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Abstract
Medical treatment of neuroendocrine tumours (NETs) has drawn a lot of attention due to the

recent demonstration of efficacy of several drugs on progression-free survival, including

somatostatin analogs, small tyrosine kinase inhibitors and mTOR inhibitors (or rapalogs).

The latter are approved as therapeutic agents in advanced pancreatic NETs and have been

demonstrated to be effective in different types of NETs, with variable efficacy due to the

development of resistance to treatment. Early detection of patients that may benefit from

rapalogs treatment is of paramount importance in order to select the better treatment and

avoid ineffective and expensive treatments. Predictive markers for therapeutic response are

under intensive investigation, aiming at a tailored patient management and more

appropriate resource utilization. This review summarizes the available data on the tissue,

circulating and imaging markers that are potentially predictive of rapalog efficacy in NETs.
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Introduction
Neuroendocrine tumours (NETs) consist of a spectrum of

malignancies that can arise from neuroendocrine cells

throughout the body. Despite NETs having been

considered rare for a long time, large epidemiological

studies have reported that the observed incidence has

increased from 1.09 to 5.25/100,000 from 1973 to 2004

(Yao et al. 2008a). Therapeutic tools for NETs include

surgery, somatostatin analogs (SSA), peptide receptor

radionuclide therapy, interferon alfa, tyrosine kinase

inhibitors, chemotherapy, as well as loco-regional
treatments (such as radiofrequency ablation and selected

transcatheter arterial chemoembolization) (Modlin et al.

2010a, Oberg et al. 2010, Frilling et al. 2012, Pavel et al.

2012). Mammalian target of rapamycin (mTOR) inhibitors

are emerging among the new targeted therapies as

powerful tools in NET medical therapy.

mTOR is a serine/threonine protein kinase found in

two major complexes: mTORC1 and mTORC2. mTORC1

is sensitive to the inhibition by rapamycin and mainly

controls the energy status of the cell. This occurs also by
 from Bioscientifica.com at 03/01/2022 03:00:39PM
via free access

http://erc.endocrinology-journals.org
http://dx.doi.org/10.1530/ERC-15-0413


E
n

d
o

cr
in

e
-R

e
la

te
d

C
a
n

ce
r

Review M C Zatelli et al. Predictors of response to
rapalogs in NETs

23 :3 R174
transducing PI3K/Akt-dependent growth factor signalling,

such as insulin and IGF-1, and thus participating in the

regulation of cell growth, survival and proliferation.

mTORC2, which is rapamycin-insensitive, mainly influ-

ences the actin cytoskeleton, determining cell shape and

modulating cell motility (Hay & Sonenberg 2004, Wulls-

chleger et al. 2006). Rapamycin and its analogs (‘rapalogs’)

bind the FK506 binding protein (FKBP12) in the cytoplasm,

which, in turn, binds and inactivates mTORC1 and related

downstream signalling (Meric-Bernstam & Gonzalez-

Angulo 2009). Rapalogs have been shown to modulate

cell proliferation, metabolism and angiogenesis in several

in vitro models, including NETs. Zitzmann et al. (2007)

showed that everolimus, a rapalog currently available for

the medical therapy of NET of pancreatic origin (pNET)

(Pavel 2013), dose-dependently reduces growth and causes

apoptosis as well as arrest in the G0/G1 phase of the cell

cycle in a human pNET cell line. This cell line, the BON1

cells, displays constitutive activation of the Akt/mTOR

pathway due to an autocrine IGF-I loop (von Wichert et al.

2000). Zitzmann also provided evidence that selective

mTORC1 inhibition by everolimus induces Akt signalling

upregulation, a mechanism possibly responsible for rapa-

log resistance. Similar findings have also been shown by

Grozinsky-Glasberg et al. (2008) in a rat insulinoma cell

line, where everolimus was capable of inhibiting TSC2,

mTOR and p70S6K but not Akt phosphorylation, with no

additive effect when used in combination with the SSA

octreotide. This drug was unable to enhance the anti-

proliferative effects of rapamycin in two NET cell lines:

the BON1 cell line and a cell line derived from a human

bronchial carcinoid, the NCI-H727 cells. In these settings,

rapamycin stimulated Akt phosphorylation, an effect

that octreotide failed to overcome, further indicating that

the Akt activating loop may cause rapalog resistance

(Moreno et al. 2008). However, the molecular determinants

of rapalog resistance are still unclear, despite the

extensive investigation of the mTOR pathway, where

several alterations have been described in NETs (Missiaglia

et al. 2010).

The main rapalogs employed in clinical trials invol-

ving NETs are represented by everolimus and temsirolimus

(Marotta et al. 2013, Chan & Kulke 2014). On the basis

of the results of randomized placebo-controlled studies

on patients with advanced pNETs, which showed

improved progression-free survival (PFS;Yao et al 2008b,

2010), everolimus has been approved for the treatment

of patients with advanced pNETs. In addition, the

RADIANT-4 trial has recently shown that everolimus

reduces the risk of progression and prolongs PFS in
http://erc.endocrinology-journals.org q 2016 Society for Endocrinology
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advanced, progressive, non-functioning NETs originating

from the gastrointestinal tract and from the lungs

(ESMO 2015, Yao et al. 2015; ClinicalTrials.gov ID:

NCT01524783).

Despite promising results on tumour progression,

everolimus shows a limited impact on tumour bulk, in

keeping with the cytostatic rather than cytotoxic action of

rapalogs. Indeed, everolimus efficacy in NETs may vary

depending on the patient and on the development of

rapalog resistance. Early detection of responder vs non-

responder patients would thus be crucial to avoid

ineffective and expensive treatments, shifting to alter-

native therapies early after treatment initiation.
Aim

This review summarizes the available data on tissue,

circulating and imaging markers of mTOR inhibitor

efficacy in NETs that may help to identify patients who

may benefit from treatment with mTOR inhibitors.
Methodology

Four of the authors (M C Z, G F, P M and V R)

independently searched MEDLINE (PubMed database) to

identify potentially relevant articles on the predictive

factors of efficacy of mTOR inhibitors in NET treatment.

The search was last updated October 30th, 2015. Only

articles published in the English language were

considered. The search strategy included the following

terms: ‘neuroendocrine tumour’, ‘neuroendocrine

carcinoma’, ‘predictive’, ‘response’, ‘everolimus’, ‘temsir-

olimus’ or ‘rapamycin’. Additional studies were identified

by reviewing the references of all selected articles.

Different article types were considered and only Editorials

and Letters were excluded.

Overall, 147 articles were identified and collected in

a single file, which was sent to all authors. Potentially

relevant factors for predicting the response to mTOR

inhibitors were divided into three main topics: tissue

markers, circulating markers and imaging. Articles were

selected by screening the title and abstract to identify only

those that dealt with at least one of these three topics. The

selected abstracts were then further assessed for a full-text

evaluation.
Tissue markers

An activated PI3K/AKT/mTOR pathway has been

described in different NETs, including pancreatic,
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gastrointestinal and lung tumours (Shida et al. 2010, Righi

et al. 2010). Since an evident association between the

expression levels of the PI3K/AKT/mTOR pathway and the

survival of patients with NETs has been reported, it is

reasonable to speculate that the analysis of this pathway

may be useful to predict the clinical behaviour of NETs and

possibly their response to rapalog treatment.

Tissue specimens allow a reliable assessment of both

mutational status and expression levels of the mTOR

pathway components through DNA/protein studies and

immunohistochemistry (IHC) (Alı̀ et al. 2011, Kasajima

et al. 2011). Moreover, tissue analysis can be useful in the

characterization of unresectable NETs undergoing bioptic

procedures, which sometimes retrieve only small amounts

of tumour tissue. In such cases, the sample may not be

sufficient for an appropriate immunohistochemical

characterization, but may be suitable for molecular

studies, allowing to isolate somatic DNA, RNA or proteins.

DNA studies may then be performed, since they do

not need huge amounts of tissue nor a demanding storage

procedure. NET mutational profiles have been extensively

investigated (Jiao et al. 2011, Oberg et al. 2013, Francis

et al. 2013, Fernandez-Cuesta et al. 2014, Kidd et al. 2015a),

leading to the observation that they are extremely variable

depending on the site. Somatic mutations have also been

intensively investigated to possibly predict sensitivity or

resistance to mTOR inhibitors. Previous studies have

shown that the presence of oncogenic variants of the

phosphoinositide-3-kinase catalytic subunit (PIK3CA) and

of Kirsten Rat Sarcoma Viral Oncogene Homolog (KRAS)

may influence the response of breast cancer cells to

everolimus. Mutations in the PI3K pathway components

were found in human cell lines that respond to rapalogs in

terms of antiproliferative effects (Di Nicolantonio et al.

2010). The PIK3CA gene, however, is rarely mutated in

pNETs (Jiao et al. 2011) and PI3K-p85a subunit mutations

as well as PI3K amplifications have not been reported in

NETs, so far (Briest & Grabowski 2014). Data on KRAS

mutations in pNETs are also controversial: none of the 44

pNETs belonging to a Caucasian cohort was found to

harbour KRAS somatic mutations (Gilbert et al. 2013),

which were on the contrary reported in four out of 37

consecutive Chinese pNET patients (Yuan et al. 2014). In

addition, KRAS somatic mutations have not been reported

in Goblet cell NETs of the appendix (Dimmler et al. 2014),

while Sahnane et al. (2015) identified KRAS mutations in

13 colorectal and two in gastric neuroendocrine carci-

nomas (NEC) among 53 cases of gastro-entero-pancreatic

NEC. KRAS somatic oncogenic mutations characterize

cancer patients who do not benefit from everolimus
http://erc.endocrinology-journals.org q 2016 Society for Endocrinology
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treatment, indicating that KRAS and PIK3CA mutations

may represent useful biomarkers to predict the efficacy

of mTOR inhibitors. Indeed, KRAS mutations have been

reported to confer resistance to everolimus treatment,

even in the presence of PI3K mutations. Di Nicolantonio

et al. (2010) observed everolimus resistance in human

cancer cells with both PIK3CA and KRAS mutations;

sensitivity to everolimus was restored after genetically

deleting KRAS mutations. Moreover, they confirmed this

finding in clinical settings when evaluating the response

to everolimus in metastatic cancer patients: lack of

response to everolimus was associated with oncogenic

KRAS mutations. Clinical studies reporting higher patient

numbers are needed to better estimate the prevalence of

KRAS somatic mutation in NETs and its role in predicting

the response to the treatment with rapalogs.

Mutations in Phosphatase and Tensin Homolog

(PTEN) gene, leading to a reduced protein expression,

have also been reported to characterize the NET cell lines

that are sensitive to the antiproliferative effects of rapalogs

(Meric-Bernstam et al. 2012). Indeed, mTOR inhibitors can

effectively control PTEN-deficient tumour growth in

several models (Neshat et al. 2001, Shi et al. 2002,

DeGraffenried et al. 2004, Steelman et al. 2008), but

PTEN loss failed to predict sensitivity to everolimus in

glioblastoma orthotopic xenografts. PTEN mutations, as

well as altered PTEN expression, have also been reported in

pNETs (Missiaglia et al. 2010), especially those showing an

aggressive clinical behaviour, suggesting that PTEN may

be useful as a predictive marker in pNET. This is supported

by the observation that loss of PTEN is associated with a

shorter time to progression in patients with NEC treated

with temsirolimus (Duran et al. 2006).

Other genetic mutations have been evaluated as

putative biomarkers to predict rapalog sensitivity. A

single-nucleotide polymorphism (SNP) in the fibroblast

growth factor receptor isoform 4 gene (FGFR4), causing

a conversion of guanine to adenine at position 1.217 in

exon 9 (FGFR4-G388R), has been reported to associate

with a worse prognosis in several human cancers

(Morimoto et al. 2003, Wang et al. 2004, Thussbas et al.

2006, da Costa Andrade et al. 2007, Sasaki et al. 2008,

Falvella et al. 2009). Serra et al. (2012) showed that, in

pNET patients, the FGFR4-G388R allele (assessed at germ-

line level) associates with a tumour diameter O2 cm, local

invasiveness, lymphovascular invasion, lymph node and

liver metastases. In addition, BON1 xenografts (Evers et al.

1991), over-expressing FGFR4-R388, display a very aggres-

sive behaviour in the animal model and a reduced

responsiveness to everolimus. Similarly, pNET patients
Published by Bioscientifica Ltd.
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displaying at least one FGFR4-G388R allele show a

statistically significant reduction in response to ever-

olimus in vivo. On the other hand, a retrospective study

recently reported that the presence of an FGFR4-G388R

allele does not influence PFS, overall survival (OS) and

mTOR pathway components expression in patients with

NET of the small bowel or of the pancreas (Cros et al.

2015). The Authors concluded that FGFR4-G388R allele

does not predict everolimus sensitivity in pNETs. There-

fore, the role of the FGFR4-G388R allele as a predictive

marker of pNET rapalog sensitivity is still very controver-

sial. In conclusion, since NETs apparently display few

relevant mutations, DNA profiling may not help in

predicting therapeutic responsiveness. On the other

hand, epigenetic approaches may be more relevant since

most of the mutated genes are involved in chromatin

remodelling (Pipinikas et al. 2015).

Protein studies may be more difficult due to the scant

amount of tissue which is often available. Nevertheless,

biopsies in patients with NETs have shown that baseline

AKT activation not only characterizes an aggressive

clinical course, but also associates with an increased PFS

under treatment with everolimus and octreotide (open-

label phase II trial NCT00113360) (Ghayouri et al. 2010,

Meric-Bernstam et al. 2012, Zitzmann et al. 2012).

Similarly, it has been previously demonstrated that

phosphorylated mTOR protein levels differentiate

human bronchial carcinoids that are sensitive from

those that are resistant to everolimus treatment in vitro.

In addition, AKT/mTOR pathway signalling molecules in

their active form (i.e. phosphorylated), such as basal

mTOR, p70S6K, AKT and ERK1/2, are expressed at higher

levels in human bronchial carcinoids responding to

everolimus treatment in vitro, as compared to those

resistant (Gagliano et al. 2013). Therefore, these markers

may be useful to identify human NETs that may benefit

from medical therapy with mTOR inhibitors. However,

the potential predictive value of such markers has not

been tested yet in other NETs, indicating the need for

further validation studies to test the predictive value

towards rapalog sensitivity of phosphorylated AKT, 4EBP1,

S6K1 and S6 as well as of the presence of PTEN or PIK3CA

mutations in NETs (Wander et al. 2011).

Several studies investigated the relationship between

clinical outcome and IHC scores for mTOR signalling

pathway proteins, but findings are discordant and only

few studies analysed the efficacy of IHC in predicting the

response to mTOR inhibitors in patients with NETs.

In addition, the capability of these markers to predict

survival is still very controversial (Zhou et al. 2011,
http://erc.endocrinology-journals.org q 2016 Society for Endocrinology
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Qian et al. 2013, Ruza et al. 2014). The expression of the

mTOR pathway components may be highly hetero-

geneous among different types of NETs, depending on

both the primary site and the grading. Higher mTOR

expression and activity have been found in foregut than in

midgut NETs, also depending on the presence of metas-

tases (Kasajima et al. 2011). The expression of phospho-

mTOR and its downstream targets has been reported to be

significantly different between low-to-intermediate grade

tumours (i.e. typical and atypical carcinoids) and high

grade tumours (i.e. large cell neuroendocrine carcinomas

and small cell lung cancers) (Righi et al. 2010). Moreover, a

strong expression of phospho-mTOR was observed more

frequently in poorly differentiated as compared to well

differentiated gastroenteropancreatic NETs (Shida et al.

2010, Catena et al. 2011). Bollard et al. (2013) observed a

strong expression of the two major mTOR effectors

(phospho-p70S6K and phospho-4EBP1) in six human tissue

samples of NECs. They also investigated the effect of

everolimus in a xenograft model of two NET cell lines

(STC-1 and GluTag cells) in nude mice and found that the

tumours derived from these cell lines mimicked NEC

behaviour in vivo. In addition, treatment of xenografted

mice with everolimus caused a significant reduction in

tumour volume, which correlated with mTOR signalling

inhibition. Duran et al. (2006) evaluated mTOR pathway

components by IHC in 13 paired biopsies (obtained before

and after 2 weeks of temsirolimus therapy) in patients with

advanced NEC. Higher baseline expression of phospho-

mTOR was predictive of tumour response. In addition,

they found that after 2 weeks of treatment with

temsirolimus an increased time to progression was

associated with increased phospho-AKT and decreased

phospho-mTOR expression. Spada et al. (2014) observed

that among 36 patients with metastatic gastro-entero-

pancreatic NETs treated with everolimus 10 mg once daily,

patients with Ki-67 %20% (30/36) displayed a longer PFS

when phospho-mTOR IHC score was positive as compared

to those with negative phospho-mTOR IHC. These data

suggest that mTOR pathway components IHC score in

combination with Ki-67 labelling index may predict the

response to the treatment with mTOR inhibitors. On other

clinical grounds, two trials reported similar benefit from

everolimus treatment in both well and moderately

differentiated NETs, regardless of the neuroendocrine

differentiation grade (Pavel et al. 2011, Yao et al. 2011a).

Sensitivity to mTOR inhibitors is not always directly

related to PI3K/AKT/mTOR signalling. Because of com-

pensatory feedback loops and cross talk between

the PI3K/AKT/mTOR cascade and other pathways
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(Markman et al. 2010, Burris 2013), resistance to mTOR

inhibitor drugs is not a rare event. This is confirmed by

observations both in trials and in real-world clinical

settings. For instance, the PI3K/AKT/mTOR pathway may

be activated upstream by a mutated and constitutively

activated RAS/MAPK pathway. Indeed, adaptive resistance

to everolimus monotherapy has been observed in a

genetically engineered mouse model of pNET, where a

significant regression in tumour burden was documented

by combining everolimus with erlotinib, which acts

through the inhibition of the epithelial growth factor

receptor. (Chiu et al. 2010). Further studies are required to

confirm these findings. In addition, controversies may

come from well-known limitations of IHC, such as the

possibility of different methods of staining evaluation and

threshold values for distinguishing between negative and

positive samples. IHC analysis is often performed on

tissues obtained at diagnosis; subsequently, patients are

treated with one or more types of antineoplastic therapies

and tumour biology may change, no longer correlating

with the initial mTOR pathway status.

In summary, IHC analysis of NETs allows the

identification of patients with hyperactivated PI3K/

AKT/mTOR pathway components, thus hypothetically

leading to select which patient may benefit from

treatment with mTOR inhibitors. However, the available

evidence to support the utility of this evaluation for

predicting the response to mTOR inhibitors is weak.

Further studies with a better selection of patient cohorts

(to reduce selection and measurement bias) and combined

therapies targeting different signalling pathways (to over-

come drug resistance) are warranted. At present, evaluat-

ing PI3K/AKT/mTOR pathway components by IHC is

unlikely to achieve a satisfying and reliable predictive

value (Delbaldo et al. 2011).
Circulating markers

In addition to tumour samples, putative markers to predict

sensitivity to rapalogs could be evaluated in peripheral

blood, ensuring that these agents are delivered to those

patients that are most likely to respond. The role of blood-

based biomarkers has been recently addressed in a

consensus review, which underlined the important limi-

tations of monoanalyte biomarkers and the potential

importance of circulating multianalyte biomarkers in

predicting treatment efficacy (Oberg et al. 2015).

Chromogranin A (CgA), a circulating peptide, is

usually considered the most helpful marker in patients

with NETs. Elevated CgA levels are known to associate
http://erc.endocrinology-journals.org q 2016 Society for Endocrinology
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with poor PFS and OS in NET patients (Modlin et al. 2010b,

Lawrence et al. 2011). Neuron-specific enolase (NSE), on

the contrary, has a scant clinical applicability, since it

demonstrated low sensitivity and specificity as a NET

biomarker (Baudin et al. 1998, Vinik et al. 2009). Yao et al.

(2011b) provided information regarding the prognostic

role of CgA and NSE in patients with advanced pNETs

under treatment with everolimus in the RADIANT-1

(enrolling patients with low to intermediate grade

advanced pNET) (Yao et al. 2010) and in the MDACC

US-52 study at The University of Texas MD Anderson

Cancer Center (enrolling patients with low to inter-

mediate grade advanced carcinoid tumours and pNETs).

The analysis of the biomarker pattern in patients under

treatment with everolimus suggests that an early

reduction in CgA or NSE level may predict a longer PFS

in patients with pNET. Early modifications in CgA and NSE

levels are therefore potentially important markers of

response in pNET patients treated with everolimus, an

issue that needs to be confirmed in prospective, random-

ized studies (Yao et al. 2011b).

Circulating tumours cells are detectable in patients

with midgut NETs and with pNETs (Khan et al. 2011),

where they could be considered a prognostic marker (Khan

et al. 2013). Indeed, a recent study provides information as

concerns the role of CTC count as predictive of response

to treatment with several different approaches (including

SSA, chemotherapy, peptide receptor radionuclide

therapy, transarterial embolization, radiofrequency abla-

tion, sunitinib, interferon alpha and surgery) that did not

include rapalog treatment (Khan et al. 2015). Further

research is needed to fully exploit the potential predictive

role of CTCs in the context of NET medical therapy by

means of rapalogs.

The expression profile of microRNAs (miRNAs),

small noncoding RNAs involved in gene expression

regulation, has been reported to be quite specific in

pNETs (Roldo et al. 2006), but data on serum miRNAs as

potential biomarkers of clinical behaviour as well as of

response to medical treatment are not available, to date

(Modlin et al. 2014a).

It has been recently suggested that Multianalyte

Algorithmic tests (MAAAs) may perform much better as

compared to monoanalyte markers, taking advantage of

the simultaneous evaluation of several markers. To test

this hypothesis, Modlin et al. (2013) developed a gene

biomarker assay that includes several genes selected on the

basis of the results of microarray data and by means of a

computational strategy. This test has been applied to

identify candidate marker genes in peripheral circulation
Published by Bioscientifica Ltd.
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of patients with NETs with high performance (Modlin

et al. 2014b) independent of age, gender, ethnicity, fasting

or proton pump inhibitor treatment and identified

affected patients with high sensitivity and specificity

(Modlin et al. 2014c). Along the same line, Kidd et al.

(2015b), matched the results of the evaluation of the 51

circulating transcripts identified by MAAA with the

analysis of tumour tissue transcripts, divided into different

gene clusters, and applied an MAAA/cluster integrated

algorithm. The latter was capable of accurately separate

NETs with progressive disease from those displaying stable

disease after different lines of therapy, predicting the

disease status by means of a disease activity NET score, the

NETest. The NETest appears to be a very promising tool

not only for the diagnosis but also for the follow-up of NET

patients, although to date no information is available

concerning a predictive role for the NETest as concerns

rapalog sensitivity.
Imaging

Tumour measurement by computed tomography (CT)

using the Response Evaluation Criteria in Solid Tumours

(RECIST) (Therasse et al. 2000, Therasse et al. 2006) has

been considered for a long time the gold standard to

evaluate the effect of antineoplastic drugs. However, the

effect of cytostatic drugs, whose antineoplastic action may

not be immediately followed by a reduction in tumour

size, can represent a limit in the use of RECIST criteria

(Benjamin et al. 2007). Positron Emission Tomography

(PET) is emerging as a powerful tool, capable of overtaking

CT measurement limits, offering additional information

useful for treatment monitoring (Eisenhauer et al. 2009)

and predicting the response to chemotherapy at an earlier

stage (Jensen et al. 2010).
Studies in animal models

18F-fluorodeoxyglucose (FDG) PET is the most widely

employed PET in oncology. FDG uptake mirrors cell

glycolytic activity and may correlate, in some tumours,

with early treatment responses (Weber & Wieder 2006).

18F-fluorothymidine (FLT) PET, on the other hand,

reflects proliferation (Shields et al. 1998). FLT is a

thymidine analog, similar to the nucleotide usually

incorporated during DNA synthesis (Kong et al. 1992). In

humans, 18-FLT PET has recently shown its usefulness for

predicting the response to carbon ion radiotherapy in

subjects with melanoma (Inubushi et al. 2013). Johnbeck

et al. (2014) investigated in animal models (mice) the
http://erc.endocrinology-journals.org q 2016 Society for Endocrinology
DOI: 10.1530/ERC-15-0413 Printed in Great Britain
ability of 18F-FDG PET and 18F-FLT PET to predict tumour

response to everolimus. Mice were inoculated with a

human NET cell line (lung carcinoid) and tumours were

allowed to grow for 2 weeks. Then, the experimental

animals underwent CT for tumour size measurements, and

scanning with 18F-FDG and 18F-FLT PET (baseline). Mice

were then treated with either everolimus (5 mg/kg daily,

subcutaneously) or with placebo for 10 days. CT as well as

18-FDG and 18-FLT PET for measurements of tumour

size were then performed. The study showed that early

18F-FDG uptake (day 3) significantly correlated with

tumour diameter at a later time point (day 10). Similarly,

early 18F-FLT uptake (day 1) correlated with tumour

growth at day 7, and 18F-FLT uptake at day 3 correlated

with tumour growth at later time points (day 7 and 10).

The authors conclude that early 18F-FLT uptake may

predict later tumour growth and propose that 18F-FLT PET

uptake could potentially be employed as an imaging

biomarker for tailoring NET therapy. Moreover, 18F-FDG

may represent a possible alternative in subjects with

FLT-negative NETs. However, as outlined by the authors,

the study was performed by using a single lung NET cell

line and cannot demonstrate that early prediction of

everolimus effect on tumour growth by PET imaging can

hold for all NETs.
Studies in humans

Angiogenesis is a well-known hallmark of tumour growth

(Hanahan & Weinberg 2011). Vascular endothelial growth

factor A (VEGF-A), in particular, plays a pivotal role in

angiogenesis. The effect of everolimus on the reduction of

VEGF-A production by tumour cells (Huynh et al. 2009)

could potentially offer an early detection of responders vs

non-responders. A PET method obtained by coupling the

anti VEGF-A antibody bevacizumab to a radionuclide

(89Zr-bevacizumab) has been shown to detect human

neoplastic cells (Nagengast et al. 2007). van Asselt et al.

(2014) investigated the performance of 89Zr-bevacizumab

PET to predict tumour response to everolimus in patients

showing progression of well-differentiated NETs. Fourteen

patients underwent 89Zr-bevacizumab PET scanning

before everolimus treatment, and then 2 and 12 weeks

after treatment initiation. Ten out 14 patients showed

positive 89Zr-bevacizumab PET scan findings. In this

subset of patients, the Authors observed that the tumour

Maximum Standardized Uptake Value (SUVmax)

decreased in seven patients while it increased in three.

Interestingly, after 6 months of therapy, the sum of target

lesion diameters (measured by CT) showed a correlation
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with SUV max at 2 and 12 weeks (compared to SUV max at

baseline). The authors concluded that sequential 89Zr-

bevacizumab PET scan might be employed to predict early

the effects of everolimus. However, none of the 14 patients

(including four 89Zr-bevacizumab PET negative scan

patients) experienced progressive disease after 6 months

of everolimus treatment. Thus, patients cannot be

excluded from everolimus treatment on the basis of a

negative 89Zr-bevacizumab PET scan
Conclusions

Multiple putative predictors of response to mTOR

inhibitors have been proposed (Table 1), but the attempts

to standardize these biomarkers have been mostly

unsuccessful, possibly because PI3K/mTOR pathway com-

plexity includes several feedback loops that may result

in unpredictable effects. In addition, standardization of

IHC and molecular techniques is very challenging, and

genomic as well as epigenetic methods are promising but

need accurate validation for clinical applications.

Imaging, such as 18F-FLT or 18F-FDG PET, may represent
Table 1 Markers evaluated as predictive of response to mTOR inh

Marker/method Experimental group Drug (dose)

Tissue markers
KRAS Human cancer cell

lines
Everolimus

PTEN Human cancer cell
lines; nZ43

Rapamycin (100 n

pAKT Human; nZ60 Octreotide (30 mg
Everolimus (5–1

PTEN Human; nZ36 Temsirolimus
(25 mg i.v./wee

FGFR4-G388R Human; nZ17 Octreotide (30 mg
Everolimus (10

FGFR4-G388R Human; nZ41 Everolimus (10 mg

mTOR, p70S6K,
AKT, and ERK1/2

Human primary
cultures; nZ17

Everolimus (100 n

phospho-mTOR,
phospho-AKT

Human; nZ13 Temsirolimus
(25 mg i.v./wee

phospho-P70s6k,
phospho-4EBP1

Animal (mice);
nZ34

Everolimus
(1.5 mg/kg per

Ki-67, Phospo-mTOR Human; nZ36 Everolimus (10 mg

Circulating markers
CgA, NSE Human; nZ115 Everolimus (10 mg

Imaging
18F-fluorodeoxyglucose
PET and 18F-
fluorothymidine PET

Animal (mice);
nZ20

Everolimus (5 mg
subcutaneously

89Zr-bevacizumab PET Human; nZ14 Everolimus (10 mg
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a more attractive and clinically useful means to predict

therapeutic responses to rapalogs, but validation studies

on greater patient numbers are needed. Circulating

markers are easier to assess, but reproducibility has not

been strongly documented. Nevertheless, CgA and NSE

levels may be assessed in NET patients undergoing rapalog

therapy, until more powerful indicators will be identified.

Indeed, single biomarkers are unlikely to achieve the goal

to correctly predict NET responsiveness to rapalogs.

On the other hand, new multimodal approaches, such

as MAAA, may be more successful, also because they are

based on easily accessible patient material, i.e. blood

(associated or not to the corresponding tumour sample).

The evaluation of the disease activity NET score at baseline

may help in patient follow-up, and future studies will test

the potential of the NETest to predict NET response to

rapalogs.

In conclusion, the field of research for reliable

predictive markers of response to rapalogs in NETs remains

wide open, with the future perspective to identify basic

and clinical predictors possibly useful to prospectively

select patients who may benefit from rapalog treatment.
ibitors in NETs.

NET subtype Reference

– Di Nicolantonio
et al. (2010)

M) – Meric-Bernstam
et al. (2012)

/28 days) C
0 mg/day)

Carcinoid and islet cell
NETs

Meric-Bernstam
et al. (2012)

k)
Advanced progressive

NEC
Duran et al. (2006)

/28 days)C
mg/day)

G1-G2 pNET Serra et al. (2012)

/day) G1-G3 pNET, small bowel
NET

Cros et al. (2015)

M) Well differentiated lung
NETs

Gagliano et al.
(2013)

k)
G3 NECs Duran et al. (2006)

day)
Intestin cell line (STC-1 and

GluTag cell line)
Bollard et al. (2013)

/day) G1-G3 pNET, ileal NET,
other

Spada et al. (2014)

/day) G1-G2 pNET Yao et al. (2010)

/kg per day,
)

Well differentiated lung
NET (human cell lines)

Johnbeck et al.
(2014)

/day) Advanced progressive
G1-G2 NETs

van Asselt et al.
(2014)
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