
1Azizi Z, et al. BMJ Open 2021;11:e043497. doi:10.1136/bmjopen-2020-043497

Open access�

Can synthetic data be a proxy for real 
clinical trial data? A validation study

Zahra Azizi,1 Chaoyi Zheng,2 Lucy Mosquera,2 Louise Pilote  ‍ ‍ ,3,4 
Khaled El Emam  ‍ ‍ ,5,6 GOING-FWD Collaborators

To cite: Azizi Z, Zheng C, 
Mosquera L, et al.  Can 
synthetic data be a proxy 
for real clinical trial data? A 
validation study. BMJ Open 
2021;11:e043497. doi:10.1136/
bmjopen-2020-043497

►► Prepublication history and 
supplemental material for this 
paper is available online. To 
view these files, please visit 
the journal online (http://​dx.​doi.​
org/​10.​1136/​bmjopen-​2020-​
043497).

Received 06 August 2020
Revised 14 January 2021
Accepted 18 March 2021

1Center for Outcomes Research 
and Evaluation, Faculty of 
Medicine, McGill University, 
Montreal, Québec, Canada
2Data Science, Replica Analytics 
Ltd, Ottawa, Ontario, Canada
3Medicine, McGill University, 
Montreal, Québec, Canada
4Centre for Outcomes Research 
and Evaluation, Research 
Institute of the McGill University 
Health Centre, Montreal, 
Québec, Canada
5Electronic Health Information 
Laboratory, Children’s Hospital 
of Eastern Ontario Research 
Institute, Ottawa, Ontario, 
Canada
6School of Epidemiology and 
Public Health, University of 
Ottawa, Ottawa, Ontario, Canada

Correspondence to
Dr Khaled El Emam;  
​kelemam@​ehealthinformation.​
ca

Original research

© Author(s) (or their 
employer(s)) 2021. Re-use 
permitted under CC BY-NC. No 
commercial re-use. See rights 
and permissions. Published by 
BMJ.

ABSTRACT
Objectives  There are increasing requirements to make 
research data, especially clinical trial data, more broadly 
available for secondary analyses. However, data availability 
remains a challenge due to complex privacy requirements. 
This challenge can potentially be addressed using 
synthetic data.
Setting  Replication of a published stage III colon cancer 
trial secondary analysis using synthetic data generated by 
a machine learning method.
Participants  There were 1543 patients in the control arm 
that were included in our analysis.
Primary and secondary outcome measures  Analyses 
from a study published on the real dataset were replicated 
on synthetic data to investigate the relationship between 
bowel obstruction and event-free survival. Information 
theoretic metrics were used to compare the univariate 
distributions between real and synthetic data. Percentage 
CI overlap was used to assess the similarity in the 
size of the bivariate relationships, and similarly for the 
multivariate Cox models derived from the two datasets.
Results  Analysis results were similar between the real 
and synthetic datasets. The univariate distributions were 
within 1% of difference on an information theoretic metric. 
All of the bivariate relationships had CI overlap on the 
tau statistic above 50%. The main conclusion from the 
published study, that lack of bowel obstruction has a 
strong impact on survival, was replicated directionally and 
the HR CI overlap between the real and synthetic data was 
61% for overall survival (real data: HR 1.56, 95% CI 1.11 
to 2.2; synthetic data: HR 2.03, 95% CI 1.44 to 2.87) and 
86% for disease-free survival (real data: HR 1.51, 95% CI 
1.18 to 1.95; synthetic data: HR 1.63, 95% CI 1.26 to 2.1).
Conclusions  The high concordance between the 
analytical results and conclusions from synthetic and 
real data suggests that synthetic data can be used as a 
reasonable proxy for real clinical trial datasets.
Trial registration number  NCT00079274.

BACKGROUND
It is often difficult for researchers to get 
access to high-quality individual-level data for 
secondary purposes (eg, testing new hypoth-
eses and building statistical and machine 
learning models). Specifically, for clinical 
trial data, secondary analysis of data from 
previous studies can provide new insights 
compared with the original publications1 and 
has produced informative research results 

including those on drug safety, evaluating 
bias, replication of studies and meta-analysis.2 
Therefore, there has been strong interest in 
making more clinical trial data available for 
secondary analysis by journals, funders, the 
pharmaceutical industry and regulators.3–8

For example, the International Committee 
of Medical Journal Editors (ICMJE)’s data 
sharing policy9 indicates that articles reporting 
the results of clinical trials must include a data 
sharing statement when they are submitted to 
ICMJE journals for publication. Funders also 
have data sharing requirements. According 
to the Wellcome Trust’s policy,10 researchers 
receiving funding are expected to share their 
data rapidly; an outputs management plan 
is a requirement for any funding proposal 
which anticipates the generation of signif-
icant outputs (eg, data, software or other 
materials). These plans are factored into 
funding decisions. The NIH Statement on 
Sharing Research Data11 indicates that appli-
cants seeking $500 000 or more in funding 
per year are required to include a data 
sharing plan (or explain why it is not possible 
to share their research data). Data shared by 
researchers should be individual-level data on 
which the accepted publication was based.

However, data access for secondary anal-
ysis remains a challenge.12 To highlight this 

Strengths and limitations of this study

►► The study evaluated whether a synthetic clinical trial 
dataset gives similar analysis results and the same 
conclusions as does analysis of the real dataset.

►► A machine learning method was used to generate 
the synthetic data.

►► A published analysis evaluating the effect of bowel 
obstruction on survival of patients with colon cancer 
was replicated.

►► The results and conclusions from real and synthet-
ic data were compared in univariate, bivariate and 
multivariate analyses.

►► The identity disclosure (privacy) risks of the synthet-
ic data were not explicitly evaluated, although exist-
ing evidence in the literature suggests that it is low.
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challenge, an examination of the success rates of getting 
individual-level data for research projects from authors 
found that the percentage of the time these efforts were 
successful varied significantly and was generally low at 
58%,13 46%,14 25%,15 14%16 and 0%.17

One reason for this challenging data sharing envi-
ronment is increasingly strict data protection regu-
lations. A recent National Academy of Medicine/
Government Accountability Office report highlights 
privacy as presenting a data access barrier for the appli-
cation of artificial intelligence and machine learning 
in healthcare.18 While patient (re-)consent is one legal 
basis for making data available for secondary purposes, 
it is often impractical to get retroactive consent under 
many circumstances and there is significant evidence of 
consent bias.19

Anonymisation is one approach to making data avail-
able for secondary analysis. However, recently there have 
been repeated claims of successful reidentification attacks 
on anonymised data,20–26 eroding public and regulators’ 
trust in this approach.26–36 However, it should be noted that 
there are no known successful reidentification attacks on 
anonymised clinical trial data at the time of writing.

To provide additional options and methods for sharing 
the information from clinical trials, in this paper we 
propose using synthetic data.37 To create synthetic data, 
a machine learning generative model is constructed from 
the real individual-level data, capturing its patterns and 
statistical properties. Then new data are generated from 
that model. This step is performed by the data controller/
custodian who has access to that real data. The synthetic 
version of the data would then be provided to analysts to 
conduct their studies.

There are many use cases where synthetic data can 
provide a practical solution to the data access problem38 
and have been highlighted as a key privacy-enhancing 
technology to enable data access for the coming decade.39 
Furthermore, there are recent examples of research 
studies using synthetic data not requiring ethics review 
because they are considered to contain no patient infor-
mation.40 To the extent that this becomes a common 
practice, it would accelerate data access.

An important question with the analysis of synthetic data 
is whether similar results and the same conclusions would 
be obtained as with the real data. To answer this ques-
tion, we compared the analysis results and conclusions 
using real and synthetic data for a published oncology 
trial. Given that by far the most common purposes for 
the reanalysis of clinical trial data are new analyses of the 
treatment effect and the disease state rather than repli-
cating the primary analysis,41 we focused on replicating 
a published secondary analysis rather than a primary 
analysis. This approach will inform us about the extent 
to which synthetic data can be useful for the secondary 
analysis of clinical trials.

There have been limited replications of clinical studies 
using synthetic data, with only a handful of examples 
in the context of observational research42 43 and larger 

clinical trial data.44 The current study adds to this body 
of work and contributes to the evidence base for enabling 
more access to clinical trial data through synthesis.

METHODS
Data sources
We obtained the dataset for an oncology trial, N0147, 
from Project Data Sphere (PDS) (see https://​data.​
projectdatasphere.​org/).45 The specific trial was selected 
because the PDS data were analysed in a published study 
that we could successfully replicate (validating that we 
have the correct data and interpreted it the same way 
as the authors), and the description of the analyses 
performed was clear enough to allow replication. In the 
current paper, we will refer to this PDS dataset as the 
‘real’ data since that is our source dataset for synthesis.

PDS data are already perturbed to anonymise it. The 
level of perturbation is dependent on the sponsor. There-
fore, the use of the term ‘real’ should be interpreted to 
mean ‘real and anonymised’ data.

Summary of trial data
Trial N0147 was a randomised trial of 2686 patients with stage 
III colon adenocarcinoma that were randomly assigned to 
adjuvant regimens with or without cetuximab. After resec-
tion of colon cancer, cetuximab was added to the modified 
sixth version of the FOLFOX regimen, including oxal-
iplatin plus 5-fluorouracil and leucovorin (mFOLFOX6), 
fluorouracil, leucovorin and irinotecan (FOLFIRI), or a 
hybrid regimen consisting of mFOLFOX6 followed up by 
FOLFIRI.46 Our focus is on the secondary retrospective 
analysis of N0147 (the published secondary analysis).47

The primary endpoint in the original trial was disease-
free survival (DFS), defined as time from random allo-
cation to the first of either tumour recurrence or death 
from any cause. Secondary trial endpoints were time to 
recurrence (TTR) and overall survival (OS). TTR was 
measured from random allocation to tumour recurrence, 
whereas OS was from random allocation to death from 
any cause. OS was censored at 8 years, whereas DFS and 
TTR were censored at 5 years. Patients who died without 
recurrence were censored for TTR at the time of death. 
Patients who were lost to follow-up were censored at the 
date of their most recent disease assessment or contact.

Participants in the control ‘chemotherapy-only’ arm 
(FOLFOX, FOLFIRI or hybrid regimen without cetux-
imab) were analysed in the published secondary analysis, 
which consisted of 1543 patients. Presentation with acute 
obstruction of the bowel is a known risk factor for poor 
prognosis in patients with colon cancer.48 49 The main 
objective of this secondary analysis was to assess the role 
of obstruction presentation as an independent risk factor 
for predicting outcomes in patients with stage III colon 
cancer. The primary endpoint in the published secondary 
analysis was DFS, and the secondary endpoint was OS, 
and both DFS and OS were censored at 5 years.

The covariates in the published secondary anal-
ysis comprised three types of variables: (1) baseline 
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demographics, including age, sex and baseline BMI; (2) 
baseline Eastern Cooperative Oncology Group (ECOG) 
performance score that describes patients’ level of func-
tioning in terms of their ability to care for themselves, daily 
activity and physical ability; and (3) baseline cancer char-
acteristics, including clinical T stage, lymph node involve-
ment, histological status and Kirsten rat sarcoma virus 
biomarker status.

Data synthesis method
The data synthesis process takes a real dataset as input, 
trains a generative model from it then generates synthetic 
data using the model. Multiple statistical or machine 
learning methods can be used to create a generative 
model.

We used sequential decision trees for data synthesis to 
fit a generative model. Sequential decision trees are used 
quite extensively in the health and social sciences for the 
generation of synthetic data.50–58 In these models, a vari-
able is synthesised by using variables preceding it in the 
sequence as predictors. The method we used to generate 
synthetic data is called conditional trees,59 although 
other parametric or tree algorithms could also be used. 
Methods such as deep learning have been proposed for 
the synthesis of health data.60 61 However, compared with 
deep learning synthesis methods, sequential decision 
trees have the advantage of not requiring a large input 
dataset that is used for training. It is therefore suitable 
for creating synthetic variants of clinical trial data that 
typically have a relatively small number of participants. 
More details about how sequential synthesis was applied 
are included in the online supplemental materials.

Replication of secondary analysis on the synthetic data
We first replicated the published analysis on the real 
dataset. Once the results could be replicated, we reran 
the exact same analysis R code on the synthetic version 
of the data.

The published secondary analysis47 included descrip-
tive statistics consisting of frequency (percentage) for 
categorical variables. The Pearson χ2 test was used to 
investigate the statistical significance of the relationship 
between the baseline characteristics (clinical and patho-
logical) and obstruction. Survival analysis was performed 
using the Kaplan-Meier curve. The log rank test and the 
Cox proportional hazards model were used to plot OS 
and DFS at 5 years and to create a model adjusted for 
baseline clinical and pathological characteristics to assess 
the role of obstruction in predicting OS and DFS.

Evaluation of results
Our objective was to evaluate the utility of the synthetic 
data. Thus, we compared the results using the real data 
with those using the synthetic data. Our utility evalua-
tion method followed the recommendations to evaluate 
the utility of data that have been transformed to protect 
privacy, such as through data synthesis.62 Specifically, 
we used two general approaches to compare real and 

synthetic analysis results: information theoretic methods 
based on the Kullback-Leibler divergence and interval 
overlap for the CIs of model parameters. Both are 
described further.

To evaluate the utility of synthetic data, we compared 
the published univariate and the bivariate statistics on 
the real data and the synthetic data. The methods for 
the univariate comparisons are in the appendix. We 
then compared the multivariate model parameters for 
the models that were developed to explain survival and 
to test the hypothesis that obstruction was an important 
predictor.

Bivariate analysis
In the published secondary analysis, the bivariate results 
were presented as contingency tables showing the cross-
tabulations of the predictors with obstruction, OS after 
5 years and DFS after 5 years. The Pearson χ2 test was 
used to evaluate all bivariate relationships. This type of 
testing when used in the current context has a number 
of disadvantages: (1) it does not give us an interpretable 
effect size and therefore we would not know if a bivar-
iate relationship was strong or not (a test statistic can be 
significant with a very small effect size if there are many 
observations); (2) the tests did not account for multiple 
testing, such as a Bonferroni adjustment, which means 
that there will be an elevated probability of finding signif-
icant results by chance; and (3) the χ2 tests considers 
independence, whereas the relationship that is being 
tested is whether each of the covariates is predictive of the 
outcome. For these reasons, we used a different statistic 
to compute the bivariate relationships on the real and 
synthetic datasets.

We use the Goodman and Kruskal tau statistic, which 
gives us a measure between 0 and 1 of the extent to 
which the covariate is predictive of the outcome.63 The 
tau coefficient was computed for the real dataset and the 
synthetic dataset, and the CIs were compared. CI overlap 
has been proposed for evaluating the utility of privacy 
protective data transformations,62 which is defined as 
the percentage average of the real and synthetic CIs that 
overlap. Our formulation gives an overlap value of 0 if the 
two intervals do not overlap at all. We express overlap as 
a percentage.

The published secondary analysis evaluated the bivar-
iate relationship between each of the predictors and 
obstruction, and then evaluated each of the predictors 
and obstruction with event-free survival. We repeated 
these analyses with the tau statistic and CIs.

Multivariate analysis
For the multivariate models, we compared the Cox model 
HR estimates between the real and synthetic data. We 
also computed the CI overlap of the HRs from the Cox 
models.

Patient and public involvement
The comparative analysis of synthetic to real data did not 
have any patient or public involvement.
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RESULTS FOR TRIAL N0147
We compared the results in the secondary analysis study 
that were published against the same analyses performed 
on the synthetic data. The results for the univariate anal-
ysis show little difference in distributions and are in the 
online supplemental materials.

Bivariate analysis
The differences between real and synthetic data for the 
bivariate relationships of the covariates and obstruction 
are shown in figure 1. When we look at the effect sizes 
(the tau metric), we see that the size of these bivariate 
relationships is very small. These covariates individually 
are not good predictors of obstruction. We also note that 
the effect sizes are similar between the real and synthetic 
datasets, and there are considerable CI overlaps. One 
would draw the same conclusions from the real and 
synthetic datasets.

The next set of results are also the bivariate relation-
ships between the covariates and the event-free survival 
outcomes: OS and DFS. The results in figure 2 show the 
effect sizes for the bivariate relationships with OS. There 
are two noteworthy observations. The first observation 
is that all the bivariate relationships are very weak—the 
covariates are not individually predictive of OS. The 
second observation is that the effect sizes are very similar 
between the real and synthetic datasets. One would draw 
the same conclusions from the synthetic data as from the 
data in the published secondary analysis.

Figure 3 shows the bivariate relationships with DFS. The 
conclusions are like OS with one exception: the CIs for 
the relationship between race and DFS do not overlap. 
Given the weak relationship between race and DFS, this 
lack of CI overlap is likely due to the stochastic nature of 
synthesis. In addition, the relationship is quite weak in 
both datasets and of very similar magnitude; therefore, 
the conclusions would still be the same in both cases.

Multivariate analysis
For the multivariate analyses, the real data results were 
like those that were in the published secondary analysis. 
We first compared the survival curves for obstructed 
and non-obstructed patients on OS (figure 4) and DFS 
(figure  5). We can see that the curves are very similar 
between the real and synthetic datasets.

The Cox models were intended to evaluate whether 
obstruction affects survival after accounting for the 
potential confounding effect of other covariates. The real 
and synthetic HR model parameters were generally in the 
same direction with relatively high overlap for the CIs. 
This is the case for the OS model in figure 6 and the DFS 
model in figure 7.

The main hypothesis being tested in the published 
secondary analysis pertains to obstruction. For the OS 
model the HR for obstruction overlap was high at 61% 

Figure 1  Tau coefficient for the real and synthetic data, and 
the CI overlap for the bivariate relationship with obstruction. 
BMI, Body Mass Index; ECOG, Eastern Cooperative 
Oncology Group; KRAS, Kirsten rat sarcoma virus; LNs, 
Lymph Nodes.

Figure 2  Tau coefficient and CI overlap for the real and 
synthetic variables against overall survival. BMI, Body Mass 
Index; ECOG, Eastern Cooperative Oncology Group; KRAS, 
Kirsten rat sarcoma virus; LNs, Lymph Nodes.

Figure 3  Tau coefficient and CI overlap for the real and 
synthetic variables against disease-free survival. BMI, Body 
Mass Index; ECOG, Eastern Cooperative Oncology Group; 
KRAS, Kirsten rat sarcoma virus; LNs, Lymph Nodes.
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(HR of 1.56; 95% CI: 1.11 to 2.2 for real data, and HR of 
2.03; 95% CI: 1.44 to 2.87 for synthetic data) with both 
models showing a strong effect of obstruction on OS 
(No obstruction related to higher OS). Similarly, for the 
DFS model, the overlap was 86% (real data HR of 1.51; 
95% CI: 1.18 to 1.95, and the synthetic data HR of 1.63; 
95% CI: 1.26 to 2.1), indicating that the model shows an 
association between obstruction and DFS. Therefore, 
one would draw the same conclusion about the impact of 
obstruction on event-free survival.

The point estimates for the T stage covariates differ the 
most in figure 6 for OS and figure 7 for the DFS model, 

with lower CI overlap than many of the other covariates. 
The same is true for histology in figure 6. While some vari-
ation in the numeric values is expected in the synthetic 
data, the parameters were directionally the same, and the 
inclusion of these covariates did allow us to control for 
their effect in the assessment of obstruction, which was 
the main objective of the analysis.

One other observation from the OS model in figure 6 
and the DFS model in figure 7 is that the CIs from the 
synthetic data are narrower than the real data. A genera-
tive model captures the patterns in the data. A plausible 
explanation is that the machine learning methods used 

Figure 4  Survival curve comparing overall survival in OBS+ and OBS− patients in the real (A) versus synthetic (B) datasets. 
OBS+, obstructed; OBS−, non-obstructed.

Figure 5  Survival curve comparing disease-free survival in OBS+ and OBS− patients in the real (A) versus synthetic (B) 
datasets. OBS+, obstructed; OBS−, non-obstructed.
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during synthesis capture the signal or patterns in the data 
well and these are produced more clearly (or with less 
noise) in the synthetic data.

DISCUSSION
Summary
The purpose of this study was to evaluate the extent to 
which a published secondary analysis of an oncology 
clinical trial could be replicated using a synthetic variant 
of the dataset. This replication is one of the first to test 
whether similar results and the same conclusions would 
be drawn from the reanalysis of a published clinical trial 
analysis using a synthetic version of the dataset.

The published secondary analysis was investigating 
the relationship between bowel obstruction and event-
free survival for patients with colon cancer. We applied 

a commonly used synthesis approach that ensured the 
potentially identifying variables (the quasi-identifiers) in 
the dataset were appropriately synthesised.

We found that for the univariate and bivariate anal-
yses in the published study, the synthetic data were quite 
similar in terms of distributions and effect sizes to the 
real data. With respect to the multivariate models that 
controlled for confounders, the published results were 
replicated in that there was a strong positive relationship 
between obstruction and OS and DFS after 5 years in the 
both the real and synthetic datasets.

Relevance and application of results
In addition to offering more options for addressing privacy 
concerns, sharing synthetic versions of clinical trial data-
sets can potentially alleviate the need for obtaining ethics 
board reviews for such analysis projects,40 simplifying and 
accelerating research studies.

If the objective of a secondary analysis of a clinical trial 
dataset is the replication/validation of a published study, 
then working with a synthetic variant of the dataset will 
not give the exact numeric results but would be expected 
to produce the same conclusions as was demonstrated in 
our study. Another type of secondary analysis is to assess 
bias in trial design, misreporting or selective outcome 
reporting where ‘keeping the same conclusions and 
comparable numerical results of all primary, secondary 
and safety endpoints […] is of utmost importance’.2 
The data synthesis approach we presented here achieves 
these objectives by including the primary and secondary 
endpoints in the generative model to ensure that rela-
tionships with other covariates are maintained, and it 
does not synthesise adverse event data to maintain the 
accuracy of safety data. More generally, a review of proto-
cols found that most secondary analysis of clinical trial 
datasets focused on novel analyses rather than replication 
or validation of results.41 In such cases, the conclusions 
from using synthetic data would be expected to be the 
same as using the real data. However, it is more difficult 
to make the case for using synthetic data for the primary 
analysis of a clinical trial dataset since the investigators 
and sponsors would have ready access to the real data.

While we are already starting to see published (obser-
vational) health research using synthetic data only,40 
there will be situations where there is a requirement 
for additional verification that the model parameters 
produced from synthetic data are numerically similar to 
the those from the real data, and that the conclusions 
are the same. This step can be achieved by implementing 
a verification server. With such a setup, synthetic data 
are shared, and the analysts build their models on the 
synthetic data. Then their analysis code (say an R or SAS 
programme) is sent to a verification server which is oper-
ated by the data controller/custodian. The analysis code 
is executed on the real data, and the results are returned 
to the analysts. The returned results would either be the 
model parameters on the real data or the difference in 
parameter values between the real data model and the 

Figure 6  Comparison of real and synthetic Cox model 
parameters (HR) with the overall survival outcome variable. 
BMI, Body Mass Index; ECOG, Eastern Cooperative 
Oncology Group; LNs, Lymph Nodes.

Figure 7  Comparison of real and synthetic Cox model 
parameters (HR) with the disease-free survival outcome 
variable. BMI, Body Mass Index; ECOG, Eastern Cooperative 
Oncology Group; LNs, Lymph Nodes.
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synthetic data model. That way, the analysts can get 
feedback as to the accuracy of the synthetic data model 
parameters without having direct access to the real data 
themselves. The deployment of a verification server 
balances the need for rapid access to data with minimal 
constraints with the need for ensuring model accuracy 
from the synthetic data. On the other hand, it does intro-
duce an additional process step.

The need for a verification server can arise, for example, 
when results are going to be submitted to a regulator. 
Generally, in the early days of adoption of data synthesis, 
there will likely be a greater need for verification, and 
one would expect that need would dissipate as successful 
applications of data synthesis increase over time.

This study is a replication of a single clinical trial. 
However, it does provides evidence that synthesised data-
sets can be used as a reasonable proxy for real datasets. 
The data synthesis method is well established and has been 
applied extensively in the health social sciences. Further 
such replications should be performed to increase the 
weight evidence on the effectiveness of synthetic data as 
a proxy for real datasets. To the extent that synthetic data 
would allow drawing the same conclusions as real data, 
they can be more readily shared by researchers when 
publishing their studies and to meet funding agency 
requirements for data sharing, and by sponsors to meet 
their data transparency commitments.

Limitations
The data we used in our analysis came from PDS, which 
shares datasets that have already gone through a pertur-
bation to anonymise the data. This would not affect our 
results or conclusions because the published study that we 
replicated used the same (perturbed) dataset from PDS. 
More generally, synthetic data can be generated from 
pseudonymous data rather than from fully anonymised 
data. Multiple researchers have noted that synthetic data 
do not have an elevated identity disclosure (privacy) 
risk,60 64–71 and therefore anonymisation before synthesis 
is not necessary.

This study was an assessment of the ability to replicate a 
secondary analysis for a clinical trial dataset. It is a reason-
able expectation that as more similar replications using 
synthetic data demonstrate equivalent results and conclu-
sions as real data, there will be greater acceptance of 
synthetic derivatives as a reliable way to share clinical trial 
datasets. In fact, we are already starting to see published 
(observational) health research using synthetic deriva-
tives only.40

While we found that there were very little differences 
between the real and synthetic data on the bivariate 
comparisons, one may hypothesise that this was influ-
enced by the fact that the effect sizes were small. However, 
that was not the case for the multivariate models where 
the effect sizes were larger and the differences between 
the real and synthetic datasets remained small.

Conclusions
As interest in the potential of synthetic data has been 
growing, an important question that remains is the extent 
to which similar results and the same conclusions would 
be obtained from the synthetic datasets compared with the 
real datasets. In this study, we have provided one answer 
to that question. Our reanalysis of a published oncology 
clinical trial analysis demonstrated that the same conclu-
sions can be drawn from the synthetic data. These results 
suggest that synthetic data can serve as a proxy for real 
data and would therefore make useful clinical trial data 
more broadly available for researchers.
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