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Abstract: In the Po plain, northern Italy, rivers within agricultural basins display steep summer
increases in nitrate (NO3

−) concentrations. Flood irrigation in overfertilized, permeable soils may
drive such diffuse pollution, facilitating interactions between NO3

−-rich groundwater and surface
waters. We discuss multiple, indirect evidence of this mechanism in the Adda, Oglio, and Mincio
rivers. These rivers drain agricultural soils with elevated nitrogen (N) surpluses, averaging 139,
193, and 136 kg ha−1 in the Adda, Oglio, and Mincio watersheds, respectively. The three rivers
cross a transitional area between highly permeable and impermeable soils, where summer NO3

−

concentrations may increase by one order of magnitude over short distances (8–20 km). Upstream of
this transitional area, a major fraction of the river flow is diverted for flood irrigation, a traditional
and widespread irrigation technique for permeable soils. We speculate that diverted water solubilizes
soil N excess, recharges the aquifer, and transfers soil N surplus into groundwater, resulting in NO3

−

pollution. Groundwater–river interactions were estimated experimentally, via water and NO3
−

budgets in 0.3 to 1 m3 s−1 km−1 and in 1500 to 5400 kg NO3
−–N day−1. The data suggest a pronounced

east–west gradient of groundwater to river diffuse water inputs among the three adjacent basins,
reflecting the soil permeability and the width of the river–groundwater interaction zone. Given the
large stock of NO3

− in groundwater, management interventions performed at the basin scale and
aimed at decreasing N excess will not produce an immediate decrease in river NO3

− pollution.

Keywords: river; groundwater; nitrogen; diffuse pollution; flood irrigation; agricultural practices

1. Introduction

Agricultural, industrial, and civil activities have greatly increased the levels of reactive nitrogen
(N) in river basins and altered the hydrological cycle on the catchment scale [1,2]. Major N input sources
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are organic and synthetic fertilizers, generally exceeding crops’ N requirements. Moreover, fertilization
plans seldom consider mineralization rates and factors regulating N dynamics in agricultural land,
like soil properties and irrigation techniques [3,4]. A nitrogen surplus has a high impact on people and
ecosystems, including health effects, eutrophication, groundwater pollution, and global warming [5–7].

The increasing demand of water abstraction for irrigation and, more recently, climate change, are
the main factors affecting the hydrological cycle [8,9]. Large abstractions from surface and ground
water have modified natural flow regimes, groundwater recharge, water retention times, and water
exchange rates in surface–groundwater interaction zones [10]. In this context, the understanding of
how agricultural practices affect surface water (SW)–groundwater (GW) interactions and impact water
quality are important issues. This is especially true in European river basins where water quality
requirements are defined by two specific directives, i.e., the Water Framework Directive [11] and the
Groundwater Directive [12].

In pristineecosystems, rivers drain their watersheds and transferwater downstream. In heavily-irrigated
agricultural areas, the path of river water to coastal areas includes upstream abstraction, circulation in
artificial canals, dispersal over crops, percolation, or runoff. Upon returning to the main river course,
river water may be eventually diverted downstream and reused to irrigate a downstream portion of
the basin. This mechanism enhances river water–soil interactions, and increases the concentrations of
dissolved and particulate nutrients in aquatic ecosystems [13,14]. Barakat and colleagues [4] reviewed
the N dynamics in agricultural land in relation to irrigation techniques, considering the soil water
content as a first-order determinant driving N transformations. Compared to drip and subsurface
drip irrigation techniques, flood irrigation and sprinkler irrigation techniques favor NO3

− leaching, in
particular when they are associated with near-saturation soil water content and coarse soils [15–20].
Zotarelli et al. [21] and Perego et al. [22] described the interaction effects of irrigation treatments and N
application on N leaching and a low irrigation efficiency with a high rate of drainage and N loss when
flood irrigation was adopted.

In recent decades, efforts have been made not only to investigate N sources and dynamics on
river basin scales, but also to consider rivers and groundwater as part of a single hydrological system
where the two compartments can interact, in an attempt to integrate hydrogeological and ecological
aspects [13,14,23–29]. Studies on SW–GW interactions in human-impacted watersheds have focused
on the understanding of water quality and quantity exchanges. In semi-arid areas, the main issue
was how to assess the contribution of groundwater to maintain river flow, in particular during dry
periods or where groundwater withdrawal for anthropic purposes could affect groundwater supply
to rivers [28,30–32]. In contrast, in temperate agricultural watersheds with N excesses, the focus
was on the N dynamics between surface and ground waters in relation to point or diffuse pollution
sources, river water use, and hydrogeological settings [14,27,33–36]. Although several studies on N
polluted surface–groundwater interaction zones have been performed by coupling hydrological data,
environmental and isotope tracers, statistical techniques, GIS, and numerical models [28,33,37,38],
a detailed understanding of the interactions between rivers and N-polluted groundwaters has not
emerged. Heterogeneity and scale problems make the fluxes of groundwater toward rivers difficult to
quantify, taking also N fluxes and turnover and irrigation into account [24]. The latter factor may affect
water residence times, N storage zones, N flow paths in aquifers, and the interactions between rivers
and N-polluted groundwaters.

The sub-basins of the Po Plain (northern Italy) are good examples of watersheds impacted
by agriculture which are characterized by major hydrological and land-use alterations, by areas
where the groundwater interacts with surface waters [27,39,40], and by areas vulnerability to NO3

−

pollution [41–44]. In these basins, the N excess in agricultural land is removed only partially by
denitrification, and groundwater represents an important temporary N sink [14]. In the mid-to-long
term, the NO3

− accumulated in groundwater can be substantially recycled via springs, thereby
polluting surface waters [41]. The aim of this work is to provide multiple pieces of evidence to support
a mechanism underlying diffuse N pollution via SW–GW interactions in three adjacent sub-basins of
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the Po River watershed: the Adda, Oglio, and Mincio river basins. The selected rivers cross an area at
the transition between permeable and impermeable soils, characterized by numerous groundwater
resurgences (the spring belt zone) [14]. These rivers are regulated to supply an artificial network
of irrigation canals that is 500–700 years old, and has the potential to divert a major fraction of
the natural river flow during summer. This water flow regulation has deep implications for local
hydrogeology, for example the recharge of the unconfined aquifer [45–47], and water chemistry, due
to the solubilization and transport of pollutants [40,41,48]. We hypothesize that the combination
of N excess, due to agriculture and farming, and flood-based irrigation practices over permeable
soils enhances N leaching to groundwater; the subsequent rise of the groundwater table leads, for
gaining rivers, to the replacement of the low NO3

− river water employed for irrigation with NO3
−-rich

groundwater, with the consequent transfer of contamination to the surface.

2. Materials and Methods

2.1. Study Area

The lower portions of the Adda, Oglio, and Mincio rivers (Lombardy Region, northern Italy) lay
in the central part of the Po Plain and are left-side tributaries of the Po River (Figures 1 and 2, Table 1).
They originate from oligo to mesotrophic alpine lakes: Como, Iseo, and Garda, with 0.012 ± 0.001,
0.011 ± 0.001, and 0.004 ± 0.001 mg NO3

−–N L−1 respectively as their average concentrations. The river
flows of the three rivers are regulated by the Olginate, Sarnico and Monzambano dams, respectively.
The dams regulate the water discharge from lakes in order to satisfy the multiple needs of agriculture,
hydropower production, tourism, and minimum vital flow, according to well-defined general rules.
To maintain stable water levels in the lakes, water is retained during non-irrigation periods (from
October to April) and released during summer to meet agricultural needs (from May to September).
Most water abstraction structures are located within the initial 40 km of the river (Figure 3) [49].
River watersheds cover a cumulative area of ~8000 km2 and host sediment belonging to the continental
depositional system of the Plio-Pleistocene age [50,51]. The unconfined aquifer is made of coarse gravels
and sands (with cumulative thicknesses from 30 to 150 m). The grain size decreases from N to S and
from W to E with increasing distance from the sediment source (Figure 2). Accordingly, the permeability
of the aquifer in the higher plain greatly exceeds that of the lower plain. The unconfined aquifer is
recharged in the Alpine foothills and all over the plain area by the direct infiltration of precipitation
and irrigation water. The mean annual precipitation in the study area is ~853 mm year−1 [52,53].
Groundwater flow is directed towards the Po River (i.e., roughly oriented N–S in the pre-alpine sector),
and is strongly controlled by the draining action of the Po River and its tributaries [42]. The transition
between the higher and the lower plains, the so-called “spring belt area”, is characterized by numerous
permanent groundwater resurgences, with 1536 springs counted in the Lombardy Region alone [54,55].
Springs originate from a difference in the rock permeability or from the presence of buried structures in
the Alpine fronts that represent a barrier to the natural groundwater flow towards the Po River [56–58].
All the upstream reaches of the Adda, Oglio, and Mincio rivers flow across the spring belt area, which,
according to the springs database [54], decreases in width form W to E, being of about 35, 35, and
20 km in the Adda, Oglio, and Mincio basins, respectively, likely due to tectonic and geomorphological
constraints (Figure 1) [56]. In this area, the three rivers mostly drain the phreatic aquifer, because their
beds are lower than the groundwater head [47,59].
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Table 1. Physical features of the Adda, Oglio, and Mincio watersheds and delimitation of the portion
of the watersheds which are the object of this study.

Features Study Area

River Adda Oglio Mincio
Alpine lake (river water origin) Como Iseo Garda

Dam regulating lake outflow (river origin km 0) Olginate Sarnico Monzambano
Watershed area (km2) 3400 3840 850

River length (km) 130 156 75
Portion of watersheds studied: from lake dams, i.e., km 0,
to the southernmost extreme of the spring belt area (km2) 2553 2200 650

Length of studied river stretch: from dam to southernmost
extreme of spring belt area (from km up to km) 0–70 0–60 0–40

Studied river stretch crossing the spring belt area (from km
up to km) 35–70 25–60 18–40

Studied river segment falling within the studied river
stretch crossing the spring belt area (from km up to km) 46–64 31–50 18–26
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Figure 1. Oglio and Mincio sub-basins of the Po watershed, northern Italy, with the spring belt area 
indicated in grey (a) Lower panels report the studied reaches, corresponding to the initial 70, 60, and 
40 Km of the three rivers, respectively (b) N mass budgets were performed with repeated flow 
measurements and water analyses at IN and OUT stations. 

Figure 1. Oglio and Mincio sub-basins of the Po watershed, northern Italy, with the spring belt area
indicated in grey (a) Lower panels report the studied reaches, corresponding to the initial 70, 60,
and 40 km of the three rivers, respectively (b) N mass budgets were performed with repeated flow
measurements and water analyses at IN and OUT stations.
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Figure 2. Land use according to the Corine Land Cover 2006 (a) and geological map (b) of the Adda, 
Oglio, and Mincio basins. Data source: [60,61]. 
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Figure 2. Land use according to the Corine Land Cover 2006 (a) and geological map (b) of the Adda,
Oglio, and Mincio basins. Data source: [60,61].

All rivers were studied in a stretch between the lake dam, i.e., km 0, and the southernmost
extreme of the spring belt, at km 70, 60, and 40 for the Adda, Oglio, and Mincio rivers, respectively
(Figures 1 and 2, Table 1). Within this stretch, all rivers cross the spring belt area at approximately
km 40, 25, and 18, respectively. The portion of watersheds studied covers 2553, 2200, and 650 km2,
representing nearly 75%, 57%, and 77% of the total area, and includes 290, 162, and 29 municipalities,
all of which are within the high-medium plain of the Adda, Oglio, and Mincio basins, respectively
(Tables 1 and 2). All watersheds are characterized by intensive agriculture and livestock activities
(mainly cows and pigs); the main crops include maize, feed crops and, for the Adda portion, meadows.
Flooding, followed by sprinklers, are the main irrigation techniques used in all the watersheds portions
under study [62].

Table 2. Data on farming and irrigation practices in the studied portions of the three basins. Data
source: [62].

Portion of Watersheds Adda Oglio Mincio

Inhabitants 1,140,000 1,000,000 144,000
Utilized agricultural area (UAA, % of total basin area) 32 45 70

Number of cows 179,000 360,000 110,000
Number of pigs 360,000 1,100,000 440,000

Main crops (% of UAA)
maize 22 40 30
wheat 6 6 10

feed crops 21 28 27
meadows 42 14 10
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The study area includes 8, 19, and 6 main water abstractions to supply irrigation canals for the
Adda, Oglio, and Mincio rivers, respectively. The studied stretch of the Adda River is characterized by
two tributaries: the Brembo River and the Belgiardino canal (Figure 3).

2.2. Water Flow, Use, Precipitation, and Associated N Loads Calculation

There are robust datasets reporting the natural and regulated flows and abstraction works for
all the considered rivers, which have been regularly monitored since the 1970s [63]. The seasonal
hydrology of the upstream river stretches characterizing the initial 70 km were analyzed by collecting
historical series of river flows and information about the hydraulic scheme of the three systems (i.e.,
withdrawals of concessions for the production of hydroelectric energy and for irrigation purposes).
Historical series of river flow data were validated and integrated with water discharge measurements
performed by the Adda, Oglio, and Mincio Consortiums, together with the Universities of Parma, Pavia,
and Insubria, in the period of 2006–2014 during seasonal monitoring activities [64]. Such activities
were carried out within the frameworks of different projects aiming at determining the minimum vital
flow for the three systems, where physico-chemical and biological parameters were monitored at a
large number of stations. The present work reports the field data collected in 7, 6, and 5 stations of
the Adda, Oglio, and Mincio rivers, respectively. In particular, water flow, temperature, electrical
conductivity, and NO3

− concentrations were measured. A description of the sampling and analytical
methods used is reported in Section 2.4.

Irrigation data covering irrigation techniques, irrigated surface, and the water volume used
for irrigation for the three dominant crops, i.e., maize, feed crops, and meadows were obtained
from the 6th General Census of Agriculture [62] at the municipal level, and then aggregated to the
watershed scale. These data were then compared with reference crop water needs, as suggested by
D.G.R. Emilia-Romagna n.1415/2016 [65] (3000 m3 ha−1 for maize, 2500 m3 ha−1 for feed crops, and
4400 m3 ha−1 for meadows). These reference values take into account the local meteorological and
environmental conditions, are site-specific for the Po River plain, and may differ from the values
reported in the literature [66].

The mean annual and monthly precipitation data were downloaded from the JRC Soil Portal [67],
where Gardi and colleagues [52] interpolated meteorological data from the period of 1960–1990 onto a
50 × 50 km grid [53]. The average precipitation values for the whole investigated area and for each
sub-basin were obtained by clipping sub-basin boundaries and precipitation raster data via the QGIS
software ver. 2.18 (QGIS Development Team, https://www.qgis.org/it/site/). The sum of the mean
monthly precipitations during the irrigation (from May to September) and non-irrigation periods (from
October to April) was also calculated.

During the irrigation period, the total amount of water that reaches the agricultural area was
estimated as the sum of the water volume used for irrigation plus the rainwater volume during the
5 months of irrigation. This approximate mass budget of water input to the agricultural land was
coupled with the load of dissolved N in irrigation and rainwater. To this purpose, N loads associated
with irrigation and surface waters were determined by multiplying the abstracted river water volumes
by the NO3

− concentration measured upstream of the abstraction. Nitrogen loads associated with
irrigation with groundwater were obtained by multiplying the withdrawn ground water volume by
the measured groundwater NO3

− concentrations. Nitrogen loads from rainwater were estimated
by multiplying rainwater the volume during the irrigation period by their NO3

− concentrations, as
derived from the national maps of oxidized N compounds deposition [68].

2.3. Nitrogen Mass Balance Calculations at the Watershed Level

A N budget for the watershed portions included between each dam and the southernmost
extreme of the spring belt was calculated (Figure 1). The aim of this calculation was to investigate
the potential N excess generated by diffuse sources in highly vulnerable and irrigated soils, and to
evaluate the NO3

− pollution risk. A soil system N budget was performed using farming census

https://www.qgis.org/it/site/
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data [62] at the spatial resolution of the individual municipalities included within each watershed, and
then aggregated at the sub-basin level [69–71]. We compared N inputs (livestock manure, synthetic
fertilizers, atmospheric deposition, and biological fixation) and outputs (crop uptake, ammonia
volatilization, and denitrification) across the Utilized Agricultural Area (UAA) of the considered
watershed portions [14,72,73]. The input and output terms and the N balance were expressed in unit
of mass per time (t N year−1). The balance items per unit of area were finally calculated by dividing
the annual loads by the UAA of each watershed portion (kg N ha−1 UAA year−1).

2.4. Water and N Mass Budgets along River Reaches Interacting with Groundwater: Sampling Strategies,
Analytical Techniques, and Calculations

Water and NO3
− mass budgets were calculated from the experimental data gathered in three

reaches of each river, chosen within the spring belt zone. The chosen Adda and Oglio river reaches
had similar lengths (~18 km), while the Mincio river reach was 8 km long (Figure 1). The three reaches
were characterized by the presence of one irrigation abstraction (Adda), three small point sources, and
11 irrigation abstractions (Oglio), as well as one small point source and two irrigation abstractions
(Mincio). The mass budget method is based on the open-channel technique, and makes it possible
to calculate the net budgets of solutes or particulate matter [74]. Positive budgets mean net solutes
or particulate accumulation in the stretch, while negative values mean net retention (i.e., uptake,
precipitation) or loss (i.e., denitrification). The general equations used for water and NO3

− loads mass
budgets are:

Lout = Lin + Lps + Lds − Lid, (1)

Qout = Qin + Qps + Qds −Qid, (2)

where L means NO3
− loads, calculated at different stations multiplying discharge (Q) by NO3

−

concentrations. Stations in and out are located at the beginning and end of each river reach, respectively;
ps indicates point sources within river reaches, id indicates irrigation abstractions within river reaches,
and ds indicates a diffuse source within the river reaches. The two equations allowed us to estimate Lds
and Qds, and consequently, the concentrations of NO3

− in the diffuse water inputs (NO3
−

ds). Calculated
daily average diffuse water inputs to the river reaches (Qds) were expressed in cubic meters per second
and in cubic meters per second per kilometer, normalizing data for each stretch length.

Our experimental approach was based on three assumptions: (i) the regulation of the hydrological
regime is constant during the sampling period (the river flow at the site IN and the river flows derived
to irrigate must be constant during the day); (ii) diffuse or groundwater chemical inputs to the river are
homogeneous along the reach; and (iii) the groundwater chemical composition equals that of spring
waters within the river basin.

The sampling campaigns were performed during the irrigation period. Water samples and flow
data in the three river reaches were collected for a whole day with repeated samplings over 24 h, three
times in a day in September 2013 (Adda and Oglio) and seven times in a day in August 2006 (Mincio).
Multiple samplings allowed us to consider errors associated with daily NO3

− concentrations and
water discharge variations in the mass budget equations. Water samples of river, point sources, and
abstractions, integrated over the mixed water column, were collected in 1 L glass bottles from each
site: 3 times (2 riverine sites plus 1 irrigation abstraction) for the Adda river reach; 3 times (2 riverine
sites plus 11 irrigation abstractions and 3 small point sources) for the Oglio river reach, and 7 times
(2 riverine sites plus 2 irrigation abstractions and 1 small point source) for the Mincio river reach.
In situ water temperature and electrical conductivity were measured by means of an YSI multiple
probe (mod. 556 MPS). Water samples were filtered in situ with Whatman GF/F glass fiber filters
(diameter 47 mm, pore size 0.45 µm), transferred to plastic vials, and cooled to 4 ◦C. In the laboratory,
the NO3

− concentrations in the water samples were determined spectrophotometrically (detection
limit <0.01 mg NO3

−–N L−1, precision ±5%) [75,76]. Water flows at different rivers, tributaries, or
abstraction sections were measured with an accuracy of ±5% using the Rio Grande ADCP (Acoustic
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Doppler Current Profiler) by Rivers Consortia, or were obtained from the AIPO (Interregional Agency
for the Po River). During the experimental campaigns, springs located near the river courses (n = 3 for
Adda and Mincio and n = 4 for Oglio) were sampled to measure NO3

− concentrations in springs water
and to use these data as a proxy of the groundwater chemical composition.

3. Results

3.1. Precipitation, Water Flow, and Water Abstraction

The annual average precipitation in the studied watershed portions is similar (841, 853, and
834 mm year−1). Nearly ~45% of precipitation occurs during the the 5-month irrigation period (May to
September, Figure 3).

The management of the dams that regulate the flows between the Lakes Como, Iseo, and Garda
and the Adda, Oglio, and Mincio rivers is similar, with highest release during the irrigation period in
the three systems and water retention in the lakes during non-irrigation periods (Figure 4). As annual
precipitation is similar in this geographical area, the discharge at each lake’s closing section depends
on that lake’s watershed area. The Lakes Garda and Iseo drain similar watershed areas (~2200 and
~1800 km2, respectively) with the result that the average natural annual flow is ~60 m3 s−1 for both
lakes. In contrast, Lake Como drains a much larger watershed area (~4500 km2), and its average
natural annual flow is correspondingly higher (~160 m3 s−1). Besides a variable number of hydropower
plants located within the considered stretches (8, 6, and 4 for the Adda, Oglio, and Mincio Rivers,
respectively), the upstream stretch of the three rivers hosts a number of artificial abstraction canals,
realized for irrigation purposes. In all watershed portions, the main source of irrigation is surface
water from aqueducts and irrigation consortia, and the main irrigation techniques are flood, followed
by sprinklers (Table 3).
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Figure 3. Monthly precipitation in the Adda, Oglio, and Mincio watershed portions considered in
the present study. Average values (± standard deviation) of the period 1960–1990 are reported. Data
source: [52,53].

In all study areas, between 80 and 90% of the irrigated surface is cultivated by three dominant
crops. In Adda and Mincio, up to 35%, 32%, and 25% of the irrigated surface is cultivated by maize,
feed crops, and meadows, respectively. The share of irrigation water among the three crops is similar:
52–56 × 106 m3 year−1 for maize, 43−48 × 106 m3 year−1 for feed crops, and 20–40 × 106 m3 year−1 for
meadows. In the Oglio, ~50% of the irrigated surface is cultivated with maize, with a water supply of
150× 106 m3 year−1, followed by feed crops (31% of irrigated surface, irrigated with 88 × 106 m3 year−1),
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and by meadows (5% of irrigated surface). In the Oglio and Mincio, the average water supply of maize
and feed crops exceeds the crop reference water needs [65] (Table 4).

Table 3. Summary of irrigation practices in the portions of three basins (Adda, Oglio, and Mincio)
object of this study. Data source: [62].

Irrigation Data Adda Oglio Mincio

Water volume used for irrigation (×106 m3 year−1) 161 277 149
Water volume provided by surface water (aqueduct,

irrigation consortium) (%) 87 84 96

Water volume provided by groundwater (%) 13 16 4
Irrigated surface (km2) 466 785 405

Area irrigated by flooding (%) 87 88 42
Area irrigated by sprinkler (%) 12 11 52

Area irrigated by other methods (%) 2 1 6

Table 4. Water supply to maize, feed crops, and meadows in the study area (Adda, Oglio, and Mincio
watershed portion). Data source: [62].

Water Supply (m3 ha−1) Maize Feed Crops Meadows

Adda 2419 ± 1311 2303 ± 1340 2453 ± 1308
Oglio 3390 ± 677 3188 ± 567 3290 ± 703

Mincio 3649 ± 852 3376 ± 710 3706 ± 973

The water flow released into the Adda River from the Olginate dam in the irrigation and
non-irrigation periods displays a large variability, from a minimum of ~40 to a maximum of >600 m3 s−1,
(Figure 4a,b). The summer release from Lake Como averages ~200 m3 s−1 and, within the upstream
60 km stretch, the allowed water abstractions total ~230 m3 s−1, resulting in a large decrease in water
flow downstream. Nevertheless, for the water flow downstream, the last abstraction is >0, likely due
to diffuse water inputs. In the non-irrigation period, the water flow from the Olginate dam averages
~100 m3 s−1; such a flow remains almost unchanged along the initial 70 km stretch (Figure 4b).

A similar picture characterizes the Oglio River, with a summer release from the Sarnico dam
averaging ~80 m3 s−1 and a series of abstractions along the upstream 25 km summing an identical
water flow and setting the river discharge theoretically to zero (Figure 4c). However, downstream, in
the last water abstraction, the river flow is generally >0 (Figure 4d), likely due to diffuse water inputs.
In the non-irrigation period, the water released from the Sarnico dam averages ~50 m3 s−1; this flow
remains unchanged along the upstream 60 km (Figure 4d).

In the Mincio River, the flow released from Lake Garda during summer averages 73 m3 s−1; nearly
40 m3 s−1 are diverted within the initial 5 km, another 28 m3 s−1 at km 15, and an additional 6 m3 s−1

between km 25 and km 35 (Figure 4e). The allowed water abstractions total 74 m3 s−1, close to 100% of
the water released from the Monzambano dam. Downstream the last abstraction, the measured Mincio
River flow is generally higher than 10 m3 s−1 (Figure 4f), likely due, as in previous rivers, to diffuse
water inputs. In the non-irrigation period, the average water flow released from the Monzambano
dam is lower (~20 m3 s−1; see Figure 4f), in order to retain and store water in Lake Garda.
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Figure 4. Left panels indicate the theoretical discharge at Km 0 and along the river course for each
river during the irrigation period, from the dam to the southernmost extreme of the spring belt area
(a,c,e). Dashed black arrows are water inputs, while continuous black arrows are artificial canals
with the permitted water abstraction (m3 s−1) indicated. Wavy dashed lines represent hypothesized
diffuse water inputs to rivers, within the spring belt area (Figure 1). Right panels report flow data from
experimental studies in the years 2006–2014 during the irrigation and non-irrigation period (b,d,f).
The water abstractions in panels 4a,c,e are numbered as follows: for the Adda River 1A, 2A, and from
4A to 9A (Canale Pasinetti, Naviglio Martesana, Roggia Vailata, Roggia Cremasca, Roggia Pandina,
Roggia Rivoltana, Canale Muzza, and Canale Vacchelli), the water inputs are 3A Brembo River and
10A Scolmatore Belgiardino; for the Oglio River from 1O to 19O (Roggia Fusia, Franciacorta, Media
Pianura Bergamasca, Roggia Vetra, Roggia Castrina, Roggia Sale, Roggia Trenzana, Roggia Baiona, Roggia
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Vescovada, Roggia Castellana, Roggia Donna, Naviglio Civico, Roggia Antegnata, Roggia Molina,
Roggia Calciana, Naviglio Grande Pallavicino, Roggia Molinara, Cavo di Suppeditazione, and Roggia
Conte), and for the Mincio River from 1M to 6M (Seriola Prevaldesca, Canale Virgilio, Fossa di Pozzolo,
Cavo Bertone, Cavo Isola, and Naviglio di Goito).

3.2. NO3
− Concentration and Electrical Conductivity

In the Mincio and Oglio rivers, and to a minor extent in the Adda, NO3
− concentration and

electrical conductivity increase steeply during the irrigation period, in particular along the spring belt
zone (Figure 5). The input of NO3

−-rich waters from tributaries can be excluded, as only the Adda
receives water from two tributaries in the upstream reach, but outside the spring belt zone, where the
NO3

− increase is registered (Figures 4 and 5).Water 2019, 11, 2304 12 of 24 
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the three rivers are agricultural ecosystems, with cultivated lands representing an important fraction 
(>30%) of the total surface. Total N inputs from agricultural and livestock activities in the investigated 
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Figure 5. The image on the left shows the three river reaches, from their origins to the southern portion
of the spring belt area. From the top to the bottom the Adda, Oglio, and Mincio rivers are reported.
The horizontal lines roughly indicate the width of the spring belt area which is crossed by the three rivers,
while white dots indicate all counted springs. The graphs show the upstream–downstream variation of
NO3

− concentration and electrical conductivity along the considered stretches in the irrigation and
non-irrigation periods. Data are reported as boxplots, as they include multiple observations in different
years (2006–2014). Vertical lines in each graph represent, for a given study area, the average NO3

−

concentration and specific conductivity of Lakes Como, Iseo, and Garda (on the left) and of the river
adjacent springs (on the right).
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In the Adda River, from km 31 to km 65, NO3
− concentrations and electrical conductivity increase

by a factor ~1.9 (from 0.79 to 1.57 mg NO3
−–N L−1) and ~1.5 (from 192 to 284 µS cm−1), respectively.

In the Oglio River, from km 20 to km 50, the NO3
− concentration and electrical conductivity increase

by a factor 6 (from 0.59 to 3.65 mg NO3
−–N L−1) and ~1.6 (from 247 to 395 µS cm−1), respectively.

From km 15 to km 30 of the Mincio River, the NO3
− concentration increases in summer by a factor

10, from 0.19 to 2.20 mg NO3
−–N L−1, while electrical conductivity nearly doubles (from 224 to

393 µS cm−1); see Figure 5. Differences in the relative increase of the two parameters likely depend
on each river flow and the dilution capacity of the nutrient-poor lake water. They also depend on
the amount and chemistry of the drained water. To provide reference values for NO3

− and electrical
conductivity, the average values measured in the three alpine lakes and in a number of springs located
close to each river course are reported in Figure 5. Values measured along the Adda, Oglio, and
Mincio rivers, despite the large variability in the multiannual dataset, fall within these reference
values, assumed as end members. In the case of the Mincio and Oglio rivers, at the end of the stretch
considered in this study, the NO3

− concentrations and electrical conductivity values approach those of
adjacent springs (~4 and ~14 mg NO3

−–N L−1 and 550 and 700 µS cm−1, respectively), whereas this is
not the case for the Adda River (~4 mg NO3

−–N L−1 and 450 µS cm−1).

3.3. Nitrogen Mass Balances at the Watershed Scale

According to the Millenium Ecosystem Assessment definition [77] the analyzed sub-basins of
the three rivers are agricultural ecosystems, with cultivated lands representing an important fraction
(>30%) of the total surface. Total N inputs from agricultural and livestock activities in the investigated
portions of the Adda, Oglio, and Mincio watersheds were ~28,100, ~44,400, and ~17,000 t N year−1,
respectively (Table 5). The main input term was represented by livestock manure in all basins, followed
by synthetic fertilizers. The main output term was crop uptake, representing some 60–70% of the total
output (Table 5). In all basins N inputs to agricultural soils largely exceeded outputs, resulting in a
condition of large N surplus (from ~6200 t year−1 in the Mincio basin to ~19,000 t year−1 in the Oglio
basin). Areal annual N surplus in the three sub-basins varied between 136 and 193 kg ha−1 (Table 5).

Table 5. Nitrogen input, output, and surplus are reported in terms of total loads (t N year−1) and areal
loads (kg N ha−1 UAA year−1) in the portions of the three basins (Adda, Oglio, and Mincio) object of
this study. Data source: [62]. Total input, total output and surplus are reported in bold.

N Budget Adda Oglio Mincio

t N year−1 t N year−1 t N year−1

INPUT
Livestock manure 14,428 26,826 9831

Synthetic fertilizers 7194 11,334 3211
Biological fixation 5809 5438 3592

Atmospheric deposition 668 793 388
Σ input 28,099 44,391 17,022

OUTPUT
Crop uptake 11,123 15,731 7551

NH3 volatilization 3379 5913 1976
Denitrification in
agricultural soils 2162 3816 1304

Σ output 16,663 25,460 10,832
Σinput − Σoutput 11,435 18,931 6190

kg N ha−1 year−1 kg N ha−1 year −1 kg N ha−1 year −1

INPUT 341 454 374
OUTPUT 202 260 238
SURPLUS 139 193 136

3.4. River-Groundwater Interactions: Water and N Mass Budgets and Estimated N Inputs from Groundwater

An evaluation of the nitrogen mass budget performed for the Adda River reach indicated a
NO3

− load from diffuse sources of 4560 ± 1648 kg N day−1 during the irrigation period (Figure 6a).
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The water budget reported a daily diffuse water input Qds of 20.31 ± 3.55 m3 s−1, compared to a river
flow decrease of about 28 m3 s−1 in the river reach and a total daily water withdrawal for irrigation
of 38.5 ± 1.93 m3 s−1. Considering the stretch length of 18 km, the normalized diffuse water input
was 1.13 ± 0.20 m3 s−1 km−1. The resulting concentration of NO3

− in diffuse water inputs (NO3
−

ds)
was 2.60 ± 1.04 mg N L−1. In summer, along 19 km of the Oglio River reach, the daily average river
flow increased by ~3 m3 s−1. With a total daily water withdrawal of 4.98 ± 0.50 m3 s−1 and a total
daily point input of only 0.70 m3 s−1, the water budget indicated a daily diffuse water input (Qds) of
6.39 ± 0.78 m3 s−1 or 0.33 ± 0.04 m3 s−1 km−1. The N mass budget showed a NO3

− load input from
diffuse sources (Lds) to the Oglio River reach of 5382 ± 1622 kg N day−1, and the NO3

− concentration in
diffuse water inputs (NO3

−
ds) was 9.74 ± 3.16 mg N L−1 (Figure 6b). During the irrigation period in the

Mincio River reach (8 km), the water discharge increased by about 1.9 m3 s−1. Considering an average
2.51 ± 0.19 m3 s−1 of daily water withdrawal and 0.64 ± 0.59 m3 s−1 of the input from point sources, the
average daily diffuse water input (Qds) was 3.76 ± 2.30 m3 s−1 or 0.47 ± 0.29 m3 s−1 km−1. The daily
NO3

− load from diffuse inputs (Lds) was 1594 ± 631 kg N day−1, which determined a calculated NO3
−

ds
concentration of 4.90 ± 3.56 mg N L−1 (Figure 6c). For all river reaches, the estimated range of NO3

−

concentrations in diffuse water inputs overlapped the average NO3
− concentration measured in spring

waters adjacent to the river courses during the irrigation period (Figure 6).

Figure 6. Cont.
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Figure 6. Nitrate and water budgets for the three reaches of Adda, Oglio, and Mincio rivers crossing
the spring belt. Summer N budget were performed for the 18 km long Adda River reach (a), the 19 km
long Oglio River reach (b), and the 8 km long Mincio river reach (c). River discharge (Q) and the nitrate
concentration (NO3

−–N) are reported for the reach extremes (IN and OUT), while the discharge (Q)
and the N load (L) are indicated for irrigation abstractions (id), point sources (ps), and diffuse sources
(ds). From the nitrate and the water budgets, it was possible to estimate the NO3

− concentrations of the
diffuse inputs (NO3

−
ds), which were compared to the NO3

− concentrations in spring water from the
measured data.

4. Discussion

This study combines the results from monitoring activities of discharge and water chemistry,
water and NO3

− budgets at reach scale, soil N budgets, and water use for irrigation in sub-basins of the
Adda, Oglio, and Mincio rivers. All these results provide strong evidences of a common mechanism,
likely driven by flood irrigation with large water volumes over permeable surfaces, that transfers
excess reactive N in soils to the groundwater and then into river waters. Reach-scale budget data
suggest diffuse inputs of water with NO3

− concentrations similar to those of groundwater for the three
systems. The presented evidence should be supported by hydrological models quantitatively linking
irrigation, river-groundwater interactions, and NO3

− diffuse pollution. Understanding if and how
irrigation alters hydrological processes, groundwater levels, and NO3

− diffuse pollution is a priority in
the context of climate change, future water availability, and the implementation of irrigation practices
in new agricultural areas.

4.1. Irrigation as an Important Component of the Hydrological Cycle in the Adda, Oglio, and Mincio Rivers

The natural SW–GW interaction has been modified by the regulation of river flows and by the
irrigation system that contributes, together with precipitations, to the recharge of aquifers. Precipitations
are similar between non-irrigation (3.8 × 108, 4.5 × 108 and 2.0 × 108 m3 year−1) and irrigation periods
(3.2 × 108, 3.8 × 108 and 1.7 × 108 m3 year−1 for the Adda, Oglio, and Mincio river watersheds,
respectively). In all the studied systems, more than 85% of the water used for irrigation is diverted
from rivers by the artificial irrigation network (1.4 × 108, 2.3 × 108, and 1.4 × 108 m3 year−1 for the
Adda, Oglio, and Mincio rivers, respectively). Such amounts are equivalent to the 51%, 72%, and 85%
of the precipitation in the irrigation period for the Adda, Oglio, and Mincio basins. In other words,
from May to September, the water volume used for irrigation may nearly double the water volume
from precipitation.

In the Adda, Oglio, and Mincio watersheds the surface irrigated via the main and secondary canals
network is equivalent to 57, 80, and 89% of the agricultural land, respectively. For the Adda and Oglio
watersheds, the dominant irrigation system in the studied areas is the flooding, followed by sprinkler
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technique. For the Mincio watershed, the two techniques are used equally. Irrigation by flooding has a
low water efficiency, with water losses of up to 60%, while irrigation by sprinkler has water losses of
about 25% [78]. According to these percentages, the water volume lost during the irrigation period
was estimated to be about 8.7 × 107, 1.5 × 108, and 6 × 107 m3 year−1 for Adda, Oglio, and Mincio,
respectively. Moreover, for the Oglio and Mincio watersheds, the water supply to maize and feed
crops was in excess with respect to reference crop water needs of ~33 × 106 and 19 × 106 m3 year−1,
respectively (~13% of the water volume used for irrigation for both basins). Therefore, the total
irrigation water losses due to inefficient irrigation and excess water supply to crops is estimated to be
8.7 × 107, 1.8 × 108, and 7.9 × 107 m3 year−1 for the Adda, Oglio, and Mincio basins, respectively.

Most of the irrigation water which is not used by crops recharges the aquifer, determines the
groundwater vertical migration, feeds the springs, and drains back into the rivers via springs or
river–groundwater interactions [40,47,79]. In the Oglio River, the groundwater heads in the shallow
aquifer of the higher plain are lowest in spring, at the end of the non-irrigation period, and increase by
about 4 m during the irrigation period [40]. Numerous springs located in the spring belt area have null
discharge for most of the year, with the irrigation period being the exception [58,80,81]. Recent studies
have demonstrated that the main source of recharge (>50%) to the Oglio River higher plain aquifer is
irrigation water [40]. This figure was calculated with end-member mixing models using the Cl/Br ratio
and δ2H with two end-members, i.e., rainfall and combined Lake Iseo-Oglio River water that feed the
irrigation abstractions in the initial stretch of the river course.

4.2. Excess Manure Availability and Use of Synthetic Fertilizers Result in Diffuse N Pollution in the
Three Basins

During the irrigation period, the NO3
− concentrations of river water were similar to those in

the spring along the Oglio and Mincio rivers, and similar to those reported in a previous study of
spring water chemistry [82–84]. These data provide evidence that irrigation and SW–GW interactions
may explain the observed NO3

− trends. The diffuse input of NO3
− to the Oglio River reach was

demonstrated with a simulation of the Oglio River water quality by means of the QUAL2Kw model [85].
The modelling of ammonification and nitrification rates was, in fact, not able to explain the increase of
NO3

− concentration along the river reach crossing the spring belt during the irrigation period.
In all the studied watersheds, the risk of diffuse N pollution for surface and ground waters is

indicated by the positive soil N budgets calculated in the three portions of the Adda, Oglio, and Mincio
basins. Considering the soil N budget at the Po River watershed level, the agricultural areas with
the highest N surpluses correspond to the studied watersheds [86]. Such excesses of N are among
the highest reported in Europe and North America [87–92]. The average areal surplus peaked in
the Oglio watershed portion (193 kg N ha−1 year−1), and was similar for Adda and Mincio (139 and
136 kg N ha−1 year−1, respectively). This difference was due to the almost double contribution of
livestock manure input in the Oglio watershed, followed by synthetic fertilizer input. All analysed
watersheds are characterized by high livestock density, resulting in manure being the main input term
in the soil’s N budget (over 50% of the total N input). The large availability of organic N does not
exclude the use of synthetic fertilizers, which represent the second N input utilized in agriculture (about
25% of the total N input). The average areal N surplus of the Oglio and Mincio portions was similar to
that calculated on the whole watershed level [14,73]. Within these basins, the municipalities with the
highest N surpluses are located in the high-medium plain included in the watershed portions under
study, which are characterized by high livestock densities [14,73]. The soil N budgets of the sub-basins
in the alpine sector of the Po River watershed underwent temporal and spatial variations related to
changes in land use and farming practices [86]. Between the 1970s and 1980s, the shift from traditional
farming practices to large scale industrial livestock farming led to an increase in soil N excess due to
an increase in livestock density, mainly of pigs, that led to an overproduction of manure and slurry
relative to the agricultural area available for spreading [86]. The livestock manure input to cropland
exceeded the N crop uptake and removal by natural processes, such as denitrification [14,72]. In the
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Adda, Oglio, and Mincio watersheds, the crop uptake is the main output term, but the N assimilation
efficiency is scarce (40%, 35%, and 44%, respectively), indicating a high level of vulnerability of aquatic
ecosystems to diffuse N pollution [93,94]. The main crops (maize and feed crops) cultivated in the
studied areas are necessary to sustain livestock farming; in particular, maize is considered to be an
impacting crop due to its high N and water requirements [86]. The N requirement for maize to have a
medium-high production is 280 kg ha−1, which is much lower than the N input of the agricultural land
in the three considered watersheds, confirming the excess use of manure and synthetic fertilizers [95].

Taken together, these data confirm that irrigation water may horizontally and vertically displace
a large N excess generated by agricultural activities. Vertical infiltration seems to be particularly
well-suited to the specific soil features (high permeability).

4.3. Linking Irrigation and N Excess to Interpret N Mass Transfer

The significant body of evidence reported suggests that irrigation practices may drive the dynamic
of N in regulated-agricultural watersheds. Irrigation water may solubilize NO3

− excess, transfer it
from surface to groundwaters, favoring groundwater table rise and its interaction with river water.
An excess of N in permeable soils results in diffuse N pollution due to leaching and runoff processes to
surface and ground waters [73,83].

Barakat et al. [4] have examined many studies to understand the relationships between irrigation
techniques and N transformations in agricultural land. Flooding and by sprinkler appear to be
the irrigation techniques with the strongest, most numerous, and least controlled effects on N
transformations. In particular, irrigation by flooding favors NO3

− leaching when it is associated with
near-saturation soil water content and coarse soils [4,15–20]. The effect of irrigation on NO3

− leaching is
also amplified by an increase in N fertilization close to the timing of irrigation [21,22,96–98]. In summer,
the proximity of sidedress fertilization and flooding irrigation results in high drainage rates (56% of
annual drainage) and N leaching (46% of the entire annual losses) in the Po valley [22,99]. At the global
scale, the increase of N fertilization in the last century has enhanced N leaching and the NO3

− storage
in vadose zones, in groundwater and in soil as organic N in root zones [99–101]. This N legacy at
the watershed level could lead to a biogeochemical lag between the complete cessation of fertilizer
application and the disappearance of its effects on groundwater and surface water quality [101].

In this study, it is evident that the sum of N surplus in agricultural soil, and NO3
− loads from

precipitation and irrigation, together with the high water volume used, may favor N leaching into
groundwater [100,101]. The total NO3

− loads from irrigation and precipitation are 0.49, 0.92, and
0.24 t N year−1 for the Adda, Oglio, and Mincio watershed portions. The contribution of irrigation
water is 38%, 61%, 30% of the total loads, respectively. In the Oglio watershed portion, irrigation by wells
constitutes only 16% of the water volume used for irrigation, but it drives the NO3

− load from irrigation
due to the NO3

− contamination of groundwater. Also in the Adda and Mincio watershed portions, the
contribution of groundwater to irrigation is about 13 and 4%, respectively, but it does not affect the
NO3

− load due to the lower NO3
− concentrations in groundwater compared to that in the Oglio basin.

The annual N surplus in agricultural soil increases by ~5% in the three watersheds, adding the NO3
−

loads from irrigation and precipitation. This total N load, in excess in agricultural soil, may be partially
transferred to groundwater by irrigation water losses: the potential NO3

− concentration of leaching
water may be estimated to be around 20–30 mg N L−1. This value is a maximum estimation because it
does not consider the denitrification process in aquatic environments [14] and the accumulation in
the vadose zone and in the soil [100,101]. This range is, in fact, higher than the NO3

− concentrations
(from 2.3 to 11.3 mg N L−1 in the high-medium plain for the period 2001–2010) measured by ARPA
Lombardy in the groundwater monitoring network into the Po River plain [41]. NO3

− concentrations
measured in the springs near the river courses under study (Figure 6) are in agreement with the latter
range and with literature data (5.87 ± 0.64, 9.80 ± 3.50, and 3.4 ± 2 mg NO3

−–N L−1 for the Mincio,
Oglio, and Adda springs, respectively) [82–84]. As hypothesized by Bartoli et al. [14], the spring belt
zone in the Oglio River is a critical area for N contamination because, in this area, substantial recycling
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to the surface of the contaminated groundwater occurs, affecting the N content of the surface water.
The outcomes of water and N mass budgets performed for the studied Adda, Oglio, and Mincio river
reaches confirm that the NO3

− diffuse concentration is due to groundwater inflow to the river course.
The NO3

− concentration of diffuse water inputs (NO3
−

ds) is, in fact, comparable with that measured
in springs located near the river course, an excellent proxy of groundwater chemical composition.
The groundwater input to the river is higher in the Adda River reach compared that in the Oglio and
Mincio river reaches. The groundwater input to the water flow at the downstream station is similar for
the Adda and Oglio rivers (~63%), while it is lower for the Mincio River (~24%). The NO3

− input from
groundwater to river reaches affects the river water quality, representing about ~97%, ~84%, and ~68%
of the downstream NO3

− loads in the Adda, Oglio, and Mincio river reaches. It is also possible to
highlight a geographical gradient, from east to west, which reflects the spring belt width. Although the
groundwater input per km is lower for the Oglio than the Adda River, the NO3

− loads input per km is
highest in the Oglio River (283 kg N day−1 km−1). Instead, the Adda and Mincio river reaches receive
about 254 kg N day−1 km−1 and 199 kg N day−1 km−1, respectively. This discrepancy is due to the
higher water volume characterizing the Adda River watershed that likely imposes a dilution effect on
NO3

− concentrations, and to a different N surplus in the agricultural soil of the three studied portions.
Upscaling the groundwater input per km to the spring belt width of the three basins for the

irrigation period, it is possible to estimate the role of water losses from irrigated soils in the context of
diffuse groundwater input. In the Oglio and Mincio river portions, the ranges of groundwater input to
rivers (139–171 and 52–221 × 106 m3 year−1, respectively) are comparable with the water losses due to
excess water supply to crops and inefficient irrigation systems (180 and 79 × 106 m3 year−1, respectively).
In the spring belt zone of the Adda River, the groundwater input to the river ranged between 430
and 615 × 106 m3 year−1, and exceeded by an order of magnitude the water losses due to excess
water supply to crops and inefficient irrigation systems at the watershed level (87 × 106 m3 year−1).
This outcome may be explained by the fact that the watershed area drained by the Adda River is
double those of the areas drained by each of the Oglio and Mincio rivers. The same upscaling made
for the N input from groundwater to river indicates an increase up to 1355, 1515, and 633 t N year−1.
These loads represent about 10% of the N surplus in agricultural soil for all the studied watersheds.

Our results for the Oglio River basin confirm the findings of recent studies that estimated N loads
from the aquifer to surface-spring to be about 1200 t year−1 (3280 kg day−1), and from the aquifer to river
to be about 1500 t year−1 (4100 kg day−1) in the spring belt zone [14,72,83]. Taherisoudejani et al. [85]
calculated a NO3

− load in the range between 3800 and 6000 kg day−1 during the summers of 2009, 2010,
and 2011, which would be similar to the N loads calculated in this study (Lds value). Delconte et al. [27]
investigated the SW–GW interaction in the Oglio basin with a general mass balance approach and with
end member mixing analysis, using also water and NO3

− isotopes to estimate a total groundwater
input of between 4 and 5 m3 s−1 (equivalent to 0.39 and 0.50 m3 s−1 km−1).

In this work, the integration of the open-channel technique with river and spring water samples
allowed us to calculate the net increase of NO3

− loads by means of a mass balance between the output
and the input stations. This approach does not take into account processes such as primary producer
uptake or microbial denitrification, which were measured, for example, in the Mincio River [73], but
which were quantitatively small compared to the large NO3

− increase due to SW–GW interactions.
Furthermore, the calculated values of Lds, Qds, and NO3

−
ds may be slightly underestimated, because

the approach considers a homogeneous groundwater input along the river reaches, and because
spring water is representative of groundwater chemistry. The method could be further improved
by introducing conservative parameters such as chloride, sulfate, and isotopes, and of dissolved
nitrates that make it possible to unequivocally characterize the origin of the water, and to recognize
the main biological processes affecting nutrient concentrations (e.g., nitrification, denitrification, and
assimilation) [27,40]. Experimental data on N exchange between ground and surface water are
essential to improve numerical modelling that simulates, on different spatial and temporal scales,
N processes and N input to rivers, and finally, to quantify how management actions will influence
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SW–GW interaction and river functioning [102–104]. In particular, the outcomes of the present work
highlight a N legacy, due to a feedback loop between soil and water use, with irrigation acting as the
driver of N transfer: N-poor water from rivers drains N-rich soil feeding groundwater, which, in turn,
feeds the rivers downgradient, thereby increasing their N-loading. This is a key point for managing
water and soils, because N legacy may make it impossible to achieve good water quality goals in the
short-medium term, i.e., decades [101].

5. Conclusions

The three rivers examined in this study have common features: they are regulated, heavily
exploited for irrigation, and cross and drain a very permeable area which is characterized by intensive
agriculture, animal farming, and N excess. We provide a tentative interpretation of the water and
N dynamics in these basins that are strongly dependent on the irrigation-driven alteration of the
hydrological cycle and on inefficient N use. The presented data and evidence support the hypothesis
that the steep NO3

− increases in river water are due to the interaction of the rivers with NO3
−-polluted

groundwater. In turn, NO3
− accumulates in the groundwater due to organic and synthetic fertilizers

in large excess to crop requirements, and the use of large amounts of water for traditional irrigation
techniques such as flood irrigation. Such outcomes are specific for the three important sub-basins of
the Po watershed, but may apply to an increasing number of watersheds in the world that will be
devoted to intensive and irrigated agriculture and animal farming, resulting in diffuse N pollution.
In the Adda, Oglio, and Mincio watersheds it seems urgent to find alternatives to the present practices,
improving N optimization N and water use in agricultural areas. Altered water availability due to
climate change will produce unpredictable effects on the presented N dynamics.

Author Contributions: Conceptualization, E.R., M.B.; methodology, E.R., M.B.; formal analysis, E.R., M.P., F.S.
and S.Q.; investigation, E.R., M.P., F.S. and S.Q.; data curation, E.R., E.S. (Elisa Soana) and M.P.; writing—original
draft preparation, E.R., M.B., M.P., E.S. (Elisa Soana), F.S. and S.Q.; writing—review and editing, E.S. (Elisa Sacchi),
E.S. (Edoardo Severini), F.C., P.V. and M.B.; visualization, E.R.; supervision, M.B.; funding acquisition, M.B.

Funding: This research was funded by Oglio River Consortium. Erica Racchetti was supported from 2009
to 2015 by Oglio Consortium and from 2016 to 2019 by FONDAZIONE CARIPLO, grant number 2015-0263,
project: “Squaring the cycle: the INTEgration of GROundwater processes in Nutrient budgets for a basin-oriented
remediation strategy (INTEGRON)”.

Acknowledgments: We thank Massimo Buizza, director of the Oglio River Consortium, and Luigi Bertoli, director
of Adda River Consortium, for gently providing discharge data.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. Galloway, J.N.; Townsend, A.R.; Erisman, J.W.; Bekunda, M.; Cai, Z.; Freney, J.R.; Martinelli, L.A.;
Seizinger, S.P.; Sutton, M.A. Transformation of the Nitrogen cycle: Recent trends, questions and potential
solutions. Science 2008, 320, 889–892. [CrossRef] [PubMed]

2. Overeem, I.; Kettner, A.J.; Syvitski, J.P.M. 9.40 Impacts of Humans on River Fluxes and Morphology. In Treatise
on Geomorphology; Shroder, J.F., Wohl, E., Eds.; Academic Press: Cambridge, MA, USA, 2013; pp. 828–842.

3. Sutton, M.; Howard, C. The European Nitrogen Assessment; Cambridge University Press: Cambridge, UK, 2011.
4. Barakata, M.; Cheviron, B.; Angulo-Jaramillo, R. Influence of the irrigation technique and strategies on the

nitrogen cycle and budget: A review. Agric. Water Manag. 2016, 178, 225–238. [CrossRef]
5. Van Grinsven, H.J.M.; Ward, M.H.; Benjamin, N.; De Kok, T.M. Does the evidence about health risks associated

with nitrate ingestion warrant an increase of the nitrate standard for drinking water? Environ. Health 2006, 5,
26. [CrossRef] [PubMed]

6. Rivett, M.O.; Buss, S.R.; Morgan, P.; Smith, J.W.N.; Bemment, C.D. Nitrate attenuation in groundwater:
A review of biogeochemical controlling processes. Water Res. 2008, 42, 4215–4232. [CrossRef] [PubMed]

http://dx.doi.org/10.1126/science.1136674
http://www.ncbi.nlm.nih.gov/pubmed/18487183
http://dx.doi.org/10.1016/j.agwat.2016.09.027
http://dx.doi.org/10.1186/1476-069X-5-26
http://www.ncbi.nlm.nih.gov/pubmed/16989661
http://dx.doi.org/10.1016/j.watres.2008.07.020
http://www.ncbi.nlm.nih.gov/pubmed/18721996


Water 2019, 11, 2304 19 of 23

7. Howarth, R.; Chan, F.; Conley, D.J.; Garnier, J.; Doney, S.C.; Marino, R.; Billen, G. Coupled biogeochemical cycles:
Eutrophication and hypoxia in temperate estuaries and coastal marine ecosystems. Front. Ecol. Environ. 2011, 9,
18–26. [CrossRef]

8. IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment
Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M.,
Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press:
Cambridge, UK; New York, NY, USA, 2013; p. 1535.

9. Gómez, C.M.; Pérez-Blanco, C.D. Simple Myths and Basic Maths About Greening Irrigation. Water Resour.
Manag. 2014, 28, 4035–4044. [CrossRef]

10. Vörösmarty, C.J.; Sahagian, D. Anthropogenic disturbance of the terrestrial water cycle. Bioscience 2000, 50,
753–756. [CrossRef]

11. European Commission. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000
establishing a framework for Community action in the field of water policy. Off. J. Eur. Commun. 2000, 327, 22.

12. European Commission. Directive 2006/118/EC of the European Parliament and of the Council of 12 December
2006 on the protection of groundwater against pollution and deterioration. Off. J. Eur. Commun. 2006, 372, 19.

13. Lassaletta, L.; García-Gómez, H.; Gimeno, B.S.; Rovira, J.V. Agriculture-induced increase in nitrate concentrations
in stream waters of a large Mediterranean catchment over 25 years (1981–2005). Sci. Total Environ. 2009, 407,
6034–6043. [CrossRef]

14. Bartoli, M.; Racchetti, E.; Delconte, C.A.; Sacchi, E.; Soana, E.; Laini, A.; Longhi, D.; Viaroli, P. Nitrogen
balance and fate in a heavily impacted watershed (Oglio River, Northern Italy): In quest of the missing
sources and sinks. Biogeosciences 2012, 9, 361–373. [CrossRef]

15. Mailhol, J.; Ruelle, P.; Nemeth, I. Impact of fertilisation practices on nitrogenleaching under irrigation.
Irrig. Sci. 2001, 20, 139–147.

16. Asadi, M.E.; Clemente, R.S.; Gupta, A.D.; Loof, R.; Hansen, G.K. Impacts of fertigation via sprinkler irrigation
on nitrate leaching and corn yield in an acid—Sulphate soil in Thailand. Agric. Water Manag. 2002, 52,
197–213. [CrossRef]

17. Darwish, T.; Atallah, T.; Hajhasan, S.; Chranek, A. Management of nitrogen by fertigation of potato in
Lebanon. Nutr. Cycl. Agroecosyst. 2003, 67, 1–11. [CrossRef]

18. Zotarelli, L.; Scholberg, J.M.; Dukes, M.D.; Muñoz-Carpena, R. Monitoring of nitrate leaching in Sandy soils.
J. Environ. Qual. 2007, 36, 953–962. [CrossRef]

19. Burguete, J.; Zapata, N.; García-Navarro, P.; Maïkaka, M.; Playán, E.; Murillo, J. Fertigation in furrows and
level furrow systems. II: Field experiments, modelcalibration, and practical applications. J. Irrig. Drain. Eng.
2009, 135, 413–420. [CrossRef]

20. Mubarak, I.; Mailhol, J.C.; Angulo-Jaramillo, R.; Bouarfa, S.; Ruelle, P. Effect oftemporal variability in soil
hydraulic properties on simulated water transferunder high-frequency drip irrigation. Agric. Water Manag.
2009, 96, 1547–1559. [CrossRef]

21. Zotarelli, L.; Dukes, M.D.; Muñoz-Carpena, R. Soil water distribution and nitrate leaching of drip irrigation
controlled by soil moisture sensors. In Estudios en la Zona no Saturada del Suelo vol. IX; Silva, O.,
Carrera Ramírez, J., Eds.; Barcelona, 2009. Available online: https://abe.ufl.edu/faculty/carpena/zns/index_
volumenes.shtml (accessed on 2 November 2019).

22. Perego, A.; Basile, A.; Bonfante, A.; De Mascellis, R.; Terribile, F.; Brenna, S.; Acutis, M. Nitrate leaching
undermaize cropping systems in Po Valley (Italy). Agric. Ecosyst. Environ. 2012, 147, 57–65. [CrossRef]

23. Brunke, M.; Gonser, T. The ecological significance of exchange processes between rivers and groundwater.
Freshwater Biol. 1997, 37, 1–33. [CrossRef]

24. Sophocleous, M. Interactions between groundwater and surface water: The state of the science. Hydrogeol. J.
2002, 10, 52–67. [CrossRef]

25. Negrela, P.; Petelet-Girauda, E.; Barbiera, J.; Gautier, E. Surface water–groundwater interactions in an alluvial
plain: Chemical and isotopic systematics. J. Hydrol. 2003, 277, 248–267. [CrossRef]

26. Fleckenstein, J.H.; Krause, S.; Hannah, D.M.; Boano, F. Groundwater-surface water interactions: New
methods and models to improve understanding of processes and dynamics. Adv. Water Resour. 2010, 33,
1291–1295. [CrossRef]

http://dx.doi.org/10.1890/100008
http://dx.doi.org/10.1007/s11269-014-0725-9
http://dx.doi.org/10.1641/0006-3568(2000)050[0753:ADOTTW]2.0.CO;2
http://dx.doi.org/10.1016/j.scitotenv.2009.08.002
http://dx.doi.org/10.5194/bg-9-361-2012
http://dx.doi.org/10.1016/S0378-3774(01)00136-6
http://dx.doi.org/10.1023/A:1025107202143
http://dx.doi.org/10.2134/jeq2006.0292
http://dx.doi.org/10.1061/(ASCE)IR.1943-4774.0000098
http://dx.doi.org/10.1016/j.agwat.2009.06.011
https://abe.ufl.edu/faculty/carpena/zns/index_volumenes.shtml
https://abe.ufl.edu/faculty/carpena/zns/index_volumenes.shtml
http://dx.doi.org/10.1016/j.agee.2011.06.014
http://dx.doi.org/10.1046/j.1365-2427.1997.00143.x
http://dx.doi.org/10.1007/s10040-001-0170-8
http://dx.doi.org/10.1016/S0022-1694(03)00125-2
http://dx.doi.org/10.1016/j.advwatres.2010.09.011


Water 2019, 11, 2304 20 of 23

27. Delconte, C.A.; Sacchi, E.; Racchetti, E.; Bartoli, M.; Mas-Pla, J.; Re, V. Nitrogen inputs to a river course
in a heavily impacted watershed: A combined hydrochemical and isotopic evaluation (Oglio River Basin,
N Italy). Sci. Total Environ. 2014, 466, 924–938. [CrossRef]

28. Menció, A.; Galan, M.; Boix, D.; Mas-Pla, J. Analysis of stream-aquifer relationships: A comparison between
mass balance and Darcy’s law approaches. J. Hydrol. 2014, 517, 157–172. [CrossRef]

29. Ravazzani, G.; Curti, D.; Gattinoni, P.; Della Valentina, S.; Fiorucci, A.; Rosso, R. Assessing Groundwater
Contribution to Streamflow of a Large Alpine River with Heat Tracer Methods and Hydrological Modelling.
River Res. Appl. 2016, 32, 871–884. [CrossRef]

30. Ivkovic, K.M. A top–down approach to characterise aquifer–river interaction processes. J. Hydrol. 2009, 365,
145–155. [CrossRef]

31. May, L.W. Groundwater Resources Sustainability: Past, Present, and Future. Water Resour. Manag. 2013, 27,
4409–4424.

32. Pérez-Martín, M.A.; Estrela, T.; Andreu, J.; Ferrer, J. Modeling Water Resources and River-Aquifer Interaction
in the Júcar River Basin, Spain. Water Resour. Manag. 2014, 28, 4337–4358. [CrossRef]

33. Petitta, M.; Fracchiolla, D.; Aravena, R.; Barbieri, M. Application of isotopic and geochemical tools for the
evaluation of nitrogen cycling in an agricultural basin, the Fucino Plain, Central Italy. J. Hydrol. 2009, 372,
124–135. [CrossRef]

34. Reichard, J.S.; Brown, C.M. Detecting groundwater contamination of a river in Georgia, USA using baseflow
sampling. Hydrogeol. J. 2009, 17, 735–747. [CrossRef]

35. Ouyang, Y. Estimation of shallow groundwater discharge and nutrient load into a river. Ecol. Eng. 2012, 38,
101–104. [CrossRef]

36. Caschetto, M.; Barbieri, M.; Galassi, D.M.P.; Mastrorillo, L.; Rusi, S.; Stoch, F.; Di Cioccio, A.; Petitta, M.
Human alteration of groundwater-surface water interactions (Sagittario River, Central Italy): Implication for
flow regime, contaminant fate and invertebrate response. Environ. Earth Sci. 2014, 71, 1791–1807. [CrossRef]

37. Stellato, L.; Newman, B.D. Groundwater inputs to rivers: Hydrological, biogeochemical and ecological effects
inferred by environmental isotopes. In Application of Isotope Techniques for Assessing Nutrient Dynamics in
River Basins; IAEA-TECDOC-1695; International Atomic Energy Agency: Vienna, Austria, 2013; pp. 187–217.

38. Nestler, A.; Berglund, M.; Accoe, F.; Duta, S.; Xue, D.; Boeckx, P.; Taylor, P. Isotopes for improved management
of nitrate pollution in aqueous resources: Review of surface water field studies. Environ. Sci. Pollut. Res.
2011, 18, 519–533. [CrossRef] [PubMed]

39. Saccon, P.; Leis, A.; Marca, A.; Kaiser, J.; Campisi, L.; Böttcher, M.E.; Savarino, J.; Escherd, P.; Eisenhauere, A.;
Erblandc, J. Multi-isotope approach for the identification and characterisation of nitrate pollution sources in
the Marano lagoon (Italy) and parts of its catchment area. Appl. Geochem. 2013, 34, 75–89. [CrossRef]

40. Rotiroti, M.; Bonomi, T.; Sacchi, E.; McArthur, J.M.; Stefania, G.A.; Zanotti, C.; Taviani, S.; Patelli, M.; Nava, V.;
Soler, V.; et al. The effects of irrigation on groundwater quality and quantity in a human-modified hydro-system:
The Oglio River basin, Po Plain, northern Italy. Sci. Total Environ. 2019, 672, 342–356. [CrossRef] [PubMed]

41. Sacchi, E.; Acutis, M.; Bartoli, M.; Brenna, S.; Delconte, C.A.; Laini, A.; Pennisi, M. Origin and fate of nitrates
in groundwater from the central Po plain: Insights from isotopic investigations. Appl. Geochem. 2013, 34,
164–180. [CrossRef]

42. Lombardy Region. Piano di Tutela Delle Acque 2016 (Water Protection Plan). Available online: https://
www.regione.lombardia.it/wps/portal/istituzionale/HP/DettaglioRedazionale/servizi-e-informazioni/Enti-
e-Operatori/territorio/governo-delle-acque/piano-tutela-acque-pta-2016/piano-tutela-acque-pta-2016
(accessed on 9 October 2019).

43. European Commission. Commission Implementing Decision 2011/721/EU of 3 November 2011 on Granting
a Derogation Requested by Italy with Regard to the Regions of Emilia Romagna, Lombardia, Piemonte and
Veneto pursuant to Council Directive 91/676/EEC concerning the Protection of Waters Against Pollution
Caused by Nitrates from Agricultural Sources. 2011, p. 36. Available online: https://eur-lex.europa.eu/legal-
content/EN/TXT/?uri=CELEX%3A32011D0721 (accessed on 2 November 2019).

44. European Commission. Commission Implementing Decision (EU) 2016/1040 of 24 June 2016 on Granting a
Derogation Requested by Italian Republic with Regard to the Regions of Lombardia and Piemonte Pursuant
to Council Directive 91/676/EEC concerning the Protection of Waters Against Pollution Caused by Nitrates
from Agricultural Sources. 2016, p. 6. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/

?uri=uriserv:OJ.L_.2016.169.01.0006.01.ENG&toc=OJ:L:2016:169:TOC (accessed on 2 November 2019).

http://dx.doi.org/10.1016/j.scitotenv.2013.07.092
http://dx.doi.org/10.1016/j.jhydrol.2014.05.039
http://dx.doi.org/10.1002/rra.2921
http://dx.doi.org/10.1016/j.jhydrol.2008.11.021
http://dx.doi.org/10.1007/s11269-014-0755-3
http://dx.doi.org/10.1016/j.jhydrol.2009.04.009
http://dx.doi.org/10.1007/s10040-008-0382-2
http://dx.doi.org/10.1016/j.ecoleng.2011.10.014
http://dx.doi.org/10.1007/s12665-013-2584-8
http://dx.doi.org/10.1007/s11356-010-0422-z
http://www.ncbi.nlm.nih.gov/pubmed/21246297
http://dx.doi.org/10.1016/j.apgeochem.2013.02.007
http://dx.doi.org/10.1016/j.scitotenv.2019.03.427
http://www.ncbi.nlm.nih.gov/pubmed/30959301
http://dx.doi.org/10.1016/j.apgeochem.2013.03.008
https://www.regione.lombardia.it/wps/portal/istituzionale/HP/DettaglioRedazionale/servizi-e-informazioni/Enti-e-Operatori/territorio/governo-delle-acque/piano-tutela-acque-pta-2016/piano-tutela-acque-pta-2016
https://www.regione.lombardia.it/wps/portal/istituzionale/HP/DettaglioRedazionale/servizi-e-informazioni/Enti-e-Operatori/territorio/governo-delle-acque/piano-tutela-acque-pta-2016/piano-tutela-acque-pta-2016
https://www.regione.lombardia.it/wps/portal/istituzionale/HP/DettaglioRedazionale/servizi-e-informazioni/Enti-e-Operatori/territorio/governo-delle-acque/piano-tutela-acque-pta-2016/piano-tutela-acque-pta-2016
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32011D0721
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32011D0721
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2016.169.01.0006.01.ENG&toc=OJ:L:2016:169:TOC
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2016.169.01.0006.01.ENG&toc=OJ:L:2016:169:TOC


Water 2019, 11, 2304 21 of 23

45. Facchi, A.; Ortuani, B.; Maggi, D.; Gandolfi, C. Coupled SVAT–groundwater model for water resources
simulation in irrigated alluvial plains. Environ. Model. Softw. 2004, 19, 1053–1063. [CrossRef]

46. Gandolfi, C.; Facchi, A.; Maggi, D. Comparison of 1D models of water flow in unsaturated soils. Environ.
Model. Softw. 2006, 21, 1759–1764. [CrossRef]

47. Vassena, C.; Rienzner, M.; Ponzini, G.; Giudici, M.; Gandolfi, C.; Durante, C.; Agostani, D. Modeling water
resources of a highly irrigated alluvial plain (Italy): Calibrating soil and groundwater models. Hydrogeol. J.
2012, 20, 449–467. [CrossRef]

48. Di, H.J.; Cameron, K.C. Nitrate leaching in temperate agroecosystems: Sources, factors and mitigating
strategies. Nutr. Cycl. Agroecosyst. 2002, 64, 237–256. [CrossRef]

49. Gandolfi, C. ACQUA E IRRIGAZIONE PER NUTRIRE IL PIANETA. LA REALTÀ DELLA PIANURA
PADANA LOMBARDA. Ist. Lomb. Accad. Sci. E Lett. Incontr. Stud. 2017, 51–66. [CrossRef]

50. IRSA-CNR. Indagine Sulle Falde Acquifere Profonde Della Pianura Padana; Quaderni IRSA-CNR 51/2; CNR:
Roma, Italy, 1982; pp. 1–70.

51. Carcano, C.; Piccin, A. Geologia Degli Acquiferi Padani della Regione Lombardia; Regione Lombardia and ENI
Divisione AGIP: Firenze, Italy, 2002.

52. Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very high resolution interpolated climate
surfaces for global land areas. Int. J. Climatol. 2005, 25, 1965–1978. [CrossRef]

53. Gardi, C.; Panagos, P.; Hiederer, R.; Montanarella, L.; Micale, F. Report on the Activities Realized Within the
Service Level Agreement between JRC and EFSA, as a Support of the FATE and ECOREGION Working Groups of
EFSA PPR (SLA/EFSA-JRC/2008/01): Final Report of 15th December 2010; JRC-IES scientific and technical report:
EUR 24744 EN; European Union: Luxembourg, 2011; ISBN 978-92-79-19521-1. [CrossRef]

54. ERSAL. Basi Ambientali Della Pianura—Servizio di Mappa (ArcIMS)—Rilevanze Naturalistiche e
Paesaggistiche. Banca Dati Superficiale (Fontanili), ERSAL. 1998. Available online: http://www.cartografia.
regione.lombardia.it/geoportale (accessed on 9 October 2019).

55. Università degli Studi di Milano and U.R.B.I.M. Lombardia. Tutela e Valorizzazione Dei Fontanili Del Territorio
Lombardo FonTe. Quaderno Della Ricerca n. 144; Università degli Studi di Milano and U.R.B.I.M: Milano, Italy,
2012; p. 98.

56. Burrato, P.; Ciucci, F.; Valensise, G. An inventory of river anomalies in the Po Plain, Northern Italy: Evidence
for active blind thrust faulting. Ann. Geophys. 2003, 46, 865–882.

57. Pellegrini, L.; Vercesi, P.L. I geositi della Provincia di Pavia; Luigi Ponzio e Figli Editore: Pavia, Italy, 2005.
58. De Luca, D.A.; Destefanis, E.; Forno, M.G.; Lasagna, M.; Masciocco, L. The genesis and the hydrogeological

features of the Turin Po Plain fontanili, typical lowland springs in Northern Italy. Bull. Eng. Geol. Environ.
2014, 73, 409–427. [CrossRef]

59. Eupolislombardia. Progetto di Accompagnamento a Supporto Del Processo di Revisione Del Piano di Tutela Delle
Acque. Attività di Approfondimento Specialistico Relativo ai Corpi Idrici Sotterranei (Cod. Éupolis Lombardia
Ter13016/001). Relazione di sintesi; Éupolis Lombardia: Milano, Italy, 2015; p. 24.

60. Copernicus Europe’s Eyes on the Earth. Corine Land Cover. 2006. Available online: https://land.copernicus.
eu/pan-european/corine-land-cover (accessed on 9 October 2019).

61. Geoportale Regione Lombardia. Carta Geologica 250,000 del 1990, Mappa Digitale (Arcgis9.x).
Available online: www.geoportale.regione.lombardia.it/metadati?p_p_id=PublishedMetadata_
WAR_geoportalemetadataportlet&p_p_lifecycle=0&p_p_state=maximized&p_p_state=view&
_PublishedMetadata_WAR_geoportalemetadataportlet_view=editPublishedMetadata&_PublishedMetadata_
WAR_geoportalemetadataportlet_uuid=%7B018208BD-AD82-4D2A-B195-548D6F3432B4%7D&
_PublishedMetadata_WAR_geoportalemetadataportlet_editType=view&_PublishedMetadata_WAR_
geoportalemetadataportlet_fromAsset=true&rid=local (accessed on 9 October 2019).

62. National Statistics Institution, 6th Agricultural Census. 2010. Available online: http://dati-
censimentoagricoltura.istat.it (accessed on 9 October 2019).

63. Enti Regolatori dei Grandi Laghi. Available online: http://www.laghi.net (accessed on 9 October 2019).
64. Regione Lombardia. Sperimentazione del Deflusso Minimo Vitale (DMV). Available online:

https://www.regione.lombardia.it/wps/portal/istituzionale/HP/DettaglioRedazionale/servizi-e-
informazioni/Enti-e-Operatori/territorio/governo-delle-acque/deflusso-minimo-vitale/sperimentazione-
deflusso-minimo-vitale (accessed on 9 October 2019).

http://dx.doi.org/10.1016/j.envsoft.2003.11.008
http://dx.doi.org/10.1016/j.envsoft.2006.04.004
http://dx.doi.org/10.1007/s10040-011-0822-2
http://dx.doi.org/10.1023/A:1021471531188
http://dx.doi.org/10.4081/incontri.2017.308
http://dx.doi.org/10.1002/joc.1276
http://dx.doi.org/10.2788/61018
http://www.cartografia.regione.lombardia.it/geoportale
http://www.cartografia.regione.lombardia.it/geoportale
http://dx.doi.org/10.1007/s10064-013-0527-y
https://land.copernicus.eu/pan-european/corine-land-cover
https://land.copernicus.eu/pan-european/corine-land-cover
www.geoportale.regione.lombardia.it/metadati?p_p_id=PublishedMetadata_WAR_geoportalemetadataportlet&p_p_lifecycle=0&p_p_state=maximized&p_p_state=view&_PublishedMetadata_WAR_geoportalemetadataportlet_view=editPublishedMetadata&_PublishedMetadata_WAR_geoportalemetadataportlet_uuid=%7B018208BD-AD82-4D2A-B195-548D6F3432B4%7D&_PublishedMetadata_WAR_geoportalemetadataportlet_editType=view&_PublishedMetadata_WAR_geoportalemetadataportlet_fromAsset=true&rid=local
www.geoportale.regione.lombardia.it/metadati?p_p_id=PublishedMetadata_WAR_geoportalemetadataportlet&p_p_lifecycle=0&p_p_state=maximized&p_p_state=view&_PublishedMetadata_WAR_geoportalemetadataportlet_view=editPublishedMetadata&_PublishedMetadata_WAR_geoportalemetadataportlet_uuid=%7B018208BD-AD82-4D2A-B195-548D6F3432B4%7D&_PublishedMetadata_WAR_geoportalemetadataportlet_editType=view&_PublishedMetadata_WAR_geoportalemetadataportlet_fromAsset=true&rid=local
www.geoportale.regione.lombardia.it/metadati?p_p_id=PublishedMetadata_WAR_geoportalemetadataportlet&p_p_lifecycle=0&p_p_state=maximized&p_p_state=view&_PublishedMetadata_WAR_geoportalemetadataportlet_view=editPublishedMetadata&_PublishedMetadata_WAR_geoportalemetadataportlet_uuid=%7B018208BD-AD82-4D2A-B195-548D6F3432B4%7D&_PublishedMetadata_WAR_geoportalemetadataportlet_editType=view&_PublishedMetadata_WAR_geoportalemetadataportlet_fromAsset=true&rid=local
www.geoportale.regione.lombardia.it/metadati?p_p_id=PublishedMetadata_WAR_geoportalemetadataportlet&p_p_lifecycle=0&p_p_state=maximized&p_p_state=view&_PublishedMetadata_WAR_geoportalemetadataportlet_view=editPublishedMetadata&_PublishedMetadata_WAR_geoportalemetadataportlet_uuid=%7B018208BD-AD82-4D2A-B195-548D6F3432B4%7D&_PublishedMetadata_WAR_geoportalemetadataportlet_editType=view&_PublishedMetadata_WAR_geoportalemetadataportlet_fromAsset=true&rid=local
www.geoportale.regione.lombardia.it/metadati?p_p_id=PublishedMetadata_WAR_geoportalemetadataportlet&p_p_lifecycle=0&p_p_state=maximized&p_p_state=view&_PublishedMetadata_WAR_geoportalemetadataportlet_view=editPublishedMetadata&_PublishedMetadata_WAR_geoportalemetadataportlet_uuid=%7B018208BD-AD82-4D2A-B195-548D6F3432B4%7D&_PublishedMetadata_WAR_geoportalemetadataportlet_editType=view&_PublishedMetadata_WAR_geoportalemetadataportlet_fromAsset=true&rid=local
www.geoportale.regione.lombardia.it/metadati?p_p_id=PublishedMetadata_WAR_geoportalemetadataportlet&p_p_lifecycle=0&p_p_state=maximized&p_p_state=view&_PublishedMetadata_WAR_geoportalemetadataportlet_view=editPublishedMetadata&_PublishedMetadata_WAR_geoportalemetadataportlet_uuid=%7B018208BD-AD82-4D2A-B195-548D6F3432B4%7D&_PublishedMetadata_WAR_geoportalemetadataportlet_editType=view&_PublishedMetadata_WAR_geoportalemetadataportlet_fromAsset=true&rid=local
http://dati-censimentoagricoltura.istat.it
http://dati-censimentoagricoltura.istat.it
http://www.laghi.net
https://www.regione.lombardia.it/wps/portal/istituzionale/HP/DettaglioRedazionale/servizi-e-informazioni/Enti-e-Operatori/territorio/governo-delle-acque/deflusso-minimo-vitale/sperimentazione-deflusso-minimo-vitale
https://www.regione.lombardia.it/wps/portal/istituzionale/HP/DettaglioRedazionale/servizi-e-informazioni/Enti-e-Operatori/territorio/governo-delle-acque/deflusso-minimo-vitale/sperimentazione-deflusso-minimo-vitale
https://www.regione.lombardia.it/wps/portal/istituzionale/HP/DettaglioRedazionale/servizi-e-informazioni/Enti-e-Operatori/territorio/governo-delle-acque/deflusso-minimo-vitale/sperimentazione-deflusso-minimo-vitale


Water 2019, 11, 2304 22 of 23

65. D.G.R. Emilia Romagna n. 1415/2016. Definizione Dei Fabbisogni Irrigui per Coltura, ai Sensi Del D.M. 31
Luglio 2015 “Approvazione Delle Linee Guida per la Regolamentazione da Parte Delle Regioni Delle Modalità di
Quantificazione Dei Volumi Idrici ad Uso Irriguo. 2015. Available online: https://bur.regione.emilia-romagna.it/
dettaglio-inserzione?i=05e6e223fb954aa4a44ca7fd30d4ec4e (accessed on 2 November 2019).

66. Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop evapotranspiration-Guidelines for computing crop water
requirements-FAO Irrigation and drainage paper 56. FAO Rome 1998, 300, D05109.

67. Joint Research Centre. European Soil Data Centre (ESDAC). Available online: http://eusoils.jrc.ec.europa.eu/

library/Data/EFSA/ (accessed on 9 October 2019).
68. EMEP-Co-operative Programme for Monitoring and Evaluation of the Long-range Transmission of Air

pollutants in Europe. Available online: http://www.emep.int (accessed on 9 October 2019).
69. Oenema, O.; Kros, H.; De Vries, W. Approaches and Uncertainties in Nutrient Budgets: Implications for

Nutrient Management and Environmental Policies. Eur. J. Agron. 2003, 20, 3–16. [CrossRef]
70. De Vries, W.; Leip, A.; Reinds, G.J.; Kros, J.; Lesschen, J.P.; Bouwman, A.F. Comparison of land nitrogen

budgets for European agriculture by various modeling approaches. Environ. Pollut. 2011, 159, 3254–3268.
[CrossRef]

71. Lassaletta, L.; Romero, E.; Billen, G.; Garnier, J.; García-Gómez, H.; Rovira, J.V. Spatialized N budgets in a
large agricultural Mediterranean watershed: High loading and low transfer. Biogeosciences 2012, 9, 57–70.
[CrossRef]

72. Soana, E.; Racchetti, E.; Laini, A.; Bartoli, M.; Viaroli, P. Soil Budget, Net Export, and Potential Sinks of
Nitrogen in the Lower Oglio River Watershed (Northern Italy). Clean Soil Air Water 2011, 39, 956–965.
[CrossRef]

73. Pinardi, M.; Soana, E.; Laini, A.; Bresciani, M.; Bartoli, M. Soil system budgets of N, Si and P in an agricultural
irrigated watershed: Surplus, differential export and underlying mechanisms. Biogeochemistry 2018, 140,
175–197. [CrossRef]

74. Izagirre, O.; Agirre, U.; Bermejo, M.; Pozo, J.; Elosegi, A. Environmental controls of whole-stream metabolism
identified from continuous monitoring of Basque streams. J. N. Am. Benthol. Soc. 2008, 27, 252–268.
[CrossRef]

75. Rodier, J. L’analyse de L’eau; Dunod: Paris, France, 1978; p. 1136.
76. American Public Health Association (APHA). Standard Methods for the Examination of Water and Wastewaters,

20th ed.; APHA: Washington, DC, USA, 1998.
77. Millennium Ecosystem Assessment. Ecosystems and Human Well Being: Synthesis; Island Press: Washington,

DC, USA, 2005; p. 160.
78. D.d.s. Regione Lombardia n. 4346 del 27/03/2018. Approvazione Della «Metodologia di Stima Dei Volumi Idrici

ad Uso Irriguo, in Attuazione Della d.g.r. n. 6035/2016. Available online: https://www.regione.lombardia.it/
wps/wcm/connect/8f7c5df8-e897-47b7-b5fd-62c541b9bc67/decreto-4346-2018-metodologia-stima-volumi-
idrici-uso-irriguo.pdf?MOD=AJPERES&CACHEID=8f7c5df8-e897-47b7-b5fd-62c541b9bc67 (accessed on
2 November 2019).

79. Lasagna, M.; De Luca, D.A.; Franchino, E. Nitrate contamination of groundwater in the western Po Plain
(Italy): The effects of groundwater and surface water interactions. Environ. Earth Sci. 2016, 75, 240. [CrossRef]

80. Balderacchi, M.; Perego, A.; Lazzari, G.; Muñoz-Carpena, R.; Acutis, M.; Laini, A.; Giussani, A.; Sanna, M.;
Kane, D.; Trevisan, M. Avoiding social traps in the ecosystem stewardship: The Italian Fontanile lowland
spring. Sci. Total Environ. 2016, 539, 526–535. [CrossRef] [PubMed]

81. Fumagalli, N.; Senes, G.; Ferrario, P.S.; Toccolini, A. A minimum indicator set for assessing fontanili (lowland
springs) of the Lombardy Region in Italy. Eur. Ctry. 2017, 9, 1–16. [CrossRef]

82. ISLC. Certificato di Analisi DELL’ACQUA Delle Sorgenti Bressanello e S. Antonio Dell’istituto Superiore Lattiero
Caseario (Protocollo n◦1766, Mantova 18/10/1996); Regione Lombardia: Mantova, Italy, 1996.

83. Laini, A.; Bartoli, M.; Castaldi, S.; Viaroli, P.; Capri, E.; Trevisan, M. Greenhouse gases (CO2, CH4 and N2O)
in lowland springs within an agricultural impacted watershed (Po River Plain, northern Italy). Chem. Ecol.
2011, 27, 177–187. [CrossRef]

84. Arpa Lombardia. Dati e Indicatori. Available online: https://www.arpalombardia.it/Pages/Ricerca-Dati-ed-
Indicatori.aspx (accessed on 7 October 2017).

85. Taherisoudejani, H.; Racchetti, E.; Celico, F.; Bartoli, M. Application of QUAL2Kw to the Oglio River (Northern
Italy) to assess diffuse N pollution via river-groundwater interaction. J. Limnol. 2018, 77, 452–465. [CrossRef]

https://bur.regione.emilia-romagna.it/dettaglio-inserzione?i=05e6e223fb954aa4a44ca7fd30d4ec4e
https://bur.regione.emilia-romagna.it/dettaglio-inserzione?i=05e6e223fb954aa4a44ca7fd30d4ec4e
http://eusoils.jrc.ec.europa.eu/library/Data/EFSA/
http://eusoils.jrc.ec.europa.eu/library/Data/EFSA/
http://www.emep.int
http://dx.doi.org/10.1016/S1161-0301(03)00067-4
http://dx.doi.org/10.1016/j.envpol.2011.03.038
http://dx.doi.org/10.5194/bg-9-57-2012
http://dx.doi.org/10.1002/clen.201000454
http://dx.doi.org/10.1007/s10533-018-0484-4
http://dx.doi.org/10.1899/07-022.1
https://www.regione.lombardia.it/wps/wcm/connect/8f7c5df8-e897-47b7-b5fd-62c541b9bc67/decreto-4346-2018-metodologia-stima-volumi-idrici-uso-irriguo.pdf?MOD=AJPERES&CACHEID=8f7c5df8-e897-47b7-b5fd-62c541b9bc67
https://www.regione.lombardia.it/wps/wcm/connect/8f7c5df8-e897-47b7-b5fd-62c541b9bc67/decreto-4346-2018-metodologia-stima-volumi-idrici-uso-irriguo.pdf?MOD=AJPERES&CACHEID=8f7c5df8-e897-47b7-b5fd-62c541b9bc67
https://www.regione.lombardia.it/wps/wcm/connect/8f7c5df8-e897-47b7-b5fd-62c541b9bc67/decreto-4346-2018-metodologia-stima-volumi-idrici-uso-irriguo.pdf?MOD=AJPERES&CACHEID=8f7c5df8-e897-47b7-b5fd-62c541b9bc67
http://dx.doi.org/10.1007/s12665-015-5039-6
http://dx.doi.org/10.1016/j.scitotenv.2015.09.029
http://www.ncbi.nlm.nih.gov/pubmed/26383854
http://dx.doi.org/10.1515/euco-2017-0001
http://dx.doi.org/10.1080/02757540.2010.547489
https://www.arpalombardia.it/Pages/Ricerca-Dati-ed-Indicatori.aspx
https://www.arpalombardia.it/Pages/Ricerca-Dati-ed-Indicatori.aspx
http://dx.doi.org/10.4081/jlimnol.2018.1761


Water 2019, 11, 2304 23 of 23

86. Viaroli, P.; Soana, E.; Pecora, S.; Laini, A.; Naldi, M.; Fano, E.A.; Nizzoli, D. Space and time variations of
watershed N and P budgets and their relationships with reactive N and P loadings in a heavily impacted
river basin (Po river, Northern Italy). Sci. Total Environ. 2018, 639, 1574–1587. [CrossRef]

87. Hou, Y.; Ma, L.; Sárdi, K.; Sisák, I.; Ma, W. Nitrogen flows in the food production chain of Hungary over the
period 1961–2010. Nutr. Cycl. Agroecosyst. 2015, 102, 335–346. [CrossRef]

88. Sobota, D.J.; Harrison, J.A.; Dahlgren, R.A. Influences of climate, hydrology, and land use on input and
export of nitrogen in California watersheds. Biogeochemistry 2009, 94, 43–62. [CrossRef]

89. Poisvert, C.; Curie, F.; Moatar, F. Annual agricultural N surplus in France over a 70-year period. Nutr. Cycl.
Agroecosyst. 2017, 107, 63–78. [CrossRef]

90. Vagstad, N.; Stålnacke, P.; Andersen, H.-E.; Deelstra, J.; Jansons, V.; Kyllmar, K.; Loigu, E.; Rekolainen, S.;
Tumas, R. Regional variations in diffuse nitrogen losses from agriculture in the Nordic and Baltic regions.
Hydrol. Earth Syst. Sci. 2004, 8, 651–662. [CrossRef]

91. Carmo, M.; García-Ruiz, R.; Ferreira, M.I.; Domingos, T. The NPK soil nutrient balance of Portuguese
cropland in the 1950s: The transition from organic to chemical fertilization. Sci. Rep. 2017, 7, 8111. [CrossRef]
[PubMed]

92. Lassaletta, L.; Billen, G.; Garnier, J.; Bouwman, L.; Velazquez, E.; Mueller, N.D.; Gerber, J.S. Nitrogen use in
the global food system: Past trends and future trajectories of agronomic performance, pollution, trade, and
dietary demand. Environ. Res. Lett. 2016, 11, 095007. [CrossRef]

93. Schröder, J.J.; Scholefield, D.; Cabral, F.; Hofman, G. The effects of nutrient losses from agriculture on ground
and surface water quality: The position of science in developing indicators for regulation. Environ. Sci.
Policy 2004, 7, 15–23. [CrossRef]

94. Liu, C.; Watanabe, M.; Wang, Q. Changes in nitrogen budgets and nitrogen use efficiency in the agroecosystems
of the Changjiang River basin between 1980 and 2000. Nutr. Cycl. Agroecosyst. 2008, 80, 19–37. [CrossRef]

95. D.M. 19/04/1999. Codex of Good Agricultural Practice (GAP). 1999. Available online: https://www.
gazzettaufficiale.it/eli/id/1999/05/04/099A3435/sg (accessed on 2 November 2019).

96. Diez, J.A.; Roman, R.; Caballero, R.; Caballero, A. Nitrate leaching from soils under a maize-wheat-maize
sequence, two irrigation schedules and three types of fertilisers. Agric. Ecosyst. Environ. 1997, 65, 189–199.
[CrossRef]

97. Gheysari, M.; Mirlatifi, S.M.; Homaee, M.; Asadi, M.E.; Hoogenboom, G. Nitrate leaching in a silage maize
field under different irrigation and nitrogen fertilizer rates. Agric. Water Manag. 2009, 96, 946–954. [CrossRef]

98. Kurunc, A.; Ersahinb, S.; Yetgin Uz, B.; Sonmez, N.K.; Uz, I.; Kamana, H.; Bacalana, G.E.; Emekli, Y.
Identification of nitrate leaching hot spots in a large area with contrasting soil texture and management.
Agric. Water Manag. 2011, 98, 1013–1019. [CrossRef]

99. Martinelli, G.; Dadomo, A.; De Luca, D.A.; Mazzola, M.; Lasagna, M.; Pennisi, M.; Pilla, G.; Sacchi, E.;
Saccon, P. Nitrate sources, accumulation and reduction in groundwater from Northern Italy: Insights
provided by a nitrate and boron isotopic database. Appl. Geochem. 2018, 91, 23–35. [CrossRef]

100. Ascott, M.J.; Gooddy, D.C.; Wang, L.; Stuart, M.E.; Lewis, M.A.; Ward, R.S.; Binley, A.M. Global patterns of
nitrate storage in the vadose zone. Nat. Commun. 2017, 8, 1416. [CrossRef]

101. Van Meter, J.K.; Basu, N.B.; Veenstra, J.J.; Burras, C.L. The nitrogen legacy: Emerging evidence of nitrogen
accunulation in anthropogenic landscapes. Environ. Res. Lett. 2016, 11, 035014. [CrossRef]

102. Mastrocicco, M.; Colombani, N.; Castaldelli, G.; Jovanovic, N. Monitoring and modeling nitrate persistence
in a shallow aquifer. Water Air Soil Pollut. 2011, 217, 83–93. [CrossRef]

103. Narula, K.K.; Gosain, A.K. Modeling hydrology, groundwater recharge and non-point nitrate loadings in the
Himalayan Upper Yamuna basin. Sci. Total Environ. 2013, 468, S102–S116. [CrossRef] [PubMed]

104. Kløve, B.; Ala-Aho, P.; Bertrand, G.; Gurdak, J.J.; Kupfersberger, H.; Kværner, J.; Muotka, T.; Mykrä, H.;
Preda, E.; Rossi, P.; et al. Climate change impacts on groundwater and dependent ecosystems. J. Hydrol.
2014, 518, 250–266. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.scitotenv.2018.05.233
http://dx.doi.org/10.1007/s10705-015-9703-8
http://dx.doi.org/10.1007/s10533-009-9307-y
http://dx.doi.org/10.1007/s10705-016-9814-x
http://dx.doi.org/10.5194/hess-8-651-2004
http://dx.doi.org/10.1038/s41598-017-08118-3
http://www.ncbi.nlm.nih.gov/pubmed/28808244
http://dx.doi.org/10.1088/1748-9326/11/9/095007
http://dx.doi.org/10.1016/j.envsci.2003.10.006
http://dx.doi.org/10.1007/s10705-007-9118-2
https://www.gazzettaufficiale.it/eli/id/1999/05/04/099A3435/sg
https://www.gazzettaufficiale.it/eli/id/1999/05/04/099A3435/sg
http://dx.doi.org/10.1016/S0167-8809(97)00045-5
http://dx.doi.org/10.1016/j.agwat.2009.01.005
http://dx.doi.org/10.1016/j.agwat.2011.01.010
http://dx.doi.org/10.1016/j.apgeochem.2018.01.011
http://dx.doi.org/10.1038/s41467-017-01321-w
http://dx.doi.org/10.1088/1748-9326/11/3/035014
http://dx.doi.org/10.1007/s11270-010-0569-8
http://dx.doi.org/10.1016/j.scitotenv.2013.01.022
http://www.ncbi.nlm.nih.gov/pubmed/23452999
http://dx.doi.org/10.1016/j.jhydrol.2013.06.037
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Study Area 
	Water Flow, Use, Precipitation, and Associated N Loads Calculation 
	Nitrogen Mass Balance Calculations at the Watershed Level 
	Water and N Mass Budgets along River Reaches Interacting with Groundwater: Sampling Strategies, Analytical Techniques, and Calculations 

	Results 
	Precipitation, Water Flow, and Water Abstraction 
	NO3- Concentration and Electrical Conductivity 
	Nitrogen Mass Balances at the Watershed Scale 
	River-Groundwater Interactions: Water and N Mass Budgets and Estimated N Inputs from Groundwater 

	Discussion 
	Irrigation as an Important Component of the Hydrological Cycle in the Adda, Oglio, and Mincio Rivers 
	Excess Manure Availability and Use of Synthetic Fertilizers Result in Diffuse N Pollution in the Three Basins 
	Linking Irrigation and N Excess to Interpret N Mass Transfer 

	Conclusions 
	References

