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1 Introduction

Many diversified stylised facts have been proposed on the relationship between
pollution and economic development. An extensive overview of the main the-
oretical matters involved can be found in Borghesi (2001), who discusses the
Kuznets conceptual framework, which touches on inequality in relation to
sustainable development issues.1 More recently Brock and Taylor (2010) ex-
plain how that environmental Kuznets curves (EKC) framework2 is coherent
with a reformulated ”green Solow model” where emission per capita growth
is driven by GDP per capita growth and technology. Moreover, the relation-
ships between environmental performance, growth and innovation patterns
have received increasing attention in the policy agenda of advanced economies,
(OECD, 2002, 2010, 2011), and in particular within the European Union (EU),
inside the general debate that has followed the Stern Review (Dietz, 2011)
around climate change adaptation and mitigation actions. The economic and
policy debate today largely revolves around the chances to boost a more com-
petitive, greener economy, and the issue of climate change constitutes a sub-
stantial part of this (EEA, 2013).

This paper analyses the long-term CO2-income relationship for more
developed countries. The relevance of carbon dioxide depends on the fact that
even more advanced economies have not meaningfully reduced CO2 emissions
so far, though an overall picture can conceal heterogeneous facts (Musolesi
et al., 2010; Mazzanti and Musolesi, 2013, UNDP, 2009). Carbon dioxide is
a global public good whose features touch upon both country specifities and
interdependencies; the relevance of international issues and country interde-
pendecies is, in our view, more consistent with pooled analyses rather than
country-based studies. The key role of energy issues (energy mix, efficiency),
that share similarities across countries with notable exceptions and outliers
due to exogenous/structural factors and investment decisions, explains the
necessity of adopting an intermediate perspective: aggregation with country
based insights.

Specifically, we aim to investigate which (groups of) advanced countries
have succeeded in reducing CO2 emissions while growing in income, achiev-
ing a negative elasticity of greenhouse gas emissions with respect to their

1Kijima et al (2010) provide a recent survey of theoretically oriented papers with a view
to dynamic issues.

2See e.g. Andreoni and Levinson, 2001; Millimet et al., 2003; Grossman and Krueger,
1994, as seminal benchmarks. An interesting recent theoretical paper on ECK is Figueroa
and Pasten (2013).



GDP3. We use the same group classification adopted by Mazzanti and Mu-
solesi (2013), who focus on advanced countries, by subdividing them into the
Umbrella group4, Northern Europe (EU-North) and Southern Europe (EU-
South), which witness quite different economic, policy and institutional fea-
tures. This classification, which is aimed at providing original insights for
policy, is strictly integrated with methodological development. Indeed, from
both a methodological and a policy oriented perspective, it is interesting to
investigate whether countries that belong to groups sharing structural similari-
ties may eventually present different income effects and/or tend to differentiate
with respect to unobservable time-related factors. This because some countries
might lead the way to become ’policy’ and ’technological’ leaders in the green
economy. This also because because CO2 is a global public good and contrary
to local pollutants such as particulate matters and regional emissions as acid-
ificants, This also because CO2 is a global public good and contrary to local
pollutants such as particulate matters and regional emissions as acidificants,
CO2 calls into question the role of external global factors/global spillover ef-
fects.

Other unobserved global factors possibly affecting the level of CO2
emissions might include, for instance, aggregate technological shocks, global
environmental policies or oil price shocks that may influence the production
of CO2 through their effects on production costs. These factors may affect
eventually heterogeneously different countries under study. Moreover, since
the countries under study may differ with respect to some unobservable time
varying variable such as technology, policy, institutions, culture, etc which
linked to the production of CO2, it seems to be especially worth emphasising
the role of unobservable time-related factors and try to answer to the following
questions: how do time-related factors (perhaps heterogeneously) affect long-
term CO2 dynamics? And how does their inclusion in the model affect the
estimation of income effects? In particular, we try to simultaneously handle

3Future studies may well analyse emerging countries as well. In the case of eastern EU,
for example, emerging countries pose problems given the collapse in emissions and GDP in
the 90’s. India and China are historically less interesting since they have clearly followed
a growth-oriented path with very limited environmental factors in terms of innovation and
policy. The Economist (August 10th 2013, pp 17-21) has recently debated over the Chinese
environmental challenge. We here take a long term ex post view on advanced countries that
have been mostly responsible for global CO2 emissions so far.

4The Umbrella group refers to a loose coalition of non-EU developed countries formed af-
ter the Kyoto protocol that have sustained a mild approach to climate policy, predominantly
North America and Australia. See Barrett (2003) for further insights.



three main econometric issues, named here as functional form bias, hetero-
geneity bias and omitted time-related factors bias.

Early EKC literature focused on very constrained specifications, such
as parametric formulations (typically polynomial functions) imposing common
slopes across countries and not accounting for the (possibly heterogeneous)
effect of time-related factors. One strand of the empirical literature has re-
laxed parametric formulation to adopt non parametric methods (Azomahou et
al.2006; Azomahou and Mishra, 2008). This may help, for instance, to avoid
the false inference that the CO2-income relation is not monotonic if the true
relation has a threshold. Another strand has focused on the heterogeneity bias
associated to the estimation of models with common slopes. As Hsiao (2003)
points out, if the true relation is characterised by heterogeneous intercepts
and slopes, estimating a model with individual intercepts but common slopes
could produce the false inference that the estimated relation is curvilinear.
Empirically, this situation is more likely when the range of the explanatory
variables diverges across cross-sections. This situation generally corresponds
to the estimation of EKC for groups of countries because: i) per capita GDP
presents high variation across countries, ii) the different groups of countries
cannot be characterised by a common slope and, consequently, there is a high
risk of estimating a false curvilinear relation when using homogeneous estima-
tors. Only very recently, both strands have recognised the relevance of taking
into account unobserved time effects, which may eventually explain a large
part of the evolution of CO2. This has been supported for instance by Me-
lenberg et al. (2009), who use a nonparametric setting and by Musolesi and
Mazzanti (2013) who adopt, among other estimators, the Common Correlated
Effect (CCE) approach developed by Pesaran (2006) in a parametric frame-
work. A major limitation of the former is that it does not allows for the effects
of income or time to vary across cross-sections; while the latter does not allow
for non parametric effects.

In order to achieve our goal, namely disentangling income and time-
related effects (which are possibly heterogeneous across countries) in the study
of greenhouse gas dynamics, while allowing for possible residual serial correla-
tion at the same time, we use Generalized Additive Mixed Models (GAMMs,
Ruppert et al., 2003; Augustin et al., 2009; Wood, 2006). GAMMs contain
Generalized Additive Models (GAMs) as a special case, introduced by Hastie
and Tibshirani (1990) and more recently developed both in theoretical and
computational directions. The estimation of GAMs relies on the decomposi-
tion of the smooth functions on a spline basis; then a penalty term is added into
the log-likelihood (Wood, 2003, 2006). Wood (2004) in particular provides an
optimally stable smoothness selection method which presents some advantages



when compared to previous approaches, such as modified backfitting (Hastie
and Tibshirani, 1990) or Smoothing Spline ANOVA (e.g. Gu and Wahba,
1993). Smoothing parameter estimation and reliable confidence interval cal-
culation is difficult to obtain with modified backfitting, whereas Smoothing
Spline ANOVA provides well-founded smoothing parameter selection methods
and confidence intervals with good coverage probabilities but at high computa-
tional costs. To circumvent these problems, Wood (among others) suggests the
use of penalized regression splines (2000): this nevertheless leaves a number of
practical problems concerning convergence and numerical stability unsolved.
Wood (2004) further developed the model by providing an optimally stable
smoothness selection method and subsequently provided a computationally
efficient method for direct generalized additive model smoothness selection
(2008). A very appealing feature of the method proposed by Wood in 2004
with respect to other approaches is that it has been shown to perform very well
even in the case of almost co-incident covariates. The mixed model approach
adopted here provides a consistent a computationally manageable way to si-
multaneously handle smoothing and serial correlation. Wood also provides
some useful details on how GAMs are represented as mixed models (2004,
2006a).

Despite their appeal, GAMs and GAMMs also require some caveats
worth mention. A first possible limitation of GAMs/ GAMMs is that they are
less general than fully non-separable models. These models, however, present
difficulties which are not present with GAMs in terms of interpretation, sta-
tistical feasibility (e.g. the curse of dimensionality) and identification (see e.g.
Hoderlein and White, 2012 and Evdokimov, 2010). A second caution to con-
sider concerning GAMs is that a fully developed asymptotic theory has yet
to exist. However, some asymptotic results have recently been provided by
Yoshida and Nato, (2012, 2013). In particular, they have shown the asymp-
totic normality of the penalized spline estimator in a GAM framework (2013),
thus generalizing the results of Kauermann et al. (2009), who focuses on the
penalized spline estimator in generalized linear models (GLMs). They also
show the asymptotical normality of the penalized quasi likelihood approach
by Breslow and Clayton (1993) which is an efficient method when applied to
GAMMs.

An interesting feature of the proposed approach, compared to that of
related literature, is that it allows for the estimation of the nonparametric time
effect rather than considering it as nuisance term. This is very important in an
economic and policy oriented analysis because it allows not only (i) to obtain
a proper income effect, but it also allows (ii) to nonparametrically investigate
how time-related factors may drive long-term CO2 evolution. Moreover, (iii)



the adoption of interaction models (see e.g. Ruppert et al., 2003) allows us
to consider a specification allowing for both country-specific nonparametric
time effects and perhaps even country-specific nonparametric income effects.
This is possible in practice given the large time series dimension of our data
set and permits a maximum level of country-specific heterogeneity. This al-
lows for handling the heterogeneity bias if the true relation is characterised by
country-specific effects. This is also important from an economically oriented
angle. It can be expected that even countries belonging to similar geographi-
cal/economic groups may have different income effects and may also tend to
‘specialize’ with respect to time-related unobservable factors which in turn
may heterogeneously affect CO2 emissions such as innovation and technologi-
cal progress, energy and also policy. Finally, (iv) we handle serial correlation
by using autoregressive moving average (ARMA) processes.

The remainder of paper is structured as follows. Section 2 presents the
data, the country groups, and some descriptive statistics. Section 3 debates
around issues of econometric specification, estimation and identification. Sec-
tion 4 presents the model building; Section 5 comments on the main results
and Section 6 concludes.

2 Data

Data on emissions is taken from the database on global, regional, and national
fossil fuel CO2 emissions prepared for the US Department of Energy’s Carbon
Dioxide Information Analysis Centre (CDIAC). For our study, we use the
subset of emission data that matches the available time series on GDP per
capita. Data on GDP per capita in 1990 International ‘Geary-Khamis’ dollars
is taken from the database managed by the OECD.

We use the subset of emission data that matches the available time
series on GDP per capita on the basis of joint availability, series continuity, and
country definitions. This resulted in a sample which covers a long period (1960-
2001). Table 1 below summarises the main variables used and the descriptive
statistics.

The Umbrella group presents the highest average level of both CO2 per
capita (expressed in terms of tonnes per capita) and GDP per capita (3.14 and
15,143, respectively), while southern European countries are characterised by
the lowest average levels of these variables (1.48 and 10,215). The northern
European countries have a similar average level of GDP per capita (14,203)
compared to the Umbrella group but are characterised by lower levels of emis-
sions (2.61).
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Figure 1: UMBRELLA countries (scatter: real values. Line: robust locally
weighted scatterplot smoothing)

Figures 1–3 depict the relationship between CO2 and income for the
three samples. We provide real data, and the curve fitted (non-parametrically)
by robust locally weighted scatter plot smoothing (lowness). The CO2-GDP
relationship is quite homogeneous within each group: it is clearly monotonic
for the Umbrella group and for the southern EU-but shows an inverted U shape
for -northern EU countries.

Table 1: Descriptive statistics
Mean S.D. Min Max

Umbrella group

CO2 per capita 3.144921 1.393584 0.67 5.85
GDP per capita (GDPpc) 15,143.21 4,763.547 3,986.417 28,129.23
EU North

CO2 per capita 2.60875 0.5630643 0.91 3.88
GDP per capita (GDPpc) 14,203.73 3,759.392 6,230.359 23,160
EU South

CO2 per capita 1.488294 0.6085014 0.25 3.05
GDP per capita (GDPpc) 10,215.44 4,265.277 2,955.836 23,201.45
T= 1960-2001; CO2 per capita in t/pc; GDP per capita in 1990
International ‘Geary-Khamis’ dollars
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Figure 2: EU-SOUTH countries (scatter: real values. Line: robust locally
weighted scatterplot smoothing)

3 Econometric specification, identification and

estimation

3.1 Econometric specification: various misspecification
biases

Let us suppose that the researcher observes panel data (yit, xit), where y is
the logarithm of CO2 emissions per capita, x is the logarithm of per capita
GDP; i ∈ Γ, and Γ is the set of cross-section units Γ = {1, 2, ..., N} and t ∈
Λ={1, 2, ..., T} indicates time series observations. A very general specification
is obtained by adopting a fully non separable model such as

yit = f (xit, ci, t, εit)

where f is real unknown function, ci are individual effects capturing
time invariant heterogeneity, t capture the effect of time-related omitted fac-
tors, and εit is the the idiosyncratic term.

To date, there is an increasing amount of theoretical literature on non
parametric panel data estimators aiming to provide very general econometric
set-ups such as the non-parametric panel data model, i.e. a model of the
following kind yit = f(x1it, ..., x

k
it) + ci + εit, the partially or fully non-separable
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Figure 3: EU-NORTH countries (scatter: real values. Line: robust locally
weighted scatterplot smoothing)

models, i.e. yit = f(x1it, ..., x
k
it, ci) + εit and yit = f(x1it, ..., x

k
it, ci, εit) (see e.g.

Henderson et al. 2008; Su and Ullah, 2010).5

Despite their appeal, fully or partially non-separable models present
theoretical and computational difficulties and the identification conditions aris-
ing in such models can be difficult to hold (see Hoderlein and White, 2012 and
Evdokimov, 2010).6

These considerations allow us to focus on additive models (Stone, 1985,
Hastie and Tibshirani 1990). They avoid the curse of dimensionality since each
of the individual additive terms is estimated using a univariate smoother. They
are also easily interpretable, while fully non-separable models present problems
of interpretability, and they do not present big identification problems. Finally,

5An approach which has been proposed to estimate models in cases where explanatory
variables do not enter additively, differently from individual effects and the error term, is
resorting to a local linear approximation of the model and then using the profile least square
method (Su and Ullah, 2006, 2010). This allows for estimating the model without using a
transformation to eliminate the fixed effects. Another widely adopted approach has been to
first take differences to eliminate the individual effects. At this point, the differenced equa-
tion can be estimated, after a local linear approximation, for example by using local linear
least squares (Li and Stengos, 1996) or through the iterative kernel estimator (Henderson
et al, 2008).

6Hoderline and White (2012) focus on the identification of fully non separable models
and even though their main result is that a generalised version of differencing identifies
local average responses, they also find that such a result is confined to the subpopulation of
”stayers” (Chamberlain, 1982), i.e. the population for which the explanatory variables do
not change over time; a case which does not correspond to our empirical framework.



and very importantly, additive models fit perfectly with the purpose of this
paper to disentangle (possibly heterogeneous) income and time effects. There-
fore, we more specifically assume that the income effect, the effect of (time
invariant) unobserved heterogeneity, the effect of time and the idiosyncratic
effect are separable:

yit = ci + fi (xit) + gi (t) + εit (1)

where fi captures the effect of income on CO2 emissions while the ef-
fect of time is measured through the function gi. Both effects are eventually
heterogeneous across countries.

It is worth noting, however, that the early literature on income envi-
ronment long run relationships has focused on very constrained specifications,
as for instance setting gi (t) = 0; fi (xit) = p (xit, β) , where p (xit, β) is a
polynomial function, and obtaining the additive fixed effects specification

yit = ci + p (xit, β) + εit

Compared to (1), such a specification may suffer of different kinds of
misspecification bias, and in particular:

• functional form bias if the true relation between CO2 and GDP cannot be
approximated with a polynomial function p (xit, β) . This has been largely
recognised in the literature, which stresses the need for non-constrained
functional specifications (Azomahou et al.2006; Azomahou and Mishra,
2008; Azomahou et al. 2009);
• heterogeneity bias since it is possible that the effect of GDP on CO2 can

be heterogeneous across countries. A more realistic assumption would al-
low for individual income effects, fi (xit) (Musolesi et al., 2010; Mazzanti
and Musolesi, 2013);
• omitted time-related factors bias dues to the omission of a (eventually

heterogeneous) relevant time effect. The literature has widely adopted
the restriction gi (t) = 0. This is motivated by the following reasons:
it allows for greater comparability with existing studies and, perhaps
more importantly, this kind of econometric specification is useful if the
researcher is interested in capturing the total effects of GDP on CO2 in-
cluding the indirect effects linked to omitted (or unobserved) variables,
such as energy prices, technological changes, environmental policies, etc,
which are correlated with both GDP and time. However, if the goal is
to measure the ceteris paribus impact of GDP on CO2 emissions, impos-
ing gi (t) = 0 might be not appropriate because it leads to an omitted



time-related factor bias. To the best of our knowledge very few stud-
ies to date have focused on such an issue. For instance, among other
panel data estimators, Mazzanti and Musolesi (2013) applied the CCE
approach proposed by Pesaran (2006). Such a method allows for unob-
served common factors heterogeneously affecting the dependent variable.
However, such factors are viewed as nuisance variables while the main
focus rests on the estimation of the heterogeneous (but parametric) ef-
fect of income on CO2. Melenberg et al. (2009) and Ordás Criado et al.
(2011) have provided nonparametric analyses. Both studies estimated
eq. 1 without imposing a parametric formulation while imposing that
fi (xit) is homogeneous across countries. A difference between these two
works is that, while Melenberg et al. (2009) assumes that the unobserved
time-relatedfactor gi (t) is common to specific groups of countries within
the sample and considered the function gi (t) as a nuisance term, Ordás
Criado et al. (2011) introduced a common time effect by means of time
fixed effects.

The main advantage of using recent developments in GAM theory is
that it allows for tackling the three issues of unconstrained functional form,
omitted time-related factors and heterogeneity bias, simultaneously.

3.2 Identification

A fully additive model as in eq. (1) can be dealt with GAMMs. This does not
require a local linear approximation and, also in this case, the individual fixed
effects can be treated as nuisance terms to be eliminated with a transforma-
tion, or as dummy variables. Both approaches present some relative drawbacks
and benefits. In particular, the latter approach may be computationally com-
plicated but does not suffer like the former from the possible (partial) lack of
identification arising with the adoption of a transformation approach such as
first differencing to eliminate the individual effects. Indeed, by differencing
Equation (1) we get (see also Azomahou and Mishra, 2008; Azomahou et al.
2009, Su and Ullah, 2010):

(yit − yit) = fi (xit)− fi (xit−1) + gi (t)− gi (t− 1) + (εit − εit−1) ,

and some components of the functions f anf g may not fully identified
because as argued by Su and Ullah (2010), if, for example,



f(xit) = a+m(xit),

then differencing does not allow the identification of f(xit), and even-
tually only m(xit) can be identified. Secondly, such an approach doubles the
non-parametric functions to be estimated. In our empirical framework this
problem becomes extremely important because estimating eq. (1), after dif-
ferencing and without imposing the constraint that fi (xit) = f (xit) ∀i or that
gi (t) = g (t) ∀i, requires the estimation of N ∗ 4 nonparametric functions.
Thus, first differencing may be useful in practice when N is large compared
to T, as usual in micro data, or to estimate a ‘feedback effect’ through the
function f (xit−1) as in Azomahou and Mishra (2008).

Given the structure of our panel data set (small N and large T), it is not
computationally costly to estimate the model directly without eliminating the
individual effects. We follow thus such an approach by including the individual
intercepts in the parametric part of the level equation as in Mammen et al.
(2009) and Ordás Criado et al. (2011).

3.3 Estimation

The estimation is carried out by using the gamm ( ) function of the mgcv R
package (Wood, 2013). In the identity link-normality case, the mgcv routine
performs the estimation by using general linear mixed effects modelling soft-
ware, lme, while in the generalized case only approximate inference is available,
and relies on the Penalized Quasi-Likelihood approach by Breslow and Clayton
(1993). It allows correlated errors by calling the nlme R package (Pinheiro et
al., 2013). Penalised Regression Splines are adopted as a basis for representing
the smooth terms (Wood, 2003, 2006ab). The smoothing parameter values are
selected by the GCV (Generalised Cross Validation) criterion, 7 and statisti-
cal inference is made by computing ‘Bayesian p-values’ (Wood, 2013). These
appear to have better frequentist performance (in terms of power and distri-
bution under the null) than the alternative strictly frequentist approximation
(Wood, 2006a,b).

7Since the GCV may present a tendency towards over fitting, we have increased the
amount of smoothing by correcting the GCV score by a factor δ = 1.4 which can correct
the over fitting without compromising model fit (Kim and Gu, 2004).



4 A semiparametric model for CO2 emissions

4.1 Alternative specifications for fi (xit) and gi (t)

In the following, we provide an empirical strategy to choose among alternative
specifications for both fi (xit) and gi (t) as well as for the covariance structure.
Concerning fi (xit) and gi (t) we will focus on the following models.

We first consider a specification imposing a common income effect and
without accounting for any kind of time effect. This model has been largely
adopted in previous works (Azomahou et al., 2006; Azomahou and Mishra,
2008; or Azomahou et al., 2009) and allows for obtaining results on the total
effect of income on CO2, including indirect effects linked to omitted variables.
Next, we introduce time-related factors into the model. This is the main focus
of the paper. We first assume that both these time factors and the income ho-
mogeneously affect CO2 evolution. This should allow both to obtain a proper
income effect and to examine the effect of time-related factors which may drive
CO2 evolution. This specification, however, may suffer from a heterogeneity
bias. We thus relax the hypothesis of a homogeneous time effect and estimate
a semiparametric model allowing for country-specific nonparametric time ef-
fects, gi (t) . Such a kind of specification has been already proved to be very
useful in a parametric framework. In a policy evaluation framework, Heckman
and Hotz’s (1989) proposed the so called random growth model allowing for
individual specific trend, i.e. a model of the kind yit = ci+ γit + βxit + εit.
Wooldridge (2005) provides very useful methodological insights, while Papke
(1994) and Friedberg (1998) are examples showing empirically how important
can be to allow for individual specific trends. A motivation of such specifi-
cation is that it allows (ci, γi) to be arbitrarily correlated with xit. This can
certainly relevant when xit is an indicator of program evaluation as in Heck-
man and Hotz (1989) but could also be a key issue in our framework since both
CO2 emissions and per capita GDP can plausibly depend on individual-specific
trends, in addition to the level effect, ci. More recently in a more macroecono-
metric oriented framework, Pesaran (2006) has proposed, the CCE approach,
which makes use of a factor model representation to allow a finite number
of unobservable (and/or observed) common factors to have an heterogeneous
effect on the dependent variable. One main reason supporting a modelisation
allowing for country-specific nonparametric time effects, gi (t) is that even for
countries that belong to similar geographical/economic realities, we note that
the effect of unobservable time-related factors on CO2 can be expected to be
heterogeneous across countries. This is because countries tend to ‘specialise’
with respect to unobservable time-related factors such as innovation, energy



and also policy. Such a modelisation may also be motivated in cases with com-
mon time effects, e.g. the case of a common policy, but with country-specific
reactions. Moreover, there are not well-established (theoretical or empirical)
reasons to impose linearity. More specifically, innovation specialization is due
to both market characteristics and willingness to create comparative advan-
tages. Ennvironmental Policy ‘specialisation’ largely depends on the belief
in policy-induced innovation effects (Costantini and Mazzanti, 2012), upon
which some world areas might construct green technology competitive advan-
tages. Energy issues depend on both policy frameworks and structural country
features.

Alternatively, we allow for heterogeneous income effects (for a detailed
discussion of this issue see e.g. Musolesi et al. 2010 and Mazzanti and Mu-
solesi, 2013). Finally we fully exploit the time dimension of our data and
consider an ”unconstrained” model with both heterogeneous time effects and
heterogeneous income effects.

In summary, the five alternative specifications for fi (xit) and gi (t) can
be therefore written as:

M1 Individual fixed effects specification. gi (t) = 0 (no time effect), fi (xit) =
f (xit) ∀i (homogeneous income effect), so that:

yit = ci + f (xit) + εit (M1)

M2 Individual fixed effects and common time effect. gi (t) = g (t) ∀i (homo-
geneous time effect), fi (xit) = f (xit) ∀i (homogeneous income effect):

yit = ci + f (xit) + g (t) + εit (M2)

M3 Individual fixed effects, individual time effects. We hold the constraint
fi (xit) = f (xit) ∀i (homogeneous income effect):

yit = ci + f (xit) + gi (t) + εit (M3)

M4 Individual fixed effects, individual income effects. We hold the constraint
gi (t) = g (t) ∀i (homogeneous time effect):



yit = ci + fi (xit) + g (t) + εit (M4)

M5 Individual fixed effects, individual time and individual GDP effect:

yit = ci + fi (xit) + gi (t) + εit. (M5)

4.2 Covariance structure

The error vector ε is distributed as N(0, σ2Λ), where Λ is block diagonal with
εi having covariance matrix Λi.The εi reflect the serial error correlation, which
is modeled by a mixed autoregressive and moving average (ARMA) process
using the approach given by Pinheiro and Bates (2000). An ARMA(p,q) can
be written as:

εit =

p∑
j=1

φjεit−j +

q∑
l=1

θlvit−l + vit

where the φs and θs are the autoregressive an moving average’s param-
eters and vit is a random Gaussian white noise.

4.3 Model selection

We will now outline the two steps of our selection procedure.
Step one: Selection of the serial correlation structure of the error

term.
First, for each specification M1-M5, we use the ACF function of the

nlme R package (Pinheiro et al., 2013) to deduct the appropriate error struc-
ture (e.g. Hamilton, 1994). Second, since the estimated autocorrelation pat-
tern does not generally provide a unique indication being possibly consistent
with different processes, we also use model selection and testing procedures to
choose the most appropriate error process (see e.g. Pinheiro and Bates, 2000,
p. 239-244). Details are provided below.

Step two: Selection of the appropriate level of heterogeneity (with
respect to time and income).

Step one has allowed to choose the appropriate error structure for each
specification M1-M5. We now compare the five selected models. In our con-
text, i.e. the identity link-normality case, the mgcv routine performs the



estimation by using general linear mixed effects modelling software, lme, while
in the generalized case only approximate inference is available, relying on the
Penalized Quasi-Likelihood approach by Breslow and Clayton (1993). In our
restricted case, thus, the inferential framework for linear mixed models applies
and can be used for model comparison. Therefore we extensively use both in-
formation criteria (AIC and BIC) and, for nested models, the likelihood ratio
test (Wood, 2006a, 2013. Also see Augustin et al., 2009 for the generalized
case).

5 Results

5.1 Model selection

Step one. The plot of the empirical autocorrelation function of standardized
residuals with 5% level two-sided critical bounds is displayed in Figure 4. The
plot concerns the M1-M5 models for the Umbrella group. For the other groups,
rather similar plots are obtained and the detailed results are available upon
request. For M1 and M2 the plot in Figure 4 is consistent with an AR(1)
process with positive autoregressive parameter. This process has a correlation
function which decreases exponentially with lag: h(φ, k) = φk, where φ is the
autoregressive parameter and k is the lag. Such a plot could also be consistent
with an AR model of order greater than one, for which the autocorrelation does
not admit a simple representation, being defined recursively through a differ-
ence equation detailed in Hamilton (1994) among others. The introduction
of heterogeneous effects (M3-M5) make the memory of the process decrease
substantially especially when individual time effects are introduced (M3 and
M5). For such models, the autocorrelation function has lower values but at
the same time more complex dynamics. This suggests some MA processes but
could also be the result of some ARMA processes.

We then use AIC and BIC to select the preferred model for each spec-
ification M1-M5 (see Table 2). They do not suggest the same model in only
a few cases. In such cases when the competitive models are nested, we use
the likelihood ratio test since we have access to the full likelihood. This is the
case of M2 and M4 for EU-North. For the former, we contrast an ARMA(2,1)
chosen with AIC with an ARMA (1,1) resulting from BIC while for the latter
we compare an ARMA(1,2) with and ARMA (1,1). In both cases, the likeli-
hood ratio test does not provide a very clear indication (p values equal to 0.14
and 0.07, respectively). In practice, due to the smaller penalty term, the AIC



M1 M2 M3 M4 M5
Umbrella group
AIC AR(2) AR(3) MA(3) AR(2) MA(2)
BIC AR(2) AR(2) WH AR(2) WH
EU North
AIC AR(1) ARMA(2,1) ARMA(1,1) ARMA(1,2) ARMA(1,2)
BIC AR(1) ARMA(1,1) ARMA(1,1) ARMA(1,1) AR(2)
EU South
AIC ARMA(1,1) ARMA(1,1) MA(2) ARMA(1,1) MA(1)
BIC ARMA(1,1) ARMA(1,1) MA(2) ARMA(1,1) MA(1)

ARMA: autoregressive moving average process,
AR: autoregressive process
MA: moving average process
WH: white noise process

Table 2: Model selection: step one

tends to keep more terms in the model than the BIC. Aiming at whitening
residuals, we use the AIC to choose the preferred model.

Step two. Table 3 next compares the five selected specifications M1-
M5 using the AIC. It also contrasts the serially uncorrelated model with the
selected correlated model for each specification. In general, the AIC decreases
remarkably moving from an uncorrelated to a correlated model. Only when
individual time effects are introduced (M3 and M5) is the decrease weaker.
Such an indication is also confirmed by approximate hypothesis testing. In all
cases the likelihood ratio test rejects the constrained uncorrelated model, with
p-values which are slightly higher for M3 and M5.

Comparing the AIC of the five selected correlated models allows us to
choose the final model. For the Umbrella group and the EU-South group,
we choose the M3 ”random growth” specification (common income effect and
heterogeneous time effect) with an MA(3) and MA(2) error structure respec-
tively. For the EU-North group, the model selection procedure suggests M2
(common income, common time) with an ARMA(2,1) error structure.

Some relevant remarks are in order. First, having allowed for serially
correlated errors has decreased the AIC (and BIC) in all five models M1-M5.
However, such a decrease proved more important for rather constrained mod-
els (M1 and M2) and if we had contrasted the five models without introducing
serial correlation, we would have erroneously selected the ”unconstrained” M5



M1 M2 M3 M4 M5
Umbrella group
Uncorrelated -623.4803 -642.3798 -974.1013 -885.1518 -964.7689
Correlated -968.0401 -964.3868 -981.0451 -953.2796 -970.5999

AR2 AR3 MA(3) AR(2) MA(2)
L.Ratio test: p-value 0.0001 0.0001 0.0048 0.0001 0.0073
EU North
Uncorrelated -444.2861 -447.1753 -703.5995 -1002.913 -1028.414
Correlated -1083.0346 -1106.4520 -1083.9701 -1089.168 -1075.803

AR(1) ARMA(2,1) ARMA(1,1) ARMA(1,2) ARMA(1,2)
L.Ratio: p-value 0.0001 0.0001 0.0001 0.0001 0.0001
EU South
Uncorrelated -660.5092 -711.0474 -1078.990 -1027.111 -1071.355
Correlated -1056.1951 -1056.1757 -1086.611 -1062.452 -1081.073

ARMA(1,1) ARMA(1,1) MA(2) ARMA(1,1) MA(1)
L.Ratio: p-value 0.0001 0.0001 0.003 0.0001 0.0006

The reported values are the corresponding AIC
ARMA: autoregressive moving average process
AR: autoregressive process
MA: moving average process

Table 3: Model selection: step two

model for the EU-North group. Second, once serial correlation and (heteroge-
neous) time effect have been accounted for, the proper effect of income appears
to be homogeneous across countries. This result complements Mazzanti and
Musolesi (2013). The specifications allowing heterogeneous income effect per-
form relatively well only for EU-North.

Next, we focus our attention on the selected models, the M3 MA(3)
model for Umbrella, the M2 ARMA(2,1) for EU-North and the M3 MA(2)
model for EU-South.

5.2 The selected models’ estimates

Concerning the selected Umbrella’s M3 ”semiparametric random growth” spec-
ification with MA(3) errors, the resulting plots of the smooth terms are de-
picted in fig. 5. The component smooths are shown with confidence intervals
that include the uncertainty about the overall mean (Marra and Wood, 2012).



All the smooths are highly significant (detailed approximate significance of the
smooth terms available upon request).

For the Umbrella, while there is evidence of a homogenous and mono-
tonic positive CO2-GDP relation, the CO2-time relation is overall roughly an
inverted U for the USA, Canada and Japan, while it is positive for the other
countries (Australia, Norway and New Zealand). Time related components
drive the ’relative delinking’ of such countries 8. Specifically, though they
have not achieved absolute reduction in CO2, the decrease in the CO2/GDP
ratio is driven by factors that pertain to and are contained in the ’time-related
black box’. Different ‘Innovation intensities’ (especially patented innovation)
which have historically favoured Japan and the US (see for example Johnstone
et al., 2012, 2010; Dechezlepretre et al., 2011), and which characterise the first
set of countries, as well as the energy structure of the economy (namely en-
dowments of carbon-intense sources that have penalised Oceania), could well
explain group differences related to ’time factors’. This heterogeneity is hidden
by common time factor specification; in fact, previous studies that highlighted
the existence of only relative delinking for the Umbrella group did not unveil
this existing heterogeneity in time effects (Mazzanti and Musolesi, 2013) 9.
Countries possessing larger stocks of (fossil fuel) resources have comparatively
less incentives to increase efficiency through innovation and apply policies that
reshape the energy structure towards coal-free sources. They are also less ex-
posed to international energy shocks; the plots arguably show that the 1970’s
oil shocks supported significant a decrease in GHG emissions through energy
mix changes and clean innovation diffusion (OECD, 2011). Future works might
aim to discover which policy and market ’events’ worked to break the long term
CO2 trend.

Similar outcomes are revealed by the analysis of southern EU countries
for which a M3 with MA(2) error structure for the EU-South (Fig. 6) has been
selected. Figure 6 shows how once again we find a monotonic nonlinear postive
CO2-income relation. We also note that Italy and Spain present an inverted
U CO2-time component relation, while Portugal and Greece show a positive
and monotonic relationship 10. This is interesting since though the overall

8Relative delinking associates to a positive and lower than one elasticity between GDP
and CO2 (taking the overall effect), while absolute delinking is related to a negative elasticity.

9Even heterogeneous panel models such as Swamy, mean group, CCEMG and Bayesian
estimators unveiled the flaws of homogeneous estimators that might present EKC even in
the presence of real monotonic GDP-CO2 trends on the one hand, but on the other they
are not useful in detecting the specificity of idiosyncratic country effects.

10We note that we assess performances in terms of CO2 reductions compared to GDP and
Time. Performances under the Kyoto Protocol also reflect ’distance from the target’ assess-



EU-South performance has been deficient with respect to GHG reductions,
a relevant country such as Italy (around 12% of the EU GDP) is at least
compensating the GDP effect with a bell shaped time-CO2 link. More than
to the intensity of clean innovation adoption and patents (Gilli et al., 2013;
Johnstone et al., 2010), this is associated to the high energy efficiency and
relevant share of renewables (hydroelectric) that Italy continued to present in
the 1980-90’s, and to the good long dynamic GHG performance of some of
its industrial sectors (Marin and Mazzanti, 2013). Though Spain and Italy
present rather different sector compositions of the economy (manufacturing-
service shares) their time-related factors are on track to compensate the GDP
scale effect in the future. Greece and Portugal are still on a development-
oriented path that does not include CO2 reductions by policy and innovation
factors. In fact, they were exempted from cutting CO2 by the Kyoto protocol
as was Spain, a rare case in the EU. This (economically motivated) lack of
stringent targets might have reduced the intensity of efforts made towards the
achievement of joint economic-environmental goals.

Thus, the monotonic CO2-common time factor relation we drew out
from other econometric models in the case of southern EU countries (Maz-
zanti and Musolesi, 2013) appears specifically driven by the poorest within
the poorer set of countries in the EU. Though they do not massively impact
on the overall EU GHG picture, the evidence signals risks of unsustainable
convergence (assuming economic convergence was in place before the 2008-9
downturn) on the side of some peripheric countries 11.

Finally, we focus on the selected M2 ”common time effects” model with
ARMA(2,1) errors for EU-North countries. The results are reported in Figure
7. For the EU-North group, the CO2-time component relation is found to
be homogeneous across countries and clearly negative. This indicates that
the significant, unobserved time-related factors have negatively and primarily
impacted CO2 emissions, as to more than compensate the GDP scale effect in
some cases (the UK, Germany, Sweden and Finland are noteworthy examples
of countries that have succeeded in reducing CO2 emissions). This evidence is
coherent with recent information on the average EU performance (EEA, 2008).
The factors explaining this evidence are largely linked to the way northern EU
countries reacted to oil shocks, some as far back as the mid 1980’s, mainly
through energy saving and innovation actions. Such countries were then later

ment. Targets were bargained as reductions or increases with respect the 1990 benchmark
on the basis of economic and ’political’ considerations.

11We stick to production related emissions that are relevant for policy targets. The
inclusion of Trade might change one country’s performance (Marin et al., 2013; Levinson,
2009) depending upon the CO2 that is embodied in exports and imports.



characterised by a more stringent adoption of environmental policy (Johnstone
et al., 2012), including a relatively larger use of market-based instruments
such as carbon taxes in the 1990’s . Among the EU-North member states,
Denmark has historically had the highest environmental taxation as share of
GDP figure in the EU according to Eurostat data (higher than 5%), while
Sweden established itself as a prominent implementer of green fiscal reforms
well back in the early 1990’s, and still holds the highest carbon tax level in the
EU - now more than 150$ per tonne on average (Andersen and Ekins, 2009).
Shifting the tax burden to environmental taxation might promote long term
welfare by enhancing elements not accounted for in the GDP (OECD; 2013),
while it may also increase or not be detrimental to growth (Costantini and
Mazzanti, 2012).

As additional corollary evidence, while it is true that Japan, Germany
and the US rank in the first three positions in terms of climate change oriented
patents, thus providing contents to the time component related evidence we
commented on for Umbrella and the EU-North; Germany ranks first as far as
the value of such patents is concerned (Dechelezpretre et al., 2011). Germany
is a clear key player in EU-North performance given its weight and leader-
ship in environmental technological development. The energy intensity of its
GDP also reflects this: in 2009 Germany was slightly better than Japan and
significantly better than the US (World Bank data12).

For EU north, the specifications allowing heterogeneous income effect
(M4 and M5) perform relatively well (see table 3) and thus we also provide in
fig. 8 the plots of the smooth terms fi (xit) ffor the M4 model with ARMA
(1,2) error structure. Fig. 8 presents a somewhat expected but interesting
figure. Countries that are showing some signs of potential inverted U EKC even
for the income-carbon relationship13 are the ’usual’ Scandinavian countries,
often at the top of Human Development Indexes and competitiveness rankings:
Denmark, Sweden and Finland.

It is worth noting that the evidence is absolutely coherent with the
results of the EU-funded COMETR project that ex post evaluated the im-
pact of carbon taxation associated to diverse assumptions on the recycling of

12The Economist, 10th August 2013, page 19.
13The finding of a bell shape for ’net’ CO2-GDP relationships would be a radical result

that, notwithstanding the mentioned role of trade patterns, relates to a strong decarboniza-
tion. We here note that, all things being equal, those 3 countries sum a robust time related
component to a better than average GDP-CO2 effect. EKCs are thus explained by (1) a low
elasticity concerning the net GDP-CO2 link (2) a robust negative link between time effects
and CO2. Though simple, this argument has not really been touched upon in the literature
by disentangling income and time effects by areas and country.



revenue though a general equilibrium model(Andersen, 2007). Results shows
that Finland and Sweden integrate environmental and economic performances
more than others (Gilli et al., 2013 presents sector evidence on Swedish eco-
nomic - environmental performances). Sweden and Finland are among the
countries (Germany and the UK as well) that have reduced CO2 compared
to 1990 Kyoto benchmark levels. Though performing less than the other two
countries in terms of GHG performance, Denmark has historically been the
best performing EU country in terms of the energy intensity of its GDP.

The aforementioned results provide evidence on the fallacy of some sim-
plistic EKC interpretations, and on the biased evidence that homogeneous and
parametric settings may present. At least for Umbrella and the EU-South, it
clearly shows that the relation CO2-time is also heterogeneous across countries;
while income effect heterogeneity somewhat matters for the EU-North. We
commented on diversified evidence of how carbon-time (and carbon-income)
dynamics present highly idiosyncratic contents that deserve specific atten-
tion and can differentiate potentially similar countries. Our study and results
partly refer to Melenberg et al. (2009) but provide new and more specific in-
sights. In fact, we find consistent positive income effects for both cases [SO2,
CO2] and time effect estimates with a clear U-shaped trend for SO2-emissions
but only slightly so for CO2-emissions. The ’slight’ time effect Melenberg et
al. (2009) holistically treat is here investigated in depth by different models,
across countries and groups of them.

Summing up, the main evidence we find is that only for northern EU
countries the time effect nevertheless outweighs the GDP scale effect, which
drives up CO2 emissions in any case, to different levels. This is the explanation
behind the inverted U shaped curve, namely reduction of CO2 occurring while
GDP grows14, that recent studies found (Galeotti et al., 2009; Mazzanti and
Musolesi, 2013) also for some EU areas, and the GHG accounting has shown
over the past15.

14In the IPAT (Impact=Population*affluence*technology) framework, this means that
the factor T outweighs P and A. IPAT can be extended to include energy intensity issues,
another effect that compensates for the enlarging scale of the economy.

15ICGC (2012) notes that while the final Kyoto phase is assessed: ’Luxembourg and
Canada are the farthest from the emission levels they agreed to keep, by 29% and 27%
respectively. Other countries that emitted more than the emissions budget agreed for this
period are Austria, Iceland, New Zealand, Australia, the United States, Lichtenstein, Spain,
Denmark, Switzerland, Slovenia, Norway, Italy, Japan, the Netherlands and Ireland’. Greece
and Portugal are in more comfortable positions but they bargained substantial increases with
respect to 1990.



6 Summary and conclusions

We examine long term carbon emissions-income relationships for the most
advanced economies within OECD, given their role as leaders in the current
climate change policy agenda. They are grouped into relevant policy groups:
North America and Oceania, South Europe, North Europe.

However - even within the adopted groups’ classification - the coun-
tries under study may differ with respect to some unobservable time varying
variables such as technology, institutions, culture, etc., which linked to the
production of CO2. Moreover, some unobserved global effects (such as those
linked to the global public good nature of CO2) may affect heterogeneously
different countries under study. Given this, an interesting feature of the pro-
posed approach, compared with the related literature, is thus that it allows
the estimation of the nonparametric time effect rather than considering it as
nuisance term. This feature is very important from the point of view of an eco-
nomic and policy oriented analysis because it allows for (i) obtaining a proper
income effect; (ii) nonparametrically investigating how the time-related fac-
tors may drive the CO2 long-run evolution, perhaps heterogeneously across
countries. The proposed model also allows for iii) handling serial correlation
by using autoregressive moving average (ARMA) error processes. We rely on
recent advances on Generalized Additive Mixed Models (GAMMs).

As preliminary analysis we propose a two step model selection proce-
dure allowing us to choose both the degree of heterogeneity with respect to
time and income, as well as the covariance structure. We emphasized that hav-
ing allowed for serially correlated errors improves the statistical quality of the
model expressed in terms of a trade off between goodness of fit and model com-
plexity. We also pointed out that once serial correlation and (heterogeneous)
time effect have been accounted for, the proper effect of income appears to be
homogeneous across countries. Moreover, the introduction of heterogeneous
time effects makes the memory of the process substantially decrease. For such
models, the autocorrelation function has lower values but also more complex
dynamics compared to models without time effects or which constrain such
effects to be homogeneous across countries. In the end, our proposed model
selection procedure allows us to choose a ”semiparametric random growth”
specification (common income effect and heterogeneous time effect) with an
MA(3) and MA(2) error structure for the Umbrella group and the EU-South,
respectively, while for the EU-North group, it suggests a common income
and common time model with an ARMA(2,1) error structure. The specifi-
cations allowing heterogeneous income effect perform relatively well only for
EU-North.



Concerning the main results of estimation, we find that when introduc-
ing a nonparametric time effect into the model, even if homogeneous across
countries, EKC evidence is importantly affected if compared to previous stud-
ies (and to non reported results as well). We provide strong empirical support
that the negative total pollution-development relationship (which includes in-
direct effects linked to the omitted or unobserved variables) that appears for
some advanced countries is explained to a large extent by country-specific
time-related factors that can outweigh the inevitable CO2 increasing GDP
scale effect. More precisely, only three Scandinavian countries – Denmark,
Finland and Sweden – present some threshold effect on the CO2-development
relation, whereas for all other countries this relation appears to be monotonic
and positive.

In other words, these results indicate that time-related factors were
actually behind the reduction of CO2 in northern Europe - even during growth
periods: for these countries, time related factors have been able to more than
counterbalance GDP scale effects. At the same time, however, the CO2-time
relationship is negative in the northern EU and in areas of OECD (North
America, Japan, Italy) that stand out in terms of environmental invention
and innovation, policy commitment and/or energy efficiency. In summary, the
time effect nevertheless outweighs the GDP scale effect only for northern EU
countries, which drives up CO2 emissions in any case, though with different
intensities.

This strongly suggests the fallacy of the simplistic ‘environmental Kuznets
curve’ argument when it does not account for and model specific time effects.
Idiosyncratic elements related to energy, policy and innovation characterise
heterogeneity, both across groups of countries and within groups of homoge-
neous countries as well.

Future research should investigate the contents of such country specific
time factors, for example by testing if and what policy and innovation adoption
might stop and break the EKC GDP driven ascending path. We have to
learn from our past to inform the future post-Kyoto era, which will witness
a considerably different environment, with advanced countries still leading
policy and technological domains, but main emerging countries hitting their
environmental turning point by emitting around three-quarters of global CO2.
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Figure 4: Empirical autocorrelation function. Umbrella.
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Standardized residuals: raw residuals divided by the standard errors. Approximate two-
sided critical bounds (0.05 level).



Figure 5: Umbrella (M3, MA(3))

Notes. s(LGDPPC, edf) indicates the estimated smooth function
(and its 95% confidence interval) of log (GDP per capita) and edf
represents the estimated degrees of freedom.
s(TIME, edf)NATION “NAME OF THE COUNTRY” indicates
the estimated smooth function (and its 95% confidence interval) of
the “factor-by-curve interaction” (interaction between the common
trend and the country’s indicator variable) and edf represents the
estimated degrees of freedom.



Figure 6: EU sud (M3, MA(2))
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Notes. s(LGDPPC, edf) indicates the estimated smooth function
(and its 95% confidence interval) of log (GDP per capita) and edf
represents the estimated degrees of freedom.
s(TIME, edf)NATION “NAME OF THE COUNTRY” indicates
the estimated smooth function (and its 95% confidence interval) of
the “factor-by-curve interaction” (interaction between the common
trend and the country’s indicator variable) and edf represents the
estimated degrees of freedom.



Figure 7: EU nord (M2, ARMA(2,1))
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Notes. s(LGDPPC, edf) indicates the estimated smooth function (and its 95% confidence
interval) of log (GDP per capita) and edf represents the estimated degrees of freedom.
s(TIME, edf) indicates the estimated smooth function (and its 95% confidence interval)
of time and edf represents the estimated degrees of freedom.



Figure 8: EU nord (M4, ARMA(1,2)): heterogeneous income effect
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Notes. s(LGDPPC, edf) NATION “NAME OF THE COUNTRY” indicates the estimated
smooth function (and its 95% confidence interval) of the “factor-by-curve interaction”
(interaction between log(GDP per capita) and and the country’s indicator variable) and
edf represents the estimated degrees of freedom.








