

Incidence and determinants of antiretroviral switching away from TDF-based backbone in the recent years in the Icona Foundation Cohort

Vergori A¹, Lorenzini P¹, Cozzi-Lepri A², Maggiolo F³, Lapadula G⁴, De Luca A⁵, Cingolani A⁶, Galli M⁷, Mazzarello G⁸, Milini P⁹, d'Arminio Monforte A¹⁰, Antinori A¹ on behalf of ICONA Foundation Study Group.

P100

¹HIV/AIDS Unit, INMI L. Spallanzani IRCCS, Rome, Italy; ²Institute for Global Health, UCL London, UK; ³Division of Infectious Diseases, ASST Papa Giovanni XXIII, Bergamo, Italy;
 ⁴Division of Infectious Diseases, ASST Monza University of Milano-Bicocca, Italy; ⁵University Division of Infectious Diseases, Siena University Hospital, University of Siena, Italy;
 ⁶Infectious Diseases Division, Pol. A. Gemelli, Catholic University, Rome, Italy; ⁷3rd Division of Infectious Diseases, ASST FB-Sacco University of Milan, Italy;
 ⁸Infectious Disease Clinic, IRCCS University Hospital, San Martino-IST, Genoa, Italy; ⁹Infectious Diseases Division, General Hospital, Macerata, Italy;
 ¹⁰Clinic of Infectious and Tropical Diseases, ASST Santi Paolo e Carlo Hospital, University of Milan, Italy

Conceived by Professor Mauro Moron

BACKGROUND

In the past years, NRTI backbone based on tenofovir disoproxil fumarate (TDF) and emtricitabine (FTC) has represented the standard of care in the antiretroviral setting.

Increasing concerns about TDF renal toxicity, as itself or in combination with other antiretrovirals, and the availability of effective and safe alternatives, as abacavir (ABC), tenofovir alafenamide (TAF) or NRTIsparing less-drug regimens (LDRs), enhances chances of TDF substitution.

RESULTS II

The Incidence Rate (IR) of TDF discontinuation for any reason significantly increased from 10.3 (95%CI 9.5-11.1) per 100 PYFU in 2009-11, to 14.3 (13.4-15.2) in 2012-14 and to 34.9 (32.7-37.7) in 2015-17 (p<0.001). Two separate models [a) and b)] to estimate hazard risk by third drug class and by type of third drug were performed (Table 1). Using NNRTI as reference, an increased risk of TDF discontinuation was found both for PI/b (aHR 1.55; 95%CI 1.41-1.71) and INSTI (2.09; 1.85-2.35). DTG (2.78; 2.32-3.33), EVG/c (3.59; 2.94-4.39) and RAL (2.19; 1.79-2.69) also were associated with higher risk of discontinuation respect to EFV.

By multivariable Cox regression, a Table 1 - Crude and adjusted hazard ratio (HR) of TDF

Rate and predictors of TDF discontinuation may have public health implications in the view of availability of TDF/FTC generic formulation.

AIM

To report data from real life on the incidence and factors associated with discontinuation of TDF in the INSTI antiretroviral era.

STUDY DESIGN AND METHODS

HIV-1 positive patients from the Icona Foundation Cohort, aged 18 years or over, initiating their first cART regimen with TDF-based backbone plus a 3rd drug from January 2009 onwards were included. Patients were included if they had been treated for >30 days with TDF, subject with HbsAg positivity were not included. TDF Primary endpoint of the analysis was discontinuation for any reasons. The adjusted risk of TDF discontinuation was estimated by Cox regression according to main fixed covariates at baseline: gender, race, CDC C stage, mode of HIV transmission, HCVAb status, CD4 and CD8 count, HIVRNA, total and HDL cholesterol, total number of non-communicable comorbidities (NCC) (of whom CKD, hypertension, diabetes, previous cardiovascular or hepatic event) and third drug (the class or the single drug). eGFR during TDF exposure was estimated by CKD-EPI formula and was used in the models as time dependent covariate. Calendar year of cART initiation was divided into three periods: 2009-2011, 2012-2014, 2015-2017.

lower current eGFR was associated to higher risk of discontinuing TDF in all time periods. HR for eGFR<60 became considerably lower in last 3-year period (Table 2). There was a significant interaction between calendar year of cART initiation and current eGFR level (p<0.001) (Figure 1).

Non-communicable comorbidities (NCC) were associated in first and second periods, but not in third one. P at interaction test was significant (p<0.001) (Table 2).

Figure 1 – Adjusted hazard ratios of tenofovir disoproxil fumarate (TDF) discontinuation according to calendar year of TDF initiation and current e-GFR estimated by CKD-Epi formula.

	>90	1
P at interaction	22	Ī
test between	00 00	

discontinuation for any causes by 3rd drug class and by single 3rd drug

a)	HR	95%C		p-value	aHR*	95%Cl		p-value
NNRTI	1			-				
PI/b	1.36	1.25	1.50	<0.001	1.55	1.41	1.71	<0.001
INSTI	4.11	3.70	4.57	<0.001	2.09	1.85	2.35	<0.001
b)	HR	95%C		p-value	aHR*	95%CI		p-value
EFV	1							
RPV	3.02	2.61	3.48	<0.001	1.56	1.33	1.83	<0.001
DRV/r or /c	2.48	2.17	2.83	<0.001	1.92	1.67	2.20	<0.001
ATV/r or /c	1.96	1.71	2.25	<0.001	1.92	1.67	2.20	<0.001
DTG	8.52	7.28	9.96	<0.001	2.78	2.32	3.33	<0.001
EVG	11.18	9.37	13.34	<0.001	3.59	2.94	4.39	<0.001
RAL	3.36	2.76	4.08	<0.001	2.19	1.79	2.69	<0.001
other	1.50	1.25	1.80	<0.001	1.59	1.31	1.92	<0.001

*adjusted for gender, ethnicity, mode of HIV transmission, HCV coinfection, CD4 and CD8 count, HIVRNA, total and HDL cholesterol, number of NCC, calendar year of cART initiation and current eGFR

Table	2	—	Factors	independ	ently	assoc	iated	with	TDF
discont	inua	ation	according	to three	time p	periods	(2009-1	1; 201	2-14 ;
2015-17	') of	cAR	T initiation	. Significa	ant res	ults are	report	ed in b	old.

	2009-2011		2012-2014		2015-2017	
	aHR*	95%Cl	aHR*	95%CI	aHR*	95%CI
Current e-GFR ml/min/1,73 m ²						
(by CKD-EPI)						
- >90 (ref.)	1.00		1.00		1.00	
- 60-90	1.65	1.41-1.96	1.45	1.26-1.67	1.11	0.96-1.28
- <60	4.96	3.45-7.14	4.29	3.18-5.77	1.56	1.05-2.31
NCC						
- 0 (ref.)	1.00		1.00		1.00	
- 1	1.65	1.20-2.26	1.23	0.94-1.60	1.01	0.75-1.35
- 2+	2.21	1.03-4.75	1.77	1.04-3.04	1.12	0.63-2.02
ARV third drug class						
- NNRTI (ref.)	1.0		1.0		1.0	
- PI/b	1.92	1.62-2.28	1.37	1.19-1.57	1.45	1.15-1.84
- INSTI [§]	1.17	0.73-1.89	2.12	1.70-2.64	2.43	2.04-2.89

RESULTS I

5544 ART-naive patients were included in the analyses: 81% males, median age of 39 years (IQR 31-47), 10% were on a CDC stage C, median CD4 count 332 cells/mmc (178-474), median HIV RNA 4.74 (4.16-5.24) Log 10 cps/mL. 2296 (41.4%) started a NNRTI-based, 2015 (36.2%) a PI/b-based and 1233 (22.4%) a INSTIbased regimen. 2546 (46%) pts discontinued TDF after a median of 2.3 years (IQR 1.1-3.9).

Regimen	started	after	TDF
discontinuat	ion are sho ^r	wn in Tabl	e 3.

*adjusted for gender, ethnicity, mode of HIV transmission, HCV coinfection, CD4 and CD8 count, HIVRNA, total and HDL cholesterol

§ A sensitivity analysis, performed after excluding EVG/c, confirmed these results.

Table 3 - Regimen started after TDF discontinuation

Regimen started after TDF	Over 2224 pts who started a new regimen after TDF
TAF/FTC	1008 (45.3%)
ABC/3TC	601 (27.0%)
Other backbone	120 (5.4%)
NRTI-sparing LDRs	445 (20.0%)

CONCLUSIONS

In our cohort, a significant increase of TDF discontinuation was found after 2015. Associated drugs (PI/b and INSTI) and eGFR decline mainly predicted drug change, with a lower risk of switching away from TDF at declining eGFR levels in the last period. The remarkable risk of TDF switching in people receiving INSTI, increasingly in the last three years, may suggest physicians attitudes towards co-formulated regimens more than TDF safety concerns in clinical decision.

Acknowledgments

ICONA Foundation Study Group

BOARD OF DIRECTORS: A d'Arminio Monforte (President), A Antinori (Vice-President), M Andreoni, A Castagna, F Castelli, R Cauda, G Di Perri, M Galli, R Iardino, G Ippolito, A Lazzarin, GC Marchetti, G Rezza, F von Schloesser, P Viale.

SCIENTIFIC SECRETARY: A d'Arminio Monforte, A Antinori, A Castagna, F Ceccherini-Silberstein, A Cozzi-Lepri, E Girardi, S Lo Caputo, C Mussini, M Puoti, CF Perno. STEERING COMMITTEE: A Antinori, F Bai, C Balotta, A Bandera, S Bonora, M Borderi, A Calcagno, A Capetti, MR Capobianchi, A Castagna, F Ceccherini-Silberstein, S Cicalini, A Cingolani, P Cinque, A Cozzi-Lepri, A d'Arminio Monforte, A De Luca, A Di Biagio, E Girardi, N Gianotti, A Gori, G Guaraldi, G Lapadula, M Lichtner, S Lo Caputo, G Madeddu, F Maggiolo, G Marchetti, L Monno, C Mussini, S Nozza, CF Perno, C Pinnetti, M Puoti, E Quiros Roldan, R Rossotti, S Rusconi, MM Santoro, A Saracino, L Sarmati. STATISTICAL AND MONITORING TEAM: A Cozzi-Lepri, I Fanti, L Galli, P Lorenzini, A Rodano', M Macchia, A Tavelli.

BIOLOGICAL BANK INMI: F Carletti, S Carrara, A Di Caro, S Graziano, F Petroni, G Prota, S Truffa.

PARTICIPATING PHYSICIANS AND CENTERS: Italy A Giacometti, A Costantini, V Barocci (Ancona); G Angarano, L Monno, C Fabrizio (Bari); F Maggiolo, C Suardi (Bergamo); P Viale, V Donati, G Verucchi (Bologna); F Castelnuovo, C Minardi, E Quiros Roldan (Brescia); B Menzaghi, C Abeli (Busto Arsizio); B Cacopardo, B Celesia (Catania); J Vecchiet, K Falasca (Chieti); A Pan, S Lorenzotti (Cremona); L Sighinolfi, D Segala (Ferrara); P Blanc, F Vichi (Firenze); G Cassola, C Viscoli, A Alessandrini, N Bobbio, G Mazzarello (Genova); M Lichtner, S Vita, (Latina); P Bonfanti, C Molteni (Lecco); A Chiodera, P Milini (Macerata); G Nunnari, G Pellicanò (Messina); A d'Arminio Monforte, M Galli, A Lazzarin, G Rizzardini, M Puoti, A Castagna, S Cannizzo, MC Moioli, R Piolini, AL Ridolfo, S Salpietro, C Tincati, (Milano); C Mussini, C Puzzolante (Modena); C Migliorino, G Lapadula (Monza); V Sangiovanni, G Borgia, V Esposito, F Di Martino, I Gentile, L Maddaloni (Napoli); AM Cattelan, S Marinello (Padova); A Cascio, C Colomba (Palermo); F Baldelli, E Schiaroli (Perugia); G Parruti, F Sozio (Pescara); G Magnani, MA Ursitti (Reggio Emilia); M Andreoni, A Antinori, R Cauda, A Cristaudo, V Vullo, R Acinapura, G Baldin, M Capozzi, A Mondi, A Cingolani, M Rivano Capparucia, G Iaiani, A Latini, R Gagliardini, MM Plazzi, S Savinelli, A Vergori (Roma); M Cecchetto, F Viviani (Rovigo); G Madeddu, P Bagella (Sassari); A De Luca, B Rossetti (Siena); A Franco, R Fontana Del Vecchio (Siracusa); D Francisci, C Di Giuli (Terni); P Caramello, G Di Perri, S Bonora, GC Orofino, M Sciandra (Torino); M Bassetti, A Londero (Udine); G Pellizzer, V Manfrin (Vicenza); G Starnini, A lalungo (Viterbo).

Funding

ICONA Foundation is supported by unrestricted grants from BMS, Gilead Sciences, Janssen, MSD and ViiV Healthcare

References

•1. EACS Guidelines, Version n.9,2017; 2. Linee Guida Italiane;8 edizione,2017; 3. Lee FJ, Plos One, 2014; 4. Horberg M, JAIDS 2010; 5. Mocroft A, AIDS 2010; 6. Ryom L,JID 2013; 7. Ryom L, AIDS 2014; 8. Ryom L. AIDS 2017; 9. Scherzer R, AIDS 2012; 10. Mocroft A , AIDS 2016; 11. Costarelli S, Plos One 2016; 12. Mills A,Lancet infect Dis,2016; 13. Trottier B,Antivir Ther,2017; 14. Orkin C,Lancet HIV,2017; 15.Perez-Molina JA, Lancet Infect Dis,2015; 16. Di Giambenedetto S, JAC, 2017; 17.Pulido F, Clin Infect Dis, 2017; 18. Maggiolo F, J Acquir Immune Defic Syndr, 2016; 19. Taiwo BO,Clin Infect Dis,2017; 20. Llibre JM, Lancet, 2018

Contact Information

andrea.antinori@inmi.it; alessandra.vergori@inmi.it; patrizia.lorenzini@inmi.it