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Abstract: In this paper we introduce a space-dependent multiscale model to describe the spatial
spread of an infectious disease under uncertain data with particular interest in simulating the onset of
the COVID-19 epidemic in Italy. While virus transmission is ruled by a SEIAR type compartmental
model, within our approach the population is given by a sum of commuters moving on a extra-urban
scale and non commuters interacting only on the smaller urban scale. A transport dynamics of the
commuter population at large spatial scales, based on kinetic equations, is coupled with a diffusion
model for non commuters at the urban scale. Thanks to a suitable scaling limit, the kinetic transport
model used to describe the dynamics of commuters, within a given urban area coincides with the
diffusion equations that characterize the movement of non-commuting individuals. Because of the high
uncertainty in the data reported in the early phase of the epidemic, the presence of random inputs in
both the initial data and the epidemic parameters is included in the model. A robust numerical method
is designed to deal with the presence of multiple scales and the uncertainty quantification process. In
our simulations, we considered a realistic geographical domain, describing the Lombardy region, in
which the size of the cities, the number of infected individuals, the average number of daily commuters
moving from one city to another, and the epidemic aspects are taken into account through a calibration
of the model parameters based on the actual available data. The results show that the model is able to
describe correctly the main features of the spatial expansion of the first wave of COVID-19 in northern
Italy.
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1. Introduction

The advent of the COVID-19 pandemic has caused a strong commitment of many researchers acting
in different fields with the scope of trying to understand and give explanations to the global crisis
we are experiencing. From the mathematical modeling point of view, several progresses have been
done concerning the development of epidemic models capable of taking into account the different
facets of this terrible disease. In particular, many recent researches have been addressed to the search
of control strategies [1–4] to limit the spread and consequently hospitalizations and deaths, possibly
reducing, at the same time, as much as possible the negative impact on the economy of the restrictive
measures [5, 6].

Most of the recently proposed model represent improvements at various levels of the seminal works
on compartmental epidemiological modeling proposed originally by Kermack and McKendrick [7].
These approaches [1, 3, 8–13] are typically focused on the epidemiological aspects of the virus spread
under the hypothesis of global mixing of the population, hence, without taking into account the role of
the spatial component in the evolution of an outbreak.

Despite in many situations the above description is sufficient to delineate the global trend of an
epidemic, there are cases in which the spatial homogeneity assumption does not hold true. In these
situations, one seeks for local interventions in order to reduce the spread without eventually affecting
regions where the incidence of the infection does not require special care, as for instance in the recent
case of the COVID-19 in Italy [14]. Consequently, from the modelling point of view, the inclusion of
the spatial dependence represents a key challenge [15].

Indeed, with the increasing amount of information on population mobility and the computational
resources available today, the design and simulation of epidemic models based on partial differential
equations (PDEs) that include the details of spatial dynamics can be considered a realistic goal [16].
We recall that most of the existing epidemiological models taking into account spatial heterogeneities
are based on reaction-diffusion equations [17–26]. Alternative modelling approaches are represented
by the interaction of different homogeneous populations [4] or agent-based dynamics [27].

Most of these models do not allow for a clear distinction about the possible spatial behaviors of the
population inside a given compartment. Consequently, although capable of originating realistic spatial
patterns in situations where individuals move indiscriminately through the domain, such approaches
are likely to be less effective in the case where one is interested in studying the spread of a virus in
the human population. Under these circumstances, it is more realistic to consider only commuting
individuals moving in major and preferred directions, not considering overall mass migration between
distinct urban areas. Indeed, not all individuals move indiscriminately in the region of interest, as most
of the population only interacts at the urban scale. Furthermore, in contrast to the use of diffusion
models, the propagation rate of the infection along the spatial domain is obviously finite. Recently,
trying to overcome some of the above criticisms, such as the paradox of the infinite propagation speed,
alternative models based on hyperbolic PDEs have been proposed [28–32].

In this work, following the approach introduced in [32], we consider a realistic compartmental
structure for the description of the epidemic dynamics of commuters and non commuters individuals
in presence of uncertain data. The model consists of a system of kinetic transport equations describing a
large-scale (extra-urban) commuting population by a continuous density [33–36] in a two-dimensional
environment. This density can be interpreted as the probability for an individual to be at a given loc-
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ation and move in a given direction at a given instant of time, in analogy to particle flows in rarefied
gases [37–42]. The above system is coupled to a second system consisting of a set of diffusion equa-
tions that characterize the movement of the non-commuting population on a small (urban) scale. The
epidemic spread is ruled by a Susceptible, Exposed, Infected, Asymptomatic and Removed (SEIAR)
compartmental structure, in which both commuters and non commuters can interact. Using a suitable
scaling process [32, 43], the model allows us to highlight, firstly, the relationship with well-known
existing approaches based on reaction-diffusion equations and, secondly, to pass naturally from a hy-
perbolic description in peripheral areas to a diffusive regime when reaching an urban area, with regard
to the commuting population.

An important aspect concerns overcoming the limitation caused by standard deterministic models
that rely on the assumption that the initial conditions, boundary conditions, and all involved epidemic
and mobility parameters are known. However, as observed in the case of the COVID-19 epidemic,
this assumption, especially in the early stages of the epidemic, is not reliable. For example, the initial
conditions in terms of the number of infected and asymptomatic persons are certainly affected by un-
certainty because data are limited and population screening cannot be error-free. Epidemic parameters,
although normally estimated or calibrated, are also often candidates for being random variables in a
realistic approach. Therefore, in order to take into account these limitations underlying deterministic
models, in this paper we resort to a stochastic approach based on the introduction of random terms into
the initial modeling [1, 2, 30, 44].

Once the model is set up, its numerical solution on a computational domain describing a realistic
geographic scenario poses several difficulties. In fact, the model consists of two coupled systems of
PDEs, each characterized by five unknown functions living in a multidimensional space characterized
by space, velocity, and stochastic variables. Additionally, we have to deal with the irregular shape of
the spatial region and the multiscale nature of the dynamics (indeed, as previously stated, hyperbolic
and parabolic behaviors coexist). Therefore, a particular care is devoted to the development of efficient
and accurate numerical schemes. More precisely, a discretization of the system based on Gaussian
quadrature points in velocity space [45,46] and a finite volume approach on unstructured grids [47,48]
is considered. The adoption of asymptotic preserving time discretization techniques permits to avoid
time step limitations introduced by the parabolic scaling without degradation of accuracy [49–51].
Finally, a non-intrusive stochastic collocation method, which guarantees spectral accuracy in the space
of the uncertain parameters, is considered to deal with the uncertainty quantification process [30, 52].

The rest of the paper is organized as follows. In Section 2 the mathematical model is introduced.
We first introduce the kinetic transport formulation for the epidemic compartments of commuters to-
gether with the corresponding diffusive dynamics of the non commuters in a deterministic setting.
Subsequently, we link the two hyperbolic/parabolic dynamics through a formal passage to the limit
for the system of commuters. A definition of the basic reproduction number of the epidemic for the
resulting model is also reported. Next, we illustrate how to generalize the model in presence of un-
certainty. The details of the numerical scheme used to approximate the resulting stochastic system are
summarized in Appendix A.1. Section 3 is devoted to present an application of the current modelling
to the first outbreak of COVID-19 in Italy and its spread in the Lombardy Region. The capability of
the model to accurately represent the first wave of the COVID-19 epidemic in Italy is discussed in de-
tail through comparisons with recorded data reported by official sources [53]. Conclusions and future
perspectives are finally given in Section 4.
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2. A compartmental kinetic transport model

Let Ω ⊂ R2 characterizes a two-dimensional geographical area of interest and assume that indi-
viduals have been separated into two different groups: a commuting population, typically moving
over long distances (extra-urban), and a non-commuting population, moving only in small-scale urban
areas. In the first part of this section, for ease of presentation, the multiscale kinetic transport model
is introduced in a deterministic setting. The relation between the current hyperbolic transport model
and classical diffusion models is discussed in the second part. In the third part, details regarding the
basic reproduction number associated with the model are given. Finally, in the last part, we discuss the
generalization of the deterministic model to the case where uncertainty is taken into account.

2.1. Characterizing commuter and non commuter dynamics

We consider a population of commuters at position x ∈ Ω moving with velocity directions v ∈ S1

and denote the respective kinetic densities of susceptible (individuals who may be infected by the
disease) by fS = fS (x, v, t), exposed (individuals in the latent period, which are not yet infectious)
by fE = fE(x, v, t), severe symptomatic infected by fI = fI(x, v, t), mildly symptomatic or asymp-
tomatic infected by fA = fA(x, v, t) and removed (individuals healed or died due to the disease) by
fR = fR(x, v, t). The kinetic distribution of commuters is then given by

f (x, v, t) = fS (x, v, t) + fE(x, v, t) + fI(x, v, t) + fA(x, v, t) + fR(x, v, t),

and their total density is obtained by integration over the velocity space

ρ(x, t) =
1

2π

∫
S1

f (x, v∗, t) dv∗.

As a consequence, one can recover the number of susceptible, exposed and recovered irrespective of
their direction of displacement by integration over the velocity space. This gives

S (x, t) =
1

2π

∫
S1

fS (x, v, t) dv, E(x, t) =
1

2π

∫
S1

fE(x, v, t) dv, R(x, t) =
1

2π

∫
S1

fR(x, v, t) dv,

which we refer to as the density fractions of non-infectious individuals, whereas

I(x, t) =
1

2π

∫
S1

fI(x, v, t) dv, A(x, t) =
1

2π

∫
S1

fA(x, v, t) dv,

are the density fractions of infectious individuals.
In this setting, the kinetic densities of the commuters satisfy the transport equations

∂ fS

∂t
+ vS · ∇x fS = −FI( fS , IT ) − FA( fS , AT ) +

1
τS

(S − fS )

∂ fE

∂t
+ vE · ∇x fE = FI( fS , IT ) + FA( fS , AT ) − a fE +

1
τE

(E − fE)

∂ fI

∂t
+ vI · ∇x fI = aσ fE − γI fI +

1
τI

(I − fI) (2.1)
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∂ fA

∂t
+ vA · ∇x fA = a(1 − σ) fE − γA fA +

1
τA

(A − fA)

∂ fR

∂t
+ vR · ∇x fR = γI fI + γA fA +

1
τR

(R − fR)

where the total densities of non infected individuals are defined by

S T (x, t) = S (x, t) + S u(x, t), ET (x, t) = E(x, t) + Eu(x, t), RT (x, t) = R(x, t) + Ru(x, t),

and similarly the total densities of infected by

IT (x, t) = I(x, t) + Iu(x, t), AT (x, t) = A(x, t) + Au(x, t).

In the above equations, S u(x, t), Eu(x, t), Iu(x, t), Au(x, t), Ru(x, t) are the density fractions of non-
commuters who, by assumption, move only on an urban scale. These densities satisfy a diffusion
dynamics acting only at the same local scale

∂S u

∂t
= −FI(S u, IT ) − FA(S u, AT ) + ∇x · (Du

S∇xS u)

∂Eu

∂t
= FI(S u, IT ) + FA(S u, AT ) − aEu + ∇x · (Du

E∇xEu)

∂Iu

∂t
= aσEu − γI Iu + ∇x · (Du

I∇xIu) (2.2)

∂Au

∂t
= a(1 − σ)Eu − γAAu + ∇x · (Du

A∇xAu)

∂Ru

∂t
= γI Iu + γAAu + ∇x · (Du

R∇xRu).

In the resulting Eqs (2.1) and (2.2) that couples the commuting and non-commuting dynamics, the
velocities vi = λi(x)v in Eq (2.1), as well as the diffusion coefficients Du

i = Du
i (x) in Eq (2.2), with

i ∈ {S , E, I, A,R}, are designed to take into account the heterogeneity of geographical areas, and
are thus chosen dependent on the spatial location. Similarly, also the relaxation times τi = τi(x),
i ∈ {S , E, I, A,R} are space dependent. The quantities γI = γI(x) and γA = γA(x) are the recovery
rates of symptomatic and asymptomatic infected (inverse of the infectious periods), respectively, while
a(x) represents the inverse of the latency period and σ(x) is the probability rate of developing severe
symptoms [3, 4, 9].

The transmission of the infection is governed by the incidence functions FI(·, IT ) and FA(·, AT ). We
assume local interactions to characterize the nonlinear incidence functions [54, 55]

FI(g, IT ) = βI
gI p

T

1 + κI IT
, FA(g, AT ) = βA

gAp
T

1 + κAAT
, (2.3)

where the classic bi-linear case corresponds to p = 1, kI = kA = 0. Parameters βI = βI(x, t) and βA =

βA(x, t) characterize the contact rates of highly symptomatic and mildly symptomatic/asymptomatic
infectious individuals, accounting for both the number of contacts and the probability of transmission.
Hence, they may vary based on the effects of government control actions, such as wearing of masks,
shutdown of specific activities or lockdowns [1, 7, 12]. On the other hand, parameters κI = κI(x, t) and
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κA = κA(x, t) are the incidence damping coefficients based on the self-protective behavior assumed by
the individuals due to the awareness of the epidemic risk [11, 26, 30].

Alternative incidence functions are given by

FI(g, IT ) = βI
gI p

T

1 + κI

∫
Ω̄

IT dx
, FA(g, AT ) = βA

gAp
T

1 + κA

∫
Ω̄

AT dx
, (2.4)

where Ω̄ is a chosen portion of the domain which permits to take into account the fact that social
distancing may depend on the average level of infection of the region rather than only on the local
situation. Since the proposed model separates the contribution of the spread of the disease between
the two infectious compartments, through the definition of two different incidence functions, FI and
FA, we chose to keep the same distinction also for the factors multiplying the damping coefficients
κI and κA in each function respectively. Clearly, the choice could have been different, accounting for
the sum IT + AT in both the incidence functions, or even considering only the contribution of IT for
both. The resulting Eqs (2.1) and (2.2) will be referred to as multiscale kinetic SEIAR (MK-SEIAR)
model. Note that, because of the presence of two populations acting at different scales, the model
allows a more realistic description of the typical commuting dynamics involving only a fraction of the
population and distinguishes it from the epidemic process affecting the entire population.

2.2. Commuters behavior in urban areas

The hyperbolic transport model for the commuters deserves some remarks. In fact, while it is clear
that a hyperbolic description permits to describe correctly the daily extra-urban commuting part, the
same individuals when moving inside the urban area are better described by a traditional diffusion
model. A remarkable feature of the transport Eq (2.1), is that it permits to recover a classical diffusion
behavior under the hypothesis that the relaxation times τS ,I,R tend to zero while keeping finite the
diffusion coefficients

DS =
1
2
λ2

S τS , DE =
1
2
λ2

EτE, DI =
1
2
λ2

IτI , DA =
1
2
λ2

AτA, DR =
1
2
λ2

RτR. (2.5)

More precisely, let us introduce the flux functions

JS =
λS

2π

∫
S1

v fS (x, v, t) dv, JE =
λE

2π

∫
S1

v fE(x, v, t) dv, JI =
λI

2π

∫
S1

v fI(x, v, t) dv

JA =
λA

2π

∫
S1

v fA(x, v, t) dv, JR =
λR

2π

∫
S1

v fR(x, v, t) dv.

Then, integrating system Eq (2.1) in v, we get the following set of equations for the macroscopic
densities of commuters

∂S
∂t

+ ∇x · JS = −FI(S , IT ) − FA(S , AT )

∂E
∂t

+ ∇x · JE = FI(S , IT ) + FA(S , AT ) − aE

∂I
∂t

+ ∇x · JI = aσE − γI I (2.6)
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∂A
∂t

+ ∇x · JA = a(1 − σ)E − γAA

∂R
∂t

+ ∇x · JR = γI I + γAA

whereas the flux functions satisfy

∂JS

∂t
+
λ2

S

2π

∫
S1

(v · ∇x fS )v dv = −FI(JS , IT ) − FA(JS , AT ) −
1
τS

JS

∂JE

∂t
+
λ2

E

2π

∫
S1

(v · ∇x fE)v dv =
λE

λS
(FI(JS , IT ) + FA(JS , AT )) − aJE −

1
τE

JE

∂JI

∂t
+
λ2

I

2π

∫
S1

(v · ∇x fI)v dv =
λI

λE
aσJE − γI JI −

1
τI

JI (2.7)

∂JA

∂t
+
λ2

A

2π

∫
S1

(v · ∇x fA)v dv =
λA

λE
a(1 − σ)JE − γAJA −

1
τA

JA

∂JR

∂t
+
λ2

R

2π

∫
S1

(v · ∇x fR)v dv =
λR

λI
γI JI +

λR

λA
γAJA −

1
τR

JR.

Clearly, the above system is not closed because the evolution of the fluxes in Eq (2.7) involves higher
order moments of the kinetic densities. The diffusion limit can be formally recovered, by introducing
the space dependent diffusion coefficients Eq (2.5) and letting τS ,I,R → 0. We get from the r.h.s. in Eq
(2.1)

fS = S , fE = E, fI = I, fA = A, fR = R,

and, consequently, from Eq (2.7) we recover Fick’s law

JS = −DS∇xS , JE = −DE∇xE, JI = −DI∇xI, JA = −DA∇xA, JR = −DR∇xR, (2.8)

since ∫
S1

(v · ∇xS )v dv =

∫
S1

(v ⊗ v) dv∇xS = π∇xS ,

and similarly for the other densities. Thus, substituting Eqs (2.8) into (2.6) we get the diffusion system
for the population of commuters [21, 23, 56]

∂S
∂t

= −FI(S , IT ) − FA(S , AT ) + ∇x · (DS∇xS )

∂E
∂t

= FI(S , IT ) + FA(S , AT ) − aE + ∇x · (DE∇xE)

∂I
∂t

= aσE − γI I + ∇x · (DI∇xI) (2.9)

∂A
∂t

= a(1 − σ)E − γAA + ∇x · (DA∇xA)

∂R
∂t

= γI I + γAA + ∇x · (DR∇xR)
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which is coupled with Eq (2.2) for the non-commuting counterpart. The capability of the model to
account for different regimes, hyperbolic or parabolic, accordingly to the space dependent relaxation
times τi, i ∈ {S , E, I, A,R}, makes it suitable for describing the dynamics of human beings. Indeed,
it is clear that the daily routine is a complex mixing of individuals moving at the scale of a city and
individuals moving among different urban centers. In this situation, due to the lack of microscopic
information and the high complexity of the dynamics, it is reasonable to avoid describing the details
of movements within an urban area and model this through a diffusion operator. On the other hand,
commuters when moving from one city to another follow well-established connections for which a
description via transport operators is more appropriate.

2.3. Basic reproduction number

The standard threshold of epidemic models is the well-known reproduction number R0, which
defines the average number of secondary infections produced when one infected individual is intro-
duced into a host population in which everyone is susceptible [7] during its entire period of infectious-
ness. This number determines when an infection can invade and persist in a new host population. For
many deterministic epidemic models, an infection begins in a fully susceptible population if and only
if R0 > 1. Its definition in the case of spatially dependent dynamics is not straightforward, particu-
larly when considering its spatial dependence. In the following, assuming no inflow/outflow boundary
conditions in Ω, integrating over velocity and space, we derive the following definition for the average
reproduction number value on the domain Ω

R0(t) =

∫
Ω

FI(S T , IT ) dx∫
Ω
γI(x)IT (x, t) dx

·

∫
Ω

a(x)σ(x)ET (x, t) dx∫
Ω

a(x)ET (x, t) dx

+

∫
Ω

FA(S T , AT ) dx∫
Ω
γA(x)AT (x, t) dx

·

∫
Ω

a(x)(1 − σ(x))ET (x, t) dx∫
Ω

a(x)ET (x, t) dx
.

(2.10)

The derivation of the above expression for R0(t), computed following the next-generation matrix ap-
proach [57], is presented in detail in [30] using a suitable linearization of the corresponding nonlinear
process for the space averaged quantities.

It is worth to underline that from definition Eq (2.10) it can be deduced that it is a combination of
the growth of ET , IT and AT that determines the persistence of the epidemic, not solely the growth of
ET in time, neither the growth of the simple sum ET + IT + AT . If, additionally, compartments I and
A are considered homogeneously mixed in a unique compartment, allowing βI = βA = β, κA = κI = κ

and γI = γA = γ, we recover a SEIR-type compartmental model and the reproduction number results
as in [32]:

R0(t) =

∫
Ω

F(S T , IT ) dx∫
Ω
γ(x)IT (x, t) dx

. (2.11)

Let us finally observe that, under the same no inflow/outflow boundary conditions, integrating in
Ω Eqs (2.1) and (2.2) yields respectively the conservation of the total populations of commuters and
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non-commuters
∂

∂t

∫
Ω

(S (x, t) + E(x, t) + I(x, t) + A(x, t) + R(x, t)) dx = 0,

∂

∂t

∫
Ω

(S u(x, t) + Eu(x, t) + Iu(x, t) + Au(x, t) + Ru(x, t)) dx = 0.

2.4. Including data uncertainty

To extend the Eqs (2.1) and (2.2) to the case in which uncertainties are taken into account, let us
suppose that the population of commuters depend on an additional random vector z = (z1, . . . , zd)T ∈

Ωz ⊆ R
d, where z1, . . . , zd are independent random variables. This vector is used to characterize

possible sources of uncertainty in the physical system due to lack of information on the actual number
of infected or specific epidemic characteristics of the infectious disease.

Thus, in the system we have the following high-dimensional unknowns

fS = fS (x, v, t, z), fE = fE(x, v, t, z), fI = fI(x, v, t, z), fA = fA(x, v, t, z), fR = fR(x, v, t, z).

The same considerations apply to the non-commuter population, yielding

S u = S u(x, t, z), Eu = Eu(x, t, z), Iu = Iu(x, t, z), Au = Au(x, t, z),Ru = Ru(x, t, z).

Notice that besides the introduction of a new vector of variables, the structure of the Eqs (2.1) and
(2.2) does not change, i.e., there is no direct variation of the unknowns with respect to z, which,
instead, have to be intended as parameters into the equations. We will further assume that also some
epidemic parameters are affected by uncertainty. Therefore, for instance, parameters acting inside the
incidence function may have an additional dependence of the form

βI = βI(x, t, z), βA = βA(x, t, z).

kI = kI(x, t, z), kA = kA(x, t, z),

In the next section, we discuss several numerical examples based on the Eq (2.1) and (2.2) with
uncertainty. We will consider that the initial number of detected infected I, derived from the data at
disposal [53, 58], represents only a lower bound while the true values are not known but affected by
uncertainty. Consequently, also initial conditions of exposed E, asymptomatic A and susceptible S will
contain a stochastic dependence.

3. Application to COVID-19 spread in Italy

To validate the proposed methodology in a realistic geographical and epidemiological scenario,
a numerical test reproducing the epidemic outbreak of COVID-19 in the Lombardy Region of Italy,
from February 27, 2020 to March 22, 2020, is designed, taking into account the uncertainty underlying
initial conditions of infected individuals. We underline that the discretization of the multiscale system
of PDEs Eqs (2.1) and (2.2) presented in this work is not trivial and requires the construction of a
specific numerical method able to correctly describe the transition from a convective to a diffusive
regime in realistic geometries. Additionally the method should be capable to deal efficiently with the
uncertainty characterized by the stochastic nature of the model. Details on these numerical aspects are
given in Appendix A.1 together with the tables of the data used for population mobility in Appendix
A.2.
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(a) mesh grid (b) provinces

(c) λi, i ∈ {S , E, A,R} (d) τi, i ∈ {S , E, I, A,R}

Figure 1. Top: unstructured computational mesh used to discretize the Lombardy Region (a)
and identification of the provinces (b). Bottom: initial condition imposed for characteristic
speeds λ (c) and relaxation times τ (d).

3.1. Computational setup

The computational domain is defined in terms of the boundary that circumscribes the Lombardy
Region, which is available in [58] as a list of georeferenced points in the ED50/UTM Zone 32N ref-
erence coordinate system. To avoid ill-conditioned reconstruction matrices and other related problems
that arise when dealing with large numbers in finite arithmetic, all coordinates are re-scaled by a factor
of 106. The resulting computational grid is composed of NE = 10, 792 triangular control volumes. The
mesh grid is presented in Figure 1a. No-flux boundary conditions are imposed in the whole boundary
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of the domain, assuming that the population is not moving from/to the adjacent Regions. The domain
is then subdivided in the Nc = 12 provinces of Lombardy: Pavia (PV), Lodi (LO), Cremona (CR),
Mantua (MN), Milan (MI), Bergamo (BG), Brescia (BS), Varese (VA), Monza-Brianza (MB), Como
(CO), Lecco (LC) and Sondrio (SO). The identification of these cities is shown in Figure 1b.

The units of measure chosen for this numerical test can be summarized as follows:

1 km = 10−3 L , 1 person ≈ 107 P , 1 day = 2 T ,

with [L], [P] and [T] being the length, person and time units used in the simulation, respectively. Notice
that the normalization of the population is made with respect to the total number of individuals of the
Region (taken from [59]), which is M = 10.027.602, to properly work in a context in which the total
population is equal to the unit.

To avoid the mobility of the population in the entire territory and to simulate a more realistic geo-
graphical scenario in which individuals travel along the main traffic paths of the Region, different
values of propagation speeds are assigned in the domain which reflect, as close as possible, the real
characteristics of the territory. Along the main connections of the Region, a mean value of λ = 0.04 is
prescribed for compartments S , E, A and R, which ensures a maximum travel distance of 80 km within
a day; while, for the same compartments, λ = 0.02 is ulterior fixed in the urbanized circles. A spatial
width of h = 0.5 km is assigned to the traveling paths. On the other hand, assuming that highly in-
fectious subjects are mostly detected in the most optimistic scenario, being subsequently quarantined
or hospitalized, the speed assigned to compartment I is set null. However, the infected people, even
if limited by quarantines and social distancing, can still contribute to the spread the disease via the
diffusion process at the urban scale (mimicking for instance the still possible infections happening at
the family level). A null value λ = 0 is set in the rest of the computational domain for all the epidemi-
ological compartments. The resulting distribution of the characteristic speeds is visible from Figure
1c.

The relaxation time is set τi = 104 for i ∈ {S , E, I, A,R}, so that the model recovers a hyper-
bolic regime in the entire region, apart from the main cities, where a parabolic setting is prescribed
to correctly capture the diffusive behavior of the disease spreading which typically occurs in highly
urbanized zones. Hence, to obtain a smooth change of the relaxation time between extra-urban and
urban scale, in the urban area of radius rc of each city c = 1, . . . ,Nc the following relaxation time τc,i,
with Gaussian-like shape centered in the city center (xc, yc), is prescribed:

τc,i(x, y) = τi + (τ0 − τi)
Nc∑
c=1

e
−

(x−xc)2+(y−yc)2

2r2
c , (x, y) ∈ Ω,

with a diffusive relaxation time chosen to be τ0 = 10−4. The resulting distribution of the relaxation
times is presented in Figure 1d.

3.2. Uncertain initial data and epidemic parameters

Considering pc the number of citizens of a generic city (province) denoted with subscript c, the
initial spatial distribution of the generic population f (x, y) is assigned, for each province and each
epidemiological compartment, as a multivariate Gaussian function with the variance being the radius
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(a) ET,0(x, y) + IT,0(x, y) + AT,0(x, y) (b) R0(0)

Figure 2. Initial distribution (on February 27, 2020) of the infected population ET,0+IT,0+AT,0

(a) and of the reproduction number R0(0) (b) in the Lombardy Region.

of the urban area rc:

f (x, y) =
1

2πrc
e
−

(x−xc)2+(y−yc)2

2r2
c pc ,

with (xc, yc) representing the coordinates of a generic city center. The initial population setting, for
each province of the Lombardy Region, is taken from [59] and reported in Table A.1, Appendix A.2.
Note that, the radius rc associated to each city, defined in Table A.1 (first column), permits to exactly re-
obtain the population pc when integrating over the computational domain the initial spatially distributed
population.

Since at the beginning of the pandemic, tracking of positive individuals in Italy was very scarce, in
this numerical test we consider that the initial amount of infected people is the leading quantity affected
by uncertainty. To this aim, we introduce a single source of uncertainty z having uniform distribution,
z ∼ U(0, 1) so that the initial conditions for compartment I, in each control volume, are prescribed as

IT (0, z) = IT,0(1 + µz) ,

with IT,0 initial amount of highly infectious corresponding to the values reported by February 27,
2020 in the GitHub repository [53] daily updated by the Civil Protection Department of Italy for each
city, listed in the last column of Table A.1. This choice effectively associates all infected individuals
detected with the I compartment, as a result of the screening policy adopted during February–March
2020 in Italy. In fact, tests to assess the presence of SARS-CoV-2 were performed almost exclusively
on patients with consistent symptoms and fever at the beginning of this pandemic. Regarding the
uncertainty of these data, we impose µ = 1, assuming that at least half of the actual highly symptomatic
infected were detected at the beginning of the pandemic outbreak. For all the cities with zero infected
detected by February 27, 2020 (e.g., Mantua, Varese, Como and Lecco), we choose to fix IT,0 = 1 in
order to assign an effective uncertainty.
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Based on the estimations reported in [30], the expected initial amount of exposed ET,0 and asymp-
tomatic/mildly symptomatic individuals AT,0 is imposed so that ET,0 = 10 IT,0 and AT,0 = 9 IT,0 in each
location. Therefore, also initial conditions for compartments E, A and S become stochastic, depending
on the initial amount of severe infectious at each location:

ET (0, z) = 10 IT (0, z) , AT (0, z) = 9 IT (0, z) ,

S T (0, z) = N − ET (0, z) − IT (0, z) − AT (0, z) .

Finally, removed individuals are initially set null everywhere in the network, RT (0, z) = 0.0.
To properly subdivide the population in commuters and non-commuters, regional mobility data are

considered. In particular, the matrix of commuters presented in Table A.2, Appendix A.2, reflects
mobility data provided by the Lombardy Region for the regional fluxes of year 2020 [60], which is in
agreement with the one derived from ISTAT data released in October, 2011, as also confirmed in [4].
Therefore, to each control volume, the total percentage of commuters referred to the province where it
is located is assigned, and non-commuting individuals are computed as a result of conservation prin-
ciples. From Table A.2 it can be noticed that some connections are not taken into account simply
because the amount of commuters along these routes is negligible if compared to the amount of indi-
viduals traveling in the other paths and with respect to the dimension of the populations.

Concerning epidemiological parameters, accordingly with values reported in [4, 9, 30], we set
γI = 1/14, γA = 2γI = 1/7, a = 1/3, considering these parameters as clinical ones and there-
fore deterministic. We also assume the probability rate of developing severe symptoms σ = 1/12.5, as
in [9, 30].

From the first day simulated in this test, the population was aware of the risk associated with
COVID-19 and recommendations such as washing hands often, not touching their faces, avoiding
handshakes and keeping distances had already been disseminated by the government, hence, we ini-
tially fix coefficients kI = kA = 50.

The initial value of the transmission rate of asymptomatic/mildly infectious people is calibrated as
the result of a least square problem with respect to the observed cumulative number of infected IT (t),
through a deterministic SEIAR ODE model set up for the whole Lombardy Region, which provide the
estimate βA = 0.58 × 10−3. As previously mentioned, since we are assuming that highly infectious
subjects are mostly detected in the most optimistic scenario, being subsequently quarantined or hospit-
alized, the transmission rate of I is set βI = 0.03 βA, as in [4, 9, 30]. Finally, in the incidence function
we fix p = 1.

With this parametric setup, we obtain an initial expected value of the basic reproduction number
for the Region, evaluated as from definition Eq (2.10), R0(0) = 3.2, which is in agreement with
estimations reported in [4, 9, 30, 61]. Nevertheless, with the proposed methodology it is possible to
present the heterogeneity underlying the basic reproduction number at the local scale, as shown in
Figure 2 for µ = 0, together with the initial global amount of infected people ET,0(x, y) + IT,0(x, y) +

AT,0(x, y) present in the domain.
To model the effects of the lockdown imposed by the government from March 9, 2020 in north of

Italy [14], from that day the transmission rate βA is reduced by 50%, also increasing the coefficients
kI = kA = 80 as a result of the population becoming increasingly aware of the epidemic risks. In
addition, the percentage of commuting individuals is reduced by 60% for each compartment according
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to mobility data tracked through GPS systems of mobile phones and made temporarily available by
Google [61, 62].

3.3. Results and discussion

Numerical results of the test are reported in Figures 3–7. In Figure 3, the expected evolution in
time of the infected individuals, together with 95% confidence intervals, is shown for exposed E,
highly symptomatic subjects I and asymptomatic or weakly symptomatic people A, for each city of
the Lombardy Region. Here it is already appreciable the heterogeneity of the diffusion of the virus.
Indeed, from the different y-axis scales adopted for the plot of the provinces, it can be noticed that
Milan, Bergamo and Brescia present a consistently higher contagion.

From Figure 4 it can be observed that the lower bound of the confidence interval of the cumulative
amount in time of highly symptomatic individuals is in line with data reported by the Civil Protection
Department of Italy [53]. As expected, due to the uncertainty taken into account, the mean value of the
numerical result in each city is higher than the registered one.

The comparison between the expected evolution in time of the cumulative amount of severe infec-
tious with respect to the effective cumulative amount of total infectious people, including asymptomatic
and mildly symptomatic individuals, is shown in Figure 5. From this figure it is clear that the number
of infections recorded during the first outbreak of COVID-19 in Lombardy represents a clear underes-
timation of the actual trend of infection suffered by the Region and by Italy as a whole, and how the
presence of asymptomatic subjects, not detected, has affected the pandemic evolution.

Numerical results presented in terms of integrated variables for the whole Lombardy are shown in
Figure 6, together with the expected temporal evolution of the reproduction number R0(t), again with
95% confidence bands. It is here highlighted that the drop of R0(t) on March 9 reflects the imposition
of lockdown restrictions, as presented in the previous Section. Moreover, in this plot, results are
reported starting from February 28, instead of February 27, to permit to the system to achieve a correct
initialization of the commuters (who are totally placed in the origin location at the beginning of the
simulation) during the first day simulated.

In Figure 7, final expectation and variance of the cumulative amount of infected people, namely
ET + AT + IT , are reported in the 2D framework (first row). If comparing Figure 7a with 2a, it can
be noticed that, at the end of March, the virus is no longer majorly affecting the province of Lodi and
Cremona, but has been spread arriving to hit most of all Brescia, Milan and Bergamo. Finally, in the
second row of Figure 7, the expectation of the susceptible population S T on the initial day simulated
(February 27, 2020) is compared with the one obtained at the end of the simulation (March 22, 2020).
Here it can be verified that the majority of the population does not leave their home city, as per real
behavior, but there is only a small percentage of commuters who move within the domain, along the
prescribed routes. Similar results are obtained for compartments E and A, whose commuting part, even
though small, strongly contributes to the spatial spread of the epidemic.

4. Conclusions

In this paper we introduced a realistic model for the spatial spread of a virus with a focus on the
case of COVID-19. Unlike models currently in the literature, which typically ignore spatial details or
alternatively introduce them as simple diffusive dynamics, in our approach we have tried to capture

Mathematical Biosciences and Engineering Volume 18, Issue 5, 7028–7059.



7042

(a) Pavia (b) Lodi (c) Cremona

(d) Milan (e) Bergamo (f) Brescia

(g) Varese (h) Monza-Brianza (i) Mantua

(j) Lecco (k) Como (l) Sondrio

Figure 3. Numerical results, with 95% confidence intervals, of the simulation of the first out-
break of COVID-19 in Lombardy, Italy. Expected evolution Exp[·] in time of compartments
E, A, I. Vertical dashed lines identify the onset of governmental lockdown restrictions.
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(a) Pavia (b) Lodi (c) Cremona

(d) Milan (e) Bergamo (f) Brescia

(g) Varese (h) Monza-Brianza (i) Mantua

(j) Lecco (k) Como (l) Sondrio

Figure 4. Numerical results, with 95% confidence intervals, of the simulation of the first out-
break of COVID-19 in Lombardy, Italy. Expected evolution Exp[·] in time of the cumulative
amount of severe infectious (I + RI) compared with data of cumulative infectious taken from
the COVID-19 repository of the Civil Protection Department of Italy [53]. Vertical dashed
lines identify the onset of governmental lockdown restrictions.
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(a) Pavia (b) Lodi (c) Cremona

(d) Milan (e) Bergamo (f) Brescia

(g) Varese (h) Monza-Brianza (i) Mantua

(j) Lecco (k) Como (l) Sondrio

Figure 5. Numerical results, with 95% confidence intervals, of the simulation of the first out-
break of COVID-19 in Lombardy, Italy. Expected evolution Exp[·] in time of the cumulative
amount of severe infectious (I + RI) with respect to the effective cumulative amount of total
infectious people, including asymptomatic and mildly symptomatic individuals (I + A + R).
Data of cumulative infectious is taken from the COVID-19 repository of the Civil Protection
Department of Italy [53]. Vertical dashed lines identify the onset of governmental lockdown
restrictions.
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(a) (b)

(c) (d)

Figure 6. Numerical results, with 95% confidence intervals, of the simulation of the first
outbreak of COVID-19 in Lombardy, Italy. Expected evolution Exp[·] in time, for the whole
Region, of: compartments E, A, I (a); cumulative amount of severe infectious (I + RI) com-
pared with data of cumulative infectious (b); cumulative amount of severe infectious (I + RI)
with respect to the effective cumulative amount of total infectious people, including asymp-
tomatic and mildly symptomatic individuals (I + A + R) (c); reproduction number R0(t) (d).
Vertical dashed lines identify the onset of governmental lockdown restrictions.

the essential characteristics of the movements of individuals, which are very different if we consider
commuting individuals who for work reasons move over long distances, from one city to another, to
individuals who instead carry out their activities on an urban scale. The separation of individuals into
these two classes, and the use of different spatial dynamics characterized by appropriate systems of
transport and diffusive equations, allows in particular to avoid mass migration phenomena typical of
models based on a single population and the instantaneous propagation of infectious disease over long
distances. From the epidemiological point of view, modeling is developed in a compartmental context
described by a SEIAR-type framework capable of describing the effect of exposed and asymptomatic
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(a) (b)

(c) (d)

Figure 7. Numerical results of the simulation of the first outbreak of COVID-19 in Lom-
bardy, Italy. Top: expectation (a) and variance (b) of the cumulative amount of infected
people ET + AT + IT at the end of the simulation (March 22, 2020). Bottom: expectation of
the susceptible population S T on the initial day simulated (February 27, 2020) (c) and at the
end of the simulation (March 22, 2020) (d).

individuals within the spatial spread of the disease. In addition, given the high uncertainty on the
actual amount of individuals in the various compartments able to propagate the infection, the model
was developed taking into account the presence of stochastic variables that therefore require an ap-
propriate process of quantification. The resulting multiscale system of partial differential equations
was then solved on realistic spatial geometries by a numerical method combining finite volume IMEX
techniques for the deterministic part, with a non-intrusive collocation approach for the stochastic com-
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ponent. After a careful calibration of the model parameters based on the available data, an in-depth
analysis of the results is reported in the case of the initial phase of the spread of COVID-19 in Italy
occurred in the Lombardy region. The results show the ability of the model to correctly describe the
epidemic dynamics and the importance of a heterogeneous spatial description and of the inclusion of
stochastic parameters.
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A. Supplementary material

In this appendix, we report the details of the numerical scheme adopted to approximate the MK-
SEIAR Eqs (2.1) and (2.2) together with the data tables concerning the details of the population and of
the commuting flows.

A.1. Numerical method

We first give the details of the method in the case in which uncertainty is not present and successively
we explain how the Eqs (2.1) and (2.2) is solved in the case of stochasticity. For the commuters, the
numerical scheme for the deterministic case is based on a discrete ordinate method in velocity in which
the even and odd parity formulation is employed [46,51,63]. The details of such approach are given in
A.1.1. Then a finite volume method working on two-dimensional unstructured meshes [48, 64] for the
discrete ordinate approximation of the commuters is introduced in A.1.2. The full discretization of the
Eq (2.1) is obtained through the use of suitable IMEX Runge-Kutta schemes [49,50]. In particular, the
above choices permit to obtain a scheme which consistently captures the diffusion limit from the kinetic
system when the scaling parameters τS ,I,R tends toward zero. This part of the method is discussed in
A.1.3. Finally, the discretization of the stochastic part for the Eq (2.1) and (2.2) when uncertainty is
present is explained in A.1.4.

A.1.1. Even and odd parities formulation

We rewrite Eq (2.1) by using the so-called even and odd parities formulation. In other words,
we denote v = (η, ξ) ∈ S1 and then we obtain four equations with non-negative ξ, η ≥ 0 for each
compartment of the commuters. The change of variables reads, omitting the time and space dependence
for simplicity, as [46]

r(1)
i (ξ, η) =

1
2

( fi(ξ,−η) + fi(−ξ, η)), r(2)
i (ξ, η) =

1
2

( fi(ξ, η) + fi(−ξ,−η))
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while for the scalar fluxes one has

j(1)
i (ξ, η) =

λi

2
( fi(ξ,−η) + fi(−ξ, η)), j(2)

i (ξ, η) =
λi

2
( fi(ξ, η) + fi(−ξ,−η))

with i = S , E, I, A,R. An equivalent formulation with respect to Eq (2.1) can then be obtained thanks
to this change of variables and reads as

∂r(1)
S

∂t
+ ξ

∂ j(1)
S

∂x
− η

∂ j(1)
S

∂y
= −FI(r

(1)
S , IT ) − FA(r(1)

S , AT ) +
1
τS

(
S − r(1)

S

)
∂r(2)

S

∂t
+ ξ

∂ j(2)
S

∂x
+ η

∂ j(2)
S

∂y
= −FI(r

(2)
S , IT ) − FA(r(2)

S , AT ) +
1
τS

(
S − r(2)

S

)
∂r(1)

E

∂t
+ ξ

∂ j(1)
E

∂x
− η

∂ j(1)
E

∂y
= FI(r

(1)
S , IT ) + FA(r(1)

S , AT ) − ar(1)
E +

1
τE

(
E − r(1)

E

)
∂r(2)

E

∂t
+ ξ

∂ j(2)
E

∂x
+ η

∂ j(2)
E

∂y
= FI(r

(2)
S , IT ) + FA(r(2)

S , AT ) − ar(2)
E +

1
τE

(
E − r(2)

E

)
∂r(1)

I

∂t
+ ξ

∂ j(1)
I

∂x
− η

∂ j(1)
I

∂y
= aσr(1)

E − γIr
(1)
I +

1
τI

(
I − r(1)

I

)
∂r(2)

I

∂t
+ ξ

∂ j(2)
S

∂x
+ η

∂ j(2)
I

∂y
= aσr(2)

E − γIr
(2)
I +

1
τI

(
I − r(2)

I

)
∂r(1)

A

∂t
+ ξ

∂ j(1)
A

∂x
− η

∂ j(1)
A

∂y
= a(1 − σ)r(1)

E − γAr(1)
A +

1
τA

(
A − r(1)

A

)
∂r(2)

A

∂t
+ ξ

∂ j(2)
A

∂x
+ η

∂ j(2)
A

∂y
= a(1 − σ)r(2)

E − γAr(2)
A +

1
τA

(
A − r(2)

A

)
∂r(1)

R

∂t
+ ξ

∂ j(1)
R

∂x
− η

∂ j(1)
R

∂y
= γIr

(1)
I + γAr(1)

A +
1
τR

(
R − r(1)

R

)
∂r(2)

R

∂t
+ ξ

∂ j(2)
R

∂x
+ η

∂ j(2)
R

∂y
= γIr

(2)
I + γAr(2)

A +
1
τR

(
R − r(2)

R

)

(A.1)

and

∂ j(1)
S

∂t
+ λ2

S ξ
∂r(1)

S

∂x
− λ2

Sη
∂r(1)

S

∂y
= −FI( j(1)

S , IT ) − FA( j(1)
S , AT ) −

1
τS

j(1)
S

∂ j(2)
S

∂t
+ λ2

S ξ
∂r(2)

S

∂x
+ λ2

Sη
∂r(2)

S

∂y
= −FI( j(2)

S , IT ) − FA( j(1)
S , AT ) −

1
τS

j(2)
S

∂ j(1)
E

∂t
+ λ2

Eξ
∂r(1)

E

∂x
− λ2

Eη
∂r(1)

E

∂y
=
λE

λS

(
FI( j(1)

S , IT ) + FA( j(1)
S , AT )

)
− a j(1)

E −
1
τE

j(1)
E

∂ j(2)
E

∂t
+ λ2

Eξ
∂r(2)

E

∂x
+ λ2

Eη
∂r(2)

E

∂y
=
λE

λS

(
FI( j(2)

S , IT ) + FA( j(2)
S , AT )

)
− a j(2)

E −
1
τE

j(2)
E

∂ j(1)
I

∂t
+ λ2

I ξ
∂r(1)

I

∂x
− λ2

Iη
∂r(1)

I

∂y
=
λI

λE
aσ j(1)

E − γI j(1)
I −

1
τI

j(1)
I
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(A.2)∂ j(2)
I

∂t
+ λ2

I ξ
∂r(2)

I

∂x
+ λ2

Iη
∂r(2)

I

∂y
=
λI

λE
aσ j(2)

E − γI j(2)
I −

1
τI

j(2)
I .

∂ j(1)
A

∂t
+ λ2

Aξ
∂r(1)

A

∂x
− λ2

Aη
∂r(1)

A

∂y
=
λA

λE
a(1 − σ) j(1)

E − γA j(1)
A −

1
τA

j(1)
A

∂ j(2)
A

∂t
+ λ2

Aξ
∂r(2)

A

∂x
+ λ2

Aη
∂r(2)

A

∂y
=
λA

λE
a(1 − σ) j(2)

E − γA j(2)
A −

1
τA

j(2)
A

∂ j(1)
R

∂t
+ λ2

Rξ
∂r(1)

R

∂x
− λ2

Rη
∂r(1)

R

∂y
=
λR

λI
γI j(1)

I +
λR

λA
γA j(1)

A −
1
τR

j(1)
R

∂ j(2)
R

∂t
+ λ2

Rξ
∂r(2)

R

∂x
+ λ2

Rη
∂r(2)

R

∂y
=
λR

λI
γI j(2)

I +
λR

λA
γA j(2)

A −
1
τR

j(2)
R .

One can observe that due to symmetry, we need to solve these equations for ξ, η in the positive quadrant
only. Thus the number of unknowns in Eq (2.1) and Eqs (A.1) and (A.2) is effectively the same.

A.1.2. Space discretization on unstructured grids

We consider now a spatial two-dimensional computational domain Ω which is discretized by a set of
non overlapping polygons Pi, i = 1, . . .Np. Each element Pi exhibits an arbitrary number NS i of edges
e j,i where the subscripts indicates that this is the edge shared by elements Pi and P j. The boundary of

the cell is consequently given by ∂Pi =
NS i⋃
j=1

e ji. The governing equations for the commuters rewritten

in the odd and even formulation are then discretized on the unstructured mesh by means of a finite
volume scheme which is conveniently rewritten in condensed form as

∂Q
∂t

+ ∇x · F(Q) = S(Q), (x, y) ∈ Ω ⊂ R2, t ∈ R+
0 , (A.3)

where Q is the vector of conserved variables

Q =
(
r(1)

i , r(2)
i , j(1)

i , j(2)
i

)>
, i = S , E, I, A,R

while F(Q) is the linear flux tensor and S(Q) represents the stiff source term defined in Eqs (A.1) and
(A.2). As usual for finite volume schemes, data are represented by spatial cell averages, which are
defined at time tn as

Qn
i =

1
|Pi|

∫
Pi

Q(x, tn) dx, (A.4)

where |Pi| denotes the surface of element Pi.
A first order in time finite volume method is then obtained by integration of the governing Eq (A.3)

over the space control volume |Pi|

Qn+1
i = Qn

i −
∆t
|Pi|

∑
P j∈NS i

∫
ei j

Fn
i j · ni j dl +

∫
Pi

Sn
i dx. (A.5)

Higher order in space is then achieved by substituting the cell averages by piecewise high order poly-
nomials. We refer to these polynomial reconstructions to as wi(x) which are obtained from the given
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cell averages Eq (A.4). In particular, our choice is to rely on a second order Central WENO (CWENO)
reconstruction procedure along the lines of [64, 65]. We omit the details for brevity. The numerical
flux function Fi j · ni j is given by a simple and robust local Lax-Friedrichs flux yielding

Fi j · ni j =
1
2

(
F(w+

i, j) + F(w−i, j)
)
· ni j −

1
2

smax

(
w+

i, j − w−i, j
)
, (A.6)

where w+
i, j,w

−
i, j are the high order boundary extrapolated data evaluated through the CWENO recon-

struction procedure. The numerical dissipation is given by smax which is the maximum eigenvalue of
the Jacobian matrix in spatial normal direction,

An =
∂F
∂Q

. (A.7)

Let us notice now that in the diffusion limit, i.e., as (τS , τI , τR)→ 0, the source term S(Q) becomes
stiff, therefore in order to avoid prohibitive time steps we need to discretize the commuters system
implicitly. To this aim, a second order IMEX method which preserves the asymptotic limit given by
the diffusion Eq (2.9) is proposed and briefly described hereafter.

A.1.3. Time integration and numerical diffusion limit

We consider again Eq (2.1) formulated using the parities Eqs (A.1) and (A.2). We also assume
τS ,I,R = τ and rewrite Esq (A.1) and (A.2) in partitioned form as

∂u
∂t

+
∂f(v)
∂x

+
∂g(v)
∂y

= E(u) +
1
τ

(U − u)

∂v
∂t

+ Λ2∂f(u)
∂x

+ Λ2∂g(u)
∂y

= E(v) −
1
τ

v,
(A.8)

in which

u =
(
r(1)

S , r(2)
S , r(1)

E , r(2)
E , r(1)

I , r(2)
I , r(1)

A , r(2)
A , r(1)

R , r(2)
R

)T
,

v =
(

j(1)
S , j(2)

S , j(1)
E , j(2)

E , j(1)
I , j(2)

I , j(1)
A , j(2)

A , j(1)
R , j(2)

R

)T
,

f(v) = ξv, g(v) = ηJv, J = diag{−1, 1,−1, 1,−1, 1,−1, 1,−1, 1},

E(u) =
(
−FI(r

(i)
S , IT ) − FA(r(i)

S , AT ), FI(r
(i)
S , IT ) + FA(r(i)

S , AT ) − ar(i)
E , aσr(i)

E − γIr
(i)
I ,

a(1 − σ)r(i)
E − γAr(i)

A , γIr
(i)
I γAr(i)

A

)T
, i = 1, 2

U = (S , S , E, E, I, I, A, A,R,R)T , Λ = diag{λS , λS , λE, λE, λI , λI , λA, λA, λR, λR},

(A.9)

and f(u), g(u), E(v) are defined similarly. Now, following [50], the Implicit-Explict Runge-Kutta
(IMEX-RK) approach appid to system (A.8) reads as

u(k) = un − ∆t
k∑

j=1

ak j

(
∂f(v( j))
∂x

+
∂g(v( j))
∂y

−
1
τ

(
U( j) − u( j)

))
+ ∆t

k−1∑
j=1

ãk jE
(
u( j)

)
v(k) = vn − ∆t

k−1∑
j=1

ãk j

(
Λ2∂f(u( j))

∂x
+ Λ2∂g(u( j))

∂y
− E(v( j))

)
+ ∆t

k∑
j=1

ak j
1
τ

v( j),

(A.10)
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where u(k), v(k) are the so-called internal stages. The numerical solution reads

un+1 = un − ∆t
s∑

k=1

bk

(
∂f(v(k))
∂x

+
∂g(v(k))
∂y

−
1
τ

(
U(k) − u(k)

))
+ ∆t

s∑
k=1

b̃kE
(
u(k)

)
vn+1 = vn − ∆t

s∑
k=1

b̃k

(
Λ2∂f(u(k))

∂x
+ Λ2∂g(u(k))

∂y
− E(v(k))

)
+ ∆t

s∑
k=1

bk
1
τ

v(k).

(A.11)

In the above equations, the matrices Ã = (ãk j), with ãk j = 0 for j ≥ k, and A = (ak j), with ak j = 0
for j > k are s × s matrices, with s number of Runge-Kutta stages, defining respectively the explicit
and the implicit part of the scheme, and vectors b̃ = (b̃1, ..., b̃s)T and b = (b1, ..., bs)T are the quadrature
weights. Furthermore, we choose the Runge-Kutta scheme in such a way that the following relations
hold true

ak j = b j, j = 1, . . . , s, ãk j = b̃ j, j = 1, . . . , s − 1. (A.12)

The scheme Eqs (A.10) and (A.11) treats implicitly the stiff terms and explicitly all the rest.
Moreover, one can prove that the above scheme is a consistent discretization of the limit system in
the diffusive regime. In fact, assuming for simplicity DS ,I,R independent from space, the second equa-
tion in Eq (A.10) can be rewritten as

τv(k) = τvn − ∆t
k−1∑
j=1

ãk j

(
τΛ2∂f(u( j))

∂x
+ τΛ2∂g(u( j))

∂y
− τE(v( j))

)
+ ∆t

k∑
j=1

ak jv( j),

therefore, assuming Eq (2.5), the limit τ→ 0 yields

k∑
j=1

ak jv( j) =

k−1∑
j=1

ãk j

(
2D

∂f(U( j))
∂x

+ 2D
∂g(U( j))
∂y

)
, (A.13)

where D = diag {DS ,DS ,DE,DE,DI ,DI ,DA,DA,DR,DR} and where we used the fact that from the first
equation in Eq (A.10) as τ → 0 we have u( j) = U( j). Note also that Eq (A.13) implies that j(1)

S ,E,I,A,R =

j(2)
S ,E,I,A,R in v( j), i.e., we restore perfect symmetry in direction of propagation of the information. Using

now the identity u( j) = U( j) into the first equation in Eq (A.10) we get

U(k) = Un − ∆t
k∑

j=1

ak j

(
∂f(v( j))
∂x

+
∂g(v( j))
∂y

)
+ ∆t

k−1∑
j=1

ãk jE
(
U( j)

)
, (A.14)

and using Eqs (A.13) into (A.14) thanks to the definitions of f and g gives

U(k) =Un − 2∆tD
k−1∑
j=1

ãk j

(
ξ2∂

2U( j)

∂x2 + 2ξηJ
∂2U( j)

∂x∂y
+ η2∂

2U( j)

∂y2

)

+ ∆t
k−1∑
j=1

ãk jE
(
U( j)

)
.

(A.15)
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Finally, integrating over the velocity field one has

S (k) =S n − ∆tDS

k−1∑
j=1

ãk j

(
∂2S ( j)

∂x2 +
∂2S ( j)

∂y2

)
− ∆t

k−1∑
j=1

ãk jF(S ( j), I( j)
T ),

I(k) =In − ∆tDI

k−1∑
j=1

ãk j

(
∂2I( j)

∂x2 +
∂2I( j)

∂y2

)
+ ∆t

k−1∑
j=1

ãk j

(
F(S ( j), I( j)

T ) − γI( j)
)
,

R(k) =Rn − ∆tDR

k−1∑
j=1

ãk j

(
∂2R( j)

∂x2 +
∂2R( j)

∂y2

)
+ ∆t

k−1∑
j=1

ãk jγI( j)

(A.16)

and thus, the internal stages correspond to the stages of the explicit scheme applied to the reaction-
diffusion Eq (2.9). To conclude the proof one has to notice that thanks to the choice Eq (A.12), the
last stage is equivalent to the numerical solution. Thus, this is enough to guarantee that the scheme is
a consistent discretization of the limit equation.

Note that the limit system is consistent with the discretization of the non commuters diffusive Eq
(2.2). In this latter case, we adopt the same finite volume setting for the unknowns

Qu = (S u, Eu, Iu, Au,Ru)> ,

This simply reads

∂Qu

∂t
+ ∇x · Fu(Qu) = Su(Qu), (x, y) ∈ Ω ⊂ R2, t ∈ R+

0 , (A.17)

with

Fu =


−Du

S (S u)x

−Du
E (Eu)x

−Du
I (Iu)x

−Du
A (Au)x

−Du
R (Ru)x

−Du
S (S u)y

−Du
E (Eu)y

−Du
I (Iu)y

−Du
A (Au)y

−Du
R (Ru)y


, Su =


−FI(S u, IT ) − FA(S u, AT )

FI(S u, IT ) + FA(S u, AT ) − aEu

aσEu − γI Iu

a(1 − σ)Eu − γAAu

γI Iu + γAAu


.

Then, the same CWENO reconstruction and the same numerical local Lax-Friedrichs flux is em-
ployed where however, we account for a dissipation proportional to the diffusive terms. In other
words, the numerical viscosity is given by the maximum eigenvalue of the viscous operator sV

max =

max
(
Du

S ,D
u
E,D

u
I ,D

u
A,D

u
R

)
. Concerning the time discretization, the explicit part of the Runge-Kutta

scheme introduced in the previous paragraph is employed.

A.1.4. Stochastic collocation method

In the case in which we deal with the stochastic Eqs (2.1) and (2.2), we employ a generalized
Polynomial Chaos (gPC) expansion technique [52, 66]. We restrict to the case in which there is only
one stochastic variable z in the system. The extension to the case of a vector of random variables is
straightforward. The probability density function of the single random input is supposed known: ρz :
Γ→ R+. In this case, the approximate solution for the commuters QM(x, v, t, z) and the non commuters
Qu

M(x, t, z) are represented as truncations of the series of the orthonormal polynomials describing the
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Table A.1. Setting of the Lombardy provinces: urban radius rc, total inhabitants M and
initial amount of highly infectious individuals IT,0, detected by February 27, 2020 (initial day
of the simulation). The total population is given by ISTAT data of December 31, 2019 [59],
while data of highly infectious correspond to those reported in the GitHub repository of the
Civil Protection Department of Italy [53]. Null values, listed with ∗, in the simulation are
substituted with 1 to permit an effective assignation of uncertain initial condition.

Province Urban radius rc [km] Total population M Infectious IT,0

Pavia (PV) 3.24 540376 36
Lodi (LO) 2.04 227412 159
Cremona (CR) 2.40 355908 91
Mantua (MN) 1.92 406919 0∗

Milan (MI) 5.76 3265327 15
Bergamo (BG) 3.96 1108126 72
Brescia (BS) 3.24 1255437 10
Varese (VA) 2.76 884876 0∗

Monza-Brianza (MB) 3.24 870193 5
Como (CO) 2.40 597642 0∗

Lecco (LC) 3.24 334961 0∗

Sondrio (SO) 1.56 180425 3

random space, i.e..

QM(x, v, t, z) =

M∑
j=1

Q̂ j(x, v, t)φ j(z), Qu
M(x, t, z) =

M∑
j=1

Q̂u
j(x, t)φ j(z) (A.18)

where M is the number of terms of the truncated series and φ j(z) are orthonormal polynomials, with
respect to the measure ρz(z) dz. The expansion coefficients are obtained by

Q̂ j(x, v, t) =

∫
Γ

Q(x, v, t, z) φ j(z) ρz(z) dz, Q̂u
j(x, t) =

∫
Γ

Qu(x, t, z) φ j(z) ρz(z) dz, j = 1, . . . ,M. (A.19)

Then, the exact integrals for the expansion coefficients in Eq (A.19) are replaced by a suitable quad-
rature formula characterized by the set {zn,wn}

Np

n=1, where zn is the n-th collocation point, wn is the
corresponding weight and Np represents the number of quadrature points. We then have

Q̂ j(x, v, t) ≈
Np∑

n=1

Q(x, v, t, zn) φ j(zn) wn, Q̂u
j(x, t) ≈

Np∑
n=1

Qu(x, t, zn) φ j(zn) wn, j = 1, . . . ,M (A.20)

where Q(x, v, t, zn) and Qu(x, t, zn) with n = 1, . . . ,Np are the solutions of the problem evaluated at the
n-th collocation point for the commuters and non commuters. Thanks to the computation of the above
coefficients than it is possible to compute all quantities of interest concerning the random variable. For
example, the expectations are approximated as

E [Q] ≈ E [QM] =

∫
Γ

QM(x, v, t, z) ρz(z) dz ≈
Np∑

n=1

Q(x, v, t, zn) wn, (A.21)
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and

E [Qu] ≈ E
[
Qu

M
]

=

∫
Γ

Qu
M(x, t, z) ρz(z) dz ≈

Np∑
n=1

Qu(x, t, zn) wn. (A.22)

In the same way, all other quantities of interest such as the variance of Q and Qu can be computed.

A.2. Population and mobility data

In this appendix we report tables containing data on the initial distribution of populations in the
various urban areas considered in the Lombardy region, see Table A.1, and data on the corresponding
flows of commuters between cities, see Table A.2.
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37. L. Pareschi, G. Toscani, Interacting multiagent systems: kinetic equations and Monte Carlo meth-
ods, Oxford University Press, Oxford, UK, 2014.

38. N. Bellomo, R. Bingham, M. A. J. Chaplain, G. Dosi, G. Forni, D. A. Knopoff et al., A multi-scale
model of virus pandemic: Heterogeneous interactive entities in a globally connected world, Math.
Mod. Meth. Appl. Sci., 30 (2020), 1591–1651.

39. C. Cercignani, R. Illner, M. Pulvirenti, The Mathematical Theory of Diluted Gases, Springer, New
York, 1994.

40. M. Delitala, Generalized kinetic theory approach to modeling spread and evolution of epidemics,
Math. Compet. Mod., 39 (2004), 1–12.

41. M. Pulvirenti, S. Simonella, A kinetic model for epidemic spread, Math. Mech. Complex Syst., 8
(2020), 249–260.

42. R. Yano, Kinetic modeling of local epidemic spread and its simulation, J. Sci. Comput., 73 (2017),
122–156.

43. E. W. Larsen, J. B. Keller, Asymptotic solution of neutron transport problems for small free mean
paths, J. Math. Phys., 15 (1974), 75–81.

44. M. Peirlinck, K. Linka, F. Sahli Costabal, J. Bhattacharya, E. Bendavid, J. P. Ioannidis et al.,
Visualizing the invisible: The effect of asymptomatic transmission on the outbreak dynamicss of
COVID-19, Comp. Meth. Appl. Mech. Eng., 372 (2020), 113410.

45. F. Golse, S. Jin, C. Levermore, The convergence of numerical transfer schemes in diffusive regimes
I: Discrete-ordinate method, SIAM J. Num. Anal., 36 (1999), 1333–1369.

Mathematical Biosciences and Engineering Volume 18, Issue 5, 7028–7059.



7058

46. S. Jin, L. Pareschi, G. Toscani, Uniformly accurate diffusive relaxation schemes for multiscale
transport equations, SIAM J. Num. Anal., 38 (2000), 913–936.

47. M. Dumbser, M. Kaeser, Arbitrary high order non-oscillatory finite volume schemes on unstruc-
tured meshes for linear hyperbolic systems, J. Comput. Phys., 221 (2007), 693–723.

48. E. Gaburro, W. Boscheri, S. Chiocchetti, C. Klingenberg, V. Springel, M. Dumbser, High order
direct Arbitrary-Lagrangian-Eulerian schemes on moving Voronoi meshes with topology changes,
J. Comput. Phys., 407 (2020), 109167.

49. S. Boscarino, L. Pareschi, G. Russo, Implicit-explicit Runge-Kutta schemes for hyperbolic systems
and kinetic equations in the diffusion limit, SIAM J. Sci. Comput., 35 (2013), 22–51.

50. S. Boscarino, L. Pareschi, G. Russo, A unified IMEX Runge-Kutta approach for hyperbolic sys-
tems with multiscale relaxation, SIAM J. Numer. Anal., 55 (2017), 2085–2109.

51. G. Dimarco, L. Pareschi, Numerical methods for kinetic equations, Acta Numer., 23 (2014), 369–
520.

52. D. Xiu, Numerical Methods for Stochastic Computations: A Spectral Method Approach, Princeton
University Press, Princeton, NY, (2010).

53. Presidenza del Consiglio dei Ministri, Dipartimento della Protezione Civile, Italia, COVID-19
epidemiological data in Italy, (https://github.com/pcm-dpc/COVID-19).

54. A. Korobeinikov, P. K. Maini, Non-linear incidence and stability of infectious disease models,
Math. Med. Bio.: J. IMA, 22 (2005), 113–128.

55. V. Capasso, G. Serio, A generalization of the Kermack-McKendrick deterministic epidemic model,
Math. Biosci., 42 (1978), 43.

56. G. F. Webb, A reaction-diffusion model for a deterministic diffusion epidemic, J. Math. Anal.
Appl., 84 (1981), 150–161.

57. O. Diekmann, J. Heesterbeek, M. Roberts, The construction of next-generation matrices for com-
partmental epidemic models, J. Roy. Soc. Interface, 7 (2010), 873–885.

58. Istituto Nazionale di Statistica, Italia. Dati Geografici, (https://www4.istat.it/it/
archivio/209722)

59. Istituto Nazionale di Statistica, Italia, Dati Demografici, (http://demo.istat.it/)

60. Regione Lombardia, Italia. Open Data, (https://www.dati.lombardia.it/
Mobilit-e-trasporti/Matrice-OD2020-Passeggeri/hyqr-mpe2)

61. M. A. C. Vollmer, S. Mishra, H. J. T. Unwin, A. Gandy, T. A. Mellan, H. Zhu et al., Using
mobility to estimate the transmission intensity of COVID-19 in Italy: a subnational analysis with
future scenarios, Technical Report May, Imperial College London, 2020.

62. A. Aktay, S. Bavadekar, G. Cossoul, J. Davis, D. Desfontaines, A. Fabrikant et al., Google
COVID-19 community mobility reports: anonymization process description (version 1.1), pre-
print, arXiv:2004.04145, (2020).

63. A. Klar, An asymptotic-induced scheme for nonstationary transport equations in the diffusive limit,
SIAM J. Numer. Anal., 35 (1998), 1073–1094.

Mathematical Biosciences and Engineering Volume 18, Issue 5, 7028–7059.

https://github.com/pcm-dpc/COVID-19
https://www4.istat.it/it/archivio/209722
https://www4.istat.it/it/archivio/209722
http://demo.istat.it/
https://www.dati.lombardia.it/Mobilit-e-trasporti/Matrice-OD2020-Passeggeri/hyqr-mpe2
https://www.dati.lombardia.it/Mobilit-e-trasporti/Matrice-OD2020-Passeggeri/hyqr-mpe2


7059

64. W. Boscheri, G. Dimarco, High order central WENO-Implicit-Explicit Runge Kutta schemes for
the BGK model on general polygonal meshes, J. Comput. Phys., 422 (2020), 109766.

65. M. Dumbser, W. Boscheri, M. Semplice, G. Russo, Central weighted ENO schemes for hyperbolic
conservation laws on fixed and moving unstructured meshes, SIAM J. Sci. Comp., 39 (2017),
A2564–A2591.

66. S. Jin, H. Lu, L. Pareschi, Efficient stochastic asymptotic-preserving implicit-explicit methods for
transport equations with diffusive scalings and random inputs, SIAM J. Sci. Comput., 40 (2018),
A671–A696.

c© 2021 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Mathematical Biosciences and Engineering Volume 18, Issue 5, 7028–7059.

http://creativecommons.org/licenses/by/4.0

	Introduction
	A compartmental kinetic transport model
	Characterizing commuter and non commuter dynamics
	Commuters behavior in urban areas
	Basic reproduction number
	Including data uncertainty

	Application to COVID-19 spread in Italy
	Computational setup
	Uncertain initial data and epidemic parameters
	Results and discussion

	Conclusions
	Supplementary material
	Numerical method
	Even and odd parities formulation
	Space discretization on unstructured grids
	Time integration and numerical diffusion limit
	Stochastic collocation method

	Population and mobility data


