ACCEPTED MANUSCRIPT

Towards the use of breath for detecting mycobacterial infection: a case study in a Murine model

To cite this article before publication: Flavio Antonio Franchina et al 2017 J. Breath Res. in press https://doi.org/10.1088/1752-7163/aaa016

Manuscript version: Accepted Manuscript

Accepted Manuscript is "the version of the article accepted for publication including all changes made as a result of the peer review process, and which may also include the addition to the article by IOP Publishing of a header, an article ID, a cover sheet and/or an 'Accepted Manuscript' watermark, but excluding any other editing, typesetting or other changes made by IOP Publishing and/or its licensors"

This Accepted Manuscript is © 2017 IOP Publishing Ltd.

During the embargo period (the 12 month period from the publication of the Version of Record of this article), the Accepted Manuscript is fully protected by copyright and cannot be reused or reposted elsewhere.

As the Version of Record of this article is going to be / has been published on a subscription basis, this Accepted Manuscript is available for reuse under a CC BY-NC-ND 3.0 licence after the 12 month embargo period.

After the embargo period, everyone is permitted to use copy and redistribute this article for non-commercial purposes only, provided that they adhere to all the terms of the licence <u>https://creativecommons.org/licences/by-nc-nd/3.0</u>

Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions will likely be required. All third party content is fully copyright protected, unless specifically stated otherwise in the figure caption in the Version of Record.

View the article online for updates and enhancements.

1 ว		
2 3 4	1	TOWARDS THE USE OF BREATH FOR DETECTING MYCOBACTERIAL
5 6 7	2	INFECTION: A CASE STUDY IN A MURINE MODEL
, 8 9	3	
10 11	4	Flavio A. Franchina ¹ , Theodore R. Mellors ¹ , Minara Aliyeva ² , Jeff Wagner ³ , Nirav Daphtary ²
12 13 14	5	Lennart K.A. Lundblad ² , Sarah M. Fortune ³ , Eric J. Rubin ³ , and Jane E. Hill ^{1,*}
15 16	6	
17 18 10	7	¹ School of Engineering at Dartmouth College, 14 Engineering Drive, 03755 Hanover (NH),
19 20 21	8	United States
22 23	9	² University of Vermont, College of Medicine, 149 Beaumont Ave., 05405 Burlington (VT),
24 25 26	10	³ Harward School of Public Health, Department of Immunology and Infectious Diseases, 02115
27 28	11	Roston (MA) United States
29 30 31	13	bosion (imit), onneu siures
32 33	14	Manuscript prepared for submission as an original research article to Journal of Breath
34 35 36	15	Research
37 38	16	
39 40 41	17	*Corresponding author. E-mail address: jane.e.hill@dartmouth.edu
42 43	18	
44 45 46	19	
47 48	20	
49 50 51	21	
52 53	22	
54 55	23	
50 57 58		
59 60		

In the present research, the potential of breath analysis by comprehensive two-dimensional gas

chromatography coupled to mass spectrometry (GC×GC-MS) was investigated for the
discrimination between healthy and infected mice. A pilot study employing a total of 16 animals
was used to develop a method for breath analysis in a murine model for studying MTBC
(*Mycobacterium tuberculosis* complex) using the *M. bovis* BCG (Bacillus Calmette-Guérin).
Breath was collected in Tedlar bags and concentrated onto thermal desorption tubes for the

31 subsequent analysis by GC×GC-MS. Immunological test and bacterial cell count in

32 bronchoalveolar lavage fluid and mice lung homogenate confirmed the presence of bacteria in

the infected group. From the GC×GC-MS analysis, 23 molecules were found to mainly drive the

34 separation between control and infected mice and their tentative identification is provided.

35 This study shows that the overall used methodology is able to differentiate breath between

36 healthy and infected animals and the information herein can be used to further develop the

37 mouse breath model to study MTBC pathogenesis, evaluate pre-clinical drug regimen efficacy,

and to further develop the concept of breath-based diagnostics.

Keywords: *Mycobacterium tuberculosis* complex; breath analysis; comprehensive two-

46 dimensional gas chromatography; mass spectrometry; volatile metabolites;

X

1. Introduction

pathogenesis. For example, in the Ancient Greece, Hippocrates recognized the diagnostic
usefulness of breath, describing *fetor oris* and *fetor hepaticus* (bad breath due to putrid humors in
the stomach and by liver failure, respectively) in his treatise on breath aroma and disease [1].
In the contemporary era, Linus Pauling was the first to demonstrate that human breath was
composed of many molecules, and not only the classic gases nitrogen, oxygen, carbon dioxide
and water vapor. Pauling reported the presence of 250 molecules in exhaled breath using gas
chromatography with a flame ionization detector (GC-FID) [2].

Since the beginning of recorded history, breath has been used to gain insight into disease

Generally, a breath sample is easy to obtain (non-invasive) and contains thousands of molecules, some of which have the potential for use in diagnostic applications [3,4]. To-date, breath analysis has been used to track or diagnose a variety of diseases in humans; for example, in metabolic disorders, monitoring specific metabolites (short chain fatty acids) during a glucose challenge in diabetic patients [5], in lung-related diseases, such as cancer [6], chronic obstructive pulmonary disease [7], and bacterial pneumonias infections (*e.g.* caused by *Staphylococcus aureus*,

Escherichia coli, and *Candida* spp) [8].

63 Infectious diseases are the major cause of death in many countries, and earlier diagnosis may
64 result in the earlier initiation of appropriate antimicrobial therapy, as well as limit disease
65 transmission, thus decreasing both morbidity and mortality.

66 The traditional microbiological diagnostic tests are time-consuming, such as for the common
67 bacterial pathogen *S. aureus*, the gold standard culture approach can take 2-4 days, and even
68 longer (up to 3-6 weeks) for slow-growing bacteria (*i.e., Mycobacterium tuberculosis* complex
69 (MTBC) organisms) [9].

These organisms belonging to MTBC are a group of genetically-related mycobacteria which can cause tuberculosis, which is responsible for considerable morbidity and mortality worldwide. with 10.5 million new cases and 1.5 million deaths in 2015 [10]. The MTBC comprises *M. tuberculosis*, *M. bovis*, *M. africanum*, *M. caprae*, *M. microti*, *M.* canettii, M. pinnipedii, M. orygis, and M. mungi and the predominant infection location for these organisms is in the lungs, even though infections at other bodily sites can occur [11]. Breath molecules have been proposed as a way to diagnose MTBC infections and could also be used to track patient treatment response. Seven published studies focusing on *M. tuberculosis* lung infection in humans have analyzed breath collected from over 300 confirmed tuberculosis-positive individuals, and over 1000 patients overall [12–18]. Of note, from these seven studies, only one molecule (tridecane) is shared between two studies and reported as a tuberculosis-associated biomarker. This lack of biomarker consistency is likely due to a series of factors, including the complexity, co-morbidity and metabolic heterogeneity within the human population, as well as the use of different analytical approaches and differences in study design. In animals, limited studies have been conducted on breath from individuals infected with MTBC. Two studies on bovine breath involved a total of 25 infected animals [19,20] and one non-human primate study involving 5 infected animals [21], showed that healthy and diseased animals could be distinguished using volatile molecules detectable in breath. Few studies have attempted to link the breath volatile metabolites to disease pathogenesis. Todate, only one study has sought to link mycobacterial metabolism and in vivo pathogenesis via

human breath [12]. As it is complicated to look for causative links in a heterogeneous study

91 population, such as humans, animal models are generally employed as a first step.

Page 5 of 25

1		
2 3	02	Among these, the murine model is the most commonly used enimel model for MTPC infections
4	92	Among these, the mutilie model is the most commonly used animal model for MTBC infections,
5 6 7	93	due to ease of manipulation and housing, availability of inbred strains or mutants, cost, and
/ 8 9	94	genetically-altered strains. To that end, the mouse has been used extensively to model various
) 10 11	95	aspects of MTBC infections, employing mutant strains, immune response, assessing drug
12 13	96	efficacy, and new vaccines evaluation [22].
14 15 16	97	In the present research, a pilot study employing 16 mice was used to develop a method for breath
17 18	98	analysis in a murine model for studying MTBC using M. bovis BCG (Bacillus Calmette-Guérin),
19 20	99	a Biosafety Level 2 organism. Breath was collected in Tedlar bags from anesthetized, intubated
21 22 22	100	mice and concentrated onto thermal desorption tubes for the subsequent analysis by
25 24 25	101	comprehensive 2D gas chromatography coupled to mass spectrometry (GC×GC-MS) [23]. The
26 27	102	presence of infection was confirmed with immunological test and bacterial cell count in
28 29	103	bronchoalveolar lavage fluid and mice lung homogenate, respectively. A tentative identification
30 31 32	104	of the molecules in breath (sampled at two distinct sampling points) driving the separation
33 34	105	between control and infected mice is provided. The information obtained in this study can be
35 36	106	used to further develop the mouse breath model for MTBC lung infections.
37 38 20	107	
39 40 41	108	2.0 Materials and Methods
42 43	109	2.1 Bacterial strain, growth and inoculant preparation
44 45	110	The M. bovis BCG substrain was obtained from the Harvard T.H. Chan School of Public Health
40 47 48	111	(Boston, MA), and it was cultured aerobically (21 days; 37°C under agitation) in 20 mL
49 50	112	Middlebrook 7H9 (BD Diagnostics, Franklin Lakes, NJ, USA), supplemented with ADC
51 52	113	enrichment (BD Diagnostics), 0.05% Tween 20 and 0.2% glycerol, before bacteria were
53 54	114	inoculated into the mice airways. For inoculation in murine lung, the cultures were washed 3

1 2		
3 4	115	times and resuspended in phosphate-buffered saline (PBS, $pH = 7.4$) to the desired final
5 6	116	concentration.
7 8 0	117	
9 10 11	118	2.2 Mice and infection route
12 13	119	All mice were housed in the Association for Assessment and Accreditation of Laboratory
14 15 16	120	Animal Care (AAALAC)-accredited animal facility at the University of Vermont (Burlington,
10 17 18	121	VT). The protocol for animal infection and respiratory physiology measurements was approved
19 20	122	by the Institutional Animal Care and Use Committee, in accordance with AAALAC guidelines.
21 22 22	123	Male C57BL/6J mice (10 – 12 week-old) were purchased from The Jackson Laboratories (Bar
23 24 25 26 27 28 29 30 31 32	124	Harbor, ME). Mice were exposed to 50 μ L inoculum in the 10 ⁵ -10 ⁶ CFU (colony-forming unit)
	125	range of <i>M. bovis</i> BCG cell via oropharyngeal aspiration, as previously reported [24], and breath
	126	was collected at either 24h ($n = 4$ per group) and 48h ($n = 4$ per group) post-inoculation. The
	127	control group were inoculated with 50 μ L of PBS and treated identically. A total of 16 mice were
33 34	128	used.
35 36	129	
37 38 39 40 41 42 43	130	
	131	2.3 Exhaled breath collection
	132	Twenty-four and forty-eight hours after the <i>M. bovis</i> BCG or PBS instillation, mice were
44 45	133	anesthetized with pentobarbital and their tracheas cannulated. The mice were placed on the
46 47 48	134	ventilator (flexiVent, SCIREQ, Montreal, QC, Canada). Breath from the ventilator was collected
49 50	135	in 1L Tedlar bags (SKC, Eighty Four, PA) at 200 breaths/min with a positive end expiratory
51 52	136	pressure (PEEP) of 3 cm H ₂ O for $30 - 40$ min [24]. Room air samples ($n = 16$) were collected by
53 54	137	attaching the Tedlar bag to the ventilator in absence of mouse. Only new Tedlar bags after the
56 57		
58 59		

consisted
C for 30
olatile
esorption
te, PA) via
neasured
isted to
ollection.
tion.
ia the
entrifuged
PBS and an
L benchtop
on
, FSC) and
wing
ation of the
spun onto
i HEMA 3
1th Eosin

2
3
4
5
5
0
/
8
9
10
11
12
13
14
15
16
10
17
18
19
20
21
22
23
24
25
26
20
27
28
29
30
31
32
33
34
35
36
27
20
38
39
40
41
42
43
44
45
46
47
<u>1</u> 2
40
49 50
50
51
52
53
54
55
56
57
57
58 50

1

Y for 2 minutes, and finally in Azure A and methylene blue for 30 seconds. The cells were 161 162 differentiated by counting 300 cells/slide differentiating into eosinophils, neutrophils. 163 macrophages, and lymphocytes. 164 After the bronchoalveolar lavage was obtained lungs were harvested and homogenized. The 165 excised lungs were trimmed free from adjacent tissue and the lung lobes placed in sterile 166 gentleMACS M tubes (Miltenyi Biotec, Auburn, CA) with 3 ml of PBS. The lungs were 167 homogenized by running the RNA 01 program on a gentleMACS dissociator. Lung bacterial 168 cell counts were obtained after 21 days at 37°C by plating an aliquot of the lung homogenate on 169 7H10 Middlebrook agar plates supplemented with OADC (BD Diagnostics).

170 The bronchoalveolar lavage fluid was centrifuged, the resulting pellet was cultured neat (no

171 dilutions), and the presence of visible colonies was assessed after three weeks as an additional

172 confirmatory test for the presence of bacterial cells in the lungs at the moment of breath

173 collection. Bronchoalveolar lavage fluid cell differentiation and cell count were performed in

174 triplicate.

175

176 2.5 Analytical instrumentation and statistical analysis

Thermal desorption tubes were analyzed in a Pegasus 4D (LECO Corporation, St. Joseph, MI)
GC×GC time-of-flight (TOF) MS instrument with an Agilent 7890 GC equipped with a TDU,
CIS and an MPS auto sampler (Gerstel, Linthicum Heights, MD). Details of the sample
desorption, chromatography and mass spectrometry experimental conditions are summarized in **Table 1**. Data acquisition and analysis were performed using ChromaTOF software, version 4.50
(LECO Corp.).

1 2		
2 3 4	183	Chromatographic data were processed and aligned using ChromaTOF. For peak identification, a
5 6 7 8 9 10 11	184	signal-to-noise (S/N) cutoff was set at 20, and resulting peaks were identified by a forward
	185	search of the NIST 2011 library. For tentative peak identification, a forward match score of 800
	186	(of 1000) was required. For the alignment of peaks across chromatograms, maximum first and
12 13	187	second-dimension retention time deviations were set at 6s and 0.1s, respectively, and the inter-
14 15	188	chromatogram spectral match threshold was set at 700.
16 17 18	189	All statistical analyses were performed using R (version 3.3.0). Prior to statistical analyses,
18 19 20	190	samples were normalized using probabilistic quotient normalization [25]. After the manual
21 22	191	removal of artifacts (see supplementary Table S1), a further feature reduction step was
 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 	192	performed, removing features present in less than 50% of the chromatograms in the M. bovis
	193	BCG infected, PBS control mice or room air groups. Random forest was then applied for the
	194	selection of features that discriminate between these three groups [26]. Features were selected as
	195	discriminatory if they were ranked in the top 100 in 100/100 random forest iterations of 1000
	196	trees, based on their mean decrease in impurity. Principal component analysis (PCA) was used to
	197	visualize the variance between samples when looking at the selected discriminatory features
	198	[26]. Centroid analysis was used to visualize the center of the M. bovis BCG, PBS control, and
39 40 41	199	room air clusters based on their principal component (PC) scores [26]. The significance of the
42 43	200	compounds was tested by means of the Mann-Whitney U test.
44 45	201	
46 47 48	202	
49 50	203	
51 52	204	
53 54	205	
55 56	7	
57 58		
59 60		

Table 1. Summary of GC×GC-TOFMS experimental conditions.

Thermal desorption tubes and desorption process		
Sorbent material	Carbopack Y, Carbopack X, Carboxen 1000	
Solvent venting time (TDU temperature; flow rate)	10 min (30°C; 60 ml/min)	
Thermal desorption time (TDU temperature; flow rate)	5 min (330°C; 60 ml/min)	
Cryofocusing time (CIS temperature)	5 min (-120°C)	
Sample desorption time, CIS temperature, injection mode	180 s, 330 °C, splitless	
GC×GC		
D1 column ($\mathbf{L} \times \mathbf{ID} \times \mathbf{d}_{\mathbf{f}}$)	Rxi-624Sil (60 m × 0.25 mm × 1.4 μm)	
D2 column ($\mathbf{L} \times \mathbf{ID} \times \mathbf{d}_{\mathbf{f}}$)	Stabilwax (1 m \times 0.25 mm \times 0.5 μ m)	
D1 oven temperature	35 to 235°C at 3.5 °C/min	
D2 oven and modulator temperature	$+5^{\circ}$ C and $+25^{\circ}$ C relative to D1 oven temp	
Modulation period (hot/cold jet)	2.5 s total (alternating 0.85 s/0.4 s hot/cold)	
Carrier gas (flow rate)	Helium (2 mL/min)	
Transfer line temperature	260 °C	
MS		
Acquisition mass range	30 - 400 m/z	
Acquisition frequency	200 Hz	
Ion source temperature	200 °C	

208 3.0 Results and Discussion

209 3.1 Murine infection confirmation

To verify the presence of bacteria at the time of breath sampling, cell count was obtained after plating homogenized lungs and bronchoalveolar lavage fluid. For mice infected with M. bovis BCG, bacterial counts from homogenized lungs at the time of breath sampling ranged between 1 $\times 10^4$ and 1×10^6 CFU/mouse and were not statistically different (p = 0.35) between 24 h and 48 h sampling points. Mice inoculated with the phosphate-buffer saline did not yield any bacterial colonies from either lung homogenate or bronchoalveolar lavage fluid (Supplementary Figure **S1**). Additionally, bronchoalveolar lavage fluid from mice inoculated with *M. bovis* BCG cultured positive while mice inoculated with PBS cultured negative, confirming the homogenate results. To further confirm infection status, host immune cell differentiation in the bronchoalveolar lavage fluid was measured. No eosinophil and lymphocytes were found in any of the mice since

they are commonly the predominant cells observed during allergic states [27] and thus no to be

222 expected during bacterial infection. An average (\pm SD) of 2.2 \pm 0.8 \times 10⁵ neutrophils were

Figure 1. Concentration of neutrophils (solid diamonds) and macrophages (open triangles) in bronchoalveolar lavage fluid collected from infected and control mice (n = 8 per group) at either 24 h or 48 h post-inoculation. No eosinophil and lymphocytes are plotted since they were not

Page 12 of 25

1 2		
3 ⊿	240	present. Error bars represent the 95% interval confidence and significance values were calculated
5	241	applying the Mann-Whitney significance U-test (* $p < 0.05$; ** $p < 0.01$).
6 7	242	
8 9	243	3.2. Breathprint of control and infected mice
10 11 12	244	Breath from mice inoculated with <i>M. bovis</i> BCG and PBS ($n = 8$ per group), as well as room air
13 14	245	samples ($n = 16$), were analyzed using GC×GC-TOFMS. The flowchart of the data reduction
15 16 17	246	steps adopted in the current study is shown in Supplementary Figure S2 .
18	247	Across the 32 samples, approximately 1600 peaks were detected. In a preliminary data cleaning
19 20 21	248	step, 300 peaks were removed based on mass spectrum [33] and presence in all samples (both
22 23	249	room air and breath were collected in Tedlar bags). A spectral similarity to known environmental
24 25	250	contaminants or artifacts coming from the Tedlar bags (e.g., phenol and N,N-dimethylacetamide)
26 27 28	251	or column bleed (e.g., siloxane or silyl derivatives), in addition to their persistent presence in all
29 30	252	the chromatograms, drove the exclusion criteria (for a more detailed list of excluded features see
31 32 33	253	Supplementary Table S1).
34 35	254	In order to direct data analysis to consistently detected peaks, those present in more than 50% of
36 37	255	samples from each group (infected, control, and room air) were considered for further analysis,
38 39	256	resulting in 604 features.
40 41 42	257	Bubble plots representing the two-dimensional GC separation obtained from the infected and
43 44	258	control mouse breath, and the room air samples are reported in Figure 2a-c, respectively. Each
45 46	259	bubble represents a chromatographic peak and bubble position is given by the retention time
47 48 49	260	coordinates of the peak (<i>i.e.</i> , first and second dimension retention time). The size of the bubble
50 51	261	corresponds to the peak area calculated from the deconvoluted MS signal.
52 53		
54 55		
56 57		
58 59		
60		

Figure 2a-d. Bubble plot of the GC×GC chromatograms of breath from a) mice infected with *M. bovis* BCG, b) mice inoculated with PBS, and c) room air samples. Each bubble represents a detected peak and the size is proportional to the average area across chromatograms belonging to that sample group. Only features (604) present in 50% of the samples from single class are plotted. d) Chemical class relative abundance based on number of identified compounds, not on their relative concentration.

The profile of the 604 features was found to have a moderate correlation among the samples
analyzed, with a Spearman's rank correlation of 0.53, 0.5, and 0.52 for the mice treated with *M.bovis* BCG, PBS, and room air samples, respectively [34].

Most of the 604 peaks were assigned chemical classification based on their mass spectral similarities (≥800) to the NIST 2011 library (Figure 2a-d). A wide range of chemical classes was found (i.e., carboxylic acids, alcohols, aldehydes, aromatic, halogen-containing, N-containing, S-containing compounds, ethers, esters, ketones) with the hydrocarbons being the most commonly present chemical class (34%) (Figure 2d). The other remaining chemical

classes ranged from 2-10 % of breath composition. These classes have been previously reported

Page 14 of 25

in the breath of animals and humans, with the hydrocarbons being the most abundant [4,12–21]. 3.3. Selected molecules in breath for infected and control mice discrimination From the 604 detected breath molecules, 23 features were selected by random forest that discriminated between mice infected with M. bovis BCG, mice inoculated with PBS, and room air samples. When considering these 23 selected features, the correlation between breath samples of the same class is highly correlated, with a Spearman's rank correlation of 0.7, 0.57, and 0.55 for the mice treated with *M. bovis* BCG, PBS, and room air samples, respectively [34]. The lower correlation between room air samples when considering these 23 selected features is possibly due to variations in room air composition on different days of sampling. Principal components scores were used to visualize variance between these sample types (Figure 3). The first two components explain 53% of the variance between the three group types. Data centroids (Figure 3, circles) illustrate the average position on component 1 and component 2 of all the samples for each group. The Euclidean distance between breath (infected and control mice) and room air was found to be 1.9 times greater than the distance between BCG and PBS clusters. Although differences in profile are observed between these three groups when considering the 23 selected molecules, the small sample size of the present study prevented external validation of these preliminary findings. Therefore, future studies are necessary to evaluate the reproducibility of these identified biomarkers. Both the 24 h and 48 h breath samples cluster within their respective groups, suggesting that the discriminatory features of the breath profile are maintained across the two sampling points. One room air sample is misclassified, falling within the control group sample projections. All the room air samples

Figure 3. Centroid analysis using principal component scores of the *M. bovis* BCG infected mice (red striped square), PBS-inoculated mice (green empty square) and the room air (black solid square), considering the 23 discriminatory features. Ellipses represent the 95% confidence interval for each class.

Tentative identifications were provided for all 23 features based only on mass spectral matches to the NIST 2011 library (≥800) and are reported in **Table 2**.

These molecules belong to eight different chemical classes (nine hydrocarbons, four aldehydes, one N-containing and two S-containing compounds, two alcohols, one ester, two aromatics, and two ketones). Two of these molecules (2-methyl-(E)-2-butenal and 2-ethyl-3-methylbutanal) were exclusively detected in breath (*i.e.*, not detected in any room air samples) while 21 were present in all samples but at different concentrations. It should be pointed out that even if MS

Page 16 of 25

ications for peak identification, the
andards.
es that mainly drive the separation
2,4,4-trimethyl-1-pentene, butanal, 3-
e, decyl-cyclohexane, acetone and
ecyl-cyclohexane was significantly
mice treated with PBS ($p < 0.05$).
nd control mice, but they were
ese molecules and specific metabolic
Y
the first time breath has been
n considering previous studies of
re are few, and they are limited to
8]. Beyond the use of different
including the I) Mycobacterium
Erdman in non-human primates,
BCG in the present study), II)
uman primates), unknown (humans),
llected (1.5L (cows and non-human
ition, each study used different
21] used the same analytical
ne-dimensional GC-MS systems.

Page 17 of 25

1 2	
2 3 4	3
5 6	3
7 8 9	3
9 10 11	3
12 13	3
14 15 16	3
10 17 18	3
19 20	3
21 22 22	3
23 24 25	3
26 27	3
28 29	3
30 31 32	3
33 34	3
35 36	3
37 38 20	3
39 40 41	3
42 43	3
44 45	3
46 47 48	3
49 50	3
51 52	3
53 54 55	3
55 56 57	
58	

59 60

39 Considering all these different factors, a comparison of the molecules from this study with others 40 is challenging.

41 However, in an effort to translate this work to others, a remark on the overlap between the 42 molecules detected in the present and those reported in previous studies is provided. Eight 43 molecules detected in mouse breath were previously reported in the breath of infected non-44 human primates and cows. Four molecules (tridecane, 2-heptanone, acetic acid phenyl ester and 45 o-cymene) were detected in the breath of non-human primates and reported as discriminatory and statistically different between healthy and infected [21]; and four other molecules (styrene, 46 47 benzaldehyde, acetophenone, and nonanal) were reported in the breath of cows [19,20]. In the 48 present study, these molecules were not a part of the discriminatory feature set and they were not 49 statistically different between infected and control mice. 50 Human breath studies [12,14,18] cumulatively reported on 48 molecules, that discriminated 51 between patients whose sputum cultures were positive or negative for mycobacteria. 52 In the present study, four of the 48 (3-methylheptane, ethylbenzene, 4-methyldecane, and 53 acetaldehyde) were detected in mice breath and result discriminatory (Table 2). Acetaldehyde 54 was detected at a higher abundance in the mice infected with M. bovis BCG while 3-55 methylheptane, ethylbenzene, and 4-methyldecane were in higher abundance in the PBS group. 56 Nine other molecules from the aforementioned human studies (4,6,8-trimethyl-1-nonene, 57 tridecane, octanal, 1,3-dimethyl-cyclohexane, camphene, heptanal, nonanal, 2-methylpentane, 58 styrene) were also detected in the breath of mice in the present contribution, however, none of 59 these molecules were discriminatory or statistically different between groups. 60 A comparison with volatile molecules from mycobacterial culture [35,36] is even more 61 complicated, due to differences in the sampling technique (*i.e.* SPME or NTME vs TD), and

1 ว		
2 3 4	362	heterogeneity of the biological conditions (i.e. different species of mycobacteria, in vitro vs in
5 6	363	vivo environment etc.).
7 8 9	364	
10 11	365	
12 13 14	366	
14 15 16	367	
17 18	368	
19 20 21	369	
22 23	370	
24 25 26	371	
26 27 28	372	
29 30	373	
31 32 33	374	
34 35	375	
36 37	370	
38 39 40	378	
41 42	379	
43 44 45	380	
46 47	381	
48 49 50	382	
51 52	383	
53 54	384	
56 57	7	
58 59		
60		

	Peak no.	Tentative compound ID	Formula	Log ₂ (Control/Infected
	1	decyl-cyclohexane*	C16H32	
	2	methanethiol	CH4S	
	3	3,4-diethyl-2-hexene	C10H20	
	4	dimethyl sulphite	C ₂ H ₆ O ₃ S	·
	5	2,2,4,4-tetramethyl-3-pentanone	C9H18O	•
	6	acetaldehyde	C ₂ H ₄ O	-
	7	acetone	C ₃ H ₆ O	
	8	2-butene	C ₄ H ₈	
	9	3-oxo cyclopenten-1-yl-(2E)-penta-2,4-dienoate	C10H10O3	
	10	4-methyl-decane	C ₁₁ H ₂₄	1
	11	ethylbenzene	C ₈ H ₁₀	
	12	2,4,4-trimethyl-1-pentene	C8H16	
	13	4-methylene-1-(1-methylethyl)-bicyclo[3.1,0]hexane	C10H16	
	14	2-methyl-(E)-2-butenal	C5H8O	
	15	2-ethyl-3-methylbutanal	C7H14O	
	16	2-methylheptane	C8H18	•
	17	butanal	C4H8O	
	18	3-methylheptane	C8H18	
	19	(2-aziridinylethyl)amine	C4H10N2	
	20	3-methyl-(Z)-4-nonene	C10H20	Driving room air separat
	21	2-decen-1-ol	C ₁₀ H ₂₀ O	Driving room air separa
	22	4-[2-(methylamino)ethyl]-phenol	C10H15NO2	Driving room air separa
	23	3,4-dimethylpentanol	C7H16O	Driving room air separa
				-4 -2 0 +2
387	*Feature statis	tically different between infected and control	mouse grou	$p \le (p < 0.05).$

ר
2
3
4
5
6
7
8
0
10
10
11
12
13
14
15
16
17
10
10
19
20
21
22
23
24
25
25
20
27
28
29
30
31
32
33
31
24 27
35
36
37
38
39
40
41
۲۱ ۸۵
42
45
44
45
46
47
48
49
50
50
51
52
53
54
55
56
57
58
50
22
nu

388 Conclusions and future perspectives

389 Breath holds great potential as a carrier of information on the health status of an individual and

animal models are important tools in the quest to better diagnose and understand infectious

⁰ 391 diseases.

1

392 In this study, breath was collected for the first time from mice infected with an MTBC pathogen,

393 *M. bovis* BCG, and contrasted with breath from animals instilled with PBS. The immunological

and bacterial cell count data at the time of breath collection confirmed the infection status of the

animals treated with the pathogen. From the entire spectrum of volatile metabolites in breath,

twenty-three molecules were tentatively identified and selected as a panel that could distinguish

397 between infected and uninfected animals. Four of them are in common with the possible

398 biomarkers reported in previous studies on breath from animals with an MTBC infection.

399 The information obtained in this study can be used to further develop a mouse breath model for

400 MTBC lung infections as potential diagnostic or drugs treatment monitoring approach, as well as

401 a tool for a better understanding of disease pathogenesis by volatile metabolites expression.

402 Future studies will focus on establishing links between the metabolites and their associated

403 pathogen and/or host pathways.

2 404

410

405 Acknowledgements

406 The authors would like to thank Emily M. Nakada, Ph.D. (University of Vermont) for assisting
407 with flow cytometry. We thank Mavra Nasir and Chris Rees for their aid in editing this
408 manuscript. This work was supported by the Bill and Melinda Gates Foundation (OPP1135516).
409

2 3	411	Refe	rences
4 5 6	412	[1]	Adams F 1994 Hippocratic Writings Hippocratic Writings: Aphorism 4,5 (New York:
7 8 9	413		Web Atomics) p Aphorism 4,5
9 10 11	414	[2]	Pauling L, Robinson A B, Teranishi R and Cary P 1971 Quantitative Analysis of Urine
12 13	415		Vapor and Breath by Gas-Liquid Partition Chromatography Proc. Natl. Acad. Sci. 68
14 15 16	416		2374–6
17 18	417	[3]	Boots A W, Joep J B N van B, Jan W D, Agnieszka S, Emile F W and Frederik J van S
19 20 21	418		2012 The versatile use of exhaled volatile organic compounds in human health and
21 22 23	419		disease J. Breath Res. 6 27108
24 25	420	[4]	de Lacy Costello B, Amann a, Al-Kateb H, Flynn C, Filipiak W, Khalid T, Osborne D
26 27 28	421		and Ratcliffe N M 2014 A review of the volatiles from the healthy human body. J. Breath
29 30	422		Res. 8 14001
31 32	423	[5]	Gruber B, Keller S, Groeger T, Matuschek G, Szymczak W and Zimmermann R 2016
33 34 35	424		Breath gas monitoring during a glucose challenge by a combined PTR-QMS/GC×GC-
35 36 37	425		TOFMS approach for the verification of potential volatile biomarkers <i>J. Breath Res.</i> 10
38 39	426		36003
40 41 42	427	[6]	Capuano R, Santonico M, Pennazza G, Ghezzi S, Martinelli E, Roscioni C, Lucantoni G,
42 43 44	428		Galluccio G, Paolesse R, Di Natale C and D'Amico A 2015 The lung cancer breath
45 46	429		signature: a comparative analysis of exhaled breath and air sampled from inside the lungs
47 48	430		Sci. Rep. 5 16491
49 50 51	431	[7]	Fens N, Zwinderman A H, Van Der Schee M P, De Nijs S B, Dijkers E, Roldaan A C,
52 53	432		Cheung D, Bel E H and Sterk P J 2009 Exhaled breath profiling enables discrimination of
54 55	433		chronic obstructive pulmonary disease and asthma <i>Am. J. Respir. Crit. Care Med.</i> 180
56 57 58			7
59 60		Y	

2 3 4	434		1076-82
5 6	435	[8]	Filipiak W, Beer R, Sponring A, Filipiak A, Ager C, Schiefecker A, Lanthaler S, Helbok
7 8	436		R, Nagl M, Troppmair J and Amann A 2015 Breath analysis for in vivo detection of
9 10 11	437		pathogens related to ventilator-associated pneumonia in intensive care patients: a
12 13	438		prospective pilot study J. Breath Res. 9 16004
14 15	439	[9]	Connie R. Mahon, Donald C. Lehman G M J 2008 Textbook of Diagnostic Microbiology
16 17 18	440		ed E H Sciences
19 20	441	[10]	WHO 2016 WHO / Global tuberculosis report 2016
21 22	442	[11]	Rodriguez-Campos S, Smith N H, Boniotti M B and Aranaz A 2014 Overview and
23 24 25	443		phylogeny of Mycobacterium tuberculosis complex organisms: Implications for
26 27	444		diagnostics and legislation of bovine tuberculosis Res. Vet. Sci.
28 29	445	[12]	Phillips M, Cataneo R N, Condos R, Ring Erickson G A, Greenberg J, La Bombardi V,
30 31 32	446		Munawar M I and Tietje O 2007 Volatile biomarkers of pulmonary tuberculosis in the
33 34	447		breath <i>Tuberculosis</i> 87 44–52
35 36	448	[13]	Phillips M, Basa-Dalay V, Blais J, Bothamley G, Chaturvedi A, Modi K D, Pandya M,
37 38 30	449		Natividad M P R, Patel U, Ramraje N N, Schmitt P and Udwadia Z F 2012 Point-of-care
39 40 41	450		breath test for biomarkers of active pulmonary tuberculosis Tuberculosis 92 314–20
42 43	451	[14]	Phillips M, Basa-Dalay V, Bothamley G, Cataneo R N, Lam P K, Natividad M P R,
44 45	452		Schmitt P and Wai J 2010 Breath biomarkers of active pulmonary tuberculosis
46 47 48	453		Tuberculosis 90 145–51
49 50	454	[15]	Sahota A S, Gowda R, Arasaradnam R P, Daulton E, Savage R S, Skinner J R, Adams E,
51 52	455	(Ward S A and Covington J A 2016 A simple breath test for tuberculosis using ion
53 54 55	456		mobility: A pilot study Tuberculosis 99 143-6
56 57			
58 59			

1 2			
3 4	457	[16]	Soobratty M R, Whitfield R, Subramaniam K, Grove G, Carver A, O'Donovan G V., Wu
5 6	458		H H T, Lee O Y C, Swaminathan R, Cope G F and Milburn H J 2014 Detecting active
7 8 0	459		pulmonary tuberculosis with a breath test using nanomaterialbased sensors Eur. Respir. J.
10 11 12 13 14 15	460		43 1519–22
	461	[17]	Bruins M, Rahim Z, Bos A, Van De Sande W W J, Endtz H P and Van Belkum A 2013
	462		Diagnosis of active tuberculosis by e-nose analysis of exhaled air <i>Tuberculosis</i> 93 232–8
16 17 18	463	[18]	Kolk A H J, van Berkel J J B N, Claassens M M, Walters E, Kuijper S, Dallinga J W and
19 20	464		van Schooten F J 2012 Breath analysis as a potential diagnostic tool for tuberculosis. Int.
21 22	465		J. Tuberc. lung Dis. Off. J. Int. Union against Tuberc. Lung Dis. 16 777–82
23 24 25	466	[19]	Peled N, Ionescu R, Nol P, Barash O, McCollum M, Vercauteren K, Koslow M, Stahl R,
26 27	467		Rhyan J and Haick H 2012 Detection of volatile organic compounds in cattle naturally
28 29	468		infected with Mycobacterium bovis Sensors Actuators, B Chem. 171-172 588-94
30 31 32	469	[20]	Ellis C K, Stahl R S, Nol P, Waters W R, Palmer M V., Rhyan J C, VerCauteren K C,
33 34	470		McCollum M and Salman M D 2014 A pilot study exploring the use of breath analysis to
35 36	471		differentiate healthy cattle from cattle experimentally infected with Mycobacterium bovis
37 38 30	472		PLoS One 9
40 41	473	[21]	Mellors T R, Blanchet L, Flynn J L, Tomko J, O'Malley M, Scanga C A, Lin P L and Hill
42 43 44 45	474		J E 2017 A new method to evaluate macaque health using exhaled breath: A case study of
	475		M. tuberculosis in a BSL-3 setting J. Appl. Physiol. jap.00888.2016
40 47 48	476	[22]	Flynn J L 2006 Lessons from experimental Mycobacterium tuberculosis infections 8
49 50	477	[23]	Tranchida P Q, Franchina F A, Dugo P and Mondello L 2016 Comprehensive two-
51 52	478	(dimensional gas chromatography-mass spectrometry: Recent evolution and current trends
53 54 55	479		Mass Spectrom. Rev. 35
56 57		7	
58 59			

2			
2 3 4	480	[24]	Zhu J, Jimenez-Diaz J, Bean H D, Daphtary N A, Aliyeva M I, Lundblad L K A and Hill
5 6	481		J E 2013 Robust detection of P. aeruginosa and S. aureus acute lung infections by
7 8 9	482		secondary electrospray ionization-mass spectrometry (SESI-MS) breathprinting: from
, 10 11	483		initial infection to clearance. J. Breath Res.
12 13	484	[25]	Dieterle F, Ross A, Schlotterbeck G and Senn H 2006 Probabilistic quotient
14 15 16	485		normalization as robust method to account for dilution of complex biological mixtures.
10 17 18	486		Application in1H NMR metabonomics Anal. Chem.
19 20	487	[26]	Hastie T, Tibshirani R and Friedman J 2009 The Elements of Statistical Learning The
21 22	488		Elements of Statistical Learning
23 24 25	489	[27]	Li S, Aliyeva M, Daphtary N, Martin R a., Poynter M E, Kostin S F, van der Velden J L,
26 27	490		Hyman A M, Stevenson C S, Phillips J E and Lundblad L K a. 2014 Antigen-induced
28 29	491		mast cell expansion and bronchoconstriction in a mouse model of asthma AJP Lung Cell.
30 31 32	492		Mol. Physiol.
32 33 34	493	[28]	Balamayooran G, Batra S, Fessler M B, Happel K I and Jeyaseelan S 2010 Mechanisms
35 36	494		of neutrophil accumulation in the lungs against bacteria Am. J. Respir. Cell Mol. Biol. 43
37 38	495		5-16
39 40 41	496	[29]	Bean H D, Jiménez-Díaz J, Zhu J and Hill J E 2015 Breathprints of model murine
42 43	497		bacterial lung infections are linked with immune response Eur. Respir. J.
44 45	498	[30]	Lombard R, Doz E, Carreras F, Epardaud M, Le Vern Y, Buzoni-Gatel D and Winter N
46 47 48	499		2016 IL-17RA in non-hematopoietic cells controls CXCL-1 and 5 critical to recruit
49 50	500		neutrophils to the lung of mycobacteria-infected mice during the adaptive immune
51 52	501	(response PLoS One 11
53 54	502	[31]	Schreiber O, Steinwede K, Ding N, Srivastava M, Maus R, Länger F, Prokein J, Ehlers S,
56	7	7	
57 58		X.	~

503		Welte T, Gunn M D and Maus U a 2008 Mice that overexpress CC chemokine ligand 2 in
504		their lungs show increased protective immunity to infection with Mycobacterium bovis
505		bacille Calmette-Guérin. J. Infect. Dis.
506	[32]	Srivastava M, Meinders A, Steinwede K, Maus R, Lucke N, Bühling F, Ehlers S, Welte T
507		and Maus U A 2007 Mediator responses of alveolar macrophages and kinetics of
508		mononuclear phagocyte subset recruitment during acute primary and secondary
509		mycobacterial infections in the lungs of mice <i>Cell. Microbiol</i> .
510	[33]	Ghimenti S, Lomonaco T, Bellagambi F G, Tabucchi S, Onor M, Trivella M G, Ceccarini
511		A, Fuoco R and Di Francesco F 2015 Comparison of sampling bags for the analysis of
512		volatile organic compounds in breath J. Breath Res.
513	[34]	Hinkle D E, Wiersma W and Jurs S G 2003 Applied Statistics for the Behavioral Sciences
514		(Houghton Mifflin)
515	[35]	Küntzel A, Fischer S, Bergmann A, Oertel P, Steffens M, Trefz P, Miekisch W, Schubert
516		J K, Reinhold P and Köhler H 2016 Effects of biological and methodological factors on
517		volatile organic compound patterns during cultural growth of Mycobacterium avium ssp.
518		paratuberculosis J. Breath Res.
519	[36]	Mellors T R, Rees C A, Wieland-Alter W F, von Reyn C F and Hill J E 2017 The volatile
520		molecule signature of four mycobacteria species J. Breath Res. 11 31002
521		
522		
	(
7	7	
	503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522	503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522