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Highlights
e Oxidative potential was assessed for Rt a Central Mediterranean Site.
e Oxidative potential and chemical composition of Rl&ind PM, were compared.
« The dependence of the BPand OP” responses on seasons were investigated.
o OP’"" were similar in PMsand PMg and highly associated with OC, EC antl K
« OP™ were higher in P} than in PMsand highly associated with Cu and Fe.

Keywords

Oxidative potential; PMs particulate matter; Ppg and PMg size distribution, Dithiothreitol assay;
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Abstract

In this study, PMs airborne particulate matter was collected oveulhykear at a costal site of the
Central Mediterranean Sea and analyzed for its @@ momposition and oxidative potential (OP),
determined by the dithiothreitol (DTT) and the aboo acid (AA) assays. In autumn-winter, the
volume normalized oxidative OP (QPwere0.29+0.03 nmomin™ m*®and 0.21+0.03 nmahin™m’

3 for the DTT (OF™"y) and AA (OP*,) assay, respectivelin spring-summer the OP'y values
were higher than OBy responses, i.e., 0.19+0.02 nmmoin™ m™ vs.0.09+0.01 nmomin™ m=.
Overall, marked seasonality was observed with higlsdues in Autumn-Winter (AW) than in
Spring-Summer (SS), i.e., 1.5 and 2.3 times ineréasOP’™"y, and OP”, respectively.

In the cold season, the QRctivity was broadly correlated with metals andooa species, such as
K*, NOs, Ba, Cd, Cu, Fe, Mn, P, V, OC, EC, Acetate, Oxalahd Glycolate (p<0.05). This
suggested the main contribution of a “mixed antbgmmic” source, consisting of the biomass
burning (K, OC and EC) and traffic (Ba, Cu, Fe, Mn, V, EC)issions. In SS, OP was
significantly correlated with only few species ,j.©C, EC, Cu, and Nf) suggesting main
association with the “mixed anthropogenic” and‘tieacted dust” sources.

For each sampling day, BMand PM, samples were simultaneously collected and analyaed
investigate the variation of the OP activity inat@n with the particle size and chemical
composition.

OP’™, values exhibited a poor particle-size dependewiti, similar values close to 0.20+0.04
nmol miri* m?in both fractions. This could be explained by thsaziation of OP'"y, with species
mainly accumulated in the fine fraction, i.e., OBQC and EC and K Otherwise, the OBy
responses exhibited a clear particle-size depemdeavith significantly higher values for Rythan
for PMys, i.e., 0.35+0.06 vs. 0.21+0.03 nmol Mim?®in AW and 0.23+0.04 vs. 0.09+0.01 in SS.
This may be supported by the strong correlatiorO8f*, with Cu and Fe, which were most
abundant metals in the Rfraction.

The data of specific monitoring days were invesédan detail to better highlight the impact of

some individual redox active species on th€ BPand OP*, responses.

Capsule
The oxidative potential of Pp and PMo samples was assessed with Dithiothreitol and Ascor

Acid assays: the variation of OP responses waterkiaith the PM size and chemical composition.
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I ntroduction

The interest on the health effects associated thghair particulate matter (PM) has been growing
over the last few decades. In fact, the exposureMohas been linked to adverse health effects,
such as respiratory and cardiovascular diseases)gih the production of reactive oxygen species
(ROS) in the human respiratory tract (Bates et24115; Kelly, 2003; Mittal et al., 2014; Samara,
2017 and references therein; Venkatachari and H&iK8). These ROS could be carried either by
the PM themselves or generated via interactionsd®t particle-bound redox-active components
and lung lining fluid (Poschl and Shiraiwa, 2015herefore, the oxidative potential (OP), defined
as the capacity of PM to cause damaging oxidataetons, has been suggested as an additional
PM indicator, that would encompass the PM toxicmalgresponse (Pietrogrande et al., 2018a and
references therein). The compounds likely implidatethe ROS formation include organic carbon,
polycyclic aromatic hydrocarbons, quinones (Chalet 2005; Janssen et al., 2015; Lyu, et al.,
2018; Verma, et al., 2015), and also soluble spe@articularly transition metals such as iron,
copper, and vanadium (Charrier and Anastasio, 2@t8beddu, et al., 2017; Fang et al., 2017;
Shuster-Meiseles et al.,, 2016; Valko et al., 20@%nong the most usedcellular methods for
assessing PM OP, the dithiothreitol (OP Charrier and Anastasio, 2012) and the ascorkit ac
(OP*, Mudway et al., 2004) depletion assays display #uvantage of using low-cost
spectrophotometric UV-Vis measurements (Calas.eP@l8; Crobeddu et al., 2017). These assays
have been found to display different sensitivityaods the redox-active species present in PM
(Calas et al., 2018; Fang et al., 2016; Janssah,&015; Visentin et al., 2016; Weber et al., 201
Yang et al., 2014). Using these assays, some autifathis study assessed the®®Pand OP*
activity of PMys and PM, samples collected at different sites across Itsiggntin et al. 2016;
Pietrogrande et al., 2018a; Pietrogrande et al.8R&pD

Additionally, particle-size has been found critigaimediating PM toxicity, with particular attentio

to PMys and PMy particles, for which the European Union has definarget values of mass
concentrations in the Air Quality Directives in erdo improve air quality (CEQ008. PM, s has
been foundnore potent than larger Ry because of its increased number, large surfaze amnd
high pulmonary deposition efficiency (Chalupa et 2004). The dependence of the OP responses
on the PM size has been investigated, mainly fofRvid PM s (Boogaard et al., 2012; Chirizzi et
al., 2017; Daher, et al., 2014; Fang et al., 20&&far et al., 2014; Janssen et al. 20y4; et al.,
2018; Shafer et al., 2016; Simonetti et al., 2018).

This paper assesses OP of RMnd PM, samples simultaneously collected at a peninsitiao$

the Central Mediterranean basin, which is impachsd different sources, because of the
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contributions of long-range-transported air madses the surrounding regions (Perrone et al.,
2013; 2014a, 2014b, 2016; Becagli et al., 2017richiet al., 2017).

In this study, the responses from the DTT and Agags are investigated and compared in order to
associate the variation in the OP activity with gaaticle size and distribution of the redox-active
species in PMsand PM fractions. Therefore, the findings of this work wla provide relevant
insight in identifying the PM sources that mostifluence the oxidative properties of the PM size

fractions.

1. Materialsand Methods

2.1. Sampling Site and Period

The study site is located in a suburban site (40.38.1°E) of the flat Salento’s peninsula, in the
Central Mediterranean. Thirty-nine BMfilters collected from B December 2014 until 12
October 2015 have been analysed: more specifi@dlygsamples from April to September (Spring-
Summer, SS) and 15 in October—March months (AutWimer, AW). Sampling was performed
with a low volume (2.3 hh™) HYDRA-FAI dual-sampler that made it possible tmsltaneously
collectPM, sand PMg granulometric fractions using two independent dargpines. Note that the
PMjo samples of this study were included in a morereddd study devoted to 53 Rfilters, as
previously reported in Pietrogrande et al. (2018a).

The sampler was located at the Mathematics andid2hiepartment of the University of Salento
(~10 m above ground level) to collect 24-hour Rlgamples on 47-mm-diameter preheated filters
(PALLFLEX, Tissuquartz). The filters were conditesh for 48 hours (25°C and 50% humidity)
before and after sampling and the PM mass condemtsawere determined by the gravimetric
method. Uncertainties on mass concentrations averldthan 5%. The P loaded filters were
divided in four punches for the determination obrganic ions and methanesulfonate, metals,
organic and elemental carbon, and the oxidativergt.

2.2. lons, Metals, and Organic and Elemental Carbon Analysesin the PM Samples

Loaded as well as blank BMfilters were submitted to different analyses torelterize their
chemical composition by using the methods descrilbedetail in Perrone et al. (2014a) and
Pietrogrande et al. (2018a). In particular, anig@s, NO,, NO;, SQ%, MSA, oxalate, acetate,
glycolate, proponiate, formate, and pyruvate) aations (N& NH,", K', Mg?", C&") mass

4
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concentrations were determined by a Flow Analysis Chromatography (FA-IC). An Inductively
Coupled Plasma Atomic Emission Spectrometer wad tseletermine the mass concentration of
Al, Ba, Cd, Ce, Co, Cr, Cu, Fe, La, Mn, Mo, Ni,M, Sr, Ti, V, and Zn. lon and metal analyses
were performed at the Chemistry Department of timévéisity of Florence. The Sunset Carbon
Analyzer Instrument with the EUSAAR-2 temperaturegsam protocol (Cavalli et al., 2010) was
used to determine the organic and elemental cagi®@nand EC, respectively) mass concentrations.

2.3. Assessment of the PM Oxidative Potential

The OP of the collected PMsamples was assessed with the DTT and AA aceléhods. The
OP response was measured as the antioxidant adepletie of known quantity of DTT and AA,
following the experimental procedure describedigtregrande et al. (2018a, b).

The DTT and AA depletion rates (nmol rifinwere determined by linear fitting of the reagent
concentration versus time relationship (five expental points at 5, 10, 15, 25, 40 minutes) plot. |
general, a good linearity was found with correlatimefficient B> 0.98 (Visentin et al., 2016). For
both methods, the DTT or AA depletion rates wergeeined for blank quartz filters and
subtracted from response of each real PM samplaepteaand blank assays were run in duplicate.

3. Reaults

3.1. PM_ 5 mass concentration and chemical composition

The chemical composition of P particles was characterized in detail for morentBa species,
including ions — N& NH,", K*, Mg?*, C&*, CI, NO,, NO; and SQ* — metals — Al, Ba, Cd, Ce,
Co, Cr, Cu, Fe, La, Mn, Mo, Ni, Pb, Sr, Ti, V and Z and organic components, — OC and EC,
methanesulfonate ion and carboxylic ions. The measBM s mass concentrations are reported in
Table S1 of the Supplementary Information (Sl)tles mean values and corresponding standard
errors of the mean (SEM) computed for AW and SSogerseparately. Such a grouping is
motivated by the season dependence of the PM moasgmtration and chemical composition at the
study site, as reported in previous studies (€grrone et al., 2014a, 2016; Pietrogrande et al.,
2018a). The two-tail t-test was applied to the m&av and SS values to assess their statistical
difference at p < 0.05 significance level (valuesrked by * in Table S1).

The mean PMs mass concentration varied weakly with seasonsgb26*2 and 20+hig mi® in

AW and SS, respectively. This result may be relatethe weak dependence on seasons of the
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planetary boundary layer (PBL) depth in the studdaaas reported in previous studies (Perrone et
al., 2013, 2014b, 2016, Perrone and Romano, 20h&)percentage contribution of the investigated
species to the total PMand PM, mass are summarized in Figure 1 for AW and SS (ffaga 1a-c
and 1b-d, respectively). OC was discriminated betwprimary (POC) and secondary organic
carbon (SOC) by using the OC/EC ratio approach @®Pial., 2011). The mass percentages due to
metals and to MSand carboxylic ions have been grouped in Met axid r€spectively. Among the
analysed species, the carbonaceous compoundseaneajbr components. $8 NO;~, NH," and

K* are by far the most abundant inorganic ions, whiétals are minor components.

The higher levels of EC, POC, NQ and K in AW than in SS can be related to the stronger
contribution from residential heating in the cokehson. The greater mass concentration of Na
NH,", Mg*, C&*, SQ*, and SOC in SS than in AW may be related to théeamelogical
conditions occurring in SS over the Mediterranaaajnly the formation of secondary particles
favoured by the large solar irradiance and the demispension because of the lack of rainy days
(e.g. Perrone et al., 2013, 2014a).

3.2. PM2s and PM;o samples. comparisons between mass concentrations and chemical

components

The PM s chemical composition was compared with that of $imaultaneously collected Py
samples, which are a subset of the overall datartegh in Pietrogrande et al (2018a). The mean
PMio mass concentration was 34+3 and 2&1;)2m‘3 in AW and SS (Table S1), confirming the
prevalent contribution of fine particles at thedstsite, i.e., PMsaccounted for 77 and 70% of the
PMjo mass, in AW and SS, respectively (Perrone eR@l 3, 2014a)Accordingly,the distribution

of all the investigated chemical species showedsdi®e seasonal trend in RVas in PMs
fractions (e.g., Perrone et al., 2013, 2014a, 20P#irogrande et al. 2018a), as clearly depiated i
Figure 2 (compare Fig. 2a and 2b with Fig. 2c addr2spectively). In particular, carbonaceous
compounds showed similar concentration in bothtifvas being accumulated in the fine PM
(Jaafar et al. 2014; Lovett et al. 2018). Accortiinghe OC/EC ratios computed in both PM
fractions were similar in SS and AW, respectivelalfle S1) (Waked et al., 2014). In addition,
SO and organic secondary ions have similar concentisin both fractions, as they preferentially
concentrate in the accumulation mode due to thecorsdary nature (Daher et al., 2014).
Conversely, the N@ion showed an unexpected size distribution witthlr concentration in P
than in PM s, as previously found in most coastal sites ofgbethern Mediterranean Basin (e.g.,
Bardouki et al., 2003; Perez et al., 2008). Itrsably due to the low thermal stability of hRO3

6
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in SS, when the formation of HNOnstead of NHNO; is favoured under the prevalent warm
conditions of most of the Central Mediterraneaass{Querol et al., 2008). The presence of gaseous
HNO; and the possible interaction of the pollutant witimeral calcium carbonate,”Kand sea salt
may account for the increase of the coarse nipatportion (Perrone et al., 2013; Perrone et al.,
2019). Fine nitrate particles are usually the ftestinitric acid/ammonia reactions leading to the
formation of ammonium nitrate. The concentratioh€b and Na (tracers of sea salt aerosol) and
Mg and C&" (crustal tracers of soil resuspension) were neige in PMo compared with
PM, s, that is consistent with the nature and size e$¢hparticles (Hasheminassab et al., 2014). As
expected, also metal species, are accumulateceiodéarse fraction, i.e., Al, Ba, Ce, Cu, Fe, with
Fe, Zn and Cu as the dominant metal species (Lgli,62018; Pant et al., 2015; Shirmohammadi et
al., 2017; Simonetti et al., 2018; Waked et al140

3.2.1. Source apportionment of PM, s and PMyq particles

Although the small number of the present RMamples prevents a source apportionment study, to
describe the source contribution to PM mass weusarnthe factors computed from Positive Matrix
Factorization (PMF) in a recent study concerningrall 90 PM s and PMgo samples collected at
the study site (Perrone et al., 2019) of whichghesent 39 samples represent a randomly selected
subset. It well represents the whole dataset, mgdoh investigated species, the computed mean
concentrations show a good agreement (within £ MBS@able S1) with those of the all dataset
(Perrone et al., 2019). For convenience, the PMElt®are summarized in Table 1, reporting the 6
identified factors/sources with the correspondingrcpntage contributions in AW and SS,
respectively. The “sulphate” source was associtdtie high percentage of $Q NH,*, and Pb.
The “mixed anthropogenic” source was related tokeyar from both traffic (e.g., EC, OC, Cu, Fe,
Ba) and biomass burning (e.g.,,KOC, EC). The “heavy oil/secondary marine” sourcas
dominated by V, Ni, and Cr, likely due to ship esmss, and MS The “reacted dust” factor was
related to crustal particles mixed with nitrate aoudbhate secondary specie. The “sea salt” source
was characterized by the main markers Biad Cl. The “soil dust” source was mainly associated

with soil related species, i.e., Al, €aSr, Ti, Fe, Mn.

3.3. Oxidative potential of PM, 5 samples

The PM s OP responses were measured with both assay® (@fnolmin™® andOP™: nmolmin™)

and normalized by the volume of sampled air {8 and OP*, expressed as nmol mirm™) as

7
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an exposure metrics accounting for inhaled airaddition, OF'" andOP* were normalized by
the PMys mass (OP™",, and OP*,, expressed as nmol niinug?) to point out the intrinsic ability
of the particles to deplete physically relevanti@ntiants. Figure 2 reports the time series of the
OP*\ and OF™ activity measured in the different particle siracfions (PM;s dark grey bars;
PMyq: light grey bars) during the cold (AW, Figures tpand the warm period (Figures 1b, d).
Overall, the OB™ responses were higher than thePones in both seasons. More specifically,
in AW, the mean OP 'y value was 0.29+0.03 nmahin® m® and the mea®P*'y value was
0.21+0.03 nmomin? m?. In SS, the difference was larger, with ®R responses of 0.19+0.02
nmolmin® m? and OP*, of 0.09+0.01 nmamin™ m.

The measured GP'y values are in reasonable agreement with the melar ¥8.40+0.26 nmol
min® m®) reported by Chirizzi et al. (2017) for the sanie $y analyzing 30 Plk samples
collected in AW between 2013 and 206 general, our results are towards the lowestadritie
range of values reported in literature for P\particles, being the study site away from large
sources of local pollution. This may represent euparity of the results reported in the paper, as
most of the literature data concern OP at largeaurbnd/or polluted sites. Consequently, the
OP’™, varied from 0.3 nmamin m® in Atlanta to 2.0 nmamin® m® in Rotterdam (Janssen et
al., 2014; Lyu, et al., 2018; Samara, 2017), whike OP*, ranged from 0.3 to 20 nr®! min™ m’

3 (Fang et al. 2016; Janssen et al., 2014; Weksr, 2018).

Overall, the two assays displayed similar sensytito the studied Pl samples (Table 2), as
proved by the significant correlatiorp (< 0.01) between OB'y and corresponding Gf,
responses in both seasons (r= 0.91 and r= 0.7@&Wband SS, Table 3). This is in agreement with
some results reported in literature (e.g., Janstesl. 2014; Mudway et al. 2004). But, it is in
contrast to other papers reporting different sesisitof the two assays towards the same redox-
active species (Calas et al.,, 2018; Fang et alg;28imonetti et al., 2018; Szigeti at al., 2016;
Visentin at al., 2016; Weber et al., 2018; Yangakt 2014). Indeed, the specific sensitivity of
OP’™" OP*™ responses is still an open question. The resultshefpresent study may likely
contribute to elucidate this point.

Despite the similarity of the mean &P, and OP”*, responses (Table 2) and the overall good
correlation between the data, the individual’&R and OP", values largely varied day-by-day
with different behaviour for the same sample, asashby the daily trend reported in Figures 2 a-d
(dark grey bars). Such a large variability may ikely ascribed to the day-by-day change of the
PM, s concentration/composition, because of the impathaistudy site of long-range transported
particles from the surrounding regions. Such anaichphas been found by the Authors by

investigating the main airflows by using the Hybriingle-Particle Lagrangian Integrated

8



268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300

Trajectory (HYSPLIT) model version 4.8, from NOAARA (Draxler and Hess 1998) (Perrone et
al., 2013; 2014a, 2014b, 2016; Becagli et al., 2@Hdrizzi et al., 2017; Pietrogrande et al., 2018a
This represents an additional peculiarity of pape€sults, as most of the previous studies were
mainly devoted to sites mainly impacted by locdlygmn sources, e.g. traffic sites, underground
train stations, farms, as mentioned (Boogaard .e2@ll2; Calas et al., 2018; Jaafar et al., 2014,
Janssen et al., 2014; Moreno et al., 2017; Shdfal.e 2016; Shuster-Meiseles et al., 2016;
Simonetti et al., 2018; Weber et al., 2018; Zhang).e2017).

The comparison of the &P, and OP", values (Figures 2a-d, dark grey bars) with the
corresponding Pl mass concentrations (Fig. 2e,f, dark grey bargaked that high QPvalues
were associated with high BM mass concentrations, indicating that theyQBsponses were
extensive parameters dependent orp PMass concentrations. This is described by the tjoedr
correlation(p < 0.001) of both the GP'y, and OP*, values with the PMs mass: the Pearson
correlation coefficients are 0.79 and 0.3<(0.001) for OB™"y in AW and SS respectively, and
0.82(p < 0.001) for OP*y in AW. Consistently, the OP",, response was nearly constant through
the investigated period, with mean value of 0.01080 nmol mift ug* (Table 2). The OF,
values were less significantly (r=0.4¥< 0.002) correlated with the PMmass in SS. Therefore,
the mean Of',, responses changed through the year, with significéhigher values in AW
(0.008+0.001 nmol mihpg?) compared with SS (0.005+0.001 nmol thipg?). Janssen et al.,
(2014) also found significant correlations betwésn PN smass concentration and &R,

As OP responses were measured over a full yea@QRkhseasonal trend was investigated and related
with the particle chemical composition. Signifidgnhigher OP'™", and OP", responses were
measured in the cold than in warm seasons, as gedpoy a two-tait-test on AW and SS mean
values (significant differences at p < 0.05 lewel marked by *in Table 2). More specifically, the
average OP''y and OP*, values were 1.5 and 2.3 times higher in the celdop than in the
warm period, respectively. Such a seasonality df'GPand OP* values has been also observed
in other studies for ambient BM samples and related to seasonal changes of thehemical
composition (Fang et al., 2016; Verma et al., 204i5entin et al., 2016; Weber et al., 2018).

3.4. Association of the oxidative potential with chemical components/sources
To identify the PMschemical components and hence the pollution souwtgesg ROS activity,

the association between the 'R and OP”, responses and the concentrations of chemical

species was investigated by correlation analysl®e Pearson correlation coefficient (r) was
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computed for each investigated component for AW &8d separately, and reported in Table 3 (r
values significant at p <0.05 level are in bold).

In the cold season both OP responses were widetglated with several species, namely,atd
NOj, several metals (Ba, Cd, Cu, Fe, Mn, P, V), andazaceous species (OC, EC, Acetate,
Oxalate and Glycolate). In SS samples OP showaedfis@nt correlation with only few species,
i.e.,, NG, Cu, OC and EC.

In addition, the inter-correlation among the anetlysspecies was investigated to highlight
association among common emission sources andfondary processes (correlation coefficient r
reported in Tables S2 and S3 of the Supplementdoyration for AW and SS, respectively). One
observes that in AW all the species highly coreslawith OP™"y, and/or OP*y also showed a
significant inter-correlation. In SS, the specig®;\ Cu, OC and EC were highly inter-correlated,
but their correlation witkk*, Ba, Cd, Fe, Mn, P, V, OC, Acetate, Oxalate angc@hte was rather
weak (Table S3).

By combining these data with the PMF results, we ioder that in both seasons OP was mainly
associated with the “mixed anthropogenic” sourneluding traffic and biomass burning, and also
with the “reacted dust” factor (Table 1). Therefotlee smaller OP values observed in SS were
likely explained by the lower contribution of thentxed anthropogenic” source, which decreased
from 55.3% to 15.9% from AW to SS (Table 1).

These results are consistent with several litegatdata on PMs that report the dominant
contribution to OR of carbon components from biomass combustion (Feingl., 2016; Janssen et
al., 2014; Muciga et al., 2009; Reid et al., 2088;szko et al., 2017; Verma et al., 2015; Zhang et
al., 2017), as well as of traffic related metals¢hs as road dust components, vehicular abrasion
metals and fuel oil combustion emissions (Crobestdal, 2017; Daher et al., 2014; Lyu,et al, 2018;
Moreno et al, 2017; Shafer, et al, 2016; Shirmohaxtiret al., 2017; Shuster-Meiseles et al., 2016;
Valko et al., 2005; Yang et al., 2014).

3.5. OP°™" and OP™ responses for PM,sand PMy, fractions

The variation of the OP activity in PMand PM, fractions was investigated in relation with the
PM chemical composition/source. The presented fMta were compared with the PjMesults
measured in a previous work for the subset of #tigly. Concentrations of the investigated
constituents (Figure 2e-f and Table S1 of Sl) arRl ®sponses (Table 2 reports mean + SEM
values, significant differences at p < 0.05 betw#enPM sand PMg are marked in bold) were

compared in Pietrogrande et al. (2018a).
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The DTT assay produced similar responses for biath feactions, i.e., 0.24+0.04 and 0.29+0.03
nmol min® m3in AW, and0.22+0.02 and 0.19+0.02 nmol rifitn SS, for PMy and PM sparticles,
respectively. Likely because suggests this assay/mainly associated with redox active species
accumulated in the fine fraction. Otherwise, the A&say exhibited a clear particle-size
dependence, as OF, responses were significantly higher for RNhan for PMs, i.e., 0.35+0.06
vs. 0.21+0.03 nmol mihmin AW and0.23+0.04 vs. 0.09+0.01 in SS (Tablébald values). This
suggest that AA depletion is more affected by sgmepresent in coarse particles, especially to those
generated by vehicular traffic, such as brake amaand re-suspended dust (Simonetti et al.,
2018).

Concerning association of 8Py and OP”, responsewith PM;, components, data in Table 3
show that in AW both responsegre significantly correlated with 'K Ba, Cd, Fe, OC, and EC,
which are markers of the “mixed anthropogenic” seuras found for Pl particles. In addition,
OP™v responses were also significantly correlated witetals — Cr, Cu, Mn, V - and some
organic compounds - MSacetate, glycolate, propionate, formate, and \@tes — that are
components of the “heavy oils/secondary marine’tc@uTable 1).

In SS, the association of QFPesponses with chemical components significandijed with both
the OP assay and PM fraction, as shown in Tablee8ause of the changes with seasons of the
pollution source contributions

In PMyo, the OP™'v responses were correlated with NHCu, OC, EC, oxalate, and glycolate, in
SS. These species were mainly associated with ihreass-burning component of the “mixed
anthropogenic” source. Note that in SS the Meditezan basin is a worldwide wildfire hotspot due
to the occurrence of a huge number of wildfirese Py OP’"'v response was also associated in
SS with the “sulphate” source of which YHs a maker.

Otherwise, the PM OP*v responses were correlated with more species, lyaxte,”, K*, C&”,
SO, MS, Mn, Ni, P, Ti, V, oxalate, and glycolate. Theuks of the PMF model showed that
NH," and S@ were the dominant species of the “sulphate* sowcd\i and MSwere the main
components of the “heavy oil/secondary marine“ seuand C&, Mn, and Ti contributed to the
“soil dust” source. Therefore, the RMOP™v responses were likely associated with the above-
mentioned sources, whose contribution has almosbldd from AW to SS (Table S1). The
negligible correlation of the GPv responses with OC and EC was likely responsiblettie
significant OP"v decrease from 0.35+0.06 to 0.23+0.04 nmol tnin® from AW to SS (Table 2),
being OC and EC the main species contributingéd™it, mass (Figure 2a-b).

3.5.1 Regression analysis of the OPP™" and OP™* responses with individual species
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To further highlight the sensitivity of the two CG#8says to various PM components, regression
analysis was applied to describe™R and OP*, responses as a function of the chemical species.
Linear regressions were computed for species ilPi¥igsand PMo samples for AW and SS data,
separately. Among the obtained equations, the peteamof those of the most abundant and/or well
correlated (R> 0.4) components are reported in Table 4 (intercsfupe, linear correlation
coefficient, R, andchi-square ) values to test goodness of the fit). Also muttehr regressions
were computed by including two or three chemica&icsgs: the best obtained results are reported in
Table S4a (OF) and S4b (OP'"y) of SI, for AW and SS and for P\ and PMy particles,
respectively. In general, we can observe that tidusion of two or more variables did not
significantly improve the fitting goodness, measubg y? value, in comparison with simple linear
model. Therefore, the results of the linear regoesswill be discussed in the following.

Overall, in AW, similar regressions were computedthe OP™"y, and OP*, responses with OC,
EC, POC, K and Fe in both fractions. In particular, closeps® of the regression lines were
computed, as a measure of the assay sensitivityetovestigated species (Table 4). An exception
is K* in PMug, as the slope of the &R, regression line is nearly 1.5 greater than tha®d&f™"y
(0.45+0.15 and 0.31+0.09 nmol riipg*, respectively). This likely explained the higheP®,
than OP'"y responses measured in Ramples (Table 2).

By comparing the different particle size, we casabe that the sensitivity of the &R responses
toward POC, EC, K Fe, and Cu decreases from kb PM, s particles in AW (Table 4)This is
particularly marked for Cu, as the line slope iséhtimes higher for P (31+6 nmol mift pg?)
than for PM.5(10+3 nmol mifi- pg?). Furthermore, the Cu and Fe concentrations aadyndouble

in PMyo compared with PMs. These results clearly account for the highefQPesponse in PM
than in PM2.5, besides indicating that the traositinetals, especially Cu, significantly driven of
OP™\ responses. Both reasons motivate the higher sétysiof AA assay to coarse particle.
Otherwise, the OBy responses display higher sensitivity towards EOCRand K in PM, s, that
have similar concentrations in both fractions (€aBlL of Sl), supporting the finding that the DTT
assay was more sensitive to PM2.5 than to PM1(cjest(Table 2).

In SS, the OF*, and OP™, values were roughly correlated%R0.4) with POC, EC and SO
mass concentration for P(Table 4). In these samples, 0and OC were the most abundant
redox active species, contributing on average byatd 22% to the PM mass (Figure 1d).
Consequently, the GP'y, and OP”, responses may significantly vary day-by-day dependn

the amount of Sg3~and/or OC in the tested Rlysample, as shown in the study cases described in
the following. For PMs, both OP”, and OF''\, responses showed significant association with
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POC and EC mass concentrations, with similar seitgiof the two assays, i.e., ~ 0.05 nmain™

ng! for POC and ~ 0.10 nmotin™ pg* for EC (Table 4).

In conclusion, the contrasts between the AA and @%3ay responses were likely associated with
the different sensitivity of both assays towardecs#jic emission sources, such as “sulphate®,
“heavy oil/secondary marine* and “soil dust” sowc&his is in agreement with results found by
other Authors, i.e., Calzolai et al., 2015; Jaataal., 2014; Shirmohammadi et al., 2017; Styszko e
al., 2017; Verma, et al., 2015; Waked et al., 20¥éper et al., 2018.

3.6. OP°™T,, and OP*" responses on selected monitoring days

The data of selected monitoring days were invetgdyan detail to relate the contrasts between the
OP’™",, and OP*, responses in PM and PMo samples with the change of the mass concentration

of specific chemical species.

3.6.1. Study cases: 20 December 2014 and 11March 2015

The days 20 December 2014 and 11 March 2015 shewdifferent pattern of th©P*, and
OP’™"y, values (Figure 2a-c). In fact, on 20 December 2BB4PM, OP*, reached the highest
value (0.68 nmomin™® m™), while the PMs OP*\ value (0.19 nmomin m®) was smaller than
the mean AW value (0.21 nmolin® m®). Otherwise, on 11 March 2015 the ‘®p values were
rather similar for both size fractions (close t8®nmol mif* m*, Figure 2a). Concerning P ,

the PMg value was 0.37 nmol minm™ on 20 December and 0.25 nmol whim™ on 11 March,
while the PM 5 value was 0.33 nmol mifhm™ and 0.27 nmol mitrm™, respectively (Figure 2c).

The PMmass concentration was very similar in the two dags 26 and 25 pgffior PM, s and 34
and 33 pg/mfor PMy on 20 December and 11 March, respectively (Fiqiee Therefore, the
above outlined contrasts resulting from Figuresda 1c cannot be ascribed to differences in mass
concentrations, but have to be searched in therdiit PM composition. The mass concentration of
the main redox active species on 20 December (gty bars) and 11 March (dark grey bars) are
reported in Figure 3 for PM (a) and PMp (b) samples. More specifically, the left side aafs
Figure 3 provides the mass concentration of theii@m chemical components, i.e., NHK,
NOs;~, SO, OC and EC, being their respective mass percentddé in the PM, fraction (Table

S1 of Sl). The right side axis refers to the speciearacterized by a mass percentage <1%,(MS
Ba, Cd, Cr, Cu, Fe, Mn, P, V, Zn, acetate, glyalgropionate, formate, pyruvate), reported in
light grey axis. The OC and EC mass concentrati@ashed one of the highest values on 20
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December, while their mass was almost halved orMaich. More specifically, OC and EC
accounted for 53% and 27% of the Rivhass and for 68% and 36 % of the RMnass on 20
December and 11 March 2015, respectively. Theregfoeecan infer that the high contrast between
the PMoOP°™"y and OP*\ values on 20 December was mainly due to the faaterof change of
the OP*, with the OC and EC mass concentrations than thB"QRTable 4). The contrast
between the two assay responses decreases on th, Mezly because of the remarkable decrease
of the OC and EC mass contribution to the;Pkhass. Note also that the contribution of SOC
particles was greater on 11 March than on 20 Deeends indicated by the OC/EC mass ratio,
which is 3.1 and 2.4 on 11 March and 20 Decemlempactively. Consequently, the significant
decrease of the POC concentration on 11 March ibotgd to the above result, being the POC
particles the main redox active species (Tablesn@ 4). The change in the PM chemical
composition on the selected days can be explaigadvestigating the main airflows at the study
site by using the HYSPLIT model (Draxler and He888). The 4-day HYSPLIT back trajectories
that reached the study site at 12:00 UTC of 20 bez (Figure 4a-b) show that the air masses
associated with the 0.27 and 0.5 km arrival-heightk trajectories came from the Central
Mediterranean Sea and anthropogenic polluted aneasuthern Italy. Conversely, on 11 March,
back trajectories crossed Eastern Europe and trerdfiey likely transported aged carbonaceous
particles or SOC enriched particles to the stuty(siigure 4c-d).

3.6.2. Sudy Cases. 7 May 2015 and 29 July 2015

In SS period, an opposing trend of 8", and OF™", values was observed in the days 7 May
and 29 July (Figure 2b-d). On 7 May, % reached one of its highest values (0.66 nmol‘min

% in PMyo, while it was more than 4 times smaller in £\0.16 nmol mift m*, Figure 2b). In the
same day, Ty showed similar responses for both Bihd PM s samples, i.e., close to their SS
mean value. The PM(PM,s) mass concentration was equal to 41 (31) and 44(8/nT on 7 May
and 29 July 2015, respectively (Figure 2f). Thigtgra can be related to the variation in the mass
concentration of the main redox active speciesgpsrted in Figure 5 for (a) PMand (b) PMoon

7 May (light grey bars) and 29 July (dark grey hafn 7 May, the S§~ mass concentration
reached one of the highest values, i.e., 5.5 aéh@&/nT in PMyp and PM s, respectively. For P,

the significant association of &R, with SQ? (Table 4), may likely accounts for the difference
between the PM OP°™"y and OP” values on 7 May (Figure 2b and 2d).

On 29 July 2015, the @f, and OF™, value was 0.08 and 0.29 nmol Mim?, respectively
(Figures 2b and 2d). In this day, the $Gand OC mass concentration was equal to 3.6 andd.0
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m3, respectively, in the P\ sample (Figure 5b). The low $0and high OC mass concentrations,
respectively, have likely been responsible for tserved differences between the”®Pand
OP’™, values. Concerning OP'y, similar responses were measured in,PEhd PM, samples.

In contrast, the O¥y value was nearly twice larger in BMthan in PM,, likely because of the
higher o4, sensitivity toward OC in Pl than that in Pivb.

Figure 6a-b shows that the 4-day HYSPLIT back ttajees crossed north-western Africa and the
Mediterranean before reaching the study site 22ARITC of 7 May, 2015. Therefore, the rather
high mass concentrations of $Gnd oxalate, respectively, are likely due to thevplent stagnant
conditions occurring in SS over the Mediterraneasi (e.g. Calzolai et al.,, 2015) and the
enhanced photochemistry, which favours the formmatibsecondary aerosols. Moreover, the rather
high Fe mass concentration monitored on 7 May atd& that they have likely been responsible for
the transport of dust particles at the study siteprding to Perrone et al. (2016). In contrast,4h
day HYSPLIT back trajectories that reached thestite at 12:00 UTC of 29 May, 2015 came
from the Atlantic Sea and crossed France and seastern Italy before reaching the study site
(Figure 6c¢-d).

4. Summary and Conclusion

In summary, we investigated the impact of sizeritistion and chemical composition on &P
and OP” responses of PM and PM, samples. We could identify specific contributiohtie
various chemical species and/or the pollution sssjrbecause of the peculiarity of the study site,
which is strongly impacted by long-range-transpbrgarticles from different sources, and the
monitoring campaign duration all over the yearatitition, the comparison between the DTT and
AA responses clearly highlighted that the two assegntrast in sensibility towards individual
redox active species/sources.

We observed that in AW, the 8By, and OP", responsesvere associated with the “mixed
anthropogenic” source in both BMand PMy particles. In addition, the PM OP*v responses
were associated with the “heavy oils/secondary mearsource.

During SS, in PMs, the ROS activity was associated with the “mixedheopogenic” and the
“reacted dust” sources. In RMthe OP™'v responses were mainly associated with the biomass
burning component of the “mixed anthropogenic” seywhile the Of'v responses were likely
driven by the “sulphate”, “heavy oil/secondary mati and “soil dust” sources.

Therefore, the variation of the &Py and OP”, responses with season can be explained by

combining seasonal changing of PMnd PM,chemicalcompositionwith the different sensitivity
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of the DTT and AA assays to the various redox-actipecies. Overalthe DTT assay was more
sensitive to species generated by combustion pesgamostly belonging to the fine mode
particles. This last finding merits further investiion, also because of the increasing relevance of
this source that has been recorded during the/éasts. Conversely, the AA assay was particularly
sensitive to metals in P} particles, mainly generated by vehicular traffiach as brake abrasion
and re-suspended road dust.

Therefore, the results of this study should be id@med helpful to design regulatory strategies
toward establishing more effective and source-$iga@gulations for mitigating PM toxicity. Such
policies could focus on reducing PM emissions freamicular traffic and biomass burning. In
addition, the chemical specificity observed for D&md AA assays emphasizes the need of a

standardized approach for the future studies otegpiology or toxicology of the PM.
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716 Table 1. Aerosol sources (and main markers) for PM2.5 aMi(P particles. The percentage
717  contribution of each source is also provided for AMUtumn-Winter) and SS (Spring-Summer),
718  extracted from Perrone et al. (2019).

719
PM2.5 PM 10
Source
AW AW
o) o)
) S ) SO0
Sulphate
17.5 46.1 13.2 28.8
(SO, NH,", Pb)
Heavy Oils/ Sec. Marine
0.1 0.5 0.4 2.1
(V, Ni, Cr, MS)
Mixed Anthropogenic
55.3 15.9 59.7 28.1
(EC, OC, K, Cu, Fe, Ba)
Soil Dust
7.9 9.3 12.1 235
(Al, C&*, Sr, Ti, Fe, Mn)
Reacted Dust
2.9 11.7 6.4 12.5
(NOs, SQ%)
Sea Salt
16.3 16.6 8.3 5.0
(Na'", CI)
720
721
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724
725
726
727

728

729
730

Table 2. Volume- (OR)) and mass-normalized (@POxidative Potential responses measured for
PMyo and PM s with DTT (OP’"") and AA assays (JP): mean values and standard errors of the
mean (SEMs) computed for autumn-winter (AW, 15 flaysl spring-summer (SS, 24 days) data,
separately. Values with significant (p<0.05) diéiece between the seasons are marked by * and
those with significant (p<0.05) differences betwéssn PM, and PM sfractions are reported in

bold.
Autumn-Winter Spring-Summer
Oxidative
Potential PMyo PM; 5 PMio PM; 5
Mean SEM Mean SEM Mean SEM Mean SEM
OP™,
( PA mir _3) 0.35 0.06 0.21* 0.03 0.23 0.04 0.09* 0.01
nmo min-m
oP™,
( P mir _3) 0.24 0.04 0.29* 0.03 0.22 0.02 0.19* 0.02
nmo min-m
OP¥,
L1 0.010 0.002 0.008* 0.001 0.008 0.001 0.005* 0.001
(nmo™ min™ pugh
P,
0.007 0.001 0.011 0.001 0.008 0.001 0.010 0.001

(nmoP™ min™ pgh
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731
732
733

Table 3. Pearson correlation coefficients (r) betweer? ®Pand OP*, responses and chemical components ingRid PM sparticles computed
for autumn-winter (AW, 15 days) and spring-sumn&8,(24 days) data, separately. Statistically dicant correlations are marked by *** at p <
0.01 level, ** at p< 0.02 level, and * at p < 0.05 level.

Autumn-Winter Spring-Summer

Parameter PM g PM. s PM (g PM,g

OPAAV OPDTTV OPAAV OPDTTV OPAAV OPDTTV OPAAV OPDTTV
(F;'\SA%RV 1.00 0.50 0.61** 0.75%** 1.00 0.45* 0.20 0.29
(F;“F",E}%TV 0.50 1.00 0.70%** 0.65%** 0.45* 1.00 0.42* 0.57***
(F;'\SEEV 0.61** 0.70%** 1.00 0.91%** 0.20 0.42* 1.00 0.70%**
g'\F",g-TSTV 0.75%**  0.65%**  091*** 100 0.29 057%%*  0.70"**  1.00
PM 1o 0.47 0.70%** 0.84%** 0.81*** 0.24 0.30 0.50*** 0.72%**
mass
PMs 0.46 0.59** 0.82%** 0.79*** 0.18 0.24 0.47%* 0.63***
mass
Na* -0.64***  -0.49 -0.32 -0.43 -0.40* -0.18 0.41* 0.29
NH,* -0.32 -0.05 -0.07 -0.05 0.63*** 0.43* -0.25 0.00
K* 0.64%** 0.70%** 0.79%** 0.73%** 0.44* 0.25 0.19 0.26
Mg* -0.41 -0.23 -0.06 -0.09 0.17 0.14 0.01 0.13
ca® 0.18 0.32 0.23 0.27 0.52%** 0.27 0.02 0.14
cl -0.46 -0.23 -0.14 -0.20 -0.53***  -0.49** 0.08 -0.03
NOgz 0.13 0.46 0.60** 0.66*** -0.00 0.39 0.51%** 0.45*
Sl -0.36 -0.15 -0.05 -0.04 0.71%** 0.34 -0.22 0.01
MS 0.62%** 0.12 0.21 0.26 0.52%** 0.00 -0.35 -0.05
Al 0.13 0.02 -0.01 0.04 0.37 -0.00 -0.06 0.20
Ba 0.89*** 0.57* 0.67+** 0.62%** 0.22 0.30 0.45 0.34
Cd 0.67*** 0.55* 0.75%** 0.73*** -0.11 0.02 0.18 0.31
Ce 0.27 0.38 0.53* 0.40 0.07 -0.18 -0.26 -0.14
Co -0.06 0.22 0.28 0.32 -0.08 -0.32 0.09 -0.18
Cr 0.61** 0.23 0.37 0.35 0.09 0.27 0.14 0.02
Cu 0.84*** 0.50 0.64*** 0.56* 0.21 0.52%** 0.63*** 0.47%*
Fe 0.76*** 0.53* 0.76*** 0.80%** 0.38 0.26 0.17 0.34
La 0.19 0.22 0.24 0.10 0.21 -0.18 -0.38 -0.06
Mn 0.57* 0.38 0.58** 0.66*** 0.46** 0.13 0.15 0.32
Mo 0.19 0.21 -0.47 -0.44 0.14 -0.08  -0.43* -0.33
Ni 0.29 0.16 0.27 0.04 0.48** -0.08 -0.25 -0.10
P 0.17 0.29 0.76%** 0.72%** 0.56%** 0.15 0.04 0.07
Pb -0.28 0.00 0.49 0.44 0.16 0.14 0.34 0.29
S -0.03 -0.15 0.24 0.18 0.34 -0.06 -0.05 0.18
Ti 0.17 0.06 0.14 0.21 0.44* 0.07 0.06 -0.21
\% 0.63*** 0.42 0.73*** 0.77*** 0.59%** 0.13 -0.21 0.02
Zn -0.44 -0.43 0.64**  0.41 0.38 -0.13 -0.09 -0.03
ocC 0.65*** 0.76*** 0.83*** 0.80%** 0.02 0.52%** 0.64*** 0.65***
EC 0.71%** 0.77*** 0.86*** 0.84%** 0.22 0.63*** 0.75*** 0.73***
POC 0.71%** 0.77+%* 0.86*** 0.83%** 0.22 0.62+** 0.73** 0.71%**
soc -0.27 -0.04 -0.32 -0.39 -0.11 0.38 0.40* 0.43*
Oxalate 0.19 0.29 0.55* 0.52* 0.53*** 0.41* 0.25 0.39
Acetate 0.66%** 0.35 0.67*** 0.58** -0.06 -0.01 0.24 0.26
Glycolate  0.58** 0.44 0.60** 0.59%* 0.41* 0.13 0.29 0.34
Propionate .78*** 0.38 0.35 0.31 -0.00 0.44* -0.12 0.04
Formate  0.65*** 0.37 0.37 0.33 0.36 0.03 0.28 0.23
Pyruvate  0.63*** 0.19 -0.05 0.04 -0.50***  -0.05 -0.09 -0.36
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735
736
737
738
739
740

741
742

Table 4. Parameters of the linear regression equatiokimlithe OP”, and OB™",, responses with the tracer
concentrationmeasured in PM and PM ssamples, in Autumn-Winter (AW, October-March, 1gées) and in
Spring-Summer (SS, April-September, 24 samples}. Stjuared correlation coefficient?jRand the chi-squarg?)
value provide a measure of the corresponding lineaelation and the goodness of the fit, respebtiWNote that only
the linear regression lines related to chemicatiggesignificantly correlated with QRvith a p-level < 0.01 have been

reported.
OPAAV OPDTTV
Species (nrr:cr)]lter:\icr?? tm'3) (nmolgn?ﬁ)’fl ugh R* () (nn!glt?rnicr?? trn'3) (nmoﬁl”rﬁﬁ'? ugh R* (1)
PM o AW
EC 0.11+0.08 0.07+0.02 0.50 (0.31) 0.08+0.04 0.086%0 0.59 (0.11)
POC 0.11+0.09 0.03+0.01 0.50 (0.31) 0.08+0.04 00021 0.59 (0.11)
K* 0.10+0.09 0.45%0.15 0.41 (0.37) 0.08%0.05 0.3120.0 0.49 (0.13)
Cu 0.02+0.07 3146 0.71 (0.18) - - -
Fe 0.03+0.05 1.7+20.4 0.58 (0.27) - - -
PM,s AW
EC 0.04+0.03 0.05+0.01 0.74 (0.06) 0.14+0.03 0.0830  0.71 (0.06)
POC 0.04+0.04 0.025+0.004 0.74 (0.06) 0.14+0.05 22+0.004 0.69 (0.06)
K* 0.04+0.04 0.30+0.07 0.62 (0.09) 0.14+0.04 0.2560.0 0.53 (0.09)
NOs ; - - 0.15+0.05 0.13+0.04  0.44 (0.11)
Cu 0.13+0.04 1043 0.41 (0.13) ; - ;
Fe 0.01+0.01 1.4+0.3 0.58 (0.11) 0.12+0.04 1.6+0.3 0.64 (0.07)
PM 19SS
EC - - - 0.07+0.04 0.09+0.02 0.40 (0.13)
POC - - - 0.07+0.04 0.04+0.01 0.38 (0.13)
Cu ; ; ) 0.09+0.04 1847 0.27 (0.16)
ca? 0.00+0.09 0.24+0.08 0.27 (0.67) - - -
SO42' -0.11+0.08 0.09+0.02 0.71 (0.45) - - -
PM,5SS
EC -0.03+0.03 0.08+0.02 0.56 (0.04) 0.03+0.02 00L0x 0.53 (0.07)
POC -0.03+0.02 0.04+0.01 0.53 (0.04) 0.03+0.03 £00G1 0.50 (0.07)
NO; 0.05+0.02 0.08+0.03 0.26 (0.07) - - -
Cu 0.00%0.03 267 0.40 (0.06) - - -
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Figure captions

Figure 1. Mean mass percentage distribution of the testethatal species for the PM2.5 samples
collected in (a) AW (Autumn-Winter) and in (b) SSpfing-Summer) and the PM10 samples
collected in (c) AW and in (d) SS. Al, Ba, Cd, @x, Cr, Cu, Fe, La, Mn, Mo, Ni, P, Pb, Sr, Ti, V,
and Zn are represented by Met. MS-, oxalate, agegifcolate, propionate, formate, and pyruvate
are indicated by Oxi. The undetermined mass is teéenas UM.

Figure 2. Daily evolution of the volume-normalized QRalues in PMs and PM, particles (dark
and light grey bars, respectively). Figures 1a AbdOP*, responses measured with DTT assay
for Autumn-Winter (a) and Spring-Summer (b) perioiigures 1c and 1d: GP'y responses
measured with AA assay for Autumn-Winter (c) andi8pSummer (d) periods; Figures 1e and 1f:
temporal evolution of the PM and PMy mass concentration in Autumn-Winter (e) and Spring

Summer (f).

Figure 3. Mass concentration of the main redox active sgeatieasured on 20 December 2014 and
11 March 2015 (light and dark grey bars, respeliven PM,s (a) and PMp particles. The
chemical compounds marked in black and in grey raferred to the left and right y-axis,
respectively. AC, GL, PR, FO, and PY representabetate, glycolate, propionate, formate, and

pyruvate mass concentration.

Figure 4. Four-day analytical back trajectories reaching ri@nitoring site (Lecce, Italy) at 270
(red), 500 (blue), and 1000 m (green) above thergtdevel, at 12:00 UTC of 20 December 2014
(a) and 11 March 2015 (c). Figures 3b and 3d:ualétof each back trajectory as a function of time
on 20 December 2014 (a) and 11 March 2015 (c)ectisely.

Figure 5. Mass concentration of the main redox active sgeneasured on 7 May and 29 July
2015 (light and dark grey bars, respectively) in.RMa) and PMy particles. The chemical

compounds marked in black and in grey are refetoettie left and right y-axis, respectively. AC,
GL, PR, FO, and PY represent the acetate, glycofat@pionate, formate, and pyruvate mass

concentration.

Figure 6. Four-day analytical back trajectories reaching riinitoring site (Lecce, ltaly) at 270
(red), 500 (blue), and 1000 m (green) above thergidevel, at 12:00 UTC of 7 May (a) and 29

27



777  July 2015 (c). Figures 5b and 5d: altitude of elaabtk trajectory as a function of time on 7 May (a)
778 and 29 July 2015 (c), respectively.
779
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782  Figure 1. Mean mass percentage distribution of the testedhatal species for the PM2.5 samples
783  collected in (a) AW (Autumn-Winter) and in (b) SSpfing-Summer) and the PM10 samples
784  collected in (c) AW and in (d) SS. Al, Ba, Cd, @n, Cr, Cu, Fe, La, Mn, Mo, Ni, P, Pb, Sr, Ti, V,
785 and Zn are represented by Met. MS-, oxalate, agegtcolate, propionate, formate, and pyruvate
786  are indicated by Oxi. The undetermined mass is téehas UM.

787
788

29



Spring-Summer

Autumn-Winter

SH0L/S0.

SHI0L/50, SHI0L/S0,
SHOMYO, | SHoLvo, | SHOLIO,
SHOMED, | SHovEo, | SHOMEO,
SHOMZO, | SHOLZ0, | SHOMZO,
—_— suouio. | SHoMo. | SHOLLO
o @ 1
—~ s= SLIB0I0E, | — SHI60/0E, S1/60/0E.
3 aa S le
= S16016Z, |~ SHI60/62., S1/60/6Z.
B swLons, | swzone, | SHLONE,
SHILOIOE. | shLoe, | SHILOIOE,
ShL0/6z. | suLoez | SHL0/6Z.
S1/90/.0, SLS0L0, | 4190120,
51190190, | 54190190, | 54/90/90,
S1/190/50, | 5490150, | S1190/50.
SLI90/V0, | SHIO0MO, | SH190/%0.
SLI90/0, | SH90/E0, | SHI90/£0.
SH9070, | SH90Z0, | 4190720,
SL/90/10, SHOOMO, | SH190/40.
SHISo0k, | SHso0L, | SHS0/0L.
SHIS0/60, | SHS0/60, | S4/50/60,
Shis0/80, | siisoigo, | S4/50/80,
SH/50/20, SHsoiL0. | SHIS0/L0,
S1/S0/90, | SS90, | 54150190,
susoso. | SHsois0, | $1/50/50.
SHISObO, | SHsomo, | SHIS0/b0.
T T T T T T 1
N © B T © N + O
o o o o o o o o
SHEOSh, | SHEO/Sh, | SHEOSH,
sweomh, | SLEomL, | SHEOwL,
o @ sweoeh, | SUEOEL, | SHEOE,
= &8 SHE0RZL, | SUEOZL, | SHEOZL,
= 0 SHEOLE, | SUEONLL, | SHEOIL,
SHg00L, | SLE00L, | SHEO/L,
SHE0/60, | SLIE0/60, | SHI0/60,
SsuLozk, | SHLORL, | SHLOZH,
sz | SURMNZ, | SUZUNZ,
pzHoz. | PUZHOZ, | PZLIO0Z,
SUZUEL | R SZVI6L.
yuzush. | LB | PZLIBL.
SUULL | SR | SUZVILL.
wuzuek. | LMoL, | PZLIOL.
wUzush | SUZUISE. | PZVISH.
T T T T T T 1 T T T T T T I T T T T T 1
s ¢ 33 28 3 35 3 s ¢ 83 8 3 35 3 & 8 § 8 ] ¢ -°
AvE , Jowu) ywdO An.E i jowu) *110dO An.E Br) uonesuasuod Wd

30

and the DTT assays for (c)

Autumn-Winter and (d) Spring-Summer, for Rjvand PM s samples (light and dark grey bars,
respectively). The temporal evolution of the gMnd PM s concentration (light and dark grey

Date
bars, respectively) is also reported in (e) forukon-Winter and in (f) for Spring-Summer.

normalized oxidatpotential (OR) values measured

Date

with the AA assay for (a) Autumn-Winter and (b) BgrSummer

Figure 2. Temporal evolution of the volume-
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Figure 3. Mass concentration of the main redox active sgegienitored in the (a) PM and (b)
PM;o samples collected on 20 December 2014 and 11 M2@dh (light and dark grey bars,
respectively). The chemical compounds marked ickbklnd in grey are referred to the left and

right y-axis, respectively. AC, GL, PR, FO, and Rdpresent the acetate, glycolate, propionate,

formate, and pyruvate mass concentration.
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812 Figure 4. Four-day analytical back trajectories reaching rianitoring site (Lecce, Italy) at 270
813  (solid black line), 500 (dashed grey line), and@@0 (dashed black line) above the ground level, at
814 12:00 UTC of (a) 20 December 2014 and (c) 11 M&@h5. The altitude of each back trajectory as
815 a function of time is reported in (b) and (d) fdretback trajectories plotted in (a) and (c),
816  respectively.
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824  Figure 5. Mass concentration of the main redox active sgegienitored in the (a) PM and (b)
825 PM;o samples collected on 7 May and 29 July 2015 (lagid dark grey bars, respectively). The
826 chemical compounds marked in black and in grey raferred to the left and right y-axis,
827  respectively. AC, GL, PR, FO, and PY representabetate, glycolate, propionate, formate, and
828  pyruvate mass concentration.
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Figure 6. Four-day analytical back trajectories reaching ri@nitoring site (Lecce, Italy) at 270
(solid black line), 500 (dashed grey line), and@a® (dashed black line) above the ground level, at
12:00 UTC of (a) 7 May and (c) 29 July 2015. Thewde of each back trajectory as a function of
time is reported in (b) and (d) for the back trigeies plotted in (a) and (c), respectively
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Dear Dr. A Achuthan,

unfortunately we made some mistakes in the Figa@iGn list at pg. 28 of the revised manuscript.
In particular :

the Caption of Figure 2 :

“Figure 2. Daily evolution of the volume-normalized QRalues in PMs and PM, particles (dark
and light grey bars, respectively). Figures 1a AbdOP*, responses measured with DTT assay
for Autumn-Winter (a) and Spring-Summer (b) periofggures 1c and 1d: GF'y responses
measured with AA assay for Autumn-Winter (c) andigpSummer (d) periods; Figures 1e and 1f:
temporal evolution of the PM and PMy mass concentration in Autumn-Winter (e) and Spring
Summer (f).”

should be replaced as follows:

“ Figure 2. Temporal evolution of the volume-normalized oxidat potential (OR) values
measured with the AA assay for (a) Autumn-Winted &) Spring-Summer, and the DTT assays
for (c) Autumn-Winter and (d) Spring-Summer, for B\nd PM s samples (light and dark grey
bars, respectively). The temporal evolution of BM;o and PM s concentration (light and dark
grey bars, respectively) is also reported in (e Motumn-Winter and in (f) for Spring-Summer.”

The Caption of Figure 3:

“Figure 3. Mass concentration of the main redox active sgemeasured on 20 December 2014
and 11 March 2015 (light and dark grey bars, respay) in PM, 5 (a) and PMy particles. The
chemical compounds marked in black and in grey raferred to the left and right y-axis,
respectively. AC, GL, PR, FO, and PY representabetate, glycolate, propionate, formate, and
pyruvate mass concentration.”

should be replaced as follows:

“Figure 3. Mass concentration of the main redox active sgegienitored in the (a) PM and (b)
PMio samples collected on 20 December 2014 and 11 M2@dk (light and dark grey bars,
respectively). The chemical compounds marked ickoland in grey are referred to the left and
right y-axis, respectively. AC, GL, PR, FO, and Rpresent the acetate, glycolate, propionate,
formate, and pyruvate mass concentration.”

The Caption of Figure 4:

Figure 4. Four-day analytical back trajectories reaching rimnitoring site (Lecce, ltaly) at 270
(red), 500 (blue), and 1000 m (green) above thergtdevel, at 12:00 UTC of 20 December 2014
(a) and 11 March 2015 (c). Figures 3b and 3d:ualétof each back trajectory as a function of time
on 20 December 2014 (a) and 11 March 2015 (c)eiely.”

should be replaced as follows:



“Figure 4. Four-day analytical back trajectories reaching rtianitoring site (Lecce, Italy) at 270
(solid black line), 500 (dashed grey line), and@@® (dashed black line) above the ground level, at
12:00 UTC of (a) 20 December 2014 and (c) 11 M&@b5. The altitude of each back trajectory as
a function of time is reported in (b) and (d) fdretback trajectories plotted in (a) and (c),
respectively.”

The Caption of Figure 5:

“Figure 5. Mass concentration of the main redox active sgegieasured on 7 May and 29 July
2015 (light and dark grey bars, respectively) in.BMa) and PMo particles. The chemical
compounds marked in black and in grey are refetoettie left and right y-axis, respectively. AC,
GL, PR, FO, and PY represent the acetate, glycofatapionate, formate, and pyruvate mass
concentration.”

should be replaced as follows:

Figure 5. Mass concentration of the main redox active sgegienitored in the (a) PM and (b)
PM;io samples collected on 7 May and 29 July 2015 (layid dark grey bars, respectively). The
chemical compounds marked in black and in grey raferred to the left and right y-axis,
respectively. AC, GL, PR, FO, and PY representabetate, glycolate, propionate, formate, and
pyruvate mass concentration.

The Caption of Figure 6:

“Figure 6. Four-day analytical back trajectories reachingrtianitoring site (Lecce, Italy) at 270
(red), 500 (blue), and 1000 m (green) above thergidevel, at 12:00 UTC of 7 May (a) and 29
July 2015 (c). Figures 6b and 6d: altitude of elaatk trajectory as a function of time on 7 May (a)
and 29 July 2015 (c), respectively.”

should be replaced by:

“Figure 6. Four-day analytical back trajectories reachingrtianitoring site (Lecce, Italy) at 270
(solid black line), 500 (dashed grey line), and@a® (dashed black line) above the ground level, at
12:00 UTC of (a) 7 May and (c) 29 July 2015. Thewde of each back trajectory as a function of
time is reported in (b) and (d) for the back tregeies plotted in (a) and (c), respectively”

The captions reported at the botton of each figueeright.
Sorry for the problem,
Best regards,

Prof. M.C. Pietrogrande



