A method and a target to produce ⁶⁷Cu

L. Mou¹, P. Martini^{1,2}, M. Pasquali¹, J. Esposito¹, C. Rossi Alvarez¹, A. Duatti² and G. Pupillo¹

¹INFN, Laboratori Nazionali di Legnaro, Legnaro (Padova), Italy; ²Università di Ferrara e INFN, Sezione di Ferrara, Ferrara, Italy.

INTRODUCTION

Among the most promising radionuclides for cancer therapy, 67 Cu (γ and β ⁻ emitter, T_{1/2}=62 h) is worldwide gaining attention of the scientific community thanks to its potential application in theranostics. Indeed, ⁶⁷Cu is one of the radionuclides intrinsically suitable for both therapeutic and diagnostic purposes and, together with the β^+ emitter 64 Cu (T_{1/2}=12 h), represents an example of an ideal matched pair for theranostic applications [1]. The case of copper isotopes is of special interest, since ⁶⁴Cu is useful for PET investigations and dosimetric studies, while ⁶⁷Cu can be used for SPECT and therapeutic applications [2]. Its combined radiation allows the use of a single radiopharmaceutical (RP), labelled with the same element (⁶⁴Cu or ⁶⁷Cu), for both diagnosis and therapy, also permitting dose-tailored treatments. In addition, therapeutic treatments with 67Cu-labelled RPs can be matched with SPECT imaging, allowing the monitoring of the diseased tissue during the therapy, but also permits to follow the pharmacokinetics and the drug efficacy in the long-term. Moreover, copper radioisotopes are presently under the spotlight of the scientific community for their versatile chemistry and biological effectiveness, even as simple Cu²⁺ ions [3]. In fact, it was recently demonstrated that Cu^{2+} ions are selectively up-taken by cancerous cells that, in turn, can be viewed and subsequently destroyed by a cytotoxic radiation dose. These results thus emphasize the enormous potential of 67Cu for nuclear medicine and the urgent need of a reliable supply of this radionuclide.

Currently, the use of ⁶⁷Cu in preclinical and clinical trials is curtailed by its short availability. ⁶⁷Cu production still shows considerable challenges. Considering protonaccelerators, the most intensively studied reaction is the ⁶⁸Zn(p,2p)⁶⁷Cu process. Using this route, at the Paul Scherrer Institute and at the Brookhaven National Laboratories, small amounts of ⁶⁷Cu are produced [4]. Millicuries amounts of ⁶⁷Cu are regularly produced at the Ridge National Laboratory, exploiting the Oak ⁶⁸Zn(p,2p)⁶⁷Cu nuclear reaction and high-energy proton accelerators (200 MeV) [5], and at the Idaho Accelerator Center, based on the 68 Zn(γ ,p) 67 Cu reaction by e-linac [6]. However, worldwide and up to now, there is not a regular supply of ⁶⁷Cu in sufficient amounts to guarantee clinical trials.

At the INFN-LNL, ⁶⁷Cu has been a top priority of LARAMED project (LAboratory of RAdionuclides for MEDicine) in the last few years [7]. In 2016, the COME (Copper Measurement) project, funded by CSN3, measured

the cross section of the unexplored nuclear reaction 70 Zn(p,x) 67 Cu in the energy range 40-70 MeV [8]. Later, the results of COME project have led in 2018 to an INFN patent for an innovative route of 67 Cu production [9]. This invention aims at the maximization of the production ratio 67 Cu/ 64 Cu exploiting 70 MeV proton beams on Zn-70 and Zn-68 target of fixed thickness and in an established configuration.

DESCRIPTION

The object of the invention is to provide an optimized method for the cyclotron production of ⁶⁷Cu using proton beams in the 70-10 MeV energy range.

By using 70 MeV proton beams and exploiting the nuclear reactions on ⁶⁸Zn and ⁷⁰Zn targets (Fig.1), this invention allows to maximize the production of ⁶⁷Cu and minimize the one of its main contaminant ⁶⁴Cu.

Figure 1: A)Measurement of the $^{70}Zn(p,x)^{67}Cu$ cross section in the 40-70 energy range; B) The IAEA recommended cross section for the $^{68}Zn(p,2p)^{67}Cu$ cross section; C) The IAEA recommended cross section

for the ${}^{70}Zn(p,\alpha){}^{67}Cu$ cross section.

As shown in Fig. 2, the ratio between the production cross sections of ⁶⁷Cu and ⁶⁴Cu (⁶⁷Cu/⁶⁴Cu) is represented for the two different zinc isotopes, specifically ⁷⁰Zn (black dots and continuous line) and ⁶⁸Zn (dashed line). To favor the production of 67Cu, it is evident from Fig.2 that it is advantageous to use ⁷⁰Zn targets for E > 56 MeV, while for lower energies (down to 35 MeV) it is advantageous to use ⁶⁸Zn targets. The general target configuration, illustrated in Fig. 3 and described in Table 1, is a multi-layers target, comprising a first layer of enriched ⁷⁰Zn, a second layer of enriched ⁶⁸Zn, to cover the energy ranges respectively of 70-56 MeV (target of ⁷⁰Zn) and 56-35 MeV (target of ⁶⁸Zn). By doing this, the 67Cu/64Cu production ratio is maximized regardless of the irradiation times. Moreover, a third layer of enriched ⁷⁰Zn can be placed after the ⁶⁸Zn layer, in order to cover the low energy range 25-10 MeV (Fig. 1 C); an additional layer of absorbent material can be interposed in between so that the proton beam reaches this last layer of ⁷⁰Zn with an energy $E \le 25$ MeV (Table 1).

Figure 2: Cu-67/Cu-64 cross section ratio by using 100% enriched target: the Zn-70 case is represented by black dots and a continuous line, the Zn-68 case by a dashed line.

Figure 3: Schematic representation of the target configuration: the Zn-70 layers are reported in green, the Zn-68 layer in yellow and the absorber (aluminum) layer in blue; incoming and outcoming proton beam energies are also reported.

RESULT AND DISCUSSION

Table 1 reports the optimal thicknesses in order to maximize the yield of ⁶⁷Cu for each energy interval and target layer. A target composed by a first layer of ⁷⁰Zn and a second layer of ⁶⁸Zn compared with an equally thick target composed by only ⁶⁸Zn in the entire range 70-35 MeV, corresponds to an increase of about 46% in the production of ⁶⁷Cu and a simultaneous decrease of about 12% in the coproduction of ⁶⁴Cu. It should be noted that these estimations have been made considering an irradiation time of 62 hours, corresponding to a saturation factor for ⁶⁷Cu of 50%.

This double advantage, in view of the use of ⁶⁷Cu with

high radionuclidic purity (RNP), makes it possible to reduce the cooling time aimed at the ⁶⁴Cu decay; therefore, a further benefit of the method for the production of ⁶⁷Cu according to the present invention lies in the possibility to obtain greater quantities of ⁶⁷Cu with high RNP, under the same irradiation conditions, compared to a target entirely composed of ⁶⁸Zn.

Table 1. Description of the target layers and thicknesses

Strato	Energia [MeV]	Materiale	Spessore [mm]	Materiale	Spessore [mm]
I°	70-56	⁷⁰ Zn metallico	2,90	⁷⁰ ZnO	3,65
II°	56-35	⁶⁸ Zn metallico	3,40	⁶⁸ ZnO	4,15
Assorbitore (IV°)	35-25	grafite	2,70	alluminio	2,55
III°	25-10	⁷⁰ Zn metallico	1,15	⁷⁰ ZnO	1,45

CONCLUSION

⁶⁷Cu has been a top priority of LARAMED project in the last years: recent research activities regarding nuclear reaction measurements have led to the INFN patent regarding an optimized target configuration to produce ⁶⁷Cu. This patent hopefully opens the way of a fruitful collaboration among the SPES/LARAMED reasearch outcomes and the Italian and international industrial network. The experience gained on the technologies for target realization and processing so far is the starting point for developing and optimizing the ⁶⁷Cu production chain. In the near future we plan to develop the technology necessary to complete the whole procedure for the production of ⁶⁷Cu. LNL might thus become the first European supplier of this promising radionuclide, promoting the essential research for the development of innovative cancer therapies.

ACKNOWLEDGMENT

Authors would like to thank M. Loriggiola for the realization of enriched ⁷⁰Zn and ⁶³Cu foils; all the staff of the mechanic's workshop at INFN-LNL; A. Boschi from the University of Ferrara, M. Marengo and G. Cicoria for their support for preliminary tests at S. Orsola Hospital (Bologna); F. Haddad, T. Sounalet and all the staff at the Arronax facility for their constant encouraging help and support during the irradiation runs and experiments. This work is carried out in the context of the Coordinated Research Project (CRP) "⁶⁷Cu, ¹⁸⁶Re and ⁴⁷Sc as Emerging Theranostic Radionuclides" promoted by IAEA [1].

REFERENCES

- [1] IAEA (CRP): F22053, (2016), http://cra.iaea.org/cra/explorecrps/all-active-by-programme.html
- [2] Qaim S.M. et al., J. Rad. Nucl. Chem. (2018) 318:1493-1509
- [3] Boschi, A. et al., Drug Discov. Today (2018), 23, 1489-1501
- [4] Medvedev, D.G. et al., Appl. Radiat. Isot. (2012), 7, 423-429
- [5]NIDC:https://www.isotopes.gov/catalog/product.php?element
 - =Copper&type=rad&rad_product_index=15
- [6] Idaho Accelerator Center: http://iac.isu.edu/isotopes.html
- [7] Esposito J. et al., Molecules, (2019) 24, 20
- [8] Pupillo, G. et al . Annual Report 2017, 130_D_32_D027
- [9] Pupillo, G. et al . Patent P2974IT00, INFN, 15 May 2018