 44: Fraction of distinct distances*, with precision to k ∈ {1, 2, 3, 4}

decimal digits. Each element of the distance matrix is rounded to k decimal

digits, creating Dk, then the number of distinct values in such matrix is

computed, and divided by the number of values in the matrix;

• 45: Good: (Boolean value) label each constraint as useful (1) or useless (0).

3.4.3 Supervised machine learning approaches

Machine learning is a subfield of computer science concerned with developing

algorithms capable of improving their performance from experience. The process

relies on data, such as examples, or observations, such as direct experience or

instruction, to build a statistical model used to solve a practical problem. Examples

can be data collected in the (natural) environment, handcrafted by humans, or

generated by some other algorithm. Learning can be supervised, semi-supervised,

unsupervised and reinforcement.

In supervised learning, the goal of the algorithm is to use a dataset of labelled

examples X{(xi, yi)}N
i=1 to produce a model that takes a feature vector x as

input and, outputs information which makes it possible to derive the label for

x. The feature vector is a vector in which each dimension contains a value x(j),

called feature, that describes the example in some way. For all examples in the

dataset, the feature at position j in the feature vector always contains the same

information type.

The label yi can be an element belonging to a finite set of classes {1, 2, . . . , C},

or a real number, or a more complex structure. If the set of classes consists of only

two elements (e.g. {0, 1} or {positive, negative}), the associated machine learning

model is called a binary classifier.

The dataset of labelled constraints, presented in the previous section, is suitable

for the application of supervised machine learning algorithms, with the goal of

learning a model capable of predicting which of the constraints are useful and

which are useless in a previously unseen instance of the Euclidean TSP. Each
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nocrossing constraint is labelled as useful or useless so the associated machine

learning model results in a binary classifier capable of discriminating between

the negative class (useless, with label equal to 0) and the positive class (useful,

with value 1 as label). Among the classification techniques, we consider two well-

known and extensively used approaches: Random Forest (RF), known for its good

computational performance and scalability, and Neural Network (NN), which have

proven to be very effective at modelling correlations among many features.

We now begin our brief description of classification techniques by introducing

decision trees as core elements for implementing random forests.

Decision Tree

A decision tree classifier (or classification tree) is a predictive model based, as its

name suggests, on a tree data structure. Given a trained decision tree, to predict

the class of an example, given its feature vector x, the tree is traversed from the

root to one of the leaf nodes containing the predicted label.

At each branching node a certain feature j of the feature vector x is examined.

The result of the test on feature j determines which of the branches will be selected.

Popular algorithms for learning decision trees are CART [43], ID3 [166] and

its extension C4.5 [167]. All mentioned algorithms attempt to build the tree by

placing tests on attributes that carry more information (information entropy) on

the nodes closest to the root; this usually leads to shorter trees that are preferred

to longer ones.

Despite of their simplicity in terms of interpretation and implementation, de-

cision trees also have a number of well-known disadvantages: the trees generated

tend to be very complex and, if adequate precautions are not adopted, they do

not generalise the data well (overfitting); they are not able to manage unbalanced

training datasets in an adequate manner; they are sensitive to variations in the

training data, which even if small, can lead to the generation of very different trees.

This last aspect, which is a weakness for decision trees, is instead exploited

as an advantage in random forests.

Random Forest

A Random Forest (RF) is a meta estimator that fits a number of decision tree

classifiers on various sub-samples of the dataset and uses averaging to improve the

predictive accuracy and control overfitting [42].

The key point is the low correlation between the different decision tree classi-

fiers; uncorrelated models are able to produce ensemble predictions that are more

accurate than any of the individual predictions. The random forest ensures that

the behaviour of each individual tree is not overly correlated by using two different

strategies: bagging and feature randomness.
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Decision trees, as introduced above, are very sensitive to the data with which

they are trained so to obtain different tree structures it is enough to make slight

modifications to the training set. Random forest takes advantage of this by allowing

each individual tree to randomly sample from the dataset with replacement, result-

ing in different trees. This process is known as bagging or bootstrap aggregation.

Moreover, in a decision tree when the time to split a node comes, all possible

features are considered, and the one chosen is the one that produces the greatest

separation between observations at the two sub-nodes. In a random forest the

features randomness principle is used: each tree can pick only from a random

subset of features. This forces more variation between trees in the model and

results in less correlation.

We used the implementation available in the WEKA5 [196] workbench for

machine learning. Given a training set X of instances of Euclidean TSP, learning

a random forest in WEKA involves the following steps [9]:

(1) Bootstrap samples Bi for every tree ti are drawn by randomly selecting pairs

of points (the examples) with replacement from X until the sizes of Bi and

X are equal;

(2) A random subset of features (attributes) is selected for each Bi and used for

the training of tree ti in the forest;

(3) An information gain metric is used to grow unpruned decision trees;

(4) The final classification result is the most popular of the individual tree pre-

dictions.

Neural Network

Neural Networks (NNs) are learning models whose structure was inspired by the

human brain. NNs are able to identify and model complex interactions among the

entities to be classified, in this case constraints.

There are many types of NNs that have different architectures. The simplest

one is the Multi-Layer Perceptron (MLP), also called Fully Connected NN [96,

3]. A MLP can be viewed as a graph. It is divided into layers and each layer

contains nodes, called neurons, with each neuron connected to each neuron in the

next layer. Each connection is assigned a trainable weight. Every layer has a

weights matrix composed of the weights associated with the connections between

the current layer and its predecessor. The values of the weights are trained by

means of an optimization algorithm, such as gradient descent [47], by computing

the gradient of the output of the network with respect to each layer and updating

the weights by moving along the gradient.

5https://www.cs.waikato.ac.nz/ml/weka/

https://www.cs.waikato.ac.nz/ml/weka/
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The input data is multiplied by a weights matrix and passed to the neurons of

the first layer. The input of each neuron is given to a function, called activation

function, that calculates the output of the neuron. The output of the set of neurons

is provided to the second layer that will use its weights matrix and activation

functions to compute the input of the third layer, and so on up to the output layer.

This is the last layer of the network and output classification of the given input in

the form of a probability distribution among the classes contained in the data. For

each class, the MLP outputs a value in the interval [0, 1] and these values add up

to 1. Therefore, given the training set, a network must be designed by choosing

the number and type of layers, neurons, and activation functions.

The values of the weights are trained by means of back-propagation [180]. Given

a set of labelled entities, these are passed to the MLP and its output is compared

with the correct labels of the entities to compute a real number telling how much

the network is able to correctly classify the entities. This value, computed by

an error function, is used by an optimization algorithm, such as gradient descent,

to tune the weights of the MLP by computing the gradient of the function with

respect to each layer and changing the weights by moving along the gradient. These

operations are performed iteratively until the error decreases. If the error cannot

be further reduced or if its change falls below a certain threshold value through

iterations, the training can be stopped.

Machine learning the goodness of constraint propagators

Random Forests and Neural Networks classifiers could be used independently to

predict whether the nocrossing constraint should be imposed on previously unseen

pairs of points, at the same time indicating to avoid imposing constraints that have

been assigned the negative class (useless).

The whole proposed procedure is the following:

1. A training dataset of various Euclidean TSP instances, where each constraint

has been labelled according to its own RTIO, is used to learn a RF or MLP

classifier;

2. Given any new instance of the problem, for whose constraints the three

indicators (and so the class) are unknown, apply the classifier to find pairs of

points that are classified as useful for imposing the nocrossing constraint;

3. Run the instance together with the selected nocrossing constraints to solve

the Euclidean TSP.

With step 3 we try to eliminate the temporal overhead that could be introduced

when searching for a solution due to the constraints recognized by the machine

learning model as ineffective (useless). One advantage of this method is that,
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Table 3.2: Example of confusion matrix.

class positive (predicted) negative (predicted)
positive (actual) TP FN
negative (actual) FP TN

once the classifier has been learnt, it can be reused in each new instance of the

problem without having to repeat the machine learning step that has only been

executed once.

Overview of model performance assessment

After the model is built on the labelled dataset X, also known as training set, the

test set is used to assess the actual performance of the model. The test set contains

examples previously unseen for the learning algorithm. So, if the model is able to

correctly predict the labels of the examples in the test set, we can assume that it

will also work well when applied to “real cases”.

The most commonly used metrics relating to binary classifiers to evaluate the

classification model are: confusion matrix, precision/recall, accuracy, F-measure,

and ROC AUC (ROC Area)/PR AUC (PR Area).

The confusion matrix is a table that summarizes the success of the classification

model in predicting examples of different classes.

True Positive TP (respectively Negative TN) is the number of positive (resp.

negative) examples correctly classified as positive (resp. negative). False Positive

FP (resp. Negative FN) is the number of negative (resp. positive) examples

incorrectly classified as positive (resp. negative). True Positive Rate (TP Rate),

the proportion of positive examples predicted correctly, and False Positive Rate

(FP Rate), the proportion of negative examples predicted incorrectly, are respec-

tively defined as:

TP Rate =
TP

TP + FN
FP Rate =

FP

FP + TN

Confusion matrices can be used to calculate two important performance metrics:

precision and recall. Precision is the ratio of correct positive predictions to the

overall number of positive predictions (defined as the TP Rate):

Precision =
TP

TP + FP

Recall is the ratio of correct positive predictions to the overall number of positive

examples in the test set:

Recall =
TP

TP + FN
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Accuracy is given by the number of correctly classified examples divided by

the total number of classified examples.

Accuracy =
TP + TN

TP + TN + FP + FN

F-measure is the harmonic mean of Precision and Recall.

F-measure =
2

Precision−1 + Recall−1

The ROC curve (Receiver Operating Characteristic) and the PR curve (Precision-

Recall) are commonly used methods to assess the performance of classification

models. The ROC curve plots the TP Rate versus the FP Rate, the PR curve

plots the Precision versus the Recall [55, 162].

The highest possible value for all metrics is 1, and, except for the FP Rate, the

higher the value, the better the performance.

3.4.4 Experimental evaluation

Machine Learning

The machine learning task was carried out by training, independently, a RF clas-

sifier and a MLP classifier.

For the former, WEKA version 3.8.5 [196] was used, for the latter we used

Tensorflow6 [1] version 2.0.0 of the framework with CUDA version 10.0.

The training phase of the RF classifier was controlled by the parameters:

• -P 100: size of each bag, as a percentage of the training set size; the default

value of 100 was kept;

• -attribute-importance: compute and output attribute importance (with

the mean impurity decrease method) reported in Figure 3.14;

• -I 100: number of iterations (i.e., the number of trees in the random forest);

• -num-slots 1: number of execution slots (thread) for constructing the en-

semble. The default 1 means no parallelism;

• -K 0: sets the number of randomly chosen attributes;

• -M 1: the minimum number of instances per leaf;

• -V 0.001: minimum numeric class variance proportion of train variance for

split (it was kept the default value);

• -S 1: seed for random number generator (it was kept the default value).

As for the MLP, we performed a random search to find the best combination

for the number of layers, the number of neurons per layer, the optimizer among

Adam and Stochastic Gradient Descent, the parameters for the optimizers, and

6https://www.tensorflow.org/

https://www.tensorflow.org/


3. The Euclidean Traveling Salesperson Problem 61

Table 3.3: Performance of the RF and MLP classifiers over the fraction of instances
used for test. Class 0 corresponds to useless constraints.

Classifier Class Recall FP Rate Precision F-Measure ROC Area PR Area Accuracy

RF
0 0.760 0.155 0.830 0.793 0.883 0.894
1 0.845 0.240 0.779 0.811 0.883 0.862

W.Avg. 0.802 0.198 0.804 0.802 0.883 0.878 0.802

MLP
0 0.827 0.258 0.704 0.761 0.855 0.871
1 0.742 0.173 0.853 0.794 0.855 0.829

W.Avg. 0.785 0.215 0.779 0.777 0.855 0.850 0.779

the dropout rate. Prior to training, a standardisation step was carried out on

the features. We trained among 300 configurations, and we selected the MLP

that showed the best trade-off between classification performance and resource

consumption to keep the entire resolution flow of the Euclidean TSP as efficient

as possible. The resulting network has 13 layers:

• 2 layers × 128 neurons,

• 2 layers × 256 neurons,

• 4 layers × 1024 neurons,

• 2 layers × 256 neurons,

• 2 layers × 128 neurons,

• 1 layer × 1 neuron.

All the layers, except the last one, use the ReLU activation function, while

the last one uses the sigmoid function. Layers 2 to 11 apply batch normalization.

Training was done by the Adam optimizer [120] and applying early stopping and

learning rate decay.

From the results shown in Table 3.3 it becomes clear that the RF model can

classify useful constraints better than MLP model, which achieves a higher score

only for recall in classifying useless constraints (class 0).

Euclidean TSP Solver

As already introduced in Section 3.4.2, we decided to empirically evaluate the best

threshold value for θRTIO to label each constraint as useful or useless. We solved

192 instances of Euclidean TSP by varying the threshold value, in steps of 0.1, in

the interval [0.1, 2]. The graph in Figure 3.15 summarizes the results obtained, for

each threshold value it shows the geometric mean of the solving time of all 192

instances. The curve shows a rather flat trend up to point θRTIO = 0.6, which we

consider as the minimum and consequently is the value we then used in creating

the training dataset for the machine learning models.

To evaluate the improvements in solving time achieved thanks to the predictions

performed by the machine learning step, we developed a series of experiments based

on randomly generated TSPs. The same techniques described in Section 3.4.2 were



62 3.4. Prediction of effective nocrossing constraints

0.44 (261828) NORM-Euclid_Distance_AB [4]

0.43 (248150) NORM-Euclid_Distance_AB_to_AVG [5]

0.43 ( 80856) FEAT-Level_PointA [11]

0.41 (223177) NORM-Distance_A_Centroid [7]

0.41 ( 75512) FEAT-Level_PointB [12]

0.41 (155679) INST-Cost_Matrix_AVG [1]

0.4 (223749) NORM-Distance_B_Centroid [8]

0.39 (196113) NORM-Distance_A_Centroid_to_AVG [9]

0.39 (148578) INST-Cost_Matrix_RSD [2]

0.38 (142024) INST-Cost_Matrix_SKEW [3]

0.38 (198761) NORM-Distance_B_Centroid_to_AVG [10]

0.36 ( 89783) FEAT-Neighbourhood [22]

0.36 ( 47483) FEAT-MST_Degree_A [32]

0.36 ( 5282) FEAT-A_B_Near_In_MST [34]

0.35 (128143) INST-Radius [6]

0.35 ( 49008) FEAT-MST_Degree_B [33]

0.34 (152022) FEAT-Shortest_Path_AB_Weight [27]

0.33 (170974) NORM-Dist_NN_PointA [18]

0.33 (139810) FEAT-AB_Crosses [35]

0.33 (157641) NORM-Dist_NN_PointA_to_AVG [20]

0.32 (153430) FEAT-Shortest_Path_AB_Weight_to_AVG [28]

0.31 (139985) FEAT-AB_Crosses_PCT [36]

0.31 (167203) NORM-Dist_NN_PointB [19]

0.3 (155033) NORM-Dist_NN_PointB_to_AVG [21]

0.3 (104346) INST-Cluster_Distance_AVG [13]

0.29 ( 99264) INST-Cluster_Distance_RSD [14]

0.29 (130485) FEAT-FromA_Intersection [37]

0.28 ( 98713) INST-Cluster_Distance_SKEW [15]

0.28 (127202) FEAT-FromA_Intersection_PCT [39]

0.28 (127660) FEAT-FromB_Intersection [38]

0.28 ( 94915) INST-SD_NNDistance [16]

0.27 (126983) FEAT-FromB_Intersection_PCT [40]

0.27 ( 88123) INST-RSD_NNDistance [17]

0.26 ( 17647) INST-MST_Degree_AVG [29]

0.24 ( 80904) INST-MST_Length [23]

0.23 ( 71190) INST-MST_Length_AVG [24]

0.22 ( 79410) INST-MST_Length_RSD [25]

0.22 ( 55912) INST-MST_Degree_RSD [30]

0.22 ( 55398) INST-MST_Degree_SKEW [31]

0.22 ( 75762) INST-MST_Length_SKEW [26]

0.2 ( 34831) INST-D3Fraction [43]

0.2 ( 57292) INST-D2Fraction [42]

0.19 ( 61869) INST-D1Fraction [41]

0.19 ( 15116) INST-D4Fraction [44]

Figure 3.14: Attribute importance based on average impurity decrease (and number of
nodes using that attribute). The feature number as presented in Section 3.4.2 is reported
in square brackets.
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Figure 3.15: Experimental evaluation of the θRTIO value.

used to generate the TSPs used in the experiments. We generated a total of 480

test instances varying the size from 20 to 28 nodes, equally distributed in the three

classes uniform, clustered and morphed.

We compared six constraint models based on the successor representation as

introduced in Section 3.1.5:

• the basic constraint model described in the preliminaries (denoted as ECLP),

including the circuit and alldifferent constraints required by the succes-

sor representation plus the objective function;

• the model imposing the nocrossing constraints for all pairs of nodes (denoted

as ALL);

• the model imposing only the nocrossing constraints predicted as useful by

the RF classifier (denoted as RF);

• the model imposing only the nocrossing constraints predicted as useful by

the MLP classifier (denoted as MLP);

• moreover, in order to eliminate the hypothesis that a random removal of con-

straints could obtain the same speed-up, we also plot the timing results of two

constraint models, in which, respectively, 70% of the nocrossing constraints

were not imposed (denoted as RAND70) and half of these constraints were not

imposed (denoted as RAND50).

All experiments use the max regret search strategy [46]. All algorithms are

implemented in the ECLiPSe CLP language [184]. All tests were run on ECLiPSe
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Figure 3.16: Solving time as a function of the number of solved instances. Time limit
is 3,600s. Different curves correspond to the different models that were compared during
the experiments.

v. 7.0, build #54, on Intel® Xeon® E5-2697 v4 CPUs running at 2.30GHz, with

one core and with 1GB of reserved memory. The time limit was 3,600s.

Figure 3.16 shows, for each constraint model, the number of instances that

were solved within the timeout. We can see that the basic constraint model ECLP

is the least effective, while adding nocrossing constraints can provide a significant

speed-up. Removing constraints randomly is not effective, and it seems that as we

increase the number of nocrossing constraints from 0 (ECLP) to 30% (RAND70), to

50% (RAND50), to 100% (ALL) we obtain increasing speed-ups.

The same does not hold if the constraints to be imposed are carefully se-

lected: the two constraint models in which the nocrossing constraints imposed

are those predicted through machine learning are the most effective, confirming

the effectiveness of the machine learning - based approach proposed. MLP and

RF performances are almost overlapping, with RF slightly more effective than the

MLP, as expected from the results of Table 3.3, at the cost of higher memory

needed: RF requires a memory amount larger one order of magnitude than MLP.

Figures 3.17 and 3.18 show the running time when instance size is varied. It is

worth noting that randomly choosing a set of nocrossing constraints to be removed

does not pay off, and may even increase the running time with respect to adding

no nocrossing constraints. In particular, in larger instances, the median value of

the running time coincides with the timeout for the reference constraint model and

for the random selection of constraints. Instead, the median value is significantly

lower when selecting the constraints to be imposed with machine learning.
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Figure 3.17: (3.17a) Geometric mean of solving time of TSPs and (3.17b) speedup over
the ECLP model, varying the size of the instances.
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Figure 3.18: (3.18a) Median of solving time of TSPs and (3.18b) speedup over the ECLP

model, varying the size of the instances.

The selection of constraints also increased slightly the number of instances

that could be solved: among the 480 tested instances, ECLP incurred in timeout

on 153 instances, while RAND70 on 151, RAND50 on 149, ALL on 143, RF on 140

and MLP on 141.
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In the context of automatic reasoning, temporal reasoning is certainly an impor-

tant field. The applications range from process scheduling to speech recognition,

automatic writing, drone swarms coordination, and much more.

One of the most prominent formalisms in this area is Allen’s Interval Algebra [6],

(IA), introduced in 1983, which is based on the basic concepts of event and relation

between events.

IA is an algebra where relations are qualitative, as no metric information is kept

67



68 4.1. Preliminaries

about the duration of an event or the absolute time interval between two events.

An interesting problem that emerges in this framework is the consistency problem

for an algebra A (SAT(A)): given a set of event variables and a set of relation-

constraints between the variables, the goal is to decide whether all variables can be

modelled into actual events (interval) without violating the constraints. SAT(IA),

which is archetypal of the class of temporal constraint satisfaction problems, was

proven to be NP-complete, in the general case, by Vilain and Kautz [192].

In the following years, researchers studied the properties of the IA to identify its

maximally tractable fragments (and especially subalgebras), and in 2003 Krokhin

et al. [124] gave a complete picture of tractability of fragments of the IA with

respect to consistency.

A tree-like extension of the linear formalism was proposed [168], and called

Branching Interval Algebra (BA). Tree-like temporal reasoning is ubiquitous in

computer science, mainly at the logical level (see, for example, the huge amount of

work that exists on CT L, CT L∗, and similar formalisms [66, 65]). Since SAT(BA)

is also NP-complete, the problem of identifying its tractable fragments arises

again in a natural way.

Branching Interval Algebra also has many potential applications in different

areas of Artificial Intelligence; for example, in planning with alternatives, in which

different plans have to be taken into account in the design phase, or in the automatic

generation of narratives and in the formal verification of parallel programs. Conse-

quently, it is important to be able to efficiently solve classical problems expressed in

BA. This can be achieved in two steps: first, by identifying sufficiently expressive

but tractable fragments of the whole algebra, and, second, by using such fragments

to boost the performances of a backtracking algorithm for the whole language.

In the following we study the tractability of fragments of the BA, and we give

an almost complete picture of their situation. We identify, in particular, four

interesting tractable fragments, and study their maximality both with respect to

their tractability and with respect to their PC-tractability, that is, their tractability

with the algorithm of Path Consistency. Moreover, we design an enhanced version

of the classic backtracking consistency algorithm for the full BA that takes ad-

vantage from tractable fragments of it, and perform a series of experiments to

test its applicability.

The content of this chapter has been arranged and adapted from some of

the author’s works that have already been published in conferences and journals,

see [31, 33, 32].

4.1 Preliminaries

In the following we will introduce and investigate four qualitative temporal algebras:

PA (Point Algebra), BPA (Branching Point Algebra), IA (Interval Algebra) and
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BA (Branching Algebra); these are all Tarski relation algebras [125] where the

atoms are the pairwise disjoint and jointly exhaustive basic relations, generically

denoted with r, s, . . ., and so on. A set of disjunctions between atoms {r1, . . . , rn} =

r1∨ · · ·∨ rn is a relation; relations are generically denoted with R, S, . . ., and so on.

We express the fact that two objects, e.g. two intervals, X and Y are related by R

with XRY . Given a set of basic relations Abasic, we can build the relation algebra

A as the powerset 2Abasic. To stress the algebra A over which we are considering a

certain relation R, we use the notation RA. Among all the relations in A, three are

particularly important: the empty relation ⊥ = ∅, the all (or unknown) relation

⊤ = Abasic, and the identity relation ≡, which is {=} in PA, BPA and their

fragments, and {e} in IA, BA, and their fragments. A relation algebra is also

equipped with the unary operations complement (denoted by ¬) and converse (⌣),

∀x, y, R : x(R¬)y ⇐⇒ x(⊤ \R)y

∀x, y, R : x(R⌣)y ⇐⇒ y(R)x

the binary operations union (∪), intersection (∩),

∀x, y, R, S : x(R ∪ S)y ⇐⇒ x(R)y ∨ x(S)y

∀x, y, R, S : x(R ∩ S)y ⇐⇒ x(R)y ∧ x(S)y

and weak composition (⋄), defined as:

r ⋄ s = {t | ∃x, y, z : x(r)z ∧ z(s)y ⇒ x(t)y}

R ⋄ S =
⋃

r∈R,s∈S

r ⋄ s

In temporal algebras, weak composition is mostly referred to as, simply, com-

position (see, e.g., [6, 192, 124, 168, 191, 154, 132, 63]). Yet, in more recent pub-

lications (see, e.g., [175, 8]), a more precise distinction between weak composition

and (real) composition was made, and (real) composition was defined as:

R ◦ S = {(x, y) | ∃z : x(r)z ∧ z(s)y}

The composition of two relations R and S represents the strongest implied relation

between two events connected to a third one, and it is, in a sense, the application

of the transitive property (see, e.g. [174]). Unfortunately, (real) composition is

basically useless because it depends on the realization of the variables, and in

temporal algebras the domain of the variables is infinite and dense. Observe, also,

that in our notation we use ⋄ for weak composition and ◦ for composition, as
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in [154], but unlike other authors do. Finally, we define the strong composition

(•) of three relations as:

x(•(R, S, T ))y ⇐⇒def x(R ⋄ S)y ∧ x(T )y

The strong composition takes into account a previous information already existing

between the two events.

4.1.1 The Point Algebra and the Interval Algebra

In Point Temporal Algebra PA, events are represented as points on the timeline.

Variables over time points are denoted with x, y, . . ., and so on. Point Temporal

Algebra was historically introduced only later than Allen’s Interval Algebra where

events are instead represented as intervals. PA is based on the notion of relations

between pairs of variables, the set of basic point relations (PAbasic) consists of three

basic relations {=, <, >} (referred also as a linear model of time), where < is the

total order relation, > its converse and = the equivalence relation.

Definition 4.1.1 (Point Algebra PA). PA is the algebraic structure with underly-

ing powerset P(PAbasic), with the operations of converse, complement, intersection,

union, weak composition and strong composition, and the following axioms hold:

• ∀x : (x = x) (reflexivity)

• ∀x, y : (x = y)⇒ (y = x) (symmetry)

• ∀x, y, z : (x = y) ∧ (y = z)⇒ (x = z) (transitivity)

• ∀x, y : (x < y)⇒ (x 6= y) (incompatibility)

• ∀x, y : (x < y)⇒ (y > x) (converse)

• ∀x, y, z : (x < y) ∧ (y < z)⇒ (x < z) (transitivity)

• ∀x, y : (x = y) ∨ (x < y) ∨ (y < x) (total order)

We often use a classical abbreviation for relations, for example {<, =} is written

as ≤, ⊥ = ∅ denotes the empty relation, while ⊤ = {<, =, >} denotes the union

of all basic relations. We remind that |PAbasic| = 3 so |PA| = 23 = 8 relations, by

enumeration, we have: PA = {⊥, <,≤, =, 6=,≥, >,⊤}.

As mentioned above, extending the point algebra to intervals results in the

Interval Algebra (IA) originally introduced by J.F. Allen in 1983.

In Allen’s IA an event is a 2-interval, that is, an interval defined by a starting

and an ending point over a total order, while a relation is a set of disjunctions

between basic relations, which represent the possible positions that two intervals

can assume relatively to each other.

We generally denote intervals with I, J, . . . , their starting endpoints with I−,

J−, . . . , and so on, their finishing endpoints with I+, J+, . . ., and so on, and if

we wish to refer both endpoints at the same time we use I±, J±, . . ., and so on.
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Variables over intervals are denoted with X, Y, . . . In the linear model of time, one

can describe 13 basic interval relations (IAbasic) of the (linear) Interval Algebra,

which are derived by the possible positions that the endpoints of two intervals

can assume relatively to each other: these relations are before (b), meets (m),

overlaps (o), starts (s), during (d), finishes (f), their converses after (bi), met-

by (mi), overlapped-by (oi), started-by (si), contains (di), finished-by (fi) and the

self-symmetric equals (e) depicted in Figure 4.1.

Definition 4.1.2 (Interval Algebra IA). IA is the algebraic structure with un-

derlying powerset P(IAbasic), with the operations of converse, complement, inter-

section, union, weak composition and strong composition and the following axioms

hold:

• ∀I : (I− < I+)

• ∀I, J : (I+ < J−)⇒ (IbJ)

• ∀I, J : (I+ = J−)⇒ (ImJ)

• ∀I, J : (I− < J−) ∧ (J− < I+) ∧ (I+ < J+)⇒ (IoJ)

• ∀I, J : (I− = J−) ∧ (I+ < J+)⇒ (IsJ)

• ∀I, J : (J− < I−) ∧ (I+ < J+)⇒ (IdJ)

• ∀I, J : (J− < I−) ∧ (I+ = J+)⇒ (IfJ)

• ∀I, J : (I− = J−) ∧ (I+ = J+)⇒ (IeJ)

• ∀I, J, r : (IrJ)⇔ (JriI)

Since |IAbasic| = 13 then |IA| = 213, and like in PA, ⊥ = ∅ denotes the empty

relation, while ⊤ denotes the union of all basic relations.

4.1.2 The Branching Point Algebra and the Branching In-

terval Algebra

Later, PA and IA were extended to the branching-time case, leading to the

introduction of Branching Point Algebra (BPA) [171] and Branching Interval

Algebra (BA) [168].

In branching-time algebras, events are modelled in a tree-like structure rather

than on a line. Let (T , <), or simply T , be a partial order, whose elements (points)

are generally denoted by p, q, . . ., and so on, and where p ‖ q, which is equal to p ≮
q∧p 6= q∧p ≯ q, denotes that p and q are incomparable with respect to the ordering

relation <. A partial order T becomes a right tree order if it always holds that:

(x ‖ y) ∧ (y < z)⇒ (x ‖ z)

Such a tree order is called a future branching model of time, and there are four

relations which may hold between any two points: equals (=), incomparable (‖),

which are symmetric, and before (<) and after (>), which are converse of each other.

These relations are depicted in Figure 4.2, and are called basic point relations of

the Branching Point Algebra (BPA), and together form the set called BPAbasic.
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b (bi) I before J I+ < J− I− I+ J− J+

m (mi) I meets J I+ = J− I− I+
J−

J+

o (oi) I overlaps J I− < J− < I+ < J+
I− I+

J− J+

d (di) I during J J− < I− < I+ < J+
J− J+

I− I+

s (si) I starts J I− = J− < I+ < J+
J− J+

I− I+

f (fi) I finishes J J− < I− < I+ = J+
I− I+

J− J+

e I equals J I− = J− < I+ = J+
I− I+

J− J+

Figure 4.1: A pictorial representation of the thirteen basic interval relations in IA. To
obtain the converse relations, it is sufficient to swap I and J .

Definition 4.1.3 (Branching Point Algebra BPA). BPA is the algebraic structure

with underlying powerset P(BPAbasic), with the operations of converse, comple-

ment, intersection, union, weak composition and strong composition, and the

following axioms hold:

• ∀x : (x = x) (reflexivity)

• ∀x, y : (x = y)⇒ (y = x) (symmetry)

• ∀x, y, z : (x = y) ∧ (y = z)⇒ (x = z) (transitivity)

• ∀x, y : (x < y)⇒ (x 6= y) (strict order)

• ∀x, y : (x < y)⇒ (y > x) (converse)

• ∀x, y, z : (x < y) ∧ (y < z)⇒ (x < z) (transitivity)

• ∀x, y : (x < y) ∨ (x > y) ∨ (x = y) ∨ (x ‖ y) (partial order)

• ∀x, y, z : (x ‖ y) ∧ (y < z)⇒ (x ‖ z) (tree-order)

• ∀x, y, z : (x ‖ y) ∧ (y = z)⇒ (x ‖ z) (tree-order)

A way to extend the linear basic interval relations to the branching case was

suggested by Ragni and Wölfl [168]. By taking into account the splitting points,

i.e., the points where two branches start diverging, in addition to the endpoints

of the intervals, gives a total of 24 basic relations, some of which can only be

distinguished through first-order quantification, at least if one does not want to

explicitly embed the splitting points in the system. For example, in Figure 4.3 we

see that, to distinguish the two situations, we need to quantify of the existence, or

non-existence, of a point between a and c. To overcome this problem, that becomes
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a
b

c

d

e

Figure 4.2: A pictorial representation of the four basic branching point relations, where
a = b, a < c, d > c, and d ‖ e

a c

b

d

a c

b

d

x

Figure 4.3: An example of two situations that require quantification to be distinguished
in the language of endpoints.

ib (ibi) I init.before J I− < J− ‖ I+ I−

I+

J−

J+

im (imi) I init.meets J I− < J− < I+ ‖ J+ I− J−

I+

J+

ie I init.equals J I− = J− < I+ ‖ J+ I−

J−

I+

J+

u I unrelated J I− ‖ J−

I−

J−

I+

J+

Figure 4.4: A pictorial representation of the six basic branching interval relations. Solid
lines are actual intervals, dashed lines complete the underlying tree structure.
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relevant when we study the behaviour of branching relations in association with the

behaviour of branching point relations (that is, by studying the properties of their

point-based translations), Ragni and Wölfl also introduce a set of coarser relations,

characterized by being translatable to point-based relations using only the language

of endpoints, without quantification. That adds only six new basic relations to

the linear ones, to describe which no first-order quantification is needed: these

are initially before (ib), initially meets (im), their converses initially after (ibi),

initially met-by (imi) and the self-symmetric unrelated (u) and initially equals (ie)

depicted in Figure 4.4. This new set of 19 basic relations is the BAbasic set of

the Branching Interval Algebra BA.

Definition 4.1.4 (Branching Interval Algebra BA). BA is the algebraic structure

with underlying powerset P(BAbasic), and with the operations of converse, com-

plement, intersection, union, weak composition and strong composition, and the

IAbasic axioms hold, plus the following ones:

• ∀I, J : (I− ‖ J−)⇒ (IuJ)

• ∀I, J : (I− = J−) ∧ (I+ ‖ J+)⇒ (IieJ)

• ∀I, J : (I− < J−) ∧ (I+ ‖ J−)⇒ (IibJ)

• ∀I, J : (I− < J−) ∧ (I+ ‖ J+)⇒ (IimJ)

• ∀I, J : (I− > J−) ∧ (I− ‖ J+)⇒ (IibiJ)

• ∀I, J : (I− > J−) ∧ (I+ ‖ j+)⇒ (IimiJ)

4.1.3 Point-mapping Operator and Closure of a Relation

Algebra

The weak composition of basic relations is usually computed by using a weak

composition table; the one for the PA is shown in Table 4.1 while the one for

the BPA is shown in Table 4.2.

Although Allen explicitly wrote the 13-by-13 weak composition table of the IA,

and the same did other authors for other algebras, this process is quite annoying

and error-prone, especially for bigger interval algebras such as BA, where a 19-

by-19 table would be necessary. We can, instead, define a point-mapping operator

ξ, which transforms interval relations to a set of disjunctions of conjunctions of

point relations:

ξ(r) = {r−, r∓, r±, r+}

where:

I(r)J ⇐⇒def I−(r−)J− ∧ I−(r∓)J+ ∧ I+(r±)J− ∧ I+(r+)J+

In other words, ξ returns the set of four-point relations that link the endpoints of

two intervals when they are related via a certain interval relation; r∓, for example,
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⋄ < > =
< {<} ⊤PA {<}
> ⊤BPA {>} {>}
= {<} {>} {=}

Table 4.1: Weak composition table of PAbasic relations.

⋄ < = > ‖
< {<} {<} ⊤PA <‖
= {<} {=} {>} {‖}
> ⊤BPA {>} {>} {‖}
‖ {‖} {‖} >‖ ⊤BPA

Table 4.2: Weak composition table of BPAbasic relations.

relates the beginning point of I (that is, I−) with the ending point of J (J+).

This allows us to manually write a weak composition table only for a certain point

algebra and then derive the weak composition in the corresponding interval algebra

through the point mapping. In particular, for any interval algebra A, we can

define the pointisable fragment Apoint as the fragment of those and only those

interval relations R such that |ξ(R)| = 1. Instances of Apoint relations can be

easily reduced in linear time to equivalent instances in the respective point algebra

by using ξ. Given a relation algebra A, a set S ⊆ A, and a set of operations

F = {f1, . . . , fn}, with arity {|f1|, . . . , |fn|}, defined over A, the closure of S over

F is given by the following inductive definition:

C1
F(S) = {R | ∀f ∈ F , ∀S |f | ∈ S |f | : R = f(S |f |)} ∪ S

Ci
F(S) = C1

F(Ci−1
F (S))

CF(S) = C
|A|
F (S)

Given a relation algebra A and a set S ⊆ A, its weak closure is its closure

under converse, intersection, and weak composition, and it is denoted by S (that

is, S = C⌣,∩,⋄(S)), while its strong closure is its closure under converse, intersection,

and strong composition, and it is denoted by Ŝ (that is, (Ŝ = C⌣,∩,•(S)). Clearly,

a weak closure is also a strong one; the converse holds if S contains ⊤. Examples

of strong subalgebras that are not weak ones can be found in [154, 94]; as we shall

see, interesting fragments of the BA also display a similar behaviour.

The notion of strong composition and strong closure comes handy when looking

for tractable fragments of an algebra: there are fragments which are not closed

under weak composition, but if we intersect the resulting relation with any element

of the fragment (i.e., we apply strong composition), we can guarantee that we will

always obtain a relation inside the fragment.
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4.1.4 Problems and Tractability

Several problems can be studied in a relation algebraA, but first we must introduce

some notation. An A-instance (or, simply, instance) Θ is a pair (V, E), where V

is a set of variables and E ⊆ (V × A × V ) is a set of A-constraints (also written

simply constraints in this chapter).

Each A-constraint is denoted by XRY where R is the relation between the

variable S = {X, Y } (its scope). Given a constraint XRY , a sub-constraint is a

constraint XR′Y where R′ ⊆ R. A constraint is basic if it does not have any proper

sub-constraints (i.e., if R is a basic relation). An instance can be represented by

a multigraph, and it is said to be normalized if and only if there is exactly one

constraint bewteen any different pair of variables, so its associated multigraph is a

complete graph; in this case, the instance is also called a network.

Given an instance Θ = (V, E), a sub-instance of Θ is an instance Θ′ = (V, E′)

where all the constraints in E ′ are sub-constraints of the constraints in E, while a

projection of Θ is an instance Θ′ = (V ′, E ′) where V ′ ⊆ V and E ′ ⊆ E is the set of

all an only those edges that insist on vertexes that are both in E ′. An instantiation

of Θ is a sub-instance Θ′ where all the constraints are basic; an interpretation Θ̂

of Θ is a realization of the variables in V with concrete elements of the domain

(e.g., points or intervals), and a model (if it exists) is an interpretation which

satisfies all the constraints in E; finally, a solution of Θ is an instantiation which

has at least one model. Any interpretation of an instance Θ corresponds to a

unique instantiation of Θ, but while the number of interpretations, and possibly

models, is infinite, the number of instantiations, and therefore solutions, is always

bounded. Since it is trivial to generate an interpretation from an instantiation, as it

is establishing whether an instantiation is a solution, one is usually more interested

in finding solutions than actual models.

Given an instance Θ, the all solution problem is the problem of finding the set

Θ of solutions of Θ. The consistency problem (SAT) is the problem of deciding the

existence of a model for Θ. Finally, the minimality problem (MIN) is the problem

of deciding the minimality of Θ; an instance is said to be minimal if it holds that

all of its strict sub-instances Θ′ give rise to a strict subset of solutions, that is, if

Θ′ ⊂ Θ. Since SAT is polynomially equivalent to MIN [192], researchers mostly

focused on SAT when trying to prove the tractability (or intractability) of a certain

relation algebra or of one of its fragments. For this reason, we say that a fragment

S ⊆ A is tractable if and only if SAT(S) is tractable.

For many temporal algebras, including IA and BA, the consistency problem

for an instance is in NP because there exists a simple non-deterministic algorithm

that solves it, which, given Θ = (V, E), guesses the relative position of 2 · |V |

points and checks if every constraint is respected, and it is hard for NP [192, 168];

on the practical side, these kind of problems are often solved via popular heuristics

such as constraint propagation and local consistency. An instance Θ is said to be
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k-consistent if, given any consistent realization of k − 1 variables, there exists an

instantiation of any k-th variable such that the constraints between the subset of

k variables can be satisfied together; it is said to be strongly k-consistent if it is

k′-consistent for every k′ ≤ k [139], and if an instance is strongly k-consistent, then

it must also have minimal labels. Because of the nature of temporal algebras, their

instances are always 1-consistent (node consistent) and 2-consistent (arc consistent),

by definition. Enforcing path consistency, that is, 3-consistency corresponds to

apply the following simple algorithm (Path Consistency [139, 150]): for every triple

(s, t, z) of variables in Θ = (V, E) such that sRt, sR1z, tR2z ∈ E, replace sRt by

s(R ∩ (R1 ⋄ R2))t. Clearly, if enforcing path consistency results in at least one

empty constraint, Θ is not consistent. In general enforcing path consistency (in

fact, k-consistency for any constant k) does not imply consistency; if consistency

can be decided by Path Consistency, then we say that it is PC-tractable.

The tractability by Path Consistency is interesting on its own due to the

high popularity of this algorithm, and due to the possibility of employing a PC-

tractable fragment within the classic backtracking algorithm as a speed-up heuristic

in a natural way. A necessary condition for Path Consistency to be used on

instances whose constraints belong to a fragment S is that S itself is closed under

converse, intersection, and at least strong composition. Tractability of fragments is

usually studied starting by their generators; in the classical literature, where weak

composition is generally used, such a strategy is based on the fact that SAT(S)

and SAT(S) are polynomially equivalent when ⊤,≡ ∈ S [154]. In some cases,

such as in branching temporal algebras, we encounter fragments which are only

closed under strong composition and such that ⊤ /∈ S; interestingly enough, the

same strategy works in these cases as well, that is, SAT(Ŝ) and SAT(S) are also

polynomially equivalent.

Theorem 4.1.1. For a fragment S ⊆ A, SAT(Ŝ) and SAT(S) are polynomially

equivalent.

Proof. The left to right implication is trivial, since S ⊆ Ŝ. For the other direction,

we can proceed as in the weak case: it is always possible to replace any relation of

the kind X (R⌣) Y with Y (R) X, and any relation of the kind X (•(R, S, T )) Y

with X (R) Z, Z (S) Y and X (T ) Y , where Z is a new variable. By applying these

transformations up to |A| times every Ŝ-relation is converted into a S-relation.

4.2 Applying Branching Algebra

Planning with Alternatives

The use of IA, and in particular of IA-networks of constraints, to model planning

problems is ubiquitous in the literature (see, e.g. [143, 152, 197]). A typical
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modelling exercise involves a set of tasks to be executed for a goal to be reached.

Plans modelled with linear time, however, allow no margin for error: once the plan

is in place, every task must be executed in a precise way. Using branching time,

we can develop plans that have alternative routes that can be taken in case some

action fails, or more in general, plans that already consider different outcomes.

Let us consider the case of an automated (smart) home. In this example there

are a number of actions to be planned at the beginning of the week, subject to

several constraints, some of which may depend on the weather. We model both the

action of forecast reading and its possible outcomes rain and dry as tasks, forcing

both of them to take place in the future of the action of reading the forecast,

and to be incomparable to each other; they are incomparable, and not just non-

overlapping, because they are interpreted as information that hold on the entire

week. In this way, we make sure that the planning agent returns a plan, if it

exists, with both alternatives, each characterized by the fact that it will be raining

sometimes during the week or the weather will be dry during the whole week; such

a plan is not (only) dynamic: rather, it is an account of all actions that will be

taken in each case, and, as such, can be further processed if necessary (e.g., we

can compute the total energetic cost in each case and make sure that it is within

the established limits). The actions that one may want to plan include: lawn

mowing and lawn watering (in case of no rain), dishwasher activation, washing

machine activation, rooms ventilation (in case of no rain), rooms warming (in case

of rain). Typical constraints include that dishwashing, laundry, and lawn mowing

are never overlapping (because the instantaneous energy consumption may be too

high), and that lawn mowing occurs, if at all, always before watering. A network

that includes all constraints can be seen in Figure 4.5.

Automatic Generation of Narrative

Generation of narrative is a modern application of artificial intelligence, specifically

of natural language processing [189]. While the classical applications of automat-

ically generated narratives include weather reports, instructions, descriptions of

museum artifacts, narratives can be also used as the basis of automatic storytelling

and plot generation [176]. Many modern and classic science-fiction stories, movies,

and even video games make substantial use of parallel, incomparable timelines.

To keep an adequate cause-effect consistency, however, in presence of non-trivial

literary escamotage (e.g., time travel), modelling the basic elements with BA may

be a solution. The generated narrative can be checked for consistency to ensure

that, while possibly non-linear, it is internally coherent.
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Figure 4.5: Smart home example.

Verification of Parallel Programs

Some techniques for program verification make use of IA (see, e.g. [179]). Verifying

parallel programs is a challenging task [54] which may take advantage from a

branching interval algebra such as BA, in which the typical fork constructs can

be modelled in a natural way. Consistency, in this case, can be interpreted as the

absence of temporal contradictions in the executions of subroutines. One might

think that IA already has the necessary relations to model a problem in which

several processes execute on a parallel architecture.

One might think that IA already has the expressiveness to model a problem

in which several processes run on a parallel architecture, but this is not the case.

Let p1 and p2 be two concurrent processes, if p1 overlaps p2 it means that the two

processes, at some point, are running at the same time. The same can be said for

other relations such as: during, starts, finishes, equals. IA relations are excellent

for modelling processes that at some point must execute simultaneously, perhaps

because they must communicate with each other. In IA, on the other hand, we

have no possibility of modelling two or more processes that could execute at the

same time but have no constraints between them. Processes of this type could

also be executed on different processors. The latter case is instead easily modelled

in BA with the unrelated relation.
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4.3 Tractability in Qualitative Algebras: the State

of the Art

In this section we will briefly recap the main tractability results in the context

of the PA, IA, BPA and BA.

4.3.1 Linear Point and Interval Algebras

In [192], the authors show that SAT(IA) is NP-complete, and introduce the

concept of convex (or continuous) relations in the point algebra. A relation R

is convex if, given the instance Θ = {XRY } and two models Θ̂1, Θ̂2 such that

Θ̂1(X) < Θ̂2(X), it is the case that all the interpretations Θ̂i such that Θ̂1(X) <

Θ̂i(X) < Θ̂2(X) are also models for Θ. For example, the PA relations {>} and

{≤} are convex, while {<, >} is not.

By leveraging the properties of such relations, it is possible to prove that the

Path Consistency algorithm decides MIN(PAconvex), where PAconvex is the weak

subalgebra of the PA that only contains convex relations. Since deciding MIN

implies deciding SAT, the tractability (and PC-tractability) of PAconvex follows.

This result can be immediately extended to the convex fragment of the IA, that is,

IAconvex, which is the weak subalgebra of the IA that only contains relations whose

point-mappings are relations in PAconvex. In [191], this analysis was extended to

the whole PA, and it was shown that SAT is still PC-tractable for it, which, in turn,

entails the PC-tractability of the consistency problem of IApoint, which is clearly an

extension of IAconvex. However, MIN(PA) is no longer PC-tractable (it is, however,

decided by a, still polynomial, generalization of the Path Consistency algorithm).

In [154], Nebel and Bürckert define an ad-hoc Horn ontology called ORD,

together with a particular kind of clauses, called ORD, and show that every IA

relation can be represented by a set of such clauses.

An ORD clause only contains conjunctions of literals of the form:

x = y, x ≤ y, x 6= y

it does not contain negations of atoms of the form x ≤ y (denoted by �). Note

that x < y can be written as x ≤ y ∧ x 6= y.

Definition 4.3.1 (ORD theory). ORD is an order theory with the following

axioms:

• ∀x : (x ≤ x) (reflexivity)

• ∀x, y : (x ≤ y) ∧ (y ≤ x)⇒ (x = y) (anti-symmetry)

• ∀x, y, z : (x ≤ y) ∧ (y ≤ z)⇒ (x ≤ z) (transitivity)

• ∀x, y : (x = y)⇒ (x ≤ y) (left weakening)

• ∀x, y : (x = y)⇒ (y ≤ x) (right weakening)
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Then, they defined IAHorn as the set of relations which can be represented

using only ORD clauses that also in Horn form, called ORD-Horn clauses. A

clause (i.e., a disjunction of literals) is called a Horn clause if it contains at most

one positive literal. IAHorn is also PC-tractable, since Path Consistency in IA

is shown to be equivalent to Positive Unit Resolution (PUR), which is refutation

complete for Horn theories [103].

Definition 4.3.2 (Positive Unit Resolution PUR). Resolution is a logical inference

rule that from two clauses containing complementary literals produces a new clause

containing all the literals of the two original clauses except the two complements

with the following scheme:

(p1 ∨ · · · ∨ pn ∨ q) ∧ (r1 ∨ · · · ∨ rm ∨ ¬q) |= (p1 ∨ · · · ∨ pn ∨ r1 ∨ · · · ∨ rm)

Unit resolution restricts one of the two involved clauses to be a unit clause (a

clause composed of only one literal).

Positive Unit Resolution PUR, requires for the unit clause to be positive (i.e.,

a positive literal).

IAHorn, which extends IApoint, is also a maximal tractable subalgebra, and

the only one that includes IAbasic.

While for both IAHorn and IApoint one needs stronger algorithms to prove

minimality, there are a couple of subsets of IAHorn [35, 7], quite bigger than

IAconvex, for which Path Consistency is still sufficient to decide MIN. An alternative

proof for the tractability of the IAHorn fragment was given by Ligozat [134] while

studying k-interval algebras over total orders (kIA) [133] (in kIA, intervals have

k endpoints, so PA = 1IA and IA = 2IA). A further step in delineating the

border of tractability in the IA was done in [62], where the authors introduce the

concept of acyclic relations, i.e. relations that can never be satisfied in a cycle, like

{b}, {m}, {bi, oi}, . . .. Building on this notion, they find 21 PC-tractable subalge-

bras, nine of which, called A1, . . . ,A4, B1, . . . ,B4 and IA≡, are also maximal. In

particular, the IA≡ is the set of relations that contains equality (IA≡ = {R |

{e} ⊆ R}). Clearly, this fragment is polynomially satisfiable by assigning {e} to

all relations. The remaining 12 subalgebras were soon extended and merged into

eight so-called starting-point and ending-point algebras [63] (denoted S1, . . . ,S3,

E1, . . . , E3 and S∗, E∗), which are all maximally tractable, but not PC-tractable.

All of the 18 maximal algebras mentioned so far were proven to be maximal by

exhaustively generating all their possible extensions and showing that they always

ended up containing one of the following small intractable fragments [63]:
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N1 = {{b, di, fi, m, o}, {b, d, m, o, s}, {d, di, fi, oi, si}}

N2 = {{b, di, fi, m, o}, {b, d, m, o, s}, {di, fi, o, oi, si}}

N3 = {{b, bi}, {o, oi}}

N4 = {{b, bi}, {m, mi, o, oi}}

N5 = {{m, mi}, {b, bi, f, fi, s, si}}

N6 = {{b, bi, m, mi}, {o, oi}}

As we have observed in the previous section, the above classification is only

exhaustive for weak subalgebras. One example of the non-triviality of this question

is the fragment ∆1, described in [94], which is not contained in any of the above

fragments and, yet, whose normalized consistency is tractable.

4.3.2 Branching Point and Interval Algebras

The tractability of the BPA was already proven by Hirsh [105] as part of a broader

study of algebraic logic, but a further step is done in [44], where Broxvall studies the

computational properties of the disjunctive BPA, which extends the standard BPA

by allowing an arbitrary number of disjunctions between constraints. Formally,

given a (conjunctive) algebra A and two fragments S1,S2 ⊆ A, we can build a

disjunctive set S1
×
∨ S2 which contains the binary disjunctions of the relations in

S1 and S2. A fragment can be combined with itself, and we have that S1 = S

while Si = Si−1 ×
∨ S. In particular, the set S∗ =

⋃∞
i=0 S

i, allows an arbitrary

number of disjunctions in its relations. Disjunctive fragments of point algebras are

interesting for us because we can use them to represent the point-mapping of the

corresponding interval fragments. In the linear setting, for example, IAHorn can be

translated to a certain disjunctive fragment of PA∗ (although, to our knowledge,

this relationship has not been studied in the linear case); in fact it is intuitive to

see that any relation in kIA, for some fixed k, can be translated into an equivalent

set of relations over PA∗, while the converse is not true in general, and therefore,

for a fixed topology, disjunctive point algebras offer more expressive power than

k-interval algebras. There are exactly five maximal tractable subalgebras of BPA∗,

which can be obtained by combining the sets defined in Tab. 4.3:

TA = ΓA TB = ΓB

×
∨∆∗

B TC = ∆∗
C

TD = ΓD

×
∨∆∗

D TE = ΓE

×
∨∆∗

E .

For what concerns the BA, on the other hand, until recently, the only fragment

that was known to be tractable (and in particular PC-tractable) was BAbasic [168].

Moreover, the authors also state that BApoint is intractable, but one can already

see that this cannot be the case.
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ΓA ΓB ∆B ∆C ΓD ∆D ΓE ∆E

< X X X
≤ X X X X
≶ X X X X
⋚ X X X X X
‖ X X X X

=‖ X X X X
= X X X X X
6= X X X X X X X
<‖ X X X X
≤‖ X X X X
⊤ X X X X X X X X

Table 4.3: Broxvall’s basic tractable fragments. For compactness, converse relations
are not shown but are implied to be included whenever the direct relation is included.

4.4 Tractability in the Branching Interval Alge-

bra

In this section we discuss our findings regarding the tractability and the PC-

tractability of fragments of the BA.

4.4.1 The Convex Fragment

As recalled in the previous sections, the convex fragment of the PA can be eas-

ily enumerated:

PAconvex = {{=}, {<},≤,≥, {>},⊤}.

It can be easily checked that PAconvex is a weak subalgebra of the PA, the only

missing relation from PA being {<, >}. We can extend PAconvex to the branching

case, and define the convex branching point fragment as the set:

BPAconvex = {{=}, {<},≤,≥, {>}, {‖},⊤PA}.

The set BPAconvex is closed under under converse, intersection and strong com-

position, but, unfortunately, not under weak composition; for example, {‖} ⋄ {‖}=

⊤. Thus, BPAconvex is a strong subalgebra of the BPA. BPAconvex is naturally

associated with its branching interval version:

BAconvex = {R | R ∈ BA ∧ ξ(R) ∈ BPAconvex}

Clearly, BAconvex inherits from BPAconvex its closure properties, and it is there-

fore closed under strong, but not weak, composition. As we have recalled, in
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the linear setting, both in the point-based and the interval-based ontology, both

minimality and consistency are solved by Path Consistency. As we shall see, this

happens in the branching setting as well.

Theorem 4.4.1. The Path Consistency algorithm decides both MIN(PAconvex) and

MIN(BPAconvex), and therefore both SAT(PAconvex) and SAT(BPAconvex). As a

consequence, BPAconvex is tractable.

Proof. Let Θ be an BAconvex-instance and let Θ′ be the BPAconvex-instance that

results from translating Θ into the language of endpoints. We assume that Path

Consistency has been forced on Θ, and we want to show that Θ is strongly k-

consistent for every k; since a strongly k-consistent instance must have minimal

labels, we have the result. Let us proceed by induction. As base case, we know

that Θ is k-consistent for k ≤ 3. As for the inductive case, we suppose now that

Θ is k − 1-consistent and we prove that it is also k-consistent. Consider a subset

S = {X1, . . . , Xk−1} of k−1 interval variables in Θ. Let us call Θk−1 the projection

of Θ restricted to the variables in S and the constraints among them, and let

us call Θ′
k−1 the corresponding BPAconvex-instance, whose variables are precisely

the 2 · (k − 1) endpoints of X1, . . . , Xk−1. Our strategy can be summarized as

follows: since Nk−1 is consistent by hypothesis, Mk−1 must be consistent as well,

that is, it must be realized in a branching model Tk−1; if we pick the point variables

corresponding to the endpoints of any k-th interval variable and accommodate

them in a branching model Tk showing that every constraint is respected, then we

obtain a model for k interval variables, proving that Nk is also consistent. Let

X be any interval variable in Θ different from X1, . . . , Xk−1, and let XRiXi the

BAconvex-relation between the variables X and Xi, for each i. Let Mk be the

BPAconvex-network obtained by adding to Θ′
k−1 the point variables X−, X+, the

constraint X− < X+, and every constraint between the endpoints of X and the

endpoints of X1, . . . , Xk−1 that results from translating the constraints of the type

XRiXi. On Tk−1 we can identify the set R = {p1, . . . , pn} with the following

characteristics: for each i, pi is the realization of some point variable y in Θ′
k−1

(that is, pi is the realization of some endpoint of the interval variables X1, . . . , Xk−1)

and that, for every point variable y ∈ Θ′
k−1, realized in some point p ∈ Tk−1, it is

not the case that p < pi. Indeed, consider the branching model Tk−1: since it is a

tree, it may be the case that, in order to realize two variables that are constrained

to be incomparable to each other, a greatest common predecessor must be added;

therefore, if projected to the points that realize some point variable in Θk−1, Tk−1 is

a forest of trees, rather than a tree. Every point in R is the root of one of the trees

in Tk−1; let us call q their greatest common predecessor. Now, let x1, . . . , xm be the

point variables that have been realized in p1, . . . pn (observe that n ≤ m ≤ k − 1:

two variables may have been realized in the same root, and m cannot exceed the

number of intervals k − 1 because the rightmost endpoint of each interval cannot
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be a root). We want to show, first, that the point variable X− can be successfully

realized on Tk−1, and we proceed case by case.

• Suppose, first, that (xl, X−) = {‖} for every point variable xl realized in

some root. In this case, we realize X− with a new point p such that p ‖ pi

for each root pi, and that q < a. To prove that this is a consistent choice,

consider any point variable y of Mk−1 realized at some point s ≥ pi for some

root pi. Suppose that pi is the realization of some point variable xl, which

means that (y, xl) ⊆ ⊤PA. If < ∈ (y, xl), then (y, xl) ◦ (xl, X−) = {<, ‖}. By

intersection with BAconvex, then either (y, X−) = {<} or (y, X−) = {‖}; in

the first case, however, we obtain, by path consistency, that (X−, xl) ∈ ⊤PA,

which is a contradiction. Therefore, (y, X−) = {‖}. If, on the other hand,

< /∈ (y, xl), then, (y, xl) ⊆ {>, =}, and, since {>, =} ◦ {‖} = {‖}, it must be

the case that (y, X−) = {‖}.

• Suppose, now, that (xl, X−) ⊆ ⊤PA for some point variable xl realized in

some root pi. Observe, first, that if (X−, xl) = {<}, then we can select

the subset R′ ⊆ R such that, for each x′
l ∈ R

′, we have (X−, x′
l) = {<};

in this case, by the argument in the above case, for each x′′
l ∈ R \ R

′,

we have (X−, x′
l) = {‖}. Consider each pj that is the realization of some

variable in R′: we realize X− in a point p > q, such that p is less than every

such pj, and incomparable with every other root in R \ R′. If, otherwise,

(X−, xl) ⊆ {>, =}, then, for each x′
l realized in some root pj 6= pi, we must

have (X−, x′
l) = {‖}. In this case, we can say that pi is the root of the tree

in which we have to realize X−; let us call it Tpi
. Observe that, by the same

argument as in the above case, wherever we realize X− in Tpi
, this realization

is consistent with any point that belongs to some Tpj
with pj 6= pi. Now, we

consider the point s ∈ Tpi
which is the least point (greater than or equal to

pi) with at least two immediate successors s1, s2 such that s1 ‖ s2, if it exists.

We have the following cases.

– Suppose that s does not exist. This means that Tpi
is linearly ordered.

Let s′ be the least point (greater than pi), such that is the realization

of some variable y such that (y, X−) = {‖}. If there is no such s′, then,

by Theorem 4.4.1, we can find a realization for X− consistent with Tpi
;

since we already know that such a realization is consistent with every

other tree, we conclude that it is consistent. If s′ exists, then we realize

X− in a point p such that p ‖ s′ and that p > t where t is the immediate

predecessor of s′. By the argument used in the first case, this choice

must be consistent with Tpi
, and therefore it must be consistent.
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– Suppose, now, that b exists. If y is realized in b, and {<, =, ‖}∩(X−, y) 6=

∅, then we proceed as in the previous case. f, on the other hand,

(X−, y) = {>}, we have the following two cases. First, if < ∈ (X−, y) for

every yj realized in some point sj such that sj is immediate successor of

s, then realize X− in a point p such that s < p and that p < sj for every

immediate successor sj of s, which must be a consistent choice, given

that, by path consistency, the relation between X− and every variable

realized in a point greater than s must contain <. If, for some immediate

successor sj of s, which is the realization of some variable y, it is the

case that < /∈ (X−, y), then we can treat every immediate successor sj

of s as the root of some sub-tree of Tpi
, and therefore we can apply the

same entire argument, recursively.

Having realized the variable X−, the network Θ′
k−1 enriched with X− (and all

relative constraints) must be consistent. By reapplying the entire argument, we

can show that any other point variable can be consistently realized in the resulting

network; if we choose X+ among these, we prove that the original network Θ is, in

fact k-consistent, completing the induction.

The set BPAconvex is not maximal with respect to (PC-)tractability. It is,

however, maximal with respect to Path Consistency being able to decide MIN

for it. Let R 6= ∅ be any BPA-relation not included in BPAconvex. We say that

BPAconvex∪{R} is strongly non-convex if there exists a path consistent BPAconvex∪

{R}-network with non-minimal labels, and that it is weakly non-convex if there

exists a BPAconvex ∪ {R}-network in which minimal labels cannot be forced by

path consistency. The difference between the above two definitions is subtle. In

the first case, the counterexample is a network N over which path consistency has

been forced, but some labels are not minimal. In the second case, it is a network

N over which path consistency has not been forced yet, and such that forcing its

path consistency results in a new network N ′, which is path consistent but with

some non-minimal label. Observe, now, that proving that a certain extension of

BPAconvex is weakly non-convex is sufficient to prove that our method cannot be

applied on it. Thus, we say that BPAconvex is weakly maximal.

Theorem 4.4.2. Let R 6= ∅ be any BPA-relation not included in BPAconvex. Then

BPAconvex ∪ {R} is weakly non-convex.

Proof. We have proved this result in a computer-assisted way. For each R ∈ BPA

such that R 6= ∅, we have systematically generated all 4-node networks, searching

for a witness of strong non-convexity. After such a systematic exploration, we have

found three witnesses of strong non-convexity, namely for the relations {<, >},

{<, ‖}, and {=, ‖}; no witness for the relation {>, ‖} is needed, as it is the inverse

of a relation for which a witness is already known. Then, for the remaining cases, we
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have adapted the already found witnesses to become counterexamples for the weak

non-convexity of the remaining extensions of BPAconvex, completing the proof.

Consider, first, N1 (Fig. 4.6), which contains constraints from the set BPAconvex

∪ {<, >}. Clearly, N1 is path consistent; but, as it can be easily checked, its labels

are not minimal, and, in particular, the constraint x1 = x3 cannot be realized. As

a matter of fact, if we instantiate x1, x2, x3 and x4 with the points p, q, s and t,

respectively, then we observe immediately that they cannot be all equal (because

of the constraint between x2 and x4). So, if p = q, then either q < p, s or t > p, q.

In the first case, the constraint x1{>, =}x2 cannot be satisfied; in the second case,

x1{>, =}x2 cannot be satisfied. So, N1 has non-minimal labels.

Now, consider the network N2 (Figure 4.6), which contains constraints from

the set BPAconvex ∪ {<, ‖} and, as before, is path consistent. The only consistent

realization for x1, x2, x3, x4 is with points p, q, s, t, respectively, on a linear model;

otherwise, the constraints that start at x1 could not be satisfied. But the assignment

p = q cannot be extended to any assignment that satisfies all constraints: in fact,

we must have q > s, s > t, and t > q, which is impossible. So, N2 does not have

minimal labels.

Finally, consider the network N3 (Figure 4.6), which contains constraints from

the set BPAconvex ∪ {=, ‖}, and is path consistent. In this case, again, every

consistent assignment of the variables x1, x2, x3, x4 to the points p, q, s, t is such

that all points lay on the same linear model, which makes the constraint x1{=, ‖}x2

non minimal, as it cannot be that p ‖ q.

Now, we prove that BPAconvex ∪ {<, >, ‖} is weakly non-convex by observing

the network N4 (Figure 4.7). Applying Path Consistency to N4 implies that

x2{<, >, ‖}x4 becomes x2{<, >}x4. The resulting network is in fact symmetric

to the network N1, for which we have already shown that it does not have minimal

labels. So, N4 is a witness for the weak non-convexity of BPAconvex ∪ {<, >, ‖}.

Similarly, BPAconvex∪{=, <, ‖} is weakly non-convex as witnessed by the network

N5 (Figure 4.8), once Path Consistency has been applied to it. As a matter of

fact, by assigning x1, x2, x3, x4 to p, q, s, t, respectively, p < t cannot be satisfied: if

q = p, then the constraint x2{=, >, ‖}x4 is violated, and if q ‖ p, t, then the pair

of constraints x2{=, >}x3 and x3{=, <}x4 cannot be satisfied together.

Finally, as for the weak non-convexity of BPAconvex∪{⊤}, consider the network

N6 in Figure 4.9. Applying Path Consistency to N6 leads to a network that,

projected to the nodes x1, x2, x3, x4, is precisely N2, which, as we have already

proved, does not have minimal labels.

A natural question, at this point, is if the convex fragment of the BA can be

extended preserving, at least, its tractability. Following the path traced for the

linear case, we introduce now the Horn fragment.
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Figure 4.6: Witnesses for the strong non-convexity of the extensions of BPAconvex with,
respectively {<, >} (N1), {<, ‖} (N2), and {=, ‖} (N3).
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{⊤} (missing edges are precisely those with the relation ⊤).

4.4.2 The Horn Fragment

In any given temporal algebra A, constraints involving basic relations can be seen

as literals over the language of the domain of A; constraints involving relations

are clauses, and instances are formulae in Conjunctive Normal Form (CNF). For

example, deciding the consistency of the instance:

Θ = {X{bi, e}Y, X{m, f}Z, Y {di}Z}

is equivalent to deciding the consistency of the formula:

Φ = (XbiY ∨XeY ) ∧ (XmZ ∨XfZ) ∧ (Y diZ) ∧ A(Θ)

where A(Θ) denotes the axioms of A instantiated to the variables in Θ. In this

sense, point-mapping provides a mean to translate any interval-literal to a point-

clause, and any interval-clause to a Disjunctive Normal Form (DNF) point-formula,

which can then be reformulated to an equivalent minimal CNF point-formula1. Let

us also denote with C, D, . . . (resp., Φ, Ψ, . . .) a generic clause (resp., set of clauses).

This approach leads to the identification, in the linear case, of the fragment IAHorn

of the IA, which is not only (PC-)tractable, but also maximally so. We now extend

it to the branching setting. In particular, we shall devise an appropriate first-order

Horn pre-theory of tree orders, called TORD, together with a language of allowed

literals, called TORD. We shall then show that a formula in the language TORD

over the theory TORD can be modelled on a tree order if and only if it is satisfiable.

Finally, by defining a mapping operator π that maps every BA relation, and in

turn any instance, to a (particular) equivalent set of TORD clauses, and selecting

those that are Horn, we shall obtain a fragment whose consistency problem can

be decided in deterministic polynomial time.

1The sets of basic/non-basic/point/interval relations are fixed, their translations are constant
in size, and can be computed in constant time by using a lookup table. Such constants are
generally in the order of the cardinality of the interval algebra.
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Definition 4.4.1. The TORD language encompasses an enumerable set of vari-

ables X, Y, . . . and the binary relations
.
= (equality), � (less or equal), ∼ (linear),

q (incomparable), and ≺q (less or incomparable).

In this context, the theory of future branching models of time cannot be (fully)

axiomatized in the standard way, because some of the necessary properties cannot

be put in form of Horn formulas (e.g., X ∼ Y as X � Y ∨Y � X). To our purposes,

however, it suffices to have models that can be extended to tree-like orderings.

Definition 4.4.2. The TORD theory is characterized by the following axioms:

∀x : (x
.
= x) (reflexivity) (4.1)

∀x, y : (x
.
= y)⇒ (x � y) ∧ (y � x) (weakening) (4.2)

∀x, y : (x � y) ∧ (y � x)⇒ (x
.
= y) (antisymmetry) (4.3)

∀x, y, z : (x � y) ∧ (y � z)⇒ (x � z) (transitivity) (4.4)

∀x, y : (x � y)⇒ (x ∼ y) ∧ (y ∼ x) (weakening) (4.5)

∀x, y : (x ∼ y)⇒ (y ∼ x) (symmetry) (4.6)

∀x, y : (x ∼ y)⇒ (x / y) (incompatibility) (4.7)

∀x, y : (x q y)⇒ (x≺q y) ∧ (y ≺q x) (weakening) (4.8)

∀x, y : (x≺q y) ∧ (y ≺q x)⇒ (x q y) (pseudo-antisymmetry) (4.9)

∀x, y : (x≺q y)⇒ (y � x) (incompatibility) (4.10)

∀x, y, z : (x q y) ∧ (y � z)⇒ (x q z) (tree-likeness) (4.11)

In the following, we denote by TORD the set of axioms 4.1-4.11; observe that

TORD is indeed a Horn theory. Moreover, as it can be easily shown, it is minimal.

We use TORD to translate the relations of BA; such a translation is correct if and

only if the resulting model can be interpreted as a future branching model of time.

It turns out that, in order to guarantee that this is possible, we need to further

limit the use of TORD in translations, and, in particular, we say that C is an

admissible clause if it uses only literals with the positive relations
.
=, �, ∼, q, ≺q,

and the negative relation 6
.
=. Observe that limiting the use of certain relations does

not decrease the (semantic) expressive power of the language, because: X � Y can

be written as Y ≺q X, X ≁ Y can be written as X q Y , X / Y can be written as

X ∼ Y and X 6≺q Y can be written as Y � X.

Admissible TORD clauses which are also Horn are denoted as TORD-Horn

clauses.

Theorem 4.4.3. Every model (M,
.
=,�,∼, q,≺q) of TORD ∪ C, where C is a set

of admissible clauses, can be represented as a branching model of time2.

2Such a translation implicitly assumes that point variables (I−, I+, . . .) are correctly related
by the relation {<} in the object language.
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Proof. Since
.
= is an equivalence relation, we can take the quotientM/ .

=, denoted

T , and equipped with the canonical equivalence =. In the following, we denote by

x, y, . . ., rather than [X]/ .
=, [Y ]/ .

=, the elements of T . We define the binary relation

≤ between classes:

x ≤ y ⇐⇒def ∃X ∈ x, Y ∈ y | X � Y

and, consequently, x < y as x ≤ y ∧ x 6= y. We want to prove that (T , <) can be

extended to a branching model of time.

• ≤ is an ordering relation. Clearly, ≤ is reflexive and antisymmetric because

so is �. Moreover, assume that x ≤ y and y ≤ z for some x, y, z. This means

that X � Y and Y ′ � Z for some X, Y, Y ′, Z such that X ∈ x, Y, Y ′ ∈ y, and

Z ∈ z. But since Y, Y ′ ∈ y, we have that Y
.
= Y ′, and by axiom 4.2 we know

that Y � Y ′. Since � is transitive, we obtain that X � Z, implying that

x ≤ z. So, ≤ is also transitive. This also implies that < is a strict pre-order,

as it is irreflexive.

• ≤ can be extended to a tree-like order. To see this, observe that tree-likeness

could be violated by having x � y, y � x, y ≤ z, and x ≤ z for some

x, y, z, but � simply cannot be generated by the set C, since it contains only

admissible clauses. Because we need to interpret every symbol of the language

of TORD, let us define the incomparable to relation between classes:

x ‖ y ⇐⇒def ∃X ∈ x, Y ∈ y | X q Y

which is irreflexive and symmetric because so is q, so it is well-defined. To

ensure that (T , <) can be extended to a tree-like ordering, we also have to

guarantee that the introduction of ‖ does not generate any contradictions.

So, suppose that x ‖ y, x ≤ z, and y ≤ t for some x, y, z, t. By definition, for

some X ∈ x and Y ∈ y we have that X q Y . Moreover, since x ≤ z, for some

X ′ ∈ x and Z ∈ z we have that X ′ � Z. But this implies, by axiom 4.2, that

X � Z. So, axiom 4.11 applies, implying that Y q Z. The same argument

can be re-applied, leading us the conclusion that Z q T . By definition, this

implies that z ‖ t. By contradiction, assume now that x ‖ y and x ≤ y for

some x, y. This means that X q Y and X ′ � Y ′ for some X, X ′ ∈ x and

Y, Y ′ ∈ y. By axioms 4.2, 4.4 and 4.5, this implies that X ∼ Y , which is in

contradiction with axiom 4.7. As a consequence of these two facts we have

that x ‖ y ⇔ (x � y ∧ y � x) is realizable in (T , <). Now, let us define the

linear to relation between classes:

x⊤PAy ⇐⇒def ∃X ∈ x, Y ∈ y | X ∼ Y

Clearly ⊤PA is reflexive and symmetric because so is ∼, so it is well-defined.

Once again, we need to make sure that introducing ⊤PA does not generate
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contradictions. So, suppose, by contradiction, that x⊤PAy and x ‖ y hold

for some x, y. This means that X ∼ Y and X ′ q Y ′ for some X, X ′ ∈ x and

Y, Y ′ ∈ y. By axiom 4.2, this implies that X q Y , which is in contradiction

with axiom 4.7. Similarly, assume that x ≤ y for some x, y (the case in which

y ≤ x or x = y are similar). This means that X � Y for some X ∈ x and

Y ∈ y. By axiom 4.5, this implies that X ∼ Y , leading us to conclude that

x⊤PAy, and, since C is admissible, x 6⊤PA y ∧ x ∦ y cannot occur. As a

consequence, we have that x⊤PAy ⇔ (x ≤ y ∨ y ≤ x∨ x = y) is realizable in

(T , <). Finally, we define the less than or incomparable to relation between

classes:

x <‖ y ⇐⇒def ∃X ∈ x, Y ∈ y | X ≺q Y

which is irreflexive and pseudo-antisymmetric because so is ≺q, so it is well-

defined. Suppose that, for some x, y it is the case that x <‖ y and y ≤ x.

This means that X ≺qY and Y ′ � X ′ for some X, X ′ ∈ x and Y, Y ′ ∈ y. But

since X, X ′ ∈ x and Y, Y ′ ∈ y, we have that X
.
= X ′ and Y

.
= Y ′, and by

axioms 4.2, 4.4 and 4.5, we know that X ∼ Y , which is in contradiction with

axiom 4.7. Moreover, since C is a set of admissible clauses, x 6<‖ y ∧ y � x

cannot occur. As a consequence, we have that x <‖ y ⇔ x < y ∨ x ‖ y is

realizable in (T , <).

In conclusion, the structure (T , <) can be extended to a branching model of time,

as we wanted.

It is important to remark that the use of an extended signature to specify the

properties of a tree-like model is justified by the need of such a specification to

be Horn. TORD-Horn clauses are expressive enough to translate a subset of BA-

relations that form an algebra, and allowing any of the forbidden symbols would

require some non-Horn axiom to ensure isomorphism. The Horn fragment of the

BA is defined as the following set:

BAHorn = {R | R ∈ BA ∧ π(R) ∈ TORD-Horn}

Theorem 4.4.4. BAHorn is closed under converse, intersection, and weak compo-

sition, therefore it is a weak subalgebra.

Proof. The proof was made by computer-assisted enumeration. The set can be

considered closed under a certain operation if however one takes the elements of

the set BAHorn and performs the operation (according to the definitions introduced

in Section 4.1) the result of the operation still belongs to the set BAHorn.

The set BAHorn consists of 4510 relations, and it extends the BAconvex fragment.

Although it covers less than 1% of the entire algebra, it is about 50 times bigger

than BAconvex. Now, we can discuss its (PC-)tractability. Let us consider an
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(I− 6
.
= J−) ∨ (I+ ∼ J+) (I− 6

.
= J−) ∨ (I+ q J+)

(I+ 6
.
= J+) ∨ (I− .

= J−) (I− 6
.
= J−) ∨ (I+ .

= J+)
(I+ 6

.
= J+) ∨ (I− � J−) (I− 6

.
= J−) ∨ (I+ � J+)

(I+ 6
.
= J+) ∨ (J− � I−) (I− 6

.
= J−) ∨ (J+ � I+)

(I+ 6
.
= J+) ∨ (I− ≺q J−) (I− 6

.
= J−) ∨ (I+ ≺q J+)

(I+ 6
.
= J+) ∨ (J− ≺q I−) (I− 6

.
= J−) ∨ (J+ ≺q I+)

(I− 6
.
= J−) ∨ (I+ 6

.
= J+)

Table 4.4: Enumeration of all the semantically different 2-literal TORD-Horn clauses.

instance Θ of BAHorn. By the above results, we know that Θ is consistent if and

only if π(Θ) ∧ TORD(Θ) is satisfiable. Now, we ask ourselves if the consistency

of Θ can also be checked by path consistency. Again, following [154], proving that

path consistency is complete for BAHorn boils down to proving that, given the path

consistent instance Θ, the empty clause cannot be derived from π(Θ)∧TORD(Θ);

to show the latter, one can restrict the attention to derivations that use positive unit

resolution, which is complete for Horn clauses [103]. Let Θ = {I1R1J1, I2R2J2, . . .}

be a path consistent instance of BAHorn. Let π(Θ) = {ϕ1, ϕ2, . . . , } be the TORD-

Horn formulae resulting by translating the BAHorn-constraints of Θ. Interestingly,

all the semantically different minimal TORD-Horn clauses are either unary or

binary; in particular the literals in the binary ones enumerated in Tab. 4.4, always

relate pairs of starting points or ending points, but never mixed pairs. In the

following we assume that each formula ϕi is explicit, that is, it explicitly contains

all consequences of every axiom of TORD, and that each clause Cj ∈ ϕi is minimal,

that is, it contains no redundant literal; a set π(Θ) in which every formula is

explicit, and every clause in every formula is minimal will be called explicit and

clause-minimal. We can now state the following theorem.

Theorem 4.4.5. Let Θ be a path consistent instance of BAHorn. If π(Θ) is explicit

and clause-minimal, the empty clause cannot be obtained from π(Θ) ∧ TORD(Θ)

by positive unit resolution.

Proof. We prove a stronger claim, that is, we prove that if Θ is a path consistent in-

stance of BAHorn, and π(Θ) is explicit and clause-minimal, then no new unit clause

can be deduced by positive unit resolution from π(Θ) ∧ TORD(Θ). As a matter

of fact, to deduce a new unit clause, it must be the case that π(Θ) ∧ TORD(Θ)

contains one clause C = ¬l1 ∨ ¬l2 ∨ . . . ∨ ¬lq ∨ l, where l1, l2, . . . are propositional

atoms, and a set of positive unit clauses C = {C1 = l1, C2 = l2, . . . , Cq = lq}, but

does not contain the clause D = l. Moreover, it must also be the case that q ≤ 2, as

we have observed that clauses of π(Θ) are at most binary, and instances of axioms

are at most ternary. We proceed by case analysis.
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• Suppose, first, that C ∈ π(Θ). If C ⊆ π(Θ), its clauses must talk about the

endpoints of different interval variables, otherwise no resolution step could

be applied. Since any interval relation can be translated with clauses of the

kind C = (X · Y ∨ X 6
.
= Y ) and C = {(X

.
= Y )} (since C is a Horn clause,

· is positive). But, · /∈ {
.
=,�,∼}, otherwise π(Θ) would not be explicit,

and · /∈ {q,≺q}, otherwise π(Θ) would not be clause-minimal. Therefore, if

C ⊆ π(Θ) we cannot derive anything new. Clearly C * TORD(Θ), since the

only unitary axiom is the reflexivity axiom, from which we cannot derive new

clauses.

• Suppose, then, that C is an instance of the transitivity axiom. As before,

C * TORD(Θ), so suppose that C ⊆ π(Θ). To resolve a new clause from

the transitivity axiom, it must be the case that C = {(X � Y ), (Y �

Z)}. If the clauses in C talk about the endpoints of a single interval, then

(Y � Z) ∈ π(Θ) because of the explicitness assumption. So, it must be

the case that C1 belongs to the translation of some constraint I(R1)J , and

C2 belongs to the translation of some constraint J(R2)K. Since Θ is path

consistent, the constraint I(R3)K exists, and π(Θ) contains its translation.

Since (i) R3 ⊆ R1 ⋄R2, (ii) weak composition computes the strongest implied

relation given two intervals (or points), and (iii) (X � Z) would be resolved

solely from C and C, it must be the case that (X � Z) ∈ π(Θ), so, also in

this case, no new deduction can be performed.

• Assume, therefore, that C is an instance of the tree-likeness axiom, we apply

a similar reasoning as before. Again, C * TORD(Θ), so it must be a subset

of π(Θ). To resolve a new clause from the tree-likeness axiom, it must

be the case that C = {(X q Y ), (Y � Z)}. The clauses in C cannot talk

about the endpoints of a single interval, because otherwise there would be an

inconsistency. So, it must be the case that C1 belongs to the translation of

some constraint I(R1)J , and C2 belongs to the translation of some constraint

J(R2)K. Since Θ is path consistent, the constraint I(R3)K exists, and

π(Θ) contains its translation. Again, because (i R3 ⊆ R1 ⋄ R2, (ii weak

composition computes the strongest implied relation given two intervals (or

points), and (iii (X � Z) would be resolved solely from C and C, it must be

the case that (X q Z) ∈ π(Θ), and again, no new clause can be resolved.

• Finally, suppose that C is an instance of some other axiom. C cannot be an

instance of the reflexivity axiom because it would only resolve itself. If C is

an instance of some antisymmetry axiom, then both C1 and C2 must refer

to the same two endpoints as C, that is, they must belong to the translation

of the same constraint I(R)J ; but since π(Θ) is explicit, the resulting clause

must already be included. If C is the instance of some weakening axiom, or
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the instance of some incompatibility axiom, then C1 must refer to the same

two endpoints as C, and again, the same argument applies.

Therefore, we can conclude that no deduction can be performed by positive unit

resolution on the translation of a path consistent instance; in particular, the empty

clause cannot be derived.

Corollary 4.4.6. Path Consistency decides SAT(BAHorn).

Thus, BAHorn is a weak PC-tractable subalgebra of the BA that extends

BAconvex. It would be natural, at this point, to discuss the maximality of BAHorn.

To this end, recall the IA fragments N1,...,6 of [63] introduced in Section 4.3.1,

which imply the hardness for NP of the consistency problem for a weak subalgebra

of the IA that contains any of them. A fragment of the BA that contains one of

the Ni cannot be immediately shown to be intractable with the same reasoning;

however, this becomes possible if such a fragment also includes the relation ⊤IA.

It so happens that every weak extension of BAHorn is either BA or contains some

of the sets Ni and the relation ⊤IA, and it is therefore intractable.

Theorem 4.4.7. BAHorn is a maximal tractable weak subalgebra of the BA.

Proof. By computer-assisted enumeration.

The question we pose now is whether BAHorn is unique, or there are more

fragments of the BA with similar properties.

4.4.3 The Disjunctive Pointisable Fragments

We have already seen how disjunctive point relations can be used to represent

interval relations in an alternative way. While for the BAHorn fragment we had

to build an ad-hoc Horn ontology to prove its tractability, in this section we will

exploit Broxvall’s tractable fragments TA,...,E of the BPA∗ (see Section 4.3.2 to

obtain new tractable fragments in the BA. Since some fragments S ⊆ BPA∗ are

infinite, to construct the corresponding BA fragment ξ−1(S), we consider only the

set S ′ = {r | r ∈ S ∧ |r| ≤ 4}, because any BA relation can be represented as a

disjunction of at most four BPA relations. First, notice how the two algebras TC

and TD can be immediately excluded from our analysis since they do not contain

the relation <, which is needed to express I− < I+. Also, it is the case that

BAHorn = C(ξ−1(TE)): this equivalence, which is also an alternative way to show

the tractability of BAHorn (but not to show its PC-tractability), becomes clear when

comparing the point relations that build TE (see Tab. 4.3) and our definition of

allowed TORD clause. By applying the inverse point mapping on TA = BPA, one

obtains, as expected, the pointisable fragment BApoint. Finally, by applying this

mapping to TB, we get another fragment, which we denote as the linear fragment
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Figure 4.10: A path-consistent, but not consistent, instance of BApoint.

of the BA (BAlin) since all the point relations contained in TB are linear, with the

exception of 6=, notice in particular that BAlin 6= IA.

Theorem 4.4.8. The fragments BApoint and BAlin are tractable weak subalgebras

of the BA.

Proof. As we know, BApoint and BAlin are the sets of the relations that can be

point-mapped to, respectively, TA and TB. Since ξ operates in constant time, we

can transform any instance of BApoint and BAlin in polynomial time to an equivalent

instance of, respectively, TA and TB.

The tractability of BApoint and BAlin clearly does not imply their PC-tractability.

In particular, it is possible to prove the following result.

Theorem 4.4.9. BApoint is not PC-tractable.

Proof. The fact that Path Consistency is incomplete for checking the consistency

of instances of BApoint can be shown by proving the existence of at least one

inconsistent, but PC-consistent, instance. One such example is given in Figure 4.10.

Whether BAlin instances can be checked by Path Consistency or not is an open

problem; extensive search for counterexamples gave negative results. Just as we

have only a partial picture of the PC-tractability of disjunctive fragments, we have

only a partial picture of their maximality. By computer enumeration it can be

shown that there are precisely five supersets of BApoint and nine supersets of BAlin

whose tractability is unknown.

Every extension of BApoint (resp. BAlin) is either intractable or belongs to the

extension graph shown in Figure 4.11 (resp. Figure 4.12).



4. Branching Interval Algebra 97

P

P3P2P1 P4 P5

Figure 4.11: Extension graph of BApoint (denoted, here, by P).

L

L3 L4L2L1 L5 L6

L2,3 L2,4 L4,5

Figure 4.12: Extension graph of BAlin (denoted, here, by L).

Definition 4.4.3 (Extension graph). Given a relation algebra A, we call extension

graph of a fragment S ⊆ A a directed graph G = (V, E) that represents the set of

the least generated subalgebras obtained by extending S with some relation R /∈ S:

vertices represent subalgebras, and edges indicate that one set can be extended into

another, and can be labelled with the relation R. An extensions graph is called

interesting if its (in)tractability is not trivial.

It is possible to verify the following. While in the case of BApoint such supersets

form a chain w.r.t. set containment, in the case of BAlin the situation is more

complex, with six supersets that form three chains, and three supersets formed

by combinations of other supersets. Since tractability is inherited by subsets, and

intractability is inherited by supersets, proving the intractability of, say, P1 would

imply that also P2,...,5 are intractable, and therefore BApoint is maximal, while

proving the tractability of, say, L6 would mean that it is also maximal, since all

its extension contain at least one of the intractable sets N1,...,6.
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4.5 Experiments

We experimentally evaluate the usefulness of BAconvex and BAHorn fragments as a

heuristic for checking the consistency of a BA-network.

4.5.1 Consistency of Temporal Constraint Network

Practical algorithms for approaching NP-complete problems often use backtrack-

ing algorithms based on constraint propagation. We designed a simple algorithm

based on encoding the temporal network into a CSP using the classical approach

by Condotta et al. [51]. Given a BA-network N = (V, E), its dual CSP is a

triple P = 〈V,D, C〉, where:

(i) the set V contains a variable νXY for each pair of variables X, Y in V ;

(ii) the set D contains a domain DXY for each variable νXY , and

(iii) C contains a binary constraint inverse(νXY , νY X) for each pair of nodes

X, Y ∈ V , satisfied by all pairs (r, r−1), where r ∈ BAbasic, and a ternary

constraint composition(νXY , νY Z , νXZ) for each triple of nodes X, Y, Z ∈ V ,

which encodes the composition table and is satisfied by all triples (r1, r2, r3) ∈

BA3
basic such that r3 ∈ r2 ◦ r1.

As noted by Condotta et al. [51], enforcing (generalized) arc consistency on the

problem P is equivalent to enforcing path consistency on the original BA-network.

Since, as we know, both path consistency and (generalized) arc consistency are

incomplete algorithms for general BA-networks, a backtracking search is applied,

and to each node of the search tree, (generalized) arc consistency is enforced.

Algorithm 7 sketches the generic schema of a backtracking algorithm to decide

consistency of a network (see [153]). In Algorithm 7, the family of sets Split plays a

key role. When solving the general CSP, without exploiting any tractable fragment

of the BA, Split can be thought of as containing all singletons, each one of them

corresponding to a single BAbasic-relation. Therefore, the technique to solve a

problem P consists of simply choosing a variable, substituting its domain with one

of its components creating a new problem P ′, and recursively solving P ′. This

algorithm is correct because the search terminates with a node with basic relations

only, for which path consistency is a complete method. When a bigger fragment for

which enforcing path consistency is known to be complete for consistency, we can

exploit it by setting Split to be the family of its relations; in such a case Algorithm 7

stops the search even if the domain of some of the CSP variables is not a singleton,

obtaining, de facto, a smaller branching factor of the search tree.

In order to minimize the branching factor, among the (possibly many) ways

to partition a domain, it makes sense to choose one with minimal cardinality.

Unfortunately, establishing if a set can be partitioned into smaller sets taken from
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Algorithm 7 Backtracking algorithm for deciding consistency of temporal con-
straint network

1: function Consistent(P, Split)
2: enforce generalized arc consistency on P

3: if there is a variable νXY such that DXY = ∅ then
4: return false

5: choose an unprocessed variable νXY such that DXY /∈ Split
6: if there is no such variable then
7: return true
8: {D1, . . . , Dp}=Partition(DXY , Split)
9: for all Di ∈ {D1, . . . , Dp} do

10: P ′ = PDXY /Di

11: if Consistent(P ′, Split) then
12: return true
13: return false

some family of sets is an instance of the set partitioning problem, which is NP-

complete on its own (if we consider the size of the set of base relations as variable);

this step is encoded into a function Partition(D, Split) at line 8. Since this

problem should be solved in every node of the search tree, a quick implementation

is mandatory to obtain reasonable efficiency, possibly at the expense of optimality.

In our experiments, we store the tractable fragments (sets of relations) into a

trie; the data structure turned out to be efficient in practice despite the access time

depends on the order in which the elements of a set are stored. We also decided

to use a greedy method to quickly provide a possibly non-optimal partitioning

(note that it is not necessary for Partition(D, Split) to return the complete

partitioning, as each of the sets D1, . . . , Dp can be generated on demand).

4.5.2 Experimental setting and results

As witnessed by many previous works [153, 159, 194, 195, 185], it is difficult to

find a suitable set of benchmarks, so in most of the works the authors were able to

experiment only with random instances. To generate a random set of instances, we

used a (modification of) technique suggested by Renz and Nebel [173] that consists

of the following steps. Given a number n of nodes, an average density d and a

probability p, we generate a random instance as follows:

(i) we generate a graph with n nodes, and select (d · n · (n− 1))/2 edges at

random;

(ii) for each selected edge (s, t), we generate a BA-relation R by selecting, with

probability p, each BAbasic-relation to be inserted in R, and

(iii) to each non-selected edge (s, t), we assign the universal relation.
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Our experiments aim to assess the improvement of the backtracking algorithm

when the BAconvex and BAHorn fragments are used as Split heuristics as opposed to

using basic relations only. Algorithm 7 was implemented in the constraint logic pro-

gramming system ECLiPSe [184], using the libraries CLP(FD) and PROPIA [127],

which provides a very general and declarative way to implement new constraints,

although we are aware that more efficient implementations could be possible. The

objective of the experimentation was discussing the relative improvement given

when the BAconvex and BAHorn fragments are used as Split heuristics, rather than

evaluating the absolute performances of our implementation.

All experiments were run on an Intel® Xeon® E5-2630 v3 CPU @ 2.4GHz

running ECLiPSe v. 7.0, build #54 on CentOS Linux 7, using only one core and

with 1GB of reserved memory; in the results shown in the following, a timeout was

counted as the time limit of 600 seconds, thus the timing results can be thought

of as a lower bound on the (unknown) real running time.

We generated a set of instances varying the number of nodes n and the density d,

while keeping the probability of a constraint between any two variables p = 1
2
. We

removed from the dataset the instances for which all the considered algorithms ran

out of time; still we ensured that for each pair (n, d) we had at least 100 instances.

Figure 4.13 shows the running time of the backtracking algorithm varying the

number of nodes of the network while fixing the density d = 70%. In Figure 4.14

the number of nodes in the network is fixed n = 16 while the density is varied. The

shape of the curves shows the phase transition: low density networks are easily

satisfiable, while in high density networks the unsatisfiability is easily provable.

Note that the new fragments improve the performances in particular in the hard-

est region, at a density between 70% and 80%, in which both satisfiability and

unsatisfiability are hard to prove.

The results show that the use of BAconvex fragment manages to reduce the

average computation time required to verify the consistency of the BA-network by

16% while the BAHorn fragment by 27%. Finally, Figure 4.15 shows computation

time of 2700 random networks, varying the number of nodes n from 15 to 20 and

varying the constraint density d from 55% to 100%. The results show that both

the use of BAconvex and BAHorn fragments leads to reduction in the computation

time required to verify the consistency of the BA-network.

It is also worth noting that the use of the BAconvex and BAHorn fragments

results in a significant reduction in the number of timeouts. Among the tested

instances, BAbasic incurred in timeout on 160 instances, while BAconvex on 54 and

BAHorn on 20. In particular, the use of the BAHorn fragment provides the best

results with a reduction in computation time not only with respect to not using it

but also with respect to using the BAconvex fragment.
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Figure 4.13: Running time of the backtracking algorithm varying the number of nodes
n of the network. Each point represents the geometric mean of 100 instances, with density
d = 70%. Different lines represent different fragments as Split set.
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time. Instances have been generated with a number n of nodes varying from 15 to 20
and a constraint density d varying from 55% to 100%. Different lines represent different
fragments as Split set in backtracking algorithm.



5
Conclusion and Future Works

In this thesis, we proposed new efficient reasoning algorithms for solving route

planning and qualitative temporal problems in Constraint Programming. The

implementation of all the proposed algorithms is based on a declarative approach

using the Constraint Logic Programming system ECLiPSe.

In Chapter 3 we presented the Euclidean Traveling Salesperson Problem (ETSP).

The ETSP is a special case, of the most famous Traveling Salesperson Problem

(TSP), in which each node is identified by its coordinates on the plane and the

Euclidean distance is used as cost function. No specialized CP pruning algorithms

had been proposed before for Euclidean TSPs, and the usual way to approach

Euclidean TSPs is to compute the distance matrix and approach the problem

as a general TSP.

We proposed to use the geometric information present in ETSP instances to

provide additional pruning with respect to the techniques already available in

CP. We presented the implementation of two new redundant constraints called:

nocrossing and clockwise. This, to the best of our knowledge, is the first attempt

to exploit such additional information to prune the search space in CP.

We showed that the pruning we perform is orthogonal with respect to that

obtained by Benchimol et al. [27] in their seminal work, and that adding reasoning

on geometrical properties can further reduce the running time. Despite the results

that we have achieved and presented in this thesis, our approaches are still not

competitive with Concorde, however, they are useful to improve constraint prop-

agation in CP, an important solving technique. Moreover, Concorde can also be

applied to the TSP and not to its variants, while CP formulations can easily handle

situations where additional constraints must be considered.

As future work we plan to apply extensions of the proposed techniques in the

Euclidean VRP, Euclidean Generalized TSP, and other similar problems. For

103
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example, in the optimal solution of a Euclidean Vehicle Routing Problem, the

tour of each vehicle is not self-intersecting (although it can cross the path of other

vehicles). The proposed techniques could also be generalised for application in

metric TSPs as long as the geometric coordinate information is available.

One limitation of the current work is that it is not universally applicable to all

TSP variants, such as the TSP with Time Windows, since its optimal solutions

may contain crossings; but crossings avoidance could also be interesting per se in

some applications. It should also be noted that if we consider the human factor,

routes without crossings are easier to memorise and therefore more easily accepted

by both workers and management staff.

Another future work concerns the extension of what is presented here in CLP

to other declarative approaches such as MiniZinc1 and Answer Set Programming

(ASP).

We also studied the propagation efficiency of newly introduced nocrossing

constraints by collecting data while solving ETSPs instances.

Then we proposed to use supervised machine learning techniques to predict

and select only the set of nocrossing constraints that are useful for the considered

instance of the problem in order to increase the overall solving performance.

Some improvement could be achieved by expanding the experimental dataset,

i.e., by running experiments in more instances to widen the available data about

number of activations and pruning of the nocrossing constraints. When expanding

the dataset of experiments, the use of structured instances and their generalisations

could be particularly interesting. Note also that only one search heuristic was

employed in the current dataset, namely max regret [46]. Since max regret is a

dynamic search heuristic, it might be the case that changing the set of nocrossing

constraints, the search strategy radically changes the exploration of the search tree,

possibly shuffling the order in which nocrossing constraints are activated, and

making effective some constraints that were not and vice-versa. So, a more precise

classifier could be obtained by generating datasets with different search strategies.

Other possible new directions might be to consider predicting the actual ratio

of pruning power versus activations, rather than two classes, run experiments

imposing only those nocrossing constraints whose ratio is predicted to be higher

than a predetermined threshold, and experimentally find the best possible value

of the threshold. This shifts the machine learning step from classification to

regression, which, on the other hand, may be more challenging. One could also

move from supervised learning to reinforcement learning techniques and thus avoid

collecting a training set; but this needs a complete change in the definition of the

machine learning problem both in terms of inputs, outputs, metrics to consider,

and number of calls to the TSP solver. Furthermore, the use of reinforcement

learning has the additional advantage of being able to consider the interaction of

1https://www.minizinc.org/
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several constraints applied at the same time and thus also solve issues related to

the use of different search strategies.

Finally, instead of learning a classifier that selects the set of nocrossing con-

straints to be imposed a priori, more dynamic strategies could be used, such

as removing during search the nocrossing constraints that result less effective

because they have not obtained significant pruning in recent activations. One

source of inspiration could be the strategies used in SAT solvers to forget some

of the nogoods [87].

In Chapter 4 we addressed Branching Interval Algebra (BA) which is the natural

branching-time generalization of Allen’s Interval Algebra, and it has many potential

applications in different areas of Artificial Intelligence (AI). As in the linear

case, the consistency problem of Branching Algebra is NP-hard, and studying its

tractable fragments is an interesting problem. In the linear case, every tractable

fragment of the full algebra is known, while in the branching case the entire

landscape of tractable fragments is still unknown.

Branching Algebra has been introduced in [168], where it has been proven that

the consistency problem for the subset that includes only basic relations is tractable.

We systematically explored the (PC-)tractability of fragments of the Branching

Algebra. In particular, we identify four interesting fragments named: BAconvex,

BApoint, BAlin, BAHorn. The known tractable fragments of BA are reported in

Fig. 5.1, and can be summarized as follows:

• consistency and minimality for BAconvex are both (PC-)tractable, and BAconvex

is maximal in terms of PC-tractability of minimality;

• consistency and minimality for BAHorn are both tractable, but only consis-

tency is PC-tractable in this case, and BAHorn is maximal w.r.t. tractability;

• consistency and minimality for BApoint are both tractable, but not PC-tractable,

and maximality w.r.t. tractability is unknown;

• consistency and minimality for BAlin are also both tractable but both their

maximality and their PC-tractability is unknown.

The maximality of BApoint and BAlin is still an open problem, although we

proved some possibly useful partial results in this sense. Also, BApoint is not

included in BAHorn, unlike its linear counterpart, and BAlin does not even have

a linear counterpart, although it is a proper superset of IAHorn, so we suspect

that an analysis like the one we did for BAHorn might bring some new results.

Furthermore, BAlin loses its tractability when extended with any BAbasic relation.

Finally, we design an enhanced version of the classic backtracking consistency

algorithm for the full BA that takes advantage from tractable fragments. We

carried out a series of experiments which showed that using BAconvex and BAHorn
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discrete constraint networks”. In: Proc. of the Workshop on Qualitative
Constraint Calculi. 2006, pp. 54–64.

[52] David R Cox, Margit Burmeister, E Roydon Price, Suwon Kim, and
Richard M Myers. “Radiation hybrid mapping: a somatic cell genetic method for
constructing high-resolution maps of mammalian chromosomes”. In: Science
250.4978 (1990), pp. 245–250.

[53] G. A. Croes. “A Method for Solving Traveling-Salesman Problems”. In:
Operations Research 6.6 (1958), pp. 791–812. issn: 0030364X, 15265463.

[54] S. Darabi, S.C.C. Blom, and M. Huisman. “A Verification Technique for
Deterministic Parallel Programs”. In: Proc. of the 9th International Symposium
on NASA Formal Methods. Vol. 10227. LNCS. 2017, pp. 247–264.

[55] J. Davis and M. Goadrich. “The relationship between Precision-Recall and ROC
curves”. In: European Conference on Machine Learning (ECML 2006). ACM,
2006.

[56] Rina Dechter. “Learning While Searching in Constraint-Satisfaction-Problems”.
In: Proceedings of the 5th National Conference on Artificial Intelligence.
Philadelphia, PA, USA, August 11-15, 1986. Volume 1: Science. Ed. by
Tom Kehler. Morgan Kaufmann, 1986, pp. 178–185.

[57] Rina Dechter. “Enhancement Schemes for Constraint Processing: Backjumping,
Learning, and Cutset Decomposition”. In: Artif. Intell. 41.3 (1990), pp. 273–312.

[58] Rina Dechter. Constraint processing. Elsevier Morgan Kaufmann, 2003. isbn:
978-1-55860-890-0.
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