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Figure 29: Comparison between pressure force and torque along the angular pitch for
both driving and driven gear, calculated with the PM2 and the CM.

these results has to be found in the modeling procedure defined by PM2, in
which the calculus is split in two sub-cases. When there are two pairs of teeth
in contact (till about 40% of the angular pitch), the pressure torque estimation
takes into account the oil pressure in the control volume between the two
pairs of teeth. Therefore, within this angular interval, the pressure torque
estimation is similar for both the PM2 and the CM and the results show a
satisfactory agreement. When there is only a pair of teeth in contact, PM2

coincides with PM1, ergo the results show the same differences noticed in
Figure 27.

Following this discussion, it can be affirmed that the estimation of the pres-
sure force and torque transmitted by the oil to the gears is strongly influenced
by the several phenomena that occur during the meshing interval. The omis-
sion of one of them affects the results with a relevance that depends on the
angular extension of the neglected phenomenon itself.

74



3.5 pressure force and torque estimation in case of helical gears

3.5 pressure force and torque estimation in case of helical

gears

Hereinafter, the methodology described in Section 3.4 is extended to helical
gears, with the aim to define a general method for pressure force and torque
estimation. In order to estimate pressure force and torque under the effects
of helix, the helical gear is sliced into an arbitrary number of cross sections,
obtained by sectioning the helical gear along the face width direction. With
this procedure, the cross sections appear as the lateral side of a spur gear
and are equal each other, but with a different timing that depends on the
helix angle. The methodology for calculating the pressure force and torque is
applied to each cross section by using Eqns. 41-64, obtaining the evolution of
such loads along a complete revolution. It has to be underlined that in case
of helical gears the oil pressure is acting perpendicularly with respect to the
teeth surface. Therefore, to correctly determine the pressure force components
along axes x and y, pressures Pi, Pj and Pj−1 should be multiplied by cos (β).
Moreover, the application of the procedure from Eqn. 41 to Eqn. 64 to helical
gears cannot be considered exhaustive: the particular shape of such gears
necessarily causes the presence of non-zero components of the pressure force
along the axial direction, and two more components of the pressure torque,
along axes x and y. This aspect is clarified in the following Subsection 3.5.1,
showing that the tooth spaces of a helical gear are loaded by the pressure
torque even outside the meshing zone. Hence, it has to be considered that,
in case of helical gears, pressure force and torque should be expressed along
all the three Cartesian coordinates. Thus, with the aim of defining a general
method, the procedure has been extended to all the remaining components.

The dissertation of the methodology is presented as follows: in Subsection
3.5.1 the pressure force and torque applied to helical tooth spaces outside the
meshing zone are determined, later in Subsection 3.5.2 attention is focused on
the calculation of the pressure loads applied to helical tooth spaces inside the
meshing zone. The last subsection is devoted on analyzing pressure force and
torque applied on the lateral sides of helical gears.
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Figure 30: Pressure torque modeling in helical gears when the tooth space is outside
the meshing zone.

3.5.1 Helical tooth spaces out of the meshing zone

Along the axial direction, the tooth space appears to be unbalanced only in-
side the meshing zone. Outside the meshing zone, since the tooth space is sup-
posed to be loaded by a uniform pressure Pi, the axial component of the pres-
sure force is zero, but, concurrently, two pressure torque components along
axes x and y can be detected (as shown in Figure 30). For their estimation, an
approach similar to the one proposed for the definition of the pressure torque
along axial direction is hereinafter defined.

Focusing the attention on a tooth space outside the meshing zone, such a
tooth space is not balanced with respect to the torque along axes x and y.
Moreover, to calculate its value it is necessary to firstly divide the tooth space
of each cross section in two symmetrical parts, namely right side and left
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side, through its axial plane of symmetry and later determine the pressure
force applied on each side along axis z. Thus, Eqn. 70 and 71 show the two
opposite forces, which have the same amplitude and a different loading point
(Figure 30).

FzLN = ± tan (β)

(
FLR,r

2
+ Pi cos (β)b (rext − rroot)

)
(70)

FzNR = ∓ tan (β)

(
FLR,r

2
+ Pi cos (β)b (rext − rroot)

)
(71)

The correct choice between plus or minus depends on the type of gears ana-
lyzed and, in particular, whether they are right handed or left handed gears.
It is now possible to directly calculate the pressure torque along axis x and y
using Eqns. 72 and 73.

T z
tot,i = FzNR

rext + rroot

2
cos
(
ϑTR
)
− FzLN

rext + rroot

2
cos
(
ϑTL
)

(72)

T z
tot,i = FzNR

rext + rroot

2
sin
(
ϑTR
)
− FzLN

rext + rroot

2
sin
(
ϑTL
)

(73)

By assuming that each force, FzNR and FzLN, acts along the axis of symmetry
of the angular sector which defines it (as shown in Figure 30), angles ϑTR and
ϑTL are defined by Eqns. 74 and 75 respectively:

ϑTR = ϑR +
2π

4zn
∓ π

2
(74)

ϑTL = ϑL −
2π

4zn
± π

2
(75)

where term 2π
4zn

represents a quarter of the angular pitch, while terms ϑR and
ϑL are defined in Figure 24. Again, the correct choice between plus or minus
depends on the type of gears analyzed.
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3.5.2 Helical tooth spaces into the meshing zone

Inside the meshing zone, since the tooth pocket results to be loaded by dif-
ferent values of the oil pressure referring to the adopted discretization, the
axial component of the pressure force is unbalanced. In this case, the calculus
of the pressure force along the axial direction depends on the position of the
contact point with respect to the line of action, as previously explained in
Subsection 3.4.2 about the definition of FKH. Within this framework, when the
meshing occurs along the line of approach, force FzKM is equal to zero even if
the radial component exists; the same effect is obtained regarding FzMH when
the meshing occurs along the line of recess. Nevertheless, a single equation
can be obtained to determine Fztot,i:

Fztot,i = ± tan (β) (|FLK,r|+ |FLK,t|− |FHR,r|− |FHR,t|+ |FKM,t|− |FMH,t|) +

± tan (β)

(
1+ sign (rK − rH)

2
|FKM,r|

)
+

∓ tan (β)

(
1− sign (rK − rH)

2
|FMH,r|

)
(76)

Again, the correct choice between plus or minus in Eqn. 76 depends on the
type of gears analyzed.

The same procedure can be applied to tooth pockets inside the meshing
zone. In particular, in Figures 25 and 26, the tooth pocket is divided into the
two specular parts (right side causing T

xy
HR, Txy

NH, and left side causing T
xy
LK and

T
xy
KN) and their contribution to the pressure torque components along axes x

and y is estimated. It has to be underlined that vector Txy lies on the Cartesian
plane defined by axes x and y in Figure 23. In particular, the pressure torque
components caused by the left side are:

⏐⏐Txy
LK

⏐⏐ = tan (β) (|FLK,r|+ |FLK,t|)

(
rext − rK

2

)
(77)

⏐⏐Txy
KN

⏐⏐ = sin (β)bPi2rK sin
(
ϑK − ϑN

2

)(
rroot − rK

2

)
+

+ sin (β)bPi

(
r2K − r2root

2

)
(78)
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Concurrently, the pressure torque components caused by the right side are:

⏐⏐Txy
HR

⏐⏐ = tan (β) (|FHR,r|+ |FHR,t|)

(
rext − rK

2

)
(79)

⏐⏐Txy
NH

⏐⏐ = sin (β)bPi2rH sin
(
ϑN − ϑH

2

)(
rroot − rH

2

)
+

+ sin (β)bPi

(
r2H − r2root

2

)
(80)

Therefore, the total pressure torque applied along the Cartesian axes x and y
are obtained applying Eqns. 81 and 82, respectively:

Tx
tot,i = ∓

⏐⏐Txy
LK

⏐⏐ sin
(
ϑL + ϑK

2

)
∓
⏐⏐Txy

KN

⏐⏐ sin
(
ϑK + ϑN

2

)
+

±
⏐⏐Txy

NH

⏐⏐ sin
(
ϑN + ϑH

2

)
±
⏐⏐Txy

HR

⏐⏐ sin
(
ϑH + ϑR

2

)
(81)

T
y
tot,i = ±

⏐⏐Txy
LK

⏐⏐ cos
(
ϑL + ϑK

2

)
±
⏐⏐Txy

KN

⏐⏐ cos
(
ϑK + ϑN

2

)
+

∓
⏐⏐Txy

NH

⏐⏐ cos
(
ϑN + ϑH

2

)
∓
⏐⏐Txy

HR

⏐⏐ cos
(
ϑH + ϑR

2

)
(82)

Once the calculus (from Eqn. 41 to Eqn. 64 and then from Eqn. 70 to Eqn. 82)
has been repeated for every cross section, which the helical gear was divided
into, it is necessary to execute a numerical integration along the facewidth for
all the components x, y and z of pressure force Ftot,i and torque Ttot,i. The re-
sults are the pressure loads produced by the oil pressure inside a helical tooth
space at a specific frame of calculus, i.e. a specific angular position. By repeat-
ing such a procedure at each angular position, it gives the pressure loads Ftot,i
and Ttot,i along a complete revolution, for all Cartesian components. In order
to obtain the total actions applied on the gear center along the angular pitch,
Eqn. 65 must be applied and extended to every component of the pressure
force and torque.
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3.5.3 Pressure load on the lateral sides of helical gears

As debated in Subsection 3.4.3 regarding spur gears, the oil pressure on the
lateral sides of helical gears may be taken into account for a general disserta-
tion. Focusing the attention on a generic helical gear, it is clear that the two
lateral sides appear as equal, but not symmetrical; in particular, since the two
sides have the same shape, but a different timing, a specific pressure distribu-
tion on each gear side is detected. Moreover, it should be considered that the
relative relief and grooves milled on the two sides of a common helical gear
pump casing are not symmetrical; in particular, each of them is usually timed
in reference to the lateral side of the gear which is facing to. For these reasons,
even if the axial clearances are supposed as symmetrical, it is not possible to
define a general procedure based on an analytical formulation, since several
geometrical parameters referred to both the gears and the pump layout affect
the pressure distribution on each gear side. Therefore, while in case of spur
gears it is sometimes possible to estimate such loads following simple geo-
metrical considerations, in case of helical gears numerical procedures appear
to be compulsory, as proposed in [55]. Nevertheless, since the pressure loads
defined on the two gear sides still tent to cancel each other out being applied
on two opposite surfaces, the resulting pressure force and torque components
are usually neglected in the analysis of the dynamic behavior of helical gear
pumps [19].

3.5.4 Evaluation of the methodology accuracy

In the present section the results concerning the methodology presented in
Subsections 3.5.1 and 3.5.2 are shown and discussed. As done in Subsection
3.4.4, in order to carry out the assessment, the pressure distribution referring
to a gear pump with main parameters reported in Tab. 7 has been calculated
by adopting the mathematical model described in Section 3.2. Since no other
methods to calculate pressure force in helical gear pumps have been previ-
ously introduced in the literature, comparison with other estimation method-
ologies is not possible.

In Figure 31 the results regarding the pressure force (torque) provided by
the application of the CM (Eqns. 41-64 and Eqns. 70-82) on the helical driving
gear are shown as normalized by using Eqn. 68 and Eqn. 69. Focusing the
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Table 7: Main characteristics of the pump adopted to assess the variable pressure
loads estimation procedure.

Tooth number 11

Displacement 2.6 ∗ 10−4m3/rev

Delivery pressure 3bar

Working speed 3020rpm

attention on the pressure force along the three axes, it can be noticed that Fpz
has a considerable lower magnitude compared to Fpx and Fpy. The pressure
force along the axial direction strongly depends on the helix angle, which is
around 10◦ for the analyzed gears. Moreover, this aspect becomes even more
effective by considering the pressure torque along axes x and y, which results
to have a magnitude more than 100 times lower than along the axial direc-
tion. For this reason, the x and y components of the pressure torque could be
neglected for the development of a simplified elasto-dynamic analysis of he-
lical gear pumps. Nevertheless, they could become considerably high in case
of high values of outlet pressure and important in order to study the pump
balancing or its dynamic behavior.

3.6 model implementation and workflow

The LP model presented in Sections 3.2, 3.3 and 3.4, which substantially con-
stitutes the processing module of the whole model, has been entirely imple-
mented in Matlab environment, together with the pre-processing one. The post-
processing module, on the contrary, does not have a dedicated structure since
the model outputs can be directly analyzed and post-processed by using built-
in Matlab capabilities.

3.6.1 Pre-processing module

Despite the mathematical approach introduced in Section 3.2 may seem to
require a small set of geometrical parameters referring to the analyzed gear
pump, the pre-processing module represents the most time-consuming part
of the entire model. With the aim to realize a stand alone model, i.e. a nu-
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Figure 31: Pressure force and torque applied on the driving gear, in case of helical
gear pumps.

merical model that does not need any external software except Matlab to run
simulations, the pre-processing module includes the possibility to draw both
the gearpair and an arbitrary number of grooves starting from the datasheet
reporting the gear design parameters and the groove shape geometry param-
eters.

Once the starting data have been provided to the module, the software
draws the gearpair by simulating the cutting process and it is consequently
able to calculate (and store) independently all the geometrical data that are re-
quired by the processing module. In particular, as it can be appreciated from
Eqns. 27, 29, 30 and 31, the evolution of several geometrical parameters, i.e.
tooth pockets volume and its derivative, length, width and height of each flow
channel, must be calculated along a complete revolution. Each parameter is
calculated numerically, by using a dedicated function that simulates the mesh-
ing course throughout a revolution and determines the analyzed parameter
at each frame of calculus.

If the analysis is focused on a spur gear pump, the pre-processing calcu-
lations are entirely performed in a 2D domain, by assuming no dependence
from the axial direction. In order to clarify this aspect, it is possible to refer to
the estimation of surface area A related to the cross section defining flow rate
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Q
ij−1
m in Figure 16.b. Since no axial variations are taken into account, the evolu-

tion of surface area A along the meshing course is equivalent to the evolution
of the minimum distance between the two tooth flanks, multiplied by the gear
facewidth. The same approach is applied to all the parameters that physically
extend themselves along the axial direction, such as gear pocket volumes. On
the contrary, if the analysis is focused on a helical gear pump, influence of the
helix is taken into account with a dedicated procedure. In particular, for all the
geometrical parameters affected by a non-zero helix angle, both helical gears
are sliced into an arbitrary number of cross sections, obtained by sectioning
them along the face width. With this method, the cross sections are equal each
other, but with a different timing. Let assume, for example, that the volume
of a specific tooth pocket has to be calculated; firstly, for each defined cross
section, the shape and the surface area of the tooth pocket are estimated along
a complete revolution. Hence, a numerical integration is used to achieve the
whole volume of the helical tooth pocket. To better underline the effects re-
lated to the application of this procedure, in Figure 32, volume Vi of a generic
tooth pocket is firstly calculated by using the above-described procedure and
then re-calculated without applying it, in order to obtain a spur gear. It is pos-
sible to observe that there are two main differences between them: (i) volume
Vi is characterized by a wider meshing interval and, concurrently, (ii) it shows
smoother variations, which are two typical features provided by helical gears.
Such a procedure is similarly applied to all the parameters affected by the
presence of the helical.

Once the entire set of parameters has been obtained for both gears, look-up
tables are generated and stored by timing the data with respect to the starting
reference position of the gearpair. This last step produces all the required geo-
metrical data to run the dynamic simulations. Therefore, at the very first run
of the code, all the geometrical parameters need to be calculated and the pre-
processing step may require a considerable amount of time; however, when
this step is concluded, it is possible to simulate whatever working condition
without repeating it. Moreover, since the pre-processing module is made by a
number of separated sub-modules, each one referring to the calculation of a
specific geometrical parameter, design modifications may be introduced and
analyzed without necessarily run the entire module. Let assume, for example,
that a different relief groove shape wants to be investigated. Since the gearpair
is not affected by the design modification, it is not necessary to re-calculate
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Figure 32: Comparison between Vi calculated as belonging to a spur gear and Vi cal-
culated with the specific procedure for helical gears (Vmax is the maximum
value of volume Vi).

pocket volumes nor the surface areas referred to flow rates Qi
m, Qij−1

m , Qi
outlet

and Qi
inlet in Figure 16, obtaining so the positive effect to reduce the compu-

tational effort requested.

3.6.2 Processing module

The processing module allows to set the pump working conditions and to
numerically solve the dynamic system defined in Section 3.2 with respect
to the gearpair translational micromotions, that are calculated by using the
approach proposed in Section 3.3.

Before starting each simulation, the code requires to define the boundary
conditions, i.e. mean inlet/outlet pressure, as well as the initial conditions,
i.e. the pressure field at initial time t = 0. Moreover, on the basis of the ap-
proach proposed in Section 3.3, if the gearpair has τ = 1, then the driving
torque must be provided, in order to calculate mesh force Fm from Eqn. 36. It
is worth noting that the other parameters required by Eqn. 36, i.e. pressure
torque T

(1)
p and T

(2)
p , are automatically calculated by the code from the initial

condition referred to the pressure field. On the other hand, in the case where
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τ ̸= 1, then Fm is obtained from Eqn. 39 and therefore both driving torque
Tshaft and hydro-mechanical efficiency ηHM must be defined. Such data may
be, in general, obtained from direct measurements [78] or, in case no proto-
types are available, by estimating them with specific models [79, 37]. Finally,
last requested parameters refer to the working speed ω and the oil physical
properties, i.e. bulk modulus B, dynamic viscosity µ and density ρ.

Once boundary and initial conditions, together with working condition pa-
rameters, have been defined, the module is effectively ready to solve the dy-
namic system. As already introduced in Section 3.1, the pressure field is esti-
mated in reference to the gearpair micromotions, that are actually predicted
by taking into account the variable pressure loads produced by the pressure
field and the bearing reaction. In order to better understand how the iterative
solution scheme does work, it is possible to focus the attention on the chart
in Figure 33, which describes the solution workflow for a generic angular po-
sition of the gearpair. At the first iteration, the code uses the solution of the
previous angular position as starting data to get the first estimation of the gear
centers position, which is achieved by using Matlab function fsolve applied to
Eqn. 34. By knowing the gearpair translational motion, the code then updates
all the influenced geometrical parameters and collects the new look-up tables.
In particular, the process of parameter updating is applied to the main pump
radial clearances, i.e. tooth tip clearances, bearing radial clearances and back-
lash value, while all the axial parameters are considered as constant values.
It is worth underlining that also the pocket volume depends on the gearpair
micromotions, however, such a relation is neglected in the proposed model.
The reason behind this assumption is justified by the fact that the bearing
radial clearance is so small that its influence on the pocket volume estima-
tion is less than the 0.1% of the volume nominal value and it is therefore not
appreciable on the model results. Once all the position dependent data have
been recalculated, the dynamic system is solved by taking the solution of the
previous angular position as initial condition. Since the overall fluid-dynamic
system based on Eqn. 29 is typically stiff, variable-stepsize variable-order Mat-
lab function ode15s is used to obtain the solution. Finally, pressure force and
torque are calculated on the basis of the new pressure field estimation. Since
at the end of the first iteration no comparable terms are available, the code
directly goes for the second turn, by using the pressure field just calculated to
obtain a new gearpair centers position. Once the calculus is entirely repeated
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Figure 33: Iterative solution scheme for a given gearpair angular position, where #i
stands for iteration number.

for the second time, then pressure force, torque and centers position estimated
by two consecutive iterations are compared; if the relative tolerance of each
term is under the threshold value, then solution set from the last iteration is
stored and the code moves to the next angular position. Otherwise, in case at
least one term shows a relative tolerance above the threshold value, then the
code moves to another iteration referred to the same angular position. The
procedure is repeated until the tolerance condition is satisfied or the iteration
number reaches a limit value.
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The convergence of the calculus is usually pretty fast and three-four iter-
ations are sufficient to satisfy a tolerance condition with a threshold value
equal to 10−3. However, on the basis of the author’s experience, the maxi-
mum number of iterations should always be fixed, since in case of low speed
or light loads, the code might tend to fall in a local minimum.

3.7 experimental campaign

The validation of the presented model has been achieved by means of a ded-
icated experimental campaign. The test rig adopted to carry out the tests is
shown in Figure 34. The gear pump is installed inside a sealing box that makes
it working submerged and driven by a brushless AC motor with speed con-
troller; a torque meter is located along the shaft connecting the pump with
the electric motor. The pipeline for the oil supply system is constituted by
two branches: one connecting the tank to the sealing box and the other one
connecting the pump’s outlet chamber to the tank. An automatic servo valve
located on the latter branch of the pipeline allows for the fast regulation of
the oil delivery pressure. The oil temperature is regulated with an additional
pipeline connected to the tank and controlled by a dedicated system, namely
the temperature controller. Such a system monitors the oil inside the tank by
using a thermocouple and regulates the temperature with a number of elec-
tric resistances. Both pipeline systems described above are equipped with a
drainage system, various valves and filters in order to allow for a safe and
easy management of the test rig during the measurement procedures. The
description of such auxiliary parts of the test rig is neglected being out of
the scope of the present work. As shown in Figure 34, the set of transducers
adopted for the tests is constituted by two digital pressure gauges placed on
the suction and delivery ports, respectively, and a Kracht Gear Type Flow Me-
ter, placed on the delivery pipeline, in order to measure the outlet flow rate
and therefore determine the volumetric efficiency. The instantaneous angular
speed can be directly acquired from the tachometer connected to the speed
controller of the electric motor. The set of sensors is acquired by the data
acquisition system integrated in the test bench.

In order to carry out the experiments, an external gear pump has been de-
signed and manufactured; the main design parameters are reported in Table
8. As it can be noted, the gearpair is constituted by two helical gears with
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Figure 34: Test rig configuration and sensors disposition adopted for the experimen-
tal campaign.

different tooth number, so that τ ̸= 1; despite this choice might be consid-
ered unusual, studies as the one reported in [41] are making it more and
more common. Figure 35 shows the mechanical setup of the pump; the he-
lical gearpair is located inside a cast iron casing, therefore radial clearances
on both driving and driven side are designed to not require any running in
process, since contact friction between tooth tips and casing cannot take place.
Gears are then covered by a thrustplate and the entire machine is packed by a
coverplate, which is clumped to the casing with four screws. A rubber seal is
placed between the casing and the coverplate, in order to reduce leakage. Jour-
nal bearings are directly obtained from the casing and the coverplate, while
grooves are milled on the thrustplate and the casing. The pump is designed
to work in submerged conditions, as usually required for pumps working as
oil supplier in automatic transmissions.
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Table 8: Main design parameters of the designed gear pump.

Tooth geometry helical
z1 14

z2 9

Displacement Vm 14.65cm3/rev

Facewidth b 26mm

Normal module mn 2.25mm

Helix angle β 6deg

The designed pump has been manufactured in 20 nominally identical sam-
ples, in order to perform a statistical characterization of the pump behavior.
As a matter of fact, despite each sample is based on the same design that
should lead to 20 identical pumps, design tolerances, together with the ac-
curacy of the production process, necessarily cause the presence of minor
discrepancies. As a result, the 20 samples will globally show the same macro-
behavior; however, each pump will also have its own characteristic curve. It
is therefore clear that, to proper address the accuracy of the proposed model,
first a detailed characterization of the samples is mandatory. On the basis
of this consideration, the mean actual value of the tooth-tip/casing clearances
and bearing radial clearances has been measured on both gears for each pump,
at the end of the production process. Grooves milled inside the pressurizing
zones of the gearpair have not been included in this study since they are
obtained with very small design tolerances. Moreover, measurements on the
actual axial clearances have not been taken into account, since axial leakages
are assumed to be of secondary importance with respect to radial leakages.
This assumption is made on the practical basis that the tooth tips, which are
responsible for radial leakages, are particularly thin in both gears with respect
to the mean tooth width, which is responsible for axial leakages. Moreover, the
pump has been designed with mean radial clearance values that are almost
the double of the mean axial clearance values.

Charts in Figures 36.a and 37.a report the measured tooth tip and journal
bearing radial clearances (for both gears), respectively. For confidentiality rea-
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Figure 35: Mechanical setup of the tested pump.

sons, measured data xm have been normalized with respect to the reference
design value xd as shown in Eqn. 83:

x∗m =
xm − xd

xd
(83)

As it can be noted, both tooth tip/case and journal bearing clearances may
deviate consistently from the design value. In particular, for tooth tip radial
clearances (Figure 36), the mean deviation of the measured data from the de-
sign value is around 2.5% for the driving gear (Figure 36.b) and 3.5% for the
driven one (Figure 36.c); moreover, such a deviation may occasionally reach
also the 20%, leading to a standard deviation around 6% for both gears. A
similar situation, but amplified, is observed in the case of journal bearing ra-
dial clearances: the mean deviation of the measured data is around −10% for
the driving gear (Figure 37.b) and reaches almost the 17% for the driven one
(Figure 37.c). Standard deviation in both gears is similar to the one observed
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Figure 36: Measured tooth tip clearances deviation from the design value. Dash line
represents the normal distribution with estimated parameters mu and s.

in case of tooth tip clearances. Normality of the measured data has been pre-
viously verified by means of a chi-squared normality test. The results of this
analysis demonstrate that actual clearances may deviate consistently (but still
within the design tolerances of some micrometers) from the design values,
suggesting that this aspect should be taken into account in the validation of
the model. However, in order to evaluate their actual effect on the pump be-
havior, attention must be focused also on the measured pump performance.

With the aim to characterize the pump throughout a wide working condi-
tions range, two different tests have been conducted. The first testing proce-
dure consists in evaluating the pump performances at four different operating
speed values, while delivery pressure is kept as a constant. On the contrary,
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Figure 37: Measured journal bearing clearances deviation from the design value.
Dash line represents the normal distribution with estimated parameters
mu and s.

the second testing procedure consists in evaluating the pump performances
at different delivery pressure values, while the working speed is kept as a con-
stant. Both testing procedures have been repeated at two different oil temper-
atures. Table 9 summarizes the sixteen working conditions tested; the entire
set of tests has been repeated for each pump sample, leading to 320 different
tests.

Figure 38, from (a) to (e), shows the measured volumetric efficiency val-
ues with respect to delivery pressure variation for the entire set of 20 sam-
ples; data have been collected at a working speed equal to 1000rpm and oil
temperature equal to 60°C. Efficiency is estimated by dividing the measured
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Table 9: Test conditions adopted for the experimental campaign.

Outlet pressure Oil temperature Working speed
(bar) (°C) (rpm)

30

60

500

1000

2000

4000

120

500

1000

2000

4000

10

60

1000

20

30

40

10

120
20

30

40

delivery flowrate by its theoretical value, which is defined by the pump dis-
placement Vm in Tab. 8 and the mean working speed (see Ref. [80]). As it can
be appreciated from Figure 38.a, efficiency tends to decrease as the delivery
pressure increases, as expected by a fixed displacement pump. For constant
values of the working speed and the oil temperature, pressure dependent hy-
draulic losses, i.e. leakage flowrates, tend to increase monotonically as also
explained in Ref. [80], p. 87. Figure 38 also demonstrates that volumetric ef-
ficiency decreases as the oil temperature is increased. Such a behavior is due
to the decrease observed in the oil dynamic viscosity as a consequence of the
positive variation of the temperature, since part of the volumetric losses is in-
versely proportional to the fluid viscosity itself. It is worth specifying that the
viscosity decrease concurrently causes a decrease of the pressure drop at the
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inlet port, which would have the beneficial effect of increasing the delivered
flowrate (see Ref. [80], p. 87). However, the latter effect becomes predominant
only above a limit value of the oil viscosity, which is usually too high to be
reached for the considered application. What is more interesting relates to
how the measured values are distributed: in particular, it can be noted that,
as the delivery pressure increases, the standard deviation tends to increase
as well. A similar trend is also appreciated in Figure 38 from (f) to (l), which
shows the measured efficiency values with respect to delivery pressure varia-
tion, collected at a working speed equal to 1000rpm and oil temperature equal
to 120°C. In both cases, the increment of the standard deviation between two
consecutive pressure conditions is almost a constant; moreover, such a incre-
ment is almost equal by comparing tests at 60◦C with tests at 120°C. However,
estimated standard deviations differ consistently in their absolute value be-
tween the two test conditions. In order to better enlighten this aspect, it is
possible to focus the attention on Figures 38.b and 38.e, which report the his-
togram of measured efficiency values at Pout = 10bar and Pout = 40bar at
Toil = 60°C, respectively. As it can be noticed, standard deviation changes
from s = 0.0115 to s = 0.0299 by showing an increment around 0.019. Con-
currently, by focusing the attention on Figures 38.g and 38.l, which report the
histogram of measured efficiency values at Pout = 10bar and Pout = 40bar

at Toil = 120°C, it results that standard deviation changes from s = 0.0217
to s = 0.0399 and therefore it shows almost the same increment of the pre-
vious case. Nevertheless, by comparing measured data at the same delivery
pressure but with a different oil temperature, e.g. Figures 38.b and 38.g, it is
noted that the temperature increasing causes both a reduction of the mean
volumetric efficiency and an increase of the standard deviation.

Measured data referring to volumetric efficiency with respect to speed vari-
ation have been post-processed with the same approach (see Figure 39). In
particular, from Figure 39.a to 39.e, measured efficiency values for the 20 sam-
ples at a delivery pressure Pout = 30bar and Toil = 60◦C are shown together
with the estimated mean value and standard deviation for the four different
working speed analyzed. As it can be appreciated, the speed increasing causes
the volumetric efficiency to slightly increase as well (in agreement with Ref.
[80], p. 87), while the standard deviation tends to decrease. This behavior is
qualitatively the opposite if compared to the pressure increasing; moreover,
such a trend is confirmed also for an oil temperature equal to 120°C. As al-
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Figure 38: Measured efficiency ηv with respect to pressure variation, for the 20 sam-
ples. From (a) to (e), test conditions are: n = 1000rpm and Toil = 60°C,
while from (f) to (l) test conditions are: n = 1000rpm and Temp = 120°C.
Data are normally distributed for each analyzed working condition.
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ready observed when evaluating measured efficiency with respect to delivery
pressure variations, for a given working condition, the oil temperature causes
also the standard deviation to increase. However, in this case the standard
deviation increment produced by the oil temperature increase is much less
evident.

Similar behavior has been also observed in the measured torque required
to operate the pump, as it can be appreciated from Figure 40 depicting the re-
quired torque with respect to delivery pressure and Figure 41 depicting the re-
quired torque with respect to working speed (torque and efficiency data have
been recorded simultaneously, during the same test). In agreement to the pre-
vious considerations, the temperature increase tends to spread the measured
data, as demonstrated by the increment observed in the standard deviation
values. On the other hand, variation of both delivery pressure and angular
velocity does not seem to produce evident effects on this parameter.

Results obtained from the experimental campaign demonstrate that radial
clearances measured at the end of the production process may show high
value of the estimated standard deviation, even if the recorded values stand
within the design tolerance interval. Moreover, although design limitations
are satisfied, slight modifications of the radial clearances may consistently
affect the pump performance, both in terms of volumetric efficiency and re-
quired torque. In addition, such a phenomenon is clearly amplified as the
temperature increases.

3.8 model results and validation

In the present Section, results obtained from the numerical model described
in Sections from 3.2 to 3.6 are introduced and discussed. Attention is partic-
ularly focused on the comparison with data obtained from the experimental
campaign described in Section 3.7, with the aim to precisely address the accu-
racy of the model. All the data reported in this Section refer to the reference
system defined in Figure 42. As enlightened in the previous Section, the ex-
perimental data suggest that a proper validation of the model should refer
to the actual geometry of the tested sample. If the comparison between nu-
merical and measured data is performed by using a single pump sample, the
set up of the model should be based on the actual geometrical parameters of
that sample, and not on the design values. Concurrently, a similar approach

96



3.8 model results and validation

㌀　戀愀爀 ⴀ 㘀　뀀䌀

㌀　戀愀爀 ⴀ ㈀　뀀䌀

⠀愀⤀

⠀戀⤀ ⠀挀⤀ ⠀搀⤀ ⠀攀⤀

洀甀 㴀 　⸀㤀㔀㘀㌀
猀 㴀 　⸀　㈀㤀

洀甀 㴀 　⸀㤀㈀㔀㈀
猀 㴀 　⸀　㠀

洀甀 㴀 　⸀㠀㌀　㈀
猀 㴀 　⸀　㈀㐀㔀

洀甀 㴀 　⸀㘀㌀㤀㐀
猀 㴀 　⸀　㔀　㈀

⠀昀⤀

⠀最⤀ ⠀栀⤀ ⠀椀⤀ ⠀氀⤀

洀甀 㴀 　⸀㤀㈀㈀㜀
猀 㴀 　⸀　　㜀㤀

洀甀 㴀 　⸀㠀㜀　㐀
猀 㴀 　⸀　㜀

洀甀 㴀 　⸀㜀㌀㜀
猀 㴀 　⸀　㌀㐀

洀甀 㴀 　⸀㐀㔀㔀㔀
猀 㴀 　⸀　㔀㈀㤀

Figure 39: Measured efficiency ηv with respect to speed variation, for the 20 samples.
From (a) to (e), test conditions are: Pout = 30bar and Toil = 60°C, while
from (f) to (l) refer to the same case with Toil = 120°C. Data are normally
distributed for each analyzed working condition.
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Figure 40: Torque Tshaft required to operate the pump with respect to pressure vari-
ation, for the 20 samples. From (a) to (e), test conditions are: n = 1000rpm

and Toil = 60°C, while from (f) to (l) test conditions are: n = 1000rpm and
Toil = 120°C. Data are normally distributed for each analyzed working
condition.
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