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Abstract: Synthetic cathinones have gained popularity among young drug users and are widely
used in the clandestine market. While the cathinone-induced behavioral profile has been extensively
investigated, information on their neuroplastic effects is still rather fragmentary. Accordingly, we
have exposed male mice to a single injection of MDPV and a-PVP and sacrificed the animals at
different time points (i.e., 30 min, 2 h, and 24 h) to have a rapid readout of the effect of these
psychostimulants on neuroplasticity in the frontal lobe and hippocampus, two reward-related brain
regions. We found that a single, low dose of MDPV or a-PVP is sufficient to alter the expression of
neuroplastic markers in the adult mouse brain. In particular, we found increased expression of the
transcription factor Npas4, increased ratio between the vesicular GABA transporter and the
vesicular glutamate transporter together with changes in the expression of the neurotrophin Bdnf,
confirming the widespread impact of these cathinones on brain plasticity. To sum up, exposure to
low dose of cathinones can impair cortical and hippocampal homeostasis, suggesting that abuse of
these cathinones at much higher doses, as it occurs in humans, could have an even more profound
impact on neuroplasticity.

Keywords: GABA; glutamate; NPAS4; BDNF; MDPV; a-PVP; cathinones; hippocampus; frontal
cortex; mouse

1. Introduction

Plasticity is the ability of an organism to appropriately respond to an external
stimulus through the activation of transcriptional mechanisms set in motion by neuronal
activity that, in turn, activate intracellular signaling pathways thus fostering the induction
of immediate early genes (IEGs). IEGs, then, promote the activation of downstream
targets leading to functional and structural changes in the brain [1,2]. A recently
discovered, neuronal-specific transcription factor, known as NPAS4, has emerged as a key
mediator of brain plasticity. NPAS4 is regulated in an activity-dependent fashion and it
has proven essential for the development of GABAergic synapses onto excitatory neurons
[3]. One of the intrinsic features of NPAS4 appears to be its homeostatic ability to tone
down neuronal firing in response to excitatory transmission, by potentiating inhibitory
transmission [3]. This is critical since a proper balance between excitation and inhibition
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is relevant for the function of neuronal networks and, therefore, the regulation of NPAS4
appears to contribute to neuroplasticity as, for instance, knockout mice lacking this gene
exhibit features reminiscent of social anxiety [4] and cognitive deficit [5]. Interestingly,
among its different characteristics, it also has to be taken into account that NPAS4 itself is
able to control genes that, in turn, regulate the development of inhibitory synapses, some
of them positively and some other negatively, thus widening the role of Npas4 as a
transcriptional repressor/activator [3]. Accordingly, the regulation of NPAS4 expression
may have a large downstream impact on neuroplasticity.

Along this line of reasoning, among the genes that are regulated by NPAS4, a critical
role is indeed played by Brain Derived Neurotrophic Factor (BDNF), which is known to
contribute to the development of GABAergic synapses [6-8]. BDNF is a neurotrophin that
plays a pleiotropic role in the central nervous system (CNS). Classically, its primary role
was confined during CNS development for the regulation of cell growth, cell survival and
cell differentiation [9], whereas, more recently, BDNF has been demonstrated as a master
regulator of neuroplasticity, as shown by its critical role in activity-dependent structural
remodeling [10] as well as in the modulation of cognition [11]. Of note, both NPAS4 [12,13]
and BDNF [14-18] have been involved in the actions of drugs of abuse, primarily
psychostimulants. These data suggest that, due to their respective features, both proteins
may be important in the action of psychostimulants. Accordingly, a role can be
hypothesized for both of them in the action of synthetic cathinones, a recently emerging
class of psychostimulant designer drugs used for their rewarding properties that are
similar to cocaine, methylenedioxymethamphetamine or other psychoactive drugs, such
as amphetamine and amphetamine-like molecules [19-21]. While these compounds were
initially commercialized through Internet or smart shops as” bath salts’ or ‘plant foods’,
nowadays they are sold under their own chemical name in the clandestine market [22,23].
In humans, MDPV and a-PVP are primarily used orally, by snorting (insufflation) or
smoking, but also through intravenous injection (« slam ») or buccal, sublingual, and rectal
applications [24,25]. Among the several synthetic cathinones existing on the clandestine
market, we focused our attention on the methylenedioxy derivative of pyrovalerone
MDPV (3,4-methylenedioxypyrovalerone) and its closely related derivative a-PVP ((1-
Phenyl-2-(pyrrolidin-1-yl)pentan-1-one), also known as “flakka” or “gravel”) [26-30].
While synthetic cathinones exhibit features typical of amphetamines-like compounds,
MDPYV and a-PVP more closely resemble cocaine-like compounds [31] as they primarily
block the dopamine transporter (DAT) and the norepinephrine transporter (NET),
whereas, at variance from cocaine [32,33], these two compounds do not seem to block the
serotonin transporter (SERT) [34-38]. Further, MDPV and a-PVP show reinforcing
properties higher than cocaine and their abuse liability is positively correlated with their
ability to block the DAT [39]. Interestingly, the removal of DAT has been associated with
changes in the expression of the neurotrophin BDNF in cortical brain regions [40,41].
Above all, in rodents, their effect is manifested by increased locomotor activity, presence
of stereotypies, appearance of psychomotor effects [28,42-45] as well as aggressive
behaviors, more severe than those caused by cocaine and other psychostimulants such as
amphetamine, methamphetamine and methiopropamine administration [46-48]. Besides
these behavioral manifestations, they display reinforcing and rewarding properties in
rodents [28,42,43,49-51].

Given these premises, the major aim of our study was to investigate the effect of a
single exposure to MDPV or a-PVP on Npas4¢ mRNA levels in the frontal lobe and
hippocampus, two brain regions where this transcription factor is mainly expressed [3].
We have recently shown that both drugs modulate the expression of the immediate early
genes Arc/Arg3.1 and c-Fos in these brain regions following a single injection indeed
suggesting that these synthetic cathinones cause changes in neuronal activity that, in turn,
may affect neuroplasticity [52]. In addition, we have also shown that a single injection of
the psychostimulant cocaine is sufficient to provide functional changes in the
hippocampus [53] and in the prefrontal cortex [54].
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We will couple the information deriving from the analysis of Npas4¢ mRNA levels
with the evaluation of a marker of neuroplasticity, the neurotrophin BDNF, known to be
regulated by NPAS4 as above mentioned. Further, given the necessity of NPAS4 for the
development of GABAergic synapses onto excitatory neurons [3], we will investigate
whether the acute action of cathinones is sufficient to alter the coordinated balance
between excitatory and inhibitory inputs. Accordingly, we will analyze the ratio between
the vesicular transporters of both GABA (vGAT) and glutamate (vGIuT1), whose roles are
to package these neurotransmitters into vesicles in the cytoplasm, ready to be released
following a stimulus [55] and that represent an indeXx, albeit indirect, of the release of these
neurotransmitters. Of note, evidence already exists for the role of vGIuT1 and vGAT in the
action of psychostimulants [55-57].

2. Results
2.1. Molecular Analyses of the Effects of MDPV and a-PVP on Npas4 mRNA Levels
2.1.1. Hippocampus

Two-way ANOVA on Npas4 mRNA levels in the hippocampus showed a main effect
of treatment (F243 = 8.774, p = 0.0006), time after injection (F24 = 6.828, p = 0.0027) and a
significant time x treatment interaction (Fs43 =3.935, p = 0.0083; Figure 1 panel A). In detail,
post hoc analysis showed that the temporal induction of Npas4 differs between the
cathinones used and the time of sacrifice after injection. In fact, a single injection of MDPV
up-regulated Npas4 mRNA levels 30 min (+51%, p = 0.0285 vs. vehicle-30 min; +58%, p =
0.043 vs. a-PVP-30 min; +71%, p = 0.0002 vs. MDPV-24 h), 2 h (+46%, p = 0.0447 vs. a-PVP-
2h; +51%, p =0.0173 vs. MDPV-24 h), an effect that dissipated 24 h after the injection (+9%,
p > 0.999 versus vehicle-24 h). Conversely, a single injection of a-PVP, instead, did not
alter Npas4 mRNA levels at any of the time points investigated (30 min: 7%, p > 0.999
versus vehicle-treated mice; 2 h: =10%, p = 0.997 versus vehicle-treated mice; 24 h: +11%, p
=0.997 versus vehicle-treated mice).
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Figure 1. Time-dependent changes in Npas4 (a) and Bdnf (b) mRNA levels in the hippocampus of mice following a single
IP injection of MDPV (1 mg/kg) or a-PVP (1 mg/kg). Mice were sacrificed at three different time points, i.e., 30 min, 2 h,
and 24 h after the drug administration. Results are expressed as percentages relative to vehicle-treated group and
presented as mean + standard error of the mean (SEM). * p <0.05 a-PVP versus vehicle- treated mice; * p <0.05, # p <0.01
MDPV versus vehicle-treated mice; # p <0.05, % p < 0.01, ¥ p <0.001 MDPV versus MDPV-24 h; © p < 0.05, ®® p <0.01 MDPV
versus a-PVP (two- way ANOVA followed by Tukey’s multiple comparisons test).

2.1.2. Frontal Lobe

Similar to the hippocampus, two-way ANOVA showed a main effect of treatment
(F243 = 16.28, p < 0.0001) and a significant time x treatment interaction (Fs4s = 3.875, p =
0.0089) on Npas4 mRNA levels (Figure 2 panel A). Again, post hoc analysis revealed a
temporal induction of Npas4, which depends on the cathinone being analyzed and the
time of sacrifice after injection. In fact, a single injection of MDPV upregulated Npas4
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mRNA levels 30 min (+55%, p = 0.0219 vs. vehicle-30 min; +55%, p = 0.0136 vs. a-PVP-30
min), 2 h (+61%, p = 0.0046 vs. vehicle-2h; +70%, p = 0.0007 vs. a-PVP-2h; +51%, p = 0.0322
vs. MDPV-24 h), an effect that waned 24 h after the injection (+19%, p = 0.9398 versus
vehicle-24 h).

A single injection of a-PVP, instead, did not alter Npas4¢ mRNA levels at any time
points analyzed (30 min: 0%, p>0.999 versus vehicle-treated mice; 2 h: —4%, p = 0.9993
versus vehicle-treated mice; 24 h: +11%, p = 0.997 versus vehicle-treated mice).
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Figure 2. Time-dependent changes in Npas4 (a) and Bdnf (b) mRNA levels in the frontal lobe of mice following a single IP
injection of MDPV (1 mg/kg) or a-PVP (1 mg/kg). Mice were sacrificed at three different time points, i.e., 30 min, 2 h, and
24 h after the drug administration. Results are expressed as percentages relative to vehicle-treated group and presented
as mean + standard error of the mean (SEM). *** p < 0.001 a-PVP versus vehicle-treated mice; * p < 0.05, # p < 0.01, #* p <
0.001 MDPV versus vehicle-treated mice; %% p < 0.001 MDPV versus MDPV-24 h; @ p < 0.05, ®®® p < 0.001 MDPV versus a-
PVP; 88 p <0.001 a-PVP versus a-PVP-24 h (two-way ANOVA followed by Tukey’s multiple comparisons test).

2.2. Molecular Analysis of the Effects of MDPV and a-PVP on Bdnf mRNA Levels
2.2.1. Hippocampus

Two-way ANOVA of Bdnf mRNA levels showed a main effect of treatment (F243 =
13.13, p < 0.0001), time after injection (F243 = 10.25, p = 0.0002) and a significant time x
treatment interaction (Fs43 = 3.452, p = 0.0156; Figure 1 panel B). Post hoc analysis showed
that Bdnf expression was differently modulated by the two cathinones depending on the
time of sacrifice. In details, a single injection of MDPV increased Bdnf mRNA levels at 30
min (+26%, p = 0.0143 vs. vehicle-30 min; +30%, p = 0.001 vs. MDPV-24 h), 2 h (+22%, p =
0.0337 vs. vehicle-2 h; +28%, p = 0.0031 vs. MDPV-24 h), whereas it vanished 24 h later
(5%, p = 0.9981 vs. vehicle-24 h). When examining the effect of a-PVP, we found that it
upregulated Bdnf mRNA levels at 30 min after treatment (+31%, p = 0.0017 vs. vehicle-30
min), while such increase disappeared at the other two time points investigated (2 h: +18%,
p =0.9992 vs. vehicle-treated mice; 24 h: +10%, p = 0.9046 vs. vehicle-treated mice).

2.2.2. Frontal Lobe

Two-way ANOVA of Bdnf mRNA levels in the frontal lobe showed a main effect of
treatment (F24s = 32.37, p < 0.0001), time after injection (F24s = 52.61, p < 0.0001) and a
significant time x treatment interaction (Fs4 = 11.94, p < 0.0001; Figure 2 panel B). Bdnf
expression appears to be modulated by the type of cathinone and the time of sacrifice after
the single injection. A single injection of MDPV or a-PVP did not alter Bdnf mRNA levels
30 min or 2 h after drug exposure (MDPV: +26%, p = 0.5784 30 min vs. vehicle-30 min;
+34%, p =0.1811 2h vs. vehicle-2h; a-PVP: 1%, p =0.9999 30 min vs. vehicle-30 min; -11%,
p = 0.9988 2h vs. vehicle-2h), whereas both cathinones strongly upregulated the
neurotrophin mRNA levels 24 h later (MDPV: +120%, p <0.0001 versus vehicle-24 h; +96%,
p < 0.0001 versus MDPV-30 min; +87%, p < 0.0001 versus MDPV-2h; a-PVP:+106%, p <
0.0001 versus vehicle-24 h; +109%, p < 0.0001 versus a-PVP-30 min; +118%, p < 0.0001
versus a-PVP-2h).
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2.3. Molecular Analysis of the Effects of MDPV and a-PVP on vGAT1/vGIluT1 Ratio
2.3.1. Hippocampus

Two-way ANOVA showed a main effect of treatment (F243 = 19.82, p < 0.0001), time
after injection (F243 = 6.353, p = 0.0038) and a significant time x treatment interaction (Fsss
= 4.86, p = 0.0025) on vGAT/vGluT1 ratio (Figure 3 panel A). In fact, a single injection of
MDPV up-regulated vGAT/vGluT1 ratio levels 30 min (+89%, p = 0.0003 vs. vehicle-30 min;
+92%, p <0.0001 vs. a-PVP-30 min; +70%, p = 0.0035 vs. MDPV-24 h), 2 h (+73%, p = 0.0023
vs. vehicle-2h; +58%, p = 0.0316 vs. MDPV-24 h), an effect that waned 24 h after the
injection (+8%, p = 0.999 versus vehicle-24 h). Of note, a single injection of a-PVP did not
alter vGAT/vGluT1 ratio at the three time points investigated (30 min: —4%, p > 0.9999
versus vehicle-30 min; 2 h: +44%, p =0.2075 versus vehicle-2h; 24 h: =16%, p = 0.9898 versus
vehicle-24 h).
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Figure 3. Time-dependent changes in vGAT/vGIuT1 mRNA levels in the hippocampus (a) and frontal lobe (b) of mice
following a single IP injection of MDPV (1 mg/kg) or a-PVP (1 mg/kg). Mice were sacrificed at three different time points,
i.e, 30 min, 2 h, and 24 h after the drug administration. Results are expressed as percentages relative to vehicle-treated
group and presented as mean + standard error of the mean (SEM). *** p < 0.001 a-PVP versus vehicle- treated mice; * p <
0.05, # p < 0.01, #* p < 0.001 MDPV versus vehicle- treated mice; ® p <0.05, % p <0.01 MDPV versus MDPV-24 h; “® p <0.01,
@e@ p <0.001 MDPV versus a-PVP; && p <0.001 a-PVP versus a-PVP-2h; 58 p < 0.001 a-PVP versus a-PVP-24 h (two- way
ANOVA followed by Tukey’s multiple comparisons test).

2.3.2. Frontal Lobe

Two-way ANOVA showed a main effect of treatment (F242 = 6.345, p = 0.0039), time
after injection (F242 = 18.55, p < 0.0001) and a significant time x treatment interaction (Fs43
=13.24, p <0.0001; Figure 3 panel B). As observed for both Npas4 and Bdnf mRNA levels,
the profile of vGAT/vGluT1 ratio strictly depended on both the type of drug and the time
of sacrifice. Post hoc test revealed that a single injection of MDPV upregulated
vGAT/vGluT1 ratio 30 min (+101%, p = 0.0415 versus vehicle-30 min), an effect that waned
2 and 24 h after the injection (2 h: +52%, p = 0.6385 versus vehicle-2h; 24 h: -30%, p = 0.9816
versus vehicle-24 h). Conversely, a single injection of a-PVP did not alter vGAT/vGIuT1
ratio 30 min or 24 h after drug exposure (30 min: +13%, p > 0.9999 versus vehicle-30 min;
24 h: -33%, p = 0.9640 versus vehicle-24 h), whereas we observed a marked induction of
such ratio 2 h after the injection (+192%, p < 0.0001 versus vehicle-2h).

3. Discussion

Our findings indicate that a single, low dose administration of the two synthetic
cathinones MDPV and a-PVP is sufficient to alter the expression of molecular markers of
neuroplasticity in the adult mouse brain. Of note, these drugs exhibit different effects on
such markers, an effect that varies depending upon the brain region investigated and the
time of sacrifice. These results indicate the substantial danger of the exposure to these
synthetic cathinones that are normally taken at higher dosages and for prolonged periods
in humans [39].
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We found that MDPV, but not a-PVP, enhances Npas4 mRNA levels in both the
frontal lobe and hippocampus early after the injection of the drug (30 min); such effect
persists for at least 2 h, and it vanishes 24 h later. Since NPAS4 is known to be critical for
the development of GABAergic synapses, from these data we may infer that a single, low
dose injection of MDPV, but not a-PVP, is sufficient to influence the homeostasis of
GABAergic neurons. We next analyzed the ratio between the vesicular GABA transporter
vGAT and the vesicular glutamate transporter vGluT1, in order to have a more
comprehensive idea of the balance between inhibitory and excitatory neurotransmission.
We found a similar trend in both the brain regions herein analyzed with some peculiarities
that depend upon the time of sacrifice. In fact, in the hippocampus, in line with Npas4
expression, MDPV, but not a-PVP, induced a rapid increase of such ratio (30 min) that
persisted for 2 h whereas no effects of a-PVP were observed. In the frontal lobe, instead,
MDPYV raised such ratio rapidly (30 min), but then it declined back to control levels
whereas a-PVP showed a peak of induction of vGAT/vGluT1 ratio 2 h after the injection
that vanished at the later time point. These data indicate that, early after the injection of
these cathinones, MDPV, but not a-PVP, is able to rapidly activate the GABAergic over
the glutamatergic system in the hippocampus, whereas a-PVP takes longer to sustain a
similar response. Taken together, these results suggest that both cortical and hippocampal
cells activate the GABAergic system early after the injection; however, the more rapid
increase evoked by MDPV indicates that exposure to this compound is more demanding
for the cell that immediately activates a defensive strategy by potentiating the inhibition
of cell firing. It is interesting to note that, 24 h after the single injection, the balance between
inhibitory and excitatory signaling is reestablished in both the brain regions investigated
suggesting that both hippocampal and cortical cells mount an efficient response to MDPV
or a-PVP to preserve cell homeostasis. These data suggest that the GABAergic system is
indeed a target of the rapid action of cathinones and that a difference exists between these
two brain regions in their ability to maintain a balance between cathinone-induced
excitation and inhibition.

To deepen our knowledge on the effects of cathinones on cortical and hippocampal
neuroplasticity, we investigated the neurotrophin Bdnf, whose expression has been
previously shown to be regulated by the psychostimulant cocaine following single or
repeated treatment [11,56-62]. Interestingly, under our experimental conditions,
expression of the neurotrophin Bdnf follows a different pattern of activation when
compared to Npas4 depending on the time point analyzed. In the frontal lobe, MDPV, but
not a-PVP, increases total Bdnf and Npas4 mRNA levels at early time points whereas, 24
h after the single injection, both drugs show a concordant pattern of expression by
markedly up-regulating Bdnf mRNA levels, independently from Npas4 activation. A
different picture is observed in the hippocampus where both drugs increase Bdnf mRNA
levels 30 min and 2 h later, an effect that vanishes 24 h later. These findings indicate that
MDPV and a-PVP display different effects on Bdnf gene expression that are brain-region-
dependent.

Since NPAS4 is a transcription factor that controls Bdnf mRNA level in an activity-
dependent manner [3], we can infer that the increase in Bdnf mRNA levels observed in the
frontal lobe 30 min and 2 h after MDPV exposure may be due, at least partially, to the
relative increase of Npas4¢ mRNA levels. Interestingly, such correlation is lost when
animals are sacrificed 24 h after the single injection. The discrepancy between Npas4 and
Bdnf mRNA levels between early after the injection and 24 h suggests that other factors
may have come into play to sustain Bdnf mRNA levels. For instance, the increase of Bdnf
mRNA levels in both MDPV- and a-PVP-exposed mice may be indicative of a
neurotrophic, neuroprotective response of the cell to cathinone exposure; in fact, we have
previously shown that cocaine is able to promote Bdnf upregulation following a single
exposure to the psychostimulant [53,56,63]. The different profile of Bdnf induction
promoted by MPDV and a-PVP again sustains the possibility that the acute injection of
MDPYV generates a faster activation of the cell in comparison to a-PVP. Of note, Npas4 has
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been reported to exhibit a neuroprotective effect, by promoting the survival of
hippocampal neurons in response to excitatory stimulation [64], suggesting that both
genes may cooperate to mount a rapid neuroprotective response to cathinones. Finally,
these findings suggest that Bdnf mediates a portion of the inhibitory effects of Npas4 on
the GABAergic synapse, but that additional Npas4 targets may also contribute.

The brain is extremely vulnerable to substance-induced toxicity because of its high
metabolic activity. Indeed, exposure to these stimulants may cause neurological adverse
effects, increased body temperature and induce cognitive impairments. However, we
must also recognize how it is undoubtedly difficult to ascribe a specific adverse effect to
a specific stimulant as, in most cases, we are dealing with neurotoxicity due to polydrug
intoxication [65]. We believe that the changes in neuroplasticity that we have pointed out,
by showing an impairment of cortical and hippocampal homeostasis, might contribute to
cathinone-induced neurotoxicity.

In conclusion, we hypothesize that Npas4 up-regulation caused by the excitatory
input promoted by cathinones may attempt to reduce cell activity, providing a negative
feedback mechanism to preserve the homeostatic balance between excitation and
inhibition. This is reinforced by the increased ratio vGAT/vGluT1 and by the
accompanying neuroprotective response caused by Bdnf up-regulation. These results
clearly show that a single administration of a low dose of MDPV and a-PVP,
pharmacologically active in mice [52] and corresponding to a light dose in humans, can
dysregulate cortical and hippocampal homeostasis allowing to hypothesize that abuse of
these cathinones at much higher doses could have an even more profound impact on
neuroplasticity in humans.

4. Materials and Methods
4.1. Animals

Male ICR (CD-1®) mice weighing 25-30 g (Centralized Preclinical Research
Laboratory, University of Ferrara, Italy) were group housed (5 mice per cage; floor area
per animal was 80 cm?; minimum enclosure height was 12 cm), exposed to a 12:12-h light-
dark cycle (light period from 6:30 am to 6:30 pm) at a temperature of 20-22 °C and
humidity of 45-55% and were provided ad libitum access to food (Diet 4RF25 GLP;
Mucedola, Settimo Milanese, Milan, Italy) and water. Experimental protocols performed
in the present study were in accordance with the Guide for the Care and Use of Laboratory
Animals as adopted and promulgated by the European Communities Council Directive
of September 2010 (2010/63/EU) and were approved by Italian Ministry of Health (license
n. 335/2016-PR) and by the Ethics Committee of the University of Ferrara. Moreover,
adequate measures were taken to minimize the number of animals used and their pain
and discomfort.

4.2. Drug Preparation and Dose Selection

MDPV and a-PVP were purchased from LGC Standards (LGC Standards S.r.1., Sesto
San Giovanni, Milan, Italy). Drugs were initially dissolved in absolute ethanol (final
concentration was 2%) and Tween 80 (2%) and brought to the final volume with vehicle
(0.9% NaCl). The solution made of ethanol, Tween 80 and vehicle was also used as the
vehicle.

The 1 mg/kg dose of MDPV and a-PVP was chosen based on previous studies in mice
[52]. Moreover, using specific interspecies dose scaling [66], 1 mg/kg dose is equivalent to
a light dose in human (~4.86 mg and ~5.67 mg, in a human weighing 60-70 kg,
respectively) as reported on internet experiences among users [39,67-69].

4.3. Analysis of Gene Expression

Fifty-eight mice were treated with vehicle (n = 16), 1 mg/kg of MDPV (n = 18) or 1
mg/kg of a-PVP (n = 18) and sacrificed 30 min (30 min), 2 h (2 h) or 24 h (24 h) after the
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single injection. The dose of 1 mg/kg of MDPV and a-PVP was chosen based on a
previously published behavioral effects and on changes in immediate early genes
expression in a dose-response study [52]. At the scheduled times of sacrifice, mice were
killed by cervical dislocation, their brains were quickly removed and the brain regions of
interest were immediately dissected out, frozen on dry ice, and stored at -80°C until being
processed. Dissections were performed according to the mice atlas of Paxinos and
Franklin [70]; frontal lobe (approximately from Bregma +2.58 to +1.70) was dissected from
2 mm coronal section while the hippocampi were dissected according to Spijker [71].

Total RNA was isolated by single step guanidinium isothiocyanate/phenol extraction
using PureZol RNA isolation reagent (Bio-Rad Laboratories, Segrate, Milan, Italy)
according to the manufacturer’s instructions and quantified by spectrophotometric
analysis. Following total RNA extraction, the samples were processed for real-time
reverse transcription polymerase chain reaction (real time RT-PCR) to assess mRNA
levels. Briefly, an aliquot of each sample was treated with DNase to avoid DNA
contamination. RNA was analyzed by TagMan qRT-PCR instrument (CFX384 real time
system, Bio-Rad Laboratories) using the iScriptTM one-step RT-PCR kit for probes (Bio-
Rad Laboratories). Samples were run in 384 wells formats in triplicate as multiplexed
reactions. Data were analyzed with the comparative threshold cycle (AACt) method using
36B4 as reference gene [72]. The primer efficiencies were experimentally set up for each
couple of primers. Thermal cycling was initiated with an incubation at 50 °C for 10 min
(RNA retrotranscription) and then at 95°C for 5 min (retrotranscriptase inactivation). After
this initial step, 39 cycles of PCR were performed. Each PCR cycle consisted of heating the
samples at 95 °C for 10 s to enable the melting process and then for 30 s at 60 °C for the
annealing and extension reaction.

Primers and probe for total Bdnf, Npas4, vGIuT1, vGAT and 36B4 were purchased from
Eurofins MWG-Operon. Their sequences are shown below:

total Bdnf: forward primer 5-~AAGTCTGCATTACATTCCTCGA-3', reverse primer 5'-
GTTTTCTGAAAGAGGGACAGTTTAT-3, probe 5'-
TGTGGTTTGTTGCCGTTGCCAAG-3;

Npas4: forward primer 5- TCATTGACCCTGCTGACCAT -3/, reverse primer 5'-
AAGCACCAGTTTGTTGCCTG -3', probe 5'- TGATCGCCTTTTCCGTTGTC-3';

vGIuT1: Forward primer 5-ACTGCCTCACCTTGTCATG-3', Reverse Primer 5'-
GTAGCTTCCATCCCGAA ACC-3, Probe 5'-CTTTCGCACATTGGTCGTGGACAT T-3

vGAT: Forward primer 5-ACGACAAACCCAAGAT CACG-3', Reverse Primer 5'-
GTAGACCCAGCACGAA CATG-3', Probe 5'-TTCCAGCCCGCTTCCCACG-3;

36B4: forward primer 5-TTCCCACTGGCTGAAAAGGT-3', reverse primer 5'-
CGCAGCCGCAAATGC-3', probe 5'-AAGGCCTTCCTGGCC GATCCATC-3'.

4.4. Data and Statistical Analysis

Molecular data were collected in individual animals (independent determinations)
and are presented as means * standard errors. Changes produced by treatment and time
after the injection alone as well as by their combination were analyzed using a two-way
analysis of variance (ANOVA), with treatment and time after injection as independent
variables. When appropriate, further differences between groups were analyzed by
Tukey’s multiple comparisons test. Statistical significance was assumed at p < 0.05. No
changes were observed in the expression levels of the targets analyzed in both brain areas
among vehicle-treated mice sacrificed at 30 min, 2 h and 24 h.

The statistical analysis was performed with the program Prism software (GraphPad
Prism, San Diego, CA, USA).
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