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PREFACE 

In 2017, having successfully completed my Master’s degree in Mechanical Engineering, 

I sent an e-mail to Roberto Tovo asking if I could do my PhD under his supervision. Denis 

Benasciutti replied on behalf of Roberto Tovo with a positive answer and I moved to 

Italy. After a few months studying random process theory, Denis Benasciutti and Roberto 

Tovo proposed me a PhD about the structural durability analysis with random loadings. I 

accepted that great opportunity and now I am very glad with my choice.  

Having done so much work about structural durability analysis under random 

loadings, I attempted to summarize my best research activities of all PhD years in this 

thesis. In particular, my thesis provides five original contributions, which I consider to be 

very relevant for students, researchers and engineers. 

i) A critical review and analysis of methods for the variability of the fatigue 

damage due to randomness of a stationary Gaussian random loading. Based on numerical 

simulations, best-fitting expressions in Chapter 4 are derived to relate the variance of the 

damage directly to bandwidth parameters of a power spectrum. The proposed expressions 

apply to narrow-band or wide-band processes. 

ii) Two theoretical models (Chapter 5) to assess the variance of the fatigue 

damage in non-Gaussian random processes with narrow-band power spectrum. The 

models extend two solutions existing in the literature and restricted to Gaussian processes. 

iii) A damage-based run test to verify the stationarity of a random time-history 

with finite time length. The proposed run test (Chapter 6) can detect not only changes in 
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the variance and mean levels (commonly found by existing solutions), but also the 

frequency content over time. 

iv) Confidence interval expressions (Chapter 7) to enclose the exact (but 

unknown) expected damage when only one or few time-histories are available. The 

proposed confidence intervals for expected damage is also investigated by measuring the 

random loadings acting on an instrumented Mountain-bike. 

v) A new algorithm (Chapter 8) to implement the Carpinteri-Spagnoli-

Vantadori (CSV) multiaxial fatigue criterion for random loading and to shorten the 

computation time. 

The first activity i) is also collected in articles [MAR20a,MAR19b,MAR19a]. It 

was presented at 48th Conference on Stress Analysis and Mechanical Engineering Design 

(AIAS 2019) in Perugia (Italy) and “Dodicesima giornata di studio Ettore Funaioli” in 

Bologna (Italy).  

The second point ii) in the previous list is further addressed in articles 

[MAR21b,MAR21a,MAR20c]. This work was presented at the First Virtual Conference 

on Structural Integrity (VCSI 2020). It will also be presented at Fatigue 2021, Downing 

College, Cambridge, United Kingdom. This conference has been rescheduled from June 

2020 and is planned to take place 29-31 March 2021, again at Downing College. 

The damage-based run test in point iii) is applied to measured random time-

histories records from a Mountain-bike and its results are collected in [MAR21c]. This 

research activity was first presented at AIAS 2020 Virtual Conference and the paper 

[MAR21c] is in press in IOP conf. ser., Mater. Sci. Eng. 

Another research activity of PhD course, confidence intervals of damage when 

only one or few time-histories are available, is published in article [MAR20a]. A further 

work [MAR21c] investigates such confidence interval expressions applied to measured 

random time-histories. In fact, this activity [MAR21c] was also presented at AIAS 2020 

Virtual Conference and it is in press in IOP conf. ser., Mater. Sci. Eng. 



 

 

The last point in the previous list, a new algorithm to implement the CSV 

multiaxial fatigue criterion, is addressed in articles [MAR20b,BEN19a]. The 12th 

International Conference on Multiaxial Fatigue and Fracture (ICMFF12) in Bordeaux 

(France) was attended and the work in [BEN19a] was presented on 25 June 2019.  

This thesis collects considerations, theories and results of all five contributions in 

the previous list. It is the best synthesis that I could obtain during my PhD. 

It would be a great pleasure for me if this thesis were of some help to students, 

researchers and/or engineers, along the complex way of structural durability analysis with 

random loadings. 

 

Ferrara, 24/1/2021 

Julian Marcell Enzveiler Marques 
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NOMENCLATURE 
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𝑏 half spectral width 
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𝐷B(𝑇B) fatigue damage of block in time period 𝑇B 

𝑒 root-mean-square error 

𝐸[−] expected value 

𝐸[𝑑]2 expected half-cycle damage squared 

𝐸[𝑑2] expected value of half-cycle damage squared 

𝑓 frequency (Hz) 

𝑓a(𝑠) probability density function of stress amplitudes 𝑠 

𝑓c main (or center) frequency 

𝑓n natural frequency 

𝑓p peak frequency 

𝑓P0,Pl
(−) joint probability density function of two peaks 
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𝐺(−), 𝑔(−) direct and inverse transformation 

𝐺 scaling factor of Wirsching’s formula 

𝑔 gravity constant 

ℎ3, ℎ4, ℎ3̃, ℎ4̃ parameters of Hermite’s model 

𝐻s significant wave height 

𝑘, 𝐴 material constants of S-N curve 

𝑛(𝑇) number of counted half-cycles in T 

𝑁 size of time-history sample 

𝑁B number of blocks 

𝑁f number of cycles to failure 

𝑛a number of frequency points 

𝑛b number of frequency points 

𝑛f number of frequency points 

𝑛p number of planes 

𝑛runs number of simulation runs 

𝑛ϕ, 𝑛θ, 𝑛ψ, 𝑛γ number of rotation angles 𝜙, 𝜃, 𝜓, 𝛾 

𝑃 peak value 

𝑃XYZ initial reference frame with origin 

𝑃X′Y′Z′, 𝑃X′′Y′′Z′′ rotated reference frames 

P1̂2̂3̂ = 𝑃X′′Y′′Z′′ average principal directions 

𝑟 number of runs 

𝑅X(𝜏), 𝑅Z(𝜏) correlation function of 𝑋(𝑡) and 𝑍(𝑡) 

𝑅d0,dl
(𝑙) autocorrelation function of half-cycle damage 

𝐑(𝜙, 𝜃, 𝜓)
= 𝐑ψ𝐑θ𝐑ϕ 

rotation matrices 

�̃�(𝛿, 𝛾) = 𝐈6𝐑𝛿𝐑𝛾 rotation matrices 

𝑠 stress amplitude of half-cycle 

𝑆X(𝑓), 𝑆Z(𝑓) Power Spectral Density of 𝑋(𝑡) and 𝑍(𝑡) 
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𝑆eq(𝑓) PSD of equivalent stress 𝜎eq(𝑡) 

𝐒XYZ(𝑓) PSD matrix in initial reference frame XYZ 

𝐒X′Y′Z′(𝑓), 
𝐒X′′Y′′Z′′(𝑓) 

PSD matrix in rotated reference frames X′Y′Z′ and X′′Y′′Z′′ 

𝑇 time length 

𝑇1 simulation (or elapsed) time in one run 

𝑇B block length 

𝑇std simulation (or elapsed) time of standard algorithm 

𝑇tot simulation (or elapsed) time in multiple runs 

𝑇W peak period 

𝑈(𝑡) absolute displacement process 

𝑊(𝑡) base acceleration process 

(𝑥p, 𝑥v), (𝑧p, 𝑧v) peak and valley (Gaussian, non-Gaussian) 

𝑥(𝑡), 𝑧(𝑡) Gaussian and non-Gaussian time-history 

𝑋(𝑡), 𝑍(𝑡) Gaussian and non-Gaussian process 

(𝜙, 𝜃, 𝜓, 𝛿, 𝛾) rotation angles (variable values) 

(𝜙∗, 𝜃∗, 𝜓∗, 𝛿∗, 𝛾∗) rotation angles (solution, constant values) 

100(1 − 𝛽) confidence level 

𝛼1, 𝛼2 bandwidth parameters 

𝛾3, 𝛾4 skewness, kurtosis 

𝛾 peakedness parameter of JONSWAP spectrum 

Γ(−) gamma function 

∆ angular resolution 

∆𝑓 frequency resolution 

𝜀 Vanmarcke’s bandwidth parameter 

𝜀r statistical error 

𝜁 damping factor 

𝜅 scaling factor of Winterstein’s model 

𝜆m spectral moment of order m 
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𝛌m,XYZ matrix of spectral moments (order m) in 𝑃XYZ 

𝜇d mean value of half-cycle damage 

𝜇r mean value of run 𝑟 

𝜇X, 𝜇Z mean value of 𝑋(𝑡) and 𝑍(𝑡) 

𝜇x, 𝜇z mean value of 𝑥(𝑡) and 𝑧(𝑡) 

𝜈0 average frequency of upward crossings of the mean 

𝜈p average frequency of peaks 

𝜌X(𝜏), 𝜌Z(𝜏) autocorrelation coefficient of 𝑋(𝑡) and 𝑍(𝑡) 

𝜌d0,dl
(𝑙) autocorrelation coefficient of half-cycle damage 

𝜎af−1, 𝜏af−1 tension, torsion fatigue limits (fully-reversed loading) 

�̂�D
2 sample variance of fatigue damage 

𝜎D
2 variance of fatigue damage 

𝜎d
2 variance of half-cycle damage 

𝜎eq(𝑡) equivalent stress on critical plane 

𝜎r
2 variance of run 𝑟 

𝛔XYZ(𝑡) stress vector in reference frame 𝑃XYZ 

𝛔X′Y′Z′(𝑡), 
𝛔X′′Y′′Z′′(𝑡) 

stress vector in rotated reference frames 𝑃X′Y′Z′, 𝑃X′′Y′′Z′′ 

𝜎X
2, 𝜎Z

2 variance of 𝑋(𝑡) and 𝑍(𝑡) 

𝜎x
2, 𝜎z

2 variance of 𝑥(𝑡) and 𝑧(𝑡) 

𝜎xx, 𝜎yy, 𝜎zz stress components along x-, y- and z-direction 

𝜏yz, 𝜏xz, 𝜏xy shear stress in the yz-, xz- and xy-plane 

𝜏 time lag 

𝜑 scaling factor of Wirsching’s formula 

𝑦G, 𝑦nG (superscript) Gaussian, non-Gaussian 

CAE Computer Aided Engineering 
CoV Coefficient of variation 
CSV Carpinteri-Spagnoli-Vantadori 
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NB Narrow-band approximation 
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PSD Power Spectral Density 
RMS Root-mean-squared 
STFT Short-Time Fourier Transform 
TB Tovo-Benasciutti 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xii Nomenclature  

 

 

 

 



 

 

CONTENTS 

Preface .............................................................................................................................. i 

List of publications ......................................................................................................... v 

Nomenclature ................................................................................................................ vii 

Contents ........................................................................................................................ xiii 

Chapter 1 Introduction .............................................................................................. 1 

1.1 Overview of the thesis ...................................................................................... 6 

1.1.1 Random process theory .............................................................................. 6 

1.1.2 Fatigue damage under random loading ...................................................... 7 

1.1.3 Variance of fatigue damage in Gaussian random loading .......................... 7 

1.1.4 Variance of fatigue damage in non-Gaussian random loading................... 7 

1.1.5 Test of stationarity of random loading ....................................................... 8 

1.1.6 Variability of fatigue damage: A real-world scenario ................................ 8 

1.1.7 Multiaxial random loading: Application to the CSV criterion ................... 9 

Chapter 2 Random process theory .......................................................................... 11 

2.1 Introduction .................................................................................................... 11 

2.2 Basic concepts ................................................................................................ 12 

2.3 Spectral properties .......................................................................................... 14 

2.3.1 Uniaxial random stress ............................................................................. 14 

2.3.2 Multiaxial random stress .......................................................................... 16 

Chapter 3 Fatigue damage under random loading ............................................... 19 



xiv Contents  

 

 

3.1 Introduction .................................................................................................... 19 

3.2 Material properties .......................................................................................... 21 

3.3 Rainflow counting method ............................................................................. 21 

3.4 Amplitude histogram and loading spectrum ................................................... 25 

3.5 Palmgren-Miner rule ....................................................................................... 26 

3.6 Expected fatigue damage ................................................................................ 27 

3.6.1 Narrow-band approximation..................................................................... 28 

3.6.2 Tovo-Benasciutti method ......................................................................... 29 

Chapter 4 Variance of fatigue damage in Gaussian random loading .................. 31 

4.1 Introduction .................................................................................................... 31 

4.2 General equations in narrow-band process ..................................................... 33 

4.3 Analytical solutions ........................................................................................ 37 

4.3.1 Mark and Crandall’s method (1961) ........................................................ 37 

4.3.2 Bendat’s method (1964) ........................................................................... 38 

4.3.3 Madsen et al.’s method (1986) ................................................................. 39 

4.3.4 Low’s method (2012) ............................................................................... 41 

4.3.5 Critical analysis of analytical methods ..................................................... 42 

4.4 Numerical simulations .................................................................................... 44 

4.4.1 Linear oscillator system ............................................................................ 46 

4.4.2 Ideal unimodal process ............................................................................. 48 

4.4.3 Pierson-Moskowitz (P-M) and JONSWAP and power spectra ................ 51 

4.5 Empirical expressions to relate the CoV to bandwidth parameters ................ 53 

Chapter 5 Variance of fatigue damage in non-Gaussian random loading .......... 57 

5.1 Introduction .................................................................................................... 57 

5.2 Definition of transformation ........................................................................... 58 

5.2.1 Winterstein’s model .................................................................................. 60 

5.3 Solution based on Low’s method ................................................................... 62 

5.4 Solution based on Madsen et al.’s method ..................................................... 68 

5.5 Numerical example ......................................................................................... 70 

Chapter 6 Test of stationarity of random loading ................................................. 77 

6.1 Introduction .................................................................................................... 77 

6.2 The run test method ........................................................................................ 79 



 Contents xv 

 

 

6.3 Proposed approach: a damage-based run test ................................................. 82 

6.4 Numerical simulations .................................................................................... 84 

6.4.1 Stationary time-history ............................................................................. 88 

6.4.2 Non-stationary time-histories ................................................................... 89 

Chapter 7 Variability of fatigue damage: A real-world scenario ......................... 93 

7.1 Introduction .................................................................................................... 93 

7.2 Confidence interval of fatigue damage with one or more time-histories ....... 94 

7.3 Numerical example ....................................................................................... 100 

7.4 Measured time-history records from a mountain-bike ................................. 107 

7.4.1 Methods and measurements ................................................................... 107 

7.4.1.1 Stationary random loadings ............................................................. 110 

7.4.2 Confidence intervals and expected damage using measurements .......... 114 

7.4.3 Results and discussions .......................................................................... 116 

Chapter 8 Multiaxial random loading: Application to the CSV criterion ........ 119 

8.1 Introduction .................................................................................................. 119 

8.2 The spectral method by Carpinteri-Spagnoli-Vantadori (CSV) ................... 121 

8.2.1 Summary of the computation steps ........................................................ 121 

8.2.2 The CSV method in numerical computations ........................................ 128 

8.2.3 Critical analysis of the use of the Davenport’s formula ......................... 131 

8.3 The proposed algorithm ................................................................................ 133 

8.4 Numerical simulations .................................................................................. 139 

8.4.1 Idealized power spectra (one single simulation run) .............................. 140 

8.4.2 Finite element analysis (multiple simulation runs)................................. 143 

Chapter 9 Conclusions ........................................................................................... 147 

Bibliography ................................................................................................................ 153 

Appendix A Confidence interval expression of one time-history ....................... 165 

Appendix B Expressions of the elapsed time for the standard algorithm ........ 169 

Acknowledgements ..................................................................................................... 173 

 



xvi Contents  

 

 

 

 

 

 



 

 

Chapter 1  
 

INTRODUCTION 

Structural durability describes the strength behaviors of mechanical component and 

structures under service loads. Different kinds of loads can be considered in structural 

durability analysis, e.g. constant amplitude loadings and blocking loadings. However, the 

service loads in most engineering applications are random in nature, which are uncertain 

and not deterministic. Examples are a vehicle excited by road irregularity, a turbine 

exposed to wind, an offshore platform or ship under wave loadings. The engineering 

challenges in these and many other applications are figuring out the structural durability, 

which needs to consider the strength of component and its random loading. Therefore, 

engineers have not only to be aware of the in-service random loadings but also if fatigue 

failures may occur in mechanical components and structures. 

Fatigue phenomenon is a complicate degradation process of materials (e.g. metals) 

that results in progressive damage. The fatigue damage accumulation observed in real 

structures and components is affected by many uncertainties. Examples are material 

randomness and load randomness [BEN05a,JOH99,TOV01]. For material randomness, 

statistical methods exist for considering the uncertainties. Besides, statistical tools for 

fatigue loading characterization may be used when loads vary randomly [TOV01]. 

The fatigue damage of structures and components under random loadings is 

generally estimated using random stress response acting at critical points. In practice, one 
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or more random stress time-histories are obtained by measurements. Successively, the 

time-domain approach may be applied to calculate the damage by processing directly 

such time-histories. This approach usually adopts rainflow counting method and 

Palmgren-Miner damage rule. Based on these well-established procedures, the time-

domain approach usually requests long random time-history to achieve good confidence 

in estimating the damage. 

Alternatively, the fatigue damage may be computed by frequency-domain 

approach. This approach leads to the so-called “spectral methods”, which idealizes the 

random stress time-histories as a random process. All time-histories may be viewed as an 

infinite collection (or ensemble), which represent a random process. The uniaxial or 

multiaxial random stress process is hypothesized to be stationary or non-stationary, 

ergodic or non-ergodic, Gaussian or non-Gaussian, and with narrow-band or wide-band 

Power Spectral Density (PSD) [LUT04,BEN10c,BEN18b]. If the process is stationary, it 

may be characterized by a PSD. Consequently, analytical expressions are then used to 

estimate the expected damage directly from a PSD. From a statistical point of view, the 

expected damage is the value that would result from averaging all the damage values of 

an infinite ensemble of time-histories. 

Indeed, the expected damage computed from an infinite number of time-histories 

does not have a sampling variability. However, the damage computed from only one 

stationary random time-history of finite length has an intrinsic scatter. This damage value 

must be viewed as being one sample value out of an infinite collection. The scatter of 

fatigue damage is explained by the inherent randomness of each random time-history 

recorded, which has a random number of counted cycles, as well as randomly distributed 

amplitudes and mean values [MAR19b,MAR20a,MAR20c,MAR21a,MAR21b]. 

In any case, the damage value from one time-history of finite length is a random 

variable following a certain damage probability distribution. The variance around the 

expected damage is an essential property of the damage probability distribution – from 

now on, this will be called the “variance of the damage”. In the structural durability 
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analysis, estimating the variance of the damage becomes as much important as estimating 

the expected damage [MAR19a,MAR20a,MAR21b]. 

It is important to highlight that the expected damage and its variance may be 

calculated from Gaussian or even non-Gaussian random stress process. Non-Gaussian 

loadings are encountered, for example, in certain types of wind or wave loadings, or when 

the structure has a non-linear behavior that transforms a Gaussian input into a non-

Gaussian output [MAR20c,MAR21a,MAR21b]. 

Furthermore, several methods to estimate fatigue damage or even variance of 

damage are usually restricted to random loadings assumed as stationary. Since this 

hypothesis is not valid for all structures and mechanical components, a non-parametric 

statistical method should be used to verify the stationarity of measured random time-

histories. Methods existing in literature [ROU14] typically consider to the root-mean-

square (RMS) value as the statistical parameters. However, they can detect change only 

in the variance and mean value of random time-history. It would be more effective to take 

into account the damage as statistical parameter so that it is possible to identify changes 

in variance, mean value and frequency content. 

Similarly, to expected damage, the variance of the damage requires the knowledge 

of an infinite ensemble of time-histories (which in practice is never available). By 

contrast, in the situation with only few measured stationary time-histories, the infinite 

ensemble of time-histories is never known and expected damage and its variance can only 

be estimated. Nothing can be said about the “exact” expected damage and its variance of 

the whole time-history ensemble constituting the random process. In this situation, 

confidence interval can be used to bound the exact (but unknown) expected damage. 

Finally, it is worth to mention that some mechanical components with complex 

geometries provide random stress responses which are multiaxial. Consequently, the 

structural durability analysis becomes obviously more complex. In these cases, spectral 

methods applied to multiaxial random loadings, which is characterized by a PSD matrix, 

can be used to compute fatigue damage. Spectral methods are classified based on the 
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concept of critical plane, stress invariants or equivalent stress [BEN16a,CAR17,BEL07, 

BEN08]. An example of critical plane method is the Carpinteri–Spagnoli–Vantadori 

(CSV) multiaxial fatigue criterion. Such a method may be implemented in a numerical 

routine that needs a sequence of five rotations to find the critical plane by ‘for/end’ loops. 

In some cases, where is not possible to predict the most critical regions (especially if of 

complex geometry), CSV algorithm seems to be slow [BEN19a,MAR20b]. An algorithm 

with analytical expressions to identify the critical plane and not making use of 'for/end' 

loops would much faster than the standard algorithm. 

This thesis presents original contributions on the variance of damage in both 

Gaussian and non-Gaussian random loadings, statistical method to verify the stationarity, 

confidence interval of damage with one or few time-histories and last, but not least a new 

algorithm to shorten the computation time of CSV multiaxial spectral method. Figure 1.1 

summarizes all contributions presented in this thesis and their connection to random 

loadings. 
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Figure 1.1. Overview of the thesis. Numbers indicate the chapters. 

More particularly, empirical expressions are obtained for the variance of damage 

applied to narrow-band or wide-band Gaussian process. Four methods from the literature 

valid for narrow-band PSD, i.e. Mark and Crandall [MAR61], Bendat [BEN64], Madsen 

et al. [MAD86] and Low [LOW12], are reviewed and compared them with Monte Carlo 

simulations in the time- and frequency-domain. Based on simulation results, best-fitting 

expressions are derived to relate the variance of damage to the bandwidth parameter 𝛼1. 

In addition, two theoretical models to compute the variance of damage in narrow-

band non-Gaussian random processes are proposed. The models proposed are based on a 

non-linear transformation that enables the models to calculate the variance. The 

correctness of the theoretical models is verified by Monte Carlo simulations. 

The thesis also proposes an improved approach to verify the stationarity of time-

histories. As an alternative to Rouillard’s approach [ROU14] that considers RMS values, 

One or few 
time-histories

Verify
the stationarity

Multiaxial
spectral method

Gaussian

Narrow-band
or

wide-band

Non-Gaussian

Narrow-band

Variance of damage Variance of damage
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of damage

Random loadings

42 3

Uniaxial Multiaxial

Infinite ensemble of time-histories

Shorten the 
computation time

52 3

82 373

63
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the proposed statistical method considers the damage as the statistical parameters. The 

proposed method is then compared with Rouillard’s using stationary and non-stationary 

simulation time-histories. 

The confidence intervals are further derived to enclose the expected damage when 

only one or few time-histories are available. A numerical example considers the stress 

PSD in an offshore platform, as proposed by [WIR76]. The confidence intervals as well 

as the proposed method to verify the stationarity are also investigated by measuring the 

random loads acting on a Mountain-bike. 

Finally, the thesis gives a new algorithm to implement the spectral method by 

CSV. The proposed algorithm reduces drastically the computation time when all the 

Finite Element (FE) model nodes are considered (especially with complex geometries). 

All numerical simulations and routines are performed using MATLAB [MAT18]; 

the WAFO (Wave Analysis for Fatigue and Oceanography) toolbox is also used 

[BRO00]. 

1.1 OVERVIEW OF THE THESIS 

While an overview of the thesis from random loadings to structural analysis is provided 

in Figure 1.1, each chapter is described in more details below. This description produces 

the main contents considered in the thesis. 

1.1.1 Random process theory 

In Chapter 2, the essential definitions of random process are presented to give a basis of 

later chapters, e.g. statistical moments of random process, autocorrelation coefficient 

function, Power Spectral Density (PSD) and its spectral moments. The random stress 

process in frequency-domain are presented in uniaxial and multiaxial. 
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1.1.2 Fatigue damage under random loading 

Chapter 3 gives particular attention to the fatigue damage in time-domain and frequency-

domain approaches. In time-domain, the fatigue damage is calculated by rainflow method 

and Palmgren-Miner rule and it strictly depends on a particular time-history of finite 

length. The fatigue damage is then defined as a random variable. In frequency-domain, 

the expected fatigue damage is computed from an infinite collection (or ensemble) of 

random time-histories. Indeed, this damage value, which does not have sampling 

variability, represents the damage of random process. Finally, Chapter 3 reviews Narrow-

band approximation and Tovo-Benasciutti method to estimate the expected fatigue 

damage. 

1.1.3 Variance of fatigue damage in Gaussian random loading 

Chapter 4 reviews Mark and Crandall, Bendat, Madsen et al. and Low methods which 

allow estimating the variance of fatigue damage in narrow-band Gaussian process. 

Chapter 4 also gives a critical review of such methods and later compares them with 

Monte Carlo simulations in the time- and frequency-domain approaches. Based on all 

simulation results, best-fitting expressions were derived to relate the coefficient of 

variation of damage to the bandwidth parameter 𝛼1. Following the best-fitting 

coefficients, the proposed expressions apply to a wide range of PSDs, from narrow-band 

to wide-band processes. 

1.1.4 Variance of fatigue damage in non-Gaussian random loading 

Two theoretical models to assess the variance of damage in non-Gaussian random process 

are presented in Chapter 5. The models extend two solutions existing in the literature and 

restricted to Gaussian processes. The models make use of a non-linear transformation that 

links Gaussian and non-Gaussian domains based on skewness and kurtosis coefficients, 

which are used to quantify the deviation from the Gaussian distribution. Monte Carlo 
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numerical simulations in time-domain are performed to verify the correctness of the 

proposed non-Gaussian models. Finally, Chapter 5 investigates the sensitivity of the 

variance of fatigue damage to the values of skewness, kurtosis, and inverse slope of the 

S-N curve. 

1.1.5 Test of stationarity of random loading 

In Chapter 6, a non-parametric statistic method (e.g. run test) is proposed to verify the 

stationarity of time-histories with finite length. In summary, the run test proceeds a 

sequence of non-overlapping blocks. For each block, a value is calculated for the 

statistical parameter under investigation. The Rouillard’s approach considers RMS values 

for each independent block as the statistical parameters. As an improvement to 

Rouillard’s approach, the proposed run test computes the damage values for each block 

in which can detect changes not only in the variance and mean value of random time-

history but also in the frequency content. 

1.1.6 Variability of fatigue damage: A real-world scenario 

Chapter 7 proposes an approach to estimate the statistical variability of damage computed 

from only one or few time-histories. For both cases, confidence interval expressions are 

derived to enclose the exact (but unknown) expected damage. A numerical example, 

which considers a stress PSD in an offshore platform [WIN76], verifies the correctness 

of both confidence interval expressions. The confidence intervals for the expected 

damage are also investigated by measuring the random loads acting on a Mountain-bike. 

Several time-histories were measured directly in the Mountain-bike in a typical north 

Italian off-road track. The stationarity hypothesis of all measured time-history records 

was also verified by proposed damage-based run test in Chapter 6. Finally, a calibrator 

sample damage checks whether the confidence intervals correctly encloses the expected 

damage. 
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1.1.7 Multiaxial random loading: Application to the CSV criterion 

Chapter 8 proposes a new algorithm for implementing the CSV criterion and to shorten 

the computation time. In most cases, the analysis of all nodal results in an FE model is 

not needed because it may be restricted to small subsets of nodes from the most stressed 

regions; but, if it is not possible to predict a priori which regions are the most critical 

ones, such a new algorithm significantly reduces the computation time for the critical 

plane search. This goal was achieved in two phases. The first one consisted in computing 

the analytical expressions of only those spectral moments used for determining the largest 

variance and expected largest peak of normal/shear stress in any rotated reference frame 

at a given point. The second one was to employ those analytical expressions into a 

numerical routine that, dismissing “for/end” loops, is much faster than the standard 

algorithm. 

The new approach applied to the CSV criterion has a general validity. Indeed, 

theoretical framework of this approach may apply to any multiaxial spectral method in 

which the critical plane or the direction of maximum stress variance is identified through 

rotation angles or direction cosines. 
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Chapter 2  
 

RANDOM PROCESS THEORY 

2.1 INTRODUCTION 

Mechanical structures are often exposed to random loadings during their service life. For 

example, a car travelling on an irregularity road is excited by random loading, where the 

term “random” simply means that, at each time instant, the load value is inherently 

uncertain and not predictable exactly [BEN18b]. In structural durability analysis, random 

excitations play an important role to characterize the random stress response of such 

structures. The random stress process as well as fatigue damage—which will be addressed 

in Chapter 3—can be tackled in two alternative fields: time-domain or frequency-domain 

approach. Stationary random stress process is more usefully studied in frequency domain 

than time-domain due to better description of process [WIN95,BEN05a,BEN05b]. 

This chapter discusses elementary concepts of random process to form a 

foundation for applications to analysis in later chapters. It is expected that the reader is 

familiar with the theory of probability, random variables and their probability 

distributions. Otherwise, the reader is referred to texts as [WIN95,LUT04,BEN10c]. 

The random processes characterization in time-domain are first presented as 

stationary and ergodic with Gaussian or non-Gaussian distribution. A useful way to 

consider a random process 𝑋(𝑡) is in terms of all possible time-histories or infinite 
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collection of time-histories 𝑥i(𝑡), i = 1,2,3…∞. It is typically called an ensemble. 

Hereafter, both uniaxial and multiaxial random stress, which are modelled as stationary 

random process 𝑋(𝑡), are exploited in frequency-domain. Since multiaxial random stress 

in frequency-domain is described by uniaxial components and based on reformulations 

of classical fatigue criteria in time-domain, uniaxial and multiaxial stress are addressed 

separately. 

2.2 BASIC CONCEPTS 

Any measured random loading on an engineering structure may be assumed as one of the 

many random loadings that could be measured. The stress dynamic response of this 

structure is usually a single random stress time-history out of an infinite collection. In this 

example, as in many others, the set of all possible random stress time-histories 𝑥i(𝑡), i =

1,2,3…∞ should be modelled as an infinite collection (or ensemble). This idea of infinite 

time-histories allows the stationary random process 𝑋(𝑡), −∞ < 𝑡 < ∞ to be exploited. 

The first statistical quantity of the random process 𝑋(𝑡) is the ensemble mean 

value or expected value 𝜇X = 𝐸[𝑋(𝑡)], where symbol 𝐸[−] is the probabilistic 

expectation. It is also called as first moment of 𝑋(𝑡) [BEN10c,LUT04]. Similarly, the 

expected value of 𝑋(𝑡) squared 𝐸[𝑋2(𝑡)] is commonly called the second moment. This 

term 𝐸[𝑋2(𝑡)] may be subtracted by the mean-squared value 𝜇𝑋
2  to define the second 

central moment, or the variance of the process 𝜎X
2 = Var[𝑋(𝑡)] [BEN10c,LUT04]: 

 𝜎X
2 = 𝐸[(𝑋(𝑡) − 𝜇X)

2] = 𝐸[𝑋2(𝑡)] − 𝜇X
2 (2.1) 
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The standardized third and fourth central moment of the random process are known as 

skewness 𝛾3 and kurtosis 𝛾4 [LUT04]: 

 
𝛾3 =

𝐸[(𝑍(𝑡) − 𝜇Z)
3]

𝜎Z
3  ;         𝛾4 =

𝐸[(𝑍(𝑡) − 𝜇Z)
4]

𝜎Z
4   

(2.2) 

A stationary random process 𝑋(𝑡) is completely defined with 𝛾3 = 0 and 𝛾4 = 3 if its 

values follow a normal (or Gaussian) distribution around its mean value. On the contrary 

a non-Gaussian process 𝑍(𝑡) deviates from the Gaussian distribution when 𝛾3 ≠ 0 

and 𝛾4 ≠ 3. The skewness and kurtosis are parameters devised to measure the degree of 

non-Gaussianity. The skewness measures the asymmetry degree of a non-Gaussian 

distribution. The kurtosis measures the contribution of tails: values away from the mean 

can be either higher (𝛾4 > 3, leptokurtic case) or lower (𝛾4 < 3, platykurtic case) than the 

values from a Gaussian distribution. 

Under the hypothesis of stationarity, the random process 𝑋(𝑡) is uniquely 

characterized in the time-domain by the autocorrelation function [BEN10c,LUT04]: 

 𝑅X(𝜏) = 𝐸[𝑋(𝑡)𝑋(𝑡 + 𝜏)] (2.3) 

in which 𝜏 is a time-lag. The autocorrelation function 𝑅X(𝜏) can be normalized to the 

mean-squared value 𝜇X
2 and variance 𝜎X

2 of the process to obtain the autocorrelation 

coefficient function (or normalized autocorrelation function) [BEN10c,LUT04]: 

 𝜌X(𝜏) =
𝑅X(𝜏) − 𝜇X

2

𝜎X
2  (2.4) 

Eq. (2.4) indicates a linear relationship between the two random variables of the same 

process separated by a time difference 𝜏. For all 𝜏, the autocorrelation coefficient satisfies 

−1 ≤ 𝜌X(𝜏) ≤ 1. A perfect linear relationship (correlated) is provided by 𝜌X(𝜏) = ±1 

while the other extreme 𝜌X(𝜏) = 0 is called uncorrelated random variables. 
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2.3 SPECTRAL PROPERTIES 

After a short account on time-domain description of the random process, which may be a 

mechanical random stress process, this section introduces a few concepts of stationary 

random stress process in the frequency-domain. 

2.3.1 Uniaxial random stress 

The uniaxial stationary random stress 𝑋(𝑡) is described in frequency-domain by a one-

sided Power Spectral Density (PSD) or power spectrum function 𝑆X(𝑓), 0 < 𝑓 < ∞. This 

function constitutes a Fourier transform pair (Wiener–Khintchine relations) [WIR95]: 

 𝑆X(𝑓) = 4∫ 𝑅𝑋(𝜏)
∞

0

𝑐𝑜𝑠(2𝜋𝑓𝜏) d𝜏 (2.5) 

where 𝑓 is the frequency in Hertz. The PSD function of a narrow-band process is centered 

on a restrict range of frequencies, while wide-band process extends over a wider range of 

frequencies.  

The spectral moments are commonly used to characterize the PSD in frequency-

domain [WIR95]: 

 𝜆m = ∫ (2𝜋𝑓)m
∞

0

𝑆X(𝑓) d𝑓,     𝑚 = 0,1,2… (2.6) 

They are useful for describing some statistical properties of random process 𝑋(𝑡) in the 

time-domain. For example, the variances for the process and its derivatives 𝑋(𝑡), �̇�(𝑡), 

�̈�(𝑡) are 𝜎X
2 = 𝜆0, 𝜎Ẋ

2 = 𝜆2 and 𝜎Ẍ
2 = 𝜆4, respectively.  
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Spectral moments are also used to compute the average frequency of upward 

crossings of the mean, 𝜈0, and peaks, 𝜈p [WIR95]: 

 
𝜈0 =

1

2𝜋
√

𝜆2

𝜆0
,        𝜈p =

1

2𝜋
√

𝜆4

𝜆2
 (2.7) 

The bandwidth parameters, which are calculated by spectral moments, are typically 

exploited to classify the PSD. One of them is the bandwidth parameter proposed by 

Vanmarcke [VAN72]: 

 
𝜀 = √1 −

𝜆1
2

𝜆0𝜆2
 (2.8) 

When the process is narrowband, 𝜀 → 0 is close to zero; conversely, 𝜀 → 1 for wideband 

processes. However, the most used bandwidth parameters are [WIR95]: 

 
𝛼1 =

𝜆1

√𝜆0𝜆2

,        𝛼2 =
𝜆2

√𝜆0𝜆4

 (2.9) 

In contrast to Vanmarcke’s bandwidth parameter 𝜀, both parameters are close to unity 

𝛼1 → 1, 𝛼2 → 1 when the process is narrow-band (PSD with a well-defined frequency). 

Conversely, they tend to zero 𝛼1 → 0, 𝛼2 → 0 when the process is wideband (PSD over 

a larger frequency range). 

In addition to provide a measure of spectral width, the quantity 𝛼1 is called the 

groupness parameter in ocean engineering [LON84,RYC03] and it is related to the 

definition and properties of the envelope of a random process [VAN72]. Instead, the 

parameter 𝛼2 is equal to the irregularity factor 𝐼𝐹 = 𝜈0 𝜈p⁄  for Gaussian case, defined as 

the ratio of the average frequency of upward crossings of the mean to the average 
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frequency of peaks. One disadvantage of 𝛼2, as compared with 𝛼1, is its increased 

sensitivity to high-frequency components of the PSD function [LUT04]. 

2.3.2 Multiaxial random stress 

The previous description of uniaxial random stress may be extended to multiaxial random 

stress in frequency-domain. It is described by six non-redundant components of normal 

stress and shear stress, which are conveniently grouped into the vector 𝛔XYZ(𝑡) =

[𝜎xx(𝑡), 𝜎yy(𝑡), 𝜎zz(𝑡), 𝜏yz(𝑡), 𝜏xz(𝑡), 𝜏xy(𝑡)]
T
. The subscript XYZ specifies that 𝛔XYZ(𝑡) 

refers to the reference frame 𝑃XYZ, with origin at a material given point. If every stress 

component is a stationary random process, vector 𝛔XYZ(𝑡) is characterized by a 6×6 PSD 

matrix [BEN19a,BEN19b,MAR20b]: 

 

𝐒XYZ(𝑓) =

[
 
 
 
 
 
 

𝑆xx 𝑆xx,yy 𝑆xx,zz 𝑆xx,yz 𝑆xx,xz 𝑆xx,xy

𝑆xx,yy
∗ 𝑆yy 𝑆yy,zz 𝑆yy,yz 𝑆yy,xz 𝑆yy,xy

𝑆xx,zz
∗ 𝑆yy,zz

∗ 𝑆zz 𝑆zz,yz 𝑆zz,xz 𝑆zz,xy

𝑆xx,yz
∗ 𝑆yy,yz

∗ 𝑆zz,yz
∗ 𝑆yz 𝑆yz,xz 𝑆yz,xy

𝑆xx,xz
∗ 𝑆yy,xz

∗ 𝑆zz,xz
∗ 𝑆yz,xz

∗ 𝑆xz 𝑆xz,xy

𝑆xx,xy
∗ 𝑆yy,xy

∗ 𝑆zz,xy
∗ 𝑆yz,xy

∗ 𝑆xz,xy
∗ 𝑆xy ]

 
 
 
 
 
 

 

=

[
 
 
 
 
 
𝑆11 𝑆12 𝑆13 𝑆14 𝑆15 𝑆16

𝑆21
∗ 𝑆22 𝑆23 𝑆24 𝑆25 𝑆26

𝑆31
∗ 𝑆32

∗ 𝑆33 𝑆34 𝑆35 𝑆36

𝑆41
∗ 𝑆42

∗ 𝑆43
∗ 𝑆44 𝑆45 𝑆46

𝑆51
∗ 𝑆52

∗ 𝑆53
∗ 𝑆54

∗ 𝑆55 𝑆56

𝑆61
∗ 𝑆62

∗ 𝑆63
∗ 𝑆64

∗ 𝑆65
∗ 𝑆66]

 
 
 
 
 

 

(2.10) 

The order of elements in 𝐒XYZ(𝑓) must strictly correspond to the order of stress 

components in 𝛔XYZ(𝑡). The elements on the main diagonal, 𝑆ii(𝑓), are auto-PSDs, 

whereas those outside the diagonal, 𝑆ij(𝑓) (𝑖 ≠ 𝑗), are cross-PSDs. Matrix 𝐒XYZ(𝑓) is 

Hermitian as 𝑆ij(𝑓) = 𝑆ji
∗(𝑓) , where ∗ means complex conjugate. Some elements in 
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𝐒XYZ(𝑓) can be zero if the stress state is biaxial, or even uniaxial, for more details 

[BEN19b]. 

Each element in matrix 𝐒XYZ(𝑓) is a one-sided spectrum, which admits a 

description through its set of spectral moments. By applying the definition in Eq. (2.6) to 

the whole PSD matrix 𝐒XYZ(𝑓) yields the set of m-th order spectral moments, grouped in 

the following symmetric matrix [BEN19a,BEN19b,MAR20b]: 

 𝛌m,XYZ =

[
 
 
 
 
 
 
𝜆m,11 𝜆m,12 𝜆m,13 𝜆m,14 𝜆m,15 𝜆m,16

𝜆m,21 𝜆m,22 𝜆m,23 𝜆m,24 𝜆m,25 𝜆m,26

𝜆m,31 𝜆m,32 𝜆m,33 𝜆m,34 𝜆m,35 𝜆m,36

𝜆m,41 𝜆m,42 𝜆m,43 𝜆m,44 𝜆m,45 𝜆m,46

𝜆m,51 𝜆m,52 𝜆m,53 𝜆m,54 𝜆m,55 𝜆m,56

𝜆m,61 𝜆m,62 𝜆m,63 𝜆m,64 𝜆m,65 𝜆m,66]
 
 
 
 
 
 

,     𝑚 = 0, 1, 2…   (2.11) 

Analogous to 𝐒XYZ(𝑓), elements on the main diagonal, 𝜆m,ii(𝑓), are the moments 

of auto-PSDs and outside the diagonal elements 𝜆m,ij(𝑓) (𝑖 ≠ 𝑗) are the moments of cross-

PSDs [BEN19a,BEN19b,MAR20b]: 

 

𝜆m,ii = ∫ 𝑓m𝑆ii(𝑓)
∞

0

𝑑𝑓;         

𝜆m,ij = ∫ 𝑓m𝑆ij(𝑓)
∞

0

𝑑𝑓 = ∫ 𝑓m𝑆ji
∗(𝑓)

∞

0

𝑑𝑓        (𝑖 ≠ 𝑗) 

(2.12) 

Note that the zero-order moments (𝑚 = 0) equal to the variance and covariance 

of stress components 𝜆0,ii = Var[𝜎i(𝑡)] and 𝜆0,ij = Cov[𝜎i(𝑡), 𝜎j(𝑡)], respectevely. 

Different terms are obtained for each value of 𝑚 (e.g. 𝜆0,ii ≠ 𝜆2,ii for any 𝑖). 

Consequently, matrix 𝛌m,XYZ changes according to m-th order of the spectral moments. 

The zero-order matrix agrees with the covariance matrix 𝛌0,XYZ = 𝐂XYZ of vector 
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𝛔XYZ(𝑡), in which each element is 𝐂XYZ,ij = Cov(𝛔XYZ,i, 𝛔XYZ,j). Also, the second-order 

moment matrix 𝛌2,XYZ coincides with the covariance of first derivative vector �̇�XYZ(𝑡). 

 



 

 

Chapter 3  
 

FATIGUE DAMAGE UNDER RANDOM LOADING 

3.1 INTRODUCTION 

The previous chapter introduced a few concepts of random process in time and frequency-

domain. Simple classifications of process are assumed for example stationary, ergodic 

and Gaussian or non-Gaussian distribution. The random process theory is also used to 

describe the uniaxial and multiaxial random stress response, which are of interest to 

engineers. 

The random loading acting on a mechanical structure may be modelled as a 

random process. The randomness of the loading seems to provide a larger scatter in 

estimating the fatigue damage compared to other uncertainties [TOV01,LOW12, 

LOW14a]. In any case, for structural durability analysis, an efficient procedure to 

estimate fatigue damage of structures subjected to random loadings needs to take into 

account. 

Indeed, fatigue damage can be estimated in time or frequency-domain approach. 

The time-domain computes the damage by processing directly one or more measured 

time-histories. It is based on well-established procedures, i.e. rainflow counting method 

and Palmgren-Miner rule. The rainflow method is the most accurate counting procedure 

and its stress amplitudes distribution may be represented by an amplitude histogram or a 
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loading spectrum. Under the linear damage rule as Palmgren-Miner, the damage is 

computed given a measured time-history. An acceptable small statistical scatter of 

damage is usually achieved by performing one sufficiently long or many different 

measurements [BEN05a,BEN05b], which may be costly and time-consuming. 

On the other hand, the frequency-domain approach makes use of mathematical 

expressions (e.g. Narrow-band approximation and Tovo-Benasciutti method) to calculate 

the expected damage by a Power Spectral Density (PSD) [BEN05a,BEN05b,BEN18b]. 

A more complex theory is required to estimate the rainflow distribution and then 

approximating the damage under the linear damage hypothesis. From a statistical point 

of view, the expected damage represents the value that would result from averaging all 

the damage values of an infinite ensemble of time-histories. 

This chapter reviews key parameters of mechanical materials, rainflow counting 

method, histogram and loading spectrum of rainflow, fatigue damage under Palmgren-

miner rule and expected fatigue damage. Due to its important in subsequent chapters, 

special attention is paid to the fatigue damage in time-domain and frequency-domain. In 

frequency-domain, Narrow-band approximation is only appropriate for narrow-band 

processes, while Tovo-Benasciutti method is also appropriate for wide-band random 

processes. Although several spectral methods have been developed in the past two 

decades, e.g., Dirlik [DIR85], Gao-Moan [GAO08], Petrucci-Zuccarello [PET04], Tovo-

Benasciutti [BEN05b], Wirsching-Light [WIR80] and Zhao-Baker [ZHA92]; Dirlik and 

Tovo-Benasciutti method demonstrated to be more accurate than the others 

[CAP20,MRŠ13]. For this reason, it is reviewed in this chapter and will be used as a 

reference in later chapters when estimating the expected damage for wide-band random 

processes. 
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3.2 MATERIAL PROPERTIES 

The material used in engineering components and structures may be characterized by a 

few parameters. These parameters are defined by experimental tests in laboratory. Indeed, 

they are determined by the fatigue resistance expressed as the number of cycles to failure 

under constant amplitude loading. Mathematically, the fatigue resistance is a power-law 

function, which is called S-N curve or Wöhler curve [SCH96]: 

 𝑠k𝑁f = 𝐴 (3.1) 

where 𝐴 is the fatigue strength of the material, 𝑘 the damage exponent or inverse slope, 

and 𝑁f is the number of cycles to failure at a given stress amplitude 𝑠. The S-N curve is 

represented by a straight-line in double-logarithmic scale. However, some materials 

exhibit a fatigue limit, below which failure appears not to occur. In such cases, the log-

log diagram is characterized by two straight-lines as 𝑁f tending to infinity under low stress 

amplitudes. 

In laboratory, material parameters 𝐴 and 𝑘 may present a large scatter using 

exactly the same controlled conditions (e.g. loading kinds). Consequently, these 

parameters should be modelled as random variables by statistical methods 

[LIN87,SVE97]. For example, parameters 𝐴 and 𝑘 may represent best-fitting estimates 

of experimental data considering their statistical variability, see [ISO17]. 

3.3 RAINFLOW COUNTING METHOD 

The rainflow is the most popular and used counting method to determine the distribution 

of cycles and the fatigue damage of structures and components under random loadings. It 

has been recognized as the most accurate in identifying damaging events in complex 

loadings [DOW72]. Different definitions of rainflow counting algorithms, which are 

similar to each other, can be found in literature. They include the "pagoda-roof" method 
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proposed by Matsuishi and Endo [MAT68], the “3-points” algorithm [AST85] or the 

alternative “4-points” algorithm [AMZ94], and the non-recursive definition proposed by 

Rychlik [RYC87]. All different algorithms provide the same cycle counts if the random 

time-history begins and ends with its maximum peak. Here, the common rainflow method 

described in the ASTM standard, “3-points” algorithm, is analyzed. 

The method considers a sequence of local minima (valley) and maxima (peak) of 

time-history, which are used to form and to compare stress ranges. Rules for the “3-

points” algorithm are illustrated in Figure 1.1, where X denotes the range under 

consideration, Y is the previous range adjacent to X and S is the starting point. 

 
Figure 3.1. Rainflow counting rules (“3-points” algorithm). 

Read next peak and valley

Out of data?
Count each range as

half-cycle

Less than 3 points?
YES

NO

NO

YES

End

X<Y

Y contains S?
•Count range Y as half-cycle
•Discard the first point in range Y
•Set S the second point in range Y

YES

NO

YES

Set S the start point

Start

NO

• Count range Y as complete cycle
• Discard the peak and valley of Y
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Figure 3.2 provides a simple example of the “3-points” algorithm applied to a 

time-history. The first two ranges (ranges AB and BC) are counted as half-cycles (all 

contain the starting point S) and are then removed; ranges EF and HI are counted as 

complete cycles; the remaining ranges (residual) are CD, DG and GJ. 

 
Figure 3.2. “3-points” algorithm applied to a time-history. 

Note that the rainflow method successively extracts the half-cycles and complete 

cycles from a sequence, which describes the stress-strain hysteresis loops [MAT68]. 

When the rainflow method does not start the counting from the largest peak or the lowest 

valley in the time-history, the stress-strain does not close the path, see Figure 3.3. 
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Figure 3.3. Stress-strain hysteresis loops for the time-history of Figure 3.2. 

The method, finally, collects the half-cycles and complete cycles and tabulates 

their ranges, their means, and the points at which they start and end. These results can 

then be used to construct an amplitude histogram of cycles or loading (or cumulative) 

spectrum. 
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3.4 AMPLITUDE HISTOGRAM AND LOADING SPECTRUM 

The amplitudes of a random time-history 𝑥(𝑡) are often represented in the form of a 

histogram or a loading (or cumulative) spectrum 𝐶(𝑠). For a random time-history 𝑥(𝑡) of 

duration 𝑇, the loading spectrum is: 

 𝐶(𝑠) =
𝑛(𝑇)[1 − 𝐹(𝑠)]

2
 (3.2) 

where 𝑛(𝑇) the total number of half-cycles counted in time 𝑇 and 𝐹(𝑠) the amplitude 

distribution of counted cycles. Figure 3.4(a) shows the rainflow amplitude histogram 

from a particular time-history 𝑥(𝑡), while Figure 3.4(b) corresponds to its cumulated 

cycles. 

 
Figure 3.4. Rainflow cycles: (a) amplitude histogram and (b) loading spectrum. 

In laboratory, standardized loading spectra are used to conducted tests by virtual 

simulation programs. They reproduce real service conditions of structures and 

(a) (b)
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components (e.g. vehicles and car suspension systems), which encompass all possible 

most damaging service loadings [BER02]. 

3.5 PALMGREN-MINER RULE 

Palmgren-Miner rule is a linear damage hypothesis which sums up the damage 

contribution from each cycle or half-cycle during time 𝑇. Thus, damage in 𝑇 caused by a 

random loading under Palmgren-Miner rule is given by: 

 𝐷(𝑇) = ∑ 𝑑i

n(T)−1

i=0

= ∑
𝑠i

k

2𝐴

n(T)−1

i=0

 (3.3) 

where 𝑑i is the damage of the i-th half-cycle, 𝑠i is the stress amplitude, and 𝐴 and 𝑘 are 

material constants of the S–N curve 𝑠𝑘𝑁 = 𝐴. Fatigue failures often occur when the 

damage 𝐷(𝑇) reaches a critical value. Critical damage value is often assumed unity. 

Experimental results given by Miner however highlighted that the critical 𝐷(𝑇 ) is not 

unity [MIN45]. 

Damage 𝐷(𝑇) in Eq. (3.3) strictly depends on the particular time-history 𝑥(𝑡) of 

time duration 𝑇. This means that 𝐷(𝑇) would take a different value if 𝑥(𝑡) were longer, 

or if it were computed from another time-history under same conditions. The damage 

𝐷(𝑇) is then a random variable. The fact that 𝐷(𝑇) is a random variable is due to the 

randomness in the stress amplitude 𝑠 values and in the number of half-cycles counted 

𝑛(𝑇), which both take on slightly different values from one time-history to another 

[MAR19b, MAR20a]. 
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3.6 EXPECTED FATIGUE DAMAGE 

The expected fatigue damage denotes the damage 𝐷(𝑇) computed from an infinite 

collection (or ensemble) of random time-histories. Indeed, this damage value thus 

represents the damage of random process 𝑋(𝑡). The expected fatigue damage is calculated 

by taking the expectation of Eq. (3.3): 

 𝐸[𝐷(𝑇)] = 𝐸 [ ∑ 𝑑i

n(T)−1

i=0

] = 𝐸[𝑛(𝑇)]
𝐸[𝑠k]

2𝐴
 (3.4) 

where 𝐸[𝑛(𝑇)] is the expected number of half-cycles counted in 𝑇 and the term 𝐸[𝑑] =

𝐸[𝑠k]/2𝐴 is the expected damage per half-cycle. 

The number of half-cycles 𝑛(𝑇) is usually assumed deterministic for the reason 

that it has a small statistic variability around the mean [MAR20a]. Consequently, the 

expectation 𝐸[𝑛(𝑇)] in Eq. (3.4) under the hypothesis of stationary random processes 

may be written as 𝐸[𝑛(𝑇)] = 2𝜈a𝑇, where 𝜈a is the expected intensity of counted cycles; 

in complete counts (e.g. rainflow method), 𝜈a = 𝜈p, where the average frequency of peaks 

𝜈p uniquely depends on the random process 𝑋(𝑡) [BEN05a,BEN05b]. 

Using the probability distribution of stress amplitudes 𝑓a(𝑠) and neglecting mean 

value effect, the term 𝐸[𝑑] = 𝐸[𝑠k]/2𝐴, which relates to the k-th moment, results in: 

 𝐸[𝑑] =
1

2𝐴
∫ 𝑠k𝑓a(𝑠) d𝑠

∞

0

 (3.5) 

Note that the expected damage per half-cycle in Eq. (3.5) exclusively depends on 

stress amplitude distribution 𝑓a(𝑠), which is defined by a counting method. 

In turns, Eq. (3.4) can be written as a function of probability distribution 𝑓a(𝑠): 
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 𝐸[𝐷(𝑇)] =
𝜈p𝑇

𝐴
∫ 𝑠k𝑓a(𝑠) d𝑠

∞

0

 (3.6) 

To date no exact analytical solution for 𝐸[𝐷(𝑇)] in Eq. (3.6) is available due to 

the complicate algorithm of rainflow method. However, a few methods [RYC93, 

BEN05a,BEN05b] address this issue by estimating the rainflow distribution and then 

approximating the fatigue damage (e.g. Narrow band approximation and Tovo-

Benasciutti method). 

3.6.1 Narrow-band approximation 

In a narrow-band process, the stress amplitude distribution 𝑓a(𝑠) equals the peak 

distribution; if the process 𝑋(𝑡) is also Gaussian, the peak distribution is Rayleigh. The 

resulting expected damage per half-cycle is [BEN05a,BEN05b]: 

 𝐸[𝑑G]NB =
1

2𝐴
(√2𝜆0)

k
Γ (1 +

𝑘

2
) (3.7) 

where Γ(−) is the gamma function.  

The average frequency of peaks in Eq. (3.6) equals the average frequency of 

upward crossings of the mean in a strictly narrow-band Gaussian process, 𝜈p = 𝜈0
G. 

Accordingly, the expected number of counted half-cycles is 𝐸[𝑛(𝑇)] = 2𝜈0
G𝑇. Using the 

relationship 𝐸[𝐷G(𝑇)]NB = 2𝜈0
G𝑇 ∙ 𝐸[𝑑G]NB, the expected damage in Eq. (3.6) for a 

narrow-band Gaussian process 𝑋(𝑡) then becomes [WIR95,LUT04,RYC93]: 

 𝐸[𝐷G(𝑇)]NB =
𝜈0

G𝑇

𝐴
(√2𝜆0)

k
Γ (1 +

𝑘

2
) (3.8) 

Eq. (3.8) is exact only for a strictly narrow-band process, which has the bandwidth 

parameters 𝛼1 = 1 and 𝛼2 = 1. If the process becomes more wide-banded, i.e. 𝛼1 → 0 
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and 𝛼2 → 0, rainflow amplitude distribution is no longer Rayleigh. In particular, damage 

𝐸[𝐷G(𝑇)]NB in wide-band process is a conservative estimate of the exact expected 

damage [BEN05a,BEN05b], i.e. it tends to overestimate the 𝐸[𝐷(𝑇)] in Eq. (3.6). 

Consequently, some authors proposed approximating 𝐸[𝐷(𝑇)] by reducing the value 

calculated using the “Narrow-band approximation” [BEN05a, BEN05b]. 

3.6.2 Tovo-Benasciutti method 

Tovo and Benasciutti developed a more general theoretical method based on estimating 

the stress amplitude distribution of rainflow cycles [BEN05a,BEN05b]. The method 

assumes that rainflow cycle distribution can be linearly interpolated from two other 

distributions. A bandwidth correction 𝜆TB of “Narrow-band approximation” is thus 

derived by approximating the rainflow distribution. The expected damage per half-cycle 

of Tovo-Benasciutti method is [BEN05a,BEN05b]: 

 𝐸[𝑑G]TB = 𝜆TB𝐸[𝑑G]NB =
𝜆TB

2𝐴
(√2𝜆0)

k
Γ (1 +

𝑘

2
) (3.9) 

The correction factor 𝜆TB = 𝑏app + (1 − 𝑏app)𝛼2
k−1 is a function of a weighting 

coefficient 𝑏app, which was approximated by fitting results of time-domain simulations, 

including a variety of power spectral density shapes to cover a wide range of bandwidth 

parameters, see [BEN05a,BEN05b,BEN18b]. 

With this bandwidth correction 𝜆TB and invoking Eq. (3.8), the expected damage 

in Eq. (3.6) yields in the form: 

 𝐸[𝐷G(𝑇)]TB =
𝜆TB𝜈0

G𝑇

𝐴
(√2𝜆0)

k
Γ (1 +

𝑘

2
) (3.10) 

Note that damage 𝐸[𝐷G(𝑇)]TB equals to 𝐸[𝐷G(𝑇)]NB when the process is strictly 

narrow-band 𝛼1 = 1 and 𝛼2 = 1. It is also possible to observe the relationship 
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𝐸[𝐷G(𝑇)]TB = 𝐸[𝐷G(𝑇)]NB when the inverse slope of S-N curve is unity 𝑘 = 1. Finally, 

if the process is strictly wide-band 𝛼2 = 0, the expected damage proposed by Tovo and 

Benasciutti reduces to 𝐸[𝐷G(𝑇)]TB = 𝑏app𝐸[𝐷G(𝑇)]NB, see [BEN05a,BEN05b]. 



 

 

Chapter 4  
 

VARIANCE OF FATIGUE DAMAGE IN GAUSSIAN RANDOM 

LOADING 

4.1 INTRODUCTION 

Chapter 2 presented some fundamental concepts associated with the random process in 

time-domain. Statistical properties of the process were also introduced via a frequency-

domain approach. They are commonly used for describing uniaxial and multiaxial 

random stress. 

Chapter 3 provided a short review on material properties, the rainflow counting 

method, the amplitude histogram and the loading spectrum, the linear damage 

accumulation rule, and the expected fatigue damage. Such procedures may take two 

different methods to estimate fatigue damage. In a frequency-domain approach, the 

expected damage is the result of averaging all the damages of an infinite ensemble of 

time-histories. In contrast, the time-domain approach calculates the damage by directly 

handling one or more time-histories. It is typically based on the rainflow counting method 

and the Palmgren-Miner rule. 

The hypothesis adopted in practice is that theoretical methods (e.g. time-domain 

approach) typically work on very few or even one time-history record collected through 

measurements. In any case, the damage computed from one random time-history 𝑥1(𝑡) 
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of finite length 𝑇 must be considered as being one sample value out of an infinite 

population. This value has an inherent statistical scatter. In fact, the damage is likely to 

change if it is computed based on a different time-history 𝑥2(𝑡), even if this record has 

precisely the same time length and statistical properties of 𝑥1(𝑡). The two time-histories 

may have different rainflow cycles. The same thing happens if the damage is computed 

using a third time-history 𝑥3(𝑡) [BEN18b]. This result is explained by the random nature 

of each time-history. Viewed from the theory of random processes (see Chapter 2), each 

time-history 𝑥i(𝑡) is conceived of as being one element out of an infinite ensemble; its 

fatigue damage is one value out of an infinite set of damage values.  

Indeed, damage 𝐷(𝑇) of 𝑥i(𝑡) of finite length 𝑇 is a random variable according to 

a certain damage probability distribution. The variance around the expected damage is an 

important characteristic of the damage probability distribution. Estimating the variance 

of damage becomes as important as estimating the expected damage in the structural 

durability assessment of structures [MAR19b,MAR19a]. Some authors (e.g. Mark and 

Crandall, Bendat, Madsen et al., Low) have proposed empirical expressions to evaluate 

the variance of fatigue damage for stationary random loading 

[MAR61,BEN64,MAD86,LOW12]. However, all methods are required to determine the 

autocorrelation coefficient function 𝜌d0,dl
(𝑙) of damage. This chapter will show that this 

quantity follows from the autocorrelation function of the process, 𝑅X(𝜏), or equivalently 

from the PSD. This computation would not be necessary if a mathematical expression to 

relate the variance of fatigue damage directly to some PSD bandwidth parameters was 

available. 

This chapter introduces relevant equations of variance of fatigue damage, which 

have general validity in narrow-band processes. Such equations will be further specified 

by four methods from the literature about narrow-band Gaussian random loading, i.e. 

Mark and Crandall, Bendat, Madsen et al. and Low. This chapter also presents a critical 

review of such methods and later compares them with Monte Carlo simulations in the 

time- and frequency-domain approaches. Simulations considered a linear oscillator 
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system, an ideal unimodal random process, and the JONSWAP and Pierson-Moskowitz 

power spectral densities. Based on all simulation results, best-fitting expressions were 

derived to relate the coefficient of variation of damage to the bandwidth parameter 𝛼1. In 

accordance with the best-fitting coefficients, the proposed expressions apply to a wide 

range of PSDs, from narrow-band to wide-band processes. 

The variance of fatigue damage in non-Gaussian random processes will be 

addressed in Chapter 5. 

4.2 GENERAL EQUATIONS IN NARROW-BAND PROCESS 

This section provides a general equation in a narrow-band process for the variance of 

fatigue damage. They will be discussed in greater detail by the four different methods 

from literature. 

The variance is derived by taking the variance of damage 𝐷(𝑇) [MAR61]: 

 𝜎D
2 = Var [ ∑ 𝑑i

n(T)−1

i=0

] = 𝐸 [ ∑ ∑ 𝑑i𝑑j

n(T)−1

j=0

n(T)−1

i=0

] − (𝐸 [ ∑ 𝑑i

n(T)−1

i=0

])

2

 (4.1) 

The second equality arises from the definition of the variance of a random variable 

Var[𝐷(𝑇)] = 𝐸[𝐷2(𝑇)] − (𝐸[𝐷(𝑇)])2. As for the damage, the variance considers two 

sources of randomness, which are the stress amplitudes and the number of half-cycles. 

The number of counted cycles 𝑛(𝑇) can be assumed to be a deterministic value due to a 

small scatter around its mean value. In a narrow-band process, the number of cycles is 

equal to 𝑛(𝑇) = 2𝜈0𝑇. The variance in Eq. (4.1) is then a direct function of 𝑛(𝑇) and an 

indirect function of 𝑇. 
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Since 𝑛(𝑇) is deterministic, both expectations in Eq. (4.1) can move inside the 

double and single summation, respectively. Omitting time 𝑇, the variance expression 

turns into: 

 𝜎D
2 = ∑ ∑ 𝐸[𝑑i𝑑j]

n−1

j=0

n−1

i=0

− (∑ 𝐸[𝑑i]

n−1

i=0

)

2

 (4.2) 

The double summation in Eq. (4.2) can be clarified by a 𝑛 ×  𝑛 matrix, as 

exemplified in Figure 1.1. 

 
Figure 4.1. The double summation in Eq. (4.2) as an 𝑛 ×  𝑛 matrix and the sum of elements in any 

diagonal. 

Since the process is stationary, the half-cycle damage process 𝑑i is stationary, too. 

This suggests that the sum of all elements in the main diagonal (see Figure 1.1) yields the 

term 𝑛𝐸[𝑑0
2] and the sum of off-diagonal terms corresponds to (𝑛 − 𝑙)𝐸[𝑑0𝑑l], where 

𝑙 = 𝑗 − 𝑖 takes on integer values from 1 to 𝑛 − 1. On this end, the double summation may 

reduce to a single summation because the elements in any diagonal are the same. 
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On the hypothesis of stationary half-cycle damage, the expectation 𝐸[𝑑i] in Eq. 

(4.2) implies that 𝐸[𝑑0] = 𝐸[𝑑1] = ⋯ = 𝐸[𝑑n−1], from where the single summation 

squared outcomes into 𝑛2𝐸[𝑑0]
2. The variance of fatigue damage in Eq. (4.2) can thus be 

rewritten as [LOW12]: 

 𝜎D
2 = 𝑛(𝐸[𝑑0

2] − 𝐸[𝑑0]
2) + 2 ∑(𝑛 − 𝑙)(𝐸[𝑑0𝑑l] − 𝐸[𝑑0]

2)

n−1

l=1

 (4.3) 

The expected cross-product describes the autocorrelation function of the half-

cycle damage, 𝑅d0,dl
(𝑙) = 𝐸[𝑑0𝑑l]. The term 𝐸[𝑑0

2] is the value at zero-time lag, 𝐸[𝑑0
2] =

𝑅d0,dl
(0). The difference between 𝑅d0,dl

(0) and the mean squared 𝐸[𝑑0]
2 = 𝜇d

2 provides 

the variance of the half-cycle damage, 𝑅d0,dl
(0) − 𝜇d

2 = 𝜎d
2. 

In similarity with the random process 𝑋(𝑡), the autocorrelation coefficient of half-

cycle damage is introduced: 

 𝜌d0,dl
(𝑙) =

𝑅d0,dl
(𝑙) − 𝜇d

2

𝜎d
2  (4.4) 

which is bounded as 0 ≤ 𝜌d0,dl
(𝑙) ≤ 1. This range results from the fact that the 

damage is always positive [BEN64]. The parameter 𝜌d0,dl
(𝑙) measures the correlation 

between the random variables 𝑑0 and 𝑑l drawn from the same random process. 
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Under the hypothesis of deterministic number of half-cycles, Eq. (4.3) represents 

the expression of the variance of the damage for a stationary narrow-band random 

process. It is possible to demonstrate that Eq. (4.3) can also be written as a function of 

𝜌d0,dl
(𝑙) [LOW12]: 

 𝜎D
2 = [𝑛 + 2 ∑(𝑛 − 𝑙)𝜌d0,dl

(𝑙)

n−1

l=1

] (𝐸[𝑑0
2] − 𝐸[𝑑0]

2) (4.5) 

Eq. (4.5) makes clear the fundamental role of the autocorrelation coefficient 

function 𝜌d0,dl
(𝑙) in the calculation of the variance of the damage. The four methods 

reviewed in the next section differ based on which expression is assumed for the 

autocorrelation coefficient function of the process. In turn, the amount 𝜌d0,dl
(𝑙) depends 

on the damage autocorrelation function 𝑅d0,dl
(𝑙) = 𝐸[𝑑0𝑑l] by Eq. (4.4). 

From now on, two peaks, 𝑃0 and 𝑃l, are separated by a time difference 𝜏 =

𝑙 (2𝜈0)⁄ . Like in [LOW12], all over the text ‘‘peak’’ is used in a broad sense to also mean 

valley. Noted that the stress amplitude is equal to the peak value, 𝑠l = 𝑃l in a narrow-band 

process. Therefore, the damage per half-cycle 𝑑l is proportional to 𝑃l
k. Consequently, the 

product 𝐸[𝑑0𝑑l] can be computed from the joint probability density function (JPDF) of 

two peaks, 𝑓P0,Pl
(𝑥p, 𝑥v) as: 

 𝐸[𝑑0𝑑l]  =
1

4𝐴2
∬𝑥p

k𝑥v
k 𝑓P0,Pl

(𝑥p, 𝑥v) d𝑥p d𝑥v

∞

−∞

 (4.6) 

This equation shows that 𝐸[𝑑0𝑑l] is a function of the JPDF 𝑓P0,Pl
(𝑥p, 𝑥v), which 

thus performs a significant role in the calculation of the variance of the damage. For 

example, the Low’s method takes into account the Rice’s formula valid for a narrow-band 

process [LOW12]. 
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4.3 ANALYTICAL SOLUTIONS 

In this section, a summary of various analytical methods for the variance of fatigue 

damage is provided. The four methods reviewed in this section will be further discussed 

by the critical analysis of them. 

4.3.1 Mark and Crandall’s method (1961) 

Mark and Crandall developed the first explicit formula to compute the variance of the 

fatigue damage [MAR61]. Their method assumes that stress time-histories are related to 

the response of a light damped linear oscillator system. This case is a narrow-band 

Gaussian process that allowed Mark and Crandall to approximate the expression for the 

variance as: 

 (𝜎D
2)Mar

G =
𝑓(𝑘)𝜈0

G𝑇

𝜁𝐴2
(2𝜆0)

k Γ2 (1 +
𝑘

2
) ,   for 𝜁 ≤ 0.05 and 𝜁𝜈0

G𝑇 ≫ 1 (4.7) 

where 𝑓(𝑘) is a function of odd 𝑘 and 𝜁 is the damping coefficient of linear oscillator 

system. The whole mathematical expansion leading to 𝑓(𝑘) is too long to be replicated 

here. The function 𝑓(𝑘) has been pre-computed up to 𝑘 = 15; some values are 𝑓(1) =

0.041, 𝑓(3) = 0.369, 𝑓(5) = 1.28, 𝑓(7) = 3.72 [MAR61,CRA62]. Note that the 

function 𝑓(𝑘) is nonlinear with 𝑘. On the other hand, the variance in Eq. (4.7) increases 

linearly with 𝜈0
G𝑇 arising the same trend as the expected damage for a narrow-band 

Gaussian process 𝐸[𝐷G(𝑇)]NB (see Chapter 3). The variance of damage also increases 

with 𝑘 or if the damping coefficient 𝜁 turns smaller. 
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The coefficient of variation (CoV) of the damage 𝐶D = 𝜎D 𝐸[𝐷(𝑇)]⁄ , equal to the 

ratio of the standard deviation 𝜎D to the expected value 𝐸[𝐷(𝑇)]. After substituting the 

expected damage 𝐸[𝐷G(𝑇)]NB and Eq. (4.7) one obtains the expression for the Mark and 

Crandall’s method: 

 (𝐶D)Mar
G = √

𝑓(𝑘)

𝜁𝜈0
G𝑇

,         for 𝜁 ≤ 0.05 and 𝜁𝜈0
G𝑇 ≫ 1 (4.8) 

Note that the CoV increases only in proportion to √𝜈0
G𝑇 in the range where Eq. 

(4.8) is valid [MAR61] while the expected damage 𝐸[𝐷G(𝑇)]NB and variance of damage 

increase linearly with 𝜈0
G𝑇. 

4.3.2 Bendat’s method (1964) 

Based on the assumption that the variance of fatigue damage applies the linear oscillator 

system, Bendat established a more general expression [BEN64]. His method assumes that 

the autocorrelation coefficient of the half-cycle damage decays exponentially as 

𝜌d0,dl

G (𝑙) = exp(−2𝜋𝜁𝑙) as an alternative to solving the product 𝐸[𝑑0
G𝑑l

G] for narrow-

band Gaussian process. With such simplification, by substituting the expected damage 

per half-cycle 𝐸[𝑑G(𝑇)]NB into Eq. (4.5), the variance of damage turns into: 

 (𝜎D
2)Ben

G =
𝜈0

G𝑇

𝜁𝐴2
(2𝜆0)

k [Γ(1 + 𝑘) − Γ2 (1 +
𝑘

2
)] (4.9) 

Eq. (4.9) no longer depends on 𝑓(𝑘) compared to Mark and Crandall’s one Eq. 

(4.7). 
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The closed-form expression of the CoV results into: 

 (𝐶D)Ben
G = √

1

𝜁𝜈0
G𝑇

[
Γ(1 + 𝑘)

Γ2 (1 +
𝑘
2
)

− 1] (4.10) 

Equations (4.9) and (4.10) hold for both even and odd integer values of 𝑘. 

Likewise, the Crandal and Mark’s solution, also the Bendat’s equation of the variance is 

relative to the 𝜈0
G𝑇, whereas that of the CoV is inversely proportional to √𝜁𝜈0

G𝑇. 

4.3.3 Madsen et al.’s method (1986) 

Madsen et al. suggested a method for any value of 𝑘 and any narrow-band Gaussian 

process [MAD86]. This method calculates the parameter 𝜌d0,dl

G (𝑙) in the form of 

expectation of even powers of correlated normal variables by the envelope process, whose 

result for 𝑘 = 2 is known from [PAR62,KRE83,MAD86]: 

 𝜌d0,dl

G (𝑙) =
1

2
[𝜌X

2(𝑙) + 2(
𝜌X

′ (𝑙)

2𝜋𝜈0
G)

2

+
(𝜌X

′′(𝑙))
2

(2𝜋𝜈0
G)

4] (4.11) 

in which 𝜌X(𝑙) is the autocorrelation coefficient calculated at lag 𝑙, while 𝜌X
′ (𝑙) and 𝜌X

′′(𝑙) 

are the first and second derivative of 𝜌X(𝑙) with respect to 𝑙. After the assumption that 

𝜌X
′′(𝑙) ≅ −(2𝜋𝜈0

G)
2
𝜌X(𝑙), Madsen et al. arrived at [MAD86]: 

 𝜌d0,dl

G (𝑙) ≅ 𝜌X
2(𝑙) + (

𝜌X
′ (𝑙)

2𝜋𝜈0
G)

2

 (4.12) 

By introducing the expected damage per half-cycle 𝐸[𝑑G(𝑇)]NB and Eq. (4.12) 

into Eq. (4.5), the variance is computed as: 
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(𝜎D
2)Mad

G = 

{𝑛 + 2 ∑(𝑛 − 𝑙)

n−1

l=1

[𝜌X
2(𝑙) + (

𝜌X
′ (𝑙)

2𝜋𝜈0
G)

2

] }
(2𝜆0)

𝑘

4𝐴2
[Γ(1 + 𝑘) − Γ2 (1 +

𝑘

2
)] 

(4.13) 

Eq. (4.13) implies a summation of terms linked to the autocorrelation coefficient 

𝜌X(𝑙). Note how the variance of damage derived by Madsen et al. does not need to 

compute the product 𝐸[𝑑0
G𝑑l

G]. The proper CoV of damage is: 

 

(𝐶D)Mad
G = 

1

𝑛
√{𝑛 + 2 ∑(𝑛 − 𝑙) [𝜌X

2(𝑙) + (
𝜌X

′ (𝑙)

2𝜋𝜈0
G)

2

]

𝑛−1

𝑙=1

} [
Γ(1 + 𝑘)

Γ2 (1 +
𝑘
2
)

− 1] 
(4.14) 

Eq. (4.14) is also a function of the autocorrelation coefficient 𝜌X(𝑙). Being valid 

for any narrow-band Gaussian process (other than a linear oscillator system), the Madsen 

et al.’s expressions are not a function of the damping coefficient 𝜁. 

Furthermore, for the case of 𝑘 ≠ 2, the autocorrelation coefficient of half-cycle 

damage 𝜌d0,dl

G (𝑙) may be approximated as: 

 
𝜌d0,dl

G (𝑙) ≅

Γ2 (1 +
𝑘
2) [ 𝐹2 1 (−

𝑘
2 ,−

𝑘
2 ; 1; 𝜌X

2(𝑙) + (
𝜌X

′ (𝑙)

2𝜋𝜈0
G)

2

) − 1]

[Γ(1 + 𝑘) − Γ2 (1 +
𝑘
2
)]

 (4.15) 

where 𝐹2 1(−) is the hypergeometric function. From this expression the variance and 

CoV of damage can then be computed for 𝑘 ≠ 2 [MAD86]. 
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4.3.4 Low’s method (2012) 

Low proposed a method for any narrow-band Gaussian process by a best-fitting 

expression of 𝜌d0,dl

G (𝑙). His method calculates the product expectation 𝐸[𝑑0
G𝑑l

G] using the 

Rice JDPF of peaks and valleys [LOW12]: 

 𝑓P0,Pl

G (𝑥p, 𝑥v) =
𝑥p𝑥v

1 − 𝜌X
2(𝑙)

𝐼0 (
𝑥p𝑥v 𝜌X(𝑙)

1 − 𝜌X
2(𝑙)

)  exp (−
𝑥p

2 + 𝑥v
2

2(1 − 𝜌X
2(𝑙))

) (4.16) 

where 𝐼0(−) is the modified Bessel function of the first kind with order zero. Replacing 

the 𝑓P0,Pl

G (𝑥p, 𝑥v) into Eq. (4.6), the double integral has been solved for even values 𝑘 =

2, 4, 6 with the aid of symbolic computation software [LOW12]. Subsequently, in order 

to add the odd value of 𝑘, the autocorrelation coefficient function 𝜌d0,dl

G  has been quite 

accurately approximated by a quadratic interpolation function of 𝜌X
2(𝑙) as [LOW12]: 

 𝑓P0,Pl

G (𝑥p, 𝑥v) = 𝛼k𝜌X
2(𝑙) + 𝛽k𝜌X

4(𝑙) (4.17) 

where the fitting coefficients 𝛼𝑘 and 𝛽𝑘 are functions of 𝑘 (their values are tabulated in 

[LOW12]). These coefficients included the integer values within the range 1 ≤ 𝑘 ≤ 9. A 

linear interpolation is recommended to hold non-integer 𝑘 values [LOW12]. 

With this estimate and the expected damage per half-cycle 𝐸[𝑑G(𝑇)]NB (see 

Chapter 3), the variance of the fatigue damage in Eq. (4.5) results in the form: 

 

(𝜎D
2)Low

G = 

{𝑛 + 2 ∑(𝑛 − 𝑙)

n−1

l=1

(𝛼k𝜌X
2(𝑙) + 𝛽k𝜌X

4(𝑙))}
(2𝜆0)

k

4𝐴2
[Γ(1 + 𝑘) − Γ2 (1 +

𝑘

2
)] 

(4.18) 
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Hence the CoV can be written as: 

 

(𝐶D)Low
G = 

1

𝑛
√{𝑛 + 2 ∑(𝑛 − 𝑙)(𝛼k𝜌X

2(𝑙) + 𝛽k𝜌X
4(𝑙))

n−1

𝑙=1

} [
Γ(1 + 𝑘)

Γ2 (1 +
𝑘
2
)

− 1] 
(4.19) 

Note similarity between the expression of the CoV by Madsen et al. Eq. (4.14) and Low 

(4.19). 

4.3.5 Critical analysis of analytical methods 

The primary difference among the preceding methods is the process considered (linear 

oscillator or any narrow-band Gaussian process) and how the quantity 𝜌d0,dl

G (𝑙) is 

calculated. In this context, another hypothesis is the values allowed for the S-N inverse 

slope (i.e. even and/or odd integers, or also non-integers). 

Mark and Crandall’s pioneering work has the highly restrictive hypotheses (light 

damped oscillator and odd 𝑘), which make its application not much general. Bendat’s 

method has the same assumptions of Mark and Crandall’s approach, the key difference 

being that it allows for both odd and even values of 𝑘 and that it does not impose 

restrictions to the damping 𝜁. The hypothesis of an autocorrelation 𝜌d0,dl

G (𝑙) decaying 

exponentially seems to be empirical. 

In contrast, the method of Madsen et al. and that of Low are far more general. By 

autocorrelation coefficient 𝜌X(𝑙), both methods apply to any narrow-band Gaussian 

process. The only difference is how this coefficient enters into the expressions of the 

variance and CoV, compare Eq. (4.13)-(4.14) to Eq. (4.18)-(4.19). Basically, this 

difference is clear from the relationship between the autocorrelation coefficient function 
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of the process, 𝜌X(𝑙), and that of the damage, 𝜌d0,dl

G (𝑙), which is derived by each of the 

two methods via Eq. (4.12) or .(4.17). 

Among the two, Madsen et al.’s method nevertheless appears to be the most 

general since it has no restriction on the 𝑘 values. Because of this, it will be used as a 

reference in the simulation study of next section. 

One possible limitation of Madsen et al.’s and Low’s method is that they ask for 

the autocorrelation coefficient function of the process 𝜌X(𝑙) in order to compute the CoV 

in Eq. (4.14) and (4.19), where 𝜌X(𝑙) depends on 𝑅X(𝜏). Also, 𝑅X(𝜏) can be found directly 

from the PSD after a Fourier transform computation if it is not available. It would be 

much simpler to avoid this Fourier transformation by linking the CoV directly to the PSD 

bandwidth parameters (e.g. 𝛼1 and 𝛼2). This argument will be discussed in Section 4.5. 

Finally, it seems important to point out that all the four reviewed methods are 

restricted to random loadings that are Gaussian and narrow-band. A solution valid for 

random loadings with multiple frequency modes including two or more narrowband 

components was proposed by Low [LOW14a]. The multimodal Low’s method works in 

connection with Low’s method for estimating the fatigue damage [LOW10]. The Low 

[LOW10] approach is, however, intricate and difficult to implement. In fact, Low 

proposed a surrogate model [LOW14b] that approximates the exact expected fatigue 

damage from bimodal process. The Low’s surrogate model does not provide explicitly 

the low- and high-frequency damages, which thus makes impossible to apply the 

multimodal Low’s method. A simple and accurate model for both low- and high-

frequency damages is required to apply the multimodal Low’s method without too much 

effort. Consequently, the multimodal method by Low is not considered here; for details 

see [LOW14a]. 
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4.4 NUMERICAL SIMULATIONS 

Monte Carlo simulations in time- and frequency-domain are used in this section to 

investigate the accuracy of the explicit formulas provided by the four previous methods. 

Two types of power spectrum 𝑆X(𝑓) are considered: linear oscillator response, ideal 

unimodal (rectangular shape). Both are centered at 10 Hz and normalized to 𝜆0 = 1, see 

Figure 4.2(a) and (b). Other two power spectra (Pierson-Moskowitz and JONSWAP) are 

analyzed in Section 4.4.3 when it comes to find a best-fitting expression to link the CoV 

to bandwidth parameters. 

For every spectrum 𝑆X(𝑓), a total of 𝑁 = 2 ∙ 105 stationary Gaussian random 

time-histories 𝑥i(𝑡), 𝑖 = 1,2,3,…𝑁 with time length 𝑇 are simulated. Note that the total 

number of simulated time-histories is comparable or larger than that used in other similar 

studies [LOW12,LOW14a,BEN09a]. The digitalized time-histories are created by the 

Discrete Fourier Transform approach, which uses deterministic spectral amplitudes and 

uniformly distributed random phases [SMA93,WIR95]. Three distinct values of 𝑇 are 

selected so that the simulated time-histories have about 103, 104 and 105 counted cycles. 

An estimated power spectral density �̂�X,i(𝑓) is also obtained from each simulated 

time-history 𝑥i(𝑡) by means of the Welch’s windowed overlapped block (or segment) 

averaging technique [BEN10c,WIR95]. A Hanning window was chosen to mitigate the 

side-lobe leakage; a 75% overlapping allowed a total of 97 blocks for which the statistical 

error of the spectrum estimate is 𝜀r = 1 √97⁄ = 0.10. For each of the three selected 

values of 𝑇, the analysis provides 𝑁 = 2 ∙ 105 estimated power spectra �̂�X,i(𝑓), one for 

each simulated time-history. 

Time- and frequency-domain approach are employed to compute the fatigue 

damage 𝐷i(𝑇) for every time-history 𝑥i(𝑡). By rainflow counting algorithm and 

Palmgren-Miner rule, the time-domain damage is calculated from 𝑥i(𝑡). In contrast, the 

frequency-domain damage is calculated by the expected damage 𝐸[𝐷G(𝑇)]NB from the 



 
 
 

Variance of fatigue damage in Gaussian random loading 45 

 

 

estimated power spectrum �̂�X,i(𝑓). In this view, the frequency-domain damage should be 

interpreted as a sample estimate of the expected damage 𝐸[𝐷G(𝑇)]NB. 

Each estimated power spectrum �̂�X,i(𝑓) is evaluated from one single time-history 

of finite duration, which has an inherent sampling variability [BEN10c,WIR95]. This 

sampling variability makes every estimation �̂�X,i(𝑓) not the same as the “true” power 

spectral density 𝑆X(𝑓) ‒ indeed, the spectral values �̂�X,i(𝑓) are random variables 

following a chi-square probability distribution [BEN10c,WIR95]. The sampling 

variability in power spectrum estimate transfers to the frequency-domain damage and it 

sums to the variability resulting from the randomness of time-history realizations, which 

instead is the only source of variability included in the time-domain damage. 

Integer 𝑘 values from 2 to 9 and S-N curve with 𝐴 = 1 are assumed to calculate 

the damage 𝐷i(𝑇) values. The sample mean damage �̅�(𝑇) = 𝑁−1 ∑ 𝐷i(𝑇)N
i=1 , sample 

variance �̂�D
2 = (𝑁 − 1)−1 ∑ [𝐷i(𝑇) − �̅�(𝑇)]2N

i=1  and sample CoV �̂�D = �̂�D �̅�(𝑇)⁄  are 

estimated from the set of damage values in time- and frequency-domain. Instead, the 

expected damage 𝐸[𝐷G(𝑇)]NB is calculated directly from the power spectrum 𝑆X(𝑓). 

 
Figure 4.2. PSDs considered in numerical simulations: (a) linear oscillator system (for two limit values of 

damping), (b) ideal unimodal process (the dashed and the continuous line show the PSD with the 
narrowest and the widest half-spectral bandwidth). 

(a)

PSD for b=1 Hz

(b)

PSD for b=10 Hz
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4.4.1 Linear oscillator system 

The linear oscillator system is here chosen because the explicit formulas can be applied 

through all the previous methods. The same system with different light damping 𝜁 = 

0.005, 0.01, 0.02, 0.05, 0.1 was subject to a band-limited random base acceleration 𝑊(𝑡) 

with frequency content from 0 to 20 Hz. Analytical expressions are derived for the mass 

absolute displacement, 𝑈(𝑡), and the relative displacement, 𝑋(𝑡) = 𝑈(𝑡) − 𝑊(𝑡). The 

relative displacement response spectrum 𝑆X(𝑓) is centered around the natural frequency 

(see Figure 4.2(a)) and it is a narrow-band Gaussian process 𝑋(𝑡), with bandwidth 

parameters ranging from 𝛼1 = 0.998, 𝛼2 = 0.994 (for 𝜁 = 0.005) to 𝛼1 = 0.961, 𝛼2 =

0.895 (for 𝜁 = 0.1). 

Figure 4.3 illustrates the trend of the sample mean and the sample standard 

deviation of the fatigue damage (both normalized to the expected damage) for both time- 

and frequency-domain results, as a function of the number of counted cycles. The figure 

refers to the inverse slope 𝑘 = 3 and damping 𝜁 = 0.005, but similar trends are obtained 

for other values (a higher damping only decreases the variance values). The box on the 

left side compares the observed probability distributions corresponding to the three 

different number of cycles examined. The distributions demonstrate that the standard 

deviation increases as the number of cycles diminishes. The highest (normalized) 

standard deviation (i.e. the CoV) is due to the unfavorable combination of a low number 

of cycles and a low damping 𝜁, as predicted by Eq. (4.8). The variability of the damage 

is quite large in time-histories of short length (that is, those with a small number of 

counted cycles). Figure 4.3 also shows that the greater is the number of counted cycles, 

the lower is the dispersion around the mean of the damage distribution. For any number 

of counted cycles, the standard deviation in the frequency-domain seems to be slightly 

lower (about 1%) than that in the time-domain. In addition, the mean damage in the 

frequency-domain seems closer to the expected damage. This result seems to confirm that 

the PSD estimation does not introduce a significant error in the frequency-domain 

damage. 
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Figure 4.3. Simulation results for the linear oscillator system. Sample mean and sample standard 

deviation of the damage (both normalized to the expected damage) as function of the number of counted 
cycles (damping 𝜁 = 0.005, inverse slope 𝑘 = 3). The left box displays the observed probability 

distributions. 

Figure 4.4 clarifies not only the CoV by varying the number of counted cycles but 

also the trend in Figure 4.3. Comparison between the CoV from simulations and all 

analytical methods shows a good agreement over all number of counted cycles. The 

straight lines on a log-log scale have in some way to be expected, as the CoV from any 

analytical method is inversely related to the square root of the number of counted cycles, 

√𝜈0
G𝑇 [MAR61]. 

/2



48 
 
 

Variance of fatigue damage in Gaussian random loading  

 

 

 
Figure 4.4. Simulation results for the linear oscillator system. CoV of the damage as function of the 

number of counted cycles (damping 𝜁 = 0.005, inverse slope 𝑘 = 3). 

4.4.2 Ideal unimodal process 

Ideal unimodal process refers to a rectangular spectrum, see Figure 4.2(b). The effect of 

the bandwidth (from narrow-band to wide-band Gaussian process) is incorporated in the 

half spectral width 𝑏, which takes on integer values in the interval from 1 to 10 Hz. Figure 

4.2(b) presents the PSD for these two limit values of 𝑏. The bandwidth parameters 

decrease from 𝛼1 = 0.998 and 𝛼2 = 0.993 (most narrow-band case) to 𝛼1 = 0.866 and 

𝛼2 = 0.745 (lowest values for the most wide-band case) by increasing 𝑏. Using this range 

of bandwidth parameters, the CoV from Monte Carlo simulations in the time-domain is 

compared with the Madsen et al.’s method. Contrary to the example with the linear 

oscillator, not all the methods can be applied to the unimodal PSD. In fact, the ideal 

unimodal PSD ‒ even if narrow-band ‒ is not include in the range of applicability of both 

Mark and Crandall's and Bendat's methods, while the other two methods of Madsen et al. 

and Low applies to the ideal unimodal. Instead, these methods provide almost coincident 

results, as shown for example in Figure 4.3, although as already emphasized the Madsen 

/2
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et al.’s method gives the most general expressions for variance and CoV. For this reason, 

only the Madsen et al.’s method will be included in the figures. 

Figure 4.5 displays the autocorrelation coefficient function of the process, 𝜌X(𝜏), 

and of the half-cycles damage, 𝜌d0,dl

G , and compares them for the two limit spectral 

bandwidths corresponding to the most narrow-band and most wide-band process. The 

figure allows one to understand immediately the different behavior of 𝜌d0,dl

G : its amplitude 

decays faster in a wide-band process than in a narrow-band one. In the former case, the 

process is less “correlated” and thus even adjacent half-cycles do not have similar values 

of their amplitude and, in turn, of their damage – on average, the product 𝐸[𝑑0
G𝑑l

G] in the 

definition of 𝜌d0,dl

G  is close to zero even for small 𝑙. 

 
Figure 4.5. Comparison between the most narrow-band and most wide-band ideal unimodal process. 

Autocorrelation coefficient function of (a) the process and (b) the half-cycles damage. 

Figure 4.6(a) displays, for 𝑘 = 3, a typical trend of the CoV over the number of 

counted cycles, for two limit cases 𝑏 = 1 Hz and 𝑏 = 10 Hz (the curves for other 

intermediate cases are not shown to avoid clutter). Other 𝑘 values lead to identical trends. 

Narrow-band

Wide-band

Narrow-band

Wide-band

(a) (b)
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Madsen et al.’s method overlaps results of time-domain simulations for a narrow-

band process (𝛼1 = 0.998, 𝛼2 = 0.993). The CoV decreases when the ideal unimodal 

tends to the limit wide-band case (𝛼1 = 0.866, 𝛼2 = 0.745). Despite Madsen et al.’s 

method only applies to the narrow-band case, it agrees well (difference of about 25%) 

with the time-domain results for the wide-band case, too. 

 
Figure 4.6. Ideal unimodal process: (a) CoV versus the number of cycles (for 𝑘 = 3); (b) CoV versus 𝛼1 

and 𝛼2, for two combinations of number of cycles and inverse slope 𝑘. 

Figure 4.6(b) investigates the CoV as a function of the bandwidth parameters 𝛼1 

and 𝛼2. This relationship in Figure 4.6(b) considers two combinations of inverse slope 

and number of cycles (𝑘 = 3 and 103; 𝑘 = 5 and 104); similar trends are obtained for 

other combinations. The two bandwidth parameters, as already stated in Chapter 2, 

represent important physical properties of the random process: 𝛼1 provides a unitless 

measure of the frequency distribution of the PSD of the process (and it controls some 

properties of the envelope of the process), whereas 𝛼2 coincides with the irregularity 

factor of a Gaussian process. Not only are such bandwidth parameters used to classify a 

PSD type from narrow-band to wide-band, but they often enter the expressions used for 

Narrow-band

Wide-band

(a) (b)
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estimating the expected damage directly from a PSD (for example, the correction factor 

𝜆TB in TB method is a function of 𝛼1 and 𝛼2, see [BEN05a,BEN05b]). 

Figure 4.6(b) shows that the CoV increases with 𝛼1 and 𝛼2 (from wide-band to 

narrow-band process). If 𝑘 and 𝑛 are changed, the two trend lines shift upward or 

downward, while remaining almost unaltered. 

4.4.3 Pierson-Moskowitz (P-M) and JONSWAP and power spectra 

The results in Figure 4.6 suggests that similar tendencies could also characterize other 

power spectral densities. It was then decided to carry out additional simulations with the 

two PSDs considered in this section. Such power spectra are often encountered in offshore 

engineering and are selected here for illustrative purposes. 

The Pierson-Moskowitz spectrum is described by the following equation [PIE64, 

BEN09]: 

 𝑆X(𝑓) =
𝛼𝑔2

(2𝜋𝑓)4
exp(−

5

4
(
𝑓p

𝑓
)

4

) (4.20) 

where 𝑓p = 1 𝑇W⁄  is the peak frequency and 𝑇W the dominant wave period of the 

spectrum, 𝛼 ≈ 5.061(𝐻s
2 𝑇W

4⁄ ), 𝐻s the significant wave height, and 𝑔 is the gravity 

constant. 
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The JONSWAP (Joint North Sea Wave Project) spectrum is a generalization of 

the P-M spectrum [BEN09b,HAS73]: 

 𝑆X(𝑓) =
𝛼𝑔2

(2𝜋𝑓)4
exp

(

  
 

−
5

4
(
𝑓p

𝑓
)

4

+ log(𝛾) exp

(

 
 

−(
𝑓
𝑓p

− 1)
2

2𝜎2

)

 
 

)

  
 

 (4.21) 

where 𝛼 ≈ 5.061(𝐻s
2 𝑇W

4⁄ )[1 − 0.287 ln(𝛾)] is the normalization factor and 𝜎 = 0.07 if 

𝑓 < 𝑓p and 𝜎 = 0.09 if 𝑓 ≥ 𝑓p, and it is often 𝛾 = 3.3. Note that the two PSDs here 

analyzed, being not strictly narrow-band, are outside the range of applicability of the 

methods reviewed in Section 4.3, which therefore will not be applied for comparison 

purposes. The parameters defining both power spectra were assigned so to let the 

corresponding bandwidth parameters 𝛼1 and 𝛼2 vary over a wide range. The inverse slope 

varied from 2 to 9, as before. 

For the two power spectra in this section, the relationship of CoV to parameter 𝛼1 

(see Figure 4.7) is of more interest than examining the relationship between CoV and the 

number of cycles, which follows a trend identical of other PSDs (see for example Figure 

4.6(a)). For comparison purposes, Figure 4.7 plots the curves of all the four spectra 

examined so far. A common trend stands out clearly. Interestingly, when 𝛼1 approaches 

unity, the linear oscillator has the higher values of CoV compared to the unimodal PSD 

with same 𝛼1. In the region of lower 𝛼1, the JONSWAP power spectrum is characterized 

by larger values of CoV. Instead, the ideal unimodal PSD always returns the lowest CoV. 
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Figure 4.7. Comparison of the CoV for different PSDs, as a function of the bandwidth parameter 𝛼1 (for 

𝑘 = 3 and 103 cycles). The continuous curve stands for the best-fitted line. 

4.5 EMPIRICAL EXPRESSIONS TO RELATE THE COV TO BANDWIDTH PARAMETERS 

Figure 4.7 suggests that a common relationship exists between the CoV of the damage 

and the bandwidth parameter 𝛼1. Furthermore, the curves in Figure 4.7 are not only 

increasing but ‒ more importantly ‒ also smooth. This attribute is helpful to represent the 

curves by a best-fitting expression. This expression should be as simple as possible to 

allow a straightforward evaluation of the CoV. 

Based on the previous insights, it is reasonable to assume that the CoV be a 

function of 𝛼1, 𝑘 and 𝜈p
G𝑇 in the general form (𝐶D)fit

G = 𝐵(𝛼1, 𝑘) ∙ (𝜈p
G𝑇)

−1/2
. The 

constant of proportionality 𝐵(𝛼1, 𝑘) only depends on 𝛼1 and 𝑘. The quantity 𝜈p
G𝑇 is the 

number of counted cycles in time 𝑇, which indeed equals the number of peaks. Using 𝜈p
G 
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instead of 𝜈0
G to count the number of half-cycles makes the formula applicable to wide-

band processes, either. In the narrow-band case obviously 𝜈0
G ≅ 𝜈p

G. 

Cast this way, the (𝐶D)fit
G  has the desirable property to approach zero for large 𝑇, 

and also to depend on four spectral moments 𝜆0, 𝜆1, 𝜆2, 𝜆4 through 𝛼1 and 𝜈p
G, similarly 

to the TB method [BEN05a,BEN05b].  

The trends in Figure 4.7 suggest that, for 𝑘 and 𝜈p
G𝑇 fixed, the function (𝐶D)fit

G  has 

to be monotonic and satisfy the constraint (𝐶D)fit
G → ∞ when 𝛼1 → 1. At the same time, 

when 𝛼1 decreases the function seems to approach a limit value that changes with 𝑘 and 

𝜈p
G𝑇, see Figure 4.6 for the unimodal PSD. Among the mathematical expressions, a 

rationale polynomial is a candidate: 

 (𝐶D)fit
G =

𝑐1 exp(𝑘𝑐2)

(1 − 𝛼1
𝑐3)𝑐4

(𝜈p
G𝑇)

−1/2
 (4.22) 

where 𝑐1, 𝑐2, 𝑐3 and 𝑐4 are unknown fitting coefficients, determined by minimizing the 

root-mean-square error between the proposed fitting expression, (𝐶D)fit
G  and the time-

domain simulations, �̂�D: 

 𝑒 = √
1

𝑞
∑((𝐶D)fit,i

G − �̂�D,i)
2

q

i=1

 (4.23) 

The sum covers 𝑞 combinations that result from all the considered values of 𝛼1 and the 

inverse slope in the range 2 ≤ 𝑘 ≤ 9. 
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At first glance, a single curve to describe the trends seems hard to use in Figure 

4.7 with a satisfactory degree of accuracy. For this reason, the coefficients 𝑐i were 

calibrated for each PSD separately, see Table 4.1. As an example, for the unimodal PSD 

the final expression is: 

 
(𝐶D)fit

G =
0.241 exp(𝑘0.583)

(1 − 𝛼1
19.4)0.253

(𝜈p
G𝑇)

−
1
2,   for 2 ≤ 𝑘 ≤ 9  

and 0.866 ≤ 𝛼1 ≤ 1 

(4.24) 

The equation has no restrictions in the values of 𝜈p
G𝑇. Figure 4.8 confirms that the 

proposed formula agrees very well with the time-domain results, for a range of 

combinations of 𝑘 and 𝛼1 of practical interest ‒ the figure refers to 103 cycles, but similar 

results are obtained for other values. In particular, the formula encompasses processes 

from narrow-band to mildly wide-band. 

Table 4.1. Best-fitting coefficients of Eq. (4.22) for each type of PSD, along with the fitting error 
e from Eq. (4.23). 

PSD type c1 c2 c3 c4 e 

Linear oscillator 0.148 0.589 5.57 0.459 0.012 

Unimodal 0.241 0.583 19.3 0.253 0.006 

JONSWAP 0.237 0.590 10.3 0.238 0.003 

Pierson-Moskowitz 0.223 0.594 22.4 0.319 0.002 

All spectra 0.195 0.593 13.4 0.389 0.060 
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Figure 4.8. Ideal unimodal process: CoV versus 𝛼1 (for 103 cycles). Comparison between the proposed 

best-fitting expression and the time-domain simulation results. 

A comparable agreement was obtained for all the other PSDs, as confirmed by the 

similar fitting errors in the rightmost column of Table 4.1. Despite the data in Figure 4.7 

are not perfectly overlapped, an effort was also performed to find out a single trend line, 

by calibrating Eq. (4.22) on all the data merged together. The coefficients are listed in the 

last row of Table 4.1. As expected, a larger error is obtained. 

The advantage of using Eq. (4.22) lies in the fact that it does not require computing 

the autocorrelation coefficient function 𝜌X(𝑙), which makes its practical use much easier 

than using the formula provided by the methods from the literature. 

The relationship between CoV and 𝛼1 emphasizes that Eq. (4.22) is merely 

empirical. In fact, it has been suggested by the observation of numerical results, rather 

than it being the outcome of theoretical arguments. Consequently, Eq. (4.24) does not 

compromise the validity of the theoretical solutions reviewed in the previous sections, but 

rather it is complementary to them.

cycles



 

 

Chapter 5  
 

VARIANCE OF FATIGUE DAMAGE IN NON-GAUSSIAN RANDOM 

LOADING 

5.1 INTRODUCTION 

Chapter 4 reviewed four methods (i.e. Mark and Crandall, Bendat, Madsen et al., and 

Low) developed to calculate the variance of damage under narrow-band Gaussian random 

loading. Explicit formulae from the literature were compared with Monte Carlo 

simulations in time- and frequency-domain approaches. The coefficient of variation was 

presented as a smooth monotonic function of bandwidth parameters 𝛼1 and 𝛼2, a feature 

that permitted the proposition of a best-fitting expression. The proposed approach 

demonstrated to be simple and easy to use in practice and agreed well with time-domain 

simulation results. However, all methods including the proposed one are strictly 

applicable to Gaussian processes only. The hypothesis of the Gaussian process is not often 

satisfied by random loads acting on real engineering structures. 

Non-Gaussian loads are encountered, for example, in certain types of wind or 

wave loading, or when the structure has a non-linear behavior that transforms a Gaussian 

input into a non-Gaussian output [BEN18b]. One interesting situation is that of offshore 

structures subjected to wave random loading, in which structural nonlinearity combines 
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with non-Gaussian input excitation. These examples emphasize that the study of non-

Gaussian random loading is of particular relevance in structural durability. In spite of this, 

at present there are no analytical approaches able to assess the variance of fatigue damage 

in non-Gaussian loads. Apart from some exceptions [BEN09a], the methods existing in 

the literature are indeed valid for Gaussian loading only. 

This chapter introduces the non-linear transformation, then it develops two 

theoretical models to estimate the variance of damage in stationary narrow-band non-

Gaussian random processes. The models presented here extend two methods (Madsen et 

al. and Low) developed for narrow-band Gaussian processes. The models proposed in 

this chapter are based on a time-invariant non-linear transformation that links a non-

Gaussian random process to its underlying Gaussian one. The transformation is calibrated 

on the values of skewness 𝛾3 and kurtosis 𝛾4 coefficients of the non-Gaussian process. 

This transformation enables the proposed models to estimate variance for any 

combination of skewness and kurtosis coefficients. The correctness of the proposed 

theoretical models was verified by Monte Carlo simulations, considering a linear 

oscillator response spectrum. 

5.2 DEFINITION OF TRANSFORMATION 

In this section a time-independent non-linear transformation 𝐺(−) aims to include non-

Gaussian effects in the Madsen et al.’s and the Low’s method (see Chapter 4). The 

transformation relates a non-Gaussian loading with its underlying Gaussian one and vice 

versa. After this definition, one transformation form is reviewed to relate a non-Gaussian 

loading with its underlying Gaussian one and vice versa, i.e. the Winterstein’s model. 

The transformation 𝐺(−) establishes a one-to-one relationship between the values 

of Gaussian and non-Gaussian processes. The non-Gaussian process is thus obtained as 

𝑍(𝑡) = 𝐺(𝑋(𝑡)). Conversely, the Gaussian process 𝑋(𝑡) = 𝑔(𝑍(𝑡)) is transformed back 
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with the inverse function 𝑔(−) = 𝐺−1(−). The degree of non-linearity of the 

transformation is adjusted on the values of skewness 𝛾3 and kurtosis 𝛾4 characterizing the 

non-Gaussian process (usually, 𝛾3 ≠ 0 and 𝛾4 ≠ 3). If 𝛾3 = 0 and 𝛾4 = 3, the process 

𝑍(𝑡) becomes Gaussian and the transformation linear. The transformation should be 

monotonically increasing to obtain a non-Gaussian process correctly. The transformation 

is independent of 𝑡. 

 
Figure 5.1. (a) Linear and non-linear transformation; (b) Gaussian and its corresponding transformed non-

Gaussian random process (dashed line refers to Gaussian and solid line to non-Gaussian). 

Different forms of either the direct or the inverse transformation are available in 

the literature: Ochi’s model is a monotonic exponential function [OCH94], Winterstein’s 

model is based on cubic Hermite polynomials [WIN85,WIN88,WIN94], whereas the 

transformation of Sarkani et al. employs a power law model [KIH95,SAR94]. Among 

them, only the Winterstein’s model provides the analytical expressions of both 𝐺(−) and 

𝑔(−). This aspect is very beneficial in the development of the non-Gaussian solutions for 

the variance, presented in this section. An example of linear and non-linear 

transformations is represented in Figure 1.1(a); the non-linear case is obtained by the 

Winterstein’s model and refers to values 𝛾3 = 0.5 and 𝛾4 = 6. 

(a) (b)
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The transformation may introduce some harmonic distortion on the power 

spectrum 𝑆Z(𝑓) of the transformed process 𝑍(𝑡) if a high degree of non-linearity (e.g. 

high kurtosis value) has in the process [SMA05]. However, if the degree of non-linearity 

of 𝐺(−) is not too high, the distortion is satisfactory and both processes have similar 

spectral contents [SMA05]. 

5.2.1 Winterstein’s model 

The Winterstein’s model is reviewed in this section depending upon the Hermite 

polynomials. In particular, it reports only the expressions of the inverse transformation 

𝑔(−), as this function along with its first derivative are utilized by the models developed 

in next sections. 

For a leptokurtic process (𝛾4 > 3), the inverse transformation is (the time 𝑡 

variable is omitted for clarity) [WIN94]: 

 𝑔(𝑍) = [√𝜉2(𝑍) + 𝑎3 + 𝜉(𝑍)]

1
3
− [√𝜉2(𝑍) + 𝑎3 − 𝜉(𝑍)]

1
3
− 𝑎1 (5.1) 

where 

 𝜉(𝑍) =
3𝑎2

2
(𝑎1 +

𝑍 − 𝜇Z

𝜅𝜎Z
) − 𝑎1

3 (5.2) 

in which 𝜇Z is the mean value and 𝜎Z the standard deviation of the non-Gaussian process, 

and the constants 𝑎1 = ℎ3 (3ℎ4)⁄ , 𝑎2 = 1 (3ℎ4)⁄ , 𝑎3 = (𝑎2 − 1 − 𝑎1
2)3. The scale factor 

𝜅 = (1 + 2ℎ3
2 + 6ℎ4

2)−1 2⁄  assures that both the Gaussian and non-Gaussian process have 

a common value of variance, 𝜎X
2 = 𝜎Z

2. 

The non-dimensional coefficients ℎ3 and ℎ4 carry on slightly different 

expressions, depending on the version of the method. The earliest version [WIN85] was 
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a first-order model limited to small non-Gaussian degrees. The later version [WIN94] 

incorporated also a second-order term and provides the following expressions: 

 ℎ3 =
𝛾3

6
[
1 − 0.015|𝛾3| + 0.3𝛾3

2

1 + 0.2(𝛾4 − 3)
] ;         ℎ4 = ℎ40 (1 −

1.43𝛾3
2

𝛾4 − 3
)

1−0.1𝛾4
0.8

 (5.3) 

where 

 ℎ40 =
[1 + 1.25(𝛾4 − 3)]1 3⁄ − 1

10
 (5.4) 

These coefficients fit in the intervals 0 < 𝛾3
2 < 2(𝛾4 − 3) 3⁄  and 3 < 𝛾4 < 15, which 

comprise most non-Gaussian cases. 

For a platykurtic process (𝛾4 < 3), the inverse transformation is: 

 𝑔(𝑍) = 𝑍0 − ℎ3̃(𝑍0
2 − 1) − ℎ4̃(𝑍0

3 − 3𝑍0) (5.5) 

where 𝑍0 = (𝑍 − 𝜇Z) 𝜎Z⁄  is a standardised process; the parameters ℎ3̃ = 𝛾3 6⁄  and ℎ4̃ =

(𝛾4 − 3) 24⁄  are Hermite moments. 

Despite the fact that the Winterstein’s model includes several non-Gaussian cases, 

it does not accept all combinations of 𝛾3, 𝛾4 values. For more details, see [WIN88]. 
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5.3 SOLUTION BASED ON LOW’S METHOD 

The Low’s model for the variance of damage in Chapter 4 is now extended to the non-

Gaussian case. This model depends on four properties of a narrow-band Gaussian 

process: 

i) the expected number of half-cycles in time interval 𝑇 is equal to the frequency of 

upward crossings, 𝐸[𝑛(𝑇)] = 2𝜈0
G𝑇; 

ii) the time lag between two peaks 𝑃l
G and 𝑃l+1

G  is 𝜏 = 𝑙 (2𝜈0
G)⁄ ; 

iii) the JPDF of two peaks 𝑓P0,Pl

G (𝑥p, 𝑥v) is the Rice distribution (see Chapter 4), 

which is used to derive the autocorrelation coefficient 𝜌d0,𝑑l

G (𝑙); 

iv) the probability distribution of peaks 𝑓P0

G (𝑥p) is known to be a Rayleigh 

distribution. 

The first and second conditions are, indeed, very general and hold true also for a 

narrow-band process that is non-Gaussian, as they only depend on characteristics of a 

narrow-band process. The third and fourth conditions, instead, require the Gaussian 

hypothesis for the process. 

A useful characteristic of the non-linear transformations 𝐺(−) and 𝑔(−) is that to 

establish a one-to-one relationship between a value in a Gaussian process at any time 

instant and its transformed value in the non-Gaussian process, at the same time instant. 

This relationship guarantees that peaks, valleys and mean value crossings are placed 

exactly at the same time instants in both processes. Figure 1.1(b) highlights this 

relationship for the peaks in the Gaussian and non-Gaussian process. 

For example, if the Gaussian process crosses its mean value 𝜇X at time 𝑡1, that is 

𝑋(𝑡1) = 𝜇X, the non-Gaussian process will cross its mean value 𝜇Z also at 𝑡1, that is 

𝑍(𝑡1) = 𝜇Z. Furthermore, if 𝑋(𝑡) has a peak 𝑥p(𝑡) or valley 𝑥v(𝑡) at time instant 𝑡, the 

non-Gaussian process will have a corresponding peak or valley at the same time instant, 

𝑧p(𝑡) = 𝐺(𝑥p(𝑡)) and 𝑧v(𝑡) = 𝐺(𝑥v(𝑡)). The same condition holds true also for the 
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inverse relationship 𝑥p(𝑡) = 𝑔(𝑧p(𝑡)) and 𝑥v(𝑡) = 𝑔(𝑧v(𝑡)). Consequently, the 

previous property suggests that both the Gaussian and non-Gaussian process have in 

common the autocorrelation coefficient, that is 𝜌X(𝑙) ≅ 𝜌Z(𝑙). 

Another and more important consequence is that the relative positions of peaks 

and valleys in both processes are maintained for a monotonic transformation. For 

example, two peaks will be 𝑧p(𝑡1) > 𝑧p(𝑡2) in the non-Gaussian process if they are 

transformed by 𝐺(−) from two peaks 𝑥p(𝑡1) > 𝑥p(𝑡2) at any time instants 𝑡1, 𝑡2 in the 

Gaussian process. Obviously, the same concept relates to valleys as well. This is the same 

as saying that if the Gaussian process has peaks 𝑃l
G > 𝑃l+1

G  at time lag 𝑙, the non-Gaussian 

process will have peaks 𝑃l
nG > 𝑃l+1

nG  at the same time lag. 

The above insights may be summarized by stating that a non-linear transformation 

from a Gaussian to a non-Gaussian process preserves the number of mean value crossings, 

and either increases or decreases (depending on 𝛾3, 𝛾4) the values of peaks and valleys, 

keeping their relative positions unaltered. This property, in particular, guarantees that, in 

the non-Gaussian process, half-cycles are formed by peak/valley pairs that are 

transformed from the corresponding peak/valley pairs in the Gaussian process, and that 

the non-Gaussian half-cycles have amplitudes smaller or larger (depending on 𝛾3, 𝛾4) 

than the corresponding amplitudes of the Gaussian half-cycles. 

Considering the earlier observations, the four properties summarized in the 

previous list can easily be adapted to the non-Gaussian case. More precisely, in a non-

Gaussian narrow-band process: 
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i) the expected number of half-cycles in time interval 𝑇 is equal to the frequency of 

upward crossings: 𝐸[𝑛(𝑇)] = 2𝜈0
nG𝑇, where 𝜈0

nG = 𝜈0
G; 

ii) the time lag between two peaks 𝑃l
nG and 𝑃l+1

nG  is 𝜏 = 𝑙 (2𝜈0
nG)⁄ ; 

iii) the autocorrelation coefficient 𝜌d0,dl

nG (𝑙) is derived from the JPDF 𝑓P0,Pl

nG (𝑧p, 𝑧v) of 

two peaks, which is obtained as a variable transformation of the Rice distribution; 

iv) the distribution of peaks for non-Gaussian 𝑓P0

nG(𝑧p) is obtained by a variable 

transformation of the Rayleigh distribution valid in the Gaussian case; 

The first two properties are evident; the other two requires some explaining. The 

third condition is now elaborated further. Hereafter, a pair of any two extremes 𝑧p and 𝑧v 

(peak and valley) is considered in the non-Gaussian process. They are random variables 

with joint probability density function, say 𝑓P0,Pl

nG (𝑧p, 𝑧v). Such extremes are transformed 

back to two corresponding extremes 𝑥p= 𝑔(𝑧p) and 𝑥v = 𝑔(𝑧v) (peak and valley) in the 

Gaussian process through the inverse transformation 𝑔(−). For the Gaussian extremes is 

valid the joint Rice distribution. The joint distribution of the non-Gaussian extremes can 

be derived by the rule of transformed random variables [LUT04]: 

 𝑓P0,Pl

nG (𝑧p, 𝑧v) = 𝑓P0,Pl

G (𝑥p, 𝑥v) ∙ | J(𝑥p, 𝑥v) | (5.6) 

where symbol | − | means “absolute value” and 𝐉 is the Jacobian of the transformation 

𝑔(−), which turns out from the following 2 × 2 determinant: 

  J(𝑥p, 𝑥v) = |
|

𝜕𝑔(𝑧p)

𝜕𝑧p

𝜕𝑔(𝑧p)

𝜕𝑧v

𝜕𝑔(𝑧v)

𝜕𝑧p

𝜕𝑔(𝑧v)

𝜕𝑧v

|
| (5.7) 

The inverse transformation should be applied to peak and valley variables separately. As 

a result, the Jacobian in Eq. (5.7) is, in fact, a diagonal matrix. Intuition suggests, for 
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example, that an infinitesimal change in the non-Gaussian peak 𝜕𝑧p produces no variation 

in the corresponding valley 𝜕𝑧v, and therefore 𝜕𝑔(𝑧p) 𝜕𝑧v⁄ = 0. A similar interpretation 

applied to the other out-of-diagonal term explains why 𝜕𝑔(𝑧v) 𝜕𝑧p⁄ = 0. 

By the Rice formula (see Chapter 4), the general expression in Eq. (5.6) can be 

written more specifically as: 

 

𝑓P0,Pl

nG (𝑧p, 𝑧v) = 

𝑔(𝑧p)𝑔(𝑧v)

1 − 𝜌Z
2(𝑙)

𝐼0 (
𝑔(𝑧p)𝑔(𝑧v) 𝜌Z(𝑙)

1 − 𝜌Z
2(𝑙)

) 𝑒
−

𝑔(𝑧p)2+𝑔(𝑧v)2

2(1−𝜌Z
2(𝑙)) |

𝜕𝑔(𝑧p)

𝜕𝑧p
∙
𝜕𝑔(𝑧v)

𝜕𝑧v
| 

(5.8) 

Although not written explicitly, the Bessel function 𝐼0(𝑧p, 𝑧v) in Eq. (5.8) is a function of 

𝑧p and 𝑧v, and it is obtained by a simple change of variables in the corresponding function 

𝐼0(𝑥p, 𝑥v) (see Chapter 4), which instead depends on the variables 𝑥p and 𝑥v. 

The expression in Eq. (5.8) represents the joint distribution of two peaks in the 

non-Gaussian process 𝑍(𝑡). As the transformation of variables involves the non-linear 

function 𝑔(𝑧p) and its derivatives, the final expression is so complex that is not possible 

to arrive at a closed-form solution. A numerical approach should be used. 

Eq. (5.8) depends on both 𝛾3 and 𝛾4 through function 𝑔(𝑧p). It is also function of 

𝜇Z, 𝜎Z
2 and 𝜌Z. Obviously, in the limiting case 𝛾3 = 0 and 𝛾4 = 3 (Gaussian process), Eq. 

(5.8) converges to Rice distribution. 

Figure 5.2(a) compares the Gaussian and non-Gaussian joint probability 

distributions of peaks (the latter obtained with 𝜇Z = 0, 𝜎Z
2 = 1, 𝜌Z = 0, 𝛾3 = 0.5 and 

𝛾4 = 6). The distributions are plotted on the region of positive values about peaks. The 

shift of probabilities is clear. If compared to the Gaussian case, the non-Gaussian 

distribution shows higher levels of probability towards larger peak values. 
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Figure 5.2. (a) Joint probability density function of peaks and (b) its marginal probability density function 

of peaks. 

The non-Gaussian peak-peak joint distribution obtained so far allows the damage 

correlation 𝐸[𝑑0
nG𝑑l

nG] to be computed with no much effort by solving numerically the 

double integral in Chapter 4. Attention should be paid in the numerical integration when 

the kurtosis 𝛾4 is very large. In this circumstance, indeed, the non-Gaussian variables 𝑧p, 

𝑧v extend over a wide interval that needs to be finely discretized to assure the necessary 

numerical precision. 

The last point iv) in the previous list for the non-Gaussian process is finally 

considered. In the same way as Eq. (5.6), the probability density function of peaks in the 

non-Gaussian process is determined by a variable transformation [LUT04]: 

 𝑓P0

nG(𝑧p) = 𝑓P0

G (𝑥p) |
𝜕𝑔(𝑧p)

𝜕𝑧p
 | (5.9) 

(a) (b)
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Making use of Eq. (5.9) and introducing the transformed random variable 𝑥p = 𝑔(𝑧p) 

into the formula of the Rayleigh distribution 𝑓P0

G (𝑥p), the probability distribution of peaks 

in the non-Gaussian case can be written as: 

 𝑓P0

G (𝑧p) =
𝑔(𝑧p)

𝜎Z
2  𝑒

−
(𝑔(𝑧p))

2

2𝜎Z
2

|
𝜕𝑔(𝑧p)

𝜕𝑧p
 | (5.10) 

Equation (5.10) depends on the four statistics 𝜇Z, 𝜎Z
2, 𝛾3, 𝛾4 characterising the non-

Gaussian process 𝑍(𝑡). It converges to a Rayleigh distribution when 𝛾3 = 0 and 𝛾4 = 3 

(Gaussian process). 

A comparison of the Gaussian and the non-Gaussian (transformed) distribution is 

sketched in Figure 5.2(b). It refers to 𝜇Z = 0, 𝜎Z
2 = 1, 𝛾3 = 0.5 and 𝛾4 = 6. The wider 

tail in the non-Gaussian distribution provides higher levels of probability towards larger 

peak values. 

Similarly to the expected damage per half-cycle 𝐸[𝑑] in Chapter 3, the expected 

value of the damage 𝐸[𝑑0
nG] and its square 𝐸 [(𝑑0

nG)
2
] are nothing more than the moments 

of order 𝑘 and 2𝑘, respectively, of the probability distribution 𝑓P0

nG(𝑧p) just introduced. 

On substituting the non-Gaussian distribution in Eq. (5.10) into 𝐸[𝑑] in Chapter 3, the 

general expression that gives both expected damage values are: 

 𝐸[(𝑑0
nG)

q
] =

1

(2𝐴)q
∫ 𝑧p

q∙k
 
𝑔(𝑧p)

𝜎Z
2  𝑒

−
(𝑔(𝑧p))

2

2𝜎Z
2

|
𝜕𝑔(𝑧p)

𝜕𝑧p
 |

∞

0

d𝑧p (5.11) 

where the exponent 𝑞 is 1 or 2. Note that this expression is only a function of 𝜇Z, 𝜎Z
2, 𝛾3, 

𝛾4. 
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The variance of the fatigue damage for the non-Gaussian process is finally 

obtained through 𝜎D
2 in Chapter 4, in which the quantities 𝐸[𝑑0

nG𝑑l
nG], 𝐸[(𝑑0

2)nG] and 

𝐸[𝑑0
nG] calculated so far for the non-Gaussian process have to be used: 

 

(𝜎D
2)Low

nG = 

𝑛 (𝐸[(𝑑0
2)nG] − 𝐸[𝑑0

nG]
2
) + 2 ∑(𝑛 − 𝑙) (𝐸[𝑑0

nG𝑑l
nG] − 𝐸[𝑑0

nG]
2
)

n−1

l=1

 
(5.12) 

This expression extends the Low’s method to the non-Gaussian case. Note that 𝐸[(𝑑0
2)nG] 

means “expected value of the damage squared”, whereas 𝐸[𝑑0
nG]

2
 means “expected 

damage squared”.  

The corresponding expression of the CoV for the non-Gaussian process becomes: 

 

(𝐶D)Low
nG = 

1

𝑛
√𝑛 (

𝐸[(𝑑0
2)nG]

𝐸[𝑑0
nG]

2 − 1) +
2∑ (𝑛 − 𝑙) (𝐸[𝑑0

nG𝑑l
nG] − 𝐸[𝑑0

nG]
2
)n−1

l=1

𝐸[𝑑0
nG]

2  
(5.13) 

5.4 SOLUTION BASED ON MADSEN ET AL.’S METHOD 

For the Gaussian case, the Madsen et al.’s solution basically relies on the damage 

autocorrelation coefficient 𝜌d0,dl

G (𝑙) in Chapter 4. Extension to the non-Gaussian case is 

straightforward. It is based on the property, already discussed in previous section, that the 

transformation 𝐺(−) has of keeping unaltered the position in time of each value of the 

Gaussian and non-Gaussian process. This property also ensures that both processes cross 
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their mean values at the same instant of time. Taken together, both properties suggest that 

the Gaussian and non-Gaussian processes have in common the autocorrelation 

coefficient, 𝜌Z(𝑙) ≅ 𝜌X(𝑙), and the same frequency of upward crossings, 𝜈0
nG = 𝜈0

G.  

Consequently, for the non-Gaussian process and any value of 𝑘, the 

autocorrelation coefficient of the damage is: 

 𝜌d0,dl

nG (𝑙) ≅

Γ2 (1 +
𝑘
2
) [ 𝐹2 1 (−

𝑘
2

,−
𝑘
2

; 1; 𝜌Z
2(𝑙) + (

𝜌Z
′ (𝑙)

2𝜋𝜈0
n𝐺)

2

) − 1]

[Γ(1 + 𝑘) − Γ2 (1 +
𝑘
2
)]

 (5.14) 

where symbols 𝜌Z(𝑙) and 𝜈0
nG have been used only to emphasize that the formula holds 

for the non-Gaussian case. Compared to the non-Gaussian Low’s method, the coefficient 

𝜌d0,dl

nG (𝑙) can be obtained with no difficulty, since the transformed JPDF 𝑓P0,Pl

nG (𝑥p, 𝑥v) in 

Eq. (5.8) is not involved. 

The coefficient 𝜌d0,dl

nG (𝑙) in Eq. (5.14) enters directly into the variance expression 

𝜎D
2 in Chapter 4. The other two damage values, 𝐸[𝑑0

2] and 𝐸[𝑑0]
2, are determined exactly 

as for the Low’s method for the non-Gaussian case; the fourth property iv) from the list 

in previous section remains indeed unchanged. Therefore, the distribution of peaks for 

non-Gaussian 𝑓P0

nG(𝑧p) follows from a variable transformation of the Rayleigh 

distribution, see Eq. (5.10). The terms 𝐸[𝑑0
nG] and 𝐸 [(𝑑0

nG)
2
] are calculated with Eq. 

(5.11). 

If all previous results are put together, the variance of the fatigue damage 

according to Madsen et al. turns out to be: 

 (𝜎D
2)Mad

nG = [𝑛 + 2 ∑(𝑛 − 𝑙)

n−1

l=1

𝜌d0,dl

nG (𝑙)] (𝐸[(𝑑0
2)nG] − 𝐸[𝑑0

nG]
2
)  (5.15) 

The corresponding expression of the CoV is: 
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 (𝐶D)Mad
nG =

1

𝑛
√[𝑛 + 2 ∑(𝑛 − 𝑙)𝜌d0,dl

nG (𝑙)

𝑛−1

𝑙=1

] (
𝐸[(𝑑0

2)nG]

𝐸[𝑑0
nG]

2 − 1) (5.16) 

In both equations, the autocorrelation coefficient of the damage 𝜌d0,dl

nG (𝑙) is identical for 

both the Gaussian and the non-Gaussian process, as clarified above. The non-Gaussian 

effect enters, through the transformation 𝑔(−), into the last two terms 𝐸[(𝑑0
2)nG] and 

𝐸[𝑑0
nG]. 

5.5 NUMERICAL EXAMPLE 

Numerical simulations are used to verify the correctness of the two non-Gaussian models 

described previously. The two models are compared with time-domain results obtained 

via Monte Carlo method. This study is also used to investigate how the variance and the 

coefficient of variation vary as a function of the skewness, kurtosis and the S-N inverse 

slope. 

Simulations consider the linear oscillator response spectrum 𝑆X(𝑓) from Chapter 

4. A brief description of main parameters is reproduced in this chapter since they play a 

significant role in the spectrum 𝑆X(𝑓). Indeed, the system considered has a natural 

frequency of 10 Hz and a light damping 𝜁 = 0.005. It is subjected to a band-limited 

random base acceleration, 𝑊(𝑡), with a frequency content from 0 to 20 Hz. Analytical 

expressions are derived for the mass absolute displacement, 𝑈(𝑡), and the relative 

displacement, 𝑋(𝑡) = 𝑈(𝑡) − 𝑊(𝑡). The relative displacement response spectrum 𝑆X(𝑓) 

turns out to be a narrow-band random Gaussian process, with bandwidth parameters 𝛼1 =

0.998 and 𝛼2 = 0.994. The power spectrum is normalised to unit variance, 𝜆0 = 1. 
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A total of 𝑁 = 2 × 105 Gaussian random time-histories 𝑥i(𝑡), 𝑖 = 1,2,3, …𝑁 of 

time length 𝑇 are simulated from 𝑆X(𝑓). Three different lengths 𝑇 are chosen so that time-

histories have approximately 103, 104 and 105 fatigue cycles. 

Winterstein’s model is then used to transform each 𝑥i(𝑡) into a non-Gaussian 

time-history 𝑧i(𝑡) with prescribed values of skewness γ3 and kurtosis γ4. Simulations 

scrutinise the ranges 0 < 𝛾3
2 < 0.5 and 2 < 𝛾4 < 8, which cover most of the cases of 

practical interest. It has, however, to be noticed that Winterstein’s model imposes some 

restrictions on the values of 𝛾3 and 𝛾4 that can be paired [WIN94]. 

For each time-history, 𝑥i(𝑡) and 𝑧i(𝑡), the fatigue damage values 𝐷i
G(𝑇) and 

𝐷i
nG(𝑇) are calculated in time-domain by the rainflow counting and Palmgren-Miner rule. 

Damage calculation considers a S-N curve with strength coefficient 𝐴 = 1 and several 

values of the inverse slope 𝑘 = 3, 6, 9, which cover typical values from notched to smooth 

components. 

The sample mean �̅� = 𝑁−1 ∑ 𝐷i
N
i=1 , sample variance �̂�D

2 = (𝑁 − 1)−1 ∑ (𝐷i −
N
i=1

�̅�)2 and sample coefficient of variation �̂�D = �̂�D �̅�⁄  are computed from the set of damage 

values for both the Gaussian and the non-Gaussian case. The expected damage, instead, 

was computed through analytical solutions: the Gaussian expected damage 𝐸[𝐷G(𝑇)]NB 

from Chapter 3, the non-Gaussian expected damage 𝐸[𝐷nG(𝑇)] = 2𝜈0
nG𝑇 ∙ 𝐸[𝑑nG] by 

taking 𝑞 = 1 in Eq. (5.11). 

Figure 5.3 displays the trend of the sample mean �̅� and the standard deviation of 

damage �̂�D (normalised to the expected damage) for both the Gaussian and non-Gaussian 

case, as a function of the number of counted cycles. The figure refers to an inverse slope 

𝑘 = 3 and a non-Gaussian process with 𝛾3 = 0.5 and 𝛾4 = 6. In either case, the greater 

is the number of counted cycles, the lower is the dispersion of the damage around its mean 

value. For any number of cycles, the non-Gaussian damage always has a variance higher 

than the Gaussian damage. A similar result, not shown here, is observed for other values 

𝛾4 > 3. This increase in the variance of damage highlights the importance of considering 

the non-Gaussian effect. 
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Figure 5.3. Standard deviation normalized to the expected damage as a function of the number of counted 

cycles. 

The trend in Figure 5.3 is further clarified in Figure 5.4, which shows the change 

of the CoV versus the number of counted cycles for both methods of Low and Madsen et 

al. Figure 5.4 refers to an inverse slope 𝑘 = 3 and two different non-Gaussian cases: 𝛾3 =

0.5, 𝛾4 = 2 (platykurtic) and 𝛾3 = 0.5, 𝛾4 = 6 (leptokurtic).  

 
Figure 5.4. Coefficient of variation of damage as a function of the number of counted cycles. 

, n/2

, n/2
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A perfect matching is observed between time-domain results and theoretical 

estimations, either Gaussian or non-Gaussian. The agreement in the Gaussian case is 

somehow predictable [MAR19b]. Of more interest here is the correct estimation provided 

by the non-Gaussian models, whose exactness is thus verified. Furthermore, the figure 

also shows that the non-Gaussian models by Low and Madsen et al. are almost equivalent. 

The very small, if not almost negligible, discrepancy between theoretical and 

simulation results in Figure 5.4 has to be attributed to numerical approximations. This 

approximation tends to occur for kurtosis values 𝛾4 > 6 or even greater. One 

approximation comes from the Winterstein’s model, in which there are some best-fitting 

coefficients. Another approximation source comes from the numerical solution of the 

double-integral used to compute 𝐸[𝑑0
nG𝑑l

nG] through the JPDF 𝑓P0,Pl

nG (𝑧p, 𝑧v) in the Low’s 

model; for very high 𝛾4 values, the tails of the joint probability distribution tend to be 

represented not exactly. 

In any case, the largest difference between theory and simulation is 3%, which is 

perfectly acceptable. In summary, the previous results confirm that the two non-Gaussian 

models are practically equivalent, and they are not only exact but also cover combinations 

of skewness and kurtosis over a wide range of values of practical interest, that is within 

the limits of Winterstein’s model 0 < 𝛾3
2 < 2(𝛾4 − 3) 3⁄  and 1 < 𝛾4 < 15. 

An overall picture is finally given on the effect of skewness 𝛾3, kurtosis 𝛾4 and 

inverse slope 𝑘 on the relative variation of the non-Gaussian CoV with respect to the 

Gaussian case. In particular, Figure 5.5 shows the trend of the ratio 𝑟 =

(𝐶D)Mad
nG /(𝐶D)Mad

G  of the coefficient of variation computed by Madsen et al.’s method in 

either its Gaussian or non-Gaussian version. The Gaussian CoV, (𝐶D)Mad
G , follows from 

Chapter 4, the non-Gaussian one, (𝐶D)Mad
nG , from Eq. (5.16). As said above, the 

estimations (𝐶D)Low
G  and (𝐶D)Low

nG  of the Low’s model are identical and are thus not 

shown. 



74 
 
 

Variance of fatigue damage in non-Gaussian random loading  

 

 

 
Figure 5.5. Ratio of coefficient of variation of damage 𝑟 = (𝐶D)Mad

nG /(𝐶D)Mad
G  versus (a) kurtosis 

coefficient and (b) skewness coefficient, for several values of the inverse slope 𝑘 of the S-N curve. 

Figure 5.5(a) considers a set of non-Gaussian processes with same skewness 𝛾3 =

0, but different values of kurtosis 𝛾4 and inverse slope 𝑘. Compared to the Gaussian case, 

the CoV of a non-Gaussian process is shown always to decrease (𝑟 < 1) or increase (𝑟 >

1) depending on whether the process is platykurtic (𝛾4 < 3) or leptokurtic (𝛾4 > 3). For 

a given 𝛾4, the variation depends on 𝑘. 

In the region 𝛾4 < 3, the decrease of CoV becomes larger for high 𝑘 values. For 

𝛾4 = 2, the CoV diminishes up to 60% for 𝑘 = 9. In the region 𝛾4 > 3 the CoV has an 

opposite trend, but 𝑘 has a more pronounced effect, especially when 𝑘 > 3. For example, 

for 𝑘 = 6 the increase arrives at 120% for 𝛾4 = 6.3, whereas for 𝑘 = 9 the same increase 

is attained already for 𝛾4 slightly below 4. 

Figure 5.5(b) shows, instead, the effect of skewness 𝛾3 on the CoV of damage of 

“asymmetric” random processes. The kurtosis is set to 𝛾4 = 3.5; it is indeed not possible 

to choose a lower value if, in the Winterstein’s model, the skewness has to reach the limits 

-0.5 to +0.5. Similar trends are obtained for other 𝛾4 values. 

(a) (b)
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For any given 𝑘, the curves in Figure 5.5(b) are symmetric, which is yet not 

surprising. In fact, in the Winterstein’s model, the transformation 𝐺(−) corresponding to 

equal and opposite values +𝛾3 and −𝛾3 turns out to be “mirrored” with respect to the 

straight line of the Gaussian case. In symbols: 𝐺𝛾3>0(𝑋) = −𝐺𝛾3<0(−𝑋). Skewness 

values other than zero only make the mean stress of each non-Gaussian cycle, 

(𝑧p + 𝑧v)/2, be different from zero, whereas stress amplitudes remain unchanged and 

follow the same probability distribution in both cases +𝛾3 and −𝛾3. 

The results in Figure 5.5(b) reveals that for a given 𝛾4, the largest increment of 

CoV occurs for 𝛾3 = 0; lower increments are observed for either positive or negative 

skewness values. As before, the higher the inverse slope 𝑘, the higher the increment, 

although now the effect is less marked than what observed for the kurtosis. In any case, 

these results confirm once more the importance of considering non-Gaussian effects in 

the evaluation of the variance of damage. 
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Chapter 6  
 

TEST OF STATIONARITY OF RANDOM LOADING 

6.1 INTRODUCTION 

Chapter 5 presented two theoretical models for assessing the variance of fatigue damage 

in stationary non-Gaussian random processes. The non-Gaussian models extend two 

methods existing in the literature (Madsen et al., Low) that are valid for narrow-band 

Gaussian processes. Monte Carlo numerical simulations in the time-domain approach 

were used to verify the correctness of the two models proposed and to identify typical 

trends. The statistics (e.g. coefficient of variation) characterizing the sample of damage 

values were compared to theoretical estimations. A perfect match was observed. 

A common situation is, however, the uncertainty of damage computed from a few 

measured time-histories of finite time length 𝑇. In this situation, all theoretical approaches 

in Chapter 4 and 5 cannot be applied because they require the knowledge of the exact 

autocorrelation function or PSD, where “exact” stands for the value averaged from an 

infinite ensemble of stationary time-histories. It would be much easier to construct a 

confidence interval enclosing the expected damage. This approach based on a direct 

analysis of stationary time-history would impose no restrictions on the specific type of 

PSD, as required by theoretical approaches in Chapter 4 and 5. However, not only the 

analytical methods in Chapter 4 and 5 but also the confidence interval for the expected 
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damage — which will be addressed in Chapter 7 — are only applicable to stationary 

random loading. 

Structures and mechanical components under stationary loading have statistical 

properties (e.g. variance, mean value and frequency content) that do not change over time. 

Since this hypothesis is not valid for all structures and mechanical components, a non-

parametric statistic method should be used to verify the stationarity of measured random 

time-histories. For example, measured stress responses may be non-stationary, as those 

resulting from different wind conditions, various sea states, as well as road sequences 

with different surface profile characteristics. To identify the non-stationarity of an 

excitation, Rouillard [ROU14] adopted the non-parametric run test method to obtain the 

non-stationarity level of a vehicle’s vibrations. Rouillard’s approach considers root-

mean-squared (RMS) values as the statistical parameter, which can detect change only in 

the variance and mean value of random time-history 𝑥(𝑡). It would be more effective to 

consider the damage computed for each block as the statistical parameter, which takes 

into account change in the variance, mean value, and frequency content of a random time-

history 𝑥(𝑡). 

This chapter introduces a run test approach to verify the stationarity of time-

histories 𝑥(𝑡) with duration 𝑇. As an alternative to Rouillard’s approach that takes into 

account RMS values, the proposed run test considers the damage values computed for 

each independent block as the statistical parameters. The proposed damage-based run test 

is then compared with Rouillard’s using stationary and non-stationary simulation time-

histories 𝑥(𝑡). 
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6.2 THE RUN TEST METHOD 

The Wald–Wolfowitz run test or simple run test is a non-parametric method to verify the 

stationarity of a random loading [WAL40,BRO65,BEN86]. This method is based on the 

idea of dividing a time-history 𝑥(𝑡) into 𝑁B blocks. The run test considers a sequence of 

non-overlapping blocks. For each block, a value is calculated for the statistical parameter 

under investigation. This sequence of observations or observed block values define a run 

𝑟 that is followed and preceded by a different observation or no observation at all 

[BEN86]. One simple example would be a sequence of observed block values H and T, 

which are measured randomly one at a time. The sequence of H and T might be: 

 HH TTT HHH (6.1) 

providing 𝑟 = 3 runs, i.e. the sequence of two H and one T, represented by 𝑁B = 8 

blocks. The run test considers that the probability of H or T does not change from one 

observation to the other. Precisely, the sequence of observations consists in independent 

observations of the same random variable [BEN86]. 

The sampling distribution of runs is a random variable 𝑟 with a mean 𝜇r and 

variance 𝜎r
2, as follows [BEN86]: 

 𝜇r = 1 +
2𝑛H𝑛T

𝑛H + 𝑛T
,        𝜎r

2 =
2𝑛H𝑛T (2𝑛H𝑛T − 𝑛H−𝑛T)

(𝑛H+𝑛T)2 (𝑛H + 𝑛T − 1)
 (6.2) 

where 𝑛H and 𝑛T are the number of observed blocks H and T, respectively. 
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Eq. (6.2) can be adapted by the classification of observations as being above 𝑛a 

or below 𝑛b the sample median [BRO65,BEN86]. If the number of observations 𝑁B is 

odd, the method ignores the observation value that falls into the median. In this case, the 

number of observations above the median 𝑛a equals the number of observations below 

the median 𝑛b; so 𝑛a = 𝑛b. Eq. (6.2) can then be simplified as [BRO65,BEN86]: 

 𝜇r = 1 + 𝑛a,        𝜎r
2 =

𝑛a(𝑛a − 1)

2𝑛a − 1
 (6.3) 

In statistics, the number of runs 𝑟 is also a parameter of a particular random time-

history 𝑥(𝑡) that might be tested by a hypothesis testing. In fact, it refers to a statistical 

procedure used to accept or reject hypothesis. 

Based on the hypothesis that the observed blocks are independent and identically 

distributed from any continuous distribution [BRO65,BEN86], the acceptance interval 

for this hypothesis is: 

 𝑟na,1−β 2⁄ < 𝑟 ≤ 𝑟na,β 2⁄  (6.4) 

where 100(1 − 𝛽)% is the level of significance, and 𝑟na,1−β 2⁄  is the lower and 𝑟na,β 2⁄  

the upper limit of the run test. These limit values are determined by 𝜇r and 𝜎r
2 in Eq. (6.3) 

or using a tabulation of run distribution [BEN86]. The number of runs 𝑟 counted in a 

time-history 𝑥(𝑡) plays an important role to verify the stationarity. Indeed, if the number 

of runs 𝑟 falls into the acceptance interval, the random time-history 𝑥(𝑡) is presumably 

stationary. Otherwise, 𝑥(𝑡) is classified as non-stationary.  

Furthermore, this hypothesis test based on a sequence observed blocks is very 

powerful for detecting fluctuating trends [BEN86], for instance, increases and decreases 

in variance, mean and frequency content of a random time-history 𝑥(𝑡) over time. These 

non-stationary random loadings often encountered in many applications are characterized 

as a sequence of stationary load states. Examples of non-stationary loadings with changes 
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in the mean value are the stresses in trucks switching between loaded and unloaded 

service conditions and loadings observed on aircraft wings during ground–air–ground 

maneuvers [JOH95,JOH98,BUC97]. An example of non-stationary loadings with 

different variance levels is the vertical front suspension loads of a vehicle moving on 

different road surface conditions (e.g. asphalt, gravel, cobblestone) [NIK01]. Last, but not 

least, a mountain-bike traveling on a track by means of various speeds is an example of 

non-stationary loadings with changes in the frequency content [BEN05a,BEN07]. 

Rouillard studied the run test using the RMS computed for each block as the 

statistical parameter [ROU14]. Rouillard’s approach classifies the observed block values 

𝑅𝑀𝑆B,i(𝑇B), 𝑖 = 1,2, …𝑁B based on their mean. Depending upon the vibrations generated 

by road vehicles, Rouillard assumed that the frequency content of measured time-histories 

𝑥(𝑡) remains constant over time. A run ratio or run test index is provided to indicate the 

non-stationary level of a time-history. Rouillard also addressed the effect of the block 

length 𝑇B. A short block length increases the sensitivity of the analysis to local variations, 

while a wider length could not perceive the non-stationarity. As a final point, Rouillard 

highlighted a notable effect in quantifying stationarity in overlapping and non-

overlapping consecutive blocks, i.e. not only independent but also dependent observed 

block values. 

One possible limitation of the Rouillard’s approach is using RMS as the statistical 

parameter, which detects change only in the variance and mean value of random time-

history 𝑥(𝑡). It would be more effective if the damage 𝐷B,i(𝑇B), 𝑖 = 1,2, …𝑁B computed 

for each block is considered as the statistical parameter, since this allows taking into 

account change in the variance, mean value, and frequency content of random time-

history 𝑥(𝑡). This argument will be investigated in the next section. 
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6.3 PROPOSED APPROACH: A DAMAGE-BASED RUN TEST 

This section addresses the run test method by means of a different procedure than 

Rouillard’s one [ROU14]. Rather than using his usual statistical parameters—e.g. 

𝑅𝑀𝑆B,i(𝑇B), 𝑖 = 1,2, …𝑁B values—as the output calculated in each block, the damage 

𝐷B,i(𝑇B), 𝑖 = 1,2, …𝑁B is computed for each independent block (without overlapping) 

(see Figure 1.1). For a random time-history 𝑥(𝑡) with a fixed time length 𝑇, the number 

of observed blocks 𝑁B and the block length 𝑇B are inversely proportional, 𝑇𝐵 = 𝑇 𝑁𝐵⁄ . 

By analogy with the damage 𝐷(𝑇) of the entire time-history 𝑥(𝑡), the damage 

𝐷B(𝑇B) is calculated by summing up the damage of each half cycle during time 𝑇B: 

 𝐷B(𝑇B) = ∑ 𝑑i

n(TB)−1

i=0

= ∑
𝑠i

k

2𝐴

n(TB)−1

i=0

 (6.5) 

where 𝑛(𝑇B) is the number of half cycles in time interval 𝑇𝐵. The damage 𝐷B(𝑇B) in Eq. 

(6.5) is computed in time domain by means of the rainflow counting method and the 

Palmgren-Miner rule. Note that 𝐷B(𝑇B) of the proposed approach is used as a statistical 

parameter only, and not used for a fatigue damage assessment. In contrast to Rouillard’s 

approach [ROU14], the damage-based run test here applied can detect not only changes 

in variance and mean value, but also changes in frequency content of the random time-

history 𝑥(𝑡). The proposed approach classifies the observed block values 𝐷B,i(𝑇B), 𝑖 =

1,2, …𝑁B as being above 𝑛a or below 𝑛b the sample median. As a consequence of 

classifying above or below median, the damage-based run test (non-parametric method) 

assumes continuity in the distribution but makes no assumptions about the form of the 

distribution [BRO65,BEN86]. 

For the number of blocks 𝑁B and block length 𝑇B of the proposed run test, 

parameters from a similar technique of dividing a time-history, i.e. Short-Time Fourier 

Transform (STFT), are considered. This technique is widely used to analyze how the 

frequency content of a time-history 𝑥(𝑡) changes over time. The procedure for computing 
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STFT is to divide the time-history 𝑥(𝑡) into 𝑁B blocks of equal length 𝑇B and then 

compute the Fourier transform of each one. The number of blocks 𝑁B and their duration 

𝑇B have an indispensable influence on the time and the frequency resolution. 

Unfortunately, high resolutions cannot be achieved in both domains because they are 

inversely proportional for a time-history 𝑥(𝑡) with a fixed time length 𝑇. These 

resolutions can be controlled using two parameters such as statistical (or random) error 

𝜀r = 1 √𝑁B⁄  and frequency resolution ∆𝑓 = 1 𝑇B⁄ , see [BEN10c,WIR95]. The 

combination with the threshold of 𝜀r ≥ 0.2 and ∆𝑓 ≥ 0.1 is recommended here towards 

the best compromise among time- and frequency-domain resolution. Finally, the number 

of blocks 𝑁B and block length 𝑇B of the proposed damage-based run test are then 

established following such threshold parameters. 

 
Figure 6.1. A random time-history 𝑥(𝑡) divided into 𝑁B independent blocks of equal length 𝑇B. The 

damage values 𝐷B,i(𝑇B), 𝑖 = 1,2, …𝑁B of each block are highlighted in bold. 
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6.4 NUMERICAL SIMULATIONS 

This section explores the proposed damage-based run test and the Rouillard’s one through 

the use of simulated random time-histories. As a first numerical example, two stationary 

adjacent segments were simulated separately using the same idealized narrow-band 

rectangular spectrum 𝑆X(𝑓) centered at 𝑓c = 10 Hz, with half spectral width 𝑏 = 1 Hz, 

and normalized to 𝜆0 = 1 (see Chapter 4). The variance ratio between the second and the 

first segment was alternated in the values 𝜎x,2
2 𝜎x,1

2⁄ = 1, 1.25, 1.5, 1.75, 2. By increasing 

𝜎x,2
2 𝜎x,1

2⁄ , the entire random time-history 𝑥(𝑡) changes from stationary with 𝜎x,2
2 𝜎x,1

2⁄ =

1 to non-stationary with 𝜎x,2
2 𝜎x,1

2⁄ > 1 since all other properties were kept constant over 

time (e.g. mean and frequency content). To form each random time-history 𝑥(𝑡), the first 

and second segments with same relative time length were combined together, for 

example, Figure 6.3(a). A total of 𝑁 = 100 Gaussian random time-histories 𝑥i(𝑡), 𝑖 =

1,2,3, …𝑁 with time length 𝑇 are obtained for each variance ratio 𝜎x,2
2 𝜎x,1

2⁄ . 

The run test using proposed and Rouillard’s approach were applied to stationary 

and non-stationary time-histories with fixed total time length 𝑇 = 300 s, statistical error 

𝜀r = 0.183 and frequency resolution ∆𝑓 = 0.1. As a consequence, each simulated time-

history 𝑥i(𝑡) were divided into 𝑁B = 30 blocks with same block length 𝑇B = 10 s. In all 

subsequent studies examined, the proposed and Rouillard’s run test assume time-histories 

with 𝑇 = 300 s, 𝑁B = 30 and 𝑇B = 10 s. Also, the damage 𝐷B,i(𝑇B), 𝑖 = 1,2, …𝑁B of the 

proposed run test was computed for each block using 𝑘 = 1 and 𝐶 = 1. 

The first numerical example allows the sensibility of proposed and Rouillard’s 

approach in detecting stationary and non-stationary time-histories to be verified. This 

sensibility analysis is demonstrated in Figure 6.2 by means of number of runs 𝑟 counted 

in each time-history, as a function of variance ratio 𝜎x,2
2 𝜎x,1

2⁄ . As mentioned in the Section 

6.2, a time-history is classified as stationary if the number of runs 𝑟 falls into the 

acceptance interval. Otherwise, the time-history is non-stationary. The acceptance 

interval of the first numerical example is highlighted on the right side of Figure 6.2. The 
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lower 𝑟15,0.975 = 10 and upper 𝑟15,0.025 = 21 limit values of the acceptance interval were 

obtained in the tabulation in [BEN86]. They are identical for both run test methods and 

all ratio 𝜎x,2
2 𝜎x,1

2⁄  caused by same observations above or below the median or mean and 

95% level of significance. 

 
Figure 6.2. Sensibility analysis of proposed and Rouillard’s approach by varying the ratio 𝜎x,2

2 𝜎x,1
2⁄ . 

It may be observed that few numbers of runs 𝑟 counted in each simulated time-

history with 𝜎x,2
2 𝜎x,1

2⁄ = 1 fall outside (non-stationary) acceptance interval, while the 

others inside (stationary). It is acceptable because the interpretation of a 95% level of 

significance is that 5 out of 100 simulations would be classified as non-stationary. Of 

more interest here is the sensibility of both run test methods in detecting non-stationary 

time-histories. In such cases, most numbers of runs 𝑟 counted in each simulation should 

fall outside the acceptance interval and consequently time-histories would be classified 

as non-stationary. However, approximately 50 up to 100 numbers of runs 𝑟 of time-

histories with 𝜎x,2
2 𝜎x,1

2⁄ = 1.25 fall inside the interval for both methods, which highlights 

Upper limit

Lower limit

Stationary

Non-stationary

Non-stationary
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the sensibility of proposed and Rouillard’s run test applied to time-histories carrying 

small changes of variance. 

In this example, the variance between first and second segment 𝜎x,2
2 𝜎x,1

2⁄  was 

varied to check the correctness of proposed and Rouillard’s run test applied to simulated 

stationary and non-stationary time-histories. In practice such hypotheses, i.e. stationary 

and non-stationary, are not known in advance. This suggests that the number of runs 𝑟 of 

a measured time-history from a real application could fall inside (stationary) the 

acceptance interval if changes of the variance levels were small. However, assuming the 

hypothesis of stationary in this situation might be sufficient for an accurate damage 

assessment [BEN05a,BEN07]. 

Similar numerical examples also explores the proposed damage-based run test and 

the Rouillard’s one by a stationary time-history (Case A) and non-stationary time-

histories with different variance 𝜎x,2
2 𝜎x,1

2⁄  (Case B), mean 𝜇x,2 𝜇x,1⁄  (Case C) and 

frequency content ratio 𝑓c,2 𝑓c,1⁄  (Case D) during time 𝑇. The properties for each 

simulated time-history are: 

 Case A with 𝜎x,2
2 𝜎x,1

2⁄ = 1, 𝜇x,2 𝜇x,1⁄ = 1 and 𝑓c,2 𝑓c,1⁄ = 1, see Figure 6.3(a); 

 Case B with 𝜎x,2
2 𝜎x,1

2⁄ = 3, 𝜇x,2 𝜇x,1⁄ = 1 and 𝑓c,2 𝑓c,1⁄ = 1, see Figure 6.3(b); 

 Case C with 𝜎x,2
2 𝜎x,1

2⁄ = 1, 𝜇x,2 𝜇x,1⁄ = 3 and 𝑓c,2 𝑓c,1⁄ = 1, see Figure 6.3(c); 

 Case D with 𝜎x,2
2 𝜎x,1

2⁄ = 1, 𝜇x,2 𝜇x,1⁄ = 1 and 𝑓c,2 𝑓c,1⁄ = 3, see Figure 6.3(d); 

The four random time-histories in Figure 6.3 were obtained using the previously 

procedure of simulating two stationary adjacent segments to define the properties listed 

above. The high ratio of variance in Case B, mean in Case C and frequency content in 

Case D were chosen as they properly characterize non-stationary random time-histories. 
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Figure 6.3. Simulated random time-histories 𝑥(𝑡): (a) stationary in Case A; (b) non-stationary in Case B; 

(c) non-stationary in Case C; (d) non-stationary in Case D. 

(a) (b)

(c) (d)
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6.4.1 Stationary time-history 

The stationary time-history of Case A was first considered to evaluate the proposed 

damage-based run test and Rouillard’s one. The proposed run test is presented in Figure 

6.4(a) by damage values 𝐷B,i(𝑇B) (normalized to the median) classified according to their 

median. Instead, Figure 6.4(b) displays Rouillard’s approach using 𝑅𝑀𝑆B,i(𝑇B) as the 

values calculated in each block. 𝑅𝑀𝑆B,i(𝑇B) values are classified according to their mean. 

 
Figure 6.4. Run test method using the (a) proposed approach and (b) Rouillard’s approach applied to a 

simulated stationary random time-history. 

Figure 6.4(a) and Figure 6.4(b) provide 𝑟 = 18 runs from a sequence of 𝑁B = 30 

observations. Similar trends of block values 𝐷B,i(𝑇B) and 𝑅𝑀𝑆B,i(𝑇B) over time were 

obtained in the proposed approach and in Rouillard’s one. However, the proposed run test 

in Figure 6.4(a) indicates a greater difference over time on observed block values 

compared to Rouillard’s approach in Figure 6.4(b). In both methods, the lower 𝑟15,0.975 =

10 and upper 𝑟15,0.025 = 21 limit values of the acceptance interval were obtained in the 

tabulation in [BEN86] as well as all subsequent results. Accordingly, the proposed and 

Rouillard’s run test resulted in 10 < 18 ≤ 21 considering a 95% level of significance. 

(a) (b)
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The number of runs 𝑟 falls inside the interval, attesting the correctness of both run test 

approaches at least when applied to the simulated stationary time-history of this study. 

6.4.2 Non-stationary time-histories 

The non-stationary time-histories of Case B, C and D are now examined by the proposed 

and Rouillard’s run test. As a first result, Figure 6.5 displays both run test approaches 

applied to the time-history 𝑥(𝑡) of Case B. Note that the observed block values 𝐷B,i(𝑇B) 

(normalized to the median) and 𝑅𝑀𝑆B,i(𝑇B) underlined a significant difference between 

the second and the first segment. The proposed run test appears to be consistent with 

Rouillard’s approach when applied to non-stationary time-history 𝑥(𝑡) of Case B with 

𝜎x,2
2 𝜎x,1

2⁄ = 3. In fact, it was evidenced by the identical lower and upper limit values of 

the acceptance interval and the number of runs 𝑟. Those values are listed in the fifth, sixth 

and seventh columns of Table 4.1 in line with ratio 𝜎x,2
2 𝜎x,1

2⁄ = 3. Therefore, both 

methods tested a particular simulated time-history 𝑥(𝑡) of Case B as non-stationary. 

 
Figure 6.5. Run test method using the (a) proposed approach and (b) Rouillard’s one applied to non-

stationary time-history of Case B with ratio 𝜎x,2
2 𝜎x,1

2⁄ = 3. 

  

(a) (b)
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Table 6.1. Results of the damage-based and Rouillard’s run test according to each non-stationary case 

Method Case 𝜎x,2
2 𝜎x,1

2⁄  𝜇x,2 𝜇x,1⁄  𝑓c,2 𝑓c,1⁄  𝑟15,0.975 𝑟 𝑟15,0.025 
Testing 

𝑟15,0.975 < 𝑟 ≤ 𝑟15,0.025 

Damage-
based run 

test 

B 3 1 1 10 2 21 non-stationary 

C 1 3 1 10 2 21 non-stationary 

D 1 1 3 10 2 21 non-stationary 

Rouillard’s 
run test 

B 3 1 1 10 2 21 non-stationary 

C 1 3 1 10 2 21 non-stationary 

D 1 1 3 10 14 21 stationary 

 

The non-stationary time-history 𝑥(𝑡) of Case C was investigated by the proposed 

run test in Figure 6.6(a) and by Rouillard’s one in Figure 6.6(b). Seeing such figures, 𝑟 =

2 runs are easily counted along with time. Similar trends between both run test methods 

are observed by 𝐷B,i(𝑇B) and 𝑅𝑀𝑆B,i(𝑇B) values that cross their median or mean value 

only once. By limits 𝑟15,0.975 = 10 and 𝑟15,0.025 = 21, proposed and Rouillard’s approach 

rejected the hypothesis testing and the specific simulated time-history 𝑥(𝑡) of Case C 

with ratio 𝜇x,2 𝜇x,1⁄ = 3 is assumed to be non-stationary. 

 
Figure 6.6. Run test method using the (a) proposed approach and (b) Rouillard’s one applied to non-

stationary time-history of Case C with ratio 𝜇x,2 𝜇x,1⁄ = 3. 

(a) (b)
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Figure 6.7 considers the two methods applied to non-stationary time-history 𝑥(𝑡) 

of Case D with ratio 𝑓c,2 𝑓c,1⁄ = 3. Similarly to previous results, Figure 6.7(a) shows a 

pronounced change in the damage 𝐷B,i(𝑇B) values (normalized to the median) over time. 

By contrast, in Rouillard’s approach, 𝑅𝑀𝑆B,i(𝑇B) values exhibited small variations 

(Figure 6.7(b)), which is not surprising: Rouillard considers only changes in the RMS 

values along with time [ROU14]. Therefore, the hypothesis of the proposed approach was 

rejected (non-stationary), given that 𝑟 = 2 did not fall into the acceptance interval, and 

Rouillard’s approach led to 𝑟 = 14 runs, which is accepted (stationary). Table 4.1 

summarized all results of both damage-based and Rouillard’s run test applied to non-

stationary time-histories. 

 
Figure 6.7. Run test method using the (a) proposed approach and (b) Rouillard’s one applied to non-

stationary time-history of Case D with the ratio 𝑓c,2 𝑓c,1⁄ = 3. 

 

 

 

 

(a) (b)
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Chapter 7  
 

VARIABILITY OF FATIGUE DAMAGE: A REAL-WORLD SCENARIO 

7.1 INTRODUCTION 

Fatigue damage is often calculated by a time-domain approach (rainflow counting method 

and Palmgren-Miner rule). The time-domain damage may be calculated using one 

measured random time-history record, which must be considered one sample value out of 

an infinite ensemble. If it is computed based on another measured time-history with the 

same duration and statistical properties, the damage may change slightly. Damage values 

are usually not identical due to the sampling variability. As said in Chapter 6, all 

theoretical approaches in Chapter 4 and 5 cannot be applied in this situation as they 

require the knowledge of an infinite ensemble of stationary time-histories. 

This chapter addresses the issue of estimating the statistical variability of fatigue 

damage when it is computed either using a few stationary time-histories (Case 1) or only 

one (Case 2). In each case, confidence interval expressions were derived to enclose the 

(unknown) expected fatigue damage. An example demonstrated the correctness of both 

confidence interval expressions. The example considered the stress power spectral 

density in an offshore platform, as proposed by [WIR76]. By replicating the analysis a 

large number of times and counting how many times the confidence interval encloses the 

expected damage, the analysis emphasized the validity of the proposed approach. 
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The confidence intervals for the expected damage were also investigated by 

measuring the random loads acting on a Mountain-bike. To calculate the confidence 

intervals and the expected damage, several time-histories were measured directly in the 

Mountain-bike in a typical north Italian off-road track. The stationarity hypothesis of all 

measured time-history records was also verified by quantitative approaches, i.e. 

comparison of loading (or cumulative) spectra and Short-Time Fourier Transform 

(STFT). Besides, the run test method using the proposed approach in Chapter 6 was 

considered to quantify the stationarity of all measured time-history records. The proposed 

run test considers the damage values computed for each independent block as the 

statistical parameters (see Chapter 6). This procedure can detect changes in the variance, 

mean, and frequency content of time-histories 𝑥(𝑡). A sort of calibrator damage was also 

used to estimate the unknown expected damage; it is the sample mean of several damage 

values, where each value was computed using a different measured time-history. The 

calibrator sample damage is needed to check whether the confidence intervals correctly 

encloses the expected damage. 

7.2 CONFIDENCE INTERVAL OF FATIGUE DAMAGE WITH ONE OR MORE TIME-

HISTORIES 

The confidence interval will be obtained in this section for two different cases in 

accordance with the number of time-histories available (see Figure 1.1): “Case 1” refers 

to two or more time-histories 𝑥i(𝑡), 𝑖 = 1,2, …𝑁 (𝑁 ≥ 2) of same duration 𝑇, “Case 2” 

refers to only one time-history (𝑁 = 1) with the same duration 𝑇 like in Case 1. Symbol 

𝐷i(𝑇), 𝑖 = 1,2, …𝑁 identifies the fatigue damage of each time-history, computed in the 

time-domain (rainflow counting and Palmgren-Miner rule). The approach proposed for 

Case 1 is particularly appropriate for a small sample size 𝑁, as it occurs in practice. 
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Figure 7.1. Two cases analyzed: (a) Case 1: two or more time-histories are available (the figure shows an 

example with N time-histories); (b) Case 1: only one time-history is available. 

Case 1 is addressed first. Consider that 𝑁 time-histories 𝑥i(𝑡) are available; see 

Figure 1.1(a). The sample mean �̅�(𝑇) and the sample variance �̂�D
2 of the damage, whose 

values are the estimates of the exact (but unknown) quantities 𝐸[𝐷(𝑇)] and 𝜎D
2, are both 

first computed from the set of 𝑁 damage values 𝐷i(𝑇). Following the definition of the 

confidence interval of a normally distributed random variable with unknown mean and 

Case 1 Case 2(a) (b)
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unknown variance, the 100(1 − 𝛽)% confidence interval for the expected damage is 

defined as [MON14]: 

 �̅�(𝑇) −
𝑡dof,β 2⁄ ∙ �̂�D

√𝑁
≤ 𝐸[𝐷(𝑇)] ≤ �̅�(𝑇) +

𝑡dof,β 2⁄ ∙ �̂�D

√𝑁
 (7.1) 

where 𝑡dof,β 2⁄  is the quantile of the Student's t-distribution with 𝑑𝑜𝑓 = 𝑁 − 1 degrees of 

freedom. Equation (6.2) exploits the fact that 𝑡dof,1−β 2⁄ = −𝑡dof,β 2⁄ . Therefore, for 

𝑑𝑜𝑓 = 9 and 100(1 − 𝛽)% = 95%, for example, it is 𝑡9,0.025 = 2.262, showing that, as 

N increases, the confidence interval width becomes narrower. In this case, the Student’s 

t-distribution approaches the standard normal distribution. In the hypothetical limit 

situation in which 𝑁 tends to infinity, there is no statistical uncertainty, and the confidence 

interval converges towards 𝐸[𝐷(𝑇)]. 

Case 2 is a particular case of Case 1 with 𝑁 = 1. Since only one single time-

history 𝑥(𝑡) is available, a slightly distinct procedure is proposed to construct the 

confidence interval, in which the sample mean and the sample variance of the damage 

cannot be computed as done before. The main principle is to divide the time-history into 

𝑁𝐵 separate blocks of equal length, a type of block subdivision also adopted, although for 

different purposes, in [COS18], 𝑇B = 𝑇 𝑁B⁄ ; see Figure 1.1(b). For a fixed total duration 

𝑇, the quantities 𝑁B and 𝑇B are inversely proportional. 
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After the block subdivision, the damage of the entire time-history 𝑥(𝑡) can be 

calculated by summing up the damage of all blocks: 

 𝐷(𝑇) ≅ ∑𝐷B,i(𝑇B)

NB

i=1

= 𝑁B ∙ �̅�B(𝑇B) (7.2) 

where 𝑁B is the number of blocks, 𝐷B,i(𝑇B), 𝑖 = 1,2, …𝑁B is the damage of each block 

and �̅�B(𝑇B) = 𝑁B
−1 ∑ 𝐷B,i(𝑇B)NB

i=1  represents the sample mean of the damage values of all 

blocks. A minimum number of blocks 𝑁B ≥ 2 is required. 

It is worth paying particular attention that the first equality in Eq. (7.2) is not exact. 

Some fatigue cycles could be lost considering that the separation into blocks discontinues 

the time-history at those points connecting two adjacent blocks. The block subdivision 

eliminates all the cycles formed by those peaks and valleys in different blocks. It may be 

presumed that this effect is less noticeable in a narrow-band process in which fatigue 

cycles are formed by the two nearest peak and valley. Consequently, in theory, the sum 

of block damage values, as in Eq. (7.2), would be slightly smaller than the damage of the 

whole continuous time-history [COS18]. However, this difference is negligible if the 

number of cycles in each block is much greater than the number of blocks. For example, 

each block should have a minimum length 𝑇B to contain approximately 103 cycles, which 

is about the lower bound of high-cycle fatigue applications. In other words, 𝑁B cannot 

increase indefinitely. The block subdivision's negligible effect on the number of lost 

cycles will be confirmed by the simulation results presented in later figures. 

The damage values 𝐷B,i(𝑇B) have in common also the same variance. As the entire 

𝑥(𝑡) is stationary, every time-history 𝑥i(𝑡) in each block has the same statistical 

properties of 𝑥(𝑡). Since all blocks also have the same length, the damages 𝐷B,i(𝑇B) form 

a set of random variables that follow the same probability distribution, with expected 

value 𝐸[𝐷B(𝑇B)] and variance 𝜎DB

2 . Furthermore, as the blocks are disjoint (not 

overlapped), the random variables 𝐷B,i(𝑇B) are also independent. 
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Assuming that the damage values of each block, 𝐷B,i(𝑇B), are independent and 

identically distributed, the variance 𝜎D
2 of the damage of the whole time-history 𝑥(𝑡) can 

be written as: 

 𝜎D
2 = Var [∑𝐷B,i(𝑇B)

NB

i=1

] = 𝑁B ∙ 𝜎DB

2  (7.3) 

where 𝜎DB

2 = Var(𝐷B,i(𝑇B)) is the variance common to all blocks. Moreover, given that 

the variance 𝜎D
2 must remain constant, the quantities 𝜎DB

2  and 𝑁B are inversely 

proportional, i.e., the shorter is the block length 𝑇B, the higher the variance of the damage 

in each block. 

The relationship in Eq. (7.3) involves the “true” (but unknown) variances; it can, 

however, be approximated as 𝜎D
2 ≅ 𝑁B ∙ �̂�DB

2 , in which the block variance is replaced by 

its sample estimate �̂�DB

2 = (𝑁B − 1)−1 ∑ [𝐷B,i(𝑇B) − �̅�B(𝑇B)]
2NB

i=1 . 

Separation into blocks then produces 𝑁B damage values 𝐷B,i(𝑇B) characterized by 

the sample mean �̅�B(𝑇B) and the sample variance �̂�DB

2 , the same situation as Case 1. 

Therefore, in the same way as Eq. (6.2), it is now possible to establish a confidence 

interval that encloses the expected damage of blocks, 𝐸[𝐷B(𝑇B)]. By following the 

mathematical steps described in Appendix A, the final confidence interval expression for 

𝐸[𝐷(𝑇)] when considering only one time-history 𝑥(𝑡) is: 

 𝐷(𝑇) − 𝑡dof,β 2⁄ ∙ �̂�D ≤ 𝐸[𝐷(𝑇)] ≤ 𝐷(𝑇) + 𝑡dof,β 2⁄ ∙ �̂�D (7.4) 

where 𝑡dof,β 2⁄  is the quantile of Student's t-distribution with 𝑑𝑜𝑓 = 𝑁B − 1 degrees of 

freedom, 𝐷(𝑇) is the fatigue damage of 𝑥(𝑡) and �̂�D ≅ √𝑁B ∙ �̂�DB
 the sample variance of 

the damage computed, respectively, from Eq. (7.2) and (7.3). Note that, although the 



 
 
 

Variability of fatigue damage: A real-world scenario 99 

 

 

number of blocks does not appear directly in Eq. (7.4), it is used to compute 𝐷(𝑇) and 

�̂�D.  

For large 𝑑𝑜𝑓, the Student’s t-distribution approaches a standard normal 

distribution. Therefore, when the number of blocks becomes large (for example, >30), 

approximating 𝑡dof,β 2⁄  with 𝑧β 2⁄  introduces an error of only a few percent (more 

precisely, from 6% for 𝑁B = 30 down to 3% for 𝑁𝐵 = 30), which is acceptable from an 

engineering standpoint. 

The expression in Eq. (7.4) shows that, as 𝑁B increases, the confidence interval 

width tends to become narrower because 𝑡dof,β 2⁄  diminishes towards the quantile 𝑧β 2⁄  of 

the standard normal variable. While for small 𝑁B the difference is appreciable, for higher 

values (for example, for 𝑁B = 25), the two quantiles, as already said, only differ in a few 

percentage points. However, the number of blocks 𝑁B cannot increase indefinitely, as it 

must ensure that the time-history in each block has a minimum number of fatigue cycles, 

as emphasized earlier. 

However, there is a significant difference between Case 1 and Case 2. In Case 1, 

with many time-histories available, the statistical uncertainty reduces, although, given the 

challenge to collect a large number of time-histories; it may not always be practical. By 

contrast, the statistical uncertainty in Case 2 cannot be reduced by simply increasing the 

number of blocks; there is only one time-history available.  
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7.3 NUMERICAL EXAMPLE 

This example aims to evaluate the correctness of the previous confidence interval 

expressions. It considers the Wirsching’s formula of the output stress PSD in an offshore 

platform [WIR76] in simulations: 

 𝑆X(𝑓) =
𝐺𝐻s

φ
exp [−

1050
(2𝜋𝑓𝑇W)4]

𝑇W
4 (2𝜋𝑓)5 [(1 −

𝑓2

𝑓n
2)

2

+ (
2𝜁𝑓
𝑓n

)
2

]

 (7.5) 

In this expression, 𝐺 and 𝜑 are scaling factors, 𝑓n = first resonance frequency (in 

Hz), 𝐻s = significant wave height (in meters), and 𝑇W = dominant wave period (in 

seconds). The shape of 𝑆(𝑓) changes from narrow-band to bimodal through a specific 

combination of 𝐻s and 𝑇W, characterizing each sea state. The parameter values 𝜑, 𝐻s, 𝑇W 

depend on the sea state, whereas the others 𝐺, 𝑓n, 𝜁 do not. In this example, the following 

parameter values are chosen: 𝐺 = 5580, 𝜑 = 3.25, 𝑓n = 0.286 Hz, 𝜁 = 0.02. Besides, 

two different combinations of 𝐻s, 𝑇W are considered: the first one (𝐻s = 0.76 m, 𝑇W =

3.36 s) yields a narrow-band PSD characterized by 𝛼1 = 0.998, 𝛼2 = 0.992, the second 

one (𝐻s = 16.01 m, 𝑇W = 17.3 s) yields a wide-band (bimodal) PSD with 𝛼1 = 0.776, 

𝛼2 = 0.506. The two power spectra are compared in Figure 7.2; for simplicity, the zero-

order moment is normalized to 𝜆0 = 1. 
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Figure 7.2. The two types of Wirsching’s stress PSD used in numerical simulations: (a) narrow-band, (b) 

wide-band. 

The formula in Eq. (7.5) is meant to represent an exact PSD, with no statistical 

variability. The corresponding expected damage 𝐸[𝐷(𝑇)] can be computed by damage 

𝐸[𝐷G(𝑇)]NB for the narrow-band case, whereas for the wide-band case, the damage 

𝐸[𝐷G(𝑇)]TB from TB method is used. It represents a sort of “reference” damage value 

used to verify confidence interval expressions' correctness. Damage calculation assumes 

an S-N curve 𝑠k𝑁f = 𝐴 with 𝐴 = 1, 𝑘 = 3. Like the expected damage, also the variance 

𝜎D
2 computed from 𝑆X(𝑓) by the method of Madsen et al. (𝜎D

2)Mad
G  represents a 

“reference” value for the narrow-band case. In the wide-band case, there is no 

mathematical formula to compute 𝜎D
2, therefore the “reference” value 𝜎D

2 was 

approximated by the results of Monte-Carlo simulations. 

It is valuable to emphasize that the power spectral density 𝑆X(𝑓) in Eq. (7.5) has 

a double role. On the one hand, representative time-history realizations are simulated 

from the power spectrum, as described below. On the other hand, the power spectrum 

provides the expected damage 𝐸[𝐷(𝑇)] and the variance 𝜎D
2, reference values that allow 

the correctness of the confidence intervals to be checked (such two “reference” values 

(a) (b)
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represent unknown population parameters that are not required when, in practice, one 

applies the concept of confidence interval). 

Random stationary Gaussian time-histories 𝑥i(𝑡), 𝑖 = 1,2, …𝑁 of equal time-

length 𝑇 are simulated directly from 𝑆X(𝑓), either narrow-band or wide-band. The length 

𝑇 is selected as to give approximately 2 ∙ 104 cycles. As done before, the time-histories 

are generated by using the Discrete Fourier Transform approach, with deterministic 

spectral amplitudes and random phases [SMA93,WIR95]. 

A maximum of 𝑁 = 20 is chosen. For each different value of 𝑁, a new different 

set of time-histories is simulated, for a total of 1 + 2 + 3…+ 19 + 20 = 210 time-

histories. The single time-history (for 𝑁 = 1) is analyzed as per Case 1, and the multiple 

time-histories (for 𝑁 ≥ 2) are analyzed as per Case 2 described previously. The two 

confidence intervals behave as plotted in Figure 7.3 (narrow-band PSD) and Figure 7.4 

(wide-band PSD). The damage values shown in all figures are normalized to the expected 

damage. 

In order to better emphasize the accuracy of the confidence intervals in Eq. (6.2) 

and (7.4), a much broader set of time-histories should be analyzed. To this end, the time-

history simulation procedure described was repeated a total of 2 ∙ 105 times. Therefore, 

Figure 7.3 and Figure 7.4 only show one example out of a total of 2 ∙ 105 similar results 

that form the entire dataset, in which it is impossible to show here all the results in their 

entirety. 

More precisely, Figure 7.3(a) and Figure 7.4(a) compare the expected damage to 

the 95% confidence interval in Eq. (6.2), as a function of the number of time-histories, 𝑁. 

The confidence interval is drawn around the mean damage �̅�(𝑇) of each set of time-

histories. For any 𝑁, the expected damage always falls within the confidence interval. 

However, this result cannot be generalized, as Figure 7.3 and Figure 7.4 only show one 

example, part from a much broader set. It is expected that the expected damage would 

fall outside the confidence interval only 5% of the time, which indeed corresponds to the 

definition of a 95% confidence interval.  
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Therefore, since the confidence interval becomes narrower as the number of time-

history increases, as many time-histories as possible are needed. Obviously, the interval 

would be larger if the confidence level 100(1 − 𝛽) were higher. 

Figure 7.3(b) and Figure 7.4(b) compare, instead, the expected damage 𝐸[𝐷(𝑇)] 

to the 95% confidence interval in Eq. (7.4), as a function of the number of blocks, 𝑁B. In 

both figures, the damage 𝐷(𝑇) computed by Eq. (7.2) apparently shows no scatter and 

looks even constant. This negligible scatter with 𝑁B (of less than 1%) actually confirms 

how insignificant is the number of cycles being lost after subdividing the whole time-

history into blocks (this occurs even for the wide-band process). This result then confirms 

the validity of Eq. (7.2). 

 
Figure 7.3. Confidence interval for Case 1 and Case 2 versus (a) the number of time-histories and (b) the 

number of blocks in one time-history. Results refer to the narrow-band PSD. 

For this particular example, the confidence interval encloses the expected damage 

all over the number of blocks considered. The figure also displays the confidence interval 

analogous to Eq. (7.4), but constructed with the “true” standard deviation, 𝜎D, of the 

Safe region Safe region
(a) (b)
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damage of the random process, and computed by the Madsen et al. method directly from 

the “true” power spectrum 𝑆(𝑓). 

It may be noticed that, as the number of blocks increases, the confidence interval 

constructed around the damage 𝐷(𝑇) converges to the confidence interval based on the 

“true” standard deviation. On the one hand, this result highlights the importance of 

considering as many blocks as possible to narrow the confidence interval, provided that 

each block is long enough to give a sufficient number of cycles. On the other hand, it also 

highlights that the confidence interval width does not converge to zero as the number of 

blocks increases. Still, it approaches the scatter of the damage that characterizes the 

random process. 

 
Figure 7.4. Confidence interval for Case 1 and Case 2 versus (a) the number of time-histories and (b) the 

number of blocks in one time-history. Results refer to the wide-band PSD. 

In this example, the expected damage 𝐸[𝐷(𝑇)] is known, and it was used to check 

the correctness of confidence interval expressions, but the expected damage is never 

known in practice. This implies that it is unknown whether the damage 𝐷(𝑇) from one 

time-history underestimates or overestimates the expected damage. Regard, however, that 

Safe region
(b)

Safe region
(a)
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a structure would be designed unsafely if the expected damage were minimized. The safe 

region is only that in which 𝐷(𝑇) is higher than 𝐸[𝐷(𝑇)]. Since 𝐸[𝐷(𝑇)] is unknown, it 

is recommended to take the upper confidence limit as the lowest reference value in the 

structure design. 

The examples in Figure 7.3 and Figure 7.4 show that the expected damage always 

falls within the confidence limits. However, it should be emphasized that both figures 

only refer to one single result out of a total of 2 ∙ 105 similar ones. In other words, if 

another simulation were carried out, the expected damage could fall either inside or 

outside the confidence interval. The interpretation of a 95% confidence is that 5 out of 

100 simulations would fall outside. 

Therefore, a conclusion about the accuracy of the confidence interval expressions 

can only be made by analyzing the whole set of 2 ∙ 105 replicated samples and counting 

for each of them how many times the confidence interval encloses the expected damage. 

Virtually, this number should be equal to 95%. 

Figure 7.5(a) and Figure 7.6(a) show a subset of 20 confidence intervals, for the 

case of 𝑁 = 20 time-histories with about 2 ∙ 104 cycles each (for better clarity, not all 

confidence intervals are shown). Regard that some confidence intervals do not contain 

the expected damage, and some do. The ratio between the number of confidence interval 

containing the expected damage to the total number of intervals provides an estimated 

confidence 100(1 − �̂�)% = 94.48% for both the narrow-band and the wide-band PSD 

cases, which is almost coincident with the theoretical value. 
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Figure 7.5. Check of confidence intervals using (a) 𝑁 = 20 time-histories and (b) one time-history 

divided into 𝑁B = 20 blocks. Results refer to the narrow-band PSD. 

The same argument also applies to the case of only one time-history (details in 

Figure 7.5(b) and Figure 7.6(b)), for which the estimated confidence is 100(1 − �̂�)% =

94.49% for the narrow-band PSD, whereas a value of 94.48% follows from the wide-

band PSD. 

 
Figure 7.6. Check of confidence intervals using (a) 𝑁 = 20 time-histories and (b) one time-history 

divided into 𝑁B = 20 blocks. Results refer to the wide-band PSD. 

(a) (b)

(a) (b)
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7.4 MEASURED TIME-HISTORY RECORDS FROM A MOUNTAIN-BIKE 

7.4.1 Methods and measurements 

This study's primary purpose was to obtain real measurements to estimate the expected 

damage and calculate the confidence intervals. The present research did not intend to 

evaluate the safety of the Mountain-bike on an off-road track. By the apparatus described 

below, the Mountain-bike was, however, well-equipped to record time-histories in a 

typical north Italian off-road track and to use them to verify the methods described above. 

The Mountain-bike is a 2010 Scott Sportster P6 (Figure 7.7(a)), its frame is made 

of an aluminum 6061 alloy, and the rigid front fork is a Unicrown made of carbon steel. 

Two Rigida Cyber 10 size 700C wheels are coupled with 700 x 37c S207 semi-slick tires. 

The handlebar and the saddle are made by Scott Sports, while the transmission, chain, 

and crankset are made by Shimano, Inc. 

The bicycle front fork was instrumented with a Strain Gauge Bridge calibrated 

during static laboratory tests. A bending half-bridge was applied close to the middle of 

the front fork in the longitudinal plane, Figure 7.7(b), to monitor the loads acting on the 

Mountain-bike. Two strain gauges were placed symmetrically on the left tube. They were 

manufactured by HBM, and the model was LY Linear Strain Gauges with 1 Measuring 

Grid (only one direction). 

Measured time-histories were collected through a Dewesoft data acquisition 

system, a Minitaurs Dewe-101 with 8 channels model, a model which contains an 

industrial power computer built directly in the unit. A filter was set with a cut-off 

frequency of 300 Hz, which was above the maximum frequency of interest [LOR99]. A 

sampling frequency was fixed at 1000 Hz. The main “triangle” of the bicycle frame was 

utilized to fix the data acquisition on the inclined tube, and the rechargeable supply battery 

was allocated behind the seat by a welded support. 
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Also, a speedometer containing a sensor and magnet fixed on a spoke was used 

for monitoring the Mountain-bike speed. It was made by Marwi Group, and the model 

was a Union 8 Cycling Computer. The fully equipped Mountain-bike weighed about 12.2 

kg. 

 
Figure 7.7. Mountain-bike: (a) overall view of the bicycle and components; (b) two strain gauges applied 

to the front fork. 

The cycling conditions were set to obtain stationary random time-histories. The 

short off-road track of 0.5 kilometers length was plane (or almost plane) with a gravel 

surface, a typically north Italian track (left side of Figure 7.8) located at the Ippodromo 

Comunale in Ferrara city. A rider of 59 kg mass guided the bicycle in a seated condition. 

The speed was kept practically constant at 15 km/h. Based on these requirements, it is 

expected that each time-history represents a stationary (or almost stationary) random 

loading. These cycling conditions may not represent a critical situation in which a 

Mountain-bike on an off-road track is subject to. In fact, service loadings experienced by 

off-road bicycles are usually rather irregular and also non-stationary (e.g. different tracks 

with various speeds). However, the same cycling conditions over time were needed to 

investigate the confidence intervals applied to only stationary random loadings. 

(a)

Strain Gauges

(b)
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Figure 7.8. Part of a typically north Italian off-road track (left side of the picture) 

During 9 consecutive days, 41 measured time-histories were obtained under the 

same cycling conditions. On Days 1-2, measurements were performed to collect 10 time-

histories used for the confidence interval in Case 1. On the other hand, Case 2 required 

only one time-history recorded on Day 3. The remaining 30 time-histories were measured 

on Days 4-9, and they are intended to be used for approximating the expected damage by 

the sample mean of 30 damage values. Note that the estimated expected damage was 

needed to verify the proposed confidence intervals' accuracy in the present work. 

However, the confidence intervals do not require knowing the expected damage when 

applied in real cases. Consequently, those mentioned above 30 measured time-histories 

are not needed in reality and used only for verification purposes. The minimum values of 

measured random time-history are 𝑁 = 2 for Case 1 and 𝑁 = 1 for Case 2. 

All measured time-histories in this study were fixed at a time length 𝑇 = 300 𝑠 

and were normalized to have a zero mean 𝜇x = 0 value and a variance equal to unity 

𝜎x
2 = 1. An example is reported in Figure 7.9 for the first measured time-history 𝑥1(𝑡) 

from the bicycle front fork. In this particular time-history 𝑥1(𝑡) it is possible to appreciate 

how there is no significant change in the mean and variance levels over time. Although 
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the actual time-history values cannot be precisely predicted, which is a characteristic of 

the randomness of the loading, at least two well-separated frequencies are observed in the 

zoomed view of 𝑥1(𝑡), see the right side of Figure 7.9. 

 
Figure 7.9. First measured time-history record 𝑥1(𝑡) from the Mountain-bike front fork: global and 

zoomed view. 

7.4.1.1 Stationary random loadings 

The confidence interval formulae in Eq. (6.2) and (7.4) are only applicable to stationary 

random loadings, which have properties (e.g., frequency content, mean and standard 

deviation) that do not change over time. Different approaches (qualitative or quantitative) 

can identify the stationarity [BEN07,BEN10]. Among them, the comparison of the 

loading (or cumulative) spectrum can be used to compare the statistical distribution of 

rainflow cycles when several measured time-histories are available. A comparison of 

loading spectra is demonstrated in Figure 7.10 by using five measured time-histories. 
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Figure 7.10. Comparison of loading spectra using five measured time-histories. 

Figure 7.10 delivers a helpful description of the cycle events for each measured 

time-history considered. The comparison between the five time-history loading spectra 

shows that the lower is the amplitude 𝑠, the better is the agreement over cumulated cycles 

𝐶(𝑠). Anyhow, the loading spectra are generally well overlapped, confirming that the 

measured time-histories are stationary. 

The Short-Time Fourier Transform (STFT) is also used to analyze how the 

frequency content of a time-history 𝑥(𝑡) changes over time. The procedure for computing 

STFT is to divide the time-history 𝑥(𝑡) into 𝑁B blocks of equal length 𝑇B and then 

compute the Fourier transform of each one. The duration of the block 𝑇B has an 

indispensable influence on the time and the frequency resolution. Unfortunately, high 

resolutions cannot be achieved in both domains because they are inversely proportional. 

These resolutions can be controlled using the threshold of 𝜀r ≥ 0.2 and ∆𝑓 ≥ 0.1, see 

Chapter 6. The value of 𝜀r = 0.10 and ∆𝑓 = 0.10 are here chosen regarding the best 

compromise among time- and frequency-domain resolution. Overlaps between 

consecutive blocks are normally expected to reach a high number of blocks 𝑁B, which 

results in a better time resolution. Consequently, each time-history was divided so to have 

𝑇B = 10 𝑠 and 75% of overlap fraction. The frequency resolution is artificially increased 
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by adding zero values at the end of blocks (zero paddings). The application of the STFT 

on the first measured time-history 𝑥1(𝑡) from the bicycle is exhibited in Figure 7.11(a). 

Alike results are obtained for the other time-histories. 

 
Figure 7.11. Measured time-histories: (a) Short-Time Fourier Transform; (b) Power Spectral Density. 

The STFT displays no noticeable change in the frequency content (range from 0 

to 50 Hz) over time, as well as the amplitude of the STFT (intensity indicated in the color 

bar in Figure 7.11(a)). These qualitative results were somehow expected due to the 

predisposed cycling conditions. 

As the frequency content is shown not to vary over time, it is possible to 

characterize the random loading in the frequency-domain by a one-sided Power Spectral 

Density (PSD). It also allows the differences in the distribution of power over frequencies 

to be appreciated best. To analyze the first measured time-history 𝑥1(𝑡), the estimated 

PSD �̂�x(𝑓) in Figure 7.11(b) is computed by Welch’s method [LAL14,WIR95,BEN86]: 

Hanning block (or window), 75% overlapping and 𝑇B = 10 𝑠. It is interesting to note that 

the estimated PSD extends over a wide range of frequencies, which characterizes a so-

called wide-band random loading. A few low frequency components are also observed in 

�̂�x(𝑓) from 0 to 5 Hz and a high frequency component is perceived at about 28 Hz. In 

(a) (b)
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fact, low frequencies are usually detected in random time-histories by numerous small 

cycles while high frequency gives large cycles. Following the previously statement, at 

least two well-separated frequencies have the first measured time-history, small and large 

cycles in Figure 7.9 are emphasized by low and high frequencies in Figure 7.11. 

The run test method using the proposed approach (see Chapter 6) is applied here 

to quantify the stationarity of the first measured time-history 𝑥1(𝑡). It considers the 

damage 𝐷B,i(𝑇B) computed in time-domain (rainflow counting and Palmgren-Miner rule) 

for each block rather than using the usual statistical parameters, e.g., the 𝑅𝑀𝑆B,i(𝑇B) 

value, as the output calculated in each block. By this proposed approach, in contrast to 

the Rouillard’s one [ROU14], the run test applied here can detect the changes in the 

variance of measured time-histories and the changes in the mean and frequency; for more 

details, see Chapter 6. 

The same block length 𝑇B = 10 𝑠 used for the STFT is exploited as a first attempt. 

The statistical error and frequency resolution results in 𝜀r = 0.183 and ∆𝑓 = 0.1, 

respectively. The proposed run test applied to first measured time-history 𝑥1(𝑡) using 

damage 𝐷B,i(𝑇B) values (normalized to the median) is demonstrated in Figure 7.12. 

Damage calculation assumes an S-N curve 𝑠k𝑁f = 𝐴 with 𝐴 = 1, 𝑘 = 3. Note that 

damage 𝐷B,i(𝑇B) values is used as statistical parameter only, and not used for a damage 

accumulation assessment, see Chapter 6. 
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Figure 7.12. Proposed run test using the damage 𝐷B,i(𝑇B) values applied to first measured time-history 

𝑥1(𝑡). 

There are 𝑟 =  17 runs (number of damage 𝐷B(𝑇B) reversals relative to median) 

represented by the sequence of 𝑁B = 30 observed block values. The upper and lower 

values are obtained by the tabulation in [BEN86]. So, the acceptance region of run test 

results in 10 < 17 ≤ 21 for 95% level of significance. The first measured time-history 

𝑥1(𝑡) is then quantified as stationary since 𝑟 =  17 falls within 𝑟15,0.975 = 10 and 

𝑟15,0.025 = 21. The proposed run test is conducted for all the measured time-history 

records considered. Although not shown here, the results quantified all measured time-

histories as stationary random loadings. 

7.4.2 Confidence intervals and expected damage using measurements 

The confidence intervals for the expected damage in Eq. (6.2) and (7.4) are constructed 

from the damage values computed from the measurements in the Mountain-bike front 

fork, as those usually gathered in other similar engineering applications, see Figure 

7.13(a). 
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Figure 7.13. Measured time-history records used for: (a) confidence intervals; (b) approximating the 

expected damage. 

The intervals are constructed with a 95% confidence level by considering the 

values 𝐷i(𝑇) and 𝐷B,i(𝑇B) used in Case 1 and Case 2, respectively. All time-histories 𝑥(𝑡) 

from which the damage is computed were measured with an equal time-length 𝑇 = 300 

s, which guarantees at least 1 ∙ 104 counted cycles. In Case 1, the confidence interval was 

computed for various amount of time-histories 𝑁 = 2,3, …10. For all 𝑁 values, the same 

set was considered. In Case 2, another measured time-history was considered along with 

multiple blocks 𝑁B = 2,3, … 10 to estimate the confidence interval. 

In practice, the entire ensemble of measured time-histories is not available and, 

consequently, the expected damage is never known. Nonetheless, a reasonable 

approximation to the expected damage is required to evaluate the proposed confidence 

intervals in Eq. (6.2) and (7.4) using real measurements. The expected damage was then 

estimated by considering a different set of stationary measured time-histories (see Figure 

7.13(b)) from the Mountain-bike. This means that the damage 𝐷i(𝑇) were different values 
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from those used for the confidence intervals. The sample mean of several damage values 

�̅�(𝑇) = 𝑁−1 ∑ 𝐷i(𝑇)N
i=1  was calculated by the damage in time-domain (rainflow 

counting method and the Palmgren-Miner rule). To approximate the expected damage 

𝐸[𝐷(𝑇)] with the sample mean damage �̅�(𝑇), a large finite set of 𝑁 = 30 damage values 

was chosen. This sample mean damage value �̅�(𝑇) computed by 𝑁 = 30 was assumed 

in this study to be the expected damage 𝐸[𝐷(𝑇)]. It is a sort of calibrator sample damage 

to which all other damage values from measurements are compared. 

7.4.3 Results and discussions 

The principal values used for the confidence interval in Case 1 and Case 2 and the 

calibrator sample damage with its standard deviation are presented in Table 4.1. Leftward, 

Table 4.1 delivers the sample mean �̅�(𝑇) and sample standard deviation �̂�D of Case 1 

over the number of measured time-histories 𝑁. Centrally located, it presents the damage 

𝐷(𝑇) calculated by Eq. (7.2) and the standard deviation �̂�D in Eq. (7.3) along with the 

different number of blocks 𝑁B. Rightward, Table 4.1 exhibits the sample mean �̅�(𝑇) and 

sample standard deviation �̂�D of the damage calibrator. 

Table 7.1. The sample mean �̅�(𝑇) and standard deviation �̂�D of Case 1 on the left side, 𝐷(𝑇) 
calculated by Eq. (7.2) and �̂�D Eq. (7.3) on the middle, and calibrator sample damage �̅�(𝑇) with its �̂�D on 

the right. 

Case 1  Case 2  Calibrator 

𝑁 �̅�(𝑇) �̂�D  𝑁B 𝐷(𝑇) �̂�D  𝑁 �̅�(𝑇) �̂�D 
2 124608 9592  2 124737 7450  30 136671 9149 
3 132845 15796  3 124573 10961     
4 133955 13087  4 124554 12278     
5 134387 11375  5 124559 12378     
6 133485 10411  6 124222 12098     
7 135022 10338  7 124216 9689     
8 135511 9671  8 124387 15661     
9 134326 9720  9 124290 12288     
10 134180 9176  10 124365 14472     
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In Case 1, the highest number of time-histories 𝑁 = 10 gives the lowest standard 

deviation �̂�D. In Case 2, the damage 𝐷(𝑇) is almost constant (maximum difference of 

0.5%) by varying 𝑁B and the standard deviation �̂�D results in a greater scatter (about 50%) 

than Case 1. The calibrator sample damage and its standard deviation (on the right of 

Table 4.1) may be compared with the results from Case 1 (on the left of Table 4.1) since 

the same procedure lead to �̅�(𝑇) and �̂�D. The standard deviation �̂�D presents a small 

decrease of about 0.3% between the calibrator and Case 1 for 𝑁 = 10. It emphasizes the 

importance of the sample size 𝑁 with respect to the variability of damage. In other words, 

by increasing the number of measured time-histories 𝑁, the standard deviation �̂�D 

decreases and the �̅�(𝑇) approaches the “true” 𝐸[𝐷(𝑇)], although, in practice, the standard 

deviation �̂�D will never equal zero as well as the �̅�(𝑇) will never coincide with the “true” 

𝐸[𝐷(𝑇)]. 

The confidence interval in Case 1 versus the number of measured time-histories 

𝑁 is verified using the expected damage 𝐸[𝐷(𝑇)] (approximated here with the calibrator 

sample damage), see Figure 7.14(a). The confidence interval encloses [𝐷(𝑇)] over all 𝑁, 

confirming the correctness of the proposed approach at least when applied to the 

stationary measured time-histories of this study. The sample damage �̅�(𝑇) in Case 1 

approaches the 𝐸[𝐷(𝑇)] as the number of measured time-histories increases. 

Furthermore, the greater the number of time-histories, the narrower is the confidence 

interval of damage. This follows the same direction as observed when the proposed 

approach was applied to simulated time-histories [MAR20a], suggesting the need to use 

as many measured time-histories as possible to get a narrow confidence interval 

[MAR20a,MAR21c]. 
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Figure 7.14. The confidence interval for Case 1 and Case 2, versus (a) the number of measured time-

histories and (b) the number of blocks in one measured time-history. 

Figure 7.14(b) compares the expected damage 𝐸[𝐷(𝑇)] to the confidence interval 

in Case 2 as a function of the number of blocks 𝑁B. The confidence interval containing 

the 𝐸[𝐷(𝑇)] reveals to be very similar to its result using simulated time-histories 

[MAR20a]. This result confirms once more the correctness of the proposed confidence 

interval using real measurements. 

Observe that if the expected damage 𝐸[𝐷(𝑇)] were underestimated, a structure 

would not be designed safely. The safe region is only that in which �̅�(𝑇), in Case1, or 

𝐷(𝑇), in Case 2, is greater than 𝐸[𝐷(𝑇)]. It is then recommended to take the upper 

confidence limit (Figure 7.14(a) and (b)) as the reference damage value to be used in the 

structure design [MAR20a,MAR21c]. 

 

(a) (b)

Upper confidence limit
Upper confidence limit



 

 

Chapter 8  
 

MULTIAXIAL RANDOM LOADING: APPLICATION TO THE CSV 

CRITERION 

8.1 INTRODUCTION 

Chapter 4 presented the variance of fatigue damage caused by the randomness of a 

stationary Gaussian random loading. Best-fitting expressions were derived to relate the 

variance of damage directly to bandwidth parameters of a PSD. Chapter 5 presented two 

theoretical models to assess the variance of fatigue damage in stationary narrow-band 

non-Gaussian random processes. These models extended two solutions existing in the 

literature and restricted to Gaussian processes. Chapter 6 introduced a run test approach 

to verify the stationarity of time-histories. The proposed approach considers the damage 

values computed for each independent block as the statistical parameters. This procedure 

can detect changes in the variance, mean, and frequency content of time-histories. Chapter 

7 analyzed the variability of damage based on one or a few time-histories. In both cases, 

confidence intervals were constructed to bound the expected damage. Although Chapters 

4-7 present original contributions in structural durability analysis, they are restricted to 

uniaxial random loadings. However, this hypothesis is not always satisfied by the random 

loadings action on real engineering structures. Consequently, multiaxial random loadings 

need to be considered in such situations. 
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Multiaxial spectral methods are increasingly used in the structural durability 

analysis under multiaxial random loading. They adopt a frequency-domain approach in 

which the multiaxial random loading is characterized by a PSD matrix (see Chapter 2). 

In this way, multiaxial spectral methods can be considered frequency-domain re-

formulations of classical multiaxial fatigue criteria in time-domain [BEN16,CAR17]. 

Like time-domain criteria, also spectral methods are classified based on the 

concepts of critical plane, stress invariants, or equivalent stress [BEN16,CAR17,BEL07, 

BEN08]. A common feature of critical plane methods is to compute a certain quantity 

(e.g. stress PSD, shear amplitude, or fatigue damage) for all planes passing through a 

point and then to identify the plane where the calculated quantity is most critical. An 

example is the spectral method using the Carpinteri-Spagnoli-Vantadori (CSV) criterion. 

It employs a sequence of five rotations to identify the critical plane, within which an 

equivalent stress and its power spectrum are defined [CAR14,CAR16,VAN18,VAN19]. 

This method requires that the stress PSD matrix be determined in every plane. In a 

numerical analysis where angular intervals are digitalized into discrete values, the number 

of planes to be scanned matches the number of combinations of digitalized angular values. 

Scanning such combinations can only be accomplished by setting up a sequence of 

“for/end” loops, which considerably increases the computation time. Furthermore, the 

algorithm requests the computation of all auto- and cross-power spectral densities of the 

PSD matrix in every iteration, although not all these power spectra are necessary to decide 

if the rotated plane is indeed the critical one. 

The computational time may further grow if the algorithm has to be applied not 

just once but many times, as many as the number of nodes in a finite element model. In 

most cases, the analysis of all nodal results in a finite element model is not needed, since 

it may be restricted to small subsets of nodes from the most stressed regions (e.g. 

surfaces), although it is not always possible to predict a priori which regions (especially 

if of complex geometry) will be the most critical. 
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This chapter proposes a new algorithm for implementing the CSV criterion and to 

shorten the computation time when all the finite element model nodes are considered. 

This goal was achieved in two phases. The first one consisted in computing the analytical 

expressions of only those spectral moments used for determining the largest variance and 

expected largest peak of normal/shear stress in any rotated reference frame at a given 

point. The second one was to employ those analytical expressions into a numerical routine 

that, dismissing “for/end” loops, is much faster than the standard algorithm. 

This new approach applied to the CSV criterion has indeed a general validity. As 

a matter of fact, it can be adapted to other multiaxial spectral methods that make use of 

angular rotations or direction cosines to seek the critical plane, or that look for the 

maximum variance of an equivalent stress in a rotated reference frame [GRZ91,BȨD92, 

PIT01]. 

8.2 THE SPECTRAL METHOD BY CARPINTERI-SPAGNOLI-VANTADORI (CSV) 

8.2.1 Summary of the computation steps 

This section summarizes the necessary steps to apply the CSV spectral method. The 

description requires to find the critical plane by five rotations, which is followed by 

[VAN19]. A slightly different notation is adopted by alternative articles [CAR14,CAR16, 

VAN18]. They provide more details, here omitted, on the conceptual framework of the 

criterion that explains the multiaxial fatigue damage. 

The CSV criterion defines a reference frame 𝑃XYZ with origin at a material point 

and right-hand orthogonal axes, see Figure 8.1(a). This reference frame is fixed in space. 

Further steps in Figure 8.1(b) and (c) introduce other two reference frames in rotated 

positions, but with the same origin. 
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Figure 8.1. (a) The five rotations in CSV criterion. (a) initial reference frame 𝑃XYZ and first rotated frame 

𝑃X′Y′Z′ after three rotations (𝜙, 𝜃, 𝜓); (b) frame 𝑃1̂2̂3̂ of average principal directions; (c) frame 𝑃uvw 
attached to the critical plane, obtained after two rotations (𝛿, 𝛾) (Reprinted from [VAN19], with 

permission from Elsevier). 

In frame 𝑃XYZ, the stress vector is 𝝈XYZ(𝑡) and its PSD matrix 𝐒XYZ(𝑓). A first 

rotated reference frame 𝑃X′Y′Z′ is introduced with origin at a given point. Its orientation 

in the space is defined by a sequence of three Euler angles (𝜙, 𝜃, 𝜓). In frame 𝑃X′Y′Z′, the 

stress vector is 𝛔X′Y′Z′(𝑡) = [𝜎x′x′(𝑡), 𝜎y′y′(𝑡), 𝜎z′z′(𝑡), 𝜏y′z′(𝑡), 𝜏x′z′(𝑡), 𝜏x′y′(𝑡)]
T
 and 

its PSD matrix is: 

 𝐒X′Y′Z′(𝑓) = 𝐑(𝜙, 𝜃, 𝜓) 𝐒XYZ(𝑓) 𝐑(𝜙, 𝜃, 𝜓)T (8.1) 

The rotation matrix 𝐑(𝜙, 𝜃, 𝜓) = 𝐑ψ𝐑θ𝐑ϕ is the product of three matrices that 

represent three successive rotations 𝜙, 𝜃, 𝜓 ‒ applied in this order ‒ by which 𝑃X′Y′Z′ is 

oriented with respect to 𝑃XYZ. Matrix 𝐑(𝜙, 𝜃, 𝜓) is provided by expression [VAN19]: 

(a)

(b) (c)
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𝐑(𝜙, 𝜃, 𝜓) =

[
 
 
 
 
 
 

𝑐𝜓
2 𝑠𝜓

2 0 0 0 2𝑐𝜓𝑠𝜓

𝑠𝜓
2 𝑐𝜓

2 0 0 0 −2𝑐𝜓𝑠𝜓

0 0 1 0 0 0
0 0 0 𝑐𝜓 𝑠𝜓 0

0 0 0 −𝑠𝜓 𝑐𝜓 0

−𝑐𝜓𝑠𝜓 𝑐𝜓𝑠𝜓 0 0 0 𝑐𝜓
2 − 𝑠𝜓

2
]
 
 
 
 
 
 

 

[
 
 
 
 
 
 

𝑐𝜃
2 0 𝑠𝜃

2 0 2𝑐𝜃𝑠𝜃 0
0 1 0 0 0 0
𝑠𝜃

2 0 𝑐𝜃
2 0 −2𝑐𝜃𝑠𝜃 0

0 0 0 𝑐𝜃 0 −𝑠𝜃

−𝑐𝜃𝑠𝜃 0 𝑐𝜃𝑠𝜃 0 𝑐𝜃
2 − 𝑠𝜃

2 0
0 0 0 𝑠𝜃 0 𝑐𝜃 ]

 
 
 
 
 
 

 

[
 
 
 
 
 
 

𝑐𝜙
2 𝑠𝜙

2 0 0 0 2𝑐𝜙𝑠𝜙

𝑠𝜙
2 𝑐𝜙

2 0 0 0 −2𝑐𝜙𝑠𝜙

0 0 1 0 0 0
0 0 0 𝑐𝜙 𝑠𝜙 0

0 0 0 −𝑠𝜙 𝑐𝜙 0

−𝑐𝜙𝑠𝜙 𝑐𝜙𝑠𝜙 0 0 0 𝑐𝜙
2 − 𝑠𝜙

2
]
 
 
 
 
 
 

 

(8.2) 

in which 𝑐x = cos 𝑥 and 𝑠x = sin 𝑥 are trigonometric functions used throughout the text. 

The first step in the CSV criterion is to scan the angles 𝜙 and 𝜃 (in intervals 0 ≤

𝜙 ≤ 2𝜋 and 0 ≤ 𝜃 ≤ 𝜋), with the aim to find that particular direction 𝑍′ (defined by the 

values 𝜙∗, 𝜃∗) along which the expected largest peak of normal stress 𝜎z′z′(𝑡) in time 

duration 𝑇 is maximum (Davenport formula [DAN64]): 

 𝐸 [max
0≤t≤T

𝜎z′z′ (𝑡)] ≅ √𝜆0,3′3′  

(

 √2 ln(𝑁0,3′3′) +
0.5772

√2 ln(𝑁0,3′3′)
)

  (8.3) 
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Note that an asterisk specifies a particular value of a variable within the text: for example, 

𝜙 denotes a variable that spans an interval 0 ≤ 𝜙 ≤ 2𝜋, whereas the symbol 𝜙∗ indicates 

one value (with periodicities) within that interval. 

Eq. (8.3) only depends on the variance, 𝜆0,3′3′, and the number of mean 

upcrossings (in time T), 𝑁0,3′3′ = 𝜈0𝑇 = 𝑇 √𝜆2,3′3′ 𝜆0,3′3′⁄ 2𝜋⁄ , of the normal stress 

𝜎z′z′(𝑡). The angles 𝜙∗ and 𝜃∗ do not depend on the actual value of 𝑇 in Eq. (8.3) and, 

therefore, a dummy length of 𝑇 = 1 s can be taken in the calculations. Further, the value 

of 𝜓 is irrelevant for localizing 𝑍′. 

Spectral moments 𝜆0,3′3′ and 𝜆2,3′3′ derive from the power spectrum 𝑆3′3′(𝑓) in 

position 33 in the rotated PSD matrix 𝐒X′Y′Z′(𝑓) (index 33 derives from the position 3 of 

stress 𝜎z′z′(𝑡) in vector 𝛔XYZ(𝑡)). A sequence of steps should be followed to compute 

𝐸[max𝜎z′z′ (𝑡)] for a given pair of angles (𝜙, 𝜃). First, compute the rotated matrix 

𝐒X′Y′Z′(𝑓) for those angles (𝜙, 𝜃), then calculate the two spectral moments of 𝑆3′3′(𝑓) 

that are used to compute the quantity 𝑁0,3′3′ and, finally, apply Eq. (8.3) to determine 

𝐸[max𝜎z′z′ (𝑡)]. This sequence should be repeated for any pair (𝜙, 𝜃) to find the 

solutions of maximum. Various solutions (𝜙∗, 𝜃∗) may also exist because of periodicity 

of trigonometric functions in matrix 𝐑(𝜙, 𝜃, 𝜓). The pair (𝜙∗, 𝜃∗) implies one solution 

among those periodic ones. 

The next step is to scan the angle 𝜓 (in interval 0 ≤ 𝜓 ≤ 2π) since angles 𝜙∗ and 

𝜃∗ identified the 𝑍′-axis. The particular direction 𝑌′ (located by angle 𝜓∗) maximizes the 

variance 𝜆0,4′4′ = Var[𝜏y′z′(𝑡)] of the shear stress 𝜏y′z′(𝑡) [VAN19]: 

 max
0≤ψ≤2π

[𝜆0,4′4′] = max
0≤ψ≤2π

∫ 𝑆4′4′(𝑓)
∞

0

d𝑓 (8.4) 

In order to find the angle 𝜓∗ of maximum variance, the rotated PSD matrix in Eq. 

(8.1) and its spectral moment 𝜆0,4′4′ should be computed for each value of 𝜓. Also, in 

this instance, the solution 𝜓∗ may be periodic. 
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At this stage, the procedure provides the values of the three angles (𝜙∗, 𝜃∗, 𝜓∗), 

which permit the rotated reference frame 𝑃X′Y′Z′ to be placed, see Figure 8.2. Note that 

Eq. (8.1) determines the PSD matrix in the rotated frame, 𝐒X′Y′Z′
∗ (𝑓) =

𝐑(𝜙∗, 𝜃∗, 𝜓∗) 𝐒XYZ(𝑓) 𝐑(𝜙∗, 𝜃∗, 𝜓∗)T by computing the rotation matrix 𝐑 at the angle 

values obtained in previous steps. The asterisk means that the rotated PSD matrix 

𝐒X′Y′Z′
∗ (𝑓) no longer depends on the Euler angles, but only on frequency. 

The axes of the reference frame 𝑃X′Y′Z′ characterize the so-called 'average 

principal directions' at a given point [VAN19]. For this reason, 𝑃X′Y′Z′ is also renamed as 

P1̂2̂3̂ , see Figure 8.1(b). 

Finally, the procedure identifies two other angles, 𝛿 and 𝛾, by which a new 

reference frame 𝑃uvw (attached to the critical plane) is positioned with respect to 𝑃X′Y′Z′. 

Consistently with the previous notation in which an apex is used to differentiate 

𝑃X′Y′Z′ from 𝑃XYZ, the frame 𝑃uvw may also be indicated as 𝑃X′′Y′′Z′′, such a frame being 

rotated with respect to 𝑃X′Y′Z′. Consequently, the stress vector in 𝑃uvw can be written as 

𝛔X′′Y′′Z′′(𝑡) = [𝜎x′′x′′(𝑡), 𝜎y′′y′′(𝑡), 𝜎z′′z′′(𝑡), 𝜏y′′z′′(𝑡), 𝜏x′′z′′(𝑡), 𝜏x′′y′′(𝑡)]
T
, at the 

same time its PSD matrix is 𝐒uvw(𝑓) = 𝐒X′′Y′′Z′′(𝑓) : 

 𝐒uvw(𝑓) = �̃�(𝛿, 𝛾) 𝐒X′Y′Z′
∗ (𝑓) �̃�(𝛿, 𝛾)T (8.5) 

The power spectral matrix 𝐒X′Y′Z′
∗ (𝑓) has been determined at previous steps, and 

the new rotation matrix is given by (see [VAN19]): 
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�̃�(𝛿, 𝛾) =

[
 
 
 
 
 
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1]

 
 
 
 
 

 

[
 
 
 
 
 
 

𝑐𝛾
2 𝑠𝛾

2 0 0 0 2𝑐𝛾𝑠𝛾

𝑠𝛾
2 𝑐𝛾

2 0 0 0 −2𝑐𝛾𝑠𝛾

0 0 1 0 0 0
0 0 0 𝑐𝛾 𝑠𝛾 0

0 0 0 −𝑠𝛾 𝑐𝛾 0

−𝑐𝛾𝑠𝛾 𝑐𝛾𝑠𝛾 0 0 0 𝑐𝛾
2 − 𝑠𝛾

2]
 
 
 
 
 
 

 

[
 
 
 
 
 
 
1 0 0 0 0 0
0 𝑐𝛿

2 𝑠𝛿
2 −2𝑐𝛿𝑠𝛿 0 0

0 𝑠𝛿
2 𝑐𝛿

2 2𝑐𝛿𝑠𝛿 0 0

0 𝑐𝛿𝑠𝛿 −𝑐𝛿𝑠𝛿 𝑐𝛿
2 − 𝑠𝛿

2 0 0
0 0 0 0 𝑐𝛿 𝑠𝛿

0 0 0 0 −𝑠𝛿 𝑐𝛿]
 
 
 
 
 
 

 

(8.6) 

Matrix �̃�(𝛿, 𝛾) = 𝐈6𝐑δ𝐑γ implies a sequence of two rotations 𝛿 and 𝛾, specified 

by the product of matrices 𝐑δ and 𝐑γ. The identity matrix 𝐈6, becomes the two equations 

(8.1) and (8.5) somehow 'symmetrical' and does not produce any actual rotation. 

The off-angle 𝛿 measures a clockwise rotation about the 2̂-axis (see Figure 8.2). 

Its actual value 𝛿∗ = (3π 8)⁄ [1 − (𝜏af−1 𝜎af−1⁄ )2 ] is only a function of the ratio of fully-

reversed tension-compression and torsion fatigue limits, 𝜎af−1 and 𝜏af−1 [VAN19]. 
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The fifth angle 𝛾 is a counterclockwise rotation about the w-axis, see Figure 8.1(c). 

The method scans the interval 0 ≤ 𝛾 ≤ 2𝜋 to find that value 𝛾∗ maximizing the variance 

𝜆0,4′′4′′ = Var[𝜏y′′z′′(𝑡)] of the shear stress 𝜏y′′z′′(𝑡) [VAN19]: 

 max
0≤γ≤2π

[𝜆0,4′′4′′] = max
0≤γ≤2π

∫ 𝑆4′′4′′(𝑓)
∞

0

d𝑓 (8.7) 

To search for the angle 𝛾∗ of maximum variance, the rotated PSD matrix in Eq. 

(8.5) and its spectral moment 𝜆0,4′′4′′ should be computed for each value of 𝛾. 

This final step identifies the last angle out of five angles (𝜙∗, 𝜃∗, 𝜓∗, 𝛿∗, 𝛾∗), which 

exactly locate the reference frame 𝑃uvw = 𝑃X′′Y′′Z′′, and the critical plane linked to it. 

The stress vector is 𝛔X′′Y′′Z′′(𝑡) and its PSD matrix is 𝐒X′′Y′′Z′′
∗ (𝑓) in frame 𝑃uvw. 

Following a sequence of five successive rotations, this spectral matrix can be expressed 

by a relationship comparable with the Eq. (8.5): 

 𝐒X′′Y′′Z′′
∗ (𝑓) = �̃�(𝛿∗, 𝛾∗) 𝐑(𝜙∗, 𝜃∗, 𝜓∗) 𝐒XYZ(𝑓) 𝐑(𝜙∗, 𝜃∗, 𝜓∗)𝑇 �̃�(𝛿∗, 𝛾∗)T (8.8) 

in which 𝐒X′Y′Z′
∗ (𝑓) is written explicitly as in Eq. (8.1). Matrix 𝐑(𝜙∗, 𝜃∗, 𝜓∗) merges the 

first three rotations, matrix �̃�(𝛿∗, 𝛾∗) the last two. Again, the asterisk identifies constant 

values and, more precisely, implies that 𝐒X′′Y′′Z′′
∗ (𝑓) no longer depends on rotation 

angles, but only on frequency 𝑓. 

If the matrix product in Eq. (8.8) were computed, the resulting long expression 

would show that each element in 𝐒X′′Y′′Z′′
∗ (𝑓) is merely a linear summation of power 

spectral densities in 𝐒XYZ(𝑓), multiplied by trigonometric functions of the five rotation 

angles. 

In fact, the CSV criterion does not consider all the elements in 𝐒X′′Y′′Z′′
∗ (𝑓), but it 

linearly combines only two power spectra, 𝑆3′′3′′(𝑓) and 𝑆4′′4′′(𝑓), and postulates that 

the quantity 𝑆eq(𝑓) = 𝑆3′′3′′(𝑓) + (𝜎af−1 𝜏af−1⁄ )𝑆4′′4′′(𝑓) represents the one-sided PSD 



128 
 
 

Multiaxial random loading: Application to the CSV criterion  

 

 

of an equivalent stationary Gaussian random stress 𝜎eq(𝑡) linked to the critical plane 

[VAN19]. The equivalent power spectrum appears not to have an unambiguous 

definition, since alternative expressions that combine other elements of 𝐒X′′Y′′Z′′
∗ (𝑓) are 

given in other References [CAR14,CAR16,VAN18]. 

Conceived this way, the criterion transforms a 6×6 spectral matrix 𝐒XYZ(𝑓) into 

one single power spectrum 𝑆eq(𝑓) in the frequency-domain. In the time-domain, it is 

equivalent to transform the multiaxial stress 𝛔XYZ(𝑡) into the equivalent uniaxial stress 

𝜎eq(𝑡). 

The CSV criterion then assumes that the fatigue damage of 𝛔XYZ(𝑡) is equivalent 

to that of 𝜎eq(𝑡). The expected damage of 𝜎eq(𝑡) can be estimated directly from 𝑆eq(𝑓) 

by making use of uniaxial spectral methods (like Tovo-Benasciutti method, Dirlik, single-

moment, etc.). For more details, see for example [BEN06,BEN18b]. 

8.2.2 The CSV method in numerical computations 

The steps described previously have been deduced from [CAR14,CAR16,VAN18, 

VAN19]. After choosing a set of angles defining a rotated plane, the procedure first needs 

the rotated PSD matrix, from which it can compute those moments (𝜆0,3′3′, 𝜆2,3′3′, 𝜆0,4′4′, 

𝜆0,4′′4′′) necessary to calculate the maximum variance or expected largest peak for that 

particular set of angles previously selected. The maximum value (variance or peak) is 

stored. Then, calculation moves to the next set of angles, until all the material planes 

passing through a point are scanned. The largest value among all stored maxima identifies 

the direction or the critical plane. 

In numerical calculations where angles take on discrete values, the above 

procedure should be repeated along with a high number of angular combinations. This 

task can only be achieved by using 'for/end' loops in which, at each iteration, a discrete 

value is assigned to every angle and the resulting maximum computed. The whole largest 
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maximum (variance or expected peak) can be identified over its corresponding angles, 

once all the digitalized angles have been scanned and the corresponding maximum stored. 

Note that the use of 'for/end' loops is necessary because there is no possibility to 

get directly the closed-form expression of the power spectral density, whose spectral 

moments are used to compute the variance and the largest peak for a particular plane 

orientation. The whole PSD matrix and its moments should be computed before any of 

such calculations. 

The structure of a possible numerical algorithm written in Matlab is sketched in 

Figure 8.2. It reflects the steps summarized above. Two nested 'for/end' loops are required 

to find the angles (𝜙∗, 𝜃∗) in one go. A sequence of other two loops return first 𝜓∗ and 

then 𝛾∗, while 𝛿∗ is a one-line function of fatigue limits. 

 
Figure 8.2. Structure of Matlab routine of the standard algorithm. 

% read input PSD
S=...

% define vectors of angles
phi=linspace(0,2*pi,nphi);
theta=...
...

% Step 1: find theta* and phi*
for i=1:ntheta

for j=1:nphi
S1=R1*SXYZ*R1';
% compute spectral moments
...

end
end

% Step 2: find psi*
for i=1:npsi

S1=R1*SXYZ*R1'; 
% compute spectral moment
...

end

% Step3: find delta*
delta=3*pi/8*(1-(tau_af/sigma_af)^2);

% Step 4: find gamma*
for i=1:ngamma

S2=R2*R1*SXYZ*R1'*R2';
% compute spectral moment
...

end

Seq=... % compute equiv.PSD
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Every loop has a number of iterations that depends on the number of subdivisions 

in each angular interval. In a single simulation run, the algorithm has a number of 

iterations equal to 𝑛p = 𝑛ϕ ∙ 𝑛θ + 𝑛ψ + 𝑛γ. This number also corresponds with the 

number of planes to be scanned. the value 𝑛p turns out to be inversely proportional to ∆2 

(see Appendix B) if all angular intervals are subdivided with a common angular resolution 

∆ (which spaces two consecutive values apart). A narrow step improves the resolution in 

critical plane localization, but it also increases (even significantly) the number of 

iterations, and likewise the computation time. For example, ∆= 10° produces 𝑛p = 777, 

∆= 5° returns 𝑛p = 2847, whereas ∆= 1° yields 𝑛p = 66063. 

The algorithm requires a certain amount of memory to allocate all the scalars, 

vectors and matrices needed within the calculation (see the scheme in Figure 8.3). Some 

are computed once, other iteratively. 

 
Figure 8.3. Comparison of scalars and arrays used in the two algorithms. The scheme emphasizes the 

difference between quantities computed once or iteratively. 

STANDARD ALGORITHM NEW ALGORITHM

Scalars
, 

, 

Matrices

Vectors
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In addition to the fatigue limits, discretized angular intervals and frequency axis, 

at the beginning the algorithm memorizes the 36 PSDs in 𝐒XYZ(𝑓). Then, for each plane 

orientation defined by a pair of discretized angles 𝜙i (𝑖 = 1,2, … , 𝑛ϕ) and 𝜃j (𝑗 =

1,2, … , 𝑛θ), the algorithm should compute and memorize the three rotation matrices 𝐑ϕ, 

𝐑θ, 𝐑ψ in Eq. (8.2), all the 36 elements in the rotated PSD matrix 𝐒X′Y′Z′(𝑓) and its 

corresponding set of spectral moments (one matrix for each order of spectral moment). A 

different 𝑛ϕ × 𝑛θ matrix is also needed to store the largest peak value calculated for any 

angle pair [𝜙i, 𝜃j]. Also finding the third angle 𝜓∗ requires some additional memory to 

allocate the matrices 𝐑ϕ, 𝐑θ, 𝐑ψ, the power spectral density 𝑆4′4′(𝑓) and its zero-order 

moment for each discrete value 𝜓i (𝑖 = 1,2, … , 𝑛ψ). An additional matrix 𝐑γ in Eq. (8.6), 

the power spectral matrix 𝐒X′′Y′′Z′′(𝑓) and the spectral moment 𝜆0,4′′4′′ have to be 

computed for each discrete value values 𝛾i (𝑖 = 1,2, … , 𝑛γ) as a way to find the last angle 

𝛾∗. Despite this number of arrays, the overall memory requirement is rather small, it being 

only of the order of a couple of megabytes, i.e. a value tractable with no difficulty by any 

computer. 

The algorithm in Figure 8.2 produces the critical plane only in one point. It should 

be repeated as many times as the points to be analyzed. 

8.2.3 Critical analysis of the use of the Davenport’s formula 

The first two angles (𝜙∗, 𝜃∗) of 𝑍′-axis are determined by the Davenport’s formula, Eq. 

(8.3), for the expected largest peak of 𝜎z′z′(𝑡) in time 𝑇. Eq. (8.3) tends to overestimate 

the largest peak value in a narrow-band process, for more details see [PRE85]. This is a 

direct result of the assumption, upon which the formula is based, that successive peaks 

are independent of each other. This assumption is not verified in a narrow-band process, 

in which local peaks and valleys tend to 'cluster' together, because the process is somehow 

'correlated'. Besides, the Davenport’s formula is only a function of the central frequency 

𝜈0 of process 𝜎z′z′(𝑡), while it disregards its bandwidth.  
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However, a random process is not always narrow-band. It is then of interest to 

investigate whether, and how much, the angles (𝜙∗, 𝜃∗) could be affected by the spectral 

bandwidth of a process 𝜎z′z′(𝑡) that is wide-band. 

An empirical (approximate) expression was suggested in the paper of Preumont 

[PRE85] to correct the Davenport’s formula. It presents two coefficients, 𝜅u and 𝜅α, that 

account for the PSD bandwidth through the Vanmarcke parameter 𝜀.  

Figure 8.4 compares the Davenport’s and Preumont’s equations over a range of 

bandwidths, for two values of 𝑇 (i.e. different numbers of peaks). As is anticipated, the 

Davenport’s equation is independent of bandwidth 𝜀. Results from the two equations tend 

to overlap for 𝜀 ≥ 0.5. At lower bandwidths, Preumont's results are lower than the 

Davenport's ones. For a very narrow-band process (𝜀 → 0) the difference is the largest, 

and reduces for higher 𝑇 (note that, in this case, the time length 𝑇 affects the results, and 

cannot be treated as a 'dummy' variable). However, the observed difference seems to be 

within acceptable limits. It can thus be concluded that using the Davenport formula to 

localize 𝑍′ results in acceptable approximations, even though the normal stress 𝜎z′z′(𝑡) 

is narrow-band. 

 
Figure 8.4. Expected largest peak in time T: comparison between the original and modified version of 

Davenport’s formula. 
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8.3 THE PROPOSED ALGORITHM 

In the algorithm of Figure 8.2, running the iterations in 'for/end' loops is quite time-

consuming. If 'for/end' loops are replaced with the in-line functions, the algorithm can be 

made much faster. This task is settled by determining, first, the analytical expressions of 

only those spectral moments truly engaged by the CSV method, although some 

information on the stress signals examined is lost during such a new algorithm stage. 

Then, these expressions should be inserted into in-line functions to get the rotation angles 

for the planes with maximum variance or largest peak. 

The approach is nearly trivial. It takes advantage of matrix algebra to determine 

the expressions of selected spectral moments in any rotated reference frame. For example, 

considering Eq. (8.3) used to determine the axis 𝑍′. It only utilizes the spectral moments 

𝜆0,3′3′ and 𝜆2,3′3′ at position 33 in matrix 𝛌m,X′Y′Z′ relating to the rotated reference frame 

𝑃X′Y′Z′. The first step is to apply Eq. (8.1) to the spectral matrix 𝐒X′Y′Z′(𝑓) in Eq. (8.2) to 

obtain the 66 spectral moment matrix: 

 𝛌m,X′Y′Z′ = 𝐑(𝜙, 𝜃, 𝜓) 𝛌m,XYZ 𝐑(𝜙, 𝜃, 𝜓)T (8.9) 

Then, to extract only the elements in position 33, an auxiliary vector 𝐚𝟑 =

[0 0 1 0 0 0]T is used for pre- and post-multiplies the matrix 𝛌m,X′Y′Z′: 

 𝜆m,3′3′ = 𝐚𝟑 𝐑(𝜙, 𝜃, 𝜓) 𝛌m,XYZ 𝐑(𝜙, 𝜃, 𝜓)T 𝐚𝟑
T (8.10) 

The subscript stipulates that 𝐚𝟑 has a unit value in position 3 and zero value elsewhere. 

Eq. (8.10) should be solved twice to find the zero and second order moments 

𝜆0,3′3′, 𝜆2,3′3′. If performed by hand, this calculation is quite laborious, but it becomes 

much simpler and faster if performed with the aid of numerical software (as Matlab 

Symbolic [MAT18]). No surprise that very long expressions are obtained for both 𝜆0,3′3′ 

and 𝜆2,3′3′. As an example, the full-length expression of 𝜆0,3′3′ is described as: 
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𝜆0,3′3′ = 𝑐𝜙
4𝑠𝜃

4𝜆0,11 + 𝑠𝜙
4𝑠𝜃

4𝜆0,22 + 𝑐𝜃
4𝜆0,33 + 4𝑐𝜃

2𝑠𝜙
2𝑠𝜃

2𝜆0,44 

+4𝑐𝜙
2𝑐𝜃

2𝑠𝜃
2𝜆0,55 + 4𝑐𝜙

2𝑠𝜙
2𝑠𝜃

4𝜆0,66 + 2𝑐𝜙
2𝑠𝜙

2𝑠𝜃
4λ0,12 + 2𝑐𝜙

2𝑐𝜃
2𝑠𝜃

2λ0,13 

+4𝑐𝜙
2𝑐𝜃𝑠𝜙𝑠𝜃

3λ0,14 − 4𝑐𝜙
3𝑐𝜃𝑠𝜃

3λ0,15 + 4𝑐𝜙
3𝑠𝜙𝑠𝜃

4λ0,16 + 2𝑐𝜙
2𝑠𝜙

2𝑠𝜃
2λ0,23 

+4𝑐𝜃𝑠𝜙
3𝑠𝜃

3λ0,24 − 4𝑐𝜙𝑐𝜃𝑠𝜙
2𝑠𝜃

3λ0,25 + 4𝑐𝜙𝑠𝜙
3𝑠𝜃

4λ0,26 + 4𝑐𝜃
3𝑠𝜙𝑠𝜃λ0,34 

−4𝑐𝜙𝑐𝜃
3𝑠𝜃λ0,35 + 4𝑐𝜙𝑐𝜃

2𝑠𝜙𝑠𝜃
2λ0,36 − 8𝑐𝜙𝑐𝜃

2𝑠𝜙𝑠𝜃
2λ0,45 + 8𝑐𝜙𝑐𝜃𝑠𝜙

2𝑠𝜃
3λ0,46 

−8𝑐𝜙
2𝑐𝜃𝑠𝜙𝑠𝜃

3λ0,56 

(8.11) 

where 𝜆0,ij represent the spectral moments of 𝐒XYZ(𝑓), and 𝑐x, 𝑠x stand for sine and cosine 

of 𝑥. Note that there are 6 variances λ_(0,ii) and, due to the symmetry of the covariance 

matrix, 15 covariances λ_(0,ij) (i≠j). 

The former expression seems very complicated, but it is simply a summation of 

all spectral moments 𝜆m,ij, each one multiplied by a coefficient: 

 𝜆m,3′3′ = ∑(𝑞ii(𝜙, 𝜃, 𝜓) 𝜆m,ii)

6

i=1

+ 2∑∑(𝑞ij(𝜙, 𝜃, 𝜓) 𝜆m,ij)

j<i

6

i=2

 (8.12) 

Each coefficient 𝑞ii, 𝑞ij is a trigonometric function of (𝜙, 𝜃, 𝜓). The summation (8.12) 

forms a total of 21 terms. 

The formulae of 𝜆0,3′3′ and 𝜆2,3′3′ can be used to calculate, via numerical 

software, the expression of 𝑁0,3′3′ = 𝑇 √𝜆2,3′3′ 𝜆0,3′3′⁄ 2𝜋⁄ . By this computational 

artifice, all preceding formulae can be gathered together to obtain the symbolic expression 

of 𝐸[max𝜎z′z′ (𝑡)] = 𝐹1(𝜙, 𝜃, 𝜓) in Eq. (8.3) as a function of angles (𝜙, 𝜃, 𝜓). This 

expression can then be copy-pasted from a symbolic software tool into a script for double-

precision computation. 
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If Matlab is used, some powerful functions can be exploited. When Eq. (8.3) is 

being solved to locate 𝑍′, only two values 𝜙∗, 𝜃∗ should be found in the intervals 0 ≤

𝜙 ≤ 2𝜋, 0 ≤ 𝜃 ≤ 𝜋. Again, 𝜓 does not need to be considered (therefore, it may be 

assumed to be equal to zero). If angles 𝜙, 𝜃 are assigned by the evenly-spaced discrete 

values 𝜙i (𝑖 = 1,2, … , 𝑛ϕ) and 𝜃𝑗 (𝑗 = 1,2, … , 𝑛𝜃), Matlab command 'meshgrid' is used 

to create a two-dimensional grid of points [𝜙i, 𝜃j] at each of which 𝐸[max𝜎z′z′ (𝑡)] =

𝐹1(𝜙, 𝜃, 𝜓) can be computed. This grid of points has dimension 𝑛ϕ × 𝑛θ. The output of 

𝐹1(𝜙i, 𝜃j, 𝜓) is then stored in a two-dimensional 𝑛ϕ × 𝑛θ matrix. Searching the largest 

maximum (or the largest maxima in case of periodic solutions) – with the command ‘find’ 

– allows the indexes to be identified immediately, and thus the corresponding values, of 

the solution angles (𝜙∗, 𝜃∗). The obtained indexes correspond to a specific element in 

matrix [𝜙i, 𝜃j]. At this stage, the algorithm returns the first two angles (𝜙∗, 𝜃∗). 

Indeed, the algorithm in Figure 8.5 follows a more clever and efficient approach, 

which invokes the element-wise Hadamard multiplication in Matlab (see operator .*). 

First, the exact expressions of spectral moments 𝜆0,3′3′ and 𝜆2,3′3′, obtained by Eq. (8.12), 

are directly computed at the two-dimensional array [𝜙i, 𝜃j] created as before, and this 

transforms both spectral moments into two-dimensional arrays [𝜆0,3′3′], [𝜆2,3′3′]. 

Following Eq. (8.3), these two arrays are organized and multiplied element-by-element 

to obtain directly the two-dimensional array 𝐹1(𝜙i, 𝜃j, 𝜓). The maximum is found exactly 

as before. 
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Figure 8.5. Structure of Matlab routine of the new algorithm. 

In any case, the matrices created by the ‘meshgrid’ command are not so vast since 

their dimensions depend on the number of discrete points 𝑛ϕ, 𝑛θ defining each discretized 

angular interval. For example, a very fine discretization of 1° yields a grid 𝑛ϕ × 𝑛θ =

361 × 361 of evenly-spaced points, which Matlab can store without much effort or 

particular memory requirement. 

Since the first two values (𝜙∗, 𝜃∗) have been determined, the next step is to 

determine the angle 𝜓∗ maximizing the zero-order moment 𝜆0,4′4′ in Eq. (7). This spectral 

moment is the position 44 in matrix 𝛌m,X′Y′Z′. A different auxiliary vector 𝐚𝟒 (with unit 

value in position 4) in Eq. (8.10) determines the spectral moment 𝜆0,4′4′: 

 𝜆0,4′4′ = 𝐚𝟒 𝐑(𝜙∗, 𝜃∗, 𝜓) 𝛌m,XYZ 𝐑(𝜙∗, 𝜃∗, 𝜓)T 𝐚𝟒
T (8.13) 

% read input PSD
S=...

% define vectors of angles
phi=linspace(0,2*pi,nphi);
theta=...
...

% Step 1: find theta* and phi*
[PHIm,THETAm] = meshgrid(PHI,THETA);
m0zzRot=C_THETA.^4.*Vzz+C_PHI.^4.*S_THETA.^4.* Vxx+...
m2zzRot=C_THETA.^4.*m2zz+C_PHI.^4.*S_THETA.^4.*m2xx+...
N1=(sqrt(m2zzRot./mzzRot).*T)./(2.*pi);
ESzz=sqrt(mzzRot).*(sqrt(2.*log(N1))+0.5772./ sqrt(2.*log(N1)));  
[maxESzz,imaxZZ]=max(ESzz(:));% find maximum
...
...

% Step 2: find psi*
myzRot=C_PSI.^2.*C_phi.^2.*C_theta.^2.* Vyz+...
[maxVarYZ,imax3] = max( myzRot(:)); 

% Step3: find delta*
delta=3*pi/8*(1-(tau_af/sigma_af)^2);

% Step 4: find gamma*
MVW_Rot=C_GAMA.^2.*C_delta.^2.*C_theta.^4.*S_delta.^2.* Vzz+ 
C_GAMA.^2.*C_delta.^2.*C_psi.^4.*S_delta.^2.*S_phi.^4.* Vxx+...
gama_maxVarVW = GAMA(imaxVW);

Seq=... % compute equiv.PSD
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Without much effort, a software would return a pretty long analytical expression, quite 

similar to Eq. (8.11) apart from different trigonometric coefficients 𝑞ij. Another small 

difference is that, now, two angles take on constant values (𝜙∗, 𝜃∗), while only the third 

𝜓 is variable. In fact, 𝜓 signifies a rotation around axis 𝑍′, whose position has already 

been defined by (𝜙∗, 𝜃∗). 

The expression of 𝜆0,4′4′ = 𝐹2(𝜓) is a function of one variable 𝜓. If the interval 

0 ≤ 𝜓 ≤ 2π is divided into evenly-spaced values 𝜓i (𝑖 = 1,2, … , 𝑛ψ) at which 𝐹2(𝜓) is 

computed, an output vector [𝐹2(𝜓)] is obtained. This vector is formed by 𝑛ψ discrete 

points. It is simple to find the value 𝜓∗ (with proper periodicity) for which 𝜆0,4′4′ is 

maximum. 

After this last step, the algorithm returns the angles (𝜙∗, 𝜃∗, 𝜓∗) that locate the 

rotated reference frame 𝑃X′Y′Z′ by the rotation matrix 𝐑(𝜙∗, 𝜃∗, 𝜓∗). 

The procedure, which is followed by the angles (𝜙∗, 𝜃∗, 𝜓∗), is now used to find 

the angles 𝛿∗, 𝛾∗ defining 𝑃uvw. As a preliminary step, it is convenient to insert Eq. (8.1) 

into Eq. (8.5), so that to relate the spectral matrix 𝐒uvw(𝑓) directly to 𝐒XYZ(𝑓) in the fixed 

reference frame 𝑃XYZ: 

 𝐒uvw(𝑓) = �̃�(𝛿∗, 𝛾) 𝐑(𝜙∗, 𝜃∗, 𝜓∗) 𝐒XYZ(𝑓) 𝐑(𝜙∗, 𝜃∗, 𝜓∗)T �̃�(𝛿∗, 𝛾)T (8.14) 

The PSD matrix in Eq. (8.14) denotes to that specific rotated frame which is 

positioned by the four angles (𝜙∗, 𝜃∗, 𝜓∗, 𝛿∗). The off-angle 𝛿∗ is also included, it being 

at once known from fatigue limits. Matrix 𝐒uvw(𝑓) is merely a function of both angle 𝛾 

and frequency 𝑓. The definition of 𝛌m,XYZ (see Chapter 2) applied to Eq. (8.14) provides 

the matrix of m-th order spectral moments of 𝐒uvw(𝑓): 

 𝛌m,uvw = �̃�(𝛿∗, 𝛾) 𝐑(𝜙∗, 𝜃∗, 𝜓∗) 𝛌m,XYZ 𝐑(𝜙∗, 𝜃∗, 𝜓∗)T �̃�(𝛿∗, 𝛾)T (8.15) 

Remind that 𝐒uvw(𝑓) and 𝛌𝑚,uvw are equivalently notated as 𝐒X′′Y′′Z′′(𝑓) and 𝛌m,X′′Y′′Z′′. 



138 
 
 

Multiaxial random loading: Application to the CSV criterion  

 

 

Matrix 𝛌m,uvw is a one-variable function of 𝛾. The CSV method is only interested 

in the zero-order moment 𝜆0,4′′4′′, which lies in position 44. Once again, it is possible to 

extract the 𝜆0,4′′4′′ by multiplying 𝛌m,uvw with the auxiliary vector 𝐚𝟒 as 𝜆0,4′′4′′ =

𝐚𝟒 �̃�(𝛾) 𝐑 𝛌m,XYZ𝐑
T �̃�(𝛾)T 𝐚𝟒

T (for more clarity, only the explicit dependence on 𝛾 has 

been written). 

A software for symbolic calculus would compute the (rather long) analytical 

expression of 𝜆0,4′′4′′ = 𝐹3(𝛾) with no effort. It is not a short and easy-to-handle 

expression at all, although it is merely a summation very similar to that written in Eq. 

(8.12). 

In the numerical algorithm, the interval 0 ≤ 𝛾 ≤ 2π is discretized into equally-

spaced values 𝛾i (𝑖 = 1,2, … , 𝑛γ) at which 𝐹3(𝛾) is computed – the output is stored into 

the vector [𝐹3(𝜓)], which is formed by 𝑛γ points. It is then almost trivial to find the 

solution 𝛾∗ (with periodicity) that corresponds to the maximum max [𝐹3(𝛾)]. 

After this final step, the new algorithm provides the five angles (𝜙∗, 𝜃∗, 𝜓∗, 𝛿∗, 𝛾∗) 

and stops. Such an algorithm, sketched in Figure 8.5, does not use 'for/end' loops. 

Figure 8.3 compares the several types of scalars and arrays used in the two 

algorithms; some types appear in both versions. The new algorithm makes use of larger 

matrices than the standard one, especially those created by the ‘meshgrid’ command. For 

example, to find the angles (𝜙∗, 𝜃∗) it requires a few 𝑛ϕ × 𝑛θ matrices for the spectral 

moments [𝜆0,3′3′] and [𝜆2,3′3′], and a matrix into which to save the calculated largest peak 

𝐹1(𝜙i, 𝜃j, 𝜓) for each angle pair [𝜙i, 𝜃j], before searching for the highest maximum. By 

contrast, to find the angles 𝜓∗ and 𝛾∗ the new algorithm only needs two vectors into which 

allocate the variance computed for each angular value 𝜓i and 𝛾i. 

Big matrices leads to a larger memory requirement, which is almost doubled 

compared to that required by the standard algorithm, although it still remains pretty small 

and of the order of a few megabytes (just to provide some figures, 4.3 MB versus 2.2 

MB). 
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After implementing Matlab routines, some tests have been conducted with 

different types of stress PSD matrices to confirm that the new algorithm returned the same 

output as the standard algorithm. 

8.4 NUMERICAL SIMULATIONS 

Two numerical examples are employed as benchmark to compare the computation time 

of the standard algorithm with that of the new algorithm. The first example applies the 

algorithm to only one stress PSD (one simulation run), whereas the second one applies 

the algorithm as many times as the number of nodal stress PSDs in a finite element model 

(multiple simulation runs). In both examples, a normal-to-shear ratio of fatigue limits 

𝜎af−1 𝜏af−1⁄ = √3 is chosen (anyway, the choice of other ratios does not affect the 

computation time). 

As said previously, that trigonometric functions in matrices 𝐑(𝜙, 𝜃, 𝜓) and 

�̃�(𝛿, 𝛾) return periodic solutions at which the same maximum is achieved. An example 

is displayed in Figure 8.6. In numerical simulations, only one solution has been stored 

among those periodic. 

 
Figure 8.6. Periodicity of solutions: (a) expected largest peak of 𝜎z′z′(𝑡) against (𝜙, 𝜃); (b) Var[𝜏y′z′(𝑡)] 

as function of 𝜓; (c) Var[𝜏y′′z′′(𝑡)] as function of 𝛾. 
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8.4.1 Idealized power spectra (one single simulation run) 

The idealized spectrum example denotes to uncorrelated normal and shear stresses, with 

narrow-band rectangular PSD centered at 30 Hz. The covariance matrix 𝐂XYZ has non-

zero on the main diagonal 𝜆0,11 = 20, 𝜆0,22 = 40, 𝜆0,33 = 60, 𝜆0,44 = 200 (MPa2 units), 

at the same time all the other elements are zero. The PSD matrix 𝐒XYZ(𝑓) is diagonal, too. 

The frequency axis of all power spectra is discretized into 200 points. 

Five angular resolutions (∆=1°, 5°, 10°, 20°, 30°) are considered to measure how 

much ∆ influences the computation time needed by each algorithm to search for the 

critical plane. The different resolutions investigate here whether ‒ and how much ‒ the 

equivalent spectrum 𝑆eq(𝑓) changes with Δ. Of course, the larger resolutions (∆=10°, 

20°, 30°) are very coarse for practical applications and have been included to make the 

analysis the most comprehensive. 

The value of ∆ make available the number of points and the size of the vectors 

defining each discretized angular interval (see Appendix B), which in turn determines the 

size of the matrices created by the ‘meshgrid’ command. Even for the smallest value 

∆=1°, the dimension of such matrices (361 × 361 points) is stored by Matlab without 

any memory requirement. 

For each value of Δ, both the standard and new algorithm are applied to the same 

matrix 𝐒XYZ(𝑓) to compute the rotations angles (𝜙∗, 𝜃∗, 𝜓∗, 𝛿∗, 𝛾∗) and the equivalent 

spectrum 𝑆eq(𝑓) for the critical plane in one simulation run. The algorithms obviously 

return the same output. 

Each simulation registers the time required for each algorithm to find the critical 

plane. This elapsed time is exhibited in Figure 8.7(a) as a function of the number of planes 

𝑛p scanned by the standard algorithm (𝑛p is roughly proportional to 1 ∆2⁄ ). In the graph, 

the lines between adjacent markers are drawn only to better display the trends, and they 

do not stand for computed values. 
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Figure 8.7. Trend of (a) computation time and (b) normalized variance 𝑉eq/𝑉eq,max as a function of the 

number of scanned planes (log scale) and angular resolution ∆. 

If the resolution is narrowed from ∆=30° to ∆=1°, the computation time of the 

standard algorithm differs from about half a second to 300 seconds (5 minutes). The time 

doubles or, at most, triples for resolutions from ∆=30° down to 3°. Instead, it extends of 

about an order of magnitude (from 32 up to 300 seconds) if the resolution is reduced from 

3° down to 1°. This large increase is easily explained by the fact that a decrease of one 

third in resolution makes the number of scanned planes increase of 9 times (from 7623 to 

66063). 

In contrast to the standard version, the new algorithm has a computation time that 

changes very little with the angular resolution (the green dashed line in Figure 8.7(a) is 

almost horizontal) and remains always very small (at most, few tenths of a second) even 

for the smallest resolution. 

Figure 8.7(a) emphasizes how the new algorithm is faster than the standard one 

(especially at the smallest values of ∆) and allows a significant time saving for small 

values of ∆. However, the use of the smallest angular resolutions could be not necessary. 

As the resolution becomes smaller and smaller, the critical plane position is found with 

ever increasing precision. The critical plane tends to the exact position where the fatigue 

damage can be exact. At larger resolutions, the critical plane position – and the damage 
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accordingly – become increasingly more approximated. Examining how much the 

variance of the equivalent stress 𝑉eq = Var[𝑆eq(𝑓)] varies against ∆ may ascertain the 

minimum angular resolution needed to obtain a good approximation of fatigue damage. 

This parameter has indeed a key role in spectral methods, as the expected fatigue damage 

𝐸[𝐷(𝑇)] (see Chapter 3) is proportional to the variance as 𝐸[𝐷(𝑇)] ∝ (√𝑉eq)
𝑘
. 

Figure 8.7(b) presents the trend of 𝑉eq versus ∆ (the values are normalized to the 

largest maximum 𝑉eq,max reached for 1°). The variance 𝑉eq does not seem to change 

enormously with ∆, indeed, the difference is less than 10% throughout the angular 

resolutions explored. This implies that even a value ∆=5° would be sufficient to obtain a 

correct damage estimate. However, the results in Figure 8.7(b) cannot be generalized. If 

other types of stress PSD matrix were analyzed, other trends (not monotonic) would be 

observed. Obviously, the use of the smallest angular resolutions will always provide the 

minimum degree of approximation. 
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8.4.2 Finite element analysis (multiple simulation runs) 

The previous example demonstrates a somehow hypothetical situation. Indeed, the 

standard algorithm is applied to only one stress PSD matrix, which is presumed to be the 

most critical point in a component or structure. However, the critical point is not always 

known in advance and, so, all the nodes of a finite element model used to idealize the 

structure have to be analyzed. This is exactly the situation in which the new algorithm 

works better than the standard one, while the advantages are insignificant in other cases. 

As proposed by [PIT01], a finite element (FE) spectral analysis of an L-shaped 

structure is now discussed. Though very simple, this example could be a typical CAE 

durability analysis. The FE model in Figure 8.8(a) is constituted by the 4-node 'shell' 

elements (Mindlin-Reissner theory) organized in a free mesh. 

 
Figure 8.8. (a) Shell finite element model used in the numerical example; (b) Contour plot of the variance 

𝑉eq (log scale) 

The typical element size of 6.5 mm provides a total of 394 elements and 469 

nodes. Band-limited random accelerations are applied at both ends and perpendicular to 

the structure plane. The stress PSD matrix at each node is determined by a spectral 
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analysis. The analysis output is a set of nodal stress PSDs (𝐒XYZ
(j) (𝑓), j=1, 2,…, 469). The 

frequency axis of every PSD is discretized into 1247 discrete points in the range 0 ≤ 𝑓 ≤

200 Hz, see [BEN18a,BEN19b] for more details. 

Figure 8.8(b) presents the contour plot of the variance 𝑉eq (in log scale) through 

Δ=1°. The critical nodes where the variance is maximum are located at the hole and notch. 

Figure 8.9 compares the computation time for various Δ values and different numbers of 

iterations, 𝑛runs. Compared with the previous example, now the computation time of one 

simulation run is higher because of a larger number of points in the frequency axis (1247 

vs 200). 

 
Figure 8.9. (a) Contour plot of the variance 𝑉eq (log scale); (b) elapsed time for multiple simulation runs. 

Indeed, only the results on the right side (𝑛runs=469 nodes) are consistent with 

the analysis of nodal PSD results of the model in Figure 8.8(a). The other results in center-

left side of the figure (𝑛runs=1, 10, 100) correspond to Matlab simulations that iterated 

the algorithm a specific number of times. The aim is to mimic FE analyses with a number 

of nodes lower than 469. Moreover, using such a small number of nodes in the model of 
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Figure 8.8(a) would have produced a mesh too coarse to get meaningful stress results. In 

Matlab simulations, the stress PSD has the same frequency discretization as in FE 

analysis.  

The relationship between the computation time and 𝑛runs is a straight line (the 

figure uses a log-log scale only to enlarge the bottom-left region) for a given value of Δ. 

A change of Δ moves the line upward or downward. 

A fitting expression is simple to derive. For the standard algorithm, the elapsed 

time can be approximated by the expression 𝑇std ≅ (𝐴PC 𝑛f 𝑛runs) Δ2⁄ , where 𝑛f is the 

number of frequency points (𝑛f=1247 in this example). Constant 𝐴PC depends on the 

specific computer characteristics. More details are provided in Appendix B. The 

highlighted reduction of computation time appears clearly in Figure 8.9(b) by the new 

algorithm. If all nodes of the finite element model are analyzed in the case of Δ=5°, the 

standard algorithm operates for 37900 seconds (10 hours), whereas the standard algorithm 

terminates in as little as 2.2 seconds. 
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Chapter 9  
 

CONCLUSIONS 

This thesis addresses structural durability analysis with random loadings, which are 

commonly observed in structure and mechanical components in service. Attention manly 

focuses on the variability of the fatigue damage in both Gaussian and non-Gaussian 

random loadings, statistical methods to verify the stationarity, confidence interval of 

damage with one or few time-histories and last, but not least a new algorithm to shorten 

the computation time of Carpinteri-Spagnoli-Vantadori (CSV) multiaxial spectral 

method. 

An original contribution related to the variance of fatigue damage in Gaussian 

random loadings has been introduced in Chapter 4. Explicit formulas from the literature 

(Mark and Crandall, Bendat, Madsen et al. and Low) were reviewed and compared with 

Monte Carlo simulation results in the both time- and the frequency-domain. The sample 

statistics (mean, standard deviation, coefficient of variation) were determined for the 

fatigue damage in both time- and frequency domain, and then compared to the estimations 

provided by the explicit formulas. A perfect agreement resulted, at least for the specific 

power spectrum type for which each of the formulas applies. Results also showed that the 

scatter around the expected damage reduces as the time-history length increases. It was 

also observed how the coefficient of variation of damage (CoV) is a smooth monotonic 
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function of bandwidth parameter 𝛼1, a feature that permitted a best-fitting expression to 

be proposed and then calibrated on the results of each power spectral density (PSD) 

considered individually, as well as on the results of all power spectra merged together. 

Not only are the proposed expressions simple and easy to be used in practice, but they 

also agree with time-domain simulation results. 

These proposed expressions are the only ones to relate the variance of the fatigue 

damage directly to a bandwidth parameter 𝛼1. Also, if performed by hand, the calculation 

of CoV using explicit formulas from the literature (e.g. Madsen et al., Low) is rather 

laborious, but it becomes much simpler and faster if performed with proposed best-fitting 

expressions. It is also important to emphasize the wide range of applicability of proposed 

formulas varying from narrow-band to wide-band processes. In fact, there was no solution 

to tackle the case of a wide-band process. 

The thesis has also contributed with two theoretical models for assessing the 

variance of the fatigue damage in stationary non-Gaussian random processes (Chapter 5). 

The non-Gaussian models extend two methods existing in the literature (Madsen et al., 

Low’s) that are valid for Gaussian narrow-band processes. The two models here 

developed apply to any non-Gaussian process for which its narrow-band power spectral 

density, skewness and kurtosis coefficients are known. They exploit the properties of a 

time-independent non-linear transformation that establishes a relationship between 

Gaussian and non-Gaussian domains. 

Monte Carlo numerical simulations in time-domain approach were used to verify 

the correctness of the proposed two models and to identify typical trends. The statistics 

(mean value, standard deviation, coefficient of variation) characterizing the sample of 

computed damage values were compared to theoretical estimations. A perfect matching 

was observed. The results also demonstrated that, in the non-Gaussian case, the fatigue 

damage has a higher variance compared to the Gaussian case. This result is of particular 

importance as it confirms that the inappropriate use of Gaussian models with non-
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Gaussian processes leads to unsafe predictions, as they neglect non-Gaussian effects. The 

use of the non-Gaussian models proposed is then recommended. 
It is useful to underline that the methods to estimate the variance of the fatigue damage 

existing in the literature up till now are valid for Gaussian only. However, non-Gaussian random 

loadings acting on mechanical structures are usually encountered, for example, structures subject 

to wind or wave loadings, or an offshore platform combining structural nonlinearity with non-

Gaussian input excitation. As a consequence, proposed theoretical models to estimate the variance 

of the fatigue damage in non-Gaussian case become fairly important in many engineering 

applications. In addition, the proposed non-Gaussian models have a quite accurate estimations 

and they are supported by a theoretical background. 

As the previously proposed methods to assess the variance of the fatigue damage 

require that the random load is indeed stationary, attention focuses on the statistical 

methods to identify stationary and non-stationary loadings. 

Another original contribution addressed in this thesis is the non-parametric 

statistical method (e.g. run test) to verify the stationarity of time-histories with finite time 

length. In summary, the non-parametric run test method takes a sequence of non-

overlapping blocks. For each block, a value is calculated for the statistical parameter 

under investigation. The Rouillard’s approach takes into account the root-mean-squared 

(RMS) values for each independent block as the statistical parameters, which can detect 

change only in the variance and mean value of random time-history. As an alternative to 

Rouillard’s approach, the proposed run test considers the damage values computed for 

each block. The proposed damage-based run test can detect changes not only in the 

variance and mean value of random time-history but also in the frequency content, see 

Chapter 6. 

Viewed from loadings action on many structures and mechanical components, 

measured time-histories may be non-stationary, as those resulting from different wind 

conditions, various sea states, as well as road sequences with different surface profile 

characteristics. A typical example of non-stationary loadings with changes in the 

frequency content is a mountain-bike traveling on a track by means of various speeds. 
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Besides being necessary to verify if measured random loadings are indeed stationary or 

non-stationary, a statistical method needs to consider changes in the frequency content at 

least for the specific type of loading. The proposed damage-based run test is the only one 

up to date that takes into account change in the variance, mean value, and frequency 

content of a random loading. 

A real-world scenario has been considered in Chapter 7 in which an approach to 

estimate the statistical variability of damage computed from only one (Case 1) or few 

time-histories (Case 2) has been proposed. For each of the two cases, the thesis derived a 

confidence interval expression to enclose the (unknown) expected fatigue damage. An 

example confirmed the correctness of both confidence interval expressions. The example 

considered the stress power spectral density in an offshore platform. Sample statistics 

(mean and variance) of the damage from simulated time-histories were used to construct 

the confidence interval, which was then compared to the expected damage computed 

directly from the power spectrum (it represents the reference value needed by the analysis 

to check whether the confidence interval correctly encloses the expected damage, for a 

prescribed confidence). By replicating the analysis a large number of times and counting 

how many times the confidence interval encloses the expected damage, the analysis 

returned an estimated confidence of nearly 94.48% in either cases examined, a value 

almost coincident with the theoretical one 95% previously assumed. This confirmed the 

validity of the proposed approach. 

It has to be pointed out that the theory of confidence intervals is well known in 

literature, but its specific application to the fatigue damage problems has never been 

proposed in the terms presented in this thesis. Furthermore, the proposed approach based 

on a direct analysis of time-history imposes no restriction on the specific type of random 

loading. They only require that the random loading be stationary. 

Confidence intervals for the expected damage have also been verified by 

measured time-history records from a Mountain-bike. Several measured time-history 

records have been considered, from which the confidence intervals have been calculated 



 
 
 

Conclusions 151 

 

 

to enclose the expected damage. All measured time histories were qualified and quantified 

as being stationary random loadings when verified by different methods. The stationarity 

hypothesis of all measured time-history records was also verified by proposed damage-

based run test of Chapter 6. The analysis results of one or more measured time-history 

records from the Mountain-bike confirm the correctness of confidence interval 

expressions. The confidence intervals were compared to the expected damage, which was 

approximated by the sample mean of several damage values (it represents a sort of 

calibrator sample value needed to check whether the confidence interval correctly 

encloses the expected damage). Results also showed that the damage computed from only 

one or few measured time-histories (thus ignoring its statistical variability) might lead to 

unsafe estimates of the expected damage. The use of the proposed approach is then 

recommended in this case. 

It is also important to highlight that proposed confidence intervals for the expected 

damage and damage-based run test have been validated with real measurements. 

Consequently, they revealed to be not only in a good agreement with numerical 

simulations, but also a useful tool for engineers dealing with real engineering 

applications. 

The last original contribution of this thesis is a new algorithm to implement the 

Carpinteri-Spagnoli-Vantadori (CSV) multiaxial fatigue criterion for random loading 

(Chapter 8). In most cases, the analysis of all nodal results in a finite element model is 

not needed since it may be restricted to small subsets of nodes from the most stressed 

regions; but, if it is not possible to predict a priori which regions are the most critical ones, 

such a new algorithm significantly shortens the computation time for the critical plane 

search.  

The first phase of the work has been to write a Matlab routine to implement the 

method in its standard version, by obtaining a numerical code which is time-consuming 

despite the best efforts to improve the numerical aspects. The routine makes a systematic 

use of 'for/end' loops to scan, in the three-dimensional space, all the plane orientations in 
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a point, before the critical plane is exactly identified after five rotations. The presence of 

'for/ends' loops leads the number of planes to be scanned to increase (and the time, 

accordingly) if the angular intervals are discretized into very closely spaced values. This 

situation is further enhanced when analyzing the nodal stress results in a finite element 

model, where the time required to complete just one critical plane search has to be 

multiplied by the number of nodes in the model, and that has motivated the proposal of a 

new algorithm able to shorten the computation time in such cases. 

This goal has been achieved through a twofold strategy. The first aspect is 

calculating only those spectral parameters that the CSV method really needs to search for 

the critical plane. The second aspect is finding the analytical expressions of such a limited 

set of spectral parameters in any rotated reference frame, as a function both of the spectral 

parameters in the initial (un-rotated) frame and of the five rotation angles used to locate 

the critical plane. 

In this way, the numerical routine does not compute unnecessary spectral 

parameters (e.g. the full PSD matrix and its spectral moments) in any rotated plane. The 

strategy leads to a routine completely free of 'for/end' loops, which are well-known to be 

the drawbacks of numerical computation.  

As a consequence of free of 'for/end' loops, the new algorithm highlights a great 

advantage when analyzing the nodal stress results in an FE model, where the time required 

to complete just one critical plane search has to be multiplied by the number of nodes in 

the model. This advantage has been confirmed by means of two numerical examples. 

It seems not superfluous to emphasize that the approach, herein applied to the 

spectral criterion by CSV, has in fact a general validity, as its theoretical framework may 

be applicable to any multiaxial spectral method in which the critical plane or the direction 

of maximum stress variance are identified through rotation angles or direction cosines. 
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Appendix A  

 

CONFIDENCE INTERVAL EXPRESSION OF ONE TIME-HISTORY 

The issue of statistical variability of the fatigue damage is addressed in Chapter 7 by 

confidence interval expressions to enclose the (unknown) expected fatigue damage. A 

common situation is that in which only one time-history 𝑥(𝑡) is available. For this 

situation, the confidence interval for 𝐸[𝐷(𝑇)] is based on the idea of dividing a single 

time-history into 𝑁B blocks without overlapping (see Chapter 7). By underlying values, 

which originate from the block subdivision, e.g. 𝑁B, �̅�B(𝑇B) and �̂�DB

2 , it is convenient to 

rewrite a small number of formulae. 

The damage of the entire time-history 𝑥(𝑡) sums up the damage of all blocks: 

 𝐷(𝑇) ≅ ∑𝐷B,i(𝑇B)

NB

i=1

= 𝑁B ∙ �̅�B(𝑇B) (A.1) 

The sample mean of the damage of all blocks in Eq. (A.1) is �̅�B(𝑇B) =

𝑁B
−1 ∑ 𝐷B,i(𝑇B)NB

i=1 . In its turns, the variance 𝜎D
2 of the damage of the whole time-history 

𝑥(𝑡) is: 
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 𝜎D
2 = Var [∑𝐷B,i(𝑇B)

NB

i=1

] ≅ 𝑁B ∙ �̂�DB

2  (A.2) 

The variance 𝜎D
2 in Eq. (A.2) is approximated using the sample variance of all 

blocks �̂�DB

2 = (𝑁B − 1)−1 ∑ [𝐷B,i(𝑇B) − �̅�B(𝑇B)]
2NB

i=1 . 

This section aims to explain how the final confidence interval expression for 

𝐸[𝐷(𝑇)] when considering only one time-history 𝑥(𝑡) is derived. The starting point is the 

confidence interval for the expected damage of a single block, which follows the 

definition of a normally distributed random variable with unknown mean and unknown 

variance [MON14]. Accordingly, the confidence interval for 𝐸[𝐷B(𝑇B)] using 𝑁B damage 

values, the sample mean �̅�B(𝑇B) and the sample variance �̂�DB

2  is calculated as [MAR20a]: 

 �̅�B(𝑇B) −
𝑡dof,β 2⁄ ∙ �̂�DB

√𝑁B

≤ 𝐸[𝐷B(𝑇B)] ≤ �̅�B(𝑇B) +
𝑡dof,β 2⁄ ∙ �̂�DB

√𝑁B

 (A.3) 

Multiplying this expression by the number of blocks 𝑁B yields: 

 

𝑁B (�̅�B(𝑇B) −
𝑡dof,β 2⁄ ∙ �̂�DB

√𝑁B

) ≤ 𝑁B ∙ 𝐸[𝐷B(𝑇B)] 

≤ 𝑁B (�̅�B(𝑇B) +
𝑡dof,β 2⁄ ∙ �̂�DB

√𝑁B

) 

(A.4) 

Since 𝑁B is deterministic [MAR20a], the expected value of Eq. (A.1) results in: 

 𝐸[𝐷(𝑇)] = 𝐸 [∑𝐷B,i(𝑇B)

NB

i=1

] = 𝑁B ∙ 𝐸[𝐷B(𝑇B) ] (A.5) 
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This result can also be obtained by noting that 𝐸[𝐷B(𝑇B) ] = (𝑇B 𝑇⁄ ) ∙ 𝐸[𝐷(𝑇)]. 

Substituting into Eq. (A.4) and considering the approximation �̂�D ≅ √𝑁B ∙ �̂�DB
 of Eq. 

(A.2), the confidence interval expression for 𝐸[𝐷(𝑇)] when considering only one time-

history 𝑥(𝑡) is [MAR20a]: 

 𝐷(𝑇) − 𝑡dof,β 2⁄ ∙ �̂�D ≤ 𝐸[𝐷(𝑇)] ≤ 𝐷(𝑇) + 𝑡dof,β 2⁄ ∙ �̂�D (A.6) 

which coincides with the confidence interval expression also reported in Chapter 7. 
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Appendix B  

 

EXPRESSIONS OF THE ELAPSED TIME FOR THE STANDARD 

ALGORITHM 

This section develops the analytical equations to estimate the elapsed time for the standard 

algorithm in Chapter 8. They refer to one and multiple simulation runs. In a single 

simulation run, for the sequence of 'for/end' loops in the Matlab code (see Chapter 8), the 

number of scanned planes in one simulation run is 𝑛p = 𝑛ϕ𝑛θ + 𝑛ψ + 𝑛γ. Based on the 

interval width (in degrees) over which each angle is defined, the expression can be written 

as a function of a common value of Δ: 

 
𝑛𝑝 = (

360

Δ
+ 1) (

180

Δ
+ 1) + (

360

Δ
+ 1) + (

360

Δ
+ 1) 

= 3 +
1260

Δ
+

64800

Δ2
 

(B.1) 

The first constant term is generally negligible compared to the others. As Δ 

becomes very small (Δ ≤ 3°), the third term dominates over the others, and 𝑛p 

approximates as follows: 
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 𝑛p ≅
64800

Δ2
          for Δ ≤ 3° (B.2) 

This formula also shows that, in the limit Δ → 0°, it is 𝑛p → ∞ (and the elapsed 

time, too), which confirms how the resolution cannot decrease indefinitely if the 

simulation time has to remain within acceptable limits. 

The goal is to find the expression of the simulation (or elapsed) time 𝑇1(𝑛p) after 

which the standard algorithm completes the critical plane search in one run (that is, after 

it analyses one stress PSD matrix). 

Some preliminary assumptions can be made. First, the computer has a 'linear' 

behavior. This means that, if 10 seconds are required to analyze 1 plane position (in 1 

iteration in a 'for/end' loop), then 20 seconds are required to complete 2 iterations, 30 

seconds for 3 iterations, and so on. Secondly, the computation time was demonstrated 

(via preliminary simulations) to be directly proportional to the number of points 𝑛f in the 

PSD frequency axis. This condition sounds obvious, as it is related to the basic 

mathematical operations and storage capacity of Matlab. 

Based on these two assumptions, the elapsed time can be written as 𝑇1(𝑛p) =

𝐴PC ∙ 𝑛f ∙ 𝑛p, where 𝑛f is the number of frequency points, and 𝐴PC is a parameter 

calibrated on the computer characteristics. The final expression then is: 

 𝑇1(𝑛p) = 𝐴PC𝑛f (3 +
1260

Δ
+

64800

Δ2
) (B.3) 

or simplified if Δ ≤ 3°: 

 𝑇1(𝑛p) ≅ 𝐴PC𝑛f

64800

Δ2
 (B.4) 

Obviously, Eq. (B.3) and (B.4) hold for 1 simulation run. If the algorithm has to 

be applied iteratively to locate a number of critical planes equal to 𝑛runs, the elapsed time 
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can be written as 𝑇tot(𝑛runs) = 𝑛runs ∙ 𝑇1(𝑛p). This expression, too, follows from the 

hypothesis of a 'linear' computer (i.e. if 𝑇1 is the time to search for 1 critical plane, then 

𝑛runs ∙ 𝑇1  is the time to search for 𝑛runs planes). By substituting the expression for 

𝑇1(𝑛p), it is possible to obtain: 

 𝑇tot(𝑛runs) = 𝐴PC 𝑛f (3 +
1260

Δ
+

64800

Δ2
) 𝑛runs (B.5) 

This shows that 𝑇tot versus 𝑛runs is a straight line, with slope inversely proportional to Δ. 

It now comes easy to determine the constant 𝐴PC. The number of frequency points, 

𝑛f, is known from the power spectra 𝐺ij(𝑓) to be analysed. It is convenient to choose a 

large Δ value (for example, 20°) so that the simulation will not be so time-demanding, 

and then to measure the corresponding time �̃�tot(1) to complete 1 simulation run (𝑛runs =

1). The constant 𝐴PC follows by inverting Eq. (B.3). For the example in Chapter 8, 𝑛f =

1247 and 𝑛p = 228 planes (for Δ = 20°). For one simulation run (𝑛runs = 1), the 

measured elapsed time is �̃�tot(1) = 6.716 seconds (the 64-bit computer has CPU 3.8 

GHz, 32 GB RAM). By inverting the previous equation, 𝐴PC = 2.362 ∙ 10−5 seconds is 

obtained. Eq. (B.5) can now be extrapolated to other values of 𝑛runs. For example, for 

Δ = 10° and 𝑛runs = 15000, the computation time would be approximately 95 hours. 
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