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P R E FA C E

I graduated in 2014 in Mechanical Engineering at the University of Ferrara
discussing the thesis entitled "Analisi vibrazionale numerico-sperimentale di
un trabatto per pasta alimentare" under the supervision of Prof. Dalpiaz. The
results of my thesis [1] has been presented at "VIII Giornata di studio Ettore
Funaioli". Immediately after, I started my Ph.D. in Engineering Science at the
same university still under the supervision of Prof. G. Dalpiaz.

In the first year of my Ph.D., I have been involved on the development of a
lumped parameter model based on the Eksergian’s equation for the prediction
of torsional oscillations and global vibration level of a linear vibratory feeder,
pursuing the topic of my master’s degree thesis. Over the three years of doc-
toral research, this research work led to further three publications, consisting
of two conference papers [2, 3] and one journal paper [4].

[1] M. Buzzoni, E. Mucchi, and G. Dalpiaz. “Analisi vibrazionale numerica e sperimentale
di un trabatto per pasta alimentare.” In: Giornata di studio Ettore Funaioli. Bologna, 2014,
pp. 153–166.

[2] M. Buzzoni, E. Mucchi, and G. Dalpiaz. “Improvement of the vibro-acoustic behaviour
of vibratory feeders for pasta by modelling and experimental techniques.” In: Inter-
noise 2016. Hamburg, 2016, pp. 4005–4013.

[3] M. Buzzoni, M. Battarra, E. Mucchi, and G. Dalpiaz. “Noise and vibration improve-
ments in vibratory feeders by analytical models and experimental analysis.” In: Inter-
noise 2017. Honk Kong, 2017, pp. 6749–6759.

[4] M. Buzzoni, B. M., E. Mucchi, and G. Dalpiaz. “Motion analysis of a linear vibratory
feeder: Dynamic modeling and experimental verification.” In: Mechanism and Machine
Theory 114 (2017), pp. 98–110. issn: 0094-114X. doi: http://dx.doi.org/10.1016/j.
mechmachtheory.2017.04.006.

From the second half of the first year, I have been introduced on the re-
search field of vibration-based diagnosis and monitoring of machines. In a
first time, my researches focused on the characterization of piston slap phe-
nomenon in IC diesel engines by means of vibration analysis taking advan-
tage of cyclostationarity theory. In particular, the proposed procedure departs
from the analysis of the Continuous Wavelet Transform in order to identify an
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informative frequency band of piston slap phenomenon. This frequency band
has been exploited as the input data in the further envelope analysis of the
second-order cyclostationary part of the signal. The preliminary results of my
studies about piston slap have been presented at the ISMA 2016 conference
[5] whereas the complete research work has been published in Mechanical
System and Signal Processing journal [6].

[5] M. Buzzoni, E. Mucchi, and G. Dalpiaz. “Piston slap noise reduction in IC engines :
design improvements by advanced signal processing techniques.” In: ISMA2016. Leu-
ven, 2016.

[6] M. Buzzoni, E. Mucchi, and G. Dalpiaz. “A CWT-based methodology for piston slap
experimental characterization.” In: Mechanical Systems and Signal Processing 86.April
2016 (2017), pp. 16–28. issn: 08883270. doi: 10.1016/j.ymssp.2016.10.005.

Consequently, my research activity focused on the detection and identifica-
tion of impulsive faults. Firstly, I studied the Empirical Mode Decomposition
algorithms for the fault diagnosis in multi-stage gearboxes. In particular, I
have developed a methodology that combines the Empirical Mode Decom-
position and the Time Synchronous Average in order to decompose the first-
order cyclostationary part of the vibration signals related to an intermediate
shaft of a multi-stage gearbox. The separated signals allow for the precise
identification of the faulty gear even when the fault occurs in a stage hav-
ing multiple (synchronous) gears. The results of this research work have been
published to Shock and Vibration journal [7].

[7] M Buzzoni, E Mucchi, G D’Elia, and G Dalpiaz. “Diagnosis of Localized Faults in
Multistage Gearboxes: A Vibrational Approach by Means of Automatic EMD-Based
Algorithm.” In: Shock and Vibration 2017 (2017), pp. 1–22. issn: 1070-9622. doi: 10.
1155/2017/8345704. url: https://www.hindawi.com/journals/sv/2017/8345704/.

Then, in the wake of my studies about detection and identification of im-
pulsive components through vibration analysis, I spent four months at the
INSA of Lyon under the supervision of Prof. Antoni. In this period, I studied
blind deconvolution algorithms with application to rotating machine diagno-
sis. Specifically, a novel BD algorithm has been developed and investigated
based on a cyclostationary criterion. This research activity led to a novel
method for extracting impulsive sources having (second-order) cyclostation-
ary nature with a specific cyclic frequency. This methodology, compared with
other blind deconvolution algorithms, proved to be superior on the extraction
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of cyclostationary sources as well as on impulsive fault identification in gears
and bearings.

On the grounds of the application of EMD algorithms and blind deconvo-
lution methods for the diagnosis of localized faults in rotating machines, my
thesis gathers and deepens the results and considerations achieved in these
research activities.

Furthermore, I’ve recently collaborated with Prof. Castellani and his re-
search group from the University of Perugia regarding the study of wake ef-
fects in a wind turbine farm through vibration analysis. The research focused
on the characterization of the wake effects among wind turbines in series by
analyzing the vibrations measured on the drive-line and on the nacelle. The
results of this work have been published in Energies journal [8].

[8] F. Castellani, M. Buzzoni, D. Astolfi, G. D. Elia, G. Dalpiaz, and L. Terzi. “Wind Tur-
bine Loads Induced by Terrain and Wakes : An Experimental Study through Vibration
Analysis and Computational Fluid Dynamics †.” In: Energies 10.11 (2017), pp. 1–19.
doi: 10.3390/en10111839.

Ferrara, 30/11/2017
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1
G E N E R A L I N T R O D U C T I O N

1.1 background

This thesis is focused on the diagnosis of rotating machines, with specific refer-
ence to rolling bearings and gears, by using the mechanical signature analysis.
In this context, the terms “diagnosis” and “mechanical signature” assume a
precise meaning. The term “diagnosis” refers to the detection and the local-
ization of defects occurring in a mechanical system. The term “mechanical
signature” refers to the characteristic vibration radiated by an operating ma-
chine, which can be recorded by using specific transducers. The basic concept
behind the vibration analysis of mechanical systems is that any alteration – e.g.
varying operating conditions, arising faults and so on, – is somehow reflected
in the vibration signature. Thus, the vibrations generated by any operating
machine can be exploited to extract a wide range of useful information about
the system.
In the industrial scenario, the spread of vibration analysis can be quickly ex-
plained by the points of strength of this approach. Being non-intrusive and
very reactive to the machine changes, the vibrational approach fits the needs
of many applications and fields. The potential of this method consists in the
number of heterogeneous information that is often contained in vibration sig-
nals allowing for the simultaneous extraction of data having various nature
just from a single sensor. Some possible application fields of vibration sig-
nal analysis are: condition monitoring, fault detection, fault diagnosis, quality
control, and so on [9].
There is another side of the coin. In fact, such information carried by vibration
signals are often hidden and their extraction could not be a trivial task. De
facto, the interpretation of mechanical vibration signals is frequently difficult
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general introduction

due to the background noise and several vibration contributions generated by
the motion of the mechanical components, especially in complex mechanical
systems.

Furthermore, vibration analysis is rooted on a fundamental limitation: the vi-
bration transducers measure the response of the system to an excitation rather
than the excitation itself. Since any structure acts - to a first approximation - as
a linear time-invariant filter, the output of this “physical” filter actually is the
measured vibration and not the source, which is the real origin of vibrations.
Hence, the system response depends not merely on the excitation (often called
source in this thesis), but also on the structural impulse response that relies
upon the physical properties of the structure and the transducer position.

The aforementioned issues can be faced by processing the vibration signal
with proper analysis techniques. Different strategies can be used according
to the signal type (periodic, non-stationary, cyclostationary, etc). Many efforts
have been made in the last four decades by the researchers in this direction
in order to adapt and extend the general signal processing theory to mechan-
ical applications. The number of works addressing this topic confirms the
academic interest as well as the industrial one. In recent years, the vibration-
based diagnosis has reached a satisfactory stage of maturity proposing sev-
eral well established signal processing methodologies. Many methodologies
have been designed with particular care about real applications guarantee-
ing consistency and effectiveness. Thanks to the advances achieved in the
field of vibration-based diagnosis, the use of vibration analysis has spread in
many fields and applications. Hereafter, a brief overview of some standard
approaches is outlined.

1.2 vibration-based diagnosis of impulsive faults

Gears and rolling bearings represent crucial components of many machines.
In fact, the occurrence of faults in these components could lead to serious
consequences to the whole system as high vibration level or breakdown. Thus,
it has become essential to detect and diagnose the incipient faults in order to
ensure the proper functioning of machines and avoid catastrophic failures. A
survey about the consolidated signal processing techniques referenced to the
identification of faults having impulsive nature is presented hereafter.
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1.2 vibration-based diagnosis of impulsive faults

In general, gear faults and bearing faults can be divided into two main cat-
egories: localized faults and distributed faults. Overlooking the distributed
faults that are not investigated in this thesis, the localized faults usually mani-
fest in the form of cracks, spalls and pits, depending on the considered system
and on the generation mechanism. Local gear faults typically occur on the
tooth surface or on the tooth root such as: cracks in the gear tooth root, spalls,
early stage pitting and certain manufacturing errors (such as burrs) [10]. On
the other hand, the bearing faults can occur locally in the rolling elements or
in the races, in particular in the early stage. The most common bearing faults
are: localized pitting, spalls and brinelling [11].

The localized faults introduce non-stationary components into the measured
vibration signal [9] in the form of a series of transients. Gears and bearings
have different ways to generate these transients since the physical phenomena
involved are dissimilar too. Regarding the gear faults, Mark [12, 13] demon-
strated that two mating gears should exhibit a vibration signature containing
only the tooth meshing harmonics. However, faults and tooth-to-tooth de-
viations from the perfect involute profile, commonly existing in real gears,
produce contributions in the vibration signal. It is known that a reasonable
way to model the vibration response due to a local gear fault in a spur gear
train is by means of a local amplitude/phase modulation with a pure impul-
sive component [14, 15]. The vibration signature is a superposition of vibra-
tion components caused by the fault, dominant meshing vibrations and many
other contributions, such as the effect of speed fluctuations. Thus, the pres-
ence of a gear fault is frequently masked by such interferences. Further, local
bearing faults originally have been modeled using a deterministic approach,
namely considering a Dirac comb convolved with the transfer function of the
structure [16]. In general, the contributions of bearing faults are very weak
with respect to other components as gear mesh vibrations. The detection of
these impulsive components is further shrouded by modulation effects and
variable transfer paths [17]. Moreover, random slip effects make things even
more complicated.

In the last decade, a new perspective has taken hold: cyclostationarity proved
to be a very effective framework for describing and processing vibration sig-
nals generated by gears and bearings (and many other mechanical systems).
By noting that the occurrence rate and the amplitude of impulses are char-
acterized by a certain level of randomness, a stochastic modeling of bear-
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ing vibration signals has been proposed by Antoni and Randall [18, 19]. In
fact, bearing fault signals exhibit random contributions having cyclic behavior.
Specifically, it has been demonstrated that second-order cyclostationary (CS2)
processes gives a more realistic description of involved random phenomena.
Analogously, it has been proved that localized gear faults can be modeled by
means of the cyclostationary framework as well. In this case, Capdessus et al.
[20] shown that localized gear faults can be investigated by using first-order
cyclostationary (CS1) tools as well as second-order ones.

Over the years, several consistent strategies have been proposed for the identi-
fication of localized faults in gears and rolling element bearings. On the basis
of the previous considerations, two distinct families of signal processing tech-
niques can be distinguished: the approaches exploiting the cyclostationary
theory and the others. Regarding the gear diagnosis, the following traditional
approaches are worth mentioning: order tracking techniques [21], scalar indi-
cators (kurtosis, etc.) [22], cepstral analysis [23], demodulation analysis [24],
time-frequency approaches [25, 26], synchronous averaging [27, 21], blind de-
convolution algorithms [28], AR models [29] and methods based on spectral
kurtosis [30]. The aforementioned approaches can be performed also for the
bearing fault diagnosis. In particular, the envelope analysis (also called high-
frequency resonance technique) [31] represented and is still representing the
most common signal processing technique for bearing fault diagnosis. Well
written references about the bearing fault diagnosis can be found in [32, 17].

The noteworthy cyclostationary tools are: the spectral correlation (SC) [33],
the signal decomposition into CS1 part and CS2 part [34] and scalar indica-
tors of cyclostationarity (ICS) [35]. Moreover, many connections and explana-
tions have been established between the cyclostationary framework and the
traditional approaches. In particular, it is relevant the connection between the
envelope analysis (very effective but having an heuristic basis) and the inte-
grated SC [36], the relationship between the TSA and the cyclostationarity at
the first order [20] and the SC and the spectral kurtosis [37].

Finally, a general but complete dissertation about the fault diagnosis by using
vibration analysis can be found in Ref [9].
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1.3 research objectives

1.3 research objectives

In the context of diagnosis of rotating machines, this research investigates two
different aspects about impulsive fault detection and identification. The first
one concerns the identification of impulsive sources just from noisy responses;
the second one is about gear fault identification of multi-stage gearboxes, with
specific regards to synchronous gears in intermediate stages.
As reported in Section 1.1, many approaches can be found in the specialized
literature about identification of impulsive faults in gears and rolling bearings.
In particular, the blind deconvolution (BD) methods can overcome the fact that
vibration analysis, in general, deals with responses and not directly with exci-
tations. Indeed, BD can recover an excitation to a linear system from a noisy
observation (in a single-input-single-output system), which is a typical situa-
tion in the vibration-based diagnosis. For instance, the excitation force due to
an incipient fault can be recovered from a measured vibration signal without
the knowledge of the structural transfer function just using BD methods.
The most common BD algorithm used for machine diagnosis is based on the
kurtosis maximization [38]. Only recently, two novel criteria [39, 40] have been
proposed in order to improve the performances of BD algorithms when ap-
plied to rotating machine vibration signals. On this grounds, some aspects are
still unclear or even not addressed:

◃ does an alternative to the optimization algorithms commonly used for
BD exist?

◃ Is it possible to introduce a criterion explicitly based on cyclostationar-
ity?

◃ What is the effectiveness of a cyclostationary criterion with respect to
the others?

◃ How can be handled the non-constant regime cases by using BD algo-
rithms?

Further, this thesis addresses also another complementary issue that is still
not faced in the literature. De facto, even if many steps forward have been
made on the fault diagnosis in multi-stage gearboxes, the fault identification
is generally limited to establishing which stage pertains to the fault gear. The
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identification of gear fault occurring in a wheel located in the intermediate
shaft can be particularly complex due to the superposition of vibration sig-
natures related to synchronous wheels. On these grounds, a method based
on the Empirical Mode Decomposition (EMD) has been developed trying to
answer to the following questions:

◃ is it possible to solve the issue previously described?

◃ Which EMD algorithm can deal with this problem?

◃ Which scalar indicator is the most effective in this circumstance?

All these questions have been carefully examined in this thesis. The possible
answers are presented and supported by an extended discussion involving
simulated and real signals.

1.4 methodology and organization of the thesis

This thesis is organized into 4 chapters, where two different approaches for
the detection and identification of impulsive components in the rotating ma-
chines are presented and discussed. The general research approach followed
in this thesis involves an exhaustive validation including the use of both syn-
thetic signals and real ones. Special attention has been paid on designing
meaningful simulated signals, in agreement with the goal of the study. Fur-
thermore, the practical application of all the proposed methodologies have
been carefully addressed by means of extended experimental validations.
In Chapter 2, a novel BD method based on the generalized Rayleigh quotient
and solved by means of an iterative eigenvalue decomposition algorithm is
proposed. The peculiarity of this approach is that it can be easily adapted
to arbitrary criteria. A new criterion based on (second-order) cyclostation-
arity maximization of the signal is proposed and compared with other BD
methods existing in the literature. The cyclostationary BD method has been
called CYCBD. Specifically, the following BD algorithms are taken into ac-
count: Minimum Entropy Deconvolution (MED), Optimal Minimum Entropy
Deconvolution Adjusted (OMEDA), Maximum Correlated Kurtosis Deconvo-
lution (MCKD) and Multi-point Optimal Minimum Entropy Deconvolution
Adjusted (MOMEDA).
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1.4 methodology and organization of the thesis

Foremost, the aforementioned BD methods are briefly summarized, highlight-
ing strong points and limitations. Some original theoretical interpretations
have been introduced as well. Firstly, the formulation based on the maximiza-
tion of the kurtosis as well as higher-order statistics is deduced for single-
input single-output (SISO) systems. Secondly, the SISO formulation based on
the Indicator of Cyclostationarity (ICS) is proposed, i.e. the CYCBD. These
formulations are given also in the case of Single-Input Multi-Output (SIMO)
systems and for angle/time dependent signals.

Both benchmarking and validation have been performed taking into account
synthetic signals and real ones in both constant and non-constant regimes.
The synthetic signals are constituted of pure cyclostationary sources in com-
plex environment in order to highlight the advantages of a cyclostationary BD
criterion. The experimental signals concern two faulty conditions: a gear tooth
spall and an outer race bearing fault. The gear fault data have been acquired
from a dedicated test bench, taking into account different fault sizes and test
conditions. The proposed method reliability has been assessed in terms of
fault identification accuracy as well as fault severity. A diagnostic protocol for
the gear tooth spall identification in multi-stage gearboxes based on CYCBD
has also been proposed. The bearing fault data is related to a run-to-failure
dataset, which may be found online in the NASA Prognostics Data Reposi-
tory. Details can be found in the dedicated section. In this case, CYCBD and
the BD methods have been compared in terms of bearing fault identification
accuracy and prognostic capability.

The second part of this thesis, namely Chapter 3, deals with the identifica-
tion of a localized gear fault occurring in a wheel located in the intermediate
shaft of a multi-stage gearbox. The fundamental idea is to decompose the syn-
chronous averaged signal referenced to the faulty (intermediate) stage into a
set of representing signals containing the contribution of a single gear. In this
way, it should be possible to establish which gear is the faulty one. The pro-
posed methodology combines two well-known signal processing techniques:
the EMD and the time synchronous average (TSA). Three different versions of
the EMD algorithms are considered investigating which one returns the best
output. The validation involves, again, simulated signals and experimental
ones.
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Finally, Chapter 4 outlines the concluding remarks summarizing results and
significant aspects achieved in this thesis. Particular emphasis has been dedi-
cated about the aspects of novelty and possible practical implications.
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2
C Y C L O S TAT I O N A RY B L I N D D E C O N V O L U T I O N F O R
R O TAT I N G M A C H I N E D I A G N O S I S

2.1 introduction

The identification of impulsive faults may be difficult, particularly in the early
stage, since the impulsive pattern characterizing the fault is often masked by
the background noise, the dynamic response of the structure and other me-
chanical interferences. As mentioned in Section 1.1, impulsive sources cannot
be directly measured. In fact, the original impulsive source is filtered by the
impulse response function (IRF) of the system that frequently is unknown. For
this purpose, BD techniques can be exploited in order to recover an impulsive
pattern from noisy observations, even considering the effect of a unknown
linear time-invariant system.
The mathematical problem behind BD is very general since a number of phe-
nomena can be modeled as (linear) convolution mixtures with additive back-
ground noise. BD methods have been investigated and applied in a large num-
ber of fields and applications, such as image processing, telecommunications,
seismic signal processing and rotating machinery, in order to blindly recover
a source of interest. Indeed, in the field of seismic signal processing, Wiggins
[41] pioneered BD by developing an iterative algorithm based on the maxi-
mization of the kurtosis (also called Varimax) in order to recover a spike-like
source from a signal convolved with a unknown impulse response function.
In the same field, Cabrelli [42] proposed another norm, called D-Norm, geo-
metrically equivalent to the Varimax norm, which poses a direct solution to
BD. In the literature, these methods are commonly known as Minimum En-
tropy Deconvolution (MED) and Optimal Minimum Entropy Deconvolution
(OMED), respectively.
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MED presents some drawbacks for the diagnosis of rotating machines such as
the tendency to deconvolve a large single peak rather than periodic impulses
and the inaptitude to deal with multiple faults. For these reasons, MED has
been exploited in combination with other signal processing techniques in or-
der to restrain some of its limitations.

Regarding the tooth fault detection, Endo and Randall [38] combined auto-
regressive (AR) models with MED in order to enhance the impulsive features
of the vibration signal in the AR residual. This method has been further in-
vestigated by Endo et al. [43] in order to discriminate a gear tooth spall from
a cracked tooth. A similar approach has been proposed by Sawalhi et al. [28]
with regard of bearing diagnostics, taking advantage of the envelope spec-
trum driven by maximum spectral kurtosis. In a different way, the spectral
kurtosis has been exploited also by He et al. [44] in order to extract multiple
bearing faults.

Some authors explored higher-order statistics as well as various optimization
algorithms. Lee and Nandi [45] analyzed the performance of BD via higher-
order statistics (from the third to the sixth) considering impacting signals
from a vibrating cantilever beam. The same authors [46] demonstrated also
that Objetive Function Method (OFM) and EigenValue Method (EVA) give
equivalent results considering the same experimental measurements. Another
statistic, called Jarque-Bera statistic, combining both skewness and kurtosis
(originally used in goodness-of-fit tests) has been investigated by Obuchowski
et al. [47] for the gear fault identification in real vibration signals.

The need to design criteria dedicated to machine diagnosis led to the introduc-
tion of the correlated kurtosis and the Multi-Point D-Norm. BD via correlated
kurtosis, also called MCKD, has been introduced by McDonald et al. [39]
whereas BD via Multi-Point D-Norm (MOMEDA in short) has been proposed
by McDonald and Zhao [40]. Both criteria try to enhance the impulsiveness of
the vibration signal taking into account only a certain fault periodicity. In this
way, the deconvolution of a periodic sequence of impulses is encouraged to
meet the characteristic features of the vibration signals related to mechanical
impulsive faults. In this direction it is worth mentioning the work of Miao et
al. [48] who proposed an improved version of MCKD for bearing fault diagno-
sis that estimates automatically the fault period by using the auto-correlation
function of the envelope.
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Cyclostationarity has not been explicitly used for the design of BD criteria be-
fore now, although the importance to take advantage of cyclostationarity for
diagnostics purpose [34] has been widely recognized. In fact, despite MCKD
is a cyclostationary criterion, it has been proposed empirically, without ex-
plicit mention of cyclostationarity. Moreover, the definition of correlated kur-
tosis (that is the criterion of MCKD) entails some drawbacks that limit its
application in many real applications. Thus, this research try to fill this gap
exploiting cyclostationarity to design a simpler and more efficient criterion.
Firstly, a novel iterative eigenvalue algorithm for BD based on the Rayleigh
quotient is proposed. This algorithm differs from the EVA introduced by Jelon-
nek et al. [49] by the fact that it’s not restricted to the use of fourth-order
(cross) cumulants. Moreover, despite a similar approach have been investi-
gated once by Zazo and Borrallo [50] in blind equalization problems, the pro-
posed method is more general. In fact, the deconvolution process is guided by
a weighting matrix which can be easily modified adapting the algorithm to
arbitrary criteria. Then, criteria based on higher-order statistics have been de-
duced as well as criteria based on indicators of cyclostationarity (ICS), where
the latter represent the very original part of this research. Indeed, in the litera-
ture only one other cyclostationary criterion can be found, i.e. the MCKD [39],
whereas the others are based on extracting the most impulsive contribution
(MED [41] and OMEDA [42]) or a periodic impulsive train (MOMEDA [40]).
On these grounds, CYCBD can deal with cyclostationary sources and non-
equispaced impulse trains, overcoming the limitations of the aforementioned
BD methods.

Firstly, an introductory overview about several BD norms is given, pointing
out some original considerations in order to explain advantages and limits of
such techniques. Then, the performances of the proposed method rooted on
a second-order cyclostationary criterion, called CYCBD, are compared with
other BD methods, taking into account simulated signals as well as measured
signals. Five different simulated examples have been investigated and dis-
cussed clarifying all the pros and cons described in the previous overview.
The effectiveness of the proposed algorithm for the identification and quan-
tification of gear tooth spall is assessed by means of a dedicated experiment
in both constant and variable regimes. The robustness of the method is fur-
ther demonstrated by a sensitivity analysis focused on the filter length, being
the most critical parameter. Finally, a run-to-failure experiment addressing a
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bearing outer-race fault has been examined in a similar fashion. The effec-
tiveness of the early detection and identification of bearing faults has been
investigated and a statistical threshold for the assessment of faulty states has
proposed as well.

2.2 problem statement

This section provides the general formulation of a (SISO) BD problem and a
more specific formulation for rotating machine applications.
In general, BD aims to recover - i.e. deconvolve - the input signal s0 from a
noisy observed signal x, viz:

s = x ∗ h = (s0 ∗ g) ∗ h ≈ s0 (1)

where g is the unknown impulse response function (IRF), h is the inverse filter
(from now assumed to be a FIR filter), s is the estimated input and ∗ refers to
the convolution operation. Note that, from now, bold lowercase letters refer
to vectors whereas bold capital letters refer to matrices. A convenient way to
express the convolution for discrete signals in matrix form is

s = Xh (2a)⎡⎢⎢⎣ s[N − 1]
...

s[L − 1]

⎤⎥⎥⎦ =

⎡⎢⎢⎣ x[N − 1] · · · x[0]
... . . . ...

x[L − 1] · · · x[L − N − 2]

⎤⎥⎥⎦
⎡⎢⎢⎣ h[0]

...
h[N − 1]

⎤⎥⎥⎦ (2b)

where L and N are the total samples of s and h, respectively. Such expressions
will be widely recalled in the next sections.
According to the scheme proposed in Refs. [38, 39] valid for vibration signals
belonging to gearboxes, the observed signal in Eq. (1) can be rearranged as
summarized in Fig. 35. The measured signal x is assumed to be composed of:
an impulsive part s0 due to a localized fault, a pure periodic component p
(e.g. related to the gear mesh) and Gaussian background noise n, such that:

x = s0 ∗ gs + p ∗ gp + n ∗ gn (3)

where gs, gp and gn are the IRFs related to s0, p and n, respectively. Substitut-
ing Eq. (3) into Eq. (1), the mathematical formulation of BD in the context of
diagnostics is given by:

s =
(
s0 ∗ gs + p ∗ gp + n ∗ gn

)
∗ h ≈ s0 (4)
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Figure 1: General scheme of blind deconvolution for mechanical system diagnostics.

where, in practice, s0 represents the excitation force due to an incipient fault.
Thus, in this context, BD aims to estimate h such as to recover s0 linked to a
machine faults minimizing the other contributions, i.e. p and n.
The assumptions of the mathematical problem in Eq. (4) are: the samples of s0
are independent identically distributed random variables having a distinctive
statistical property (e.g. impulsiveness), g is a stable Linear Time Invariant sys-
tem and the stationary Gaussian noise, n, and the periodic contribution, p, are
additive and do not share the same characteristics of s0. As it is, the problem
is ill-posed since the IRFs – namely gs , gp, gn – are not available. However, an
estimation of the solution can be achieved considering an arbitrary criterion
that imposes an expected solution based on a prior assumption, e.g. assum-
ing a certain statistical property is met by the desired estimated source. In this
respect, if the sources are convolved with different IRFs and are characterized
by different statistical properties, the estimated inverse filter can highlight the
target source reducing at the same time the contributions of the other sources.
This happen when the frequency contents of the IRFs are not overlapped.
It should be noted that many BD methods are amplitude invariant, i.e. do not
recover the actual source magnitude. However, BD deconvolution methods
can provide useful information in terms of waveform, extracting a desired
source that exhibits a certain statistical behavior.

2.3 overview about blind deconvolution techniques

This section is focused on the description of several BD algorithms. Priority
has been given to the general explanation of the most common algorithms
used in rotating machine diagnosis, divided by algorithm typology and high-
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Table 1: Overview of BD algorithms.

Method Criterion Feature to maximize

MED iterative

L−1
∑

l=0
s[l]4(

L−1
∑

l=0
s[l]2

)2
impulse

OMEDA direct max
k=0,1,··· ,L−N−1

(
|s[k]|
∥s∥

)
impulse

MCKD iterative

L−1
∑

l=0

(
M
∏

m=0
s[l−mTimp]

)2

(
L−1
∑

l=0
s[l]2

)M+1 equispaced impulses

MOMEDA direct 1
∥t∥

tTs
∥s∥ periodic impulses

lighting differences, pros and cons. Table 1 summarizes the salient points
addressed.
The first category of BD algorithms is represented by methods that are solved
iteratively using approaches such as the OFM or the EVA. In the specialized
literature the most used BD methods for rotating machine diagnostics are:
MED [38, 28, 44, 51] and MCKD [39, 48]. The second presented category re-
gards the BD algorithms solved directly: OMEDA [42, 40] and its improved
version MOMEDA [40].

2.3.1 Minimum Entropy Deconvolution

The MED algorithm has been firstly introduced by Wiggins [41] in seismic
applications, exploiting the maximization of the kurtosis in order to recover a
impulse-like estimation of the source. A criterion based on kurtosis maximiza-
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tion represents a very reasonable choice also in machinery diagnostics since
kurtosis is widely used as a general purpose indicator for fault identification
in bearings and gears.
With reference to Equation (1), the method provides an estimation of s0 (and
h) given x which maximizes the following criterion, i.e. the sample kurtosis:

κ4 =

L−1
∑

l=N−1
s[l]4(

L−1
∑

l=N−1
s[l]2

)2 . (5)

Note that this definition of sample kurtosis assumes zero-mean signals, as ob-
tained after centering. Moreover, the first considered sample is N − 1 instead
of 0. This choice is demonstrated in Ref. [40] and reduce possible numerical
artifacts on the recovered signal due to the deconvolution process. From now,
this strategy will be applied to all the blind deconvolution methods.
It should be remarked that MED is based on kurtosis maximization rather
than entropy minimization. The definition of the entropy can assume many
possible declinations. However, in this context, it is convenient to recall the en-
tropy definition given by the probability theory [52]: the entropy is a measure
of the average amount of information needed to specify the state of a random
variable. Thus, the probability distributions having peak-like shape would ex-
hibit low entropy values. Since kurtosis is also a measure of the sharpness
of a probability distribution, this perspective establishes the link between the
entropy and kurtosis. Moreover, if the signal probability distribution is sym-
metric and slightly non-Gaussian, then the Gram-Charlier expansion of the
differential entropy is related to the opposite of the kurtosis (see Appendix
A.1).
Inverse filter h is the results of the following maximization problem:

h = arg max
h

(κ4) (6)

that can be estimated iteratively by the OFM. Analogous results can be achieved
also using an eigenvalue (EV) approach exploiting the fourth-order cross cu-
mulant [46]. For the full demonstrations see: Refs. [41, 40] for the OFM and
Ref. [46] for the EVA. This criterion does not require any prior information
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about the mechanical systems involved; thus it can be considered more gen-
eral than other criteria that need, for instance, the prior knowledge of the fault
period.

Nevertheless, as pointed out in Ref. [40], the main limit of MED is that it
tends to extract the most impulsive source rather than a pattern of periodic
impulses, that actually is how the local faults of the rotating machines ap-
pear in vibration signals. This shortcoming usually occurs when the FIR filter
length is too long. This behavior is due to the nature of kurtosis since it theo-
retically reaches its maximum value for signals containing a unique impulse.

The term "too long" is on purpose ambiguous; in fact, a priori estimation
of the proper FIR filter length is not possible even if the FIR filter length is
a critical parameter that strongly influences the final results. This limitation
does not regard only MED but it is shared by all the blind deconvolution
algorithms. Thus, particular attention should be paid also to the selection of
the filter length.

2.3.2 Maximum Correlated Kurtosis Deconvolution

The MED algorithm has been recently improved by McDonald et al. [39],
which presented an iterative blind deconvolution method, called MCKD, based
on a novel criterion called correlated kurtosis. The definition of correlated kur-
tosis reads:

CKM =

L−1
∑

l=N−1

(
M
∏

m=0
s[l − mTimp]

)2

(
L−1
∑

l=N−1
s[l]2

)M+1 (7)

where Ts is the impulse period and M is the number of shifts. Note that the
correlated kurtosis is equivalent to the kurtosis for Ts = 0 and M = 1. This cri-
terion is a measure of signal impulsiveness connected with a given period Ts,
taking advantage of two characteristics frequently encountered with machine
faults: high kurtosis and repetitive occurrence of the impulses.
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Despite correlated kurtosis has been proposed by intuition, it is worth noting
that, de facto, is a cyclostationary criterion. A clarifying example is given in
case of M = 1:

CK1 =

L−1
∑

l=N−1

(
s[l]s[l − Timp]

)2

(
L−1
∑

l=N−1
s[l]2

)2 . (8)

Eq. (8) shows an evident similarity with the definition of kurtosis (see Eq.
5). However, it should be noted that the numerator of Eq. (8) is the discrete
autocorrelation of the signal power, s2, at lag Timp. This quantity is nothing
but the signal power contribution which changes cyclically with frequency

1
Timp

. De facto, since the correlated kurtosis is a measure of cyclostationarity

according to a given cyclic frequency defined through 1
Ts

, MCKD allows for
the estimation of a source exhibiting the maximum cyclostationarity at cyclic
frequency 1

Timp
.

The number of shifts M represents a parameter to be carefully set when
MCKD is applied to real vibration signals. From experience [39], low values of
M may not encourage enough the deconvolution of periodic impulses. More-
over, high values of M (in general more than 8) can compromise the correct
source estimation. The previous considerations can be used to provide a in-
formal justification about how correlated kurtosis behaves with respect to M.
The presence of strong background noise (SNR < 0) affects the estimation of
correlated kurtosis in particular for low values of M. For instance, with regard
to M = 1, the numerator of Eq. (8) is not a consistent estimator of discrete
autocorrelation in presence of noise. Furthermore, it is frequent that many
rotating machines, even at nominal constant speed, exhibit slight regime fluc-
tuations which reflect in fluctuating values of Timp. This contributes further to
a poor estimation of correlated kurtosis, in particular when M ≫ 1.

2.3.3 Optimal Minimum Entropy Deconvoluton Adjusted

The first direct method discussed in this work is the so called OMEDA, that
is an improvement of the original algorithm, proposed by Cabrelli [42] and
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advanced by McDonald and Zhao [40]. This method is based on the following
criterion:

D-Norm = max
k=N−1,1,··· ,L−1

(
|s[k]|
∥s∥

)
(9)

where ∥•∥ is the Euclidean norm. The FIR filter that maximizes Equation (9)
is given by one of the columns of

H =
(

XXH
)−1

X (10)

that corresponds to the output, s, having maximum D-Norm. The OMEDA
solution can be easily computed by pre-multiplying Equation (10) by XT. The
mathematical steps to obtain Equation (10) can be found in Refs. [42, 40].
According to Refs. [42, 40], it has been proved by means of numerical sim-
ulations that the OMEDA returns outputs having simpler structure than the
MED solution.
A simpler interpretation of this approach can be given noting that Equation
(10) is similar to the solution of a Least Square problem. The product between
the right side of Equation (10) and identity matrix I yields to an equation
where the kth column of H is the Least Square solution of:

hk =
(

XXH
)−1

Xek (11)

where ek is the kth column of I. In other words, Equation (11) is the solution
of the following minimization problem:

h = arg min
h

(∥Xh − ek∥) (12)

where ek actually is an ideal impulsive signal, i.e. a Dirac impulse having
unitary amplitude. Equation (11) is the Least Square solution of the filter co-
efficients based on a simple sharp target signal. Equation (10) is the extension
of this logic, being H the set of solutions obtained considering shifted Dirac
impulses as target signals. This interpretation is in agreement with the formu-
lation of OMEDA, since it is designed to recover the simplest source from a
given observation. Indeed, OMEDA scans all the possible Least Square solu-
tions keeping the one returning the highest D-Norm. Finally, this interpreta-
tion is particularly convenient since it gives a prompt explanation about the
tendency of OMEDA to deconvolve single peaks.
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2.3.4 Multi-point Optimal Minimum Entropy Deconvolution Adjusted

An improvement of OMEDA has been proposed by McDonald and Zhao [40]
by introducing a target vector t that promotes the deconvolution of a sequence
of periodic impulses instead of a single one. The modified version of D-Norm
(Equation (9)) is called Multi D-Norm and it reads:

Multi D-Norm =
1
∥t∥

tTs
∥s∥ . (13)

The corresponding BD algorithm is called MOMEDA. The FIR filter h that
maximizes Equation (13) is:

h =
(

XXH
)−1

Xt (14)

where t drives the deconvolution by imposing the positions and the weights of
the impulses to recover. A valid solution can be obtained by selecting the FIR
filter length greater than the fault period. In this way, the correct position of
the impulses are automatically adjusted by the filter delay. As for OMEDA, it
can actually be checked that maximizing Equation (13) is equivalent to finding
the Least Square solution of:

h = arg min
h

(∥Xh − t∥) (15)

i.e. the filter coefficients are estimated in order to minimize the least square
error between s and an ideal Dirac comb, t. Thus, by definition, MOMEDA
overcomes the limitation of OMEDA to deconvolve only a single impulse and
the restriction of MCKD to deal with short signals. By the way, MOMEDA
presents also some drawbacks as the overestimation of pattern of impulses.

2.4 proposed method

In the following section, a BD algorithm based on the Rayleigh quotient is pro-
posed. Firstly, a general criterion based on higher-order statistics is obtained;
then, the novel BD criterion based on the cyclostationary maximization is ex-
plained and discussed.
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2.4.1 Blind deconvolution driven by kurtosis maximization and extension to higher-
order statistics

Unlike the methods proposed in refs. [41, 46] – which are based on the OFM
method and the EVA method, respectively – BD with kurtosis maximization
can be reformulated as follows. Let us first recall the definition of the fourth
normalized moment, also called kurtosis. The expected mean for vibration
signals is zero, therefore the kurtosis of s (which is zero mean) reads:

κ4 =
M4

M2
2
=

sHWs

(sHs)2 (L − N + 1) (16)

where M4 and M2 are the fourth and the second moments, respectively, and
the weighting matrix W is defined as:

W = diag
(

s2

sHs

)
(L − N + 1) =

⎡⎢⎢⎣
. . . 0

s[n]2

0 . . .

⎤⎥⎥⎦ (L − N + 1)
L−1
∑

n=N−1
s[n]2

. (17)

Substituting Equation (2a) in Equation (16), the following expression can be
obtained:

κ4 =
hHXHWXh
hHXHXh

=
hHRXWXh
hHRXXh

(18)

where RXWX and RXX are the weighted correlation matrix and the correla-
tion matrix, respectively. Coming to the kurtosis maximization, it should be
noticed that Equation (18) is a generalized Rayleigh quotient whose maxi-
mization with respect to h is equivalent to the eigenvector associated with
the evaluation of the maximum eigenvalue λ of the following generalized
eigenvalue (EV) problem [53]:

RXWXh = RXXhλ (19)

then λ corresponds to maximum κ4. Since RXWX and RXX are real and sym-
metric by construction and RXX is also semi-positive definite, it implies that λ

must be positive. This property is in agreement with the fact that the kurtosis
is always positive by definition. The complete proof about optimization prob-
lems by means of the generalized Rayleigh quotient can be found in Appendix
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A.2. Furthermore, it should be noted that W has to be initialized with a guess;
hence, the equivalence between the maximum EV λ and the maximum κ4 is
reached only by means of an iterative algorithm summarized by the following
steps:

Step 1: assume a guess of h;

Step 2: estimate W evaluating Equation (2a) given X and guessed h;

Step 3: solve Equation (19) finding h associated to the maximum EV λ;

Step 4: return to Step 2 using h estimated in Step 3 until convergence.

Since BD is based on the hypothesis that the source is a independent iden-
tically distributed random variable, a good initialization of h is given by a
whitening filter, according to Ref. [54]. In practice, the whitening filter can
be computed by means of an auto-regressive model filter by using the Yule-
Walker equations for the filter coefficients estimation. Moreover, in mechanical
applications, the vibration signal spectra can be dominated by sharp peaks re-
lated to the gear mesh harmonics or other deterministic sources [29]. Thus,
the inverse AR filter strongly attenuates all the predictable components, re-
turning a signal with a flat spectral density, which is the expected shape, on
the average, for a signal containing a series of impulses. In order to improve
the algorithm speed, the complete evaluation of the generalized EV problem
can be avoided taking advantage of the fact that the algorithm needs only the
maximum value of λ. For this purpose, dedicated algorithms for the estima-
tion of the greatest EV (e.g. the power method) can be exploited.
At this point, an extension of the proposed algorithm can be written consid-
ering an arbitrary pth order normalized moment by properly modifying W.
Proceeding from the definition of the pth order normalized moment, the fol-
lowing criterion is proposed:

κp =
Mp

Mp/2
2

=
sHWs

(sHs)p/2 (L − N + 1)
p
2−2 (20)

where the related weighting matrix is expressed as

W = diag

(
sp−2

(sHs)
p
2−1

)
(L− N + 1)

p
2−2 =

⎡⎢⎢⎣
. . . 0

s[n]p−2

0 . . .

⎤⎥⎥⎦ (L − N + 1)
p
2−2

L−1
∑

n=N−1
s[n]p−2

.
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(21)

Hence, the BD algorithm via kurtosis maximization (see Equation (18)) can be
easily extended for any normalized moment just using the weighted function
defined in Equation (21). Note that in Equation (21) only p > 2 is relevant in
the interests of the detection of impulsive components since κp>2 is a measure
of the impulsiveness.

2.4.2 Blind deconvolution driven by cyclostationarity maximization

Analogously to the algorithm proposed in Section 2.4.1, a novel criterion for
BD is proposed hereafter based on the maximization of the cyclostationarity,
as measured by the Indicator of Cyclostationarity (ICS). This indicator has
been proposed by Raad et al. [35] and its effectiveness on diagnostic purposes
has been demonstrated in several applications such as gears [35], bearings
[55] and internal combustion engines [56].
First of all, it may be useful to introduce some basic notions about cyclosta-
tionarity. From a general standpoint, a cyclostationary process is a process
exhibiting a periodic behavior of its statistical properties. It has been demon-
strated [34] that the rotating machine vibration signals are well modeled by
cyclostationary processes. The real mechanical signals are often a mixture of
first-order and second-order cyclostationary processes, called also CS1 and
CS2, respectively. The CS1 part, whose mean is periodic, represents the per-
fectly deterministic part of the signal, which embodies all the periodic compo-
nents of the signal, and the CS2 part is the purely random signal part, whose
autocorrelation function is periodic. On these grounds, it is clear that the cy-
clostationary approach turns out to be more realistic and general with respect
to the approaches (as assumed in the MOMEDA) that consider only the pe-
riodic part. Furthermore, the concept of cyclic frequency should be given in
order to clarify the further dissertation. In the cyclostationary background,
the cyclic frequency can be seen as the carrier frequency related to a certain
(hidden) fluctuation of the signal energy, which can be related to physical phe-
nomena as gear faults and bearing, for instance. In this context, the (discrete)
cyclic frequency is defined as

α =
k
T

(22)
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where k is the number of the harmonic and T is the fault period (in samples).
Coming back to the proposed criterion, let us recall the general definition of
the second-order ICS:

ICS2 =

∑
k>0

⏐⏐cs
k
⏐⏐2

|cs0|2
(23)

with

cs
k =

⟨
|s|2, ej2π k

T n
⟩
=

1
L − N + 1

L−1

∑
n=N−1

|s[n]|2e−j2π k
T n (24a)

cs
0 =

||s||2

L − N + 1
. (24b)

Equations (24a) and (24b) may be expressed in a matrix form as follows:

cs
k =

EH|s|2

L − N + 1
(25a)

cs
0 =

sHs
L − N + 1

(25b)

where

|s|2 = [|s[N − 1]|2, ..., |s[L − 1]|2]T (26a)

E =
[

e1 · · · ek · · · eK

]
(26b)

ek =

⎡⎢⎢⎣ e−j2π k
T (N−1)

...
e−j2π k

T (L−1)

⎤⎥⎥⎦ . (26c)

From Equations (24a) and (24b), Equation (23) may be expressed as:

ICS2 =
|s|2HEEH|s|2

|sHs|2 . (27)

At this juncture, it may be observed that the signal comprising the periodic
components of |s|2, called P

[
|s|2
]
, containing all the cyclic frequencies of

interest α can be written as

P [s] =
1

L − N + 1 ∑
k

ek

(
ek

H|s|2
)
=

EEH|s|2
L − N + 1

(28)
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Substituting Equation (2a) and Equation (28) into Equation (27) after a simple
manipulation returns the final outcome:

ICS2 =
hHXHWXh

hHXHXh
=

hHRXWXh
hHRXXh

(29)

where the weighting matrix W reads:

W = diag

(
P
[
|s|2
]

sHs

)
(L− N + 1) =

⎡⎢⎢⎣
. . . 0

P
[
|s|2
]

0 . . .

⎤⎥⎥⎦ (L − N + 1)
L−1
∑

n=N−1
|s|2

. (30)

As done in Subsection 2.4.1, this BD criterion based on ICS2 can be generalized
to the pth order ICS by appropriately modifying Equation (30):

W =

⎡⎢⎢⎣
. . . 0

P [|s|p]
0 . . .

⎤⎥⎥⎦ (L − N + 1)
p
2

L−1
∑

n=N−1
|s|

p
2

. (31)

Equation (29) is the core of the proposed cyclostationary BD method, namely
CYCBD. By solving Equation (29) through Equation (30), the proposed method
extracts the source exhibiting the maximum CS2 behavior according to the
cyclic frequency k.

2.4.2.1 Extension to the Single-Input Multi-Output systems

So far, this method has been developed for SISO systems. However, the algo-
rithm can be easily extended to SIMO systems. This version of the algorithm
can be exploited in order to improve the final results by performing a simulta-
neous blind deconvolution of multiple response signals. For the SIMO model,
the deconvolution problem can be reformulated considering a number Q of
responses xq. The deconvolution is carried out simultaneously for each xq re-
turning the estimation of s, being the sum of the qth contributions computed
by the qth inverse filters hq.
Equation (1a), (29) and (19), that are valid for SISO systems can be modified
extending their validity also for SIMO systems. RXWX and RXX can be ex-
pressed as cross-correlation matrices, being Rqq the auto-correlation matrix of
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xq and Rqk the cross-correlation matrix between xq and xk (where k = 1, · · · , Q
and q ̸= k). Thus, RXX can is given by:

RXX =

⎡⎢⎢⎣
. . . Rqk

Rqq

Rkq
. . .

⎤⎥⎥⎦ (32)

where the diagonal blocks are composed of the auto-correlation matrices of xq
and the off-diagonal blocks are composed of the cross-correlation matrices of
xq and xk. The weighted correlation matrix, RXWX, can be defined analogously.
Again, the deconvolution problem can be iteratively solved by the generalized
eigenvalue problem reported in Equation (19) which returns h, that is the
concatenation of vectors of filter coefficients related to the qth response

h =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

h1
...

hq
...

hQ

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (33)

and the final value of maximized criterion λ. From Equation (33), the qth

contribution to the source s can be calculated as:

sq = Xqhq (34)

where Xq is the Toeplitz matrix estimated as in Equation (1b) related to the
qth response xq. Finally, the overall source, s, is computed by the sum of all
the qth sources calculated using Equation (34):

s =
Q

∑
q=1

sq. (35)

2.4.2.2 Weighting matrix in the angle domain

The proposed algorithm may be further enhanced for the diagnostics of rotat-
ing machines improving the estimation of the periodic component in Equation
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(31). It is a matter of fact that vibration signatures of rotating machines often
exhibit periodicity locked in the angle domain rather than in the time domain
[19, 34]. Recalling P [|s|p] in Equation (31), such a term is obtained by extract-
ing the Fourier coefficients related to a certain set of cyclic frequencies and
then returning the filtered signal in the time domain; viz:

P [|s|p] = ∑
k

ckej2π kt
T with ck =

1
L − N + 1

L−1

∑
n=N−1

|s[n]|pe−
j2πkn

T . (36)

Exploiting the measured instantaneous speed (if available), the periodic com-
ponent locked in the angular domain may be extracted avoiding resampling
[57] by a change of variable in Equation (36). Therefore, under the assump-
tions that the considered signal is time/angle dependent, i.e. s = s (θ (t)),
Equation (31) can be expressed in the time/angle domain as:

P [|s|p] = ∑
k

ckejkθ with

⎧⎪⎪⎨⎪⎪⎩
ck =

1
Θ

L−1
∑

n=N−1
|s[n]|pe−jkθ θ̇[n]

Θ =
L−1
∑

n=N−1
θ̇[n]

(37)

where Θ is the normalization term.
The cyclostationary BD method based on Equation (37) is hereafter referred as
CYCBDang. The cyclic components extracted by using Equation (37) should
lead to better results for the diagnostics of rotating machines since it improves
the estimation of the cyclostationary signal part also in presence of speed
fluctuations.

2.4.2.3 Further considerations

It should be observed that the weighting matrix reported in Equation (30) is
reminiscent. De facto, W expressed for the maximum kurtosis BD (see Equa-
tion (17)) is very similar to the weighting function obtained in Equation (30).
Furthermore, this similarity allows advancing another interesting observation:
the maximization of ICS2 is equivalent to maximize kurtosis of the signal com-
posed by a given set of cyclic frequencies α. From the physical point of view,
this criterion drives the deconvolution (based on maximum kurtosis) with
respect to only one phenomenon characterized by a specific period.
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This property is particularly relevant for the diagnosis of rotating machines.
Indeed, as pointed out in Refs. [39, 40], it may be exploited to highlight a spe-
cific fault as well as to discriminate the faulty rotating component from the
healthy ones. However, the proposed criterion adds something more than the
others presented in the specialized literature. On the one hand, MOMEDA
deals with the extraction of an impulsive source approaching a Dirac comb,
which is deterministic. On the other hand, MCKD exploits a cyclostationary
criterion - i.e. the correlated kurtosis - as the CYCBD but owns some limita-
tions (see also Paragraph 2.3.2). The first one is that the MCKD can be used
just for short signals involving a very limited number of consecutive impulses
[39]. The second one regards the definition of the fault period, which is con-
stant and therefore valid only for systems operating at constant speed while
CYCBD can benefit of Equation (37) in order to deals with fluctuating speeds.
Eventually, the MCKD looks for the maximization of the kurtosis related to
a certain period and it is a matter of fact that the kurtosis may be not the
best indicator in some circumstances [58]. Moreover, CYCBD can be adapted
to maximize different orders of cyclostationarity. Conceptually, this is a key
point since the rotating machines exhibit cyclostationary behaviors of different
order depending on the type of fault and of the systems [19]. Thus, CYCBD
can be more versatile for the rotating machine diagnosis than the MCKD.

To sum up, it has been demonstrated that BD problem expressed as a general-
ized Rayleigh quotient represents a versatile approach being easily adapted to
arbitrary criteria, such as the maximization of κp (see Equation (21)) or ICSp
(see Equation (31)), just by selecting proper weighting matrices.

2.5 application to synthesized signals

Validation of the criterion based on the maximization of ICS2 using simu-
lated signals is provided in this section. BD via ICS2 maximization (CYCBD)
is performed considering basic synthesized signals and comparing the results
among other techniques already published such as: BD via kurtosis maximiza-
tion (Equation (17)) that can be considered as MED, OMEDA [42, 40], MCKD
[39] and MOMEDA [40].
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2.5.1 Description of synthesized signals

The simulations have been carried out in Matlab environment exploiting also
the Matlab scripts available in Ref. [40]. Let us consider different types of
signals holding cyclostationary behavior:

1. cyclic impulses with Gaussian distributed amplitudes and additive Gaus-
sian background noise (SNR = -19 dB);

2. cyclic impulses having Gaussian distributed amplitudes with jitter effect
(following a Gaussian distribution) and additive Gaussian background
noise (SNR = -19 dB);

3. a couple of trains of impulses (with different cyclic frequency sets) hav-
ing Gaussian distributed amplitude and additive Gaussian background
noise (SNR = -19 dB);

4. cyclic impulses with Gaussian distributed amplitudes and additive Gaus-
sian background noise (SNR = -19 dB) with the addition of a single
dominant impulse;

5. train of impulses with Gaussian distributed amplitudes having fluctuat-
ing cycle and additive Gaussian background noise (SNR = -19 dB);

which, for simplicity, are called xsim,1, xsim,2, xsim,3, xsim,4 and xsim,5, respec-
tively.
These signals are expressed in agreement with the previous general formula-
tion (see Equation (3)), neglecting the periodic component p, viz:

xsim =
I

∑
i=1

s0,i ∗ gs,i + n ∗ gn. (38)

where index I indicates the number of the impulsive patterns (I = 1 for xsim,1,
xsim,2 and xsim,5; I = 2 for xsim,3 and xsim,4). The parameters used for the syn-
thesized signals are resumed in Table 2 where: fs is the sampling frequency, T
is the time length of the signal, Ts,i is the impulse period, σs,i is the standard
deviation of the amplitude of the impulses and σj is the standard deviation
of the jitter. In these simulations, the IRFs gs,i and gn have been modeled as
responses of a damped single degree of freedom (SDOF) system to the time
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Figure 2: Simulated IRFs modeled as SDOF responses: (a) gs,1 and (d) its PSD, (b) gs,2

and (e) its PSD, (c) gn and (f) its PSD.

domain unit impulse [59]. The damping is assumed viscous and sub-critical,
as occurs in many real systems. In terms of displacements, the SDOF IRFs are
defined as:

xSDOF = Ae−ζωnt sin (ωdt) (39)

where A is the response magnitude, ζ the damping coefficient, ωn the res-
onance (angular) frequency and ωd = ωn

√
1 − ζ2. The IRFs gs,i and gn, ex-

pressed in terms of accelerations, are merely obtained by taking the second
derivative with respect to time of Equation (39). Table 3 recaps the IRFs param-
eters while Figure 2 shows the IRF waveforms and the related power spectral
density (PSD) using Welch’s estimator (window length: 20 samples, overlap:
75 %). Figures 3, 4, 5, 6 and 7 display simulated signals xsim,1, xsim,2, xsim,3,
xsim,4 and xsim,5, respectively, implemented in Matlab environment. Each sim-
ulated signal owns a pure cyclostationary source and has been designed with
the specific purpose of highlighting the limitations of the considered BD algo-
rithms from different standpoints.
Before examining the results, let us first discuss the general settings used for
the different BD techniques in this comparison. As pointed out previously,
care should be taken to select the filter length in order to achieve good quality
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Figure 3: Simulated signal xsim,1: (a) train of equispaced impulses s0,1 having random
(Gaussian) amplitudes with cycle 1/Ts,1; (b) s0,1 convolved with the IRF gs,1;
(c) Gaussian noise n convolved with the IRF gn; (d) overall signal xsim,1 with
SNR = -19 dB.
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Figure 4: Simulated signal xsim,2: (a) train of equispaced impulses s0,1 having random
(Gaussian) amplitudes with cycle 1/Ts,1 and jitter (Gaussian distribution);
(b) s0,1 convolved with the IRF gs,1; (c) Gaussian noise n convolved with the
IRF gn; (d) overall signal xsim,2 with SNR = -19 dB.

31



cyclostationary blind deconvolution for rotating machine

diagnosis

0 2000 4000 6000
-10

0

10 (a)

0 2000 4000 6000
-1

0

1
10-3

(b)

0 2000 4000 6000

samples

-10

0

10 (c)

0 2000 4000 6000

samples

-5

0

5
10-3

(d)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-0.02

0

0.02 (e)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

samples

-0.02

0

0.02 (f)

Figure 5: Simulated signal xsim,3: (a) train of equispaced impulses s0,1 having random
(Gaussian) amplitudes with cycle 1/Ts,1; (b) s0,1 convolved with IRF gs,1; (c)
train of equispaced impulses s0,2 having random (Gaussian) amplitude with
cycle 1/Ts,2; (d) s0,2 convolved with IRF gs,2; (e) Gaussian noise n convolved
with the IRF gn; (f) overall signal xsim,3 with SNR = -19 dB.
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Figure 6: Simulated signal xsim,4: (a) train of equispaced impulses s0,1 having random
(Gaussian) amplitudes with cyclic frequency 1/Ts,1; (b) s0,1 convolved with
IRF gs,1; (c) the single dominant peak s0,2 ; (d) s0,2 convolved with IRF gs,2;
(e) Gaussian noise n convolved with IRF gn; (f) overall signal xsim,4 with
SNR = -19 dB.
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Figure 7: Simulated signal xsim,5: (a) train of equispaced impulses s0,1 having random
(Gaussian) amplitudes with variable cycle 1/Ts,1; (b) s0,1 convolved with IRF
gs,1; (c) cyclic frequency values fluctuating around the mean value (dotted
line); (d) Gaussian noise n convolved with IRF gn; (f) overall signal xsim,5

with SNR = -19 dB.
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Table 2: Parameters used for the synthesized signals.

xsim,1 xsim,2 xsim,3 xsim,4 xsim,5

fs (Hz) 1000 1000 1000 1000 1000
T (s) 5 5 5 5 5
Ts,1 (s) 0.250 0.250 0.250 0.250 0.250
Ts,2 (s) - - 0.625 - −
σs,1 1.500 1.500 1.500 1.500 1.500
σs,2 - - 3.500 - -
σj - 0.025 - - -

SNR (s) −19 −19 −19 −19 −19

Table 3: Parameters used for the computation of the IRFs.

gs,1 gs,2 gn

A 1.963 10−10 3.591 10−10 1.258 10−10

ζ 0.004 0.01 0.05
ωn (rad/s) 19.894 39.788 63.662

results using BD algorithms: depending on the criterion, different strategies
should be adopted. This aspect is argued in detail in Refs. [39, 40]. Excepting
xsim,5, the same filter length has been kept for MED, OMEDA, MCKD and CY-
CBD (specifically 40 samples) while for MOMEDA the adopted filter length
is 300 samples. Regarding xsim,5, the filter lengths used for MCKD, MOMEDA
and CYCBDang are 100, 400 and 250 samples, respectively.

2.5.2 Results and discussion

Figure 8 summarizes the outputs obtained for different BD algorithms con-
sidering xsim,1. Note that source signal s0 is buried under strong background
noise (SNR = −19 dB) and all the output signals are normalized by their
respective maximum value. This normalization is allowed since BD is unable
to recover the actual source amplitude. From the qualitative standpoint, the
best result is achieved by MED, MCKD and CYCBD that provide a satisfy-
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Figure 8: Comparison of the BD results regarding xsim,1: (a) MED, (b) OMEDA, (c)
MCKD, (d) MOMEDA, (e) CYCBD and (f) the target source.
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ing representation of the source signal. The impulses are extracted with their
correct rate of repetition as well as their relative magnitudes. The MCKD per-
formance is expected since it is based on a cyclostationary criterion. However,
the correlated kurtosis is very sensitive to slight changes of the fundamental
fault cycle. Hence, the jitter effect or even very slight changes on the impulse
repetition rate should affect the MCKD results, as demonstrated by further
examples. Unfortunately, the smallest impulses are difficult, even impossible,
to be detected since they are overwhelmed by the low level background noise
that is still present in the recovered signal. MOMEDA and OMEDA are able
to properly extract just the prominent peaks, since they present a remarkable
background noise kept by the recovered signal.

From these results, it is clear that the outputs of MED and CYCBD appear
very similar. This outcome is not surprising since it has been demonstrated in
Section 2.4 that there is a strong mathematical similarity between these two
criteria. However, CYCBD owns the capability to recover signals characterized
by certain cyclic frequencies and this feature may be exploited for diagnostics
purpose as investigated in the following section.

In the same fashion, the results regarding xsim,2 are summarized in Figure 9.
In this case, the random part of the signal is higher than in the previous exam-
ple because of the jitter, which follows a Gaussian distribution. The presence
of the jitter strongly worsens the MCKD output since the repetition of the
impulses is no longer at constant rate. Again, MOMEDA returns to be not
effective for the recover of cyclostationary sources since it assumes a periodic
source to extract.

So far, no remarkable differences have been found between MED and CYCBD
considering xsim,1 and xsim,2. The examples represented by xsim,3 and xsim,4 em-
phasize the differences between these algorithms. The simulated signal xsim,3
has been obtained by adding a second pattern of impulses with a different
cyclic frequency. This signal may be useful in order to inspect the capability
of CYCBD to discriminate different types of fault, depending on their peri-
odicity. The expectation is that MED will recover the source exhibiting the
lower number of impulses, i.e. the impulses with period Ts,2, since the lower
the number of impulses, the higher the value of the kurtosis. This behavior
should be followed also by OMEDA. Assuming that the source of interest is
the one having period Ts,1, the results shown in Figure 10 agrees with the pre-
vious prediction. Indeed, MED (diagram (a) in Figure 10) recovers the source
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Figure 9: Comparison of the BD results regarding xsim,2: (a) MED, (b) OMEDA, (c)
MCKD, (d) MOMEDA, (e) CYCBD and (f) the target source.
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Figure 10: Comparison of the BD results regarding xsim,3 focusing on fault period Ts,1:
(a) MED, (b) OMEDA, (c) MCKD, (d) MOMEDA, (e) CYCBD and (f) the
target source.
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having period Ts,2 whereas CYCBD is the only one able to recover correctly
the desired impulsive source. Moreover, note that MOMEDA is not biased by
the presence of another impulsive pattern, but the provided estimation ap-
pears very noisy and the recovered peaks are barely observable; analogously,
MCKD returns similar results. OMEDA completely fails the source recovering.
Figure 11 collects the results obtained with the same data of Figure 10, but
focusing on the target source having period Ts,2. As expected, CYCBD and
the other BD techniques that depend on the selected fault period, i.e. MCKD
and MOMEDA, can properly extract the target signal (diagram (f) in Figure
11). Note that, in this case, all the recovered signals are globally better than
those collected in Figure 10. This behavior can be explained by the fact that,
since the two mixed impulsive patterns have similar amplitudes (see diagram
(a) and (c) in Figure 5), the maximized criteria tend to be more effective for
the pattern, exhibiting the minor amount of impulses in the full time span.
The simulated signal xsim,4 (see Figure 6) addresses the case of a train of im-
pulses with Gaussian distributed amplitude with a single dominant impulse.
Likewise to xsim,3, MED as well as OMEDA deconvolve the single dominant
peak instead of the train of impulses, as reported in Figure 12. Moreover, also
MCKD fails to provide the desired results.

Care should be paid to signals that exhibit more than one impulsive source. In
fact, all the BD techniques addressed in this research are valid under the hy-
pothesis of the presence of a single impulsive pattern to deconvolve; in other
words, they basically refer to Single-Input-Single-Output systems. Hence, the
proposed attempt to extract multiple sources only demonstrates that, under
certain conditions, CYCBD - and to a lesser extent MCKD and MOMEDA -
can overcome this intrinsic limit. But the results shown in Figures 10 and 11

can not be considered as a definitive proof of the effectiveness of CYCBD on
signal separation considering multiple sources.

Finally, xsim,5 concerns the case of a train of impulses that are equispaced in
the angle domain but they have a variable cyclic frequency in the time do-
main. In practice, this could be the case of bearing faults or gear faults under
variable operating conditions. As reported in Figure 7(c), the cyclic frequency
oscillates sinusoidally with a mean value of 10 Hz and an amplitude of ±1 Hz.
Figure 13 summarizes the results of the last numerical example and does not
display the results of MED and OMEDA since the goal is to underline the lim-
itations of MCKD and MOMEDA regarding non-equispaced impulses. In this
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Figure 11: Comparison of the BD results regarding xsim,3 focusing on fault period Ts,2:
(a) MED, (b) OMEDA, (c) MCKD, (d) MOMEDA, (e) CYCBD and (f) the
target source.
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Figure 12: Overall comparison of the BD results regarding xsim,4: (a) MED, (b)
OMEDA, (c) MCKD, (d) MOMEDA, (e) CYCBD and (f) the target source.
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Figure 13: Overall comparison of the results regarding xsim,5: (a) MCKD, (b) MO-
MEDA, (c) CYCBDang and (d) the target source.
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case, the CYCBDang is driven by the tacho reference while MCKD and MO-
MEDA are performed by using the average impulse period, which is 10 Hz. It
can be easily noticed that CYCBDang recovers the original source with good
accuracy in terms of relative amplitude as well as impulse spacing. However,
both MCKD and MOMEDA are not capable to recover the original source
providing a noisy output.
This section has remarked the advantages of CYCBD for the analysis of cy-
clostationary signals in comparison with BD algorithms already published in
the literature by using dedicated examples. In general, CYCBD returns bet-
ter results with respect to the other BD algorithms when the source is purely
cyclostationary. The simulated results have highlighted the superiority of CY-
CBD with respect to MOMEDA, which is expected since MOMEDA fits with
periodic sources. Moreover, MCKD is overcome too even if correlated kur-
tosis is a cyclostationary criterion. This is probably due to the definition of
correlated kurtosis. Indeed, as remarked in Section 2.3.2, correlated kurtosis
can become nil for long impulse trains as well as impulses not perfectly equis-
paced. However, this preliminary benchmark has been performed considering
ad hoc simulated signals with marked cyclostationary behavior. Thus, further
verifications are carried out in the next section considering real signals.

2.6 application to real signals : diagnosis of a gear tooth spall

The first example deals with the detection of a gear tooth spall. First, a quali-
tative comparison of the results of several BD algorithm is presented; second,
a procedure for gearbox diagnostics for the identification and quantification
of seeded gear spalls based on BD technique is proposed and discussed.

2.6.1 Experimental setup

The first experimental verification of the proposed algorithm has been as-
sessed by means of a dedicated test rig, shown in Figure 14, located at the
Engineering Department of the University of Ferrara. Detailed information
about this test rig can be found in Ref. [60].
The investigated gearbox is composed of two stages of helical gears: the first
one having 18 and 71 teeth and the second one 12 and 55 teeth. Four dif-
ferent sizes of gear tooth spall have been realized via milling process in the
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Load motor

Gearbox

Driving motor

Accelerometer

Figure 14: Experimental setup.

71 teeth wheel (first stage) in order to verify the sensitivity of the proposed
criterion (see Figure 15). Table 4 collects the details of the artificial defects
sorted according to the percentage ratio between the spall size and the whole
tooth face. More information about the reproduction of the gear tooth spall by
milling process can be found in Ref. [61]. All the steady condition tests have
been carried out considering the following nominal conditions: input shaft
speed of 3600 rpm and nominal load of 48.8 Nm.
It should be noted that the test condition just described is particularly unfa-
vorable for the spall detection. Firstly, gear tooth spall is harder to detect in
helical gears than in spur gears since the contact in helical gear is smoother.
This feature, in general, favors the reduction of impulsive components due to
the contact among teeth. Secondly, considering that the higher the load, the
better the contact among gear teeth, the test load is significantly lower than
the nominal load of the gearbox in actual working condition.
A variable speed test has been also carried out in order to validate experi-
mentally the CYCBDang algorithm. In this case, the test has been performed
in run-up condition between 30 Hz and 34 Hz referenced to the input shaft
rotation frequency, with a load of 45.8 Nm.
The vibration signals in the radial direction have been collected by means of
B&K piezoelectric accelerometer placed on the bearing support of the first
stage pinion with sampling frequency 10.2 kHz for a total time duration of
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(a) (b)

5 mm 5 mm

Figure 15: Detail of artificial gear tooth spall: (a) Sp12.5 and (b) Sp25.

Table 4: Description of the gear tooth spalls considered in the experimental campaign
[62].

ID Fault description

Sp12.5 2 mm along the tooth profile, 0.6 mm
depth, 2 mm across the tooth face
(12.5 % of the tooth face width)

Sp25 2 mm along the tooth profile, 0.6 mm
depth, 4 mm across the tooth face (25 %
of the tooth face width)

Sp50 2mm along the tooth profile, 0.6 mm
depth, 7.8 mm across the tooth face
(50 % of the tooth face width)

Sp100 2 mm along the tooth profile, 0.6 mm
depth, 15.5 mm across the tooth face
(100 % of the tooth face width)
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Figure 16: Measured vibration signals in the Sp100 case at (a) constant speed and (c)
variable speed with their speed profiles (b,d).

4 s. The measurement campaign has been conducted using LMS SCADAS 310
controlled by LMS Test.Lab. An example of the acquired vibration signals and
their speed profiles is reported in Figure 16.

2.6.2 Discussion of the results: constant regime tests

The results presented in this section have been carried out considering the
following filter lengths: 50 samples for MED and MOMEDA, 40 samples for
MCKD (with 5 shifts), 800 samples for MOMEDA and 700 for CYCBD. The
CYCBDang has not been considered since the benefits of using this algorithms
should be negligible in a constant speed case. All the recovered signals have
been normalized by their respective absolute maximum value in order to fa-
cilitate their comparison. Furthermore, the MCKD has been performed using
the whole signal in order to highlight its intrinsic limitation to deal with long
signal and with non-constant speed [39].
Figures 17, 18, 19 and 20 summarize the results related to cases Sp12.5, Sp25,
Sp50 and Sp100, respectively. The first observation is that MED correctly re-
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Figure 17: Comparison of the results regarding 12.5 % spalling (Sp12.5) : (a) MED, (b)
OMEDA, (c) MCKD, (d) MOMEDA and (e) CYCBD.

covers the fault train only in case Sp100 (see Figure 20), i.e. where the defect
should be more evident, whereas OMEDA appears ineffective in all the con-
sidered cases. The tendency of OMEDA to be recover a single large impulse is
highlighted in Figure 17(b) and to a lesser extent in Figure 18(b). As expected,
the challenging test conditions highlighted the significant limitations of MED
and OMEDA when applied to mechanical vibration signals.

Now, let us discuss the results related to BD algorithms designed for rotating
machine diagnostics (MED and MOMEDA) compared to the proposed ones.
The MCKD returns satisfactory results just in cases Sp100 and Sp50 but in the
remaining cases the algorithm does not recover correctly the train if impulses.
These results can be explained by the fact that, as reported in Figure 16, the in-
stantaneous speed is not perfectly constant. Considering that the definition of
correlated kurtosis (see Equation (7)) is based on the correlation of signal seg-
ments having a fixed lag mTimp, which correspond to a constant fault period,
the MCKD could fail on the extraction of very slight impulsive sources buried
in background noise and mechanical interferences. The other BD algorithms
examined in this comparison - namely MOMEDA and CYCBD - are able to

48



2.6 application to real signals : diagnosis of a gear tooth spall

-1

0

1 (a)

-1

0

1 (b)

-1

0

1 (c)

-1

0

1 (d)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

time [s]

-1

0

1 (e)

Figure 18: Comparison of the results regarding 25 % spalling (Sp25): (a) MED, (b)
OMEDA, (c) MCKD, (d) MOMEDA and (e) CYCBD.
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Figure 19: Comparison of the results regarding 50 % spalling (Sp50): (a) MED, (b)
OMEDA, (c) MCKD, (d) MOMEDA and (e) CYCBD.
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Figure 20: Comparison of the results regarding 100 % spalling (Sp100): (a) MED, (b)
OMEDA, (c) MCKD, (d) MOMEDA and (e) CYCBD.

properly deconvolve the sequence of impulses due to the gear tooth spall. De
facto, this preliminary result is not surprising since the gear tooth spall can
be modeled as a composition of CS1 signal and CS2 signal [35, 20]. On these
grounds, even if the criterion of MOMEDA is based on the extraction of a
periodic signal rather than a cyclostationary one, the MOMEDA results are
as good as the CYCBD results. Therefore, this first comparison highlights the
superiority of the proposed CYCBD algorithm with respect to MED, OMEDA
and MCKD for the gear tooth spall identification.
Finally, this preliminary study has shown that:

◃ MED and MOMEDA cannot deal with small gear tooth spalls with small
loaded gears;

◃ MCKD returns better results than MED and OMEDA but only for Sp50
and Sp100 cases;

◃ MOMEDA and CYCBD have comparable outputs.

This investigation has shown also that the maximized criterion of the CYCBD
is sensitive to the spall size. This feature will be exploited later for the design
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Figure 21: BD results of the run-up test regarding Sp100: (a) instantaneous speed of
the intermediate shaft, (b) MCKD output, (c) MOMEDA output and (d)
CYCBDang output.

of a diagnostic procedure for gear tooth spalls as well as for pointing out the
differences between CYCBD and MOMEDA.

2.6.3 Discussion of the results: run-up test

The run-up experiment has been performed in order to confirm the observa-
tion made on the simulated case with variable speed, with specific reference
to the simulated signal xsim,5 and Figure 13. The goal of this validation is to
verify the limits of MCKD and MOMEDA to deal with train of impulses hav-
ing a variable period with respect to CYCBDang. Thus, just the Sp100 have
been considered. As done before, MCKD and MOMEDA are referenced to a
mean impulse period while CYCBDang is driven by the tachometric signal.
The experimental results of the run-up are shown in Figure 21 and discussed
hereafter. For the sake of clarity, only 1 s is shown. In this case MED as well as
OMEDA have been neglected since they are not sensitive to the periodicity of
the impulse train. The results have been carried out by using a filter length of
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50 samples for all the BD methods. It is clear that the best results is returned
by CYCBDang and MOMEDA. In fact, the impulses extracted by using the
MCKD are buried under strong background noise. For this reason, some im-
pulse is barely visible. It should be noted that the time intervals, which are
actually expressed in frequency in Figure 21, are almost constant for the MO-
MEDA results. The spacing of the impulses is in agreement with the prior
periodicity selected (i.e. the average rotation frequency of the intermediate
shaft), which is (8.656 Hz). However, the rotation frequency is linearly increas-
ing, that is in contrast with the constant spacing of the extracted impulses.
Finally, this experiment has shown that MCKD returns a very noisy result
even if the spacing between the impulses is correct and MOMEDA extracts
a train of impulses without a physical meaning but reflecting the periodicity
of the Dirac comb t (see Equation (15)). Instead, CYCBDang returns a clear
extraction of the impulses with the proper occurrence rate.

2.6.4 A diagnostic procedure for the gear tooth spall identification

The strong points of CYCBD previously highlighted may be exploited in order
to design a diagnostic procedure for the identification (and the quantification)
of gear tooth spall for gearboxes operating at constant speed. Also if the re-
sults presented in the previous subsection are pretty easy to be interpreted,
it’s a matter of fact that the diagnostics of machines by means of vibration
analysis is directing to be less dependent on the user interpretation by using
of simple indicators that objectively quantify the state of the machine. For this
purpose, a methodology can be advanced that gives a simpler interpretation
of the data returning information about both the presence and the severity of
the gear tooth spall.
In a similar manner to Refs. [39, 40], the final value of the maximized criterion
may be exploited considering the percentage difference between the healthy
case and the faulty one. Thus, calling such a percentage difference as F, it
reads:

F =
C − Cre f

Cre f
100 (40)

where C and Cre f are the maximized criterion values (see Equations (7), (13)
and (23)) for the faulty case and the healthy one, respectively. This indicator
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can be used in order to estimate both the size and the position of the gear
tooth spall. From the physical standpoint, a positive deviation of F indicates
the possible presence of a defect; analogously, a negative deviation as well as
very low positive F may be interpreted as the absence of a defect. Furthermore,
the value of F can used to determine the severity of the fault since the greater
F, the greater the spall size.

Let us apply the proposed indicator for the diagnostics of the gearbox under
investigation. This gearbox is composed of two stages that correspond to 3 ro-
tating axes having different rotation frequencies. Performing BD algorithms
using the incorrect fault periodicity should lead to negative value of F for
all the considered spall sizes. On the contrary, when the proper fault period
is taken into account, F should exhibit positive values, increasing with the
spall size. Before discussing the results, it should be noted that the cyclic fre-
quency sets used in CYCBD must be computed avoiding overlapped frequen-
cies among the sets in order to guarantee the uniqueness of the information
carried by each frequency set.

The final results on the use of indicator F are summarized in Figure 22, consid-
ering MCKD (a), MOMEDA (b) and CYCBD (c). MED and OMEDA have been
left out on purpose since they are not able to distinguish repetitive impulses
having different periods. Moreover, the CYCBD results has been obtained by
using a filter length of 200 samples. As demonstrated later, the filter length
has a limited influence on the CYCBD results. As mentioned previously, three
fault periods have been taken into account, namely the rotation frequencies of
the input shaft (first column of Figure 22), of the intermediate shaft (second
column of Figure 22) and output shaft (third column of Figure 22). Remember
that the seeded fault in the 71 teeth gear is synchronized with the period of the
intermediate shaft. Hence, negative values of F should be expected regarding
to the periods of the input and the output shafts whereas F must be positive
for the intermediate shaft just because it corresponds to the fault period.

The data related to the intermediate shaft period (Figure 22) highlight that
MCKD and MOMEDA fail on the full detection of the gear tooth spall. In fact,
negative F values occur despite the presence of the defect. Furthermore, unsat-
isfying results are also achieved considering the period of the input shaft and
of the intermediate one, since non-negligible positive values of F are present.
However, this experimental evidence is not an absolute proof of the ineffec-
tiveness of such methods. Indeed, it should be remarked that the considered
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Figure 22: Chart collecting the values of F (Equation (40)) for (a) MCKD, (b) MO-
MEDA and (c) CYCBD. The percentage values are displayed on the top of
each bar.
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test condition is particularly hard to detect due to the low load and the gear
type (helical). The results perhaps could be improved finding a more con-
venient filter length - and M shifts for MCKD - by trial-and-error. However,
as demonstrated in the following subsection, CYCBD results are robust with
respect to the selected filter length.
On the other hand, interesting results are achieved by CYCBD. The gear tooth
spall is correctly identified in all the considered cases, since positive values of
F are achieved in all the considered cases. In addition, the severity of the fault
is also well represented because F increases according to the size of the seeded
fault. This result is particularly relevant because it indicates that CYCBD, de
facto, is sensitive to the dimension of the fault, which can be of great value in
order to monitor the evolution of the defects.
The results of CYCBD for the input shaft are satisfying since they are all
negative, indicating that the 18 teeth gear is healthy. Regarding the output
shaft, low positive values similar to the Sp12.5 case are present. This result can
be interpreted as the presence of a small defect in the 55 teeth gear. However,
the proposed method globally gives adequate results considering the slight
size of the fault in case Sp12.5 and the unfavorable test conditions due to the
small load. Indeed, in more favorable cases (spur gears, higher load..) this
method should be even more effective.

2.6.5 Sensitivity analysis

Despite the promising results obtained in the previous subsection, a sensi-
tivity analysis must be carried out in order to assess the effect of different
filter lengths on the final results. It is a matter of fact that blind deconvolution
techniques achieve different results depending on the considered filter length.
Thus, this aspect is investigated in more detail below. In this sensitivity anal-
ysis, CYCBD has been performed with FIR filter length, N, varying from 10
samples to 800 samples taking into account the cyclic frequency set related to
the fault period. Greater values of N are not considered because of the high
computational efforts which is unbearable for real time application and, in
general, for industrial purposes. The effects of various values of N have been
tested in terms of maximized ICS2, values of F and number of iterations.
Figure 23(a) collects the values of ICS2 whereas F values are displayed in
Figure 23(b). ICS2 values estimated with the proposed algorithm are in agree-
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22.
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Figure 24: Sensitivity analysis of CYCBD concerning the number of iterations in the
cases: (a) Sp12.5, (b) Sp25, (c) Sp50, (d) Sp100 and (e) healthy. The gray
square marks indicate the number of samples used in Figure 22.

ment with the related fault size, i.e. the greater the fault, the greater the ICS2.
Furthermore, the value of the final estimated ICS2 seems directly related to
the filter length. However, longer filter lengths should be taken into account
in order to clarify this relationship. This investigation is not performed in
this work because of the extreme computational effort involved. A sudden
increment of ICS2 values is observed between 670 samples and 680 samples.
This effect occurs very likely because in that region of the diagram the filter
length approaches the length of the fault period (approximately 673 samples).
Interesting remarks can be made observing the values of F collected in dia-
gram (b) of Figure 23. This diagram clearly shows that the proposed method-
ology is globally consistent considering a wide range of N. The effect of a
unlucky choice of N seems limited to a slight range of values and concerns
only the identification of case Sp12.5. Hence, the detection of the smallest
defect (Sp12.5) is not always guaranteed.
The number of iterations as a function of the filter length shown in Figure
24 can be considered as an indicator of the quality of the deconvolved sig-
nal. In fact, a high number of iterations implies a slow convergence rate and
consequently a slow algorithm. Two stoppage criteria have been adopted in
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the proposed algorithm: the first one regards the percentage difference of
two consecutive final values of the maximized criterion; the second one re-
gards the maximum number of iterations, which is activated if the condition
of the first one is not met. Hence, the observation of how the number of
iterations changes according to the variation of N may lead to pivotal consid-
eration about the proper selection of the filter length. Figure 24 indicates that
a large number of iterations is globally needed for the smaller spall sizes, i.e.
Sp12.5 and Sp25. The other cases do not highlight particular convergence is-
sues. Hence, taking into account the convergence rate and the computational
effort, Figure 24 suggest to limit N to 200 samples.

Thus, according to both Figures 23 and 24, in the considered experimental
case N should not be greater than 200 samples (corresponding to the 0.5 % of
the total signal length). In fact, in this range, satisfying results can be achieved
avoiding slow convergence rate associated with strong computational effort.
Furthermore, Figure 23 is a consistent proof of the robustness of the method
considering different size faults.

2.7 application to real signals : run-to-failure bearing test

The second example addresses the early bearing fault detection and identifi-
cation considering a run-to-failure experiment. The capability of the CYCBD
to monitor the fault development is investigated and discussed.

2.7.1 Experimental setup

The vibration signals used in this example are part of the dataset provided
by the Center for Intelligent Maintenance Systems (IMS) of the University of
Cincinnati [63]. The IMS dataset provides three endurance tests having dif-
ferent lengths and outcomes. The first dataset has been discarded because
several recording interruptions occurred and two bearing faults concurrently
developed in two different bearings [64]. Note that BD algorithms are de-
signed for recovering only one source from one or more responses. Moreover,
Ref. [64] pointed out that actually the third dataset does not exhibit any fault
signature. Thus, the third dataset has been discarded too. On these grounds,
the following investigation is referenced only to the second dataset.
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Motor

Bearing 1 Bearing 2 Bearing 3 Bearing 4

Load Load

Belt

Figure 25: Schematic of the IMS test rig.

According to the scheme shown in Figure 25, the test rig is composed of
four bearings type Rexnord ZA-2115 installed in the same shaft. This test has
been performed with a fixed shaft speed of 2000 rpm and a load of 27.7 kN
applied to Bearings 2 and 3. Each bearing is monitored by two accelerometers
PCB type 253B33 mounted in radial direction. It should be noted that only
one sensor for each bearing is available for this test. The vibration signals
have been continuously acquired with a sampling frequency of 20.48 kHz,
collecting 1 second of samples each 10 minutes. The test has been stopped
after 7 days, which correspond to 16.4 minutes of actual acquisition, revealing
an outer race fault occurred in Bearing 1 (no photos are available). Further
detail about the experimental apparatus can be found in Refs. [63, 65] whereas
the whole dataset is openly available online1.

2.7.2 General data inspection

The IMF dataset has been widely analyzed using different approaches and
goals. This dataset has been designed and created in order to provide an
experimental framework for prognostic investigations. These tests are par-

1 http://ti.arc.nasa.gov/tech/dash/pcoe/prognostic-data-repository Last consulted
on 11/10/2017

59

http://ti.arc.nasa.gov/tech/dash/pcoe/prognostic-data-repository


cyclostationary blind deconvolution for rotating machine

diagnosis

ticularly valuable for two main reasons: first, bearing faults naturally occur
without external intervention; second, the test length allows for the natural
development and degradation of faults. These test conditions are particularly
interesting since natural faults in dedicated test benches are surely closer to a
real scenario than an artificial fault.
For instance, the work of Gousseau et al. [64] exploited the Squared Envelope
Spectrum [17] (SES) and the Spectral Coherence [33] in order to detect the
bearing faults through visual inspection of time/frequency or frequency/cy-
cle representations. The major part of research works involving this dataset
deals with the prediction of the remaining useful life and the early stage
bearing fault identification by means of techniques (as machine learning tech-
niques) barely linkable to physical phenomena.
A global time/frequency representation of the vibration signal is given by the
Short Time Fourier Transform (STFT) shown in Figure 26. The STFT has been
performed on segments of 1 s without overlap, since the signal has not been
acquired continuously. For this representation, the raw vibration signal has
been pre-whitened by means of AR filters in order to attenuate the determin-
istic part of the signal highlighting the random part related to the bearing
fault, i.e. enhancing the visibility of the all Pass Frequency Outer race (BPFO)
harmonics. In this respect, several research works [29, 17, 66, 67] demonstrated
that AR models can be used for reducing the periodic contributions in vibra-
tion signals, highlighting the random part – i.e. second-order cyclostationary
– related to a bearing fault.
As pointed out in a previous research work on IMF dataset #2 [64], the
time/frequency representation highlights that some components correspond-
ing to sole BPFO harmonics rise up just before day four. Concurrently, the
fundamental BPFO harmonics is present from the beginning. The growth of
these components strongly suggest the development of a defect on the outer
race. This behavior is particularly visible in the frequency range 0 − 4.5 kHz.
A more quantitative data analysis can be conducted by means of time domain
feature analysis. As suggested in Ref. [68], Figure 27 collects two common
statistical indicators estimated by using the raw vibration signals: Root Mean
Square (RMS) and kurtosis. Also in this case, both the diagrams in Figure 27

suggest a deviation from the healthy state. RMS and kurtosis trends globally
reflect the considerations made after inspecting the time/frequency represen-
tation in Figure 26. RMS appears more sensitive than kurtosis since a visible
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Figure 27: Values of (a) RMS and (b) kurtosis computed from the raw vibration sig-
nals.

deviation of the values can be seen after approximately 3.5 days (according
to Ref. [64]) while the kurtosis values show a visible deviation only after four
days. Even if these indicators have quiet good performance on the early fault
detection, they do not give any information about the fault typology being
just global statistical descriptors.
These considerations represent a starting point for further analyses using BD
algorithms. In fact, on the one hand, time/frequency approaches provide a
good fault identification capability and a mediocre predisposition to pass/-
fail decision strategies. On the other hand, scalar indicators fit naturally into
pass/fail decision methods but often are too general to effectively identify
bearing faults. In light of these results and in the wake of Ref. [64], CYCBD
can be used as a cyclostationary indicator being able to early detect and con-
currently identify bearing faults. Moreover, since CYCBD is based on a cyclo-
stationary criterion, this approach guarantees a strong link with all physical
phenomena involved in the mechanical signature framework, as opposed to
machine learning approaches that are purely data-driven and lack of physical
interpretations.
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2.7.3 Early fault diagnosis by blind deconvolution analysis

On the basis of the previous discussion and according to Section 2.6, the re-
sults can be analyzed observing the behavior of maximized BD criteria with
respect to time. To this purpose, CYCBD output (i.e. the ICS2 final value)
can be used as an indicator capable to identify also the kind of the fault as
opposed to RMS and kurtosis, for instance. In this respect, two different fre-
quencies of interest, the BPFO and the Ball Pass Frequency Inner race (BPFI),
are considered. As done previously in Section 2.6, the effectiveness of CYCBD,
using both the SISO and SIMO formulations, is verified and compared with
MCKD and MOMEDA. Both BPFO and BPFI have been estimated through the
enhanced enevelope spectrum computed with spectral correlation proposed
in Ref. [33]. Briefly, this procedure consists on selecting the BPFO and BPFI
corresponding to the envelope maximum value within a frequency range cen-
tered in the theoretical BPFO and BPFI estimated by using the average rotating
speed and the bearing geometrical characteristics.

Considering this kind of data representation, a threshold can be designed in
order to establish both fault type and first fault manifestations. In a general
context, a threshold based on the presence of outliers, i.e. observations that are
distant from a given distribution pattern, is a reasonable choice. Frequently,
outliers indicate the presence of some kind of anomaly due, for instance, to
regime changes or faults. Hence, the idea is to define a threshold from ob-
servations related to a supposed healthy state (e.g. samples acquired during
the test beginning) and check if the following observations are outliers or are
coherent with the initial pattern distribution.

Among all the possible methods, a consistent rule of thumb for identifying
suspected outliers is the Tukey’s method that has been already successfully
used for pass/fail decision tests by using vibration-based scalar indicators in
other research works [56, 69]. The Tukey’s method is quiet general and does
not require prior distribution knowledge. The only limitation is that Tukey’s
method could lose effectiveness for data having non-symmetric probability
distribution. Moreover, for bearing fault monitoring applications, another nec-
essary condition is that the system operates in stationary conditions because
all the vibration signature changes should be associated to faults rather than
regime variations. According to Ref. [70], this method exploits the interquar-
tile range (IQR), namely the distance between first and third quartile, in order
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to define two classes of outliers: “outside” and “far out”. The first class refers
to mild outliers (i.e. data not so far from the reference distribution) and it
is defined as 1.5 times the IQR distance. The second one refers to extreme
outliers (i.e. data significantly distant from the reference distribution) and it
is defined as 3 times the IQR distance. In this application, the threshold is
represented by the latter class just for the upper limit since it is expected that
the considered indicators rise when a fault occurs.

The comparison of BD methods is performed in terms of bearing fault identifi-
cation and early detection dedicated diagrams from Figure 28 to Figure 33. In
these diagrams, dark gray data points refer to the maximized BD criterion that
works as a scalar indicator referring to a specific type of bearing fault (outer
race fault or inner race fault in this case). The threshold has been estimated by
using the Tukey’s method on the data acquired in the first day of test, under
the hypothesis that all the bearings are healthy in that time interval. Note that
time window related to the healthy condition has been highlighted in light
gray.

Moreover, it is expected a certain dispersion of the indicator even when the
bearings are healthy. This is due to unpredictable phenomena such as mea-
surement uncertainty and other events unrelated to bearing faults. Such phe-
nomena could produce also outlier data points that can be misinterpreted.
Consequently, it is convenient to smooth the data points in order to estimate
a consistent average trend that simplify the data verification with respect to a
given threshold. The data smoothing has been performed by the moving av-
erage method, which can be easily implemented by convolving a given time
series with a fixed rectangular window of 50 samples.

Figure 28 collects the ICS2 final values estimated by SISO CYCBD for the sen-
sor on Bearing 1 with a FIR filter length of 80 samples. Figure 28 highlights
that, considering the BPFO, a clear increasing trend can be detected after 3.8
days, with three consecutive local sudden deviations in correspondence to day
5, 6 and 6.5. This global fluctuations of the indicator trend, also observed in
Figure 27, are likely due to propagation phenomena of the bearing fault. As
reported in Ref. [71], after the defect appearance, the propagation mechanism
of bearing faults is composed by consecutive propagation and smoothing ef-
fects. The diagram related to the BPFI shows a slighter increasing trend due
to the presence of a certain number of values above the threshold. This hap-
pen especially when also the ICS2 values referenced to the BPFO significantly
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Figure 28: ICS2 final values of CYCBD (SISO) for the sensor on Bearing 1 referenced
to (a) the BPFO and (b) the BPFI.

deviate. This behavior is in agreement with the physical interpretation of the
fault development, since a marked growing trend of the indicator related to
the outer race fault is expected. By the way, the presence of some data points
beyond the threshold in the BPFI case could make the interpretation of the
data difficult.

The SIMO approach may improve the results because the weighting matrix es-
timation is enhanced when several responses are considered. Since the qual-
ity of the CYCBD output is strictly related to the accuracy of the extracted
cyclic components, a good estimation of the weighting matrix leads to a bet-
ter source estimation. In this particular case, the low frequency resolution of
the measurements (1 Hz) is not ideal for bearing diagnostics due to leakage
effects and consequent bad estimation of ICS, that is the CYCBD criterion.
Thus, the SIMO approach can be used to counter-balance this limitation by
exploiting the presence of multiple sensors on the test bench. Four transduc-
ers have been used in this experimental campaign, therefore SIMO CYCBD
has been performed considering different combinations of sensors. Figure 29

accounts the sensors placed on Bearings 1 and 2, Figure 30 accounts the sen-
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Figure 29: ICS2 final values of CYCBD (SIMO) referenced to (a) the BPFO and (b) the
BPFI taking into account the sensors on Bearingd 1 and 2.

sors placed on Bearings 1, 2 and 3 and Figure 31 accounts all the available
accelerometers. It can be observed that the result quality has been strongly
improved by performing the SIMO CYCBD. In this case, the outer race fault
results are not significantly improved since becomes visible after 3.8 days, as
highlighted also by SISO CYCBD results. However the diagrams related to the
inner race fault are generally enhanced. In fact, the ICS2 values referenced to
the inner race fault shows decreasing number of outliers as the number of
considered sensors increases. This leads to a reduced chance to detect false
positives since the smoothed trend never across the threshold, in particular in
Figures 30 and 31.

Furthermore, it should be noted that when accelerometers far from the exci-
tation (i.e. the outer-race fault in Bearing 1) are involved, data points below
the threshold may appear in the diagrams concerning BPFO. This can be ex-
plained because the effectiveness of SIMO CYCBD can decrease considering
accelerometers very far from the source implying to a strong reduction of the
SNR, even if the system is very stiff. The best results regarding the SIMO CY-
CBD algorithm is achieved with three accelerometers (see Figure 30) but also
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Figure 30: ICS2 final values of CYCBD (SIMO) referenced to (a) the BPFO and (b) the
BPFI taking into account the sensors on Bearings 1, 2 and 3.
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Figure 31: ICS2 final values of CYCBD (SIMO) referenced to (a) the BPFO and (b) the
BPFI taking into account all the available sensors (on Bearings 1 to 4).
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Figure 32: Correlated kurtosis final values of MCKD referenced to (a) the BPFO and
(b) the BPFI.

the other cases return a satisfying result. Therefore, this experimental test has
shown that SISO CYCBD is effective but the results can be further enhanced
by the SIMO approach at the cost of higher computational effort.

As done before, the results obtained by MCKD and MOMEDA are reported in
Figures 32 and 33, respectively. For the sake of clarity, the correlated kurtosis
values in Figure 32 are expressed in logarithmic scale. For the MCKD, the
filter length has been set to 120 samples using 7 shifts. Moreover, only 2000
samples of each records have been taken into account, according to the sug-
gestion in Ref. [39]. The results obtained with MCKD referenced to the BPFO
are worse than the SIMO CYCBD in terms of early fault detection and of data
dispersion. However, with some limitations, the MCKD allows for the bearing
fault identification. Indeed, the fault typology is correctly detected, as well as
the increasing trend of the BPFO indicator. However, the threshold is crossed
after 4.5 days that is approximately one day later with respect to CYCBD re-
sults. The effectiveness of MCKD can be explained by observing Figure 26.
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Figure 33: Multipoint kurtosis final values of MOMEDA referenced to (a) the BPFO
and (b) the BPFI.

It should be noted that MCKD is based on the fundamental periodicity of
the fault rather than a set of frequencies as in the CYCBD method. Since the
STFT in Figure 26 shows a prominent component at the fundamental BPFO,
this may be the reason of the effectiveness of MCKD. Indeed, in other circum-
stances where the first BPFO harmonics are not visible, MCKD may return
unsatisfactory results because the algorithm tries to recover impulses strictly
related to a given period rather than a set of (multiple) periods. Thus, after
these observations, CYCBD results should be preferred.

Considering now MOMEDA results in Figure 33, the filter length has been set
to 120 samples as in the MCKD. In this case the indicator of MOMEDA (i.e.
multipoint kurtosis [40]) gives unsatisfactory results. In fact, some data point
from day 5 to the last day are above the threshold but the smoothed curves,
which represents the data trend, is always below the threshold. Actually, this
is not surprising since the bearing faults are well modeled as second-order cy-
clostationary signals [19] but MOMEDA is sensitive to periodic signals. Even
if the BPFO highlights a weak increasing trend, the data dispersion is too
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high to be reliable. In fact, the fitted curve remains below the threshold in the
whole dataset.
Finally, this experimental case has shown the effectiveness of CYCBD in order
to identify the outer race fault considering the natural advancement of the
bearing fault. This is all the more accurate as BD is performed considering
several sensors placed on the test rig.

2.8 summarizing comments

In this chapter, a novel BD algorithm has been introduced involving higher-
statistics criteria and a second-order cyclostationary criterion (called CYCBD).
The proposed method has been firstly deduced for SISO systems, then it has
been extended for SIMO systems and time/angle dependent signals. An ex-
tensive benchmarking with other BD methods has been discussed considering
both experimental and real vibration signals. Simulated signals and real ones
have been involved in such comparisons.
Briefly, this research activity led to the following achievements:

◃ an alternative BD algorithm has been proposed, which is constituted
of an iterative EV decomposition algorithm based on maximizing (or
minimizing) a generalized Rayleigh quotient;

◃ the advantages of CYCBD have been highlighted in 5 different syn-
thetic signals. CYCBD proved to be superior to the other BD methods
regarding the extraction of cyclostationary sources in stationary and non-
stationary regimes. Moreover it is not affected (in certain limits) by the
presence of other cyclostationary sources or single dominant impulses;

◃ as regards gear spall tooth identification, a diagnostic protocol based
on CYCBD has been developed and tested. The CYCBD results exceed
the results of other BD methods considering constant regime tests and
run-up tests;

◃ concerning a run-to-failure bearing test, CYCBD proved to be the most
effective BD method. In this scenario, a diagnostic methodology based
on for the identification of outer race faults has been proposed also.

This chapter owns several aspects of originality. The main one is the formula-
tion of a BD criterion based on second-order cyclostationary maximization by
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means of a generalized Rayleigh quotient that has been extended for SIMO
systems and time/angle dependent signals. Furthermore, the cyclostationary
framework in BD algorithms has been explicitly faced for the first time in
the vibration-based rotating machine diagnosis, highlighting once again the
pivotal role of cyclostationarity for mechanical fault diagnosis. All the theo-
retical considerations have been supported by extended experimental studies
involving both a gear tooth spall and an outer-race bearing fault.
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3
FA U LT I D E N T I F I C AT I O N F O R S Y N C H R O N O U S G E A R S B Y
E M D - B A S E D A L G O R I T H M S

3.1 introduction

Multi-stage gearboxes are employed in a wide range of mechanical systems
representing a fundamental component for the correct functioning of the en-
tire machine. Since they are often subjected to faults due to heavy working
conditions, manufacturing errors or harsh operational environment, gear fault
identification is of prime importance in the industrial scenario.
Many complex transmissions have gears that can be easily inspected and
possibly substituted, while others may require a remarkable amount of time
for their maintenance. For instance, the maintenance cost of a pinion embod-
ied with the shaft (gear shaft) is generally higher than a gear mounted with
splined bore [72]. For this purpose, the combination of non-destructive tech-
niques and the knowledge of the exact fault position simplify the maintenance
process, avoiding burdensome global visual inspections.
This chapter faces the development of an automatic procedure for gear fault
diagnosis based on the vibration analysis by means of EMD-algorithms. After
this introductory section, the rest of the chapter is organized as follows: Sec-
tion 3.2 addresses the theoretical background, the method is then described
in Section 3.3 while Section 3.4 and Section 3.5 are devoted to the validation
by means of simulated signals and experimental signals, respectively.

3.1.1 Gear fault diagnosis by vibration analysis

The vibration analysis proves to be an effective non-destructive technique for
gear fault diagnosis [9]. Nowadays, the specialized literature offers a number
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of consolidate methodologies. The cyclostationary theory, pioneered in the
telecommunication field by Gardner [73] and developed in the mechanical
field mainly by Antoni [11, 34], is probably one of the most powerful approach
since the vibrations produced by mechanical systems are well represented by
cyclostationary processes [19]. The SC [33, 34, 74] and its normalized version
(the spectral coherence), the separation of the signal into a deterministic part
and a pure (second order) cyclostationary part [20] and dedicated cyclosta-
tionary indices as the ICS [35] and the DCS (Degrees of Cyclostationarity) [20,
75] are some effective applications of the cyclostationary framework on the
mechanical field with remarkable implications on the industrial scenario.

On these grounds, many connections have been established with other signal
processing techniques that have long been used in the diagnosis of rotating
machines, such as the the TSA [21], the envelope analysis and the spectral
kurtosis. The TSA, de facto, is a common estimator of the CS1 part in the angle
domain. Randall et al. [36] demonstrated that the envelope analysis is nothing
but the integral of the SC over the frequency axis. Eventually, the kurtosis
evaluated over a certain frequency band is the sum of all the peaks of the
normalized SES [37]. Thus, the cyclostationarity gave also a novel theoretical
framework to several signal processing techniques.

The state of the art about localized gear fault identification includes also many
other effective strategies. For instance, the abrupt changes (i.e. transients) in
the vibration signature due to the local gear fault have been widely investi-
gated by means of time-frequency representations like the spectrogram [76],
the Continuous Wavelet Transform [25], the Wigner-Ville distribution [77]
and, more recently, the Hilbert-Huang Transform (HHT) [26]. Other common
methodologies for the gear fault diagnosis are: the power cepstrum analysis,
originally used for the suppression of echoes [78] and anon in gear diagnos-
tics [23, 79]; the Kurtogram [30, 80] proposed by Antoni [81] for the selection
of the optimum frequency based on the maximum Spectral Kurtosis [82]; the
blind deconvolution algorithms [39, 40], extensively explained in Chapter 2;
condition indicators estimated in the time and in the frequency domain [22]
and auto-regressive models [66].
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3.1.2 Gear fault diagnosis using EMD algorithms

Among all the aforementioned approaches, the Empirical Mode Decomposi-
tion (EMD) algorithm can be used for the diagnosis of local gear fault being
effective for the analysis of signals exhibiting non-stationary and non-linear
behavior. The EMD has been originally designed as the first step of the HHT
that is used for the extraction of mono-component signals for the estimation
of the instantaneous frequency through the Hilbert transform.

The HHT was introduced by Huang et al. [83] and is a self-adaptive time-
frequency analysis technique. The HHT is constituted by two separate steps:
the first one is the EMD, which decomposes the original signal into a set of
(simple) oscillatory modes, also called Intrinsic Mode Functions (IMF); the
second one is the Hilbert Spectral Analysis (HSA), which estimates the instan-
taneous frequency by means of the Hilbert transform. Despite the EMD has
been designed as a pre-processing tool of the HSA, it has been successfully
applied in combination with other signal processing techniques.

The EMD is a signal decomposition algorithm based on the local time scales
of the signal rather than on a pre-determined kernel. The point of strength
of the EMD is, indeed, that the signal decomposition is directly driven by
the nature of the input data without prior assumptions. From this point of
view, the EMD approach is different with respect to other signal processing
techniques. For instance, the results of the Continuous Wavelet Transform
(which actually is a time-scale representation) or the smoothed Wigner-Ville
distributions strongly depend on the mother Wavelet and the kernel function,
respectively; moreover the original Wigner-Ville distribution exhibits interfer-
ences, commonly called cross-terms, when the signal has non-linear frequency
modulations or multiple components (in opposition to the definition of mono-
component signal) [84]. Since the representation of non-stationary signals as
well as non-linear phenomena should require an adaptive basis [85], the EMD
overcomes this issue being completely data-driven and fully defined as the
output of an iterative algorithm.

Despite the advantages of the EMD over the other methods, it exhibits also
some limitations. The main issue regards the lack of a theoretical foundation.
Indeed, as its name would suggest, the EMD is empirical in the sense that it
has been designed thanks to the intuition rather than a rigorous framework.
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Thus, although the attempts to formulate a mathematical framework of the
method [86, 87], this aspect is still an open question. Moreover, the EMD is
affected by other secondary drawbacks: the end effect problem [88] and the
mode mixing problem [89]. Further explanations will be given in the next sub-
sections. Many efforts have been made in both directions in order to reduce
such limitations of the EMD algorithm.

The EMD has been successfully used in a number of different research fields
(economy, speech recognition, chemistry, biology, medicine, etc.) but only in
the last decade it has been exploited in the mechanical field with particular
reference to the diagnosis of gear faults such as gear cracks [90, 91], broken
teeth [26, 92] and wear [93].

The algorithm improvement has been object of several studies, leading to im-
proved versions of the original algorithm. The EEMD (Ensemble Empirical
Mode Decomposition) [94], the CEEMD (Complementary Ensemble Empiri-
cal Mode Decomposition) [95] and the CEEMDAN (Complete Ensemble Em-
pirical Mode Decomposition with Adaptive Noise) [96] are among the most
popular improved EMD algorithms proposed in the literature.

In the gear fault diagnosis, Lin and Chen [97] exploited the EEMD for the ex-
traction of multiple fault information from the vibration signals measured on
gearboxes, a diagnostic method for wind turbine planetary gearboxes based
on the EEMD has been proposed by Feng et al. [98] and the CEEMD combined
with permutation entropy has been used for the identification and the sever-
ity recognition of gear faults by Zhao et al. [99]. On the other hand, a very
limited number of research works can be found in the literature about the
gear fault diagnosis by means of CEEMDAN [100, 101, 102]. A complete lit-
erature review about EMD algorithms for the diagnosis of rotating machines
can be found in [103]. In this literature review, Lei collects over one hundred
of papers about rotating machine diagnosis involving EMD algorithms. This
literature review highlights that researchers have largely exploited EMD al-
gorithms for the diagnosis of rotating machines. Moreover, the major part of
these consists of investigations by means of EMD and EEMD while, as men-
tioned before, an inadequate number of works pertains the CEEMDAN being
actually very recent.
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3.1.3 Problem statement

The methodologies listed in Section 3.1.1 are designed to be effective not only
with vibration signals acquired in dedicated test benches but also considering
real applications, which generally includes the presence of strong background
noise and interferences of different nature.
However, considering multi-stages gearbox, the localization of a gear fault
occurring in a wheel located in the intermediate shaft can be a difficult task
due to the superposition of the vibration signature of synchronous wheels
as well as the presence of other vibration sources and interferences. Indeed,
all these methodologies exploit the period of the repetitive transients caused
by the gear fault in order to recognize the fault position. Such information
allow to identify the stage where the faulty gear is mounted rather than the
faulty gear itself. Thus, when the fault occurs in an intermediate shaft (i.e. a
shaft having two or more wheels) these methods do not provide sufficient
information for a precise fault identification.
For instance, it’s possible to detect the fault by using blind deconvolution
methods (see Figure 20) in the vibration signal used for the experimental val-
idation in Section 2.6 in the case of a full spalled tooth. Moreover, Figure 34

collects the results of some other signal processing techniques previously de-
scribed in the state of the art. The raw vibration signal in Figure 34(a) does
not exhibit any evident information about the presence of the spalled tooth.
However, the TSA computed using the intermediate shaft as reference (Figure
34(b)) shows an abrupt amplitude change due to the local gear fault. Analo-
gously, the SC (Figure 34(c)) as well as the enhanced SES (Figure 34(d)) indi-
cate the presence of a cyclostationary component at the cyclic frequency of the
intermediate shaft frequency, which is typically caused by a gear fault. The
same conclusions can be drawn considering the SES obtained after perform-
ing a band-pass filter selected using the kurtogram results (Figure 34(f)) . The
results clearly shows that with these methods is not possible to detect which
is the faulty gear but only to which shaft the faulty gear belongs.
On this basis, a EMD-based methodology for the diagnosis of multi-stage
gearboxes is proposed with particular focus to the gear fault identification in
intermediate shafts containing a couple of (synchronous) wheels where one
of them is faulty. For this goal, a selection criterion of the estimated oscilla-
tory modes has been advanced, in order to separate the TSA vibration signal
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Figure 34: Signal processing techniques applied to a full spalled tooth vibration sig-
nal: (a) raw vibration signal, (b) TSA related to the intermediate shaft,
(c) smoothed spectral coherence and [33], (d) enhanced SES, (e) fast kur-
togram [81] and (f) SES of the filtered signal in the optimal band selected
by the fast kurtogram (carrier frequency 880Hz and k level 5).
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into two representative vibration signals referenced to the synchronous gears.
Three EMD algorithms are taken into account (EMD, EEMD and CEEMDAN)
in order to verify how the signal separation is influenced by the different
decomposition methods.
Upon obtaining the separated signals, which represent the vibration signature
of the single gears, the fault identification can be achieved by means of condi-
tion indicators by comparison. A number of indices devoted to the gear fault
diagnosis can be found in the literature and a complete review can be found
in Ref. [22]. It has been widely recognized that, among such parameters, the
kurtosis and the CF (crest factor) are quite general indicators, being sensitive
to local changes in the vibration signature due to gear tooth defect. Neverthe-
less, this research proposes also two novel condition indicators based on the
vibratory changes occurring in each circular pitch, hence purposely designed
for gearbox diagnosis.

3.2 theoretical background

In this section, the main signal processing tools necessary for the comprehen-
sion of the proposed methodology are concisely introduced. Only the funda-
mental concepts are described avoiding unnecessary theoretical explanations.

3.2.1 First-order cyclostationarity and the Time Synchronous Average

The vibration signals acquired on gearboxes can be modeled as wide-sense
cyclostationary signals, where the term "cyclostationary" refers to a special
family of non-stationary signals characterized by hidden periodicities in their
structure. This fact has been analytically demonstrated by Mark [12] and, later,
explicitly connected to the cyclostationary framework by Capdessus [104, 20]
first, then by Antoni [19]. A general definition of CS1 processes is given in Ref.
[34] and recalls the definition given by Gardner in Ref. [73]: a signal is said to
exhibit first-order cyclostationarity if there exists a cascade of linear transformations
that produces a periodic component. From another point of view, a stochastic
process is said to be CS1 if its expected value is periodic with period T.
An approach for the estimation of the CS1 part of the signal is the time-
domain averaging [27, 105]. The averaged signal is obtained by cutting the
whole signal into a set of segments where each one corresponds to one gear

79



fault identification for synchronous gears by emd-based

algorithms

revolution. This method is effective if the rotation frequency, and therefore
the length of each segment, is constant. Hence the time averaging computed
considering a prior period of interest T allows for estimating all the periodic
contributions with that fundamental period. Note that, under the hypothesis
of cycloergodicity (which is equivalent to the ergodicity for stationary sig-
nals), the expected value (i.e. the averaging process) can be computed by the
ensemble averaging.
However, the rotating machine vibration signals, are not perfectly periodic in
the time domain, even in steady state conditions. This means, for example,
that the assumption that the gear mesh component should be modeled by
a perfect sinusoid corresponding to a precise Fourier coefficient is no more
valid. This behavior is typically due to the slight speed fluctuation caused
by the not perfectly constant loads and torques/forces involved. Hence, the
averaging process in the time domain may cut out precious information since
such components are not perfectly periodic in time.
Thus, a step forward for the estimation of the CS1 part of the signal is the TSA
[34]. The TSA is the same of the time-domain averaging but performed in the
angle domain. The variable change from the time to the angle domain can be
accomplished by directly sampling the vibration signal with a tacho reference
or by computing the angular resampling [21].
The TSA becomes very effective for the machine diagnosis when it is applied
into the angle domain because many parameters are locked in the angle vari-
able rather than in the time one, such as the loads, the torques and the kine-
matics variables of the system. For these reasons, the TSA is conveniently
performed into the angle domain in order to maintain the cyclostationary
properties of the signal. In a general view, the angular resampling allows the
application of the cyclostationary framework to the rotating machine vibra-
tion signals relaxing the restriction to be in a perfect steady state condition,
which is seldom met in real application. For a deeper discussion about this
topic, excellent references can be found in [19, 34, 20]
Let x(θ) be the vibration signal synchronized with rotation θ of a certain
rotating mechanical component taken as reference. Considering a periodicity
of Θ = 2π and an integer number N of revolutions, the length of x(θ) is NΘ.
Thus, the time synchronous average, xTSA(θ), of x(θ) can be defined as:

xTSA(θ) =
1
N

N−1

∑
n=0

x(θ + nΘ) with 0 ≤ θ < 2π (41)
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The change of variable from time to angle implies that the frequency variable
will change accordingly. The new frequency variable is called "order" and
it is defined as the ratio between the actual frequency and the rotation fre-
quency of the component. Taking into account a proper number of averages,
the main result of the TSA is the strong attenuation of all the not periodic
components with respect to the reference and the improvement of the SNR
(Signal-to-Noise Ratio). Furthermore, the fact that the TSA is performed in the
angle domain strongly reduces the effects of slight speed variations masking
the effects of possible gear faults.
Thus, the TSA allows for extracting the periodic contributions tied to a rotat-
ing component of interest from the raw vibration signature with a contextual
noise reduction, which is of great value in order to distinguish components
having different periods as in the case of multi-stage gearboxes.

3.2.2 The Empirical Mode Decomposition

The EMD [83] is the first step of the HHT that is a time-frequency representa-
tion where amplitudes and frequencies are instantaneous quantities. A signal
which exhibits a well-behaved instantaneous frequency is also called mono-
component signal, as reported in Ref. [106]. However, many real signals are
multi-component and may not admit the Hilber transform. In this scenario,
the EMD is basically a self-adaptive pre-processing tool for decomposing a
signal in a set of oscillatory modes, that are called commonly intrinsic mode
functions (IMFs). According to Ref. [83], each IMF has to meet two funda-
mental properties: i) the number of zero-crossing points and of extrema have
to be equal or differ by one; ii) at any point the mean value of the enve-
lope evaluated by the local maxima and by the local minima have to be zero.
By virtue of these properties, the last component extracted by the EMD is a
monotonic signal, called residue. As reported in [83], these properties should
guarantee that each IMF is actually mono-component, i.e. they do not exhibits
negative frequencies, and thus the Hilbert transform is admitted. These IMFs
are supposed to be mono-components, i.e. they does not exhibits negative fre-
quencies, and the instantaneous frequency and instantaneous amplitude can
be correctly estimated.
For the sake of brevity, the essential steps of the EMD algorithm are described
in Figure 35, but a more comprehensive explanation about this algorithm can
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be found in [83]. The envelope process and the sifting process are the key
points of the algorithm in Figure 35. The sifting process is a recursive proce-
dure which ensures that the estimated modes satisfy the characteristic prop-
erties of the IMF. The sifting process ends when a certain stopping criterion
is met. Several stopping criteria can be found in the literature, as reported in
Ref. [107]. The original stop criterion of the sifting process proposed in Ref.
[83] is the Cauchy-type convergence criterion (SD in short), it involves the
estimation of the standard deviation of two consecutive IMFs. In this thesis,
the mean fluctuation thresholds method proposed by Rilling [108] has been
adopted. This stopping criterion aims to guarantee globally small fluctuations in
the mean while takes into account locally large excursions.
The envelope process regards the evaluation of envelopes of the maxima and
the minima of the signal. The cubic spline interpolation, which is generally
used, is preferred over other interpolation methods, such as the linear and
the polynomial, since they are more sensitive to over-decomposition problems
(mode mixing).
Hence, the main drawbacks of the EMD mainly linked to the sifting process
and the envelope estimation are the mode mixing and the end effect. The
mode mixing concerns the combination of signals with several widely differ-
ent scale, while the end effect is the distortion at the extremity of the signal.
These shortcomings can undermine the physical meaning of the estimated
IMFs and many investigation have been made in order to reduce these issues.
The board effect is mainly due to the envelope of a finite length signal. This
negative effect can be strongly reduced by mirroring the extrema at both the
sides [108]. On the other hand, the mode mixing problem is a more serious
issue and it has been addressed in many works [94, 95, 96] leading to the
development of several improved versions of the EMD algorithm.

3.2.3 The Ensemble Empirical Mode Decomposition

The EEMD (Ensemble Empirical Mode Decomposition) [109] is a noise-assisted
data analysis method based on the EMD algorithm. The main steps of the
EEMD algorithm are summarized in Figure 36. Unlike the EMD, which could
estimate IMFs affected by mode mixing, the EEMD calculates the so-called
true modes or IMF∗ representing a more reliable decomposition of the sig-
nal.
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Figure 35: Flow chart of the EMD algorithm.
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Figure 36: Flow chart of the EEMD algorithm with N trials and K modes per trial.
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Departing from original signal x(t), a new set of N signals (where N repre-
sents the number of trials or realizations) is created by adding different zero-
mean white Gaussian noise w(t) of finite standard deviation σ. The added
noise bring two main benefits: the EMD acts as a dyadic filter when applied
to pure white noise [87], the small perturbations introduced by the white noise
force the algorithm to scan all the possible solutions (in terms of mode decom-
position). Then, the EMD is performed for each signal xn obtaining N (noisy)
mode sets composed by K modes each. At the end, the true IMF set composed
by a number K of true modes IMF∗ is evaluated by ensemble averaging each
kth IMF set previously obtained. Thanks to the cancellation statistical prop-
erty of the additive white Gaussian noise, the ensemble averaging strongly
reduces the noise level of each mode. The final results are called "true IMF"
just because they represent the persistent part of each IMF set that has not
been erased by the ensemble averaging.
Differently from the EMD, the EEMD depends on two arbitrary parameters:
the number of trials and the standard deviation of the added white noise.
The number of trials must be large enough in order to guarantee a satisfac-
tory suppression of the added noise. The link between these parameters, as
reported in Ref. [94], is given by the following relationship:

ε =
σ√
N

(42)

where N is the number of trials, σ is the standard deviation of the added
noise and ε is the error standard deviation defined as the difference between
the original signal and the corresponding IMFs. This relationship implies that
the larger the noise standard deviation, the larger the number of trials.
These parameters are pivotal in order to obtain satisfying results. Commonly
[94, 110], a few hundreds of averages and a noise standard deviation between
0.1 and 0.4 are enough but some research works [111, 112] use a noise stan-
dard deviation proportional to the standard deviation of the original signal.
Moreover, it has been demonstrated [83] that the selection of σ depends on
the application since high values of σ are suitable for data dominated by low-
frequency signals and vice versa. Thus, the selection both the number of trials
and the noise standard deviation is still an open question depending on the
input data and the experience.
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3.2.4 The Complete Ensemble Empirical Mode Decomposition with Adaptive Noise

The Complete Ensemble Empirical Mode Decomposition with Adaptive Noise
(CEEMDAN) represents a step further with respect to EEMD and it has been
proposed for the first time by Torres et al. [96] and improved by the same
authors in Ref. [113].
As shown in Figure 36, the EEMD calculates the true modes by averaging a
certain number of noisy IMF sets, which have been evaluated independently
each other. Each IMFn,k is determined by considering the residue of the cor-
responding previous mode, IMFn,k−1, therefore a (small) reconstruction error
is introduced using this approach.
The CEEMDAN algorithm has been proposed with the precise goal to deal
with the reconstruction error by computing the modes sequentially. The esti-
mation of each true mode is achieved by the CEEMDAN algorithm by tak-
ing into account the contribution of the residue evaluated from the previous
true mode. Therefore, the CEEMDAN guarantees the exact correspondence
between the original signal and the set of decomposed signals, which is not
ensured by the EEMD [113]:

x(t) =
K

∑
n=k

IMFk
∗(t) + r(t). (43)

The flowchart of the algorithm is presented in Figure 37 where operator Ek(•)
refers to the extraction of the kth mode by using the EMD algorithm, according
to Ref. [113]. In reference to Figure 37, at each iteration, the kth true mode is
estimated from the previous residue calculated by the k − 1th mode perturbed
by the additive noise. The added white Gaussian noise for the estimation of
the kth IMF actually is the kth mode obtained performing the EMD to the
white noise itself.
It is worth noting that σk means that the standard deviation of the added
noise can be changed at each iteration. According to the studies reported in
Refs. [94, 110], the varying amplitude of the added noise can improve the
performance of the signal decomposition when low amplitude noise is con-
sidered for the first stages and large amplitude noise for the late stages. A
more exhaustive explanation of the CEEMDAN algorithm can be found in
the following research works [96, 110, 113].
Finally, this approach guarantees the following benefits:
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Figure 37: Flow chart of the CEEMDAN algorithm.
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• the original signal can be reconstructed by adding all the estimated IMFs
(completeness property);

• a smaller number of sifting iterations are needed with respect to the
EEMD, which implies less computational effort [110];

• the noise standard deviation can be changed at each stage.

3.2.5 Gear fault identification by condition indicators

The presence of gear faults leads to changes in the vibration signature mea-
sured on the gearboxes. A number of researches can be found in the literature
about the development of parameters for the quantification of the vibration
signature modification [35, 22, 66]. These parameters are generally called Con-
dition Indicators (CIs).

In this study, the following standard CIs have been considered: kurtosis, Crest
Factor (CF) and FM0. The kurtosis is the fourth-order standardized moment
of a probability distribution, the CF is the ratio of the peak value to the RMS
value and the FM0 is the ratio of the peak-to-peak value to the sum of the
gear mesh harmonics amplitudes. These parameters are particularly effective
for the identification of local changes in the vibration signature, as in the case
of localized gear faults.

Furthermore, two new CIs are proposed based on the vibration signal RMS
values evaluated for each tooth: Crest Pitch Factor (CPF) and the Normalized
Skewness Variance Product (NSVP). For their computation, the TSA, i.e. xTSA,
is split into a number of parts equal to the number of teeth; then, the RMS
value is estimated for each part. Let RMSp

i be the RMS value of the ith tooth,
RMSp

i is defined as follows:

RMSp
i = RMS

[
xTSA

(
θ +

2π

z
(i − 1)

)]
with 0 ≤ θ <

2π

z
(44)
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where 2π
z is the angular pitch, z is the number of teeth and RMS[•] is the Root

Mean Square of a given data series. The whole set of RMSp
i is:

{RMSp} =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

RMSp
1

...
RMSp

i

...
RMSp

z

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(45)

For a gear having localized faults, a local deviation from the mean value of
RMSp is expected. The first CI, called CPF, it is defined as the ratio of the
maximum value of RMSp with respect to the RMSp ensemble mean value:

CPF =
max[RMSp]

E[RMSp]
(46)

where E[•] is the expectation operator. Now, let us consider the difference
among adjacent RMSi

p values:

{RMSpd} =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

RMSp
2 − RMSp

1

...
RMSp

i − RMSp
i−1

...
RMSp

z − RMSp
z−1

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(47)

Intuitively, RMSpd values should be close to zero for healthy gears since the
variation between two consecutive RMS pitch values is slight. On the other
hand, RMSpd exhibits non-zero values when local changes of the vibration
signature occur, since the vibration signature of a healthy meshing tooth is
very different from a faulty one. On the basis of these considerations, a sec-
ond indicator, called NSVP, is defined as the product between skewness and
variance of the RMSpd divided by the peak-to-peak value of RMSpd:

NSVP =
var[RMSpd]skew[RMSpd]

pp[RMSpd]
(48)

where var[•] is the variance of a given data series, skew[•] is the skewness of
a given data series and pp[•] is the peak-to-peak value.

89



fault identification for synchronous gears by emd-based

algorithms

3.3 rationale and proposed method

In theory, the vibration signal of a gearbox operating at steady-state condition
appears as a composition of harmonics having as fundamental frequencies the
meshing frequencies. The localized gear faults can appear in the vibration sig-
nals as impulsive components and local modulations of amplitude and/or
phase [10]. These local modulations are visible in the spectrum as side-bands
centered on the meshing frequencies. A pure impulsive component depends
on the period of occurrence (the shaft period) and on the IRF of the system.
Thus, in the case of an intermediate shaft, a pure impulsive component de-
pends on parameters that are not strictly related to one single wheel mounted
on that shaft. The local modulations of amplitude and phase are a function of
meshing frequency and the rotation frequency of the faulty wheel. These mod-
ulations reflect on the spectrum as sidebands around the gearmesh frequency.
Hence, considering two gears with different (and not multiple) number of
teeth and mounted on an intermediate shaft, the analysis of the sideband fam-
ilies due to local modulations should lead to the identification of the faulty
gear since these sideband families are related to a specific wheel.

When the TSA is performed according to a certain shaft period, it is possi-
ble to set apart only the tones that are synchronous with the shaft of interest.
However, the TSA cannot separate a pure impulsive component due to a lo-
calized fault of two or more gears mounted on the same shaft, as they exhibit
the same orders. Hence, in order to identify the faulty gear, the basic idea of
this work is to exploit the local changes of meshing vibration due to the am-
plitude and phase modulations rather than the pure impulsive component. In
the TSA, the meshing harmonics of two or more gears with not multiple num-
ber of teeth are separated, but the families of sidebands of different meshing
harmonics can be partially overlapped. Thus, it can be difficult to separate
the local modulations contributions due to different gears. Moreover, it is dif-
ficult to establish a priori which harmonics are clearly affected by modulation
effects as well. On these grounds, a signal separation method based on EMD
algorithm is described hereafter in order to overcome to this problem, which
is fairly common in practical applications with a significant implication con-
cerning the reduction of maintenance costs and time.

Let us consider the two-stage gearbox shown in Figure 38, composed by four
spur gears (namely I, II, III and IV) operating at steady-state conditions. Fur-
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Figure 38: Schematic of a two-stage gearbox.

thermore, let us suppose the presence of a localized fault on wheel II. Thus,
taking advantage from the EMD-based decomposition, two representative vi-
bration signatures characterizing the meshing vibration of gear II and gear
III, respectively, can be built taking into account the physically meaningful
IMFs. The physically meaningful IMFs are intended as those IMFs that de-
scribe the gearmesh vibration signature of the gear of interest. Therefore, the
representing signal of the gear will be the sum of these modes (if they are
more than one). Figure 39 describes the proposed methodology (summarized
in 4 fundamental steps) for the generic two-stage gearbox in Figure 38.

Under the assumption that the gear fault on the intermediate shaft is evident
on the TSA, the first step involves the low-pass filtering since several high fre-
quency signal components unrelated with the gear mesh vibration signature
can persist also after the TSA. In addition, the proposed signal processing
procedure focuses on the local modulation of amplitude and phase, hence a
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step 1

step 2

step 3

step 4

EMD Decomposition

Figure 39: Flow-chart of the proposed methodology.

low-pass filter is desirable in order to cut off the high frequency signal com-
ponents that should belong to the impulsive events. Therefore, the signal is
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conditioned with a low-pass filter with a cut-off order (the signal belongs to
the angle domain) equal to 3 times the gear mesh order of the greater gear.
Bearing in mind that the filtering process could reduce also some significant
components, it is anyway reasonable to assume that the gear mesh vibration
signature is properly described taking into account the first 3 meshing gear
harmonics (and their side-bands).

The second step consists in the decomposition of the signal and the estimation
of the regular signals of gears II and III. EMD, EEMD and CEEMDAN have
been considered, in order to investigate the effects on the use of different
EMD algorithms for the signal decomposition. In this work, 500 trials and a
fixed white noise standard deviation of 0.2 have been adopted, as suggested
in [113, 109]. Furthermore, it has to be remarked that the procedure has been
developed in Matlab environment exploiting the EMD algorithms available
online1,2. Instead, the regular signal is defined as the sum of the gear mesh
harmonics from the TSA signal. In this application the fundamental gear mesh
order and the first two harmonics are taken into account. The meaning of the
estimation of the regular signals will be clarified hereafter.

The third step is the core of the proposed methodology. A major issue on the
use of the Empirical Mode Decomposition is the physical interpretation of
the IMFs. In fact, there are not established procedures for the identification of
the meaningful modes for gear applications. Otherwise, the aim of this work
is to generate from the calculated IMF set, two signals representing the gear
mesh vibration signals of gear II and gear III, distinctly. Therefore, it is not just
important to identify the physically meaningful modes but also to determine
if the mode describes the gear mesh vibration signature of gear II, gear III or
neither of these. The selection criterion of the physically meaningful modes
developed in this work is based on the PCC (Pearson’s Correlation Coefficient)
between the regular signals and the IMFs. The PCC is an indicator of the
linear correlation between two variables (signals) and conceptually is similar
to the normalized cross-correlation between two signals with zero lag [114].

1 http://perso.ens-lyon.fr/patrick.flandrin/emd.html

2 http://bioingenieria.edu.ar/grupos/ldnlys/metorres/re_inter.htm
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PCC value c evaluated for discrete dataset x and y of n samples (e.g. discrete
vibration signals), is defined as follows:

PCC =

n
∑

i=1
(xi − x)(yi − y)√

n
∑

i=1
(xi − x)2 n

∑
i=1

(yi − y)2

(49)

where x and y are the mean value of x and y respectively. The PCC can takes
values between -1 and 1, where positive values mean a direct correlation while
negative ones mean inverse correlation. For our purpose, PCC ≥ 0.7 means a
strong linear correlation, 0.3 ≤ PCC < 0.7 means moderate correlation, 0.1 ≤
PCC < 0.3 means weak correlation and PCC = 0 means no correlation. In this
work the PCC has been exploited as the merit index for the mode selection
in order to allocate each IMF to gear II, gear III or neither of these. Referring
to Figure 39, the assignment process regards the mode selection procedure
for building the representative signals of gear II and gear III, namely MI I(θ)
and MI I I(θ) respectively. The selection criterion that evaluates the physical
significance of the modes is based on these properties:

1. if PCC ≥ 0.3 (which means at least moderate correlation), the mode is
assigned to the representative signal set;

2. if no IMF fulfills the previous properties, the mode having the maximum
value of PCC is representative of the gear.

Therefore, referring to Figure 39, the representative vibration signal of gear II,
MI I(θ), is composed by all the modes (called mI I

j (θ)) satisfying one of these
properties and the same occurs for MI I I(θ). The PCCs are evaluated by the
regular signal (e.g. an ideal healthy mesh gear vibration) and the IMFs. Since
the modes are estimated from the faulty gear vibration signal, a moderate cor-
relation with the regular signal is expected. Thus, property 1 aims to include
all the modes showing a moderate correlation with the regular signal having,
however, a significant relationship with the gear vibration signature from the
physical standpoint. The second property is introduced in order to include at
least one IMF also if property 1 is not met.
Lastly, in the fourth step the estimation of MI I(θ) and MI I I(θ) of gear II
and gear III, respectively, are carried out by means of the sum of the selected
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modes mI I
j (θ) and mI I I

j (θ) evaluated in the third step. After a visual inspection
of the representative signals, the objective comparison between MI I(θ) and
MI I I(θ) is achieved by means of different CIs. For this purpose, in order to
identify localized gear faults, several CIs can be used for the evaluation of
the vibration signal peakiness, which is correlated with the severity of the
localized fault. In this study, the following standard CIs have been considered:
kurtosis and Crest Factor (CF) [66, 22]. Furthermore, the effectiveness of the
proposed CIs, i.e. CPF and NSVP, has been tested for the simulated vibration
signals and the real case studies.

3.4 validation by simulated signals

3.4.1 Vibration signal model

Several works [10, 14, 115] regarding the time domain vibration signal mod-
eling of gear faults can be found in the literature. Since the proposed method
departs from the TSA, a vibration signal model of the TSA referenced to a
gearbox is proposed hereafter. The TSA of a healthy gearbox, x, with respect
to angle θ is mainly composed by harmonics with fundamental order cor-
responding to the number of teeth of the gear of interest. For a complete
revolution, x(θ) can be expressed as follows:

x(θ) =
N

∑
n=1

Xn cos (nzθ + φn) (50)

where N is the number of harmonics, Xn is the amplitude of the nth harmonics,
φn is the phase of the nth harmonics and z is the number of teeth of the gear.
Let us consider the two-stage healthy gearbox shown in Figure 38. In a com-
plete revolution, the angle domain meshing vibration x(θ) related to the inter-
mediate shaft may be expressed as:

x(θ) =
N

∑
n=1

XI I,n cos(nzI Iθ + φI I,n) +
N

∑
n=1

XI I I,n cos(nzI I Iθ + φI I I,n) (51)

where N is the number of harmonics, XI I,n is the amplitude of the nth har-
monics of gear II, φI I,n is the phase of the nth harmonics of gear II, zI I is the
number of teeth of gear II, XI I I,n is the amplitude of the nth harmonics of gear
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III, φI I I,n is the phase of the nth harmonics of gear III and zI I I is the number
of teeth of gear III. Equation (51) states that the meshing vibration signal x(θ)
is composed by the meshing vibration related to gear II and the gearmesh
vibration related to gear III since both gears II and III rotate synchronously.
The presence of a localized gear fault causes a change in the vibration signal
model that involves a local amplitude modulation, a local phase modulation
and an impulsive component. Hence, assuming a localized faults in gear II,
Equation (51) can be rewritten as:

xsim,I I(θ) = xI I(θ) + xI I I(θ) + d(θ) =
N

∑
n=1

XI I,n [1 + aI I,n(θ)] cos [nzI Iθ + φI I,n + bI I,n(θ)] + (52)

N

∑
n=1

XI I I,n cos(nzI I Iθ + φI I I,n) + d(θ)

where aI I,n is the local amplitude modulation function due to localized fault
in gear II, bI I,n is the local phase modulation function due to localized fault
in gear II and d is the impulsive component due to localized fault in gear II.
The local amplitude function aI I,n and phase modulation function bI I,n used
in section 3.4.1 are described as a Gaussian shape window centered at angle
θ0 as follows:

an(θ) = Ane
− (θ−θ0)

σ2
a (53)

bn(θ) = Bne
− (θ−θ0)

σ2
b (54)

where An and Bn are the intensity of the local modulations while σa and σb
are the window widths. In addition, d(θ) (see Equation (52)) is the damped
impulse response accounting for the impulsive component due to the faulted
tooth engagement in the angle domain. This component is defined as an ideal
impulse convoluted by an arbitrary IRF, h, of a SDOF system:

d(θ) = s(θ) ∗ h(θ) (55)

where s is the impulse due to the fault occurrence. Figure 40 illustrates the
spectrum of h in the order domain obtained by imposing a damping coef-
ficient of 0.17% and a natural frequency corresponding to the 1023rd order.
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Figure 40: Spectrum of h.

From the physical standpoint, the IRF of a mechanical system makes sense
only in the time domain. However, under certain hypotheses, an IRF keeps its
physical meaning also in the angle domain. This direct link between the order
domain and the frequency domain is allowed only in steady-state regimes
and when the transfer path between source and receiver (i.e. a transducer)
do not change with respect to time. The first assumption is met because this
chapter considers only steady-state regimes. The second hypothesis is met as
well: in gears it is reasonable to assume that a faulty tooth is engaged always
in the same location and therefore the transfer path is time-invariant.
Analogously, the gear mesh vibration model can be written in the case of a
localized fault in gear I I I:

xsim,I I I(θ) = xI I(θ) + xI I I(θ) + d(θ) =
N

∑
n=1

XI I,n cos (nzI Iθ + φI I,n) + (56)

N

∑
n=1

XI I I,n [1 + aI I I,n(θ)] cos [nzI I Iθ + φI I I,n + bI I I,n(θ)] + d(θ)

Referring to the gearbox depicted in Figure 38, Equations (52) and (56) repre-
sent the gearmesh vibration models used for the preliminary verification of
the methodology.
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3.4.2 Results and discussion

Two different simulated signals called xsim,I I(θ) and xsim,I I I(θ) have been con-
sidered: the first simulated signal is described in section 3.4.1 and refers to the
case of a localized defect in gear II; the second one is described in section 3.4.1
and refers to the case of a localized defect in gear III. The parameters used
for the Matlab implementation of xsim,I I(θ) and xsim,I I I(θ) are reported in de-
tail in Table 5, while Figure 41 shows the simulated signals. In the first case
the localized fault has been simulated on the 45th tooth of gear II whereas
in the second case the localized fault has been simulated on the 6th tooth of
gear III, which correspond to an angle rotation of about 174 deg and 180 deg,
respectively.

As mentioned in Section 3.4.1, the overall simulated signal is a superposition
of the vibration signature in the angle domain of the two gears, where the
healthy gear is represented by pure tones and the faulty gear is composed by
pure tones having local amplitude and phase modulation with the contribu-
tion of an impulsive component. De facto, such signals represent a synthe-
sized version of the TSA computed with respect to the intermediate shaft and,
according to the properties of the TSA, the contribution of the background
noise has been neglected. Considering the proposed diagnostic protocol, Step
1 can be skipped with this vibration signal model since the starting signal is
already the TSA of the signal.

The method has been performed using EMD, EEMD and CEEMDAN in order
to investigate the effect of different EMD algorithms on the effectiveness of
the signal decomposition. In agreement with the settings suggested in the
literature, 500 averages and white noise standard deviation of 0.02 has been
used for the EEMD and CEEMDAN. The results of the signal decomposition
of xsim,I I(θ) and xsim,I I I(θ) is reported in Figures 42 and 43, respectively. The
residue signal, which is a monotonic function, is not displayed since it is
not useful for the goal of this work. It should be noted that EMD returns a
limited number of modes (4 excluding the residue) whereas the total number
of tones present on the simulated signal is 6 since it’s equal to the total number
of gearmesh harmonics accounted. This behavior can be interpreted as poor
quality of the signal decomposition using EMD with respect to EEMD and
CEEMDAN.
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Table 5: Simulated signal parameters.

xsim,I I(θ) xsim,I I I(θ)

z 93 12
N 3 3
X1 6.000 6.000
X2 3.639 3.639
X3 2.207 2.207
A1 1.075 1.075
A2 3.668 3.668
A3 −4.518 −4.518
B1 0.862 0.862
B2 0.319 0.319
B3 −1.308 −1.308
σa 0.011 0.087
σb 0.011 0.087

θ0 (rad) 3.040 3.142
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Figure 41: Simulated signals in the angle domain: (d) xsim,I I(θ) and (a-c) its compo-
nents, (h) xsim,I I I(θ) and (e-g) its components.

For the sake of completeness, the estimated PCC values are collected in Figure
44 where the circle symbol refers to cI I

i and the star symbol refers to cI I I
i . In

each diagram, the gray horizontal line refers to the threshold corresponding
to PCC = 0.3. According to the proposed criterion, the representative signals
of gear II and gear III are showed in Figures 45 and 46.
The visual inspection of the representative signals shown in Figure 45 high-
lights that all the considered EMD algorithms has led to satisfying results. In
this case, as expected, representative signal MI I related to the 93 teeth gear
exhibits a localized signal distortion at about 170 deg due to the simulated
defect (in agreement to the input data in Table 5) whereas the waveform MI I I

does not show irregularities. It should be remarked that MI I I estimated by
the EMD (Figure 45(d)) is less regular than the others just in correspondence
to the angle where MI I has the local amplitude/phase modulation. Table 6

collects the statistical indicators estimated by MI I and MI I I . All the indica-
tors return a positive deviation between the faulty gear and the healthy one,
with the only exception of the kurtosis when the EMD is performed. This be-
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Figure 42: IMF sets of xsim,I I(θ) obtained by using EMD, EEMD and CEEMDAN.

havior is in agreement with the observations previously made by the visual
inspection of the signal.

Similar remarks can be mentioned by observing Figure 46. Indeed, MI I I shows
a sudden change of the signal amplitude at about 180 deg that corresponds
to the position of the simulated fault (see Table 5). Again, the waveform of
MI I does not exhibits any abrupt change, although the EMD returns a quiet
irregular waveform with respect to the other EMD algorithms. In fact, the
indicators collected in Table 7 highlights that negative percentage differences
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Figure 43: IMF sets of xsim,I I I(θ) obtained by using EMD, EEMD and CEEMDAN.
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Figure 44: PCC values (a-c) in the case of the simulated signal with localized fault in
gear II and (d-e) in the case of the simulated signal with localized fault in
gear III.
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Figure 45: Representative signals for (a-c) gear II and (d-f) gear III in the case of the
simulated signal with localized fault in gear II.
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Figure 46: Representative signals for (a-c) gear II and (d-f) gear III in the case of the
simulated signal with localized fault in gear III.

Table 6: CIs for the simulated signal with localized fault in gear II.

kurtosis CF CPF NSVP

EMD
Gear II (faulty) 2.395 4.017 1.854 0.310

Gear III (healthy) 2.742 2.673 1.083 0.0796
Gear II vs Gear III [%] −12.671 50.269 71.244 291.452

EEMD
Gear II (faulty) 2.484 4.494 1.872 0.173

Gear III (healthy) 2.165 2.014 1.036 0.022
Gear II vs Gear III [%] 14.713 123.180 80.722 667.777

CEEMDAN
Gear II (faulty) 2.340 4.284 1.857 0.205

Gear III (healthy) 2.177 1.992 1.027 0.016
Gear II vs Gear III [%] 7.487 115.058 80.777 1156.891

are present only for the EMD, as expected. However, the method performed
using the EEMD and the CEEMDAN has allowed to clearly identify the faulty
gear both by visual inspection and by comparing condition indicators.

Finally, the validation of the method by simulated signals has pointed out the
following aspects:
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Table 7: CIs for the simulated signal with localized fault in gear III.

kurtosis CF CPF NSVP

EMD
Gear II (faulty) 2.167 2.989 1.625 0.288

Gear III (healthy) 3.980 4.146 1.579 0.261
Gear III vs Gear II [%] 83.697 38.733 −2.756 −9.628

EEMD
Gear II (faulty) 2.062 2.569 1.329 0.007

Gear III (healthy) 2.855 3.578 1.562 0.334
Gear III vs Gear II [%] 38.482 39.266 17.488 4958.513

CEEMDAN
Gear II (faulty) 2.039 2.357 1.309 0.013

Gear III (healthy) 2.647 3.428 1.469 0.351
Gear III vs Gear II [%] 29.847 45.404 12.228 2528.605

◃ the signal decomposition by means of the EMD is the worst one among
the other considered algorithms;

◃ the faulty gear has been correctly identified in both the simulated cases;

◃ NSVP is the most sensitive indicator.

3.5 validation by experimental signals

In the current section, the proposed methodology has been performed in two
different experimental cases, discussing the main results. Case 1 concerns the
investigation of the method using a dedicated gear test bench while Case 2

regards a more complex transmission mounted on a test rig. The main results
have been discussed, focusing on the effectiveness of the proposed methodol-
ogy performed using actual vibration signals.

3.5.1 Case 1

The first experimental case is the same two stage gearbox described in Sec-
tion 2.6.1 shown in Figure 47a. The investigated gearbox is composed by two
stages of helical gears: the first one having 18 and 71 teeth whereas the sec-
ond one 12 and 55 teeth. Hence, referring to the gearbox scheme in Figure
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Driving motor

Gearbox

Load motor

(a) (b)

5 mm

Figure 47: (a) Experimental setup of Case 1 and (b) particular of the spalled tooth.

38, gear II and gear III have 71 teeth and 12 teeth, respectively. The localized
fault, i.e. gear tooth spall, has been artificially seeded on the 71 teeth gear, as
shown in Figure 47(b). The test has been carried out in steady-state condition
at 3600 rpm (referred to the input shaft of the first stage) and nominal load of
48.8 Nm.
The vibration signals in the radial direction have been collected by means of
B&K piezoelectric accelerometer placed on the bearing support of the first
stage pinion with sampling frequency 12.4 kHz for a total time length of 4 s
while the input shaft speed has been measured by a tachometer sensor.
Figure 48 collects the TSA of the measured vibration signal as well as its
spectrogram. The TSA has been performed in the angular domain taking into
account 4260 points per revolution. The localized fault is easy to recognize on
both the diagrams since it appears as a sudden increase of the signal ampli-
tude in a slight rotation range. Thus, even if the presence of the gear tooth
spall is obvious, these approaches are not able to identify which gear exhibits
the fault.
As done before, three different EMD algorithms have been considered in or-
der to verify the sensitivity of the final results with respect to the adopted
EMD method. The signal decomposition has been performed using the same
settings as reported in Section 3.4.2 and the results are collected in Figure
49. According to the PCC values collected in Figure 50, the representative sig-
nals of gear II and gear III have been computed, as reported in Figure 51.
From the visual inspection of the representative signals in Figure 51 it is not
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Figure 48: (a) TSA related to the intermediate shaft of Case 1 (the dashed circle high-
lights the impulsive signal component due to the damaged tooth engage-
ment) and (b) its spectrogram (window length 300 samples and 75 % over-
lap).

hard to identify the faulty gear. Indeed, the waveform related to the 71 teeth
wheel exhibits a large amplitude increase at 170 deg that is the effect of the
engagement of the faulty tooth. However, Figure 51(d,e) shows a local change
of the signal amplitude at about 170 deg that corresponds exactly to the angle
position of the defect in gear II (clearly visible in Figure 51(a-c) and in the
TSA in Figure 48(a)). The diagram related to the CEEMDAN in Figure 51(f)
actually display a local change of amplitude too. However it should be noted
that such a change occurs at about 250 deg, which is not in agreement of the
fault position shown on the TSA of the signal.

Unfortunately, the visual inspection of the signal can be open to different
interpretations, thus the fault identification is determined by the comparison
of condition indicators. Table 8 highlights a significant difference between
gear II and gear III, with a minimum percentage difference of 93.872. The
proposed CIs (i.e. CPF and NSVP) are the most sensitive to the presence of
an impulsive component in the vibration signature as demonstrated by the
larger percentage difference with respect to the other traditional CIs.

Finally, in this first experimental case the proposed method is effective on the
identification of the faulty gear. Moreover, CEEMDAN is the EMD algorithm
that returns the best result taking into account the CIs values as well as the
waveform of the representative signals.
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Figure 49: IMF sets of Case 1 obtained by using EMD, EEMD and CEEMDAN.
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Figure 50: PCC values of Case 1 estimated taking into account (a) EMD, (b) EEMD
and (c) CEEMDAN.
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Figure 51: Representative signals of (a-c) gear II and (d-f) gear III for Case 1.
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Table 8: CIs for the vibration signal of Case 1, with localized fault in gear II.

kurtosis CF CPF NSVP

EMD
Gear II (faulty) 10.220 8.785 4.437 1.395

Gear III (healthy) 3.785 8.021 2.288 0.251
Gear II vs Gear III (%) 170.043 142.209 93.872 457.089

EEMD
Gear II (faulty) 9.945 7.806 4.444 1.205

Gear III (healthy) 2.962 2.931 1.942 0.309
Gear II vs Gear III (%) 235.745 166.309 128.859 290.713

CEEMDAN
Gear II (faulty) 8.031 7.177 4.332 1.139

Gear III (healthy) 3.141 3.036 2.141 0.112
Gear II vs Gear III (%) 155.666 136.382 102.324 917.173

3.5.2 Case 2

The second case study concerns a more complex gearbox driven by an asyn-
chronous motor. Figure 52 shows the experimental setup: the time domain
vibration signal in the radial direction has been acquired by a mono-axial
piezoelectric accelerometer (PCB 353B18) with a sample frequency of 25.6 kHz,
while the tachometer signal has been simultaneously collected using a tachome-
ter probe with zebra tape. The transmission exhibits an abnormal loudness
due to a localized gear fault on the two-stage gearbox just after the input car-
dan shaft (see Figure 52(b)). The steady-state operational test has been carried
out at 600 rpm at the input cardan shaft. Considering the gearbox layout in
Figure 38, gear II has 92 teeth whereas gear III has 10 teeth.

Gear II presents a bump on a tooth flank caused by the handling during
the surface hardening process. Such a faulty tooth flank engages only in the
reverse motion and it has been verified by visual inspection. Furthermore,
such a natural defect is clearly visible in the TSA signal performed on the
intermediate shaft using 3680 samples per revolution, as reported in Figure
53(a). The presence of the fault is clear also on the spectrogram as well in
Figure 53(b). As in Case 1, these signal processing techniques are not able to
identify whether the defect is related to the gear of 92 or 10 teeth.
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Figure 52: Experimental setup of Case 2: (a) transmission system on the test bench,
(b) schematic of the transmission, (c) accelerometer and (d) tacho probe
with zebra tape.
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Figure 53: (a) TSA related to the intermediate shaft of Case 2 (the dashed circle high-
lights the impulsive signal component due to the damaged tooth engage-
ment) and (b) its spectrogram (window length 300 samples and 75 % over-
lap).

Again, this experimental case study has been investigated by using the same
modus operandi of Case 1. For the sake of completeness, signal decomposi-
tion results and the PCC values for the estimation of the representative signals
are reported in Figure 54 and Figure 55, respectively. By going directly to the
visual inspection of the representative signals (Figure 56), it can be noted that
in this case the different EMD algorithms have a significant impact on the
final results of the methods. From the physical standpoint, the representative
signal related to gear II (see Figure 56(a-c)) correctly reflects the presence of
the fault at about 170 deg due to the localized increase of the signal amplitude.
However, this behavior is also present on the representative signal related to
gear III computed with the EMD and the EEMD (see Figure 56(d-e)). On the
other hand, the representative signals estimated with the CEEMDAN are easy
to interpret since the signal related to gear III (Figure 56(f)) does not contain
any remarkable local change of amplitude that can be attributed to a local-
ized gear fault. Therefore, the only EMD algorithm that allows a clear visual
interpretation of the signals is the CEEMDAN.

The remarks gathered by the visual inspection of the signal can be confirmed
by analyzing the CIs collected in Table 9. In fact, the higher percentage differ-
ences between the faulty gear and the healthy one are achieved considering
the CEEMDAN. Furthermore, it should be note that the results obtained with
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Figure 54: IMF sets of Case 2 obtained by using EMD, EEMD and CEEMDAN.
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Figure 55: PCC values of Case 2 estimated taking into account (a) EMD, (b) EEMD
and (c) CEEMDAN.
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Figure 56: Representative signals of (a-c) gear II and (d-f) gear III for Case 2.
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3.6 summarizing comments

Table 9: CIs for the vibration signal of Case 2, with localized fault in gear II.

kurtosis CF CPF NSVP

EMD
Gear II (faulty) 48.803 10.910 13.704 0.085

Gear III (healthy) 12.182 4.979 4.317 0.089
Gear II vs Gear III (%) 300.604 119.140 217.457 −5.017

EEMD
Gear II (faulty) 6.100 5.304 3.694 0.064

Gear III (healthy) 7.526 4.072 2.805 0.010
Gear II vs Gear III (%) −18.950 30.240 31.677 541.743

CEEMDAN
Gear II (faulty) 19.974 8.444 7.079 0.476

Gear III (healthy) 2.455 2.712 1.549 0.013
Gear II vs Gear III (%) 713.512 210.441 357.026 3696.969

the EEMD are not satisfying since the percentage difference are low for the
CF and CPF while the kurtosis completely fails on the identification of the
faulty gear.
Although this experimental case has been more difficult to handle than the
first one, the methodology has provided a correct result when the CEEMDAN
is performed. The use of several CIs allows for defining an objective criterion
in order to define which gear is faulty, reducing the error due to the user
interpretation.

3.6 summarizing comments

This chapter has focused on developing a strategy for the identification of
localized gear faults in intermediates stages of multi-stage gearboxes. The
proposed methodology is constituted of three main ingredients: the TSA, the
EMD and a selection criterion of meaningful modes. A comprehensive inves-
tigation of the proposed methodology is presented including three different
EMD algorithms and a validation with simulated signals and two experimen-
tal cases: the first one regards a vibration signal acquired on a dedicated test
bench, the second one regards a vibration signal acquired in an industrial
context. Moreover, two novel indicators based on the signal energy released
within a gear pitch have been heuristically advanced.
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On the basis of this activity, the following achievements can be listed:

◃ a methodology for the identification of localized gear faults in interme-
diates stages of multi-stage gearboxes has been developed;

◃ the most effective EMD algorithm turned out to be the CEEMDAN;

◃ the proposed methodology has been validated using simulated signals
and real ones;

◃ in this application, the new metrics (i.e. CPF and NSVP) emerged to be
valid alternatives to the kurtosis.

In this research activity the main original aspect resides on the proposed
methodology. De facto, it represents a first attempt to give a solution about
the identification of localized gear faults in intermediate stages of multi-stage
gearboxes. Moreover, as mentioned in Section 3.1.2, a limited number of works
can be found about CEEMDAN. Hence, this work presents another applica-
tion of CEEMDAN for gear fault diagnosis aiming to extend the comprehen-
sion of limits and advantages of such a method.
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F I N A L R E M A R K S

This thesis has been focused on the impulsive fault identification in rotating
machines by using BD algorithms and EMD algorithms in two different but
complementary contexts.

Chapter 2 has been devoted to the development of a BD method based on
the generalized Rayleigh quotient and solved by means of an iterative eigen-
value decomposition algorithm. A novel second-order cyclostationary crite-
rion, called CYCBD, has been proposed and compared with other BD meth-
ods taking into account simulated and real vibration signals.

Considering real signals, the effectiveness of CYCBD has been investigated
and discussed, both in qualitative and quantitative terms, in comparison with
other BD methods proposed in the literature, first considering the gear tooth
spall identification by means of a dedicated experimental campaign. This com-
parison has led to design a diagnostic procedure based on the proposed cyclo-
stationary criterion for gear tooth spalling in gearboxes operating at constant
regimes (or accounting small speed fluctuations). The main advantage of this
method is that it requires a limited user interaction by exploiting an indica-
tor based on the relative value of the maximized criterion between the refer-
ence condition (healthy) and the current condition. The method robustness
has been further demonstrated by means of an extended sensitivity analy-
sis taking into account the effect of the FIR filter length on different critical
parameters of the algorithm.

Moreover, the proposed BD method has been applied also for the bearing fault
identification using a run-to-failure dataset achieving satisfactory results. In
this case, CYCBD provides excellent diagnostic performances with respect to
the other BD algorithms in terms of early fault detection and identification.
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final remarks

All the obtained results highlight that the maximized ICS2 final value can
be considered as a robust fault indicator. Specifically, the experimental re-
sults, according to the simulated ones, demonstrated the superiority of the
proposed criterion dealing with cyclostationary signals in two different ex-
perimental cases. In particular, CYCBD overcomes MOMEDA dealing with
cyclostationary sources since MOMEDA is based on a criterion sensitive to
periodic sources. Concurrently, the cyclostationary criterion used in CYCBD,
i.e. ICS2, appears more consistent with respect to the criterion used in MCKD,
namely the correlated kurtosis. CYCBD proved to be effective also in the case
of non-constant regime, which represents an open issue until now. CYCBDang
has highlighted good performances dealing with vibration signals in variable
speed conditions. In such circumstances, MOMEDA and MCKD do not give
satisfactory results since they have been designed only for the extraction of
equispaced impulse trains.

The main aspect of novelty of this research activity is the formulation of a
BD criterion based on second-order cyclostationary maximization by means
of a generalized Rayleigh quotient. In this work, the cyclostationary frame-
work in BD algorithms has been explicitly investigated for the first time in
rotating machine diagnosis applications from different standpoints. In fact,
MCKD is a cyclostationary criterion already presented in the work of McDon-
ald et al. [39] but, de facto, there is no explicit mention of cyclostationarity
in that work. A complete study is presented providing the analytical formu-
lation, an extended numerical investigation and two different experimental
validations. CYCBD proved to be more consistent and effective for the extrac-
tion of cyclostationary sources, also considering the MCKD that is based on a
cyclostationary criterion as well. Moreover, the use of a time/angle formula-
tion is another original aspect since it allows for processing vibration signals
of machines operating at variable regimes.

Chapter 3 is devoted on the development and validation of a methodology
being able to identify localized gear faults occurring in a gear mounted on
the intermediate shaft of a multistage gearbox. The goal is to overcome the
limit of traditional signal processing techniques that detect just the stage of the
faulty gear. For this purpose, a EMD-based methodology has been presented
for the local gear fault diagnosis, proposing also two new condition indicators
based on the RMS values estimated on the circular pitch rather than the entire
vibration signal.
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final remarks

In order to test both reliability and robustness of the methodology, simulated
signals and two different real case studies have been analyzed by means of
three different EMD algorithms. The first experimental case address a two-
stage gearbox having an artificial gear tooth fault whereas the second one
concerns a transmission system with a natural defect. The methodology suc-
cessfully identifies the faulty gear in both the experimental tests, especially
when the CEEMDAN is performed. On the basis of this results, the CEEM-
DAN is the most effective signal decomposition technique, since it returns the
clearest results from both the qualitative and quantitative standpoints. More-
over, the proposed CIs - in particular the NSVP - are very sensitive to the
presence of a localized change of the vibration signature, simplifying the iden-
tification of the faulty gear. On these grounds, this method can be considered
reliable on the identification of a faulty gear when the fault occurs in a shaft
with multiple gears. Eventually, this diagnosis method is particularly suitable
for industrial application since it needs a very limited user interaction.
In this second research activity, the primary original aspect resides on the
proposed methodology itself. In fact, as the author is aware, it represents
a first attempt to give a solution about the identification of the faulty gear
(and not just the faulty stage!) in intermediate stages of multi-stage gearboxes.
Moreover, since a very limited number of works are available in the literature
about CEEMDAN, this research reports an application of CEEMDAN for gear
fault diagnosis aiming to clarify limits and advantages of this method.
This thesis provides also some suggestions for future research works. Re-
garding the proposed BD algorithm, further criteria could be developed, per-
haps considering a different way to maximize the cyclostationarity. Moreover,
deeper investigations can be conducted about the effectiveness of CYCBD
considering different kind of fault types and regimes. Finally, the method
proposed in Chapter 3 is based on EMD algorithms that cannot be investi-
gated from the analytical standpoint. However, a possible idea is to revisit the
proposed method using a recent transform, called synchrosqueezed wavelet
transforms [116], that decomposes signals in a similar fashion with respect of
EMD algorithms but is based on a consistent theoretical foundation.
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A
A P P E N D I X : P R O O F O F E Q U AT I O N S

a.1 relationship between the kurtosis and the differential

entropy

The differential entropy H [52] of a random variable x is defined as:

H = −
∫

f (x) ln f (x)dx (57)

where f (x) is the probability density function (pdf) of x of mean µ and stan-
dard deviation σ . If x is zero-mean and of unit variance, the truncated version
of the Gram-Charlier expansion of f (x) is given by:

f (x) ≈ ϕ

(
x − µ

σ

) [
1 +

κ3

3!σ3 H3

(
x − µ

σ

)
+

κ4

4!σ4 H4

(
x − µ

σ

)]
(58)

where

ϕ(u) =
e
−u2

2
√

2π
(59)

Hm is the Chebyshev-Hermite polynomial of order m and κn refers to the
cumulant of order n. For the sake of simplicity, the argument of H and ϕ

are neglected hereafter. The expansion reported in Eq. (58) is valid under the
hypothesis that f (x) is close to a Gaussian pdf [117]. Eq. (58) can be further
simplified if we assume that f (x) is symmetric, which implies that κ3 is nil.
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On these grounds, considering the Taylor’s expansion ln(1+ ψ) ≈ ψ − ψ2

2 , the
substitution of Eq. (58) in Eq. (57) gives:

H ≈ −
∫

ϕ

(
1 +

κ4H4

4!

)[
ln ϕ +

κ4H4

4!
− 1

2

(
κ4H4

4!

)2
]

dx (60)

≈
∫

ϕ ln ϕ + ϕ
κ4H4

4!
− ϕ

2

(
κ4H4

4!

)2

+ ϕ ln ϕ
κ4H4

4!
+ ϕ

(
κ4H4

4!

)2

− ϕ

2

(
κ4H4

4!

)3

dx.

Recalling the hypothesis of x approximately Gaussian, this expression can be
simplified by noting that:

• κ4 is small and it’s equivalent to the kurtosis if x is zero-mean with unit
variance, viz:

κ4 = E

[(
x − µ

σ

)4
]
= Kurt[x] (61)

• the third-order term is infinitely smaller than the second-order terms
under the hypothesis;

• the Chebyshev-Hermite polynomials have the property of being orthog-
onal [117] as follows:∫

ϕ(
x − µ

σ
)Hi(x)Hj(x)dx = δij (62)

where δij is the Kronecker delta;

•
∫

ϕ ln ϕdx is a known quantity since it’s the entropy of a Gaussian dis-
tribution, such as∫

ϕ ln ϕdx ≈ 1 + ln 2π

2
. (63)

Thus, after some manipulation [118], Eq. (60) can be rewritten as:

H ≈ 1 + ln 2π

2
− 1

48
Kurt[x]2 (64)

which finally gives the link between the kurtosis and the differential entropy.
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quotient

a.2 optimization problems by using the generalized rayleigh

quotient

The generalized Rayleigh quotient can be used for defining optimization prob-
lems, i.e. maximizing or minimizing a given function. Let us define the follow-
ing optimization problem:

η(h, RXWX, RXX) =
hTXTWXh

hTXTXh
=

hTRXWXh
hTRXXh

(65)

where parameter η has to be maximized (or minimized) in function of h,
that is a vector of coefficients, while X, W, RXWX and RXX are real matrices.
This ratio, namely η(h, RXWX, RXX), is also known as generalized Rayleigh
Quotient [119]. Note that this mathematical treatment can be extended in the
complex field by substituting transpose matrices with Hermitian matrices. For
the sake of conciseness, η(h, RXWX, RXX) will be called just η implying its
dependencies. A further consideration is that assuming X is a Toeplitz matrix
and W is a diagonal matrix, thus RXWX and RXX must be symmetric [53].
Since the problem is to find the critical points of the function reported in
Equation (65), the solution can be computed through the Lagrange multipli-
ers method to a canonical Rayleigh Quotient. So, in order to write η in the
canonical form, some variable substitutions have to be made. The goal now is
to reduce Rxx to a identity matrix, hence substituting

RXX = D−1D (66)

in Equation (65), we obtain

η =
hTXTWXh
hTD−1Dh

. (67)

At this point, given the following equations

v = Dh (68)

C = D−TRXWXD−1 (69)
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the Rayleigh quotient in its canonical is achieved by substituting such equa-
tions in Equation (67):

η =
vTCv
vTv

. (70)

Critical points of Equation (70) can be determined using the method of La-
grangian multipliers. In other words, the numerator has to be maximized
keeping constant the denominator, such as:

max(vTCv) with vTv = 1. (71)

Thus, the Lagrangian is defined as:

L(v) = vTCv + λ(vTv − 1) (72)

Substituting Equations (66), (68) and (69) into Equation (72) returns:

L(h) = hTRXWXh − λ(hTRXXh − 1). (73)

Thus, taking to zero the derivative of Equation (73)

∇L(h, λ) = 2(RXWX − λRXX)h = 0 (74)

the generalized eigenvalue problem with respect to eigenvalues λ and eigen-
vectors h can be obtained

RXWXh = RXXhλ. (75)

According to the min-max theorem , the maximum eigenvalue represents also
the maximum value of η and the related eigenvector h represents, in our BD
problem, the filter coefficient associated to maximum η. Note that, by defini-
tion, RXWX and RXX are Hermitian matrices. For real matrices and vectors
the Hermitian property is met if and only if the symmetry property is met,
as in this case. Moreover, RXX is also semi-positive definite matrix since the
product between a matrix and its transpose is a semi-positive definite matrix.
Thus, h is a vector of real coefficients and λ and is a positive real scalar.
A more direct approach is to take the derivative of Equation (65) with respect
to h:

dη

dh
=

2RXWXh(hTRXXh)− 2RXXh(hTRXWXh)
(hTRXXh)2 . (76)
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A.2 optimization problems by using the generalized rayleigh

quotient

Setting the first derivative of Equation (76) to zero returns:

RXWXh(hTRXXh) = RXXh(hTRXWXh) (77)

which is equivalent to

RXWXh = RXXh
(hTRXWXh)
(hTRXXh)

= ηRXXh (78)

This results means that solving this equation for a maximum (minimum)
eigenvalue is equal to maximize (minimize) the Rayleigh quotient.
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