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Cancer is one of the leading causes of death in the world. Therefore, the development

of new advanced and targeted strategies in cancer research for early diagnosis and

treatment has become essential to improve diagnosis outcomes and reduce therapy side

effects. Graphene and more recently, MXene, are the main representatives of the family

of two-dimensional (2D) materials and are widely studied as multimodal nanoplatforms

for cancer diagnostics and treatment, in particular leveraging their potentialities as

photodynamic therapeutic agents. Indeed, due to their irreplaceable physicochemical

properties, they are virtuous allies for photodynamic therapy (PDT) in combination with

bioimaging, photothermal therapy, as well as drug and gene delivery. In this review, the

rapidly progressing literature related to the use of these promising 2Dmaterials for cancer

theranostics is described in detail, highlighting all their possible future advances in PDT.

Keywords: photodynamic therapy, theranostics, graphene, MXene, nanomedicine

INTRODUCTION

Photodynamic therapy (PDT) is a form of phototherapy aimed at achieving cell death via
the generation of cytotoxic reactive oxygen species (ROS). Although PDT is still an emerging
therapeutic modality, it has already been established as a clinically approved method for the
treatment of various malignant diseases, including cancer (Agostinis et al., 2011).

Clinically, PDT is usually used in conjunction with other forms of treatments, such as
surgery, radiotherapy (RT), and chemotherapy (CT). Due to its local activation and limited
tissue penetration, PDT has relatively low invasiveness, and in many cases, good cosmetic
results. Therefore, this therapy is particularly suitable for the treatment of exposed skin and
sensitive areas, like the head and neck. Moreover, even though it may induce prolonged
periods of skin photosensitivity, during which patients need to avoid light, it lacks the serious
adverse events (AE) seen in RT and systemic CT. Surgery represents the first-choice treatment
and, for the majority of tumor types, the only curative intervention for early diagnosed
cancer. However, since most patients are usually diagnosed at late stages, treatments such
CT and RT are then preferred. In case of inoperable disease and failure or refusal of other
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treatments, PDT can potentially be used as a standalone
treatment or in combination with other therapies due to the
absence of systemic effects and its ability to preserve the organ
function. Furthermore, unlike RT, PDT mechanisms of action
allow its use also for repeated treatments.

Currently, there are 563 registered clinical trials for PDT, of
which almost 60% are directed against cancer (www.clinicaltrials.
gov). Among the drug-device combination products, PDT was
the first one approved by the Food and Drug Administration
(FDA), being now under investigation in preclinical studies
to improve its efficacy and safety (Ferreira Dos Santos et al.,
2019). The PDT procedure requires three main components: a
photosensitizer (PS), a light source (laser), and molecular tissue
oxygen. In the context of cancer treatment, the PS is administered
locally or systemically, being accumulated in the tumor site.
Subsequently, the patient is locally irradiated with light of a
proper wavelength, with the aim to activate the PS in the presence
of molecular oxygen (Dolmans et al., 2003).

Following administration, PSs can be internalized by both
cancer and normal cells. While healthy tissues can eliminate
the PS over time, this is not possible for tumor cells due to
the lymphatic inadequacy. The resulting PS retention in tumor
tissues, together with the localized activation by irradiation,
makes PDT a selective treatment for cancer.

The treatment will result in localized oxidative photodamage,
consisting in the oxidation of a large range of cellular
biomolecules, including nucleic acids, lipids, and proteins.
Consequently, the process will lead to selective cytotoxicity,
mainly due to a severe alteration in cell signaling cascades
and gene expression regulation. The cellular response to
photodamage is closed related to several factors. Due to its
characteristics, a PS will usually accumulate toward different
cellular organelles (e.g., mitochondria and lysosomes), plasma
membrane, Golgi apparatus, or endoplasmic reticulum (ER).
Generally, three main mechanisms of photodamage-induced cell
death have been described: apoptosis, necrosis and autophagy at
the tumor site (Bacellar et al., 2015; Ferreira Dos Santos et al.,
2019). This process is also accompanied by the induction of
an acute local inflammatory reaction that participates in the
removal of dead cells, restoration of normal tissue homeostasis
and development of systemic immunity (Henderson et al., 2004;
Korbelik, 2006). This ability of PDT to activate multiple cell
death pathways enables circumvention of apoptosis-resistance in
cancer cells, one of the main problems for anticancer approaches.

The superoxide anions released in type I reactions do
not pose particular harm to biological systems directly but
contribute to the production of hydrogen peroxide, resulting
in lipid peroxidation, ultimately leading to the disruption of
cellular membranes. Thanks to the short singlet oxygen (1O2)
lifetime of ∼40 ns and its short-range action (maximum action
radius of about 20 nm), together with the localized PS light-
induced activation, PDT is a highly controllable and specific
therapy. PS localization can also modulate the subcellular site
of action of PDT. Extensive cell damages could also affect
apoptotic pathway components, and therefore apoptosis may not
be properly executed. Thanks to the autophagy process, cells
have the ability to recycle damaged cytoplasmic components

and organelles trough the creation of the “autophagosome,” a
double membrane structure that after the engulfment of the
damaged particles fuses with lysosomes in order to degrade
its contents. This autophagic process is not only considered to
be a cytoprotective mechanism, being observed also as a cell
death mechanism in response to PDT. When the apoptotic
mechanism is compromised, cell death mainly occurs through
autophagy. This seems to be also correlated with PDT dose, since
autophagy can serve as a protective mechanism or initiate the
autophagic cell-death, when using low or high doses, respectively
(Figures 1A,B). Several preclinical studies have been performed
to improve the safety and efficacy of PDT, as well as to extend
the number of the different types of diseased tissues that can be
treated, thanks to the use of next-generation PSs. The design of
second-generation PSs was aimed to develop new agents with
higher absorption wavelengths, enabling deeper organs to be
targeted thanks to enhanced penetration of light (Lou et al., 2004;
Agostinis et al., 2011; Story et al., 2013). Later, the introduction of
third-generation PSs allowed improving targeting strategies, such
as antibody-directed PS and PS-loaded nanocarriers (Agostinis
et al., 2011; Yoon et al., 2013).

Thanks to the progress of nanotechnology, the improvement
of PDT using theranostic two-dimensional (2D) nanomaterials
(NMs) is attracting growing attention. Therapeutic strategies
were combined with imaging modalities for a theranostic aim in
order to monitor the biodistribution of therapeutic agents and to
identify and/or localize the tumormass and its growth (Cho et al.,
2013; Wang et al., 2013; Ge et al., 2014; Gollavelli and Ling, 2014;
Rong et al., 2014; Kim et al., 2015; Wu et al., 2015; Yan et al.,
2015b; Guan et al., 2016; Kalluru et al., 2016; Luo et al., 2016;
Gulzar et al., 2018).

Currently, multiple combinations of various therapeutic and
diagnostic modalities are adopted to achieve a theranostic effect
(Orecchioni et al., 2015; Ji et al., 2019), and can be further
improved and expanded thanks to the development of NM-
based theranostic nanoplatforms. Among 2D NMs suitable for
this purpose, graphene and graphene-based materials (GBMs),
including few layer graphene (FLG), graphene oxide (GO),
reduced graphene oxide (rGO), nano-graphene oxide (NGO),
and graphene quantum dots (GQDs), bring the technological
innovations needed to the current societal and industrial
challenges (Boukhvalov and Katsnelson, 2008; Park and Ruoff,
2009; Gao et al., 2010; Kuila et al., 2012; Mao et al., 2012;
James and Tour, 2013; Quintana et al., 2013; Yang et al., 2013a;
Roppolo et al., 2014; Sechi et al., 2014; Servant et al., 2014;
Kim et al., 2016; Shin et al., 2016; McManus et al., 2017;
Park et al., 2017). Graphene, consisting of a single layer of
carbon atoms arranged in a honeycomb structure, exhibits a
unique combination of physiochemical properties, including
high surface area (2,630 m2 g−1), optimal thermal conductivity
(∼5,000WmK−1), remarkable optical transparency (single layer
graphene absorbs ∼2.3% of visible light), strong mechanical
strength (Young’s modulus of ∼1 TPa), and room temperature
quantum hall effect for electrons and holes (Novoselov et al.,
2012). Its 2D plane sp2 hybridization results in delocalized out
of plane π bonds providing an outstanding carrier mobility
(ranging from ∼ 200,000 to ∼500,000 cm2 V−1 s−1, in case of
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FIGURE 1 | Schematic illustration of phototherapy. (A) PDT mechanisms of action and subsequent induced cell death: apoptosis, necrosis, and autophagy. (B) PTT

mechanisms of action and subsequent cell death induced by cell membrane destruction, DNA denaturation, and angiogenesis blocking.

suspended graphene or graphene-based field effect transistors,
respectively). Due to its characteristics, graphene offers new
fascinating perspectives in nanomedicine for the development
of new therapeutic delivery approaches, imaging strategies, as
well as biosensor-based diagnostic tools (Yang et al., 2013b;
Orecchioni et al., 2014, 2015, 2016b; Avitabile et al., 2018; Fadeel
et al., 2018b).

Recently, other promising 2D NMs have attracted attention
for their possible applications in various fields, including
biomedical sciences (Chen et al., 2015; Luo et al., 2018). One
of the most recently discovered 2D materials is MXene, which
was first introduced by Gogotsi et al. in 2011 (Naguib et al.,
2011). Since then, more than 20 species of MXenes have been
successfully synthesized, and the structure/properties of more
than 70 have been predicted in silico. MXenes are composed of
early-transition-metal carbides, carbonitrides, and nitrides with
structural formula Mn + 1Xn, where M is an early transition
metal, X stands for carbon, nitrogen, or both, and n = 1–
3. MXenes are synthesized through selectively etching the A-
group element from the precursor ternary-layered carbides of
MAX phases, where A represents a group of 12–16 periodic
table elements. As a consequence of the selectively etching
of the A group with -F containing etchants, such as HF, the
resulting MXenes will be characterized by abundant surface-
terminating functional groups, e.g., hydroxyl (–OH), oxygen (–
O), or fluorine (–F), endowing their hydrophilic nature and
allowing their flexible surfacemodification and functionalization.
Thanks to the production scalability, the rich surface chemistry,
the metallic conductivity, the excellent mechanical/thermal
properties, and ease of processability, MXenes have attracted
increasing attention for a number of different applications, such
as energy storage (Lukatskaya et al., 2017), electromagnetic
interference shielding (Shahzad et al., 2016), electrocatalysts (Seh
et al., 2016), electrochemical supercapacitors (Ghidiu et al., 2015),
and Li-ion batteries (Er et al., 2014; Anasori et al., 2017), just to
name a few.

In recent years, MXenes have also been explored for their
applications in biomedicine, especially as building-blocks in
nano-biotechnology platforms. From the topological perspective,

MXenes share all the advantages of other classes of 2D
NMs, stemming from their impressive properties, such as
extreme thinness, high surface-to-volume ratio, and mechanical
toughness. Additionally, the rich chemistry on the surface
of MXenes provides abundant reactive sites for enzyme or
drug functionalization, while their volumetric capacitance and
metallic conductivity are highly desirable for low-noise and high-
fidelity biosensors (Driscoll et al., 2018). MXenes exhibit strong
absorption in the near-infrared (NIR) region, both in the first
(650–950 nm) and second biological window (1,000–1,350 nm),
where the low scattering and energy absorption allow maximum
penetration of the radiation through the tissue.

The suitability of GBMs for multiple cancer theranostic
applications is due to their unique intrinsic physicochemical
properties, making them superior nanotools compared to
the existing materials and devices used for this purpose,
such as optical transparency, high surface area, easy surface
functionalization, and low-cost production. In this contest, the
use of GBMs and MXenes has been proposed to enhance
PDT efficiency. For example, these promising materials are
able to correct some of the limits showed by the conventional
PSs required for this medical technique. Those are mainly
represented by porphyrin-based molecules, such as Chlorin e6
(Ce6), which are characterized by low solubility, photostability,
difficulties in delivery efficiency, and inability to be absorbed in
regions where the skin is the most transparent (Detty et al., 2004;
Huang, 2005). Besides providing a superior biocompatibility,
2D NMs, and in particular GO, can endow them with higher
water dispersibility (Gao et al., 2004; Michalet et al., 2005;
Resch-Genger et al., 2008), photostability, cytotoxicity, and
ROS-generation efficiency (Ge et al., 2014; Pelin et al., 2018).
Other materials, such as GQDs, are able to perform better
than conventional PDT agents due to their extremely high 1O2

quantum yield, GQDs (Ge et al., 2014).
Moreover, the particular nanostructure and the large surface

area of these 2D NMs facilitate the loading of PSs and other
targeting moieties or drugs, allowing a specific release of the
treatment and selectivity for cancer cells. Indeed, the presence
of the 2D surface characterized by delocalized π electrons and,
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FIGURE 2 | Schematic representation of the current applications in PDT for cancer theranostics based on graphene and MXene. Left panel: representation of

graphene and MXene. Middle panel: combined applications with PDT, types of conjugated molecules (for PTT), types of imaging, and examples of conjugated drugs

(for drug delivery). Right panel: types of cancer investigated in vitro and in vivo.

in particular for GO, the existence of polar functionalities (e.g.,
epoxide, carbonyl, carboxyl, and hydroxyl groups), allows high
drug loading ratios to be reached simply, even of poorly soluble
chemotherapeutic drugs, based on electrostatic or hydrophobic
interactions and π-π stacking capability, which can even achieve
200 wt% (Augustine et al., 2017). In addition, thanks to the high
surface-to-volume ratio, it is possible to reach a superior bio-
functionalization, which allows several drugs and molecules to
be added, including such fluorescent probes, genes, and targeting
moieties to specifically recognize cancer cells, making it possible
to achieve their guided and controlled release to the targeted cells.

Furthermore, thanks to the intrinsic NIR absorption
properties, GO is a suitable tool for both PDT and photothermal
therapy (PTT), obtaining a higher therapeutic efficiency through
both in situ production of ROS and tumor ablation under NIR
irradiation. Together with PDT, PTT represents an alternative
anticancer therapy thanks to the selectivity of the hyperthermic
process toward cancer cells, sparing healthy tissues. Irradiation
of plasmonic NPs accumulated in the tumor with a light of
appropriate wavelength leads the NP conduction band electrons
to undergo synchronized oscillations, allowing the conversion

of NIR light into heat. There are three mechanisms that lead to

cell death: cell membrane damage, denaturation of DNA, and

angiogenesis blocking (Figure 1B). The investigation of MXenes

as PSs for PDT is still in its infancy and, as of June 2019, most of

the published works have reported on different MXene species as

photothermal conversion agents (PTAs) for PTT (Lin et al., 2016,
2017; Dai et al., 2017; Han et al., 2018; Feng et al., 2019). Indeed,
MXenes show higher photothermal effect compared to GO; thus,

they appear particularly suitable as PTA for cancer therapy and
imaging (Lin et al., 2016, 2018).

In light of this consideration, in this review, we aim to
discuss the current state of the art of PDT in cancer theranostics
based on GBMs and MXenes, alone or in combination with
other therapies (i.e., PTT and drug delivery). A literature
mining protocol was developed to present an overview of the
literature in this context, focusing on the different types of
models, cancer, functionalization, and combined approaches. A
schematic representation of graphene- and MXene-based PDT
for cancer theranostic applications is shown in Figure 2. We then
have analyzed the future trends in PDT related to graphene and
MXene, identifying different knowledge gaps in the field.

GRAPHENE AND MXene LITERATURE
SURFING

A systematic review of the literature on graphene and MXene,
studied in biomedicine as nanotools for cancer theranostic
applications based on PDT, was performed with no time
restriction, according to the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) guidelines.
The electronic databases (PubMed, Scopus, and ToxLine) were
used as data sources, via the following keywords in several
different combinations: graphene, GBMs, FLG, GO, rGO, NGO,
GQDs, MXene, theranostic, and PDT. To help the reader, Table 1
shows all the acronyms used in the text. As an additional tool,
high-impact review articles were also considered. The list of
reported studies includes all the retrieved publications from 2008
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to January 2019. The adopted inclusion criteria were as follows:
(1) studies published in English; (2) full text articles; and (3)
the use of PDT in combination with other graphene/MXene
applications. A total of 20 eligible studies were identified through
the literature review for inclusion in the current review, 1
for MXenes and 19 for GBMs. The latter are summarized
in Table 2 based on the different types of cancer, combined
applications, species of investigation, model, and material used
in the respective study. The trend from 2011 to 2018 displays
a remarkable growing interest in graphene and GBMs for
cancer PDT.

A search on clinical trials was performed using the same
criteria; however, although there are currently 325 clinical trials
based on PDT for cancer therapy (www.clinicaltrials.gov), none
of them involves GBMs orMXenes. This result highlights that the
research on 2D nanomaterials for PDT, despite promising results
obtained in vitro and in vivo, is still at a very early stage for a
clinical translation.

The 19 manuscripts on graphene-based PDT in cancer
theranostics were analyzed with respect to type of applications
combined with PDT, model used for the study (in vivo or
in vitro), and type of cancer studied (Figure 3). Focusing on
the association of other cancer theranostic applications, it
emerged that PDT was often applied together with one or
multiple therapies and imaging modalities: the majority of
the studies (58%) concerned the simultaneous application of
PDT, imaging, and PTT, drug delivery or other therapies,
followed by the combination of PDT with PTT, drug
delivery or other therapies (32%), while only 10% of the
works used PTD associated with imaging alone (Figure 3A).
In particular, PDT was used in combination with different
imaging techniques, such as luminescence imaging (CLI),
fluorescence imaging, photoacoustic imaging (PAI), magnetic
resonance imaging (MRI), confocal microscopy (CLSM),
thermal imaging (IRT), Raman imaging, and positron emission
tomography (PET). From the analysis of the model used
in the works, it emerged that most studies were carried
out both in vitro and in vivo (48%), a large number (47%)
using only in vitro models consisting of different kinds of
cancer cells, while only 5% tested these materials exclusively
in vivo (Figure 3B).

Finally, we focused on the different types of tumors studied
(Figure 3C), identifying cervical cancer as the most investigated
(32% of publications). Indeed, according to the World Health
Organization (WHO)1, cervical cancer is the fourth most
common type of tumor in women and the eighth most
frequently occurring overall; rising with 570,000 new cases
in 2018 and representing 6.6% of all female cancers (from
world health organization www.who.int). The second largest
portion comprises works focusing on lung cancer (23%), followed
by publications concerning breast cancer (18%) and gastric
cancer (9%). Papers investigating other kinds of tumors, such
as skin, brain, liver cancer, and papilloma, make up the
remainder (5%).

1WHO. Cervical Cancer WHO. Available online at: http://www.who.int/cancer/

prevention/diagnosis-screening/cervical-cancer/en/ (accessed July 4, 2019).

TABLE 1 | List of abbreviations.

ABBREVIATIONS

AE Adverse events

Ce6 Chlorin e6

CLI Cerenkov luminescence imaging

CLSM Confocal laser scanning microscopy

CT Chemotherapy

DOX Doxorubicin

DPBF 1,3-diphenyli-sobenzofuran

DVDMS Sinoporphyrin sodium

EPR Enhanced permeability and retention

ER Endoplasmic reticulum

FDA Federal Drug Administration

GBMs Graphene based materials

GO Graphene Oxide

GQDs Graphene quantum dots

HA Hyaluronic acid

HB Hypocrellin B

hMPO human myeloperoxidase

HPPH 3-(1
′

-hexyloxyethyl)-3-devinyl pyropheophorbide-a

H2O2 Hydrogen peroxide

ICG Indocyanine green

IRT Infrared thermal imaging

LSPR Localized Surface plasmon resonance

MIRIBEL Minimum Information Reporting in Bio–Nano

Experimental Literature

miRNA MicroRNA

MRI Magnetic resonance imaging

NGO Nanographene oxide

NIR Near infrared

NMs Nanomaterials
1O2 Singlet oxigen

PAI Photoacoustic imaging

PDT Photodynamic therapy

PEG Polyethylene glycol

PEI Polyethylenimine

PET Positron emission tomography

PRISMA Preferred Reporting Items for Systematic Reviews

and Meta-Analyses

PS Photosensitizer

PTA Photothermal conversion agents

PTT Photothermal therapy

rGO Reduced graphene oxide

RT Radiotherapy

siRNA Short interfering RNA

UCL imaging Upconversion Luminescence Imaging

UCNPs Upconversion nanoparticles

WHO World health organization

ZnPc Phthalocyanine

PROGRESS IN PHOTODYNAMIC THERAPY
IN GRAPHENE- AND MXENE-MEDIATED
THERANOSTICS

GBMs have attracted attention for PDT exploiting their
optical loading properties (Avitabile et al., 2018; Viseu et al.,
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TABLE 2 | Table showing all the studies using GBMs for PDT theranostic applications.

References Type of cancer Type of

applications

Model Drug/PS Imaging Material

Tian et al. (2011) Cervical cancer PDT and drug

delivery

In vitro Chlorin e6 – GO-PEG

Huang et al. (2011) Gastric

carcinoma

PDT and drug

delivery

In vitro Chlorin e6 – FA-GO-Ce6

Zhou et al. (2012) Lung cancer PDT and drug

delivery

In vitro Hypocrellin A and

Camptothecin

– rGO

Wang et al. (2013) Papilloma,

cervical cancer

Imaging, PDT, and

PTT

In vitro and

in vivo

Doxorubicin CLSM and MRI UCNPs-NGO/ZnPc

Sahu et al. (2013) Cervical cancer PDT and PTT In vitro and

in vivo

Methylene blue – GO

Cho et al. (2013) Lung cancer Imaging, PDT, and

PTT

In vitro Chlorin e6 NIR fluorescence

imaging

GO–HA–Ce6

Rong et al. (2014) Breast cancer Imaging and PDT In vitro, in vivo,

and ex vivo

HPPH PET imaging, (NIR)

fluorescence imaging

GO-PEG-HPPH

Zhou et al. (2014) Lung cancer PDT and drug

delivery

In vitro Hypocrellin A and

Camptothecin

– HA/SN-38/GO

Gollavelli and Ling (2014) Cervical cancer Imaging, PDT, and

PTT

In vitro – Fluorescence imaging

and MRI

MFG (magnetic and

fluorescent graphene)

Ge et al. (2014) Cervical, breast

cancer

Imaging and PDT In vitro and

in vivo

– Fluorescence imaging NGs-QDs

Yan et al. (2015a) Lung cancer Imaging, PDT, and

PTT

In vitro and

in vivo

DVDMS Fluorescence imaging

and PAI

GO-PEG-DVDMS

Wu et al. (2015) Breast cancer Imaging, PDT, PTT,

and drug delivery

In vitro Indocyanine green NIR fluorescence

imaging

pGO-CuS/ICG

Yan et al. (2015b) Brain cancer Imaging, PDT and

drug delivery

In vitro, in vivo,

and ex vivo

DVDMS Fluorescence imaging GO-PEG-DVDMS

Kim et al. (2015) Cervical cancer Imaging, PDT, and

PTT

In vitro Au Raman Bioimaging PEG-Au@GON NPs

Luo et al. (2016) Lung cancer Imaging, PDT, and

PTT

In vitro and

in vivo

– Fluorescence confocal

microscope NIR

fluorescence and

thermal imaging

NGO-808

Kalluru et al. (2016) Melanoma Imaging, PDT and

PTT

In vivo – Fluorescence imaging GO-PEG-folate

Wo et al. (2016) Esophageal

squamous

carcinoma

PDT, PTT, drug

delivery, and

magneto-

mechanical

therapy

In vitro Doxorubicin – HMNS/SiO2/GQDs-

DOX

Wu et al. (2017) Breast cancer Imaging, PDT, and

PTT

In vitro and

in vivo

Chlorin e6 CLSM, thermal/PT

imaging

GO/AuNS-PEG and

GO/AuNS-PEG/Ce6

Gulzar et al. (2018) Liver and

cervical cancer

Imaging, PDT, and

PTT

In vitro, in vivo,

and ex vivo

Chlorin e6 UCL imaging NGO-UCNP-Ce6

(NUC)

The 19 selected studies were characterized on the basis of different type of cancer, application, model, drug/PS, imaging method and material.

2018). Studies in the field of theranostics started by using
GBMs as delivery vehicles for both PS and imaging agent
(Sahu et al., 2013; Gollavelli and Ling, 2014), paving the way
to the following research for a more detailed exploration
of nanotechnology-based PDT in cancer theranostics.
Graphene has been shown to adsorb light in the near
infrared (NIR) region, allowing its potential application for
cancer phototherapy to be evaluated both in vivo and in vitro
(Cho et al., 2013; Sahu et al., 2013; Wang et al., 2013; Gollavelli
and Ling, 2014; Rong et al., 2014; Kim et al., 2015; Wu et al.,

2015, 2017; Yan et al., 2015a; Kalluru et al., 2016; Luo et al., 2016;
Wo et al., 2016; Gulzar et al., 2018).

Moreover, it has been demonstrated, both in cell and animal
models, that GBMs exhibit several advantages for drug delivery,
giving the possibility of high drug loading efficiency, controlled
drug release and tumor-targeted drug delivery (Bitounis et al.,
2013; Yang et al., 2016; Zhang et al., 2016, 2017). Indeed,
different biomolecules, such as DNA, microRNA (miRNA), short
interfering RNA (siRNA), and chemotherapeutic drugs can be
loaded onto the surface of these materials for gene transfection
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FIGURE 3 | Overview of graphene-based PDT theranostics. Percentages of manuscripts (19 papers) on the basis of (A) type of applications combined with PDT,

(B) model used for the study (in vivo or in vitro), (C) type of cancer studied.

and drug delivery (Huang et al., 2011; Tian et al., 2011; Zhou et al.,
2014; Yan et al., 2015b; Wo et al., 2016; Wu et al., 2017). GBMs
and MXenes are also suitable for imaging purposes. In particular,
GO-based nanoplatforms show great potential exploitable for
imaging purposes, thanks not only to the efficient quenching
properties of GO toward several fluorescent moieties, including
dyes, quantum dots, and conjugated polymers, but also to its
ability to improve their stability, distribution, biocompatibility,
and photodynamic efficiency (Yan et al., 2015b). Other materials,
such as NGO sheets, have a photoluminescent emission in the
visible and infrared regions (Sun et al., 2008). This intrinsic
photoluminescence (PL) can be exploited for little background-
NIR live cell imaging (Sun et al., 2008). GQDs exhibit multiple
properties, ranging from their broad absorption in the visible
and NIR light range, their good aqueous dispersibility, deep-
red emission, high pH and photo-stability up to their positive
biocompatibility. In addition, GQDs display a relevant 1O2

generation yield, beyond 1.3 (almost double compared to the
other PDT agents studied in literature). Among the various
unique properties, GQDs also present an up-conversion PL (Zhu
et al., 2012a,b; Feng et al., 2017), ranging from blue to yellow
colors (Li et al., 2013). Due to all their properties, GQDs are able
to behave as a multifunctional nanoplatform for the theranostic
combination of imaging and highly efficient in vivo PDT (Ge
et al., 2014).

For these reasons, scientists attempted to exploit these
therapeutic and imaging potentialities of GBMs in cancer
theranostics to achieve targeted cancer cell killing as well as
less impairment of healthy cells. An example of PDT based
on graphene for combined applications in cancer theranostic is
reported in Figure 4.

Combined Therapy: PDT and Drug
Delivery/PTT
The development of outstanding nanoplatforms leveraging PDT
and synergistic therapies, based on drug delivery and PTT, is
currently being extensively investigated for cancer treatment.
In one of the earliest works showing the promise of GBMs in
PDT, in 2011, Tian et al. loaded polyethylene glycol (PEG)-
functionalized GO with the PS Ce6 via supramolecular π-π
stacking (Tian et al., 2011). The material was taken up by cervical

cancer cells and resulted in the formation of ROS under light
excitation. Anti-cancer activity of the GO-PEG-Ce6-mediated
PDT protocol was more pronounced compared to free Ce6.
Also, Huang et al. proposed to use GO as a delivery platform
for Ce6 (Huang et al., 2011). Like the above studies, Ce6 was
loaded onto folic acid targeted GO through π-π stacking and
hydrophobic interactions. The systemwas shown to kill MGC803
gastric cancer cells upon irradiation. Later, Zhou et al. efficiently
loaded GO with the PS hypocrellin B (HB) through π-π stacking
interaction. They showed that the material was able to generate
1O2 upon irradiation (Zhou et al., 2012). The same group
later reported that the efficiency of PS-loaded GO anticancer
activity could be even improved through its combination with
chemotherapy (Zhou et al., 2014). In particular, in this study,
hypocrellin A and 7-ethyl-10-hydroxycamptothecin were co-
loaded on GO and the resulting system induced higher cell
death in a lung cancer cell line model when exposed to
light, demonstrating that chemotherapy and PDT can work
synergistically (Zhou et al., 2012).

Later, in another study, functionalized nano-graphene oxide
(NGO) was complexed with a PS methylene blue in order to
achieve combined PTT/PDT of cancer (Sahu et al., 2013). Due
to the pluronic functionalization, material showed great stability
in biological fluids. Authors reported that the nanocomplex was
efficiently taken up by cancer cells and able to release methylene
blue in a pH-dependent manner. Only when exposed to light
did the system showed anti-cancer activity in vitro. Following
its systemic administration in tumor bearing mice, nanocomplex
was shown to accumulate in tumor. When mice were irradiated
with NIR light, it caused total ablation of tumor tissue through
the combined action of photodynamic and photothermal effects.

These studies suggested the possibility of exploiting the
properties of GBMs and MXene to perform an improved PDT
in multimodal nanosystems for cancer treatment and paved the
way up for future theranostic works.

Theranostics: Imaging and PDT
GBMs can be used not only in PDT protocols and other
combined therapies, but also for imaging purpose, allowing
the development of new theranostic nanoplatforms for cancer
diagnosis and treatment. For example, in 2014, Ge et al.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 7 October 2019 | Volume 7 | Article 295

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Gazzi et al. Progress and Future Challenges in 2D Theranostics

FIGURE 4 | Example of PDT based on graphene for combined and multimodal applications in cancer theranostic. (A) Schematic illustration of NGO-808 preparation

and combined A549 tumor xenografts-targeted NIR imaging and synergistic phototherapy (PDT and PTT). (B) Thermal images showing the higher heat generation of

NGO-808 (bottom row) compared to that in blank phosphate-buffered saline (upper row) during 5min 808 nm laser irradiation. (C) In vivo NIR imaging of NGO-808 on

A549 tumor xenografts. (D) In vivo combined PDT and PTT on A549 tumor xenografts treated with NGO-808. Adapted with permission from Luo et al. (2016),

copyright 2016 American Chemical Society.

exploited the intrinsic properties of graphene quantum dots
(GQDs), such as the broad absorption from the visible to
the NIR, high pH- and photo-stability, and biocompatibility
for imaging purposes (Ge et al., 2014). In this study, GQDs
exhibited a massive 1O2 generation yield, making them efficient
multifunctional nanoplatforms for in vivo simultaneous imaging
and extremely efficient PDT of different types of cancer, including
skin melanoma and tumors located near the skin. During the
same year, Rong et al. identified PEG-functionalized GO as a
suitable nanoplatform to increase PDT efficacy and improve
long-term survival after treatment (Rong et al., 2014). This
was obtained mainly thanks to the ability of the GO-based
nanotool to serve as a carrier for the PS agent HPPH, increasing
its accumulation to the cancer site. In their in vivo studies,
the distribution and delivery were traced through fluorescent
imaging and positron emission tomography (PET) by the 64Cu
radiolabeling of HPPH. Compared to free HPPH, GO-PEG-
HPPH enhanced the photodynamic cancer cell killing ability
thanks to HPPH’s improved tumor delivery.

Theranostics: Imaging, PDT, and Drug
Delivery
In a study directed against lung cancer, a novel photo-theranostic
platform based on sinoporphyrin sodium (DVDMS) loaded on

PEGylated GO was investigated (Yan et al., 2015a). The GO-
PEG carrier improved the loaded PS DVDMS fluorescence
through intramolecular charge transfer and facilitated tumor
accumulation efficiency of DVDMS by enhanced permeability
and retention effect. The NIR absorption of GO was enhanced
by DVDMS, leading to improved photoacoustic imaging and
PTT. The in vivo intravenous injection of low doses of GO-
PEG (1 mg/kg) and of DVDMS (2 mg/kg) resulted in 100%
tumor eradication.

Theranostics: Imaging, PDT, and PTT
New advances have been made in cancer treatment to establish
a targeted protocol that covers the simultaneous application
of imaging methods for diagnosis and PTT or PDT for its
care. The theranostic progress made by the early studies led
to the development of new combined protocols involving
graphene nanoplatforms for a simultaneous imaging, PTT,
and PDT approach. Wang et al. developed a promising
integrated probe for UCL image-guided conjunctional PDT/PTT
of cancer (Wang et al., 2013). This multifunctional nanoplatform
(UCNPs-NGO/ZnPc) was composed of covalently grafted core–
shell structured upconversion nanoparticles (UCNPs) with
nanographene oxide (NGO) via bifunctional PEG loaded
with phthalocyanine (ZnPc). Authors suggested that this
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nanoplatform could be used as UCL high contrast imaging
probing of cells and whole-body for diagnosis, as well as
for PDT causing the formation of cytotoxic 1O2 under light
excitation and for PTT, by converting the 808 nm laser energy
into thermal energy (Wang et al., 2013). Another promising
platform for combined PTT/PDT directed for lung cancer was
realized by combining biocompatible HA-conjugated Ce6 with
GO (Cho et al., 2013). This dual PTT/PDT enzyme-activatable
GO–PS nanoplatform (GO–HA–Ce6) acts as a biologically
tunable agent, exploitable for NIR fluorescence imaging and
photo-induced cancer therapy (Cho et al., 2013). Another
incredible example of graphene-based combined multimodal
nanosystem for simultaneous imaging, NIR-induced PTT and
PDT was presented by Wu et al. (2017). In this research, all the
promising applications of graphene/Au-based nanohybrids have
been summed up into one single nanoplatform. They formulated
a graphene-Au nanostar hybrid NM (GO/AuNS-PEG) activated
by a single wavelength laser-mediated phototheranostic design,
based on the loading of Ce6 (GO/AuNS-PEG/Ce6) (Sahu
et al., 2013). Gollavelli et al. developed a superparamagnetic
graphene-based nanoplatform, so-called MFG-SiNc4, carrying
the hydrophobic silicon napthalocyanine bis (trihexylsilyloxide)
(SiNc4) PS (Gollavelli and Ling, 2014). The graphene used
in the study showed a wide range for NIR absorption (600–
1,200 nm). Therefore, the presence of SiNc4, working at any
wavelength within this range, facilitated the possibility of single
light induced phototherapy. In vitro and in vivo results have
shown that the simultaneous dual modal imaging and PTT/PDT
abilities of magnetic fluorescent graphene MFGeSiNc4 achieved
a significant cell killing efficacy which was a synergistic effect
of PDT and PTT. In 2016, Kalluru et al. reported for the first
time that NGO showed single-photon excitation wavelength-
dependent photoluminescence in the visible and short NIR
region, which could be exploitable for in vivo multi-color
fluorescence imaging (Kalluru et al., 2016). NGO induced the
formation of 1O2 both in vitro and in vivo for combined PDT
and PTT in melanoma. When mice with B16F0 melanoma
tumors were irradiated with NIR light at ultra-low doses, their
average half-life span was improved. In another study, with
the introduction of PS (IR-808) on nanoGO, authors were able
to combine NIR imaging synergistically with enhanced PDT
and PTT (Luo et al., 2016). Tumors were treated with PEG-
and PEI-functionalized NGO-808 and irradiated; apoptosis and
necrosis occurred, obtaining as result the complete ablation
of the tumor. Moreover, no recurrence was observed after 60
days post-irradiation.

In various studies, PEG was combined with the graphene-
based nanoplatforms to improve PDT efficacy or the material
biodistribution. For example, in 2015, Kim et al. studied the
effects of PEGylated graphene-gold nanoparticles (ZnPc-PEG-
Au@GON NPs) that, beside possessing a photothermal effect,
positively displayed multiple roles as Raman imaging agents,
delivery vehicle of ZnPc, and PS for enhanced combined
imaging, PTT, and PDT diagnosis and therapy (Kim et al.,
2015). A simultaneous and synergistic combination of PDT
and PTT was achieved as well as thermal and fluorescence
imaging. GO/AuNS-PEG composite demonstrated to produce

a high photothermal conversion efficiency due to the graphene
and gold nanostars enhanced optical absorbance in the NIR
range. The PS-assembled graphene/gold nanostar hybrid
completely eliminated the EMT6 xenografted tumors thanks to
the synergistic in vivo cancer cell killing of parallel PDT and
PTT under a single NIR laser irradiation (660 nm). Indeed,
this study further inspires new graphene-Au nanostar hybrid
applications as biocompatible nanoplatforms for imaging-guided
(fluorescence/thermal/photoacoustic imaging) multimodal
breast cancer therapy (PDT/PTT/chemotherapy/sonodynamic
therapy) (Wu et al., 2017).

More recently, Zhang et al. (2019) proposed Mo2C MXene
ad hoc synthesized in the nanosphere (NSph) topology as
a theranostic nanoagent for combined cancer dual therapy
(PTT and PDT) and imaging (photoacoustic and computerized
tomography). Also in this work, the ROS generation capability
was characterized by the modulation of DPBF absorbance at
420 nm under NIR irradiation at 1,064 nm and confirmed by
the inhibition of DPBF degradation upon addition of the ROS
quencher NaN3. In addition, synergistic PTT and PDT on
human liver carcinoma cells (HepG2) in vitro revealed more
than 80% of apoptotic cells in a dose-dependent manner,
confirming the critical contribution of ROS generation to the
efficacy of the Mo2C-mediated PTT/PDT synergistic therapy.
In vivo antitumor efficacy tested 14 days post-treatment in
HepG2 tumor bearing mice showed complete tumor ablation
and lack of regrowth after 10-min NIR exposure in the presence
of Mo2C pre-injected into the tumor, whereas control animals,
either non-irradiated or irradiated without Mo2C, showed a
4-fold increase in tumor volume. Hematologic, body weight,
and post-mortem histological analysis of explanted organ tissue
supported the safety of Mo2C NSph as an injectable PTA for
cancer theranostics.

Theranostics: Imaging, PDT, Drug Delivery,
and PTT
A low number of studies were carried to evaluate the use of GBMs
and MXenes for simultaneous imaging, PDT, drug delivery,
and PTT. In 2015, a NIR photo-triggered drug delivery system
pGO-CuS/IndoCyanine Green (ICG) exhibited high efficacy of
photothermal conversion, being a perfect candidate for highly
efficient controlled theranostic applications (i.e., bimodal PDT
and PTT therapy plus NIR imaging for a broad range of
deep-seated cancer tissues) (Wu et al., 2015). This promising
nanoplatform displayed optimal stability, high loading efficiency
of ICG, good photon energy conversion to heat and significant
1O2 generation yield under NIR laser treatment. It is able, via
passive transmembrane pathway, to readily reach the cellular
inner cytoplasm as a potent synergic platform for PDT and
PTT, killing specifically cancer cells by the appropriate tuning
the two NIR light irradiations (Wu et al., 2015). Later, Wo
et al. developed a multimodal system which was able to enclose
four different synergetic anti-cancer activities: photodynamic
toxicity, photothermal damage, chemotherapy, and magnetic
field-mediated mechanical stimulation (Wo et al., 2016). The
authors formed liposome-stabilized doxorubicin (DOX)-loaded
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FIGURE 5 | MXenes in cancer PDT. (A) Schematics of a multimodal PTT/PDT/chemotherapy synergistic platform based on Ti3C2 NSs functionalized with DOX.

Included is the synthesis if the Ti3C2 NSs from the precursor Ti3AlC2 phase, followed by the exfoliation, intercalation and functionalization steps. (B) Scanning electron

microscopy image of exfoliated Ti3C2 NSs. (C) Absorbance spectra and extinction coefficient at varying concentrations of Ti3C2 MXene. (D) ROS generation under

NIR irradiation at 808 nm in the presence of Ti3C2 and Ti3C2-DOX NS detected by DBPF absorbance assay. Reproduced with permission from Liu et al. (2017).

(E) Biodegradation of Nb2C NS. Reproduced with permission from Lin et al. (2017).

magnetic nanospheres, aimed at enhancing anti-cancer activity
through magnetic field-mediated mechanical force and NIR
laser irradiation.

Liu et al. (2017) first demonstrated the feasibility of Ti3C2

MXene nanosheets (NSs) as PSs for PDT in a PTT/PDT/chemo-
synergistic platform (Figures 5A–C). ROS generation in the
presence of Ti3C2 NSs in aqueous suspensions was investigated
using 1,3-diphenyli-sobenzofuran (DPBF) as the singlet 1O2

detector. Upon NIR irradiation of Ti3C2 NSs at 808 nm for
10min, DPBF showed a∼80% decrease in absorbance at 420 nm,
consequently revealing the generation of 1O2 (Figure 5D).
Similar ROS generation capability, although less pronounced,
was observed when Ti3C2 functionalized with DOX was
exposed to the same irradiation protocol, thus enabling the
development of combined PDT/chemotherapeutics. The exact
mechanism of 1O2 generation in Ti3C2 is still unclear and
warrants further investigations. The authors attribute it to the
energy transfer of photoexcited electrons from Ti3C2 to triplet
oxygen (ground state oxygen, 3O2), a mechanism similar to
the photodynamic behavior of GQDs (Ge et al., 2014) and
black phosphorous (Wang et al., 2015). The localized surface
plasmonic resonance (LSPR) effect might also play a role similar
to what has been reported for metals, like gold nanoparticles.
In these systems, the efficiency of energy transfer is enhanced
when the particles are in the aggregated state. Thus, the high
surface area of Ti3C2 might be particularly favorable for LSPR.
Compared to the individual therapeutic modalities, synergistic
PTT/PDT/chemotherapy with Ti3C2-DOX led to significant
improvements in therapeutic efficacy and recurrence outcomes
against human colon carcinoma (HCT-116) in vivo in tumor-
bearing mice. The abundant surface termination in the Ti3C2

NSs also enables specific functionalization to selectively target

species in the tumor microenvironment. For example, coating
Ti3C2-DOXwith hyaluronic acid increased colloidal stability and
actively targeted the surface protein CD44+ overexpressed in
breast cancer cells.

Theranostic Outcomes of the in vivo Studies

By analyzing the in vivo outcomes, it is possible to conclude
that all the studies presented very promising results for the use
of these materials in cancer theranostics, achieving a significant
(Kalluru et al., 2016; Gulzar et al., 2018) or even total cancer
ablation without tumor recurrence (Sahu et al., 2013; Wang et al.,
2013; Ge et al., 2014; Rong et al., 2014; Yan et al., 2015a,b; Luo
et al., 2016; Wu et al., 2017), as shown in Table 3. Among all the
materials, GO-based nanoplatforms were the most investigated
(5 in vivo studies out of 9), followed by NGO and GQDs (3 and
1 studies out of 9, respectively). Since GO and NGO can act both
as a photothermal agent and a delivery carrier for PSs, most the
works exploited its theranostic potential for combined PDT and
PTT. This strategy led to total cancer ablation between 14 and
21 days.

Thanks to the to the quantum confinement effect related
to their small dimensions, NGO and GQDs possess non-
blinking photoluminescence and photostability. Therefore, these
materials have been explored mainly for PDT in association
with UCL imaging (Luo et al., 2016; Gulzar et al., 2018) or
fluorescence imaging (Ge et al., 2014; Luo et al., 2016). In
particular, two studies investigated NGO for imaging-guided
PDT in combination with PTT (Luo et al., 2016; Gulzar
et al., 2018), achieving significant (Gulzar et al., 2018) or
even total (Luo et al., 2016) cancer ablation between 14
and 16 days.
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TABLE 3 | Comparison of nanomaterials and laser powers used for PDT-based cancer theranostic applications and relative outcomes in vivo.

References Tumor Laser

wavelength

Laser power

intensity

Irradiation time Starting

material

Combined

therapy

Outcome

(number of

days after the

treatment)

Sahu et al. (2013) Cervical cancer 650 nm 0.1 W/cm2 10min

(one time)

NGO PTT Total ablation

(15 days)

Ge et al. (2014) Cervical, breast

cancer

400–800 nm 0.1 W/cm2 10min

(two times)

GQDs – Total ablation

(17 days)

Rong et al. (2014) Breast cancer 671 nm 90.0 W/cm2,

0.1 W/cm2

20min

(one time)

GO – Total ablation

(60 days)

Yan et al. (2015a) Lung cancer 630 nm 16.0 W/cm2 5min

(one time)

GO PTT Total ablation

(14 days)

Yan et al. (2015b) Brain cancer 630 nm 156.0 W/cm2 –

(one time)

GO Drug delivery Total ablation

(10 days)

Luo et al. (2016) Lung

cancer

808 nm 1.0 W/cm2 5min

(one time)

NGO PTT Total ablation

(16 days)

Wu et al. (2017) Breast cancer 660 nm 0.8, 1.2 and 2.0

W/cm2

10min

(one time)

GO PTT Total ablation

(21 days)

Gulzar et al. (2018) Liver and

cervical cancer

808 nm 0.7 W/cm2 10min

(one time)

NGO PTT Partial ablation

(14 days)

Kalluru et al. (2016) Melanoma 808 nm 0.2 W/cm2 8–10min

(every day)

GO PTT Partial ablation

(14 days)

Finally, only one study evaluated the suitability of GQDs for
PDT-based cancer theranostics based on PDT (Ge et al., 2014).
The main advantage of GQDs is represented by their ability to
serve as imaging tools and perform better than conventional PDT
agents in terms of 1O2 quantum yield. However, since this result
is achieved in the visible light region, the suitability of these tools
appears to be limited to superficial tumors, such as skin cancer.

FUTURE PERSPECTIVES

Following its discovery, graphene has attracted attention of the
society in general with several expectations from the public in
the context of nanomedicine (Sechi et al., 2014), and the turn of
MXene is already on the stage.

Thanks to their chemical, physical and biological properties,
graphene and MXene have shown to be powerful tools for
PDT in cancer theranostics. Both 2D nanosystems allow
the simultaneous application of non-invasive bioimaging
and therapeutic strategies that can be associated with PDT,
including photothermal therapy, magnetic therapy, and remotely
controlled chemotherapy by drug and gene delivery.

The suitability of these promising materials as photothermal
agents for tumor therapy and imaging is due to their ability
to adsorb light in the NIR region. Moreover, the easy
functionalization capability, thanks to their high surface-to-
volume ratio, allows the loading of photosensitizer agents on
these nanoplatforms, enhancing the targeting and efficiency,
resulting in amore localized action, characterized by reduced side
effects and improved therapy.

In addition, the combination with chemotherapeutic drugs
loaded on these 2D NMs can work synergistically with PDT,
leading to an improved anticancer activity. Furthermore, the

functionalization with other agents, such as Au, endows them
with a high photothermal conversion efficiency that can further
enhance their optical absorbance in the NIR range. Beside
the therapeutic efficiency of these nanoplatforms, their stability
in aqueous matrix can also be improved thanks to their
ability to be loaded with hydrophilic molecules, such as PEG.
This aspect is of great interest in view of their intravenous
administration, since most PSs are hydrophobic and could
easily aggregate in biological fluids, with a consequent decrease
in their quantum yield and increase in immune responses
(Sibani et al., 2008; Kashef et al., 2017).

However, despite the encouraging promising results, there is
still an extensive work to be accomplished to further clarify and
prove the potentialities of GBM- and MXene-based PDT for
cancer theranostics. First of all, for the translation of these 2D
materials into clinical application, the assessment of their long-
term toxicity is required to fully characterize their safety profile.

The potential widespread use of graphene and MXene-based
materials for commercial purposes will favor their interactions
with biological and environmental components. Therefore,
several studies have been carried out to define the cyto-
and bio-compatibility of these nanomaterials in vitro and in
vivo (Fadeel et al., 2018a; Lin et al., 2018). These studies,
particularly for graphene, state that the toxicity depends on
the complex interaction of several physiochemical properties,
such as shape, size, functional groups, oxidative state, dispersion
state, synthesis methods, exposure times, as well as route and
dose of administration. Moreover, graphene can contain several
chemical contaminants and impurities coming from synthesis
(Liao et al., 2018) and post-synthesis processing steps that can
lead to graphene structure disruption and smaller carbonaceous
debris production. Therefore, these confounding aspects may
elicit variable toxicity responses (Li and Boraschi, 2016).
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In this view, various studies have been performed to better
understand and predict GBM toxicity and their potential impact
on the immune system which governs every aspect of our health,
including the way we react to therapies in cancer (Orecchioni
et al., 2014, 2016a,b, 2017; Russier et al., 2017; Fadeel et al.,
2018b). The obtained results have highlighted the importance of
material characterization as a key element for hazard assessment
as well as bio and immune compatibility. Therefore, biomedical
scientists should not consider graphene as a single material but
as a complex class of materials, taking into account the role
of physicochemical properties (e.g., lateral dimension, carbon
oxygen ratio and number of layers) while assessing the biological
effects (Fadeel et al., 2018a). Concerning MXene, preliminary
evaluations of Ti3C2 MXene biocompatibility have not evidenced
apoptosis or signs of cytotoxicity in vitro in cancer cells (Dai
et al., 2017; Lin et al., 2017; Liu et al., 2017; Han et al., 2018)
and neurons (Driscoll et al., 2018). Ti3C2 NSs injected in vivo
in the blood stream appear to be either excreted in the urine via
physiologic renal clearance pathways or retained in the tumor
site via the enhanced permeability and retention (EPR) effect,
without accumulating in the major organs. Similar findings
have been reported for the cyto-biocompatibility and systemic
safety of Ta4C3 (Dai et al., 2017; Liu et al., 2018) and Nb2C
MXenes (Lin et al., 2017). Despite all these data on MXene
biocompatibility, the assessment of its potential toxicity is still at a
very early stage. For both types of materials, new studies on their
biomedical application should take into consideration general
requirements with respect to Minimum Information Reporting
in Bio–Nano Experimental Literature (MIRIBEL) and other key
considerations on the issue of transparency and reproducibility
in nanomedicine, such as that the choice of material physical-
chemical characteristics should be tailored for their intended
use (Faria et al., 2018; Leong et al., 2019). That consideration
is even more valid in the context of cancer theranostics were
the starting properties of the material can make the difference
in the successful application of new 2D material-based cancer
treatment. Another key point is related to the materials’ fine
characterization and reproducibility, which should be considered
in every work based on engineered nanomaterials as a key aspect
to avoid hype around the potential translation into clinic (DeLoid
et al., 2017).

Beyond the toxicity context and physical-chemical material
choice, other knowledge gaps need to be filled to shed light on
the actual potentialities of these 2D NMs for cancer theranostics
and PDT in particular. Indeed, the understanding of these aspects
cannot overlook the elucidation of fundamental mechanisms
underlying the ROS generation elicited by these materials,
which is at the basis of PDT. Moreover, more efforts should
be directed into a deeper understanding of the nanoparticle-
tumor interaction, the possibility of a scaled-up synthesis, and
the development of regulatory theranostic protocols in order to
determine a personalized therapy framework.

Finally, controlling the lifetime of the nanoagents in the
body and mitigating the risks related to retention of NMs
and their byproducts could significantly advance NM-based

theranostic platforms in the translational pipeline (Orecchioni
et al., 2015). The complete clearance from the body, along with
the biodegradation of 2D nanostructures needs to be assessed
for these materials in order to be translated into clinical settings
(Andón et al., 2013; Bhattacharya et al., 2013; Farrera et al.,
2014; Kurapati et al., 2018; Mukherjee et al., 2018; Martín et al.,
2019). Although GBMs can be considered structurally persistent,
it has been proved that oxidative enzymes (i.e., peroxidases) are
capable of catalyzing the GO degradation in vitro and in vivo (Bai
et al., 2014; Kurapati et al., 2018; Mukherjee et al., 2018). Nb2C
MXene NSs can be engineered to degrade through an active
biodegradation scheme that leverages human myeloperoxidase
(hMPO), a free-radical species generating enzyme expressed by
neutrophils to carry out their antimicrobial activity (Lin et al.,
2017). In the presence of hydrogen peroxide (H2O2), hMPO
generates hypochlorous acid and reactive radical intermediates,
which degrade polymers and carbon-based materials. The
incubation of Nb2C NSs in hMPO and H2O2 enriched
medium for 24 h has been reported to cause the complete
degradation and disappearance of NSs, thus demonstrating in
vitro the feasibility of this enzyme-triggered degradation route for
MXenes (Figures 5D,E).

Overall, this review has shown that significant advances in the
theranostic use of graphene-based materials and MXenes have
been made. However, three main aspects should be carefully
taken more into account: (i) the potential not-targeted toxicity,
(ii) a choice of physical-chemical material characteristics prior
their assessment for cancer therapy, (iii) a fine characterization,
and (iv) the assessment of their potential biodegradability.
Despite that knowledge gaps in the field still need to be filled,
virtuous perspectives for GBMs and MXene were evidenced
from over 30 works here analyzed, standing out as the
most promising 2D NMs intended to change the patterns of
conventional cancer theranostics, guaranteeing new protocols for
personalized therapies.
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