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P R E FA C E

I graduated cum laude in Mechanical Engineering at the University of Ferrara
in December, 2013. Just after the graduation, I have joined the research group
leaded by Prof. G. Dalpiaz by taking part of the European Project COST
TU1105 entitled ’NVH Analysis techniques for design and optimization of hybrid
and electric vehicles’. Within this framework, I spent three month at the Dy-
namic Research Group, Loughborough University, England, working in a re-
search team constituted by three other junior researchers and two supervisors,
Prof. S. Theodossiades and Prof. S. Walsh. During this experience abroad, my
colleagues and I performed a Transfer and Operational Path Analysis on an
electric vehicle provided by the PSA Group; results have been published in
[1]:

[1] A. Diez-Ibarbia, M. Battarra, J. Palenzuela, G. Cervantes, S. Walsh, M. De-la Cruz,
S. Theodossiades, and L. Gagliardini. “Comparison between transfer path analysis
methods on an electric vehicle.” In: Applied Acoustics 118 (2017), pp. 83–101. doi: 10.
1016/j.apacoust.2016.11.015.

Since I came back to the University of Ferrara, my research activity has been
mainly focused on developing numerical models for simulating gear pumps
in terms of dynamic behavior and efficiency, becoming the research topic of
my PhD studies. Thanks to a valuable collaboration with ZF-TRW Automo-
tive Italia s.r.l., I had the chance to pay particular attention on the possibility
to evaluate a number of uncommon design solutions that are peculiar require-
ments in the field of high performance automotive applications. During the
first year of my PhD, I developed a lumped parameter model to simulate
efficiency and pressure ripple characteristics of tandem gear pumps [2], i.e.
gear pumps with multiple parallel and coaxial stages; quality of the results
have been supported by comparing them with experimental data. Later, the
modeling approach has been improved, with the aim to evaluate the actual
positioning of the gear center and therefore to determine the actual radial
clearances. The development of such a model has started with the definition
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of a dedicated procedure for the calculation of the variable pressure loads
applied to the gears [3, 4]; the procedure has been defined for both spur and
helical gear pumps and compared with other methods described in the litera-
ture.

[2] M. Battarra, E. Mucchi, and G. Dalpiaz. “A model for the estimation of pressure
ripple in tandem gear pumps.” In: ASME IDETC/CIE. 2015, V010T11A018; 9 pages.
doi: 10.1115/DETC2015-46338.

[3] M. Battarra and E. Mucchi. “A method for variable pressure load estimation in spur
and helical gear pumps.” In: Mechanical Systems and Signal Processing 76-77 (2016),
pp. 265–282. doi: 10.1016/j.ymssp.2016.02.020.

[4] M. Battarra and E. Mucchi. “Evaluating time dependent pressure forces and torques
in external gear machines by means of an analytical approach.” In: Internoise 2017.
Honk Kong, 2017, pp. 6737–6748.

During my second year, I spent 5 month at the GearLab, Ohio State Univer-
sity, Columbus (OH) - USA, under the supervision of Prof A. Kahraman. This
experience abroad gave me the chance to deepen my studies on the dynamic
behavior of gear pumps, which led me to develop a non-linear model to eval-
uate gear pump dynamics at the earliest stages of the design process, when a
number of design parameters are still unknown and, therefore, high-accuracy
models cannot be applied. Later, in my third year I extended the lumped pa-
rameter model previously developed to the simulation of gear pumps with
non-unitary transmission ratio and validated the results by means of a ded-
icated experimental campaign. Within this context, I also had the chance to
focus my studies on cavitation, which may take place in gear pumps working
at high speed, producing tremendous effects on both the machine efficiency
and reliability. Firstly, the phenomenon, rarely studied in the literature in cor-
relation with gear pumps, has been experimentally characterized and later a
dedicated modeling approach has been proposed.

Apart from my PhD research topic, I also had the chance to study the dy-
namics of other mechanical systems; in particular, I addressed the evalua-
tion of the NVH behavior of linear vibratory feeders by proposing a minimal
model to study the influence of the frames mechanism on the driveline of the
feeder [5, 6].

[5] M. Buzzoni, M. Battarra, E. Mucchi, and G. Dalpiaz. “Noise and vibration improve-
ments in vibratory feeders by analytical models and experimental analysis.” In: Inter-
noise 2017. Honk Kong, 2017, pp. 6749–6759.
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[6] M. Buzzoni, M. Battarra, E. Mucchi, and G. Dalpiaz. “Motion analysis of a linear
vibratory feeder : Dynamic modeling and experimental verification.” In: Mechanism
and Machine Theory 114 (2017), pp. 98–110. doi: 10.1016/j.mechmachtheory.2017.04.
006.

This brief summary regarding the work I carried out in the last three years
leads me to express sincere gratitude to ZF-TRW Automotive Italia s.r.l. and
its engineers for their active co-operation during the experimental studies. A
special thank goes to my advisor, Prof. E. Mucchi, and to Prof. G. Dalpiaz and
Eng. G. D’elia, for the help and the time they dedicated me throughout this
experience.

Finally, I want to sincerely thank my office mates, who shared the PhD
experience with me, and all the other guys that work in the research group.
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1
I N T R O D U C T I O N

1.1 gear pumps in modern automotive auxiliary systems

Gear pumps are nowadays considered as useful power providers for sev-
eral applications, due to their features regarding the wide operating condi-
tion range, small dimensions, high reliability and reduced costs. They are
commonly adopted as oil supplying components in various automotive sub-
systems such as automatic transmissions, steering systems and engine lubri-
cation circuits. Depending on the application, these machines are required to
perform opposite tasks: they are typically used to provide a high delivery
flow rate with low pressure content in case of cooling and lubrication circuits,
while its adoption in steering systems is devoted to guarantee high delivery
pressure values. Moreover, automatic and semi-automatic transmissions may
require both behaviors alternatively, in reference to the instantaneous working
condition.

This brief survey on the possible behaviors required by different auxiliary
systems makes evident that various design strategies must be adopted in ref-
erence to the pump specific application itself, regardless from the fact the
application concerns the automotive field. Gear pumps specifically designed
for the automotive industry cannot be distinguished from gear pumps for
common fluid power applications on the basis of simple considerations on
the ratio between the delivery pressure and the outlet flow rate. The peculiar-
ity of such a machine category is given by the compelling need to accomplish
the necessary working characteristics together with other essential constraints
related to weight and global size minimization, mechanical efficiency maxi-
mization and Noise, Vibration and Harshness (NVH) behavior improvement.
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introduction

In order to achieve these goals, many distinctive solutions are nowadays
considered and evaluated along the design process. In conventional applica-
tions, the pump is driven by an electric motor which makes it operating at
constant nominal conditions defined by speed and delivery pressure. How-
ever, contemporary needs to reduce weight and size of auxiliary systems
forces gear pumps to be driven by the engine instead and to work smoothly
within a wider range of speed. Moreover, it is becoming more desirable to run
pumps at higher speeds to deliver lubricant at much higher flow rates rather
than increasing their displacement.

Since the volumetric machine delivery flow rate directly depends on the
pump theoretical displacement and the working speed, the design process can
follow two different philosophies to increase it. The first option is to increase
the pump displacement; this solution can be easily achieved, for example, by
increasing the gear facewidth. However, this choice leads to a considerable
increment of both size and weight. On the other hand, the second option con-
cerns the increase of the pump working speed. Such a design layout, which
allows for a considerable reduction of the global dimension of the auxiliary
system and the pump itself, is easily obtained by connecting the pump to
the Internal Combustion (IC) engine by means of a multiplier gearbox. The
gearbox does not substantially alter the behavior of the pump, while it makes
possible for the volumetric machine to reach higher speed values, usually
above the 6000rpm, even if the IC engine does not overcome the 4500rpm

limit.

As one can well imagine, the adoption of the IC engine to drive the pump
comes also together with some negative aspects. The volumetric machine is
forced to work throughout a considerably wide speed range and, therefore,
it must be designed to properly perform at several different working condi-
tions. Moreover, such a characteristic becomes more and more challenging as
the speed range increases: many major design parameters, e.g. relief/lateral
groove shape and width, radial/axial clearances, may have different optimum
solutions between the low speed condition and the high speed one. The relief
groove size, in particular, has a deep influence on the fluid-dynamic behav-
ior of the pump and its optimal design may strongly depend on the working
speed condition. At low nominal speed, the relief groove size can be kept as
close as possible to the best theoretical one [7] to ensure high levels of deliv-
ery flow rate regularity without undesired overpressure phenomena. On the
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contrary, as the speed is increased, its width should be reduced in order to
avoid high pressure peak phenomena inside the trapped volume [8]. In this
context, a high efficiency and reliable pump can be obtained by modifying
both teeth and relief groove shape [9], so that the pump guarantees high vol-
umetric efficiency at low speed and reduced overpressure peaks as it starts
running faster. However, such a result cannot be achieved by following basic
design rules; on the contrary, it is the successful outcome of a design process
based on trial and error, analytical and empirical design correlations, as well
as many numerical and experimental evaluations.

In a similar manner, the choice to reduce pump weight and global size by
raising the working speed may give birth to undesired phenomena and it has
to be pursued with a proper plan. The speed increasing, as in many other
fluid power machines, may promote cavitation incipience and considerably
worsen the NVH behavior of the entire pump. The first scenario is usually
due to the oil flows discharged from the trapped volume to the inlet chamber:
by increasing the working speed, the mean velocity of such flows is increased
both because of the gear pair angular speed increment and because of the high
pressure peak increasing. The consequence is a sudden drop of the pressure
value at the inlet side of the meshing zone, which causes the appearance of air
release and vaporization phenomena. The following collapse of the bubbles
dragged from the inlet chamber to the outlet one produces intensive wear
and corrosion, even if cavitation is just at incipient stage. Once cavitation is
fully developed, a second effect is recognized: gear pockets moving from the
suction chamber to the delivery one start being chocked by gas and vapor,
producing a sharp drop of the volumetric efficiency. Finally, cavitation is also
responsible for a consistent increment of the oil pressure ripple amplitude
and a consequent deterioration of the pump NVH characteristics.

Risks related to cavitation are taken to extremes by considering that its
practical characterization, independently whether it is faced experimentally
or numerically, is typically a challenging task. Regarding the experimental ap-
proach, the early detection of cavitation cannot be performed with standard
measurements based on efficiency evaluation. The delivery flow rate, as al-
ready demonstrated in refs. [10, 11], represents a good indicator of the fully
developed condition; however, it is not capable to accurately describe the evo-
lution of the phenomenon from the incipient stages. A monitoring system to
properly detect incipient cavitation, which can be as harmful as fully devel-
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oped cavitation, usually requires the adoption of acoustic emission sensors,
hydrophones or particle-image velocimetry approaches, together with ded-
icated post-processing techniques. In gear pumps for automotive purposes,
the detection becomes even more challenging since the machine is generally
installed inside a tank, working in submerged condition. On the other hand,
numerical models including cavitation are still not so widespread in industrial
research, probably due to their characteristics of requiring a full definition of
the oil physical properties with respect to both temperature and pressure
values, as well as to their negative features of being unstable and time con-
suming.

As it will be enlightened in Chapter 2, the speed increasing may nega-
tively affect the pump NVH behavior even if cavitation does not actually
occur. Shifting the working range towards higher speed values means mov-
ing the main excitation frequency, which corresponds to the gearpair mesh
frequency, towards higher values. As the main excitation frequency increases,
the frequency content of its harmonics raises proportionally. Therefore, the
velocity incrementation expands the frequency range influenced by the main
excitation harmonics, with the potential effect of including a major number of
resonances. Since gear pumps are usually characterized by resonances with
high frequency values and a limited number of teeth, as analyzed in Chap-
ter 2, if the working speed is kept as low as possible, such resonances are
excited by high order harmonics with a limited amplitude. If the speed is
sufficiently increased, low order harmonics start crossing the main natural
frequencies producing negative effects not only on the emitted noise, but also
on the mesh force and the loads applied to the bearings.

The influence of these phenomena may be reduced by taking advantage
of the benefits provided by helical gears. As it is well known, helical gears
are characterized by a higher contact ratio and a smoother working behav-
ior, making them a desirable design solution for high speed gear pumps [12].
On the other hand, as already underlined in ref. [13], helical gear pumps fea-
ture lower displacement values and higher outlet flow ripple irregularity if
compared to spur gear pumps of the same size. Moreover, both positive and
negative effects get stronger as the helix angle is increased. From a practical
point of view, helical gears may produce a global positive outcome in applica-
tions concerning low to medium loads and high speed values; however, it is
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clear that their adoption requires a careful evaluation of various contrasting
effects.

Despite gear pumps can be considered as basic devices, this brief survey
enlightens how the design becomes rather complex for them to achieve the
primary goal of delivering high-pressure flow while meeting requirements for
higher efficiency, lower noise levels and reduced size. Many design solutions,
involving both technological and physical aspects, may be adopted; neverthe-
less, no straight path is available to obtain the desired performances and the
design process may result to be considerably expensive. Within this frame-
work, it is clear the need to define a set of reliable tools to assist designers at
each step of the design course, i.e. tools providing accurate predictions with
respect to the set of geometrical parameters actually known at the reference
design step. In order to clarify this idea, one may refers to the different needs
characterizing subsequent phases of the design process. Early stages do not
take advantage of high accuracy models requiring large sets of geometrical
and physical parameters to analyze a single working condition. Within these
steps, the level of uncertainty related to several parameters makes the results
provided by such models to be meaningless and, above all, useless. On the
contrary, the possibility to predict global trends and macro numbers would be
much more profitable since they can give fundamental knowledge regarding
which design choice should be examined in depth. As a direct consequence,
reduced models with a limited number of Degrees of Freedom (DOFs), but
still capable to point out the design parameters governing the phenomenon,
have to be preferred. These models become even more appealing by consider-
ing that wide ranges of working conditions and parameters values can be an-
alyzed with a limited computational effort. By following the same philosophy,
later design steps are usually focused on optimizing the machine behavior by
slightly refining some crucial parameters. Within this context, highly accurate
predictions become mandatory and they have to be performed with numeri-
cal models specifically built up to study peculiar phenomena, e.g. interaction
between gear radial positioning and bearing reactions. The need of different
approaches could be summarized by considering that during the first design
stages, parameters need to be investigated in terms of their order of magni-
tude, while advanced stages are devoted to the precise tuning of the machine,
which is pursued by looking for the optimum value of each parameter inside
a small neighborhood.
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1.2 overview of the thesis

On the basis of the various needs pointed out in the previous section, the
present manuscript describes three different methods for studying the perfor-
mance of gear pumps, by taking into account critical aspects as weight and
size reduction, NVH improvements, helix influence, non-unitary transmission
ratio gearpairs and presence of cavitation, which are solutions currently faced
by automotive applications. In particular, two models are dedicated to the
analysis of the pump behavior with respect to a specific field of interest, rang-
ing from the dynamics of the gearpair to the efficiency of the volumetric ma-
chine itself. Since the reliability of the simulated results represents a central
feature for every numerical model, dedicated experimental campaigns are
associated to each modeling approach. The third approach is focused on ad-
dressing cavitation promoted by high speed conditions and it is purely based
on experimental tests and post-processing of the measured data. The follow-
ing is a brief overview of the chapters.

Chapter 2 is devoted to the description of a nonlinear dynamic model adopt-
ing a Lumped Parameter (LP) approach. The aim of the model is to provide
a simulation tool based on a limited number of design specifications, in order
to capture the essential characteristics defining the pump dynamics. Such a
modeling approach represents a novel method with respect to the one already
introduced in literature, whose purpose is the high accuracy estimation of the
pump NVH behavior based on the full definition of the machine geometry. In
particular, the present model allows to focus the attention on the set of design
parameters that mainly influence the phenomenon, avoiding so the need to
take into account a number of design specifications that have a secondary rel-
evance in its definition. For this reason, variable pressure loads are calculated
by using an analytical approach based on simplifying but realistic hypothe-
ses; on the other hand, speed dependent drag torque is obtained by applying
regression techniques on measured data. As a direct consequence of the con-
siderations reported in section 1.1, the model is a valuable tool to predict the
dynamics of the pump at early steps of the design process.

Results obtained from a parametric study are also presented and discussed,
pointing out the effects of various design choices, e.g. relief groove dimension,
lateral grooves extension, with respect to a wide range of operating conditions.
In particular, such results have shown that the pressure value reached inside
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the trapping zone has a deep influence on the dynamic behavior of the pump,
in particular in the high speed range, where the fifth natural mode can be
excited by low order harmonics of the mesh frequency. The analysis suggests
that careful attention should be paid in the design process of a gear pump
working through a wide speed range, since the relief groove must satisfy con-
trasting requirements. Low speed conditions require an increase of the relief
groove width to guarantee high efficiency values, while high speed condi-
tions require to reduce it in order to avoid high pressure phenomena in the
trapped volume. The pressurizing zone extension has been also taken into ac-
count during the analysis, showing that different widths of the pressurizing
zone lead to different orientations of the pressure force without affecting its
amplitude. For this reason, this design characteristic may have a major influ-
ence on the static component of the bearing reaction and meshing force, while
the dynamic behavior of the pump is not altered.

In Chapter 3, a LP model developed to predict gear pump performances
in terms of volumetric efficiency and pressure dependent phenomena is in-
troduced. In contrast with the minimal model described in Chapter 2, the
present approach is focused on evaluating the effects of slight design modifi-
cations, by taking into account a wide range of design specifications. In order
to achieve this goal, the model is able to include the presence of helical gears,
as well as gearpairs with non-unitary transmission ratio and arbitrary shaped
relief/lateral grooves. Discharge coefficients, that are usually taken from ref.
[14] and then slightly adjusted to reach a better experimental validation (see
for example ref. [15]), have been determined with the help of Computational
Fluid Dynamic (CFD) codes. The main innovative characteristic of the pro-
posed LP model is the coupling with a novel set of simplified equations of
motion of the gearpair, allowing for the calculation of the gears micromotions
as a result of the instantaneous balancing between the simultaneous presence
of variable pressure loads, a speed dependent drag torque, the meshing force
and the bearing reaction. Although this modeling approach requires a consid-
erable amount of data referring to the pump geometry and the oil physical
properties, it allows for the prediction of the instantaneous radial clearances
and, consequently, for an accurate estimation of the volumetric efficiency of
the pump.

A large part of Chapter 3 is devoted to the description of a systematic proce-
dure developed to determine variable excitation loads coming from pressure
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evolution inside tooth pockets. The purpose of the procedure is to clearly de-
fine an accurate and flexible methodology that can be easily implemented in
different calculus environments and straightforwardly applied to both sim-
ulated and measured pressure data, in a wide variety of gear pumps. The
originality of the outlined method lies in the capability to analyze both spur
and helical gearpairs, by determining all the spatial components of the pres-
sure loads. By comparing loads estimated by the proposed methodology with
loads calculated by two other methods described in refs. [16, 17], the proposed
procedure results capable to take into account a wider range of phenomena
occurring inside the meshing zone, thanks to a more accurate discretization
of the meshing course. A considerable increase of accuracy is reached also in
the determination of the pressure torque applied to each gear center, since it
mostly depends on the oil pressure inside the trapped volume.

Reliability and accuracy of the estimation, as well as the model sensitivity
to parameters modification, is assessed by comparing simulated results with
an extended set of measured data. The experimental campaign, in particu-
lar, is performed on a set of 20 nominally identical pumps. Actual clearances
at the end of the production process have been measured for each sample;
later, such pumps have been tested on a wide range of operating conditions,
in order to check the model response with respect to various working speeds,
delivery pressure values and oil temperatures. The comparison shows that the
proposed model can guarantee high accuracy predictions in terms of pump
volumetric efficiency throughout the entire range of working conditions con-
sidered. Concurrently, model sensitivity to slight design modifications is com-
parable to the real pump behavior.

Chapter 4 deals with the development of an experimental procedure to
early-detect cavitation in gear pumps working at high speed values. The phe-
nomenon has been rarely studied and no experimental data can be found in
the specialized literature, where just few numerical studies have been pub-
lished. For this reason, cavitation in gear pumps is firstly experimentally char-
acterized, with the help of both efficiency and vibro-acoustic measurements.
Then, an ad hoc methodology is settled up in order to evaluate cavitation
throughout its entire evolution, from the incipient condition to the fully de-
veloped one. Results obtained from the signal processing of different sensors
such as accelerometers, hydrophone and pressure pulsation transducers are
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shown and discussed. Effect of oil temperature is also investigated, showing
that it contributes in spreading the phenomenon on a wider speed range.

Finally, last Chapter is devoted to concluding remarks.
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2
A N O N L I N E A R D I S C R E T E D Y N A M I C M O D E L O F G E A R
P U M P S

The chapter presents a mathematical model describing dynamic behavior of gear pumps
throughout a wide speed range is presented in this paper. This transverse-torsional
model accounts for the bearing compliance and gear backlash non-linearity. Dynamic
loads due to the pressure distribution around the gears are estimated by means of
an analytical procedure, as well as speed-dependent drag torque caused by leakages.
Modal characteristics of the dynamic system are discussed, showing that common de-
sign features of typical gear pumps such as a low number of teeth, a facewidth-to-tip
diameter aspect ratio close to one, and restricted speed range do not allow for the first
harmonic of mesh frequency excitation to excite the main natural modes. The proposed
model is used to perform parametric studies on the effects of different outlet pressures,
presence of speed-dependent high-pressure peaks in the trapping volume, and various
pressurizing zone extensions. Results indicate that the pressure value reached inside
the trapping zone has a significant influence on the dynamic behavior of the pump,
particularly in the high-speed ranges, where the fifth natural mode can be excited by
higher harmonics of the mesh frequency.

2.1 introduction

The majority of the numerical studies referring to gear pumps concentrated
on evaluating the influence of various design aspects on volumetric and me-
chanical efficiencies of the pump, while ignoring their dynamic consequences,
which dictate the noise performance of the pump. There is a limited num-
ber of published works focusing on dynamics of a gear pump. For instance,
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Mucchi et al. [17, 18] proposed a complete procedure for performance im-
provement of pump prototypes starting from the calculation of the pressure
course around the gears. Later, the same procedure was validated through
experimental comparisons and was extended to helical gears [19], showing
the benefits obtained by increasing accuracy of the estimation of the pressure
ripple inside the gears [16]. Effects of some of the key design parameters,
namely radial clearance and relief groove dimension, and different working
conditions including oil dynamic viscosity and delivery pressure, were evalu-
ated [20]. However, these analyses have been limited to low-speed conditions,
from 1500rpm to 3500rpm, ensuring the absence of high-pressure phenom-
ena inside the trapped volumes. Other studies pertaining to the same authors
have been presented on this subject: in particular Dalpiaz et al. [21] proposed
a procedure for the experimental verification of the model introduced in [17,
18], while Mucchi et al. [22] employed Finite Element (FE) and Boundary El-
ement (BE) analyses to define a procedure for evaluating the vibration of the
pump casing as well as the emitted noise.

Dynamics of a gear pump can be treated the same way as gear pair dynam-
ics. Nonlinear gear pair models with backlash have been proposed since the
early 90’s [23, 24, 25, 26, 27] some of which were correlated to measurements
[28, 29]. The coupling between transverse and torsional motions at the gear
mesh were also included in cases when gear supports are flexible [24], in the
process effects of rolling-element and journal bearings can be evaluated [26,
30]. Finite element models of gear shafts were incorporated in refs. [31, 32]
to couple motions of the shafts via a gear mesh. Several other studies looked
into analyzing dynamics of geared systems under various conditions, includ-
ing shape deviations, mounting errors or engine speed fluctuations [33, 34].

In applying these well-established gear dynamics models to gear pumps,
one must take into account several unique aspects of a gear pump. In par-
ticular, the presence of pressure-dependent external forces, speed-dependent
friction torque and the absence of external loads connected by the output shaft
to the driven gear all play an important role in determining the overall pump
dynamics. Within this context, this present work focuses on studying the dy-
namics of gear pumps in a wide speed range, taking into account the influence
of design parameters such as angular extension of the pressurizing zone, back-
lash value and presence of high level and speed dependent pressure peaks in-
side the trapping zone. Particular attention is given to the meshing force and
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bearing reactions, as they are considered to be the main structure-borne exci-
tations that, together with the fluid-borne excitations given by the oil pressure
ripple, load the pump housing.

The works from [17] to [22] regards modeling techniques for performance
evaluation and improvement of arbitrary but specific gear pump prototypes.
On the contrary, the current study is focused on defining a set of equations
to describe the dynamics of gear pumps as it is influenced by some design
characteristics that are common peculiarities for this family of machines. With
this purpose, the present work introduces a different set of dynamic equations
with respect to the one described in [17], by taking into account the modeling
of a speed dependent friction torque component. Variable pressure loads are
analytically estimated, by introducing a novel procedure that allows for a
sufficiently accurate estimation of the pressure force applied to the gears on
the basis of realistic hypotheses. In comparison to the analytical approach
proposed in [3, 17], the present one has the major advancement to include the
effects caused by possible pressure peak phenomena in the trapped volume.
Moreover, the analytical estimation is extended to the determination of all the
pressure force components, while in previous studies it was limited to the
calculation of the pressure torque.

By following this approach, the current study faces off the modeling of the
gear pump dynamics on a different perspective from the one proposed in
previous works. In particular, a minimal model has been developed to esti-
mate the dynamic behavior of gear pumps at the early stage of the design
process, when the pump geometry is not completely defined. As a matter of
fact, in this design stage various design parameters, e.g. pump radial clear-
ances, bearings radial clearances, lateral clearances, relief groove shape and
dimension, are not already determined and, consequently, there is no chance
to simulate the pump behavior by using advanced approaches as the ones
described in [35, 3, 17, 2]. Hence, the proposed model is intended to serve
as a computationally efficient design assessment tool that is sufficiently ac-
curate with respect to the limited number of design parameters required to
run the simulations. The accuracy of the present approach will be discussed
in the Chapter, by comparing the pressure loads calculated with the present
procedure with the results obtained with more advanced methods.

The following Section proposes the mathematical model, while Section 2.3
concentrates on the estimation of variable-pressure loads based on a simpli-
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fied analytical approach that is capable of taking into account high-pressure
phenomena occurring inside the trapped volume as well as defining the mod-
eling of the friction torque behavior. Section 2.4 presents results of the pro-
posed non-linear dynamic model, focusing on modal characteristics of the
linearized unloaded model and the forced response in the form of gear mesh
force and bearing reactions caused by high levels of pressure inside the trapped
volume. Finally, the last section is devoted to concluding remarks.

2.2 dynamic model

A discrete dynamic model of a gear pump is presented in Figure 1. It consists
of two gears of typically the same number of teeth, each represented by rigid
disks and supports and their respective shafts, each one supported by a pair
of journal bearings. An Internal Combustion Engine (ICE) usually drives the
pump by means of a flexible joint. Since the inertia of the pump is consid-
erably smaller than that of the ICE, the engine can be replaced with a fixed
frame connected to the driving gear by a flexible shaft. This modeling solution
is also allowed by the fact that the frequency range typically influenced by the
first harmonics of the crankshaft angular speed is considerably lower than the
frequency range that characterizes the first harmonics of the gear pump mesh
frequency. Each gear i (i=1,2) is allowed to vibrate along the transverse plane
of the gears and vibrate torsionally about its nominal rigid rotation ϑi = ωit

where ωi is the nominal rotational speed of gear i. The 6-degree-of-freedom
non-linear dynamic model of Figure 1 leads to the following equation of mo-
tion:

m1ẍ1 + kxx1x1 + kxy1y1 + F
(1)
px = 0

m1ÿ1 + kyx1x1 + kyy1y1 + F
(1)
py + Fm = 0

J1θ̈1 + ksθ1 − r1Fm + T
(1)
d − T

(1)
p = 0

m2ẍ2 + kxx2x2 + kxy2y2 + F
(2)
px = 0

m2ÿ2 + kyx2x2 + kyy2y2 + F
(2)
py − Fm = 0

J2θ̈2 − r2Fm + T
(2)
d − T

(1)
p = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(1)

where the damping terms have been neglected for sake of clarity. x1 and x2
are the translational motions of gears normal to the gear mesh line of action,
y1 and y2 are translational motions along the line of action, and θ1 and θ2
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are the rotational vibrations about the nominal rotational angles ϑ1 and ϑ2,
respectively. Terms mi, Ji and ri denote mass, polar mass moment of inertia
and the base radius of gear i, respectively. kxxi, kxyi, kyxi and kyyi are the
stiffness components of the journal bearing supporting gear i. As proposed
in ref. [24], the gear mesh force Fm(t) is defined by taking into account the
backlash clearance of 2x̄b as

Fm(t) =

⎧⎪⎨⎪⎩
km [xr(t) − x̄b] xr(t) > x̄b

0 |xr(t)| < x̄b

km [xr(t) + x̄b] xr(t) 6 −x̄b

(2)

where km is the average value of the gear mesh stiffness. The time variance
of mesh stiffness is considered secondary due to the light loads in relation to
the gear pair size and the fact that the gear pair is always very close to unity
ratio. xr(t) is the relative gear mesh displacement defined as

xr(t) = [y1(t) − r1θ1(t)] − [y2(t) + r2θ2(t)] (3)

In Eqn. 1, F(i)px and F
(i)
py are the components of the pressure force vector Fp

caused by the pressure distribution around gear i, T (i)
p is the variable torque

caused by the unbalanced pressure inside the trapping zone, and T
(i)
d is the

friction torque acting on gear i. Dynamic systema in Eqn. 1, together with the
damping terms, can be written in matrix form to obtain

Mq̈+ C q̇+ Kq+ Td = Fp (4)

where M = Diag
[
m1 m1 J1 m2 m2 J2

]

q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

y1

ϑ1

x2

y2

ϑ2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5)
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K =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

kxx1 kxy1 0 0 0 0

kyx1 kyy1 + km −r1km 0 −km −r2km

0 −r1km r21km + ks 0 r1km r1r2km

0 0 0 kxx2 kxy2 0

0 −km r1km kyx2 kyy2 + km r2km

0 −r2km r1r2km 0 r2km r22km

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(6)

Td =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

T
(1)
d

0

0

T
(2)
d

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(7)

Fp(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F
(1)
px

F
(1)
py

T
(1)
p

F
(2)
px

F
(2)
py

T
(2)
p

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(8)

The definition of the damping matrix C in Eqn. 4 is discussed in Section 2.4.2.
Time-varying forcing vectors Fp and Td form the excitations for the system
and they will be defined in the next section.

It is worth noting that the off-diagonal bearing stiffness terms kxyi and kyxi
in Eqn. 6 provide coupling between the line-of-action (LOA) and off-line-of-
action (OLOA) motions the same way as in refs. [24, 33] where a pair of
spur gears supported by journal bearings was studied dynamically. Neglect-
ing cross terms would eliminate any coupling between the OLOA motions,
namely x1 and x2, and the other four degrees of freedom. The former ap-
proach may lead to more reliable results if the variable pressure loads are
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Figure 1: Dynamic model (damping associated with the shaft not shown).

estimated from fluid dynamic models used to predict the pressure distribu-
tion around the gears. As discussed in refs. [17, 35], the pressure distribution
loading the two gears may vary significantly depending on the distribution of
the tip clearances inside the pressurizing zone. The instantaneous positions of
the two gears, therefore, influence external excitations creating a link between
bearings reactions and variable pressure loads.

2.3 definition of excitations

The array in Eqn. 8 represents the external forces and moments induced the
pressurized fluid on gears. As stated in ref. [3], the pressure distribution pro-
duces, on each gear, loads that are periodic at the gear mesh frequency. Their
estimation may be obtained from direct measurements [36], lumped parame-
ter models [17, 35] or an approximate analytical procedure. However, at the
early stage of the design process, approximate analytical methods represent
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the only available choice; for this reason, a dedicated analytical procedure will
be adopted in this study. Since results from the present study will underline
the influences of the first harmonics of the mesh frequency on the dynamics of
the pump, this choice does not represent a restrictive hypothesis. As already
discussed in [3], the adoption of simplified analytical approaches leads to suf-
ficiently accurate results in terms of defining general trends and describing
the global behavior of pumps with common characteristics. This analytical
approach assumes that the oil pressure ripple can be neglected, which is in
general acceptable if sufficiently small ripple occurs with respect to the pres-
sure drop provided by the pump. The assumption will be further addressed
in Section 2.4.2. The other main assumption is that pressure inside the pres-
surizing zone follows a linear variation with respect to the angle. This does
not affect accuracy in particular if grooves are designed to reduce the angular
extension of the pressurizing zone, which is a typical feature of today’s gear
pumps for automotive applications. Moreover, since the result evaluation will
be limited to the influence of the excitation lower harmonics, possible pres-
ence of cavitation produced by the high speed condition has been neglected.
The assumption is addressed by considering that speed induced cavitation
is recognized as a high-frequency broadband noise (usually above 40kHz) in
the suction/delivery pressure ripple spectra. Finally, the pump is assumed to
work within the typical speed range pertaining to IC engines for automotive
applications. Figure 2 shows a general scheme of a gear pump for automotive
applications, with the underlining shape and angular extension of both the
grooves and the pressurizing zone.

The reference scheme for estimation of pressure loads applied to the driv-
ing gear (gear 1) is shown in Figure 3(a). The pressure force vectors generated
inside the pressurizing zone, F(1)

seal, and inside the outlet zone, F(1)
out, are calcu-

lated by integrating the pressure in each respective zone. Their magnitudes
are given respectively as⏐⏐⏐F(1)seal

⏐⏐⏐ = 2Poutrext1b

∆ϑseal
[∆ϑseal sin(∆ϑseal) + cos(∆ϑseal)] (9)

⏐⏐⏐F(1)out

⏐⏐⏐ = 2Poutrext1b sin
(
∆ϑout

2

)
(10)

where Pout is the mean delivery pressure, ro1 and b are the tip radius and the
facewidth of the gear, respectively. ∆ϑseal represents the angular extension
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Figure 2: Typical gear pump adopted in automotive applications.

of the pressurizing zone, while ∆ϑout describes the angular extension of the
outlet zone.

The earlier assumption that the oil pressure ripple is negligible makes con-
tributions of these two sectors time-independent. Time dependence of pres-
sure loads originates from the contribution of the meshing zone, defined by
the line of contact AD shown in Figure 3(b). Here, the line of contact is di-
vided into three segments depending on the number of tooth pairs engaged.
Segments A-B and C-D refer to the presence of two pairs of teeth in contact,
thus the hydraulic sealing is provided. Segment B-C, on the contrary, refers to
configuration with a single tooth pair in contact. In the instant when there is
a single tooth pair in contact, the trapped volume cannot exist, and therefore,
the oil pressure loading the gear pockets located on the delivery side of the
contact point is set as equal to the delivery pressure. Therefore, the pressure
force vector F(1)

stp induced by the meshing zone has the magnitude⏐⏐⏐F(1)stp

⏐⏐⏐ = 2Poutrext1b sin
(
∆ϑ

2

)
(11)

where ∆ϑ is the angle between the radius referred to point A and the radius
of the contact point. Depending on the position of the contact point during
the meshing cycle, F(1)

stp changes both his magnitude and direction. When the

contact point approaches point C, F(1)
stp reaches its maximum magnitude and a

second tooth pair starts engaging at point A. Within this framework, a trapped
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volume forms between the two contact points, one within A-B and one within
C-D, and the pressure of the oil captured inside it either rises considerably
or stays equal to the outlet pressure depending on different factors, such as
relief groove dimensions, backlash value, and angular speed [8]. Adopting the
scheme shown in Figure 4, the magnitude of F(1)

trap caused by the oil pressure
inside the trapped volume Ptrap is defined as⏐⏐⏐F(1)trap

⏐⏐⏐ = 2Ptraprϑ1b sin
(
ϑ1 − ϑ2

2

)
(12)

Also noted in Figure 4 when two tooth pairs are engaged, another pressure
force component loads the angle spanned by ϑ2. Since the oil pressure within
this sector is equal to Pout, the corresponding pressure force is calculated by
using Eqn. 11, with ϑ2 in place of ∆ϑ. Once all fluid pressure forces acting on
gear 1 are defined, the total fluid force F(1)

p is found as the sum of F(1)
seal, F(1)

out

and F(1)
stp or F(1)

trap (depending on number of tooth pairs in contact). In particu-
lar, since the pressure forces defined above act along the radial direction, their
components along axes x and y must be determined before Eqn. 8 can be pop-
ulated by F

(1)
px and F

(1)
py . However, considering that for each pressure force both

magnitude and line of application are known, this last part of the procedure
does not require a considerable computational effort. The same procedure is
used to determine fluid pressure forces F

(1)
px and F

(1)
py acting on gear 2. It is

noted that the pressure force components created at the pressurizing and out-
let zones are considered to be constant while the pressure force components
inside the trapping zone depend on the position of the contact point. As such,
they must be reevaluated at each rotational position increment [3].

The pressure distribution around the gears not only creates the forces de-
fined above but also produces a time-varying pressure torque. While gear
pockets outside the trapping zone can be considered tangentially balanced by
assuming a constant pressure inside each one, an unbalanced pressure force
component along the tangential direction is produced due to the meshing
action, in the process, causing torque, as explained in ref. [3, 17]. An analyt-
ical derivation of this pressure torque, T (1)

p , taking into account the presence
of overpressure peaks inside the trapped volume was provided in ref. [16],
showing that the contribution of the oil pressure inside the trapped volume
must also be included for achieving required accuracy. As done for estimat-
ing pressure force created at the trapping zone, calculation of T

(1)
p is done
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2.3 definition of excitations

in two consecutive steps, depending on the number of tooth pairs in contact.
According to Figure 3, when a single tooth pair is engaged, T (1)

p is defined as

T
(1)
p =

1

2
Poutb(r

2
ext1 − r2ϑ1) (13)

When there are two tooth pairs in contact, the pressure torque is defined with
respect to Figure 4 as

T
(1)
p =

1

2
b (Pout − Ptrap)(r

2
ext1 − r2ϑ1) +

1

2
bPtrap(r

2
ext2 − r2ϑ2) (14)

As the pressure forces produced inside the trapping zone, T (1)
p is also time

dependent, as well as T
(2)
p that is defined the same way, requiring evaluation

at each rotational position increment.
Meanwhile, Td in Eqn. 4 represents the resisting torque produced within

the pump. As already described in [37, 38] by means of experimental evi-
dence and mathematical models, torque loss in volumetric machines mainly
depends on oil physical properties, working speed and delivery pressure. In
particular, as shown in [39], torque Td can be divided in three main contribu-
tions:

Td = Tdµ(µ,ω) + Tdρ(µ,ω2) + Tdp(∆p) (15)

where Tdµ accounts for losses due to laminar flows, showing a linear depen-
dence from the working speed and the oil dynamic viscosity, and Tdρ accounts
for losses due to turbulent flows, with a quadratic dependence from the speed
and linear dependence from the oil density, e.g. journal bearings, tooth tips
and casing. Finally, Tdρ mainly depends on the delivery pressure since it ac-
counts for losses originated from parts of the pump where there are instances
of dry friction. However, as shown in [37], pressure difference may have a
limited influence on the overall resisting torque Td if its variation is limited to
30− 40bar.

On the basis of the above considerations, torque T
(i)
d acting on gear i is

expressed in terms of its angular speed ωi as

T
(i)
d = cr2iωi (16)

Here coefficient c substantially takes into account all the contributions defined
in Eqn. 15 and its value can be estimated by using numerical approaches (as
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Figure 3: Reference scheme to calculate the pressure loads applied to the gears (a)
and (b) effects produced in the trapped zone, where segment DA is the line
of contact.

the one proposed in [39]) or by using experimental measurements. In the latter
case, by assuming that in steady state conditions, for each working point, the
following equation can be applied

Teω̄ =
1

ηv
∆PQout + 2Tdω̄ (17)

Hence, by measuring the driving torque Te, the mean angular speed ω̄, the
pressure difference between inlet and outlet chamber ∆P and the outlet flowrate
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Figure 4: Pressure force, when two tooth pairs are simulateneously engaged. Points
A and D define the length of the contact line.

Qout, which are quantities commonly measured in gear pump performance
tests, it is possible to determine the drag torque Td and therefore, by Eqn. 16,
the value of coefficient c. Such tests must be repeated for a number of differ-
ent working speed in order to estimate c in reference to the actual working
condition. On the basis of the theoretical assumptions leading to Eqn.15, for
a given delivery pressure, coefficient c can be written mathematically as

c = a1ω
−a2
i + a3 (18)

where a1, a2 and a3 are positive coefficients that are defined experimentally
by using common regression techniques, e.g. least squares method, applied
to set of measured data taken at different working speed conditions.

2.4 results and discussion

In the present section, results obtained by the dynamic model described in
Section 2.2 will be shown and discussed, focusing attention on meshing force
and bearing reaction caused by variable pressure loads, within a wide speed
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range. With this purpose, subsection 2.4.1 addresses the modal characteris-
tics of the linearized dynamic model while subsection 2.4.2 points out the
influence of design parameters on meshing force and bearing reaction force.
Within this context, effects produced by angular extension of the pressurizing
zone and presence of speed dependent pressure inside the trapped zone will
be discussed.

The dynamic model presented in Section 2.2 has been implemented in
Matlab environment. As underlined in [40], non-linear dynamic models of
a gearpair need to be solved with extremely small integration steps, of the
order from 10−4 to 10−7, since rattle impacts between gears may take place
within a very small interval. Moreover, double precision calculation is com-
pulsory in order to ensure accurate simulations. However, nowadays these
are not tricky requirements anymore, since the computational performance of
modern laptop computers is sufficient to deal with these problems without a
considerable effort.

In order to carry out this study, a gear pair constituting the pump core
has been designed coupling basic design rules with Eqn. 19, which is used to
correlate a gear pump design characteristics with the pump displacement Q̄d

[41]:

Q̄d =
z1b

2

[
r2ext1 + τr2ext2 − ro1 (ro1 + ro2)

]
+

−
z1b

2

[
(1+ τ)

(
r2ϑstart + (pb − pbε)

2 + (pb − pbε) rϑstart
3

)]
(19)

where τ is the transmission ratio, pb represents the gearpair base pitch and ε

is the contact ratio; term rϑstart describes the radius of the driving gear at the
start of active profile, i.e. the tooth profile actually in mesh. The gear pair of
the example pump has no profile shift and τ = 1 ; Eqn. 19 is used to determine
the face width b for a given Q̄d.

The designed gear pump has been taken as reference for the analysis that
will be shown in subsection 2.4.1 and 2.4.2. Table 1 shows the main design
characteristics of the adopted gear pair; all the other gearpair parameters can
be deduced from Table 1 by following standard gear design rules.
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Table 1: Gear pump main design parameters

Pump Displacement 6cm3/rev

Tooth number z1,2 14

Normal module mn 2.8mm

Pressure angle α 25°C
Base radius r 17.5mm

Facewidth b 40mm

Driving gear mass m1 0.564kg
Driven gear mass m2 0.414kg
Driving gear inertia J1 8.14 ∗ 10−5 kgm2

Driven gear inertia J2 7.22 ∗ 10−5 kgm2

Mesh stiffness km 6.14 ∗ 108 N/m

Shaft length 50mm

2.4.1 Modal characteristics

The definition of the modal characteristics of the dynamic system is a first step
towards characterizing the forced response of the system. In order to carry out
this analysis, bearing stiffness matrix has been defined on the basis of the ex-
perimental and numerical data reported in Refs. [42, 43] for full circular bear-
ings. It is worth noticing that bearing stiffness terms kxx,kyy,kxy,kyx depend
on the actual relative eccentricity e and their value may vary consistently as
e moves from zero to one. However, by considering that in gear pumps the
relative eccentricity values usually lay in a restricted range between 0.85 and
0.95, as underlined in Refs. [17, 20], bearing stiffness terms can be considered
as constants and defined by Eqns. 20 and 21:

K1
b =

[
kxx 0.5kxx

0.1kxx 0.1kxx

]
(20)

K2
b =

[
kxx −0.5kxx

−0.1kxx 0.1kxx

]
(21)
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It is worth noting that Eqns. 20 and 21 refer to the case in which the direc-
tion of the applied load coincides with axis x; if this assumption is not verified,
matrices K1

b and K2
b must be rotated accordingly. By assuming kxx/km = 0.1,

six coupled transverse-torsional normal modes are predicted as shown in
Figure 5. Figure 5(a) shows the first mode, in which the driven gear vertically
translates and rotates in opposite direction while the driving one is almost
unperturbed, leading to a negligible variation of the relative displacement xr.
Concurrently, the driven gear shows a consistent translation along the hori-
zontal direction, demonstrating that the first mode is mostly related to the
journal bearing supporting the gear. The second mode, shown in Figure 5(b),
is mainly characterized the translation in both vertical and horizontal direc-
tion of the driving gear, while the in-phase rotation of the driven one leads
to a negligible variation of the relative displacement xr. In analogy to the first
mode, the second one is mainly due to the journal bearing supporting the
driving gear. Figure 5(c) shows the third mode, in which the two gears trans-
late vertically and rotate in opposite directions, leading to a small but still
appreciable variation of the relative displacement xr, horizontal translation
is negligible for both the gears. The fourth mode, shown in Figure 5(d), is
defined by in-phase vertical translations of the two gears, while a slight rota-
tion in the opposite direction eventually leads to a small relative gear mesh
displacement; a small horizontal translation of the driven gear is appreciable.
The fifth natural mode in Figure 5(e) similar to the third, is given by a combi-
nation of vertical translations and rotations that are in opposite directions. It is
worth noting that this natural mode can be observed only because the model
takes into account the shaft connecting the engine to the gear pair, leading to
a definite system. For the same reason, the natural frequency associated to the
fifth mode strongly depends on the torsional stiffness of the input shaft. Fi-
nally, the sixth natural mode, shown in Figure 5(f), exhibits in-phase rotations
of gears that are added to vertical translation in opposite directions leading to
a large xr. Both fifth and sixth natural modes are characterized by negligible
horizontal translations. As underlined in Refs. [24, 30], the last natural mode
is generally the one responsible for major resonant behavior of spur gears,
because it can take place inside a frequency range usually swept by the first
harmonic of mesh frequency. Despite this, considering that gear pumps typ-
ically have a small number of teeth (usually 7 to 14), small dimensions and
an aspect ratio, b/2R, that is close to one, the last natural mode is ordinar-
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Table 2: Natural frequencies predicted by the dynamic model for the designed gear
pump.

Natural mode Natural frequency

#1 416Hz

#2 357Hz

#3 1278Hz

#4 1844Hz

#5 2960Hz

#6 13948Hz

ily above the frequency range swept by excitations. For the examples pump
with kxx/km = 0.1, natural frequencies corresponding to the first five mode
shapes of Figure 5 are 416, 357, 1278, 1844 and 2960 Hz , the sixth natural
frequency is 13948 Hz. Moreover, the last natural frequency tends to increase
by decreasing the pump displacement, if b/2R is kept as constant.

2.4.2 Applications and numerical results

By applying the analytical procedure for variable pressure load estimation de-
scribed in subsection 2.3 and assuming that the arc length of the pressurizing
zone is equal to twice the pitch on the tip circle, the periodic pressure force
and torque shown in Figure 6 are obtained. It is worth noting that depending
on pressure difference between inlet and outlet, both force and torque show
different amplitude and mean value being linearly linked to the outlet pres-
sure. The pressure loads shown in Figure 6 have been used to solve the 6 DOF
dynamic system. In order to assess the accuracy of the proposed estimation
method, the results are compared to those provided by a high-fidelity model
proposed in [3], which is supported by experimental comparison, at working
speed of 2000rpm, as shown in Figure 7. Results obtained from the model
in [3] are obtained by simulating the pressure course around gears with a
lumped parameters CFD code and then integrating it with respect to the gears
geometry. It is worth noting that, despite the presence of some discrepancies
related to high order harmonics, the waveform is well represented by the pro-
posed analytical method. The reason is given by the fact that the typical drop
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Figure 5: Natural modes of six coupled motions.
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Figure 6: Pressure force and torque calculated assuming absence of high pressure
peaks inside the trapped volume and Pout = 20bar.

(or sudden increase) shown by such force and torque components, when there
are no considerable trapping phenomena, is mainly governed by the pressure
difference between inlet and outlet chambers. In order to carry out the analy-
sis, parameter c in Eqn. 16 has been determined experimentally by following
the procedure described in subsection 2.3. The experimental campaign has
been conducted on 20 nominally identical pumps, with similar main design
parameters as the one reported in Table 1; each gear pump has been tested at
five different operating speeds, while delivery pressure and oil temperatures
were kept as constant. Table 3 shows the five different working conditions
used to determine parameter c; results obtained from the experimental cam-
paign are reported in Figure 8, together with the estimation of parameter c

based on Eqn. 18 which has been used to solve the dynamic system.

Figure 9 plots the RMS value of the meshing force calculated by using the
first five harmonic amplitudes of the response at four different outlet pres-
sures in the absence of high pressure phenomena in the trapped volume. As
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Table 3: Test conditions adopted for the estimation of the speed dependent drag
torque Td.

Outlet pressure Oil temperature Working speed
(bar) (°C) (rpm)

30 120

500

1000

2000

4000

6000

Figure 7: Comparison between pressure force and torque calculated by applying the
method in Section 2.3 (solid line) and the high accuracy model defined in
[3] (dashed line), with Pout = 20bar and n = 2000rpm.

proposed in ref. [28], RMS calculation is performed by using the following
equation:

⟨Fm⟩RMS =

5∑
v=1

A2
v (22)

where Av represents the amplitude value of the vth harmonics of the mesh
frequency. Journal bearing damping matrix C(i)

b has been defined on the basis
of the experimental and numerical data reported in Refs. [42, 43] for full cir-
cular bearings, by following the same hypotheses adopted to determine K(i)

b
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Figure 8: Measured data and statistical regression (with a1 = 4092218, a2 = 1.04,
a3 = 0) of friction torque parameter c with respect to the angular speed.

in Eqns. 20 and 21. In particular, as underlined in both Refs. [42, 43], once K(i)
b

has been defined, damping terms are obtained as follows:

C(1)
b =

kxx

ω

[
1 0.2
0.2 0.08

]
(23)

C(2)
b =

kxx

ω

[
1 −0.2

−0.2 0.08

]
(24)

Similarly to Eqns. 20 and 21, matrices defined in Eqns. 23 and 24 refer to
the case in which the direction of the applied load coincides with axis x and
therefore they must be rotated accordingly if this assumption is not verified.

As expected, the RMS amplitude of the gear mesh force increases with
increasing outlet pressure because applied loads are increased both in am-
plitude and mean value. The dependency between journal bearing damping
coefficients and the mean working speed causes the resonance peaks to be
asymmetrical. Since the tooth counts of the gears are low, the gear mesh fre-
quency is also low. As such, only the higher harmonics of the excitation excite
the natural modes at speeds below 3500 rpm, but RMS amplitudes are kept
high due to the damping terms. Above the speed of 3500 rpm, the second
and third harmonics of the mesh excitation excite the fifth mode, resulting a

31



a nonlinear discrete dynamic model of gear pumps

Figure 9: RMS value of the mesh force under four different loading conditions during
a speed ramp-up, assuming no overpressure phenomena inside the trapped
zone (h=harmonic of the mesh frequency, nf=natural frequency).

high-amplitude resonance peak. Resonances associated with the others natu-
ral modes, with small xr, are not evident in Figure 9. It is worth underlining
that, since mesh stiffness km is assumed as a constant, the RMS values of the
mesh force and the dynamic transmission error are proportional; for this rea-
son, results are restricted to the analysis of mesh force Fm, which represents a
more valuable information regarding the NVH behavior of the pump, from a
design-oriented perspective.

The dynamic model concurrently allows the determination of force trans-
mitted to the bearings; following the same procedure adopted to analyze the
mesh force, Figure 10 depicts the RMS value of the bearing force along both x
and y components, calculated from the amplitude of the first 5 harmonics of
mesh frequency for the same parameters as in Figure 9. As it can be observed
in Figure 10, the RMS amplitudes of bearing forces is comparable in both di-
rections, showing that a complete analysis of bearing loads must include both
components. Bearing force behavior is similar to the behavior of mesh force,

32



2.4 results and discussion

Figure 10: RMS value of the dynamic forces transmitted to the bearings, assuming no
overpressure phenomena inside the trapped zone

in particular along the LOA direction, even if the effect produced by the speed
increase on the bearing damping terms results to be more evident.

Results shown in Figure 9 and Figure 10 assume that no overpressure phe-
nomena is occurring inside the meshing zone. Despite this being the most de-
sirable condition, gear pumps are often characterized by the presence of high
pressure peaks when two tooth pairs are concurrently meshing. As shown
in [8] through a wide measurement campaign, depending on the combina-
tion between backlash value, relief groove extension and working speed, oil
pressure can suddenly rise when the trapping phenomenon takes place. In
particular, different relief groove designs can lead to different high-pressure
peaks for a given backlash value. Furthermore, a given design characterized
by the absence of such high pressure phenomena at a specific working speed
can easily exhibit a strong pressure peak in the trapped volume if the speed is
increased. These are main concerns for automotive pump applications where
smooth operation within a wide speed range is basic requirement, even with
an engine as the driver. Therefore, in order to correctly evaluate the pump
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dynamics throughout the entire speed range covered by the IC engine (and
in particular above the 3500rpm limit), effects produced on the pressure force
and torque in presence of high pressure peaks need to be taken into account.
For this reason, pressure Ptrap is assumed to be defined by a quadratic law
depending on the angular position of the gears. In particular, when a second
tooth pair starts engaging in A (Figure 4), Ptrap is set as equal to Pout. Then it
is allowed to increase in a quadratic manner, reaching the maximum value in
the middle of the meshing period and going down to the outlet pressure level
when the two contact points, respectively, reach points B and D as shown in
Figure 4. This variation is given automatically as

Ptrap = 4 (Ptrapmax − Pout)

[
−

t2

t2out
+

t

ttot

]
(25)

where Ptrapmax is the maximum value reached by Ptrap, ttot represents the
time interval in which two pairs in contact, t is the current time instant with
respect to ttot.

Results obtained with this method are shown in Figure 11, where the ef-
fects of different pressure peaks obtained by increasing the maximum value
reached by Ptrap, namely Ptrapmax , are compared. As expected, no differences
are detected along the portion of the angular pitch characterized by a single
tooth pair engaged. On the contrary, Ptrap has a significant effect on the am-
plitude of both pressure force and torque along the remaining portion of the
angular pitch. Similar results have been also obtained in [36] from direct mea-
surements of the pressure ripple inside the tooth spaces. On the basis of the
results shown in [8], which demonstrates that the maximum value of Ptrap is
linearly dependent on the working speed, three different cases have been an-
alyzed. In particular, for each scenario, Ptrap is assumed to vary in reference
to the angular speed following a different slope. Since the backlash value x̄b ,
which is defined by design, is kept as a constant, this study is equivalent to an-
alyzing the effect of various relief groove extensions, namely different bridge
extensions, on the dynamic behavior of the gear pump. The purpose of the
relief groove is to prevent direct contact between the inlet and the outlet cham-
ber through the meshing zone. Theoretically speaking, the extension of such
a bridge should be higher, or at least equal, to pb ∗ (2− ε) ∗ cosα, where pb is
the base pitch, ε is the contact ratio and α is the pressure angle. In practice,
the quantity pb ∗ (2− ε) ∗ cosα cannot be reached, otherwise extremely high
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Figure 11: Pressure force and torque in case of Pout = 20bar and quadratic overpres-
sure peak inside the trapped volume.

pressure peak phenomena can take place inside the trapped volume causing
damages to the gearpair. For this reason, the length of the relief groove is
reduced by design of a certain amount; however, in general, the higher is the
extension of the relief groove, the higher is the pressure value reached inside
the trapped volume [8]. Figure 12 shows the variation of Ptrap for the three
analyzed conditions (namely W, M and T ); as underlined in [8], for a given
backlash value and angular speed, the wider the relief groove, the higher the
maximum value of Ptrap. In particular, for cases W and M, pressure Ptrap is
assumed to linearly increase with the angular speed throughout the entire
speed range while case T is kept as a constant till the angular speed reaches
the 2500rpm value, when Ptrap starts rising linearly. As explained in [8], cases
W, M and T may be referred to three different extension of the relief groove,
from the widest one to the thinnest one respectively.

Figure 13 depicts the RMS value of meshing force calculated from the first 5
mesh frequency harmonics of the response for the cases W, N and T of Figure
12. Here, the results are compared to the Ptrap = Pout condition. Despite the
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⨀

Figure 12: Maximum value of Ptrap in reference to the working speed, for three dif-
ferent relief groove extensions: W = wide, M = medium, T = thin.

pressure phenomenon in the trapping volume affects a limited fraction of the
pressure loads along the angular pitch, it appears to have a deep influence on
the dynamic behavior of the gear pair. In particular, meshing force is consid-
erably intensified by high values of Ptrap, which tends to contrast the bearing
damping reduction caused by the speed increase. Similar are also evident in
the bearing force amplitudes as plotted in Figure 14, especially along the LOA
direction on the bearings supporting the driven gear. On both bearings, along
the OLOA direction, the load reaches its maximum values in the speed range
between 2500 and 5000 rpm; above this limit, the effect of the speed on the
bearing damping terms become predominant and the load is reduced.

Finally, the analysis has been also focused on the effects of the pressurizing
zone excitation, which can be controlled, in practice, by designing grooves in
the pump’s body (for more details, see Ref. Ivantysyn2003, p. 323). Neverthe-
less, by applying the procedure defined in section 2.3 for estimating variable
pressure loads, it is worth noting that the extension of the pressurizing zone
only affects the mean components of the pressure forces applied to the gears
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Figure 13: RMS value of the mesh force for the three different Ptrap cases in compar-
ison to the Ptrap = Pout scenario.

along axes x and y; its harmonic amplitudes, on the contrary, as well as the
pressure torque, remains unaltered. For this reason, results show no difference
on the dynamic behavior of the gear pair.

2.5 concluding remarks

The Chapter introduces a non-linear dynamic model for studying the effects
of different design parameters on the dynamic behavior of gear pumps, focus-
ing attention on a wide working speed interval. The gear pump was modeled
by using a 6 degrees of freedom system, taking into account the presence
of journal bearings supporting the gear pair. An analytical procedure is pre-
sented to calculate variable pressure loads applied to the two gears, in refer-
ence to various influencing parameters such as pressurizing zone extension,
outlet pressure and potential presence of high pressure phenomena in the
trapping volume. Such an approximate analytical approach represents a com-
pulsory choice at the early stage of the design process, since various design
parameters (e.g. radial clearances, relief groove shape and dimension) are not
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Figure 14: RMS value of the dynamic forces transmitted to the bearings for the three
different Ptrap cases in comparison to the Ptrap = Pout scenario.

already defined. Presence of speed dependent drag torque has been also taken
into account. The developed model represents a fast approach to estimate the
dynamic behavior of gear pumps based on a limited number of design param-
eters. These features make it a powerful tool at the early stage of the design
process, when the detailed pump geometry is still to be defined. Within this
framework, the possibility to estimate the impact of design choices, typically
devoted to influence the pump fluid-dynamics on its NVH behavior, improves
the efficiency of the design process itself. The originality of the present work
stands in the proposed approach itself, which differs from the classical meth-
ods that are based on the detailed definition of the entire machine geometry
to reach high accuracy results.

A specific spur gear pump has been designed by following basic design
rules in order to carry out the analysis. First, the dynamic characteristics of
the gear pair have been shown, underlining the presence of four coupled
transverse-torsional natural modes; three of them being enclosed in the low
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2.5 concluding remarks

frequency range (below 5kHz), while the fourth, which usually has a deep
influence on the resonant behavior of gear pairs, is associated with high fre-
quency content (above 10kHz). Since gear pumps are typically characterized
by low tooth number (usually between 7 and 14), small global dimensions,
and a b/2rext aspect ratio close to one, the last natural mode is often above
the frequency range swept by the excitations.

A parametric study has been conducted in order to evaluate the effects
produced by different outlet pressures, presence of speed dependent high-
pressure peaks in the trapping volume and various pressurizing zone exten-
sions. Results have shown that the pressure value reached inside the trapping
zone has a deep influence on the dynamic behavior of the pump, in particular
in the high speed range, where the fifth natural mode can be excited by low
order harmonics of mesh frequency. The analysis suggests that careful atten-
tion should be paid in the design process of a gear pump working through
a wide speed range, since the relief groove must satisfy contrasting require-
ments. Low speed conditions require an increase of the relief groove width
to guarantee high efficiency values, while high speed conditions require to
reduce it in order to avoid high pressure phenomena in the trapped volume.
Within this context, alternative methods for reducing the high pressure peak
inside the trapping volume may become of crucial importance for a better
NVH behavior of the pump.

The pressurizing zone extension has been also taken into account during
the analysis, showing that different widths of the pressurizing zone lead to
different orientations of the pressure force without affecting its amplitude. For
this reason, this design characteristic may have a major influence on the static
component of the bearing reaction and meshing force, while the dynamic
behavior of the pump is not altered.

The results provided by the model underline the presence of deep corre-
lations between the pump NVH characteristics and design aspects typically
devoted to improve the pump efficiency and reliability. Further studies should
be focused on addressing the concurrent influence of relief groove shape and
dimensions, radial clearances and bearings on both the dynamic and fluid-
dynamic behavior of these machines.
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3
H I G H A C C U R A C Y P R E D I C T I O N O F G E A R P U M P
P E R F O R M A N C E B Y U S I N G L U M P E D PA R A M E T E R
A P P R O A C H E S

The Chapter deals with the description of a methodology to study gear pumps perfor-
mance by using a lumped parameter approach. The model adopts well-established tech-
niques for simulating the pump fluid-dynamics in association with a novel approach,
which allows to take into account the effects produced by the gearpair micromotions.
Moreover, possibility to study both spur and helical gears, as well as non-unitary
transmission ratio gearpairs has been included, in order to ensure the wide applica-
bility of the model in modern design solutions. Within this framework, a dedicated
procedure to estimate variable pressure loads starting from the pressure distribution
around gears is presented and compared with two previous techniques described in the
literature. The quality of the results provided by the overall model is then addressed by
comparing simulated outcomes with measured data obtained from an extended experi-
mental campaign, involving 20 nominally identical samples of the same pump design.
Finally, a review of the variety of results provided by the model is given, together with
examples of its practical applicability.

3.1 introduction

Fluid dynamic performances and dynamic behavior of gear pumps are re-
lated each other and strictly connected to several factors, e.g. clearances be-
tween components, gear shape, gear meshing, pressure ripple. For this reason,
defining empirical correlations between dynamics, fluid-dynamics and design
choices would require extremely demanding experimental campaigns, both in
terms of time and costs. In order to overcome this practical limitation, starting
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from the 80s, numerical models based on Lumped Parameter (LP) approaches
have been proposed to study performance of gear pumps by focusing the at-
tention on the pressure distribution around the gears and the outlet pressure
ripple [44, 45, 46]. These methodologies have been developed further to obtain
a more accurate definition of the phenomena inside the meshing zone [15, 47].
Lately, such numerical approaches have been improved with the aim to take
into account various physical aspects such as instantaneous positions of gears
[35], presence of cavitation [48, 49], use of helical gears and tandem pump
configurations [3]. Eaton et al. [9] focused the attention on the pressure inside
the trapping volume, with particular reference to aero-engine fuel pumps, un-
derlining the lack of investigations on high-speed working conditions. Con-
currently, other studies have been focused on lubrication phenomena [50, 51]
and gear balancing, in reference to the presence of journal bearings and lateral
bearing blocks [52, 53, 54, 55, 56].

The use of CFD analysis for studying fluid dynamic phenomena in gear
pumps is also present in the literature, even if most of the works are lim-
ited to 2D simulations. Castilla et al. [57] studied turbulence structure in the
suction chamber of an external gear pump, putting into light pros and cons
of CFD simulations applied to these machines. Del Campo et al. [58] used
a simplified 2D CFD approach for studying the effect of cavitation in the
volumetric efficiency of external gear pumps. In these cases, the 2D strategy
allows the comprehension of the major fluid dynamic phenomena involved in
volumetric devices. Only recently, full 3D simulation has begun to be used for
gear pump analysis. Castilla et al. [59] proposed a method to study the fluid
flow inside an external gear pump by means of a complete three-dimensional
(3D). In a very recent paper, a CFD three-dimensional simulation of an exter-
nal gear pump was carried out by Yoon et al. [60] in order to investigate the
effects of geometrical design parameters on the flow rate, by including the
effect of the lateral gap. They determine the most significant factors affecting
the pump performance by means of CFD results and analyze the characteris-
tics of the flow field pattern. The main drawback of this numerical approach
relies in the high computational effort required to study the variable pressure
phenomena in gear pumps for a complete wheel rotation. An extended review
of the modeling approaches for efficiency estimation of volumetric machines
has been recently carried out by Rundo in [61].
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Research has been also focused on describing the pump theoretical charac-
teristics on the basis of purely analytical approaches. One of the first works
on this topic pertains to Bonacini [7], who proposed a method to calculate the
pump theoretical displacement and discussed the relevance of the bridge de-
sign with respect to the flow ripple amplitude. In the same period, Ichikawa
et al. [62] discussed the pump flow rate fluctuations in the frequency domain,
by relating them to the dynamics of the pipeline. More recently, Manring et al.
[41] has extended the approach to gear pump with non-unitary transmission
ratio, underlining the theoretical benefits guaranteed by pump designs with
τ > 1. Huang et al. in [63] adopted a similar procedure to evaluate the impor-
tance of the relief groove design and analyzed the effects produced by gears
module and pressure angle on the theoretical delivery flow rate characteris-
tics. An interesting formulation has been finally introduced by Devendran et
al. in [64, 65], where the authors proposed a novel formulation for estimating
the pump theoretical displacement taking into account the potential adoption
of gears with non-symmetric teeth. The work has enlightened the positive
potential features of this uncommon design choice.

As it can be appreciated from this literature survey both LP and CFD mod-
els can be adopted to evaluate gear pump pressure and flow rate character-
istics; each approach has different pros and cons, which make it suitable to
be applied during a different step of the design procedure. Purely analytical
dissertations, on the contrary, may give important information referring to the
theoretical characteristics of the machine, but they cannot be adopted to evalu-
ate the pump behavior in working condition. For this reason, purely analytical
methods are usually adopted as constraints in the gearpair design procedure
that take place at the very first stages of the design process. CFD approaches
may represent the opposite option, since they are based on a very limited
number of hypotheses and should allow for a highly detailed modeling of
the pump. Unfortunately, such methods require a considerable computational
effort and therefore their practical adoption is still not so widespread or re-
stricted to simplified pump geometries. In the field of gear pumps, LP models
still represent an efficient and profitable solution, also because the research in
the last two decades has brought to the development of accurate software,
requiring a reduced computational effort with respect to the obtained estima-
tion accuracy.
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Within this framework, the present Chapter describes the mathematical for-
mulation and the practical implementation of a novel LP model for predicting
pump efficiency as well as pressure phenomena in gear pumps. The present
approach is focused on evaluating the effects of slight design modifications,
by taking into account a wide range of design specifications. Moreover, the
LP model is coupled with equations of motion of the gearpair, allowing for
the calculation of the gears micromotions as a result of the instantaneous bal-
ancing between the simultaneous presence of variable pressure loads, a speed
dependent drag torque, the meshing force and the bearing reaction. This mod-
eling approach has been firstly introduced by Mucchi et al. [17, 18], but the
described model calculates a Stationary Equilibrium Position (SEP) at each
angular pitch. Lately, the approach has been revisited by Vacca et al. in [35]
by proposing a solution flowchart which allows to calculate the SEP at each
frame of calculus; however, the proposed procedure seems not to take into
account the effect of the drag torque. Moreover, a clear description of the way
adopted to calculate the mesh force is not provided. In order to overcome
these limitations, the present model defines a method to estimate the mesh
force with respect to the working conditions of the pump, by including also
the presence of non-zero drag torque components.

The model introduced hereinafter is also able to include the presence of
helical gears, as well as gearpairs with non-unitary transmission ratio and ar-
bitrary shaped relief/lateral grooves. Discharge coefficients, that are usually
taken from ref. [14] and then slightly adjusted to reach a better experimental
validation (see for example ref. [15]), have been determined with the help of
CFD analysis. As stated in Chapter 1, the need to improve the NVH behav-
ior of gear pumps has led to spread the use of helical gear pumps, mostly
where low levels of pressure difference and high flow rates are required, even
if, in the literature, this kind of gear pump has been rarely studied. The first
works on helical gear pumps date back to the forties and they were focused
on giving some slight details on the instantaneous and mean flow rate [66, 67].
Later, in [13] the author provided an exhaustive explanation on the way the
helix affects the theoretical outlet flow ripple. More recently, in [19] the pres-
sure force and torque acting on helical gears has been discussed, nevertheless,
the adopted approach is based on simplified hypothesis that led the authors
to neglect components related to the presence of the helix, i.e. the axial pres-
sure force and relative torque components. The application of the numerical
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methods discussed above has been extended to helical gears just in the more
recent literature by Battarra et al. in [2].

Assessment of simulated results obtained from the proposed modeling ap-
proach is presented and discussed in the Chapter by comparing them with
experimental results. Measured data have been recorded by conducting a ded-
icated experimental campaign, involving tests on 20 nominally identical sam-
ples of a gear pump with helical teeth and nonunitary transmission ratio. Each
sample has been geometrically characterized by measuring the mean actual
radial and bearing clearances on both gears and then tested at 16 different
working points. The comparison shows that the proposed model can guaran-
tee high accuracy predictions in terms of pump volumetric efficiency through-
out the entire range of working conditions considered. Concurrently, model
sensitivity to slight design modifications is comparable to the real pump be-
havior.

The following Section proposes the mathematical model adopted to calcu-
late the pressure distribution around the gears, together with the CFD ap-
proach adopted to set up discharge coefficients. Section 3.3 regards the math-
ematical model for calculating gearpair radial movements that has been cou-
pled to the LP fluid dynamic model, while Section 3.6 describes the whole
model structure together with its iterative solving workflow. Sections 3.4 and
3.5 contain the description of the analytical procedure built up for the accu-
rate determination of the variable pressure force and torque loading spur and
helical gears, respectively. Comments on the estimation quality provided by
such procedures are given in both Sections. Sections 3.7 and 3.8 concern the
experimental campaign and the assessment of the simulation results, respec-
tively. Finally, last Section is devoted to concluding remarks.

3.2 gear pumps lumped parameter modeling

Description of the mathematical approach used to determine the pressure
variation around gear pumps for a complete gear rotation is given, focusing
the attention on the several flow rates determined. The LP approach has been
adopted to evaluate the performances of the pump in terms of outlet mass
flow rate, outlet pressure ripple, oil pressure evolution during a complete
gear rotation and instantaneous volumetric efficiency. Concurrently, in order
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to improve the LP model results accuracy, a 2D and two 3D CFD models have
been developed (see Subsection 3.2.1).

The entire pump and the relative outlet piping system are discretized with
a constant number of control volumes, in which all the fluid properties are
considered as a constant. Several authors [45, 68, 35, 17] have already applied
a similar approach, each of them proposing a different subdivision of the
pump volumes, in particular in the meshing zone. In the present model, the
discretization of the meshing zone proposed by Vacca et al. in [35] has been
implemented, but a different physical approach has been followed. In partic-
ular, starting from the Continuity Equation where flow rates are defined in
reference to the pressure difference between two control volumes:
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By assuming a constant angular velocity ω1 for the driving gear, the Continu-
ity Equation for each control volume referring to that gear can be expressed
as:
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Similarly, for the driven gear:
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Now, by assuming a constant transmission ratio τ, Eqn. 28 can be defined
with respect to ϑ1 as well:
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It is therefore clear that, independently from the transmission ratio, all the
control volumes can be solved with respect to the instantaneous angular posi-
tion of the driving gear. Moreover, the choice to work in the angular domain
provides a consistent simplification of the model implementation; all the vari-
able geometrical parameters, e.g. volumes Vi and Vj, porting areas, etc. can
be calculated and stored at a fixed angular step and then recalled during
simulations without the need of further interpolations.
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Flow rates connecting control volumes can be defined on the basis of two
different approaches. In the hypothesis of low Reynolds numbers #Re, the
Couette-Poiseuille equation may be a satisfactory representation of the phe-
nomenon:

Q =
wh3

12µ

∆P

L
+

whu

2
(30)

where u represents the tangential velocity, while w, h and L are the channel
width, height and length, respectively. On the other hand, when the hypothe-
sis of low Reynolds numbers does not match the actual flow conditions, flow
rates may be defined with the help of the discharge coefficients Cd, by using
Eqn. 31, which is obtained from the application of the Bernoulli’s equation
under specific hypotheses:

Q = CdA

√
2 |∆P|

ρ
sign (∆P) (31)

where A represents the porting area between two control volumes. According
to the different links between flow and pressure drop defined by Eqs. 30 and
31, it is important to correctly characterize the several flows describing the
interconnections between volumes. This classification is typically performed
on the basis of experience and trial and error processes, since, a priori, no
objective information is available regarding the nature of the various flow
rates exchanged between control volumes. However, in the specific field of
gear pumps modeling, flow rates are classified in reference to the clearance
sizes and the angular position of the reference control volume.

In order to better understand this statement, it is possible to focus the at-
tention of Figure 15, depicting three adjacent tooth pockets moving from the
pressurizing zone, where no lateral grooves are present, towards the outlet
zone. Inside this region, teeth are surrounded by the casing and the thrust-
plate, hence the oil can flow through small channels between tooth tips and
casing (giving birth to tooth tip flow rates Qt), as well as between tooth lat-
eral flanks and thrust-plate/casing (giving birth to tooth lateral flank flow
rates Qf). Since within this zone clearances between case and teeth are de-
signed to provide sealing between high and low pressure sides, leakage is
limited as much as possible. The depicted framework allows to fairly assume
low #Re flow rates exchanged between consecutive pockets and therefore Eqn.
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30 is adopted. The eventual presence of lateral/tip grooves, on the contrary,
leads to a completely different scenario. As a matter of fact, such grooves are
designed to reduce the angular extension of the pressurizing zone by consis-
tently increasing the radial and axial clearance values at some pre-defined
angular sectors of the gearpair. In particular, the amount of clearance is usu-
ally so high that it is reasonable to assume all pockets inside this region have
the same mean pressure value. As a direct consequence, pockets inside this
region do not have significant mutual interactions and flow rates are so small
that #Re remains small even if the characteristic linear dimension of the equiv-
alent channel increases considerably. In the present model, the definition of
these flows has been conducted analyzing the results of the CFD models that
will be introduced and discussed in Subsection 3.2.1. By considering several
cases with different clearance values, the flows in the clearance between tooth
tip and casing, tooth lateral flank and thrust-plate and tooth lateral flank and
casing resulted to be well represented by using Eqn. 30.

By focusing the attention on the meshing zone, the aim is now to describe
the discretization scheme adopted to model flow rates exchanged between
driving/driven gears and inlet/outlet chambers. Figure 16 shows four con-
secutive instants of meshing. In Figure 16.a control volume Vi is directly con-
nected to the outlet chamber

(
Qi

outlet

)
and the driven gear pocket Vj; therefore,

two different volumetric flow rates have been defined. In this initial part of the
meshing course, volume Vvar is added to the volume of the outlet chamber. In
Figure 16.b, control volume Vi does not communicate with the outlet volume;
the two teeth are not yet in contact, so tooth space Vi can communicate with
two adjacent driven gear pockets: Vj, through flow rate Q

ij
m, and Vj−1, through

flow rate Q
ij−1
m . The lack of direct connections with the inlet/outlet chamber

causes the absence of term Vvar. In Figure 16.c, the hydraulic connection be-
tween the backflank of the teeth only occurs, therefore the driving gear pocket
communicates only with the meshing tooth space of the driven gear, defining
the so-called trapping volume. Finally, in Figure 16.d the meshing is ending
and control volume Vi communicates directly with the inlet

(
Qi

inlet

)
; in this

final part of the meshing course, volume Vvar is added to the volume of the
inlet chamber. Therefore, depending on the actual meshing condition, four
different flows can be detected, as well as a new shape of the control volume.
Indeed, during the meshing evolution, as proposed in [35], the shape of the
control volume is conventionally limited by the minimum distance between
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Figure 15: Flow rates between adjacent tooth pockets inside the pressurizing zone, in
both regions with lateral grooves and without lateral grooves.

the flanks of two meshing teeth. Consequently, the minimum distance is also
used to define such flow rates. Additional details regarding the discretiza-
tion procedure adopted in the meshing zone may be found in [35] - Section
2.1, in which the presence of volume discontinuities and variable volumes is
discussed.

3.2.1 CFD analysis

The description of the mathematical model in Section 3.2 has enlightened the
necessity to infer, predict or, at least, reasonably assume the nature of each
flow rate exchanged between control volumes. In order to improve the com-
prehension of the flow behavior within the micro-scale gaps, two-dimensional
and three-dimensional CFD models have been developed. These models have
been used with the aim of investigating some specific fluid dynamics phe-
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Figure 16: Mutual flow connections between meshing pockets, together with inlet
and outlet chambers.

nomena that occur in these fluid zones characterized by very small passage
areas. Since the computational efforts could represent an obstacle in the in-
vestigation of the fully developed pump geometry, the CFD analysis refers
to particular areas of the pump and allows the calculation of flow discharge
coefficients in order to better reproduce the actual flow behavior inside the
gear pump during the solution of the lumped parameter model. In the light
of this purpose, the following considerations arise.

(i) Each numerical simulation refers to a single gear position in station-
ary condition and with wall motion not included; thus, since the resulting
flow coefficients become not influenced by the rotational speed of the pump,
a more general characterization of the flow condition in a definite number
of instantaneous geometrical pump configurations can be obtained. The ad-
herence condition on the moving wall would imply the modification of the
velocity profile, and in turn, the variation of the total mass flow rate across
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the gap. This fact, would reduce the possibility to adopt the Cd value obtained
for a specific wall velocity (representative of a single pump operating point),
to the same geometry with a different wall velocity (different pump operating
point).

(ii) Suitable turbulence boundary conditions were set for each numerical
domain. Small gaps, high fluid viscosity and high peripheral velocity makes
the flow regime difficult to be a priori estimated. A sensitivity analysis on
the effect of the turbulence model demonstrated the robustness of the simu-
lations, also when the local Reynolds number falls below classical turbulence
transition regions. All the numerical simulations were carried out by means
of ANSYS Fluent 13.0. Second order upwind was used as advection scheme
for the momentum equation. Pressure based solver and SIMPLE scheme were
also adopted.

3.2.1.1 Turbulence model and grid sensitivity analysis

In order to setup the most appropriate CFD numerical model, a preliminary
sensitivity analysis regarding turbulence model and the number of elements
in the gap is carried out. Laminar flow (i.e. no turbulence model activated), k-
Epsilon model with standard wall function and k-Omega model were tested
against a variable number of triangular elements from 2 to 15. The two-
dimensional domain used for this analysis, refers to a tooth-tip gap equal
to 10µm and a pressure difference of 2bar. More details about the computa-
tional domain are reported in the next paragraph. In Figure 17.a two mesh
grids are reported corresponding to a tooth-tip gap discretization with 2 and
9 elements. The results of the sensitivity analysis are depicted in Figure 17.b.
The average values of flow velocity in correspondence of the tooth-tip gap
are reported against the number of elements. As it can be seen from Figure
17.b, the k-Omega model trend well matches the laminar flow trend with a
difference less than 0.7% (the maximum difference refers to the case with 2

elements). On the contrary, the k-Espilon model shows a maximum variation
of 3.1% with respect to the laminar flow case. Since the k-Omega model has
demonstrated to be able to well represent the flow field also in the case of
transition/laminar condition [69, 70] this model was chosen for the CFD anal-
ysis.
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Figure 17: Turbulence model and grid sensitivity analysis: a) meshes with 2 and 9

triangular elements, b) average velocity trends.

3.2.1.2 Tooth-tip

The first CFD analysis refers to the clearance between tooth-tip and casing.
For each tooth, this clearance changes according to the tooth-wheel angular
position due to the eccentricity of the wheels. This is mainly due to the higher
pressure in the discharge chamber that forces each wheel towards the suction
chamber. Since this clearance varies its value continuously from the minimum
value (equal to 5µm) to the maximum value (equal to 130µm), several geomet-
ric configurations and pressure conditions are taken into account by using a
two-dimensional (2D) CFD approach. The numerical domain is reported in
Figure 18, where the tooth-tip/case clearance was modified in reference to
the values reported in the Table 4. The pressure boundary condition has been
set in order to cover the entire range of pressure difference involved, in the
gear pump operation, between two adjacent tooth spaces, which is necessar-
ily smaller than the pressure difference existing between the inlet and outlet
chamber of the pump. The pressure conditions used in this analysis are re-
ported in Table 5 and refer to the pressure difference between the starting and
the ending sections of the CFD domain (see Figure 18).

Since the number of numerical simulations obtained by the combination
of the tooth-tip/casing clearances with the pressure boundary conditions is
equal to 154 (i.e. 14 tooth-tip/casing clearance times 11 pressure differences
as in Table 4 and Table 5) a two-dimensional (2D) CFD approach was used.
The 2D approach allows the reduction of the computational efforts by limiting
the reliability of the results, as reported in [71]. In this case, the CFD analysis
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Figure 18: Numerical domain of the tooth-tip/case clearance analysis; the total chan-
nel length is equal to 12 times the tooth width on the root circle.

Table 4: Tooth-tip/case clearance values used in the numerical domain defined in
Figure 18.

# Tooth-tip/case clearance (µm) # Tooth-tip/case clearance (µm)

1 5 8 40

2 10 9 60

3 15 10 80

4 20 11 100

5 25 12 120

6 30 13 125

7 35 14 130

Table 5: Pressure differences between the starting and ending sections defined in
Figure 18.

∆P - (bar)

10 7.5 6.00 5.00 4.30 1.00 0.75 0.60 0.50 0.43 0.02

is devoted to calculate the flow discharge coefficient referred to the tooth-tip
gap geometry without considering the presence of the lateral flank clearance.
This is consistent with the implementation adopted in the lumped parameter
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Figure 19: Computational mesh used in the tooth-head/casing analysis.

model, where the tooth-tip flow leakage is uncoupled from the lateral flow
leakage and gives more universal meaning to these specific calculations. The
numerical domain is reported in Figure 18. The numerical domain is meshed
by using triangular elements as reported in Figure 19. In the tooth-tip/case
clearance, a minimum of 8 triangular elements are present in order to well
represent the velocity profile from the tooth-tip to the case (close-up in Figure
19). Figure 19 reports also the grid refinement close to the tooth that has been
adopted in order to generate an uniform distributed mesh, according to the
local variation of the velocity magnitude.

3.2.1.3 Tooth lateral flank

The second CFD analysis refers to the tooth lateral flank clearance. The lateral
clearance is variable along the tooth path. In the inner regions, the lateral clear-
ance is equal to the smallest value (5µm), while in the outer regions, the lat-
eral clearance is equal to 200µm and 500µm as a function of the tooth side (i.e.
clearance between tooth lateral flank and case and clearance between tooth
lateral flank and cover-plate). The variation of the tooth lateral flank clearance
due to the angular position of the wheel corresponds also with the variation
of the tooth-tip/case clearance as mentioned above. For this reason, several
numerical domains were created in order to combine the tooth lateral flank

54



3.2 gear pumps lumped parameter modeling

clearances with the tooth-tip/case clearances. Differently from the previous
case, the flow condition in lateral flanks is very dependent from the specific
pump geometry and, since they are always present in conjunction with the
tooth-tip/case gap, it was decided to include in the numerical domain the
concurrent presence of these two gaps.

The CFD models are generated in a similar manner to those realized for
the tooth tip/case clearance. Since the lateral clearance is developed along the
perpendicular plane with respect to the tooth tip/case, the numerical mod-
els refer to a three-dimensional geometry. A representation of the numerical
model is reported in Figure 20, where the lateral clearance is highlighted. The
numerical model refers to a half of the tooth width and symmetry bound-
ary conditions are imposed in the opposite side of the lateral clearance, as re-
ported in Figure 20. The pressure boundary condition was set in order to cover
the entire pressure range involved in the gear pump operation. The pressure
conditions (pressure difference between starting and ending sections) used
in this second analysis is the same used in the previous one, are reported in
Table 5. The numerical domain is meshed by using a hexahedral mesh. In the
clearances between tooth tip and case and in tooth lateral flank clearance 11

hexahedral elements are present in order to well represent the velocity (close-
up in Figure 20). Moreover, the grid refinement close to the tooth is adopted
in order to generate a uniform distributed mesh, according to the local vari-
ation of the velocity magnitude. The combinations of the (i) lateral clearance,
(ii) tooth-tip/casing clearance and (iii) the pressure condition used in the nu-
merical investigation refer to a typical operating condition of the gear pump.
The smallest clearance is characterized by the highest pressure drop across
the tooth, while the higher clearances are characterized by the lower pressure
drop across the tooth.

3.2.1.4 Meshing zone

The last numerical CFD analysis refers to the meshing zone. The meshing
zone of the gear pump is characterized by very inhomogeneous flow due to
the narrow passage that link the outlet gear pump chamber (high pressure)
with the inlet gear pump chamber (low pressure). Conversely, delivery side
is characterized by quite uniform pressure field and then very low pressure
difference. In this region the lumped parameter model works well by using
standard Cd values. In the meshing region at the inlet side, due to the narrow
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Figure 20: Numerical domain of the lateral tooth flank clearance analysis.

passage and the highest pressure difference, the turbulent eddies grow and
monopolize the meshing regions at the inlet side. For all of these reasons, the
CFD calculation represents the only method to analyze the flow condition and
compute the discharge coefficient for tuning the lumped parameter model.
Thus, the CFD analysis will address the inlet side solely.

The CFD numerical model of the meshing zone has to represent the ac-
tual subsequently position covered by the driving and driven gears. Figure 21

reports three geometrical configurations considered in the CFD analysis. In
order to well discretize the angular position of the gear, each geometric con-
figuration reported in Figure 21 was studied also for other two gearpair posi-
tions obtained imposing an angular rotation of the wheel equal to 3degrees

forward and 3degrees backward. Therefore, nine CFD numerical domains
were performed and studied by using a single pressure difference between
the inlet and outlet sections. The pressure difference is directly related to the
operating condition of the gear pump, and thus, each configuration is studied
for a pressure difference between inlet and outlet equal to 30bar.
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The CFD numerical model refers to close-up reported in Figure 21. Each
configuration has been studied by using only a portion of the meshing zone
defined according to the different pressure condition of the inlet and outlet
chambers. Figure 22 reports the CFD numerical domain of the third geomet-
rical configuration (see Figure 21.c) with the pressure boundary conditions.
Figure 22 allows the comprehension of the meshing region configuration: (i)
the lateral tooth region is characterized by the lateral grooves on the cover
plate and case and (ii) the two teeth resulting in the meshing region deter-
mine the narrow passage characterized by two tooth flanks and by one tooth
flank and one tooth tip. Due to these geometrical features of the meshing re-
gion, the numerical CFD simulation allows the calculation of four different
discharge coefficients: (i) between two tooth flanks, (ii) between tooth tip and
the tooth flank, (iii) in the clearance between lateral tooth flank and the case
and finally (iv) in the clearance between lateral tooth flank and the cover-plate.

3.3 mathematical model for estimating gearpair radial move-
ments

The present Section introduces the modeling procedure defined to calculate
gearpair radial movements with respect to the variable loads applied. As
stated in Section 2.2 of Chapter 2, the nonlinear equation system describing
the dynamics of gear pumps expressed with Eqn. 1 can be rewritten as:

m1ẍ1 + F
(1)
bx + F

(1)
px = 0

m1ÿ1 + F
(1)
by + F

(1)
py + Fm = 0

J1θ̈1 + Tshaft − r1Fm + T
(1)
d − T

(1)
p = 0

m2ẍ2 + F
(2)
bx + F

(2)
px = 0

m2ÿ2 + F
(2)
by + F

(2)
py − Fm = 0

J2θ̈2 − r2Fm + T
(2)
d − T

(2)
p = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(32)

where terms F
(i)
bx, F

(i)
by are the components of the journal bearing’s reaction

supporting gear i. As proposed in [17], by assuming the inertia terms can
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Figure 21: Three numerical domains of the meshing zone analysis.

be neglected, the dynamic system described in Eqn. 32 can be simplified as
follows:

F
(1)
bx + F

(1)
px = 0

F
(1)
by + F

(1)
py + Fm = 0

Tshaft − r1Fm + T
(1)
d − T

(1)
p = 0

F
(2)
bx + F

(2)
px = 0

F
(2)
by + F

(2)
py − Fm = 0

r2Fm + T
(2)
d − T

(2)
p = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(33)
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Figure 22: Pressure boundary conditions of the third geometrical configuration (see
Figure 21).

where the first two equations describe the radial motion of the driving gear
and the fourth and fifth equations describe the radial motion of the driven one.
Therefore, the hypothesis adopted in Eqn. 33 reduces the mathematical model
describing the gearpair centers position to the 4−DOF equation system:

F
(1)
bx + F

(1)
px = 0

F
(1)
by + F

(1)
py + Fm = 0

F
(2)
bx + F

(2)
px = 0

F
(2)
by + F

(2)
py − Fm = 0

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (34)

which substantially represents the force balance both for contributions along
the line of action and normal to it. Moreover, the two equations describing the
torque balance on the two gears can be used to estimate the meshing force Fm
without necessarily estimate the mesh stiffness and damping coefficients. In
particular, starting from the equation system reported hereafter:

r1Fm = Tshaft + T
(1)
d − T

(1)
p

r2Fm = T
(2)
p − T

(2)
d

}
(35)

By focusing the attention on the case where driving and driven gear are
identical, i.e. r1 = r2 = r, it is reasonable to assume that T (1)

d = T
(2)
d = Td and

59



high accuracy prediction of gear pump performance by using

lumped parameter approaches

the summation term by term between the two equations reported in Eqn. 35

leads to the following expression defining meshing force Fm:

Fm =
Tshaft + T

(2)
p − T

(1)
p

2r
(36)

On the contrary, in the case where driving and driven gear are not identical,
i.e. in general r1 ̸= r2 and transmission ration τ ̸= 1, by subtracting term by
term the two equations in Eqn. 35, meshing force Fm is defined as follows:

Fm =
Tshaft − T

(1)
d − T

(2)
d − T

(1)
p − T

(2)
p

r1 − r2
(37)

Moreover, taking into account that the total friction torque can be defined
with respect to the hydro-mechanical efficiency ηHM of the pump:

T tot
d = T

(1)
d + T

(2)
d = Tshaft (1− ηHM) (38)

meshing force Fm can be determined without directly calculating the friction
terms:

Fm =
ηHMTshaft − T

(1)
p − T

(2)
p

r1 − r2
(39)

It is worth noting that Eqn. 39 does not apply for pumps made by two identi-
cal gears since the denominator would be equal to zero.

The presented approach substantially differs from the methodology intro-
duced in [17], as well as the one proposed in [35], since in the present disser-
tation the estimation of the meshing force takes into account the contribution
of the pressure torque applied on both gears together with the contribution of
the driving and friction torques. On the contrary, the method proposed in [17]
estimates meshing force Fm by assuming the absence of friction and therefore
from Eqn. 35:

Fm =
−T

(2)
p

r2
(40)

This approach has the quality to require no extra-data regarding the gear
pump under study, i.e. hydro-mechanical efficiency ηHM and driving torque
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Tshaft, but it is based on more limiting hypotheses. Concurrently, the method
proposed in [35] does not consider the presence of friction torque by assuming
ηHM = 1. In the same work, meshing force Fm is assumed as a constant along
the entire revolution and no information are provided about its estimation.

Once meshing force Fm has been defined, the determination of the gear cen-
ter position requires the calculation of the contributions provided by variable
pressure loads F

(i)
px, F(i)py, T (i)

p and bearing reactions F
(i)
bx and F

(i)
by. In particular,

the formers are directly calculated from the pressure distribution determined
by solving the relative lumped parameter model; the analytical procedure fol-
lowed for their determination will be described in Section 3.4, for the spur
gears case, and in Section 3.5, for the helical gear one. Regarding the jour-
nal bearing reactions, components F

(i)
bx and F

(i)
by are estimated by following

the analytical approach described in [72]. The methodology is based on the
correction of the formulae obtained under the half Sommerfield conditions
for infinitely long/short bearings [73, 74], by means of polynomial correction
functions that depend on the bearing aspect ratio L/D. The adopted approach
has the benefit to be valid for a wider range of aspect ratio than the solution
proposed by Ocvirk in [75] and applied in [35]; concurrently, it is based on
simpler expressions with respect to the model proposed by Childs et al. in
[76], that has been used in [17].

3.4 pressure force and torque estimation in case of spur gears

The methodology introduced hereafter can be considered as a complete method
to determine the pressure forces and torques in external gear pumps. Figure
23 depicts the reference scheme of the proposed procedure in a generic exter-
nal gear pump; on the center of each gear, a 3D reference system is located
and the pressure forces applied on the two gears are studied separately. Sub-
script ’p’ is neglected along the entire dissertation in Sections 3.4 and 3.5 since
all the force components are due to the oil pressure. Let consider the generic
tooth space Vi of the driving gear and the two adjacent tooth spaces, namely
Vj and Vj−1, which share oil flow rates during the meshing course. Along a
complete revolution, two different configurations are identified, distinguish-
ing whether the reference tooth space is outside, or inside the meshing zone.
It has to be underlined that within such a methodology, the meshing zone
starts conventionally when the tooth of the driven gear enters into the cir-
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Figure 23: Reference scheme for pressure force determination.

cle defined by radius rext and not when the real contact occurs; concurrently,
it ends when the tooth of the driven gear exits from the same circle and not
when the real contact ends. This rule is used to obtain a suitable discretization
of the tooth spaces along the meshing course without affecting the accuracy
in modeling the meshing process.

3.4.1 Tooth spaces out of the meshing zone

Within this layout, the oil pressure acts symmetrically on the entire tooth
space surface and, therefore, pressure force FLR, due to the generic tooth space
Vi, does not have a tangential component (FLR = FLR,r), as it can be seen in
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Figure 23. In this frame, FLR can be determined, as described in [17], with Eqn.
41:

|FLR| = 2bPi sin
(
ϑL − ϑR

2

)
rext (41)

The absence of a tangential component leads to the absence of pressure
torque applied to the gear. The line of action of the pressure force applied
to tooth pockets outside the meshing area passes through the gear center;
therefore such a force, considered applied on the gear center, exhibits the
following components along axes x and y, respectively:

Fxtot,i = − |FLR| cos
(
ϑL + ϑR

2

)
(42)

F
y
tot,i = − |FLR| sin

(
ϑL + ϑR

2

)
(43)

Moreover, the tooth spaces layout of a spur gear leads to the absence of pres-
sure force components along axis z

(
Fztot,i = 0

)
.

3.4.2 Tooth spaces inside the meshing zone

When tooth space Vi enters within the meshing zone, it is necessary to con-
sider that a different discretization of the control volume is adopted and, in
particular, three different control volumes contribute to the definition of the
reference tooth space surface (Figure 24). As a result, the pocket is divided
into three regions, each one under the loading of a different pressure and sepa-
rated by contact point K and point of minimum distance H (Figure 25). Points
K and H are found and the minimum distance is calculated numerically, by
using a specific search algorithm, similarly to the procedures followed in [35,
77]. The calculus procedure starts with the geometrical definition of the teeth
inside the meshing zone with two vectors of points. Vector V1 describes, point
by point, the boundary of a tooth of the driving gear, together with its tooth
space. Vector V2 describes, point by point, the boundary of the tooth of the
driven gear that is meshing with the former (together with its tooth space). To
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Figure 24: Discretization of the tooth space in the meshing zone.

determine the minimum distance, the algorithm calculates for each point of
V1 the distance from all the points defined in V2 and then finds the minimum
one. Pressure Pi of the reference control volume acts on the central region,
while the two external regions are influenced by pressures Pj and Pj−1, be-
longing to control volumes Vj and Vj−1 previously defined; the three regions
are analyzed separately, defining for each one the acting forces (see Figure 25

and Figure 26).

In the region located on the left side of the tooth space, between points
L and K, pressure Pj−1 is acting and the connected pressure force FLK can be
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divided in two components along the radial and tangential directions, namely
FLK,r and FLK,t respectively(Figure 25), calculated with Eqns. 44 and 45:

|FLK,r| = 2bPj−1 sin
(
ϑL − ϑK

2

)
rext (44)

|FLK,t| = bPj−1 sin (rext − rK) (45)

The presence of a non zero tangential component leads to the non-zero pres-
sure torque TLK, which can be calculated with the following Eqn. 46:

|TLK| = |FLK,t|

(
rext + rK

2

)
(46)

Force FLK has now to be referred into the coordinates system of Figure 23 by
using Eqns. 47 and 48:

FxLK = − |FLK,r| cos
(
ϑL + ϑK

2

)
− |FLK,t| sin

(
ϑL + ϑK

2

)
(47)

F
y
LK = − |FLK,r| sin

(
ϑL + ϑK

2

)
+ |FLK,t| cos

(
ϑL + ϑK

2

)
(48)

A similar procedure can be applied to the right side of the tooth space,
between points H and R (Figure 25); here, pressure Pj produces force FHR,
defined along the radial and tangential directions, and torque THR, which can
be calculated with Eqns. 49, 50 and 51:

|FHR,r| = 2bPj sin
(
ϑH − ϑR

2

)
rext (49)

|FHR,t| = bPj sin (rext − rH) (50)

|THR| = |FHR,t|

(
rext + rH

2

)
(51)
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As done regarding FLK, force FHR has to be referred into the coordinates sys-
tem in Figure 23 applying Eqns. 52 and 53:

FxHR = − |FHR,r| cos
(
ϑH + ϑR

2

)
+ |FHR,t| sin

(
ϑH + ϑR

2

)
(52)

F
y
HR = − |FHR,r| sin

(
ϑH + ϑR

2

)
− |FHR,t| cos

(
ϑH + ϑR

2

)
(53)

The middle part of the tooth pocket, which results to be bounded by points
K and H, is subjected to pressure Pi; in this case, the pressure force is addition-
ally subdivided into two forces, namely FKM and FMH. Force FKM and torque
TKM are determined with Eqns. 54, 55 and 56:

|FKM,r| = 2bPi sin
(
ϑK − ϑM

2

)
rext (54)

|FKM,t| = bPi sin (rK − rM) (55)

|TKM| = |FKM,t|

(
rK + rM

2

)
(56)

Concurrently, force FMH, and the relative torque TMH, are calculated with Eqns.
57, 58 and 59:

|FMH,r| = 2bPi sin
(
ϑM − ϑH

2

)
rext (57)

|FMH,t| = bPi sin (rH − rM) (58)

|TMH| = |FMH,t|

(
rM + rH

2

)
(59)

Focusing the attention on Figure 25 and Figure 26, it can be noticed that the
layout of the applied forces changes during the meshing evolution, due to a
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geometrical matter connected with the discretization adopted in the meshing
zone. In particular, the scheme for the pressure force determination depends
on the position of the contact point with respect to the line of action of the
gears. When the meshing occurs along the line of approach (Figure 25), radius
rK < rH and rK = rM; therefore, FKM,t becomes zero, as well as torque TKM,
while FMH,t is applied on the right flank of the tooth space. On the opposite,
when the meshing occurs along line of recess (Figure 26), radius rK > rH and
rH = rM; therefore, FMH,t becomes zero, as well as TMH, while FKM,t is applied
on the left flank of the tooth pocket. Force FKH, defined as the sum of FKM and
FMH, is calculated with Eqns. 60 and 61:

FxKH = − |FKM,r| cos
(
ϑK + ϑM

2

)
− |FKM,t| sin

(
ϑK + ϑM

2

)
+

− |FMH,r| cos
(
ϑM + ϑH

2

)
+ |FMH,t| sin

(
ϑM + ϑH

2

)
(60)

F
y
KH = − |FKM,r| sin

(
ϑK + ϑM

2

)
+ |FKM,t| cos

(
ϑK + ϑM

2

)
+

− |FMH,r| sin
(
ϑM + ϑH

2

)
− |FMH,t| cos

(
ϑM + ϑH

2

)
(61)

The total force Ftot,i and the total torque Ttot,i can be obtained from the sum
of all the contributions estimated above:

Fxtot,i = FxLK + FxKH + FxHR (62)

F
y
tot,i = F

y
LK + F

y
KH + F

y
HR (63)

T z
tot,i = − |THR|− |TMH|+ |TLK|+ |TKM| (64)

Moreover, as observed regarding tooth spaces outside the meshing zone
(Subsection 3.4.1), the tooth spaces geometry of spur gears leads to the ab-
sence of a pressure force component along axis z (Fztot,i = 0) and the two
pressure torque components along axes x and y (Tx

tot,i = 0, Ty
tot,i = 0). By ap-

plying the calculus procedure from Eqn. 41 to Eqn. 64 to each tooth space, it
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is possible to determine the force and torque generated by the oil pressure in-
side each tooth space, which loads the gear center (by using Eqns. 42, 43 and
62-64). Thus, repeating such a procedure for each frame of calculus l, used
to discretize a complete revolution, and summing, component by component,
the pressure force and torque applied to each tooth space (by using Eqns. 65,
66 and 67), the total pressure force and torque applied to the gear center are
obtained.

Fx (l) =

zn∑
i=1

Ftot,i
x (l) (65)

Fy (l) =

zn∑
i=1

Ftot,i
y (l) (66)

T z (l) =

zn∑
i=1

Ttot,i
z (l) (67)

The present procedure can be straightforwardly applied to the driven gear; in
this case if Vj is the reference control volume, then it is necessary to take into
account the influence of control volumes Vi and Vi+1.

3.4.3 Pressure load on the lateral sides of spur gears

For the sake of completeness, it is worth considering that the presence of oil
between the lateral sides of the gears and the bushes/thrustplates leads to
the presence of a pressure distribution along the axial direction. The determi-
nation of such a load becomes of great importance in particular for a correct
designing of the bushes and the sealing system with respect to the axial bal-
ance of the pump [55]. On the contrary, the present procedure has been specif-
ically built up for the estimation of the variable pressure load acting along the
facewidth of the gears, in order to estimate the pressure force and torque com-
ponents, which have a significant influence on the dynamic behavior of the
gears. In this context, the effects of the oil pressure loading the lateral sides
of the gear have been neglected on the basis of geometrical considerations.
On each side of a gear, in fact, the oil pressure gives a pressure force loading
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the gear along the axial direction. Moreover, the oil pressure also produces a
pressure torque acting along a direction lying on the plane perpendicular to
the gear axis of rotation. Nevertheless, since the two sides of a spur gear are
symmetrical, if the relief groove milled on the casing and the clearances are
symmetrical as well, the pressure force and torque acting on the two sides
cancel each other out, reciprocally. On the other hand, if the relief grooves
and the clearances are not symmetrical, the estimation of the pressure force
and torque loading the gear sides strongly depends on the pump layout and
the formulation cannot be generalized analytically, but it has to be performed
numerically [55]. The first step is to estimate the pressure distribution on each
side, then, with a numerical integration, calculate the pressure force, which
can be supposed as axially oriented, and later detect its line of action with
respect to the gear center. Finally, the pressure torque given by the pressure
force components defined on the two gear sides can be determined.

3.4.4 Evaluation of the methodology accuracy

In the present section the results concerning the methodology presented in
Subsections 3.4.1 and 3.4.2 are shown and discussed, comparing them with
the results obtained applying previous methods described in [17, 16]. In order
to carry out the assessment, the pressure distribution referring to a gear pump
with main parameters reported in Tab. 6 has been calculated by adopting the
mathematical model described in Section 3.2. In particular, the pressure dis-
tribution around the gearpair of the pump has been used as input data for
the estimation of the pressure loads by using the proposed methodology and
the method proposed in [17], namely Past Model 1 (PM1), and the method
described in [16], namely Past Model 2 (PM2). These three methods are iden-
tified by a different way of modeling the pressure force and torque inside
the meshing zone. In particular, in the PM1 the meshing phenomenon is not
considered, therefore the pressure force is estimated by using Eqn. 41 along
the entire revolution. Moreover, in the PM1 the pressure torque is calculated
without considering the effects of the oil pressure between meshing teeth nor
the one inside the trapping volume, but simply taking into account the pres-
sure difference between inlet and outlet chambers. In the PM2, the effects
produced during the meshing evolution on the pressure force are evaluated,
but a different definition of the control volumes is used. The PM2 takes into
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Table 6: Main characteristics of the pump adopted to assess the variable pressure
loads estimation procedure.

Tooth number 17

Displacement 8.1 ∗ 10−7m3/rev

Delivery pressure 28bar

Working speed 3020rpm

account the effects of the meshing phenomenon just when a double contact
point exists and the trapping volume can be defined. When a single contact
point exists, in the PM2 the pressure torque is estimated as in PM1.

Figure 27 shows the comparison between pressure force and torque on both
driving and driven gear, obtained by applying the new methodology (from
Eqn. 41 to Eqn. 67), namely current methodology CM, and the PM1 for the
pump reported in Tab. 6. Each pressure force component is normalized by
applying Eqn. 68:

F∗ =
Fp

2rrextPoutb
(68)

Concurrently, each pressure torque component is normalized applying Eqn.
69:

T∗ =
Tp

bPout
r2ext−r2root

2

(69)

As already discussed, the PM1 does not take into account the meshing phe-
nomena, which results in a low level of agreement between these two meth-
ods. In particular, the estimation of the pressure torque on the driving gear
appears to give completely different results (Figure 27.c), while there is, in
general, a good accordance regarding the estimation of the pressure torque
applied on the driven gear (Figure 27.f). The lack of agreement in the estima-
tion of the pressure torque is due to the different approach: in the CM the
pressure torque directly derives from the estimation of the pressure force ap-
plied along the tangential direction whilst in the PM1 the pressure torque is
evaluated analyzing the meshing phenomenon geometrically.

In order to better understand why the estimation of the pressure force by
using PM1 method gives so different results, it is possible to focus the atten-
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Figure 27: Comparison between pressure force and torque along the angular pitch for
both driving and driven gear, calculated with the PM1 and the CM.

tion, as an example, on the pressure force transmitted along the axis y by the
tooth space defined by volume Vj (belonging to a driven gear) during a com-
plete revolution. In Figure 28 the course of such a pressure force component
during a complete revolution calculated by using the CM and by using the
PM1 is shown, together with the pressure evolution inside the control vol-
umes used for their determination. As expected, the two forces coincide for
the entire revolution, except for the meshing interval, in which the PM1 does
not take into account the effect produced by two phenomena: (i) the slight
difference between the pressure evolution in control volumes Vj and Vi, and
(ii) the pressure drop in control volume Vi+1 that occurs an angular pitch
before the pressure drop in Vi. This latter phenomenon strongly affects the
pressure force effectively transmitted to the gear axis and, therefore, it cannot
be neglected. The phenomenon (ii), in particular, is taken into account in the
calculus procedure defined by PM2, which has been demonstrated to give
more accurate results with respect to PM1 in the elasto-dynamic analysis of
gear pumps [16].
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Figure 28: FY transmitted by a single tooth space Vj during a complete revolution
estimated by using the CM and by using the PM1; pressure evolution in
the tooth spaces used for the force estimation. Pout refers to the delivery
pressure in Tab. 6.

Figure 29 shows the same comparison between the CM and the PM2 ap-
plied to the pump in Tab. 6. As it can be noticed, the two methods provide an
almost coincident estimation of the pressure force transmitted along x direc-
tion, while a major level of discordance is observed in the estimation of the
pressure force transmitted along y direction. These light discrepancies occur
because of the procedure defined in PM2, which does not take into account
the phenomenon (i). The oil pressure inside the tooth spaces referred to two
meshing teeth, as observed in Figure 29, is almost equal during the mesh-
ing evolution. Nevertheless, when these tooth spaces start facing to the inlet
chamber, the pressure drop in both control volumes determines an increase
of the pressure difference between them and, therefore, a light difference in
the pressure force estimated by the two models occurs.

Regarding the pressure torque, it is possible to observe that similar results
are obtained only till the 35% of the angular pitch (Figure 29.c and Figure
29.f); the remaining 65% is characterized by a higher level of discordance,
especially for the pressure torque applied on the driving gear. The reason of
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