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Clonal mutations of the TP53, NOTCH1, SF3B1 or BIRC3 genes have allowed to refine the 

conventional fluorescence in situ hybridization (FISH)-based prognostic stratification of 

chronic lymphocytic leukemia (CLL) by reclassifying ∼ 20% of good-risk patients (del13q, 

+12, normal FISH) into higher-risk subgroups.1 Consequently, two novel CLL good-risk 

subgroups, both devoid of the four gene clonal mutations, have been defined: low risk—

harboring +12 or a normal FISH (10-year overall survival (OS): 57%)—and very-low risk— 

carrying del13q only, whose 10-year OS (69.3%) does not differ from that of the healthy 

age-matched general population.1

Cytogenetics using novel mitogens allows to recognize chromosomal aberrations in regions 

uncovered by standard FISH and to identify novel genetic subgroups with prognostic 

relevance, especially within CLL carrying del17p.2–5 Less is known about the integration of 

karyotype (KT)-based subgroups into the good-risk CLL categories.

This study was designed to further refine, by KT analysis, the prognostic stratification of 

CLL with del13q or normal FISH, with the aim of identifying at diagnosis patients who may 

never require treatment and with a possible normal life expectancy.
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Good-risk FISH CLL patients were selected from a series of 248 consecutive untreated 

patients characterized by FISH and cytogenetics with novel mitogens at diagnosis or within 

1 year from diagnosis at two institutions (Rome and Ferrara), as described.2 Dohner’s 

hierarchic categories were as follows: high risk (del17p/del11q) in 46 cases (18.6%), 

intermediate risk (+12) in 34 cases (13.7%) and good-risk FISH (del13q only/normal) in 168 

cases (67.7%).

Among the 168 good-risk FISH subjects, Sanger sequencing of TP53, NOTCH1, SF3B1 and 

BIRC3 genes was retrospectively performed in 123 cases with available material. Clonal 

mutations were identified in 17 patients (13.8%): TP53 in 1 (0.8%), SF3B1 in 8 (6.5%), 

NOTCH1 in 7 (5.7%) and BIRC3 in 1 (0.8%). KT with novel mitogens was evaluable in 

120/123 cases (97.6%): a normal KT or del13q only was present in 83 cases (69.2%), 1–2 

lesions (other than del13q) were found in 31 (25.8%) and a complex KT (CKT) in 6 (5%) 

(Tables 1a and 1b, and Supplementary Figure 1).

Additional chromosomal lesions/CKT (n = 37) were significantly more common, but not 

exclusive, in patients with more advanced clinical stages—23/98 (23.5%) stage A and 14/22 

(63.6%) stage B/C (P = 0.0006)—and significantly associated with the expression of CD38 

>30% (P = 0.0038), reinforcing the notion that, in CLL, the genomic complexity arises 

predominantly in the CD38+ cell fraction.6 Contrariwise, they were not associated to gender 

or age and equally represented in CLL with del13q only by FISH (21/70, 30%) and normal 

FISH (16/50, 32%) (P = 0.8). They were more frequent in unmutated (14/36, 38.9%) than in 

mutated IGHV cases (22/78, 28.2%), though not significantly (P = 0.28).

Overall, a KT with additional chromosomal lesions/CKT was a significant predictor of OS 

(P = 0.0038—HR = 6.012; 95% CI = 1.78–20.28) and time-to-first treatment (TFT) (P < 

0.0001—HR = 4.82; 95% CI = 2.27–10.24) in a univariate analysis including age, gender, 

CD38, ZAP70, IGHV status, FISH, KT and the four gene mutations, and was an 

independent predictor of short TFT (P = 0.0004—HR = 5.245; 95% CI = 2.08–13.21)—

together with CD38+, unmutated IGHV and normal FISH (Supplementary Table 1 and 

Supplementary Figure 2).

Comparing the 17 CLL mutated in 1 of the 4 genes with the 103 very-low-risk CLL wild 

type (WT) for all genes, a normal KT/del13q only was present in 10 (58.8) vs 73 (70.9%) 

cases, 1–2 lesions (other than del13q) in 4 (23.5) vs 27 (26.2%), CKT in 3 (17.7) vs 3 

(2.9%) cases, respectively. CKT was significantly more frequent in the former group (P = 

0.036). As expected, the very-low-risk CLL WT showed less-advanced clinical stages (Binet 

stage A/B/C in 92/9/5 vs 9/5/3 cases, P = 0.0026) and a significantly more benign biologic 

profile (CD38+: 15.2 vs 64.7%, P = 0.0001; unmutated IGHV genes: 24 vs 70.6%, P = 

0.0003) than the CLL with mutations, with no difference in gender or age distribution.

Focusing on the 103 CLL with favorable FISH and WT for clonal mutations, 30 (29.1%) 

shifted to an intermediate–high-risk category identified by refined KT analysis (Table 1a), 

regardless of the IGHV gene status (P = 0.44). CLL with del13q by FISH/WT (n = 62) 

showed additional KT lesions in 25.8% of cases (1–2 lesions in 15, CKT in 1); CLL with 

normal FISH/WT (n = 44) showed KT lesions in 34.1% of 41 evaluable cases (1–2 lesions in 
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12, CKT in 2) (P = 0.38). Among them, after a median follow-up of 42.5 months (range, 

2.0–102.0), those with normal KT/del13q only showed a significantly longer OS than cases 

with additional lesions/CKT (P = 0.001), and this was superimposable to the OS of the 

general age-matched Italian population (Figures 1a and b). Twenty patients (19.4%) 

underwent treatment; TFT was significantly longer for those with normal KT/del13q than 

for cases with additional lesions/CKT (P < 0.0001) (Figure 1c).

Subclonal TP53 mutations, evaluated by ultra-deep sequencing on the Genome Sequencer 

Junior (Roche-454 Life Sciences) (Roche, Mannheim, Germany) and a dedicated bio-

informatic analysis,7 were identified in 5/103 very-low-risk CLL (4.8%), with a minor allele 

frequency from 0.007 to 0.03. Four cases showed a normal KT/del13q and one carried an 

additional lesion. All are alive and three are still untreated at the last follow-up.

Finally, the six cases with a CKT would have been missed by the analysis of conventional 

clinico-biologic parameters: five were in stage A, three showed a normal FISH, three a 

del13q, four had mutated IGHV, two a negative CD38, three were WT for the four genes, 

two showed NOTCH1 and one had a TP53 mutation. This reinforces the notion that CLL 

cases with a CKT are not necessarily associated with poor conventional prognostic markers.

Although the first evidence that the number of chromosomal abnormalities detected by 

classic chromosome banding analysis had prognostic relevance in CLL goes back to 1990, 

the low proliferative activity of CLL cells in vitro has prevented an extensive application of 

KT analysis, leading to a four-probe FISH panel to become the cornerstone of CLL 

prognostic assessment. The subsequent introduction of immunostimulatory CpG-

oligonucleotides and IL-28 has enabled to overcome this technical limitation, allowing to 

obtain an informative KT virtually in all CLL cases and revealing a much more 

heterogeneous pattern of abnormalities compared with the FISH-based data. A CKT has 

been significantly associated to CD38 expression and an unmutated IGHV status, with 

del17p in 28% of cases;8 its frequency increased according to the disease phase, being 

present in 18.7% of CLL patients at diagnosis and in 30.1% of previously treated patients.9 

In line with our observations, CLL with isolated del13q by FISH showed additional 

lesions/CKT in 34% of cases.8 Among the untreated cases, the number of chromosome 

aberrations improved the prognostic stratification for OS and TFT based on conventional 

clinico-biologic features.9

These observations have been more recently confirmed on 1001 CLL cases evaluated within 

6 months from diagnosis.10 A CKT (15.7% of cases), significantly associated with 

unmutated IGHV and aberrations of chromosome 17p, resulted in an independent prognostic 

factor for shorter TFT together with the unmutated IGHV status and advanced clinical 

stages. Of the 249 del13q CLL, 19 (7.6%), mostly IGHV mutated, showed a CKT that was 

associated with a significantly shorter OS compared with similar FISH cases without CKT, 

supporting our observations.

Only one study has integrated the prognostic impact of the 20 most frequent gene mutations, 

KT and clinico-biologic parameters in 200 consecutive CLL patients at diagnosis.11 Gene 

mutations were significantly associated to intermediate–high-risk FISH and CKT (15.4%, 
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28/195). The CKT, associated to the presence of TP53, ATM and MYD88 mutations, was a 

significant predictor of both TFT and OS, and resulted independent in a multivariate analysis 

for OS, along with advanced stage, TP53 mutation/deletion and unmutated IGHV.

Thus, KT complexity aggravates the outcome of CLL across all FISH categories, being 

present from one-third to more than half of del17p CLL3–5,8,9 and, more surprisingly, in 

about 14% of normal FISH2 and in 7.6% of del13q CLL.8–10 Most importantly, in the past 

few years, CKT has proved to be a predictive marker of poor response and short OS with 

both chemoimmunotherapy12–14 and novel agents,15 independently of TP53 disruption.

In the present study, CLL patients belonging to a good-risk FISH subgroup (del13q/normal), 

which represent the majority of CLL at diagnosis, were reclassified as intermediate–high-

risk in 13.8% of cases because of the presence of one of the four gene mutations (TP53, 

NOTCH1, SF3B1 and BIRC3). Among the remaining very-low-risk CLL patients with 

del13q/normal FISH and devoid of unfavorable gene mutations, while TP53 subclonal 

mutations were rare and of uncertain significance, we showed the presence of a CKT in 3% 

of cases. Furthermore, we documented the prognostic relevance even of 1–2 additional 

chromosomal lesions, which were present in 26% of very-low-risk patients. On the other 

hand, their absence identifies a subgroup of CLL patients with an excellent long-term 

prognosis, beyond the IGHV status. Thus, as in other hematologic malignancies, the 

evaluation of conventional KT is relevant also in CLL: beyond the identification of patients 

poorly responsive to chemoimmunotherapy and BCR inhibitors, it allows to improve the 

precision of prognostic stratification and counseling of CLL patients at diagnosis, and to 

identify those who may never require treatment and with a normal/near normal life 

expectancy across the subgroups defined by FISH and gene mutations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Among good-risk FISH CLL patients devoid of gene mutations, those with normal KT/

del13q only were associated with a significantly longer OS than WT cases with additional 

lesions/CKT (P = 0.001). OS of the general age-matched Italian population was extrapolated 

by the data on http://www.mortality.org/(a); good-risk FISH CLL patients devoid of gene 

mutations with normal KT/del13q only were associated with a significantly longer OS than 

WT cases with additional lesions/CKT even among del13q (P = 0.005) and normal FISH 

CLL (P = 0.03) subgroups (b); TFT was significantly longer for good-risk FISH CLL devoid 

Giudice et al. Page 6

Leukemia. Author manuscript; available in PMC 2019 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.mortality.org/


of gene mutations with normal KT/del13q than for WT cases with additional lesions/CKT (P 
< 0.0001) (c).
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